WorldWideScience

Sample records for province yucca flat

  1. Two-dimensional velocity models for paths from Pahute Mesa and Yucca Flat to Yucca Mountain

    International Nuclear Information System (INIS)

    Walck, M.C.; Phillips, J.S.

    1990-11-01

    Vertical acceleration recordings of 21 underground nuclear explosions recorded at stations at Yucca Mountain provide the data for development of three two-dimensional crystal velocity profiles for portions of the Nevada Test Site. Paths from Area 19, Area 20 (both Pahute Mesa), and Yucca Flat to Yucca Mountain have been modeled using asymptotic ray theory travel time and synthetic seismogram techniques. Significant travel time differences exist between the Yucca Flat and Pahute Mesa source areas; relative amplitude patterns at Yucca Mountain also shift with changing source azimuth. The three models, UNEPM1, UNEPM2, and UNEYF1, successfully predict the travel time and amplitude data for all three paths. 24 refs., 34 figs., 8 tabs

  2. Geologic surface effects of underground nuclear testing, Yucca Flat, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2000-01-01

    This report presents a new Geographic Information System composite map of the geologic surface effects caused by underground nuclear testing in the Yucca Flat Physiographic Area of the Nevada Test Site, Nye County, Nevada. The Nevada Test Site (NTS) was established in 1951 as a continental location for testing nuclear devices (Allen and others, 1997, p.3). Originally known as the ''Nevada Proving Ground'', the NTS hosted a total of 928 nuclear detonations, of which 828 were conducted underground (U.S. Department of Energy, 1994). Three principal testing areas of the NTS were used: (1) Yucca Flat, (2) Pahute Mesa, and (3) Rainier Mesa including Aqueduct Mesa. Underground detonations at Yucca Flat and Pahute Mesa were typically emplaced in vertical drill holes, while others were tunnel emplacements. Of the three testing areas, Yucca Flat was the most extensively used, hosting 658 underground tests (747 detonations) located at 719 individual sites (Allen and others, 1997, p.3-4). Figure 1 shows the location of Yucca Flat and other testing areas of the NTS. Figure 2 shows the locations of underground nuclear detonation sites at Yucca Flat. Table 1 lists the number of underground nuclear detonations conducted, the number of borehole sites utilized, and the number of detonations mapped for surface effects at Yucca Flat by NTS Operational Area

  3. Aeromagnetic surveys across Crater Flat and parts of Yucca Mountain, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Sikora, R.F.; Campbell, D.L.; Kucks, R.P.

    1995-01-01

    As part of a study to characterize a potential nuclear waste repository at Yucca Mountain, aeromagnetic surveys were conducted in April 1993 along the trace of a planned seismic profile across Crater Flat and parts of Yucca Mountain. This report includes a presentation and preliminary interpretation of the data. The profiles are at scales of 1:100,000. Also included are a gridded color contour map of the newly acquired data and a discussion of the likely applicability of very-low-frequency (VLF) electromagnetic surveys to Yucca Mountain investigations

  4. Mineralogic Zonation Within the Tuff Confining Unit, Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Lance Prothro

    2005-01-01

    Recently acquired mineralogic data from drill hole samples in Yucca Flat show that the tuff confining unit (TCU) can be subdivided into three mineralogic zones based on the relative abundances of primary and secondary mineral assemblages. These zones are (1) an upper zone characterized by the abundance of the zeolite mineral clinoptilolite with lesser amounts of felsic and clay minerals; (2) a middle zone with felsic minerals dominant over clinoptilolite and clay minerals; and (3) a basal argillic zone where clay minerals are dominant over felsic minerals and clinoptilolite. Interpretation of the mineralogic data, along with lithologic, stratigraphic, and geophysical data from approximately 500 drill holes, reveals a three-layer mineralogic model for the TCU that shows all three zones are extensive beneath Yucca Flat. The mineralogic model will be used to subdivide the TCU in the Yucca Flat hydrostratigraphic framework model, resulting in a more accurate and versatile framework model. In addition, the identification of the type, quantity, and distribution of minerals within each TCU layer will permit modelers to better predict the spatial distribution and extent of contaminant transport from underground tests in Yucca Flat, at both the level of the hydrologic source term and the corrective action unit

  5. Influence of geologic structure on alluvial sedimentation in northwestern Yucca Flat, Nye County, Nevada

    International Nuclear Information System (INIS)

    Wagoner, J.L.

    1983-01-01

    Using downhole photography, alluvial sediments are described in 5 emplacement holes in northwestern Yucca Flat. The holes are located on or near the Grouse Canyon fan. The 3 most proximally located holes contain the coarsest sediments and display a general decrease in grain size in the downfan direction. The 2 most distally located holes contain fine-grained distal facies sediment in the upper parts of the holes and coarse-grained proximal facies gravels lower in the holes. The proximal gravels in the lower half of the sections were derived from the gravity high, a north-south-trending horst which was exposed early during the history of Yucca Flat basin. Alluvial sedimentation eventually exceeded uplift of the horst, which was buried by distal facies sediments, derived from the western basin margin

  6. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

    2009-02-10

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the

  7. Selection of areas for testing in the Eleana formation: Paleozoic geology of western Yucca Flat

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, J J

    1984-07-01

    The Paleozoic geology of NTS is reviewed to select an area for underground nuclear testing in shale. Constraints on possible areas, dictated by test program requirements and economics, are areas with topographic slope less than 5/sup 0/, depths to working point less than 3000 ft., and working points above the water table. The rock formation selected is Unit J (argillite) of the Mississippian age Eleana Formation. Within NTS, Western Yucca Flat is selected as the best area to meet the requirements. Details of the Paleozoic structure of western Yucca Flat are presented. The interpretation is based on published maps, cross-sections, and reports as well as borehole, refraction seismic, and gravity data. In terms of subsurface structure and areas where Eleana Formation Unit J occurs at depths between 500 ft to 3000 ft, four possible testing areas are identified. The areas are designated here as A, B, C and the Gravity High. Available data on the water table (static water level) is reviewed for western Yucca Flat area. Depth to the water table increases from 500 to 600 ft in Area A to 1500 ft or more in the Gravity High area. Review of the water table data rules out area A and B for testing in argillite above the water table. Area C is relatively unexplored and water conditions are unknown there. Thus, the Gravity High is selected as the most promising area for selecting testing sites. There is a dolomite thrust sheet of unknown thickness overlying the argillite in the Gravity High area. An exploration program is proposed to better characterize this structure. Finally, recommendations are made for procedures to follow for eventual site characterization of a testing site in argillite. 22 references, 12 figures, 1 table.

  8. Completion Report for Well ER-3-3 Corrective Action Unit 97: Yucca Flat/Climax Mine, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Wurtz, Jeffrey [Navarro, Las Vegas, NV (United States); Rehfeldt, Ken [Navarro, Las Vegas, NV (United States)

    2017-04-01

    Well ER-3-3 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled and completed from February 21 to March 15, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Yucca Flat/Climax Mine Corrective Action Unit (CAU) 97. The primary purpose of the well was to collect hydrogeologic data to assist in validating concepts of the flow system within the Yucca Flat/Climax Mine CAU, and to test for potential radionuclides in groundwater from the WAGTAIL (U3an) underground test.

  9. Modeling Approach/Strategy for Corrective Action Unit 97, Yucca Flat and Climax Mine , Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Janet Willie

    2003-08-01

    The objectives of the UGTA corrective action strategy are to predict the location of the contaminant boundary for each CAU, develop and implement a corrective action, and close each CAU. The process for achieving this strategy includes modeling to define the maximum extent of contaminant transport within a specified time frame. Modeling is a method of forecasting how the hydrogeologic system, including the underground test cavities, will behave over time with the goal of assessing the migration of radionuclides away from the cavities and chimneys. Use of flow and transport models to achieve the objectives of the corrective action strategy is specified in the FFACO. In the Yucca Flat/Climax Mine system, radionuclide migration will be governed by releases from the cavities and chimneys, and transport in alluvial aquifers, fractured and partially fractured volcanic rock aquifers and aquitards, the carbonate aquifers, and in intrusive units. Additional complexity is associated with multiple faults in Yucca Flat and the need to consider reactive transport mechanisms that both reduce and enhance the mobility of radionuclides. A summary of the data and information that form the technical basis for the model is provided in this document.

  10. Geology, physical properties, and surface effects at Discus Thrower Site, Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Carr, W.J.; Miller, C.H.; Dodge, H.W. Jr.

    1975-01-01

    Geologic studies in connection with Project Discus Thrower have furnished detailed stratigraphic and structural information about northwestern Yucca Flat, Nevada Test Site. The Paleozoic rocks consist of a lower carbonate sequence, argillite of the Eleana Formation, and an upper carbonate sequence. The distribution of these rocks suggests that both top and bottom of the Eleana are structural contacts, probably thrusts or reverse faults. The overlying tuff includes several units recognized in the subsurface, such as the Fraction Tuff and tuff of Redrock Valley. Other units recognized include bedded tuff associated with the Grouse Canyon Member of Belted Range Tuff, and the Rainier Mesa and Ammonia Tanks Members of the Timber Mountain Tuff. The Timber Mountain and Grouse Canyon are extensively altered to montmorillonite (a swelling clay), possibly as a result of ponding of alkaline water. The overlying alluvium locally contains at the base a clayey, tuffaceous sandstone

  11. Value of information analysis for Corrective Action Unit 97: Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    IT Corporation Las Vegas

    1999-11-19

    The value-of-information analysis evaluated data collection options for characterizing groundwater transport of contamination associated with the Yucca Flat and Climax Mine Corrective Action Units. Experts provided inputs for the evaluation of 48 characterization options, which included 27 component activities, 12 combinations of activities (subgroups), and 9 combinations of subgroups (groups). The options range from an individual study using existing data and intended to address a relatively narrow uncertainty to a 52-million dollar group of activities designed to collect and analyze new information to broadly address multiple uncertainties. A modified version of the contaminant transport component of the regional model was used to simulate contaminant transport and to estimate the maximum extent of the contaminant boundary, defined as that distance beyond which the committed effective dose equivalent from the residual radionuclides in groundwater will not exceed 4 millirem per year within 1,000 years. These simulations identified the model parameters most responsible for uncertainty over the contaminant boundary and determined weights indicating the relative importance of these parameters. Key inputs were identified through sensitivity analysis; the five selected parameters were flux for flow into Yucca Flat from the north, hydrologic source term, effective porosity and diffusion parameter for the Lower Carbonate Aquifer, and path length from the Volcanic Confining Unit to the Lower Carbonate Aquifer. Four measures were used to quantify uncertainty reduction. Using Bayesian analysis, the options were compared and ranked based on their costs and estimates of their effectiveness at reducing the key uncertainties relevant to predicting the maximum contaminant boundary.

  12. Value of information analysis for Corrective Action Unit 97: Yucca Flat, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    The value-of-information analysis evaluated data collection options for characterizing groundwater transport of contamination associated with the Yucca Flat and Climax Mine Corrective Action Units. Experts provided inputs for the evaluation of 48 characterization options, which included 27 component activities, 12 combinations of activities (subgroups), and 9 combinations of subgroups (groups). The options range from an individual study using existing data and intended to address a relatively narrow uncertainty to a 52-million dollar group of activities designed to collect and analyze new information to broadly address multiple uncertainties. A modified version of the contaminant transport component of the regional model was used to simulate contaminant transport and to estimate the maximum extent of the contaminant boundary, defined as that distance beyond which the committed effective dose equivalent from the residual radionuclides in groundwater will not exceed 4 millirem per year within 1,000 years. These simulations identified the model parameters most responsible for uncertainty over the contaminant boundary and determined weights indicating the relative importance of these parameters. Key inputs were identified through sensitivity analysis; the five selected parameters were flux for flow into Yucca Flat from the north, hydrologic source term, effective porosity and diffusion parameter for the Lower Carbonate Aquifer, and path length from the Volcanic Confining Unit to the Lower Carbonate Aquifer. Four measures were used to quantify uncertainty reduction. Using Bayesian analysis, the options were compared and ranked based on their costs and estimates of their effectiveness at reducing the key uncertainties relevant to predicting the maximum contaminant boundary

  13. Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.C.; Harris, A.G.; Wahl, R.R.

    1997-10-02

    This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications

  14. Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada

    International Nuclear Information System (INIS)

    Cole, J.C.; Harris, A.G.; Wahl, R.R.

    1997-01-01

    This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications

  15. A Hydrostratigraphic Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat-Climax Mine, Lincoln and Nye Counties, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Geotechnical Sciences Group Bechtel Nevada

    2006-01-01

    A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive was emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model

  16. GIS surface effects archive of underground nuclear detonations conducted at Yucca Flat and Pahute Mesa, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2001-01-01

    This report presents a new comprehensive, digital archive of more than 40 years of geologic surface effects maps produced at individual detonation sites throughout the Yucca Flat and Pahute Mesa nuclear testing areas of the Nevada Test Site, Nye County, Nevada. The Geographic Information System (GIS) surface effects map archive on CD-ROM (this report) comprehensively documents the surface effects of underground nuclear detonations conducted at two of the most extensively used testing areas of the Nevada Test Site. Between 1951 and 1992, numerous investigators of the U.S. Geological Survey, the Los Alamos National Laboratory, the Lawrence Livermore National Laboratory, and the Defense Threat Reduction Agency meticulously mapped the surface effects caused by underground nuclear testing. Their work documented the effects of more than seventy percent of the underground nuclear detonations conducted at Yucca Flat and all of the underground nuclear detonations conducted at Pahute Mesa

  17. Estimation of groundwater velocities from Yucca Flat to the Amargosa Desert using geochemistry and environmental isotopes

    International Nuclear Information System (INIS)

    Hershey, R.L.; Acheampong, S.Y.

    1997-06-01

    Geochemical and isotopic data from groundwater sampling locations can be used to estimate groundwater flow velocities for independent comparison to velocities calculated by other methods. The objective of this study was to calculate groundwater flow velocities using geochemistry and environmental isotopes from the southern end of Yucca Flat to the Amargosa Desert, considering mixing of different groundwater inputs from sources each and southeast of the Nevada Test Site (NTS). The approach used to accomplish the objective of this study consisted of five steps: (1) reviewing and selecting locations where carbon isotopic groundwater analyses, reliable ionic analysis, and well completion information are available; (2) calculating chemical speciation with the computer code WATEQ4F (Ball and Nordstrom, 1991) to determine the saturation state of mineral phases for each ground water location; (3) grouping wells into reasonable flowpaths and mixing scenarios from different groundwater sources; (4) using the computer code NETPATH (Plummer et al., 1991) to simulate mixing and the possible chemical reactions along the flowpath, and to calculate the changes in carbon-13/carbon-12 isotopic ratios (δ 13 C) as a result of these reactions; and (5) using carbon-14 ( 14 C) data to calculate velocity

  18. Manganese-oxide minerals in fractures of the Crater Flat Tuff in drill core USW G-4, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Carlos, B.A.; Bish, D.L.; Chipera, S.J.

    1990-07-01

    The Crater Flat Tuff is almost entirely below the water table in drill hole USW G-4 at Yucca Mountain, Nevada. Manganese-oxide minerals from the Crater Flat Tuff in USW G-4 were studied using optical, scanning electron microscopic, electron microprobe, and x-ray powder diffraction methods to determine their distribution, mineralogy, and chemistry. Manganese-oxide minerals coat fractures in all three members of the Crater Flat Tuff (Prow Pass, Bullfrog, and Tram), but they are most abundant in fractures in the densely welded devitrified intervals of these members. The coatings are mostly of the cryptomelane/hollandite mineral group, but the chemistry of these coatings varies considerably. Some of the chemical variations, particularly the presence of calcium, sodium, and strontium, can be explained by admixture with todorokite, seen in some x-ray powder diffraction patterns. Other chemical variations, particularly between Ba and Pb, demonstrate that considerable substitution of Pb for Ba occurs in hollandite. Manganese-oxide coatings are common in the 10-m interval that produced 75% of the water pumped from USW G-4 in a flow survey in 1983. Their presence in water-producing zones suggests that manganese oxides may exert a significant chemical effect on groundwater beneath Yucca Mountain. In particular, the ability of the manganese oxides found at Yucca Mountain to be easily reduced suggests that they may affect the redox conditions of the groundwater and may oxidize dissolved or suspended species. Although the Mn oxides at Yucca Mountain have low exchange capacities, these minerals may retard the migration of some radionuclides, particularly the actinides, through scavenging and coprecipitation. 23 refs., 21 figs., 2 tabs

  19. The case for pre-Middle Cretaceous extensional faulting in northern Yucca Flat, southwestern Nevada

    International Nuclear Information System (INIS)

    Cole, J.C.; Harris, A.G.; Lanphere, M.A.; Barker, C.E.; Warren, R.G.

    1993-01-01

    Extremely complex low-angle fault relationships within the Late Proterozoic to Pennsylvania sedimentary rocks near Yucca Flat, Nevada Test Site, have been previously ascribed to Mesozoic compression during the Sevier orogeny, or to middle Tertiary extension of a pre-existing thrust stack. New field evidence and detailed studies of a 3,500-foot drillhole show that this structural complexity results from post-thrust regional extension that may be much older than previously recognized. The interpreted age constraint is inferred from thermal disturbances recorded by rocks above the altered monzodiorite(?) porphyry border phase of an intrusion penetrated in the bottom of the drillhole. The pluton intrudes middle Devonian dolomite that forms the lowermost of at least seven structural sheets. Each sheet is bounded by breccia zones and consists of an identifiable slice of the local Paleozoic section without ordered sequence. The intervening structural sheets of carbonaceous siltstone appear to have been thermally disturbed because they yield essentially no volatile hydrocarbons during pyrolysis. All observed features are consistent with thermal overprinting by the 102 Ma intrusion and permit an interpretation that the complicated fault/stratigraphy relationships also predate 102 Ma. Outcrop studies of numerous low-angle faults within the Paleozoic and late Proterozoic rocks in this region indicate that many are extensional, whether they involve younger-over-older or older-over-younger age relations. The authors infer a dominantly extensional origin for the structural sheets encountered in the drillhole on the basis of similarities with the outcrop faults, but the sheets must have been derived from the upper plate of the nearby CP thrust fault

  20. Hydraulic Characterization of Overpressured Tuffs in Central Yucca Flat, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Halford; R.J. Laczniak; D.L. Galloway

    2005-10-07

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  1. Joint body- and surface-wave tomography of Yucca Flat, Nevada

    Science.gov (United States)

    Toney, L. D.; Abbott, R. E.; Preston, L. A.

    2017-12-01

    In 2015, Sandia National Laboratories conducted an active-source seismic survey of Yucca Flat (YF), Nevada, on the Nevada National Security Site. YF hosted over 650 underground nuclear tests (UGTs) between 1957 and 1992. Data from this survey will help characterize the geologic structure and bulk properties of the region, informing models for the next phase of the Source Physics Experiments. The survey source was a 13,000-kg weight drop at 91 locations along a 19-km N-S transect and 56 locations along an 11-km E-W transect. Over 350 three-component 2-Hz geophones were variably spaced at 10, 20, and 100 m along each line; we used a roll-along survey geometry to ensure 10-m receiver spacing within 2 km of the source. We applied the multiple filter technique to the dataset using a comb of 30 narrow bandpass filters with center frequencies ranging from 1 to 50 Hz. After manually windowing out the fundamental Rayleigh-wave arrival, we picked group-velocity dispersion curves for 50,000 source-receiver pairs. We performed a joint inversion of group-velocity dispersion and existing body-wave travel-time picks for the shear- and compressional-wave velocity structure of YF. Our final models reveal significant Vp / Vs anomalies in the vicinities of legacy UGT sites. The velocity structures corroborate existing seismo-stratigraphic models of YF derived from borehole and gravity data. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  2. Ground magnetic studies along a regional seismic-reflection profile across Bare Mountain, Crater Flat and Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Langenheim, V.E.; Ponce, D.A.

    1995-01-01

    Ground magnetic data were collected along a 26-km-long regional seismic-reflection profile in southwest Nevada that starts in the Amargosa Desert, crosses Bare Mountain, Crater Flat and Yucca Mountain, and ends in Midway Valley. Parallel ground magnetic profiles were also collected about 100 m to either side of the western half of the seismic-reflection line. The magnetic data indicate that the eastern half of Crater Flat is characterized by closely-spaced faulting (1--2 km) in contrast to the western half of Crater Flat. Modeling of the data indicates that the Topopah Spring Tuff is offset about 250 m on the Solitario Canyon fault and about 50 m on the Ghost Dance fault. These estimates of fault offset are consistent with seismic-reflection data and geologic mapping. A broad magnetic high of about 500--600 nT is centered over Crater Flat. Modeling of the magnetic data indicates that the source of this high is not thickening and doming of the Bullfrog Tuff, but more likely lies below the Bullfrog Tuff. Possible source lithologies for this magnetic high include altered argillite of the Eleana Formation, Cretaceous or Tertiary intrusions, and mafic sills

  3. Aerial radiological survey of Areas 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 15 and 17, Yucca Flat, Nevada Test Site, 8 August-2 September 1978

    International Nuclear Information System (INIS)

    Fritzsche, A.E.

    1982-06-01

    An aerial gamma survey was conducted over Yucca Flat during August 1978. A limited quantity of soil samples was obtained and evaluated in support of the aerial survey. Results are presented in the form of exposure rate isopleths from man-made isotopes and estimates of concentrations and inventories of 152 Eu, 137 Cs and 60 Co

  4. Results of exploratory drill hole UE7nS East-Central Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Wagoner, J.L.; Ramspott, L.D.

    1981-01-01

    Exploratory hole UE7nS was drilled to a depth of 672.1 m in East-Central Yucca Flat, Nevada Test Site, as part of a program sponsored by the Nuclear Monitoring Office (NMO) of the Advanced Research Projects Agency (ARPA). The purpose of the program is to determine the geologic and geophysical characteristics of selected locations that have demonstrated anomalous seismic signals. The purpose for drilling UE7nS was to provide the aforementioned data for emplacement site U7n. This report presents lithologic and stratigraphic descriptions, geophysical logs, physical properties, and water table measurements. An analysis of these data has been made and a set of recommended values is presented

  5. Results of exploratory drill hole UE7nS East-Central Yucca Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.L.; Ramspott, L.D.

    1981-03-02

    Exploratory hole UE7nS was drilled to a depth of 672.1 m in East-Central Yucca Flat, Nevada Test Site, as part of a program sponsored by the Nuclear Monitoring Office (NMO) of the Advanced Research Projects Agency (ARPA). The purpose of the program is to determine the geologic and geophysical characteristics of selected locations that have demonstrated anomalous seismic signals. The purpose for drilling UE7nS was to provide the aforementioned data for emplacement site U7n. This report presents lithologic and stratigraphic descriptions, geophysical logs, physical properties, and water table measurements. An analysis of these data has been made and a set of recommended values is presented.

  6. Unclassified Sources Term and Radionuclide Data for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Peter Martian

    2009-08-01

    This report documents the evaluation of the information and data available on the unclassified source term and radionuclide contamination for CAU 97: Yucca Flat/Climax Mine. The total residual inventory of radionuclides associated with one or more tests is known as the radiologic source term (RST). The RST is comprised of radionuclides in water, glass, or other phases or mineralogic forms. The hydrologic source term (HST) of an underground nuclear test is the portion of the total RST that is released into the groundwater over time following the test. In this report, the HST represents radionuclide release some time after the explosion and does not include the rapidly evolving mechanical, thermal, and chemical processes during the explosion. The CAU 97: Yucca Flat/Climax Mine has many more detonations and a wider variety of settings to consider compared to other CAUs. For instance, the source term analysis and evaluation performed for CAUs 101 and 102: Central and Western Pahute Mesa and CAU 98: Frenchman Flat did not consider vadose zone attenuation because many detonations were located near or below the water table. However, the large number of Yucca Flat/Climax Mine tests and the location of many tests above the water table warrant a more robust analysis of the unsaturated zone. The purpose of this report is to develop and document conceptual models of the Yucca Flat/Climax Mine HST for use in implementing source terms for the Yucca Flat/Climax Mine models. This document presents future plans to incorporate the radionuclide attenuation mechanisms due to unsaturated/multiphase flow and transport within the Yucca Flat CAU scale modeling. The important processes that influence radionuclide migration for the unsaturated and saturated tests in alluvial, volcanic, and carbonate settings are identified. Many different flow and transport models developed by Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), including original

  7. Implications of seismic reflection and potential field geophysical data on the structural framework of the Yucca Mountain--Crater Flat region, Nevada

    International Nuclear Information System (INIS)

    Brocher, T.M.; Langenheim, V.E.; Hunter, W.C.

    1998-01-01

    Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate-to-high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64 degree ± 5 degree. Along the profile the transition from east- to west-dipping faults occurs at or just west of the Solitario Canyon fault, which bounds the western side of Yucca Mountain. The interaction at depth of these east- and west-dipping faults, having up to hundreds of meters offset, is not imaged by the seismic reflection profile. Understanding potential seismic hazards at Yucca Mountain requires knowledge of the subsurface geometry of the faults near Yucca Mountain, since earthquakes generally nucleate and release the greatest amount of their seismic energy at depth. The geophysical data indicate that many fault planes near the potential nuclear waste facility dip toward Yucca Mountain, including the Bare Mountain range-front fault and several west-dipping faults east of Yucca Mountain. Thus, earthquake ruptures along these faults would lie closer to Yucca Mountain than is often estimated from their surface locations and could therefore be more damaging

  8. Unclassified Source Term and Radionuclide Data for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Peter Martian

    2009-05-01

    This report documents the evaluation of the information and data available on the unclassified source term and radionuclide contamination for CAU 97: Yucca Flat/Climax Mine. The total residual inventory of radionuclides associated with one or more tests is known as the radiologic source term (RST). The RST is comprised of radionuclides in water, glass, or other phases or mineralogic forms. The hydrologic source term (HST) of an underground nuclear test is the portion of the total RST that is released into the groundwater over time following the test. In this report, the HST represents radionuclide release some time after the explosion and does not include the rapidly evolving mechanical, thermal, and chemical processes during the explosion. The CAU 97: Yucca Flat/Climax Mine has many more detonations and a wider variety of settings to consider compared to other CAUs. For instance, the source term analysis and evaluation performed for CAUs 101 and 102: Central and Western Pahute Mesa and CAU 98: Frenchman Flat did not consider vadose zone attenuation because many detonations were located near or below the water table. However, the large number of Yucca Flat/Climax Mine tests and the location of many tests above the water table warrant a more robust analysis of the unsaturated zone.

  9. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0

    International Nuclear Information System (INIS)

    John McCord

    2007-01-01

    This report documents transport data and data analyses for Yucca Flat/Climax Mine CAU 97. The purpose of the data compilation and related analyses is to provide the primary reference to support parameterization of the Yucca Flat/Climax Mine CAU transport model. Specific task objectives were as follows: (1) Identify and compile currently available transport parameter data and supporting information that may be relevant to the Yucca Flat/Climax Mine CAU. (2) Assess the level of quality of the data and associated documentation. (3) Analyze the data to derive expected values and estimates of the associated uncertainty and variability. The scope of this document includes the compilation and assessment of data and information relevant to transport parameters for the Yucca Flat/Climax Mine CAU subsurface within the context of unclassified source-term contamination. Data types of interest include mineralogy, aqueous chemistry, matrix and effective porosity, dispersivity, matrix diffusion, matrix and fracture sorption, and colloid-facilitated transport parameters

  10. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2007-09-01

    This report documents transport data and data analyses for Yucca Flat/Climax Mine CAU 97. The purpose of the data compilation and related analyses is to provide the primary reference to support parameterization of the Yucca Flat/Climax Mine CAU transport model. Specific task objectives were as follows: • Identify and compile currently available transport parameter data and supporting information that may be relevant to the Yucca Flat/Climax Mine CAU. • Assess the level of quality of the data and associated documentation. • Analyze the data to derive expected values and estimates of the associated uncertainty and variability. The scope of this document includes the compilation and assessment of data and information relevant to transport parameters for the Yucca Flat/Climax Mine CAU subsurface within the context of unclassified source-term contamination. Data types of interest include mineralogy, aqueous chemistry, matrix and effective porosity, dispersivity, matrix diffusion, matrix and fracture sorption, and colloid-facilitated transport parameters.

  11. Completion Report for the Well ER-6-2 Site Corrective Action Unit 97: Yucca Flat - Climax Mine

    International Nuclear Information System (INIS)

    2008-01-01

    Well ER-6-2 and its satellite hole, Well ER-6-2 No.1, were drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. Well ER-6-2 was drilled in two stages in 1993 and 1994; the satellite hole, Well ER-6-2 No.1 was drilled nearby in 1993 but was abandoned. The wells were drilled as part of a hydrogeologic investigation program for the Yucca Flat-Climax Mine Corrective Action Unit Number 97, in the northeastern portion of the Nevada Test Site. The wells are located in Yucca Flat, within Area 6 of the Nevada Test Site. The wells provided information regarding the radiological and hydrogeological environment in a potentially down-gradient position from tests conducted in northern and central Yucca Flat. Construction of Well ER-6-2 began with a 1.2-meter-diameter surface conductor hole, which was drilled and cased off to a depth of 30.8 meters below the surface. A 50.8-centimeter diameter surface hole was then rotary drilled to the depth of 578.5 meters and cased off to the depth of 530.4 meters. The hole diameter was then reduced to 27.0 centimeters, and the borehole was advanced to a temporary depth of 611.4 meters. The borehole was conventionally cored to a total depth of 1,045 meters with a diameter of 14.0 centimeters. Borehole sloughing required cementing and re-drilling of several zones. The open-hole completion accesses the lower carbonate aquifer, the CP thrust fault, and the upper clastic confining unit. A fluid level depth of 543.2 meters was most recently measured in the open borehole in September 2007. No radionuclides were encountered during drilling. The satellite hole Well ER-6-2 No.1 was drilled approximately 15.2 meters north of Well ER-6-2 on the same drill pad. This was planned to be used as an observation well during future hydrologic testing at Well ER-6-2; however, the satellite hole was abandoned at

  12. Briefing package for the Yucca Flat pre-emptive review, including overview, UZ model, SZ volcanics model and summary and conclusions sections

    Energy Technology Data Exchange (ETDEWEB)

    Kwicklis, Edward Michael [Los Alamos National Laboratory; Keating, Elizabeth H [Los Alamos National Laboratory

    2010-12-02

    Much progress has been made in the last several years in modeling radionuclide transport from tests conducted both in the unsaturated zone and saturated volcanic rocks of Yucca Flat, Nevada. The presentations to the DOE NNSA pre-emptive review panel contained herein document the progress to date, and discuss preliminary conclusions regarding the present and future extents of contamination resulting from past nuclear tests. The presentations also discuss possible strategies for addressing uncertainty in the model results.

  13. Analysis of Ground-Water Levels and Associated Trends in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1951-2003

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Fenelon

    2005-10-05

    Almost 4,000 water-level measurements in 216 wells in the Yucca Flat area from 1951 to 2003 were quality assured and analyzed. An interpretative database was developed that describes water-level conditions for each water level measured in Yucca Flat. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes narratives that discuss the water-level history of each well. Water levels in 34 wells were analyzed for variability and for statistically significant trends. An attempt was made to identify the cause of many of the water-level fluctuations or trends. Potential causes include equilibration following well construction or development, pumping in the monitoring well, withdrawals from a nearby supply well, recharge from precipitation, earthquakes, underground nuclear tests, land subsidence, barometric pressure, and Earth tides. Some of the naturally occurring fluctuations in water levels may result from variations in recharge. The magnitude of the overall water-level change for these fluctuations generally is less than 2 feet. Long-term steady-state hydrographs for most of the wells open to carbonate rock have a very similar pattern. Carbonate-rock wells without the characteristic pattern are directly west of the Yucca and Topgallant faults in the southwestern part of Yucca Flat. Long-term steady-state hydrographs from wells open to volcanic tuffs or the Eleana confining unit have a distinctly different pattern from the general water-level pattern of the carbonate-rock aquifers. Anthropogenic water-level fluctuations were caused primarily by water withdrawals and nuclear testing. Nuclear tests affected water levels in many wells. Trends in these wells are attributed to test-cavity infilling or the effects of

  14. First observations of tritium in ground water outside chimneys of underground nuclear explosions, Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Crow, N.B.

    1976-01-01

    Abnormal levels of radionuclides had not been detected in ground water at the Nevada Test Site beyond the immediate vicinity of underground nuclear explosions until April 1974, when above-background tritium activity levels were detected in ground-water inflow from the tuff beneath Yucca Flat to an emplacement chamber being mined in hole U2aw in the east-central part of Area 2. No other radionuclides were detected in a sample of water from the chamber. In comparison with the amount of tritium estimated to be present in the ground water in nearby nuclear chimneys, the activity level at U2aw is very low. To put the tritium activity levels at U2aw into proper perspective, the maximum tritium activity level observed was significantly less than the maximum permissible concentration (MPC) for a restricted area, though from mid-April 1974 until the emplacement chamber was expended in September 1974, the tritium activity exceeded the MPC for the general public. Above-background tritium activity was also detected in ground water from the adjacent exploratory hole, Ue2aw. The nearest underground nuclear explosion detonated beneath the water table, believed to be the source of the tritium observed, is Commodore (U2am), located 465 m southeast of the emplacement chamber in U2aw. Commodore was detonated in May 1967. In May 1975, tritium activity May significantly higher than regional background. was detected in ground water from hole Ue2ar, 980 m south of the emplacement chamber in U2aw and 361 m from a second underground nuclear explosion, Agile (U2v), also detonated below the water table, in February 1967. This paper describes these occurrences of tritium in the ground water. A mechanism to account for the movement of tritium is postulated

  15. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 97: Yucca Flat/Climax Mine Nevada National Security Site, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro, Las Vegas, NV (United States)

    2017-08-01

    This corrective action decision document (CADD)/corrective action plan (CAP) has been prepared for Corrective Action Unit (CAU) 97, Yucca Flat/Climax Mine, Nevada National Security Site (NNSS), Nevada. The Yucca Flat/Climax Mine CAU is located in the northeastern portion of the NNSS and comprises 720 corrective action sites. A total of 747 underground nuclear detonations took place within this CAU between 1957 and 1992 and resulted in the release of radionuclides (RNs) in the subsurface in the vicinity of the test cavities. The CADD portion describes the Yucca Flat/Climax Mine CAU data-collection and modeling activities completed during the corrective action investigation (CAI) stage, presents the corrective action objectives, and describes the actions recommended to meet the objectives. The CAP portion describes the corrective action implementation plan. The CAP presents CAU regulatory boundary objectives and initial use-restriction boundaries identified and negotiated by DOE and the Nevada Division of Environmental Protection (NDEP). The CAP also presents the model evaluation process designed to build confidence that the groundwater flow and contaminant transport modeling results can be used for the regulatory decisions required for CAU closure. The UGTA strategy assumes that active remediation of subsurface RN contamination is not feasible with current technology. As a result, the corrective action is based on a combination of characterization and modeling studies, monitoring, and institutional controls. The strategy is implemented through a four-stage approach that comprises the following: (1) corrective action investigation plan (CAIP), (2) CAI, (3) CADD/CAP, and (4) closure report (CR) stages.

  16. Corrective Action Decision Document/Closure Report for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2013-11-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. This complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The purpose of the CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed.

  17. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2014-01-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  18. Completion Report for Well ER-2-2 Corrective Action Unit 97: Yucca Flat/Climax Mine

    International Nuclear Information System (INIS)

    Wurtz, Jeffrey; Rehfeldt, Ken

    2017-01-01

    Well ER-2-2 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled from January 17 to February 8, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada. The primary purpose of the well was to collect hydrogeologic data to evaluate uncertainty in the flow and transport conceptual model and its contamination boundary forecasts, and to detect radionuclides in groundwater from the CALABASH (U2av) underground test. Well ER-2-2 was not completed as planned due to borehole stability problems. As completed, the well includes a piezometer (p1) to 582 meters (m) (1,909 feet [ft]) below ground surface (bgs) installed in the Timber Mountain lower vitric-tuff aquifer (TMLVTA) and a 12.25-inch (in.) diameter open borehole to 836 m (2,743 ft) bgs in the Lower tuff confining unit (LTCU). A 13.375-in. diameter carbon-steel casing is installed from the surface to a depth of 607 m (1,990 ft) bgs. Data collected during borehole construction include composite drill cutting samples collected every 3.0 m (10 ft), geophysical logs to a depth of 672.4 m (2,206 ft) bgs, water-quality measurements (including tritium), water-level measurements, and slug test data. The well penetrated 384.05 m (1,260 ft) of Quaternary alluvium, 541.93 m (1,778 ft) of Tertiary Volcanics (Tv) rocks, and 127.71 m (419 ft) of Paleozoic carbonates. The stratigraphy and lithology were generally as expected. However, several of the stratigraphic units were significantly thicker then predicted - principally, the Tunnel formation (Tn), which had been predicted to be 30 m (100 ft) thick; the actual thickness of this unit was 268.22 m (880 ft). Fluid depths were measured in the borehole during drilling as follows: (1) in the piezometer (p1) at 552.15 m (1,811.53 ft) bgs and (2) in the main casing (m1) at

  19. Completion Report for Well ER-2-2 Corrective Action Unit 97: Yucca Flat/Climax Mine

    Energy Technology Data Exchange (ETDEWEB)

    Wurtz, Jeffrey [Navarro, Las Vegas, NV (United States); Rehfeldt, Ken [Navarro, Las Vegas, NV (United States)

    2017-01-01

    Well ER-2-2 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled from January 17 to February 8, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada. The primary purpose of the well was to collect hydrogeologic data to evaluate uncertainty in the flow and transport conceptual model and its contamination boundary forecasts, and to detect radionuclides in groundwater from the CALABASH (U2av) underground test. Well ER-2-2 was not completed as planned due to borehole stability problems. As completed, the well includes a piezometer (p1) to 582 meters (m) (1,909 feet [ft]) below ground surface (bgs) installed in the Timber Mountain lower vitric-tuff aquifer (TMLVTA) and a 12.25-inch (in.) diameter open borehole to 836 m (2,743 ft) bgs in the Lower tuff confining unit (LTCU). A 13.375-in. diameter carbon-steel casing is installed from the surface to a depth of 607 m (1,990 ft) bgs. Data collected during borehole construction include composite drill cutting samples collected every 3.0 m (10 ft), geophysical logs to a depth of 672.4 m (2,206 ft) bgs, water-quality measurements (including tritium), water-level measurements, and slug test data. The well penetrated 384.05 m (1,260 ft) of Quaternary alluvium, 541.93 m (1,778 ft) of Tertiary Volcanics (Tv) rocks, and 127.71 m (419 ft) of Paleozoic carbonates. The stratigraphy and lithology were generally as expected. However, several of the stratigraphic units were significantly thicker then predicted—principally, the Tunnel formation (Tn), which had been predicted to be 30 m (100 ft) thick; the actual thickness of this unit was 268.22 m (880 ft). Fluid depths were measured in the borehole during drilling as follows: (1) in the piezometer (p1) at 552.15 m (1,811.53 ft) bgs and (2) in the main casing (m1) at

  20. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2013-09-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 105 comprises the following five corrective action sites (CASs): -02-23-04 Atmospheric Test Site - Whitney Closure In Place -02-23-05 Atmospheric Test Site T-2A Closure In Place -02-23-06 Atmospheric Test Site T-2B Clean Closure -02-23-08 Atmospheric Test Site T-2 Closure In Place -02-23-09 Atmospheric Test Site - Turk Closure In Place The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  1. Geochemical and Isotopic Evaluation of Groundwater Movement in Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene

    2006-02-01

    This report describes the results of a comprehensive geochemical evaluation of the groundwater flow system in the Yucca Flat/Climax Mine Corrective Action Unit (CAU). The main objectives of this study are to identify probable pathways for groundwater flow within the study area and to develop constraints on groundwater transit times between selected data collection sites. This work provides an independent means of testing and verifying predictive flow models being developed for this CAU using finite element methods. The Yucca Flat/Climax Mine CAU constitutes the largest of six underground test areas on the Nevada Test Site (NTS) specified for remedial action in the ''Federal Facility Agreement and Consent Order''. A total of 747 underground nuclear detonations were conducted in this CAU. Approximately 23 percent of these detonations were conducted below or near the water table, resulting in groundwater contamination in the vicinity and possibly downgradient of these underground test locations. Therefore, a rigorous evaluation of the groundwater flow system in this CAU is necessary to assess potential long-term risks to the public water supply at downgradient locations.

  2. Completion Report for Well ER-4-1 Corrective Action Unit 97: Yucca Flat/Climax Mine, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Wurtz, Jeffrey [Navarro, Las Vegas, NV (United States); Rehfeldt, Ken [Navarro, Las Vegas, NV (United States)

    2017-07-01

    Well ER-4-1 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled and completed from March 23 to April 13, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Yucca Flat/Climax Mine Corrective Action Unit (CAU) 97. The primary purpose of the well was to collect hydrogeologic data to assist in validating concepts of the groundwater flow system within the Yucca Flat/Climax Mine CAU, and to test for potential radionuclides in groundwater from the STRAIT (U4a) underground test. The completed well includes one piezometer (p1), to a depth of 663.16 meters (m) (2,175.71 feet [ft]) below ground surface (bgs) and open from the Alluvial aquifer (AA3) to the Oak Spring Butte confining unit (OSBCU) hydrostratigraphic units; and a main completion (m1), which includes 6.625-inch (in.) casing with slotted interval (m1) installed to 906.80 m (2,975.05 ft) bgs in the Lower carbonate aquifer (LCA). A 13.375-in. diameter surface casing was installed from the surface to a depth of 809.00 m (2,654.21 ft) bgs. Well ER-4-1 experienced a number of technical issues during drilling, including borehole instability and sloughing conditions. An intermediate, 10.75-in./9.625-in. casing string was installed to 856.94 m (2,811.48 ft) bgs to control these issues. Borehole stability and erosion problems appear to be associated with the Tunnel Formation (Tn) and the Older tunnel beds (Ton). Overall efforts to stabilize the borehole were successful. Data collected during borehole construction include composite drill cutting samples collected every 3.0 m (10 ft), a partial suite of geophysical logs to a maximum depth of 766.57 m (2,515 ft) bgs, water-quality measurements (including tritium), water-level measurements, and two depth-discrete bailer samples collected at 538.89 m and 646.18 m (1,768 ft and 2,120 ft) bgs respectively. The well penetrated 187

  3. Completion Report for Well ER-2-2 Corrective Action Unit 97: Yucca Flat/Climax Mine, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Wurtz, Jeffrey [Navarro, Las Vegas, NV (United States)

    2017-05-01

    Well ER-2-2 was drilled for the U.S. Department of Energy, Nevada National Security Administration Nevada Field Office in support of the Underground Test Area (UGTA) Activity. The well was drilled from January 17 to February 8, 2016, as part of the Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada. The primary purpose of the well was to collect hydrogeologic data to evaluate uncertainty in the flow and transport conceptual model and its contamination boundary forecasts, and to detect radionuclides in groundwater from the CALABASH (U2av) underground test. Well ER-2-2 was not completed as planned due to borehole stability problems. As completed, the well includes a piezometer (p1) to 582 meters (m) (1,909 feet [ft]) below ground surface (bgs) installed in the Timber Mountain lower vitric-tuff aquifer (TMLVTA) and a 12.25-inch (in.) diameter open borehole to 836 m (2,743 ft) bgs in the Lower tuff confining unit (LTCU). A 13.375-in. diameter carbon-steel casing is installed from the surface to a depth of 607 m (1,990 ft) bgs. Data collected during borehole construction include composite drill cutting samples collected every 3.0 m (10 ft), geophysical logs to a depth of 672.4 m (2,206 ft) bgs, water-quality measurements (including tritium), water-level measurements, and slug test data. The well penetrated 384.05 m (1,260 ft) of Quaternary alluvium, 541.93 m (1,778 ft) of Tertiary Volcanics (Tv) rocks, and 127.71 m (419 ft) of Paleozoic carbonates. The stratigraphy and lithology were generally as expected. However, several of the stratigraphic units were significantly thicker then predicted—principally, the Tunnel formation (Tn), which had been predicted to be 30 m (100 ft) thick; the actual thickness of this unit was 268.22 m (880 ft). Fluid depths were measured in the borehole during drilling as follows: (1) in the piezometer (p1) at 552.15 m (1,811.53 ft) bgs and (2) in the main casing (m1) at

  4. Conceptualization of the predevelopment groundwater flow system and transient water-level responses in Yucca Flat, Nevada National Security Site, Nevada

    Science.gov (United States)

    Fenelon, Joseph M.; Sweetkind, Donald S.; Elliott, Peggy E.; Laczniak, Randell J.

    2012-01-01

    Contaminants introduced into the subsurface of Yucca Flat, Nevada National Security Site, by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a set of contour maps developed to represent the hydraulic-head distribution within the two major aquifer systems underlying the area. Aquifers and confining units within these systems were identified and their extents delineated by merging and analyzing hydrostratigraphic framework models developed by other investigators from existing geologic information. Maps of the hydraulic-head distributions in the major aquifer systems were developed from a detailed evaluation and assessment of available water-level measurements. The maps, in conjunction with regional and detailed hydrogeologic cross sections, were used to conceptualize flow within and between aquifer systems. Aquifers and confining units are mapped and discussed in general terms as being one of two aquifer systems: alluvial-volcanic or carbonate. The carbonate aquifers are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater flow directions, approximated from potentiometric contours, are indicated on the maps and sections and discussed for the alluvial-volcanic and regional carbonate aquifers. Flow in the alluvial-volcanic aquifer generally is constrained by the bounding volcanic confining unit, whereas flow in the regional carbonate aquifer is constrained by the siliceous confining unit. Hydraulic heads in the alluvial-volcanic aquifer typically range from 2,400 to 2,530 feet and commonly are elevated about 20-100 feet above heads in the underlying regional carbonate

  5. Corrective Action Investigation Plan for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nevada with ROTCs 1, 2, and 3 (Revision 0, September 2000)

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Robert; Marutzky, Sam

    2000-09-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) approach to collect the data necessary to evaluate Corrective Action Alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 97 under the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 97, collectively known as the Yucca Flat/Climax Mine CAU, consists of 720 Corrective Action Sites (CASs). The Yucca Flat/Climax Mine CAU extends over several areas of the NTS and constitutes one of several areas used for underground nuclear testing in the past. The nuclear tests resulted in groundwater contamination in the vicinity as well as downgradient of the underground test areas. Based on site history, the Yucca Flat underground nuclear tests were conducted in alluvial, volcanic, and carbonate rocks; whereas, the Climax Mine tests were conducted in an igneous intrusion located in northern Yucca Flat. Particle-tracking simulations performed during the regional evaluation indicate that the local Climax Mine groundwater flow system merges into the much larger Yucca Flat groundwater flow systems during the 1,000-year time period of interest. Addressing these two areas jointly and simultaneously investigating them as a combined CAU has been determined the best way to proceed with corrective action investigation (CAI) activities. The purpose and scope of the CAI includes characterization activities and model development conducted in five major sequential steps designed to be consistent with FFACO Underground Test Area Project's strategy to predict the location of the contaminant boundary, develop and implement a corrective action, and close each CAU. The results of this field investigation will support a defensible evaluation of CAAs in the subsequent corrective action decision document.

  6. Yucca L.: yucca

    Science.gov (United States)

    Robert R. Alexander; Floyd W. Pond; Jane E. Rodgers

    2008-01-01

    There are about 30 species of yucca native to North America and the West Indies. Although most of these long-lived, evergreen plants grow in the arid southwestern United States and on Mexican tablelands, yuccas are found up to 2,400 m in elevation in the mountains of Colorado (Arnott 1962; Webber 1953). Four western species are considered here (table 1). Great Plains...

  7. Hydrophysical Evaluation of Wells TW-B, TW-7, UE-6d, U-2gg PSE 3A, U-10L 1, and UE-6e in Yucca Flat

    Energy Technology Data Exchange (ETDEWEB)

    Pohlmann, Karl [Desert Research Inst. (DRI), Las Vegas, NV (United States); Healey, John [Desert Research Inst. (DRI), Las Vegas, NV (United States); Lyles, Bred [Desert Research Inst. (DRI), Reno, NV (United States); Cooper, Clay [Desert Research Inst. (DRI), Reno, NV (United States); Hershey, Ronald L. [Desert Research Inst. (DRI), Reno, NV (United States)

    2017-05-01

    This study evaluated six wells in Yucca Flat in support of the Underground Test Area (UGTA) Activity conducted by the U.S. Department of Energy (DOE) at the Nevada National Security Site (NNSS). Accessibility and groundwater sampling conditions were assessed and if conditions permitted, samples were collected for tritium analysis. Four of the wells, TW-B, UE-6d, UE-6e, and TW-7 were sampled in support of UGTA responses to recommendations made by the Yucca Flat/Climax Mine External Peer Review Committee (Navarro, 2016). In addition to its role in support of these responses, TW-7 was included because it is listed in the NNSS Integrated Groundwater Sampling Plan (DOE, 2014) as a required sampling location, although it had not been sampled since 1994. U-2gg PSE 3A and U-10L 1 were evaluated to determine whether deteriorating well conditions can be addressed so that these wells can be used as additional sampling points in Yucca Flat.

  8. Geology and assessment of undiscovered oil and gas resources of the Yukon Flats Basin Province, 2008

    Science.gov (United States)

    Bird, Kenneth J.; Stanley, Richard G.; Moore, Thomas E.; Gautier, Donald L.

    2017-12-22

    The hydrocarbon potential of the Yukon Flats Basin Province in Central Alaska was assessed in 2004 as part of an update to the National Oil and Gas Assessment. Three assessment units (AUs) were identified and assessed using a methodology somewhat different than that of the 2008 Circum-Arctic Resource Appraisal (CARA). An important difference in the methodology of the two assessments is that the 2004 assessment specified a minimum accumulation size of 0.5 million barrels of oil equivalent (MMBOE), whereas the 2008 CARA assessment specified a minimum size of 50 MMBOE. The 2004 assessment concluded that >95 percent of the estimated mean undiscovered oil and gas resources occur in a single AU, the Tertiary Sandstone AU. This is also the only AU of the three that extends north of the Arctic Circle.For the CARA project, the number of oil and gas accumulations in the 2004 assessment of the Tertiary Sandstone AU was re-evaluated in terms of the >50-MMBOE minimum accumulation size. By this analysis, and assuming the resource to be evenly distributed across the AU, 0.23 oil fields and 1.20 gas fields larger than 50 MMBOE are expected in the part of the AU north of the Arctic Circle. The geology suggests, however, that the area north of the Arctic Circle has a lower potential for oil and gas accumulations than the area to the south where the sedimentary section is thicker, larger volumes of hydrocarbons may have been generated, and potential structural traps are probably more abundant. Because of the low potential implied for the area of the AU north of the Arctic Circle, the Yukon Flats Tertiary Sandstone AU was not quantitatively assessed for the 2008 CARA.

  9. Meteorological data for four sites at surface-disruption features in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1985--1986

    International Nuclear Information System (INIS)

    Carman, R.L.

    1994-01-01

    Surface-disruption features, or craters, resulting from underground nuclear testing at the Nevada Test Site may increase the potential for ground-water recharge in an area that would normally produce little, if any, recharge. This report presents selected meteorological data resulting from a study of two surface-disruption features during May 1985 through June 1986. The data were collected at four adjacent sites in Yucca Flat, about 56 kilometers north of Mercury, Nevada. Three sites (one in each of two craters and one at an undisturbed site at the original land surface) were instrumented to collect meteorological data for calculating bare-soil evaporation. These data include (1) long-wave radiation, (2) short-wave radiation, (3) net radiation, (4) air temperature, and (5) soil surface temperature. Meteorological data also were collected at a weather station at an undisturbed site near the study craters. Data collected at this site include (1) air temperature, (2) relative humidity, (3) wind velocity, and (4) wind direction

  10. YUCCA MOUNTAIN SITE DESCRIPTION

    International Nuclear Information System (INIS)

    Simmons, A.M.

    2004-01-01

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel

  11. YUCCA MOUNTAIN SITE DESCRIPTION

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  12. External Peer Review Team Report for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Marutzky, Sam J. [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States); Andrews, Robert [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2015-01-01

    The peer review team commends the Navarro-Intera, LLC (N-I), team for its efforts in using limited data to model the fate of radionuclides in groundwater at Yucca Flat. Recognizing the key uncertainties and related recommendations discussed in Section 6.0 of this report, the peer review team has concluded that U.S. Department of Energy (DOE) is ready for a transition to model evaluation studies in the corrective action decision document (CADD)/corrective action plan (CAP) stage. The DOE, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) clarified the charge to the peer review team in a letter dated October 9, 2014, from Bill R. Wilborn, NNSA/NFO Underground Test Area (UGTA) Activity Lead, to Sam J. Marutzky, N-I UGTA Project Manager: “The model and supporting information should be sufficiently complete that the key uncertainties can be adequately identified such that they can be addressed by appropriate model evaluation studies. The model evaluation studies may include data collection and model refinements conducted during the CADD/CAP stage. One major input to identifying ‘key uncertainties’ is the detailed peer review provided by independent qualified peers.” The key uncertainties that the peer review team recognized and potential concerns associated with each are outlined in Section 6.0, along with recommendations corresponding to each uncertainty. The uncertainties, concerns, and recommendations are summarized in Table ES-1. The number associated with each concern refers to the section in this report where the concern is discussed in detail.

  13. Lithostratigraphy of the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Moyer, T.C.; Geslin, J.K.

    1995-01-01

    Lithostratigraphic relations within the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) were reconstructed from analysis of core samples and observation of outcrop exposures. The Calico Hills Formation is composed of five nonwelded pyroclastic units (each formed of one or more pyroclastic-flow deposits) that overlie an interval of bedded tuff and a basal volcaniclastic sandstone unit. The Prow Pass Tuff is divided into four pyroclastic units and an underlying interval of bedded tuff. The pyroclastic units of the Prow Pass Tuff are distinguished by the sizes and amounts of their pumice and lithic clasts and their degree of welding. Pyroclastic units of the Prow Pass Tuff are distinguished from those of the Calico Hills Formation by their phenocryst assemblage, chemical composition, and ubiquitous siltstone lithic clasts. Downhole resistivity tends to mirror the content of authigenic minerals, primarily zeolites, in both for-mations and may be useful for recognizing the vitric-zeolite boundary in the study area. Maps of zeolite distribution illustrate that the bedded tuff and basal sandstone units of the Calico Hills Formation are altered over a wider area than the pyroclastic units of both the Calico Hills Formation and the upper Prow Pass Tuff

  14. Lithostratigraphy of the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, T.C.; Geslin, J.K. [Science Applications International Corp., Las Vegas, NV (United States)

    1995-07-01

    Lithostratigraphic relations within the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) were reconstructed from analysis of core samples and observation of outcrop exposures. The Calico Hills Formation is composed of five nonwelded pyroclastic units (each formed of one or more pyroclastic-flow deposits) that overlie an interval of bedded tuff and a basal volcaniclastic sandstone unit. The Prow Pass Tuff is divided into four pyroclastic units and an underlying interval of bedded tuff. The pyroclastic units of the Prow Pass Tuff are distinguished by the sizes and amounts of their pumice and lithic clasts and their degree of welding. Pyroclastic units of the Prow Pass Tuff are distinguished from those of the Calico Hills Formation by their phenocryst assemblage, chemical composition, and ubiquitous siltstone lithic clasts. Downhole resistivity tends to mirror the content of authigenic minerals, primarily zeolites, in both for-mations and may be useful for recognizing the vitric-zeolite boundary in the study area. Maps of zeolite distribution illustrate that the bedded tuff and basal sandstone units of the Calico Hills Formation are altered over a wider area than the pyroclastic units of both the Calico Hills Formation and the upper Prow Pass Tuff.

  15. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2006-06-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Project to assess and evaluate the effects of the underground nuclear weapons tests on groundwater beneath the Nevada Test Site (NTS) and vicinity. The framework for this evaluation is provided in Appendix VI, Revision No. 1 (December 7, 2000) of the Federal Facility Agreement and Consent Order (FFACO, 1996). Section 3.0 of Appendix VI ''Corrective Action Strategy'' of the FFACO describes the process that will be used to complete corrective actions specifically for the UGTA Project. The objective of the UGTA corrective action strategy is to define contaminant boundaries for each UGTA corrective action unit (CAU) where groundwater may have become contaminated from the underground nuclear weapons tests. The contaminant boundaries are determined based on modeling of groundwater flow and contaminant transport. A summary of the FFACO corrective action process and the UGTA corrective action strategy is provided in Section 1.5. The FFACO (1996) corrective action process for the Yucca Flat/Climax Mine CAU 97 was initiated with the Corrective Action Investigation Plan (CAIP) (DOE/NV, 2000a). The CAIP included a review of existing data on the CAU and proposed a set of data collection activities to collect additional characterization data. These recommendations were based on a value of information analysis (VOIA) (IT, 1999), which evaluated the value of different possible data collection activities, with respect to reduction in uncertainty of the contaminant boundary, through simplified transport modeling. The Yucca Flat/Climax Mine CAIP identifies a three-step model development process to evaluate the impact of underground nuclear testing on groundwater to determine a contaminant boundary (DOE/NV, 2000a). The three steps are as follows: (1) Data compilation and analysis that provides the necessary modeling

  16. Geodesy and contemporary strain in the Yucca Mountain region, Nevada

    International Nuclear Information System (INIS)

    Keefer, W.R.; Coe, J.A.; Pezzopane, S.K.; Hunter, W.C.

    1997-01-01

    Geodetic surveys provide important information for estimating recent ground movement in support of seismotectonic investigations of the potential nuclear-waste storage site at Yucca Mountain, Nevada. Resurveys of established level lines document up to 22 millimeters of local subsidence related to the 1992 Little Skull Mountain earthquake, which is consistent with seismic data that show normal-slip rupture and with data from a regional trilateration network. Comparison of more recent surveys with a level line first established in 1907 suggests 3 to 13 centimeters of subsidence in the Crater Flat-Yucca Mountain structural depression that coincides with the Bare Mountain fault; small uplifts also were recorded near normal faults at Yucca Mountain. No significant deformation was recorded by a trilateration network over a 10-year period, except for coseismic deformation associated with the Little Skull Mountain earthquake, but meaningful results are limited by the short temporal period of that data set and the small rate of movement. Very long baseline interferometry that is capable of measuring direction and rates of deformation is likewise limited by a short history of observation, but rates of deformation between 8 and 13 millimeters per year across the basin and Range province are indicated by the available data

  17. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is

  18. Corrective Action Decision Document/Closure Report for Corrective Action Unit 569: Area 3 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada with ROTC 1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Sloop, Christy

    2013-04-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 569: Area 3 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 569 comprises the following nine corrective action sites (CASs): • 03-23-09, T-3 Contamination Area • 03-23-10, T-3A Contamination Area • 03-23-11, T-3B Contamination Area • 03-23-12, T-3S Contamination Area • 03-23-13, T-3T Contamination Area • 03-23-14, T-3V Contamination Area • 03-23-15, S-3G Contamination Area • 03-23-16, S-3H Contamination Area • 03-23-21, Pike Contamination Area The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 569 based on the implementation of the corrective actions listed in Table ES-2.

  19. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0

    International Nuclear Information System (INIS)

    John McCord

    2007-01-01

    This document, which makes changes to Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, S-N/99205--077, Revision 0 (June 2006), was prepared to address review comments on this final document provided by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 4, 2006. The document includes revised pages that address NDEP review comments and comments from other document users. Change bars are included on these pages to identify where the text was revised. In addition to the revised pages, the following clarifications are made for the two plates inserted in the back of the document: Plate 4: Disregard the repeat of legend text 'Drill Hole Name' and 'Drill Hole Location' in the lower left corner of the map. Plate 6: The symbol at the ER-16-1 location (white dot on the lower left side of the map) is not color-coded because no water level has been determined. The well location is included for reference. Plate 6: The symbol at the ER-12-1 location (upper left corner of the map), a yellow dot, represents the lower water level elevation. The higher water level elevation, represented by a red dot, was overprinted

  20. Phase I Flow and Transport Model Document for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada, Revision 1 with ROTCs 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Robert

    2013-09-01

    The Underground Test Area (UGTA) Corrective Action Unit (CAU) 97, Yucca Flat/Climax Mine, in the northeast part of the Nevada National Security Site (NNSS) requires environmental corrective action activities to assess contamination resulting from underground nuclear testing. These activities are necessary to comply with the UGTA corrective action strategy (referred to as the UGTA strategy). The corrective action investigation phase of the UGTA strategy requires the development of groundwater flow and contaminant transport models whose purpose is to identify the lateral and vertical extent of contaminant migration over the next 1,000 years. In particular, the goal is to calculate the contaminant boundary, which is defined as a probabilistic model-forecast perimeter and a lower hydrostratigraphic unit (HSU) boundary that delineate the possible extent of radionuclide-contaminated groundwater from underground nuclear testing. Because of structural uncertainty in the contaminant boundary, a range of potential contaminant boundaries was forecast, resulting in an ensemble of contaminant boundaries. The contaminant boundary extent is determined by the volume of groundwater that has at least a 5 percent chance of exceeding the radiological standards of the Safe Drinking Water Act (SDWA) (CFR, 2012).

  1. Preliminary description of quaternary and late pliocene surficial deposits at Yucca Mountain and vicinity, Nye County, Nevada

    International Nuclear Information System (INIS)

    Hoover, D.L.

    1989-01-01

    The Yucca Mountain area, in the south-central part of the Great Basin, is in the drainage basin of the Amargosa River. The mountain consists of several fault blocks of volcanic rocks that are typical of the Basin and Range province. Yucca Mountain is dissected by steep-sided valleys of consequent drainage systems that are tributary on the east side to Fortymile Wash and on the west side to an unnamed wash that drains Crater Flat. Most of the major washes near Yucca Mountain are not integrated with the Amargosa River, but have distributary channels on the piedmont above the river. Landforms in the Yucca Mountain area include rock pediments, ballenas, alluvial pediments, alluvial fans, stream terraces, and playas. Early Holocene and older alluvial fan deposits have been smoothed by pedimentation. The semiconical shape of alluvial fans is apparent at the junction of tributaries with major washes and where washes cross fault and terrace scarps. Playas are present in the eastern and southern ends of the Amargosa Desert. 39 refs., 9 figs., 1 tab

  2. Stratigraphic and structural framework of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Fox, K.F. Jr.

    1988-01-01

    Yucca Mountain is located within the southwestern Nevada volcanic field, ∼140 km northwest of Las Vegas, Nevada, and 50 km northeast of Death Valley, California. The mountain consist of a series of long, linear, north-trending volcanic ridges that approach an 1800-m maximum elevation near The Prow. The broad intermontane alluviated valleys of Crater Flat, the Amargosa Desert, and Jackass Flats, averaging 800 to 1100 m in elevation, form the western, southern, and eastern margins of Yucca Mountain, respectively. North of The Prow, Yucca Mountain merges with other volcanic highlands that flank the southern rim of the Timber Mountain-Oasis Valley caldera complex. The stratigraphy and structure of the area are discussed. Future geologic studies will attempt to determine if faults extend beneath Yucca Mountain, and, if present, their potential effects on the hydrologic and tectonic regimes

  3. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs

  4. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  5. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23

    Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be greater than 10{sup -7} events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and

  6. Yucca Mountain digital database

    International Nuclear Information System (INIS)

    Daudt, C.R.; Hinze, W.J.

    1992-01-01

    This paper discusses the Yucca Mountain Digital Database (DDB) which is a digital, PC-based geographical database of geoscience-related characteristics of the proposed high-level waste (HLW) repository site of Yucca Mountain, Nevada. It was created to provide the US Nuclear Regulatory Commission's (NRC) Advisory Committee on Nuclear Waste (ACNW) and its staff with a visual perspective of geological, geophysical, and hydrological features at the Yucca Mountain site as discussed in the Department of Energy's (DOE) pre-licensing reports

  7. Education and Yucca Mountain

    International Nuclear Information System (INIS)

    Lamont, M.A.

    1995-01-01

    This paper outlines a middle school social studies curriculum taught in Nevada. The curriculum was designed to educate students about issues related to the Yucca Mountain project. The paper focuses on the activities used in the curriculum

  8. DOE's Yucca Mountain studies

    International Nuclear Information System (INIS)

    1992-12-01

    This booklet is about the disposal of high-level nuclear waste in the United States. It is for readers who have a general rather than a technical background. It discusses why scientists and engineers thinkhigh-level nuclear waste may be disposed of safely underground. It also describes why Yucca Mountain, Nevada, is being studied as a potential repository site and provides basic information about those studies

  9. YUCCA MOUNTAIN PROJECT - A BRIEFING -

    International Nuclear Information System (INIS)

    2003-01-01

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statement for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet

  10. Major results of gravity and magnetic studies at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Oliver, H.W.; Ponce, D.A.; Sikora, R.F.

    1991-01-01

    About 4000 gravity stations have been obtained at Yucca Mountain and vicinity since the beginning of radioactive-waste studies there in 1978. These data have been integrated with data from about 29,000 stations previously obtained in the surrounding region to produce a series of Bouguer and isostatic-residual-gravity maps of the Nevada Test Site and southeastern Nevada. Yucca Mountain is characterized by a WNW-dipping gravity gradient whereby residual values of -10 mGal along the east edge of Yucca Mountain decrease to about -38 mGal over Crater Flat. Using these gravity data, two-dimensional modeling predicted the depth to pre-Cenozoic rocks near the proposed repository to be about 1220 ± 150 m, an estimate that was subsequently confirmed by drilling to be 1244 m. Three-dimensional modeling of the gravity low over Crater Flat indicates the thickness of Cenozoic volcanic rocks and alluvial cover to be about 3000 m. Considerable aeromagnetic coverage of southwestern Nevada was obtained in 1978--1979 to help characterize Yucca Mountain and vicinity. One significant result is the discovery of a series of circular magnetic anomalies in Crater Flat and the northern Amargosa Desert that suggest the presence of buried volcanic centers there. Elongate magnetic highs and associated lows over Yucca Mountain correlate with mapped faults, some of which are only partially exposed. Thus, the data provide inforamtion on the extent and continuity of these faults. 31 refs., 3 figs

  11. Yucca Mountain Project public interactions

    International Nuclear Information System (INIS)

    Reilly, B.E.

    1990-01-01

    The US Department of Energy (DOE) is committed to keeping the citizens of Nevada informed about activities that relate to the high-level nuclear waste repository program. This paper presents an overview of the Yucca Mountain Project's public interaction philosophy, objectives, activities and experiences during the two years since Congress directed the DOE to conduct site characterization activities only for the Yucca Mountain site

  12. Geology at Yucca Mountain

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Both advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Critics believe that there is sufficient geological evidence to rule the site unsuitable for further investigation. Some advocates claim that there is insufficient data and that investigations are incomplete, while others claim that the site is free of major obstacles. We have expanded our efforts to include both the critical evaluations of existing geological and geochemical data and the collection of field data and samples for the purpose of preparing scientific papers for submittal to journals. Summaries of the critical reviews are presented in this paper

  13. The Yucca Mountain tours

    International Nuclear Information System (INIS)

    Shepard, N.F.; Champagne, D.L.

    1992-01-01

    In 1978, Mderthaner et al. observed that opposition to nuclear facilities was lowest near the facility. This suggested that opposition decreased as familiarity with the facility increased, with distance from the facility as an inverse measure of familiarity. In this paper, the authors analyze data from the literature supporting this hypothesis and examine a poll of 1200 public visitors to the candidate repository site at Yucca Mountain, Nevada, in March through June 1991. The tour poll and independent pools show that most Nevadans support the present scientific investigation of the site while opposing the repository. Among the visitors, support for the investigation increased from 66 to 90 percent, which we attribute to increased familiarity

  14. Yucca Mountain Milestone

    International Nuclear Information System (INIS)

    Hunt, Rod

    1997-01-01

    The Department of Energy project to determine if the Yucca Mountain site in Nevada is suitable for geologic disposal of high-level nuclear waste reached a major milestone in late April when a 25-foot-diameter tunnel boring machine ''holed through'' completing a five-mile-long, horseshoe-shaped excavation through the mountain. When the cutting-head of the giant machine broke through to daylight at the tunnel's south portal, it ended a 2 1/2-year excavation through the mountain that was completed ahead of schedule and with an outstanding safety record. Video of the event was transmitted live by satellite to Washington, DC, where it was watched by Secretary of Energy Frederico Pena and other high-level DOE officials, signifying the importance of the project's mission to find a repository for high-level nuclear waste and spent nuclear fuel produced by nuclear power plants. This critical undertaking is being performed by DOE's Office of Civilian Radioactive Waste Management (OCRWM). The tunnel is the major feature of the Exploratory Studies Facility (ESF), which serves as an underground laboratory for engineers and scientists to help determine if Yucca Mountain is suitable to serve as a repository for the safe disposal of high-level nuclear waste. Morrison Knudsen's Environmental/Government Group is providing design and construction-management services on the project. The MK team is performing final design for the ESF and viability assessment design for the underground waste repository that will be built only if the site is found suitable for such a mission. In fact, if at anytime during the ESF phase, the site is found unsuitable, the studies will be stopped and the site restored to its natural state

  15. Field trip report: Observations made at Yucca Mountain, Nye County, Nevada. Special report No. 2

    International Nuclear Information System (INIS)

    Hill, C.A.

    1993-03-01

    A field trip was made to the Yucca Mountain area on December 5-9, 1992 by Jerry Frazier, Don Livingston, Christine Schluter, Russell Harmon, and Carol Hill. Forty-three separate stops were made and 275 lbs. of rocks were collected during the five days of the field trip. Key localities visited were the Bare Mountains, Yucca Mountain, Calico Hills, Busted Butte, Harper Valley, Red Cliff Gulch, Wahmonie Hills, Crater Flat, and Lathrop Wells Cone. This report only describes field observations made by Carol Hill. Drawings are used rather than photographs because cameras were not permitted on the Nevada Test Site during this trip

  16. Yucca Mountain project prototype testing

    International Nuclear Information System (INIS)

    Hughes, W.T.; Girdley, W.A.

    1990-01-01

    The U.S. DOE is responsible for characterizing the Yucca Mountain site in Nevada to determine its suitability for development as a geologic repository to isolate high-level nuclear waste for at least 10,000 years. This unprecedented task relies in part on measurements made with relatively new methods or applications, such as dry coring and overcoring for studies to be conducted from the land surface and in an underground facility. The Yucca Mountain Project has, since 1988, implemented a program of equipment development and methods development for a broad spectrum of hydrologic, geologic, rock mechanics, and thermomechanical tests planned for use in an Exploratory Shaft during site characterization at the Yucca Mountain site. A second major program was fielded beginning in April 1989 to develop and test methods and equipment for surface drilling to obtain core samples from depth using only air as a circulating medium. The third major area of prototype testing has been during the ongoing development of the Instrumentation/ Data Acquisition System (IDAS), designed to collect and monitor data from down-hole instrumentation in the unsaturated zone, and store and transmit the data to a central archiving computer. Future prototype work is planned for several programs including the application of vertical seismic profiling methods and flume design to characterizing the geology at Yucca Mountain. The major objectives of this prototype testing are to assure that planned Site Characterization testing can be carried out effectively at Yucca Mountain, both in the Exploratory Shaft Facility (ESF), and from the surface, and to avoid potential major failures or delays that could result from the need to re-design testing concepts or equipment. This paper will describe the scope of the Yucca Mountain Project prototype testing programs and summarize results to date. 3 figs

  17. Water levels in periodically measured wells in the Yucca Mountain area, Nye County, Nevada, 1981-87

    Science.gov (United States)

    Robison, J.H.; Stephens, D.M.; Luckey, R.R.; Baldwin, D.A.

    1988-01-01

    This report contains data on groundwater levels beneath Yucca Mountain and adjacent areas, Nye County, Nevada. In addition to new data collected since 1983, the report contains data that has been updated from previous reports, including added explanations of the data. The data was collected in cooperation with the U.S. Department of Energy to help that agency evaluate the suitability of the area of storing high-level nuclear waste. The water table in the Yucca Mountain area occurs in ash-flow and air-fall tuff of Tertiary age. West of the crest of Yucca Mountain, water level altitudes are about 775 m above sea level. Along the eastern edge and southern end of Yucca Mountain, the potentiometric surface generally is nearly flat, ranging from about 730 to 728 m above sea level. (USGS)

  18. Selected ground-water data for Yucca Mountain Region, southern Nevada and eastern California, through December 22

    International Nuclear Information System (INIS)

    La Camera, R.J.; Westenburg, C.L.

    1994-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site-Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies (or as part of other programs) are included to further indicate variations through time at selected monitoring locations. Data are included in this report from 1910 through 1992

  19. Major results of gravity and magnetic studies at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Oliver, H.W.; Ponce, D.A.; Sikora, R.F.

    1991-01-01

    About 4,000 gravity stations have been obtained at Yucca Mountain and vicinity since the beginning of radioactive-waste studies there in 1978. These data have been integrated with data from about 29,000 stations previously obtained in the surrounding region to produce a series of Bouguer and isostatic-residual-gravity maps of the Nevada Test Site and southeastern Nevada. Yucca Mountain is characterized by a WNW-dipping gravity gradient whereby residual values of -10 mGal along the east edge of Yucca Mountain decrease to about -38 mGal over Crater Flat. Using these gravity data, two-dimensional modeling predicted the depth to pre-Cenozoic rocks near the proposed repository to be about 1,220±150 m, an estimate that was subsequently confirmed by drilling to be 1,244 m. Three-dimensional modeling of the gravity low over Crater Flat indicates the thickness of Cenozoic volcanic rocks and alluvial cover to be about 3,000 m. Gravity interpretations also identified the Silent Canyon caldera before geologic mapping of Pahute Mesa and provided an estimate of the thickness of the volcanic section there of nearly 5 km. Considerable aeromagnetic coverage of southwestern Nevada was obtained in 1978-79 to help characterize Yucca Mountain and vicinity. One significant result is the discovery of a series of circular magnetic anomalies in Crater Flat and the northern Amargosa Desert that suggest the presence of buried volcanic centers there. If this interpretation is confirmed by drilling, the magnetic data can be used to help estimate the total volume of buried volcanic rocks, which, along with radiometric dating, could help provide a better prediction of future volcanism. Elongate magnetic highs and associated lows over Yucca Mountain correlate with mapped faults, some of which are only partially exposed. Thus, the data provide information on the extent and continuity of these faults

  20. Modeling Temporal-Spatial Earthquake and Volcano Clustering at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    T. Parsons; G.A. Thompson; A.H. Cogbill

    2006-01-01

    The proposed national high-level nuclear repository at Yucca Mountain is close to Quaternary faults and cinder cones. The frequency of these events is low, with indications of spatial and temporal clustering, making probabilistic assessments difficult. In an effort to identify the most likely intrusion sites, we based a 3D finite element model on the expectation that faulting and basalt intrusions are primarily sensitive to the magnitude and orientation of the least principal stress in extensional terranes. We found that in the absence of fault slip, variation in overburden pressure caused a stress state that preferentially favored intrusions at Crater Flat. However, when we allowed central Yucca Mountain faults to slip in the model, we found that magmatic clustering was not favored at Crater Flat or in the central Yucca Mountain block. Instead, we calculated that the stress field was most encouraging to intrusions near fault terminations, consistent with the location of the most recent volcanism at Yucca Mountain, the Lathrop Wells cone. We found this linked fault and magmatic system to be mutually reinforcing in the model in that dike inflation favored renewed fault slip

  1. Microbial activity at Yucca Mountain

    International Nuclear Information System (INIS)

    Horn, J.M.; Meike, A.

    1995-01-01

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified

  2. Microbial activity at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J.M.; Meike, A.

    1995-09-25

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified.

  3. Final recommendations of the Peer Review Panel on the use of seismic methods for characterizing Yucca Mountain and vicinity

    International Nuclear Information System (INIS)

    1991-01-01

    The Peer Review Panel was charged with deciding whether seismic methods, which had been utilized at Yucca Mountain with mixed results in the past, could provide useful information about the Tertiary structure in the Yucca Mountain area. The objectives of using seismic methods at Yucca Mountain are to: (a) obtain information about the structural character of the Paleozoic-Tertiary (Pz-T) contact, and (b) obtain information about the structural and volcanic details within the Tertiary and Quaternary section. The Panel recommends that a four part program be undertaken to test the utility of seismic reflection data for characterizing the structural setting of the Yucca Mountain area. The Panel feels strongly that all four parts of the program must be completed in order to provide the highest probability of success. The four parts of the program are: (a) drill or extend a deep hole in Crater Flat to provide depth control and allow for the identification of seismic reflectors in an area where good quality seismic reflection data are expected; (b) undertake a full seismic noise test in Crater Flat, test 2D receiver arrays as well as linear arrays; perform an expanding spread test using both P and S wave sources to obtain a quick look at the reflection quality in the area and see if shear wave reflections might provide structural information in areas of unsaturated rock; (c) acquire a P wave seismic reflection profile across Crater Flat through the deep control well, across Yucca Mountain, and continuing into Jackass Flats; and (d) acquire a standard VSP (vertical seismic profiling) in the deep control well to tie the seismic data into depth and to identify reflectors correctly

  4. Yucca Mountain and The Environment

    International Nuclear Information System (INIS)

    NA

    2005-01-01

    The Yucca Mountain Project places a high priority on protecting the environment. To ensure compliance with all state and federal environmental laws and regulations, the Project established an Environmental Management System. Important elements of the Environmental Management System include the following: (1) monitoring air, water, and other natural resources; (2) protecting plant and animal species by minimizing land disturbance; (3) restoring vegetation and wildlife habitat in disturbed areas; (4) protecting cultural resources; (5) minimizing waste, preventing pollution, and promoting environmental awareness; and (6) managing of hazardous and non-hazardous waste. Reducing the impacts of Project activities on the environment will continue for the duration of the Project

  5. Yucca Mountain Site Characterization Project exploratory studies facilities construction status

    International Nuclear Information System (INIS)

    Allan, J.N.; Leonard, T.M.

    1993-01-01

    This paper discusses the progress to date on the construction planning and development of the Yucca Mountain Site Characterization Project (YMP) Exploratory Studies Facilities (ESF). The purpose of the ESF is to determine early site suitability and to characterize the subsurface of the Yucca Mountain site to assess its suitability for a potential high level nuclear waste repository. The present ESF configuration concept is for two main ramps to be excavated by tunnel boring machines (TBM) from the surface to the Topopah Spring Member of the Paintbrush Tuff Formation. From the main ramps, slightly above Topopah Spring level, supplemental ramps will be penetrated to the Calico Hills formation below the potential repository. There will be exploratory development drifts driven on both levels with the Main Test Area being located on the Topopah Spring level, which is the level of the proposed repository. The Calico Hills formation lies below the Topopah Spring member and is expected to provide the main geo-hydrologic barrier between the potential repository and the underlying saturated zones in the Crater Flat Tuff

  6. Assessment of the importance of mixing in the Yucca Mountain hydrogeological system

    International Nuclear Information System (INIS)

    Gomez, Javier B.; Auque, Luis F.; Gimeno, Maria; Acero, Patricia; Peterman, Zell; Oliver, Thomas A.; Gascoyne, Mel; Laaksoharju, Marcus

    2011-02-01

    The main objective of this work is to assess the importance of mixing on the hydrochemistry of waters in and around Yucca Mountain, most importantly in those waters south of Yucca Mountain. Due to the general north-south gradient of groundwater flow in the Yucca Mountain area, leakage from the proposed high-level radioactive waste repository would have the greatest consequences in the saturated zone waters south of Yucca Mountain. In this area (Amargosa River, Amargosa Flat and Ash Meadows), three main aquifers interact: the Regional Palaeozoic Carbonate Aquifer (RCA), the Tertiary Tuffs Aquifer (TTA) and the Quaternary Basin-fill Aquifer (QBfA). One consequence of upward leakage from the Palaeozoic Carbonate Aquifer would be to dilute the contaminant plume should one develop from the radioactive waste repository at Yucca Mountain. The reverse, downward leakage from the Tertiary Tuffs Aquifer or the Quaternary Basin-fill Aquifer into the Palaeozoic Carbonate Aquifer would contaminate a major aquifer system. It is clearly of the utmost importance to explore the links between theses aquifer systems and to assess the degree of mixing between the groundwaters. To attain this general objective, the following specific objectives have been either defined in advance or decided as being important during the development of the project: 1. Compile a dataset of water samples from the Yucca Mountain area. This dataset should contain samples from all the potential water types that contribute to the chemistry of the groundwaters in the aquifer systems in the area. 2. Perform a careful total-system exploratory analysis on the initial (raw) dataset in order to identify trends and outliers. 3. Perform a detailed exploratory analysis of each individual hydrofacies with the aim of identifying and eliminating from the raw dataset all the samples heavily affected by processes other than mixing (e.g. water-rock interaction, evaporation, cation exchange). PHREEQC simulations were

  7. Assessment of the importance of mixing in the Yucca Mountain hydrogeological system

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Javier B.; Auque, Luis F.; Gimeno, Maria; Acero, Patricia (Geochemical Modelling Group, Dept. of Earth Sciences, Univ. of Zaragoza (Spain)); Peterman, Zell; Oliver, Thomas A. (U.S. Geological Survey (United States)); Gascoyne, Mel (Gascoyne Geoprojects Inc (Canada)); Laaksoharju, Marcus (Geopoint AB (Sweden))

    2011-02-15

    The main objective of this work is to assess the importance of mixing on the hydrochemistry of waters in and around Yucca Mountain, most importantly in those waters south of Yucca Mountain. Due to the general north-south gradient of groundwater flow in the Yucca Mountain area, leakage from the proposed high-level radioactive waste repository would have the greatest consequences in the saturated zone waters south of Yucca Mountain. In this area (Amargosa River, Amargosa Flat and Ash Meadows), three main aquifers interact: the Regional Palaeozoic Carbonate Aquifer (RCA), the Tertiary Tuffs Aquifer (TTA) and the Quaternary Basin-fill Aquifer (QBfA). One consequence of upward leakage from the Palaeozoic Carbonate Aquifer would be to dilute the contaminant plume should one develop from the radioactive waste repository at Yucca Mountain. The reverse, downward leakage from the Tertiary Tuffs Aquifer or the Quaternary Basin-fill Aquifer into the Palaeozoic Carbonate Aquifer would contaminate a major aquifer system. It is clearly of the utmost importance to explore the links between theses aquifer systems and to assess the degree of mixing between the groundwaters. To attain this general objective, the following specific objectives have been either defined in advance or decided as being important during the development of the project: 1. Compile a dataset of water samples from the Yucca Mountain area. This dataset should contain samples from all the potential water types that contribute to the chemistry of the groundwaters in the aquifer systems in the area. 2. Perform a careful total-system exploratory analysis on the initial (raw) dataset in order to identify trends and outliers. 3. Perform a detailed exploratory analysis of each individual hydrofacies with the aim of identifying and eliminating from the raw dataset all the samples heavily affected by processes other than mixing (e.g. water-rock interaction, evaporation, cation exchange). PHREEQC simulations were

  8. Transport of neptunium through Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Triay, I.R.; Robinson, B.A.; Mitchell, A.J.; Overly, C.M.; Lopez, R.M.

    1993-01-01

    Neptunium has a high solubility in groundwaters from Yucca Mountain [1]. Uranium in nuclear reactors produces 237 Np which has a half-life of 2.1 4 x 10 6 years. Consequently, the transport of 237 Np through tuffs is of major importance in assessing the performance of a high-level nuclear waste repository at Yucca Mountain. The objective of this work is to determine the amount of Np retardation that is provided by the minerals in Yucca Mountain tuffs as a function of groundwater chemistry

  9. Nuclear Waste Disposal: Alternatives to Yucca Mountain

    National Research Council Canada - National Science Library

    Holt, Mark

    2009-01-01

    Congress designated Yucca Mountain, NV, as the nation's sole candidate site for a permanent high-level nuclear waste repository in 1987, following years of controversy over the site-selection process...

  10. Natural analogs for Yucca Mountain

    International Nuclear Information System (INIS)

    Murphy, W.M.

    1995-01-01

    High-level radioactive waste in the US, spent fuels from commercial reactors and nuclear materials generated by defense activities, will remain potentially hazardous for thousands of years. Demonstrable long-term stability of certain geologic and geochemical systems motivates and sustains the concept that high-level waste can be safely isolated in geologic repositories for requisite periods of time. Each geologic repository is unique in its properties and performance with reguard to isolation of nuclear wastes. Studies of processes analogous to waste-form alteration and radioelement transport in environments analogous to Yucca Mountain are being conducted at two sites, described in this article to illustrate uses of natural analog data: the Nopal I uranium deposit in the Sierra Pena Blanca, Mexico, and the Akrotiri archaeological site on the island of Santorini, Greece

  11. Design and execution of the Rayleigh wave experimental program at Yucca Lake, Nevada

    International Nuclear Information System (INIS)

    Kusubov, A.S.

    1978-01-01

    Design and field execution of seismic experiments are described that recorded the characteristics of seismic signals from single and multiple explosions conducted at the Nevada Test Site in Yucca Flat, Nevada. Most of the data were obtained from small-scale underground explosions (total yields ranged from a fraction of a pound to 100 lb of explosives) that were designed to permit characterization of seismic signals as a function of explosive-source configuration. Other data were from explosions conducted in the area by others: two underground nuclear detonations with yields below 40 kt each and several surface explosions whose yields ranged from 700 lb to 100 tons. The project included a comprehensive study of the Yucca lake bed, close-range recording of seismic signals from explosions, and excavation of cavities generated by small-scale high-explosive charges. 60 figures, 14 tables

  12. Owhership of flats

    OpenAIRE

    Přibil, Jan

    2012-01-01

    Ownership of Flats Summary In his diploma thesis "Ownership of Flats", the author focuses on applicable law of flat ownership in the Czech Republic, especially the Flat Ownership Act 72/1994 Sb. The author puts the contemporary regulation in historical context; he describes the theoretical principles underlining the current applicable law and defines in detail the basic legal terms used by the Flat Ownership Act. Original and derivative forms of flat ownership acquisition are explained, namel...

  13. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Caliente, Lincoln County, Nevada

    International Nuclear Information System (INIS)

    Engelbrecht, J.; Kavouras, I.; Campbell, D.; Campbell, S.; Kohl, S.; Shafer, D.

    2009-01-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program

  14. Mineralogy, petrology and whole-rock chemistry data compilation for selected samples of Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Connolly, J.R.

    1991-12-01

    Petrologic, bulk chemical, and mineralogic data are presented for 49 samples of tuffaceous rocks from core holes USW G-1 and UE-25a number-sign 1 at Yucca Mountain, Nevada. Included, in descending stratigraphic order, are 11 samples from the Topopah Spring Member of the Paintbrush Tuff, 12 samples from the Tuffaceous Beds of Calico Hills, 3 samples from the Prow Pass Member of the Crater Flat Tuff, 20 samples from the Bullfrog Member of the Crater Flat Tuff and 3 samples from the Tram Member of the Crater Flat Tuff. The suite of samples contains a wide variety of petrologic types, including zeolitized, glassy, and devitrified tuffs. Data vary considerably between groups of samples, and include thin section descriptions (some with modal analyses for which uncertainties are estimated), electron microprobe analyses of mineral phases and matrix, mineral identifications by X-ray diffraction, and major element analyses with uncertainty estimates

  15. Detailed petrographic descriptions and microprobe data for tertiary silicic volcanic rocks in drill hole USW G-1, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Caporuscio, F.A.; Warren, R.G.; Broxton, D.E.

    1985-12-01

    This report contains detailed petrographic descriptions of 74 thin sections from drill hole USW G-1 at Yucca Mountain, Nevada. These descriptions are keyed to the distinctions between devitrified, vitrophyre, vitric, and zeolitized intervals below the Topopah Spring Member repository horizon. The petrographic features of the zeolitized intervals down through the Crater Flat tuff, as well as the sorption properties determined from these intervals, suggest that these zeolite occurrences may each have comparable sorptive capability.

  16. Preliminary results of gravity investigations at Yucca Mountain and vicinity, Southern Nye County, Nevada

    International Nuclear Information System (INIS)

    Snyder, D.B.; Carr, W.J.

    1982-01-01

    Exploration for a high-level-nuclear-waste-repository site in the Yucca Mountain area, Nevada, resulted in the addition of 423 new gravity stations during the past 2 years to the 934 existing stations to form the data base of this study. About 100 surface-rock samples, three borehole gamma-gamma logs, and one borehole gravity study provide excellent density control. A linear increase in density of 0.26 g/cm 3 per km is indicated in the tuff sequences makes the density contrast across the basal contact of the tuff the only strong source of gravity fluctuations. Isostatic and 2.0g/cm 3 Bouguer corrections were applied to the observed gravity values to remove deep-crust-related regional gradients and topographic effects, respectively. The resulting residual-gravity plot shows significant gravity anomalies that correlate closely with the structures inferred from drill-hole and surface geologic studies. Gravity highs over the three Paleozoic rock outcrops within the study area - Bare Mountain, the Calico Hills, and the Striped Hills - served as reference points for the gravity models. At least 3000 m of tuff fills a large steep-sided depression in the prevolcanic rocks beneath Yucca Mountain and Crater Flat. The gravity low and thick tuff section probably lie within a large collapse area comprising the Crater Flat-Timber Mountain-Silent Canyon caldera complexes. Gravity lows in Crater Flat itself are thought to coincide with the source areas of the Prow Pass Member, the Bullfrog Member, and the unnamed member of the Crater Flat Tuff. Southward extension of the broad gravity low associated with Crater Flat into the Amargosa Desert is evidence for sector graben-type collapse segments related to the Timber Mountain caldera and superimposed on the other structures within Crater Flat. 13 figures, 4 tables

  17. Strontium isotopes in carbonate deposits at Crater Flat, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Futa, K.; Peterman, Z.E.; Stuckless, J.S.

    1991-01-01

    Strontium isotope studies of carbonates from soils, veins, eolian dust and Paleozoic basement sampled near Crater Flat, southwest of Yucca Mountain, provide evidence for the origins of these materials. Vein and soil carbonates have nearly identical ranges of 87 Sr/ 86 Sr, and eolian material has 87 Sr/ 86 Sr ratios at the lower end of the pedogenic range. The average 87 Sr/ 86 Sr of Paleozoic basement from Black Marble Hill is similar to the 87 Sr/ 86 Sr in the eolian dust, perhaps indicating a local source for this material. Possible spring deposits have generally higher 87 Sr/ 86 Sr than the other carbonates. These data are compared with similar data from areas east of Yucca Mountain

  18. Strontium isotopes in carbonate deposits at Crater Flat, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Futa, K.; Peterman, Z.E.; Stuckless, J.S.

    1991-01-01

    Strontium isotope studies of carbonates from soils, veins, eolian dust and Paleozoic basement samples near Crater Flat, southwest of Yucca Mountain, provide evidence for the origins of these materials. Vein and soil carbonates have nearly identical ranges of 87 Sr/ 86 Sr ratios at the lower end of the pedogenic range. The average 87 Sr/ 86 Sr of Paleozoic basement from Black Marble Hill is similar to the 87 Sr/ 86 Sr in the eolian dust, perhaps indicating a local source for this material. Possible spring deposits have generally higher 87 Sr/ 86 Sr than the other carbonates. These data are compared with similar data from areas east of Yucca Mountain. 7 refs., 5 figs

  19. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    Energy Technology Data Exchange (ETDEWEB)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M. [and others

    1996-12-31

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

  20. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    International Nuclear Information System (INIS)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M.

    1996-01-01

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data

  1. Scientific progress at Yucca Mountain

    International Nuclear Information System (INIS)

    Gertz, C.P.

    1990-01-01

    The US Department of Energy (DOE) is moving forward with studies to determine whether Yucca Mountain, Nevada, would be a suitable site for the nation's first high-level radioactive waste repository; however, the DOE's Congressionally mandated task of characterizing the site has been severely delayed by a lack of cooperation from the state of Nevada. The state has refused to issue the appropriate permits that must be obtained before surface disturbing studies can proceed; therefore, an extensive surface-based drilling and trenching program and construction of underground exploration facilities are on hold until pending litigation between the DOE and Nevada has been resolved. Despite this major impasse, significant scientific progress has been made, and the DOE is aggressively pursuing investigations that can be conducted without the state-issued permits. Additionally, the DOE is developing a high-quality technical and management structure as well as equipment, plans, and quality assurance procedures, so that the scientific investigation program can proceed without delay once the appropriate permits are obtained

  2. ADVANCES IN YUCCA MOUNTAIN DESIGN

    International Nuclear Information System (INIS)

    Harrington, P.G.; Gardiner, J.T.; Russell, P.R.Z.; Lachman, K.D.; McDaniel, P.W.; Boutin, R.J.; Brown, N.R.; Trautner, L.J.

    2003-01-01

    Since site designation of the Yucca Mountain Project by the President, the U.S. Department of Energy (DOE) has begun the transition from the site characterization phase of the project to preparation of the license application. As part of this transition, an increased focus has been applied to the repository design. Several evolution studies were performed to evaluate the repository design and to determine if improvements in the design were possible considering advances in the technology for handling and packaging nuclear materials. The studies' main focus was to reduce and/or eliminate uncertainties in both the pre-closure and post-closure performance of the repository and to optimize operations. The scope and recommendations from these studies are the subjects of this paper and include the following topics: (1) a more phased approach for the surface facility that utilize handling and packaging of the commercial spent nuclear fuel in a dry environment rather than in pools as was presented in the site recommendation; (2) slight adjustment of the repository footprint and a phased approach for construction and emplacement of the repository subsurface; and (3) simplification of the construction, fabrication and installation of the waste package and drip shield

  3. Hydrogeology of the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Wilson, W.E.

    1985-01-01

    The unsaturated volcanic tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential mined geologic repository for high-level radioactive waste. Assessment of site suitability needs an efficient and focused investigative program. A conceptual hydrogeologic model that simulates the flow of fluids through the unsaturated zone at Yucca Mountain was developed to guide the program and to provide a basis for preliminary assessment of site suitability. The study was made as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. Thickness of the unsaturated zone is about 1640 to 2460 feet (500 to 750 meters). Based on physical properties, the rocks in the unsaturated zone are grouped for the purpose of this paper into five informal hydrogeologic units. From top to bottom these units are: Tiva Canyon welded unit, Paintbrush nonwelded unit. Topopah Spring welded unit, Calico Hills nonwelded unit, and Crater Flat unit. Welded units have a mean fracture density of 8 to 40 fractures per unit cubic meter, mean matrix porosities of 12 to 23%, matrix hydraulic conductivities with geometric means ranging from 6.5 x 10 -6 to 9.8 x 10 -6 foot per day (2 x 10 -6 to 3 x 10 -6 meter per day), and bulk hydraulic conductivities of 0.33 to 33 feet per day (0.1 to 10 meters per day). The nonwelded units have a mean fracture density of 1 to 3 fractures per unit cubic meter, mean matrix porosities of 31 to 46%, and saturated hydraulic conductivities with geometric means ranging from 2.6 x 10 -5 to 2.9 x 10 -2 foot per day (8 x 10 -6 to 9 x 10 -3 meter per day). 15 refs., 4 figs., 1 tab

  4. Yucca Mountain biological resources monitoring program

    International Nuclear Information System (INIS)

    1993-02-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  5. Yucca Mountain Biological Resources Monitoring Program

    International Nuclear Information System (INIS)

    1992-01-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmental regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  6. Mechanical excavator performance in Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Ozdemir, L.; Hansen, F.D.

    1991-01-01

    A research effort of four phases is in progress at the Colorado School of Mines. The overall program will evaluate the cutability of welded tuff and other lithologies likely to be excavated at Yucca Mountain in the site characterization process. Several mechanical systems are considered with emphasis given to the tunnel boring machine. The research comprises laboratory testing, linear drag bit and disc cutter tests and potentially large-scale laboratory demonstrations to support potential use of a tunnel boring machine in welded tuff. Preliminary estimates of mechanical excavator performance in Yucca Mountain tuff are presented here. As phases of the research project are completed, well quantified estimates will be made of performance of mechanical excavators in the Yucca Mountain tuffs. 3 refs., 2 tabs

  7. Yucca Mountain Biological resources monitoring program

    International Nuclear Information System (INIS)

    1991-01-01

    The US Department of Energy (US DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geological repository for high-level radioactive waste. To ensure site characterization activities do not adversely affect the Yucca Mountain area, an environmental program, the Yucca Mountain Biological Resources Monitoring Program, has been implemented monitor and mitigate environmental impacts and to ensure activities comply with applicable environmental laws. Potential impacts to vegetation, small mammals, and the desert tortoise (an indigenous threatened species) are addressed, as are habitat reclamation, radiological monitoring, and compilation of baseline data. This report describes the program in Fiscal Years 1989 and 1990. 12 refs., 4 figs., 17 tabs

  8. Mechanical excavator performance in Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Ozdemir, L.; Hansen, F.D.

    1991-01-01

    A research effort of four phases is in progress at the Colorado School of Mines. The overall program will evaluate the cutability of welded tuff and other lithologies likely to be excavated at Yucca Mountain in the site characterization process. Several mechanical systems are considered with emphasis given to the tunnel boring machine. The research comprises laboratory testing, linear drag bit and disc cutter tests, and potentially large-scale lab. demonstrations to support potential use of a tunnel boring machine in welded tuff. Preliminary estimates of mechanical excavator performance in Yucca Mountain tuff are presented here. As phases of the research project are completed, well-quantified estimates will be made of performance of mechanical excavators in the Yucca Mountain tuffs

  9. Simulated effects of potential withdrawals from wells near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tucce, Patrick; Faunt, Claudia C.

    1999-01-01

    The effects of potential future withdrawals from wells J-12, J-13, and UE-25c number 3 on the ground-water flow system in the area surrounding Yucca Mountain, Nevada, were simulated by using an existing (1997) three-dimensional regional ground-water flow model. The 1997 regional model was modified only to include changes at the pumped wells. Two steady-state simulations (baseline and predictive) were conducted to estimate changes in water level and changes in ground-water outflow from Jackass Flats, where the pumped wells are located, south to the Amargosa Desert

  10. Nuclear waste disposal: Gambling on Yucca Mountain

    International Nuclear Information System (INIS)

    Ginsburg, S.

    1995-01-01

    This document describes the historical aspects of nuclear energy ,nuclear weapons usage, and development of the nuclear bureaucracy in the United States, and discusses the selection and siting of Yucca Mountain, Nevada for a federal nuclear waste repository. Litigation regarding the site selection and resulting battles in the political arena and in the Nevada State Legislature are also presented. Alternative radioactive waste disposal options, risk assessments of the Yucca Mountain site, and logistics regarding the transportation and storage of nuclear waste are also presented. This document also contains an extensive bibliography

  11. A revised Lithostratigraphic Framework for the Southern Yucca Mountain Area, Nye County, Nevada

    International Nuclear Information System (INIS)

    R.W. Spengler; F.M. Byers; R.P. Dickerson

    2006-01-01

    An informal, revised lithostratigraphic framework for the southern Yucca Mountain area, Nevada has been developed to accommodate new information derived from subsurface investigations of the Nye County Early Warning Drilling Program. Lithologies penetrated by recently drilled boreholes at locations between Stagecoach Road and Highway 95 in southern Nye County include Quaternary and Pliocene alluvium and alluvial breccia, Miocene pyroclastic flow deposits and intercalated lacustrine siltstone and claystone sequences, early Miocene to Oligocene pre-volcanic sedimentary rocks, and Paleozoic strata. Of the 37 boreholes currently drilled, 21 boreholes have sufficient depth, spatial distribution, or traceable pyroclastic flow, pyroclastic fall, and reworked tuff deposits to aid in the lateral correlation of lithostrata. Medial and distal parts of regional pyroclastic flow deposits of Miocene age can be correlated with the Timber Mountain, Paintbrush, Crater Flat, and Tram Ridge Groups. Rocks intercalated between these regional pyroclastic flow deposits are substantially thicker than in the central part of Yucca Mountain, particularly near the downthrown side of major faults and along the southern extent of exposures at Yucca Mountain

  12. Preliminary gravity and magnetic models across Midway Valley and Yucca Wash, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Langenheim, V.E.

    1994-01-01

    Detailed gravity and ground magnetic data collected along ten traverses across Midway Valley and Yucca Wash on the eastern flank of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of proposed surface facilities for a potential nuclear waste repository at Yucca Mountain. Geophysical data show that Midway Valley is bounded by large gravity and magnetic anomalies associated with the Bow Ridge and Paintbrush Canyon faults, on the west side of Exile Hill and on the west flank of Fran Ridge, respectively. In addition, Midway Valley itself is characterized by a number of small-amplitude anomalies that probably reflect small-scale faulting beneath Midway Valley. Gravity and magnetic data across the northwest trending Yucca Wash and the inferred Yucca Wash fault indicate no major vertical offsets greater than 100 m using a density contrast of 0.2 to 0.3 g/cm 3 along the proposed Yucca Wash fault. In addition, a broad magnetic high coincides with the approximate location of the hydrologic gradient and probably reflects moderately magnetic Topopah Spring Tuff or lavas in the Calico Hills Formation

  13. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    International Nuclear Information System (INIS)

    FV PERRY; GA CROWE; GA VALENTINE; LM BOWKER

    1997-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( -7 events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a priority issue for performance assessment studies

  14. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Krier

    2004-01-01

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached

  15. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. Krier

    2004-10-04

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.

  16. Extreme ground motions and Yucca Mountain

    Science.gov (United States)

    Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.

    2013-01-01

    Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program

  17. Yucca Mountain Site characterization project bibliography, January--June 1991

    International Nuclear Information System (INIS)

    1992-06-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Science and Technology Database from January 1, 1990, through December 31, 1991

  18. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Pahranagat National Wildlife Refuge, Lincoln County, Nevada

    International Nuclear Information System (INIS)

    Engelbrecht, J.; Kavouras, I.; Campbell, D.; Campbell, S.; Kohl, S.; Shafer, D.

    2009-01-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Pahranagat NWR, Beatty, Rachel, Caliente, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data on completion of the site's sampling program

  19. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Tonopah Airport, Nye County, Nevada

    International Nuclear Information System (INIS)

    Engelbrecht, J.; Kavouras, I.; Campbell, D.; Campbell, S.; Kohl, S.; Shafer, D.

    2009-01-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Tonopah Airport, Beatty, Rachel, Caliente, Pahranagat NWR, Crater Flat, and the Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program

  20. Rail Access to Yucca Mountain: Critical Issues

    International Nuclear Information System (INIS)

    Halstead, R. J.; Dilger, F.; Moore, R. C.

    2003-01-01

    The proposed Yucca Mountain repository site currently lacks rail access. The nearest mainline railroad is almost 100 miles away. Absence of rail access could result in many thousands of truck shipments of spent nuclear fuel and high-level radioactive waste. Direct rail access to the repository could significantly reduce the number of truck shipments and total shipments. The U.S. Department of Energy (DOE) identified five potential rail access corridors, ranging in length from 98 miles to 323 miles, in the Final Environmental Impact Statement (FEIS) for Yucca Mountain. The FEIS also considers an alternative to rail spur construction, heavy-haul truck (HHT) delivery of rail casks from one of three potential intermodal transfer stations. The authors examine the feasibility and cost of the five rail corridors, and DOE's alternative proposal for HHT transport. The authors also address the potential for rail shipments through the Las Vegas metropolitan area

  1. TBM tunneling on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Morris, J.P.; Hansmire, W.H.

    1995-01-01

    The US Department of Energy's (DOE) Yucca Mountain Project (YMP) is a scientific endeavor to determine the suitability of Yucca Mountain for the first long-term, high-level nuclear waste repository in the United States. The current status of this long-term project from the construction perspective is described. A key element is construction of the Exploratory Studies Facility (ESF) Tunnel, which is being excavated with a 7.6 m (25 ft) diameter tunnel boring machine (TBM). Development of the ESF may include the excavation of over 15 km (9.3 mi) of tunnel varying in size from 3.0 to 7.6 m (10 to 25 ft). Prior to construction, extensive constructability reviews were an interactive part of the final design. The intent was to establish a constructable design that met the long-term stability requirements for radiological safety of a future repository, while maintaining flexibility for the scientific investigations and acceptable tunneling productivity

  2. Creating flat design websites

    CERN Document Server

    Pratas, Antonio

    2014-01-01

    This book contains practical, step-by-step tutorials along with plenty of explanation about designing your flat website. Each section is introduced sequentially, building up your web design skills and completing your website.Creating Flat Design Websites is ideal for you if you are starting on your web development journey, but this book will also benefit seasoned developers wanting to start developing in flat.

  3. The Yucca Mountain Project Prototype Testing Program

    International Nuclear Information System (INIS)

    1989-10-01

    The Yucca Mountain Project is conducting a Prototype Testing Program to ensure that the Exploratory Shaft Facility (ESF) tests can be completed in the time available and to develop instruments, equipment, and procedures so the ESF tests can collect reliable and representative site characterization data. This report summarizes the prototype tests and their status and location and emphasizes prototype ESF and surface tests, which are required in the early stages of the ESF site characterization tests. 14 figs

  4. Predicting the Future at Yucca Mountain

    International Nuclear Information System (INIS)

    Wilson, J. R.

    1999-01-01

    This paper summarizes a climate-prediction model funded by the DOE for the Yucca Mountain nuclear waste repository. Several articles in the open literature attest to the effects of the Global Ocean Conveyor upon paleoclimate, specifically entrance and exit from the ice age. The data shows that these millennial-scale effects are duplicated on the microscale of years to decades. This work also identifies how man may have influenced the Conveyor, affecting global cooling and warming for 2,000 years

  5. Predicting the Future at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    J. R. Wilson

    1999-07-01

    This paper summarizes a climate-prediction model funded by the DOE for the Yucca Mountain nuclear waste repository. Several articles in the open literature attest to the effects of the Global Ocean Conveyor upon paleoclimate, specifically entrance and exit from the ice age. The data shows that these millennial-scale effects are duplicated on the microscale of years to decades. This work also identifies how man may have influenced the Conveyor, affecting global cooling and warming for 2,000 years.

  6. SNL Yucca Mountain Project data report: Density and porosity data for tuffs from the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schwartz, B.M.

    1990-02-01

    Yucca Mountain, located on and adjacent to the Nevada Test Site in southern Nevada, is being evaluated as a potential site for underground disposal of nuclear wastes. At present, the physical, thermal, and mechanical properties of tuffaceous rocks from Yucca Mountain are being determined as part of the Yucca Mountain Project. This report documents experiment data, which have been obtained by Sandia National Laboratories or its contractors, for the density and porosity of tuffaceous rocks that lie above the water table at Yucca Mountain. 7 refs., 2 figs., 3 tabs

  7. A lineament analysis of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Perry, J.J.

    1988-01-01

    The Nuclear Waste Policy Act of 1982 was signed into law on January 7, 1983. It specifies procedures for the Department of Energy in the selection of a high level nuclear waste repository. Federal Environmental Protection Agency standards require adequate isolation of waste from the biosphere for 10,000 years. The law considers such geologic factors as tectonic stability, igneous activity, hydrologic conditions and natural resources to be of primary concern. Yucca Mountain in southern Nevada is one of three sites selected for further consideration in the site characterization process. The Nuclear Waste Project Office (NWPO) within the Agency for Nuclear Projects of the State of Nevada is conducting an independent scientific assessment of the proposed site. The remote sensing technical assessment is one of seven task groups conducting review and research into the suitability of Yucca Mountain. The study undertaken by the Remote Sensing Group was that of a lineament analysis with regard to the site's structural relationship within a regional tectonic framework. Lineaments mapped from synoptic imagery may prove to represent structural zones of weakness. These zones may provide pathways for the infiltration of groundwater, conduits for the extrusion of magma or be reactivated as stress conditions change. This paper describes the methodology for a lineament analysis of the Yucca Mountain area

  8. Yucca Mountain Project bibliography, 1988--1989

    International Nuclear Information System (INIS)

    Lorenz, J.J.

    1990-11-01

    This bibliography contains information on the Yucca Mountain Project that was added to the Department of Energy's Energy Data Base from January 1988 through December 1989. This supplement also includes a new section which provides information about publications on the Energy Data Base that were not sponsored by the project but have some relevance to it. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Indexes are provided for Corporate Author, Personal Author, Subject, Contract Number, Report Number, Order Number Correlation, and Key Word in Context. All entries in the Yucca Mountain Project bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE). Technical reports on the Yucca Mountain Project are on display in special open files at participating Nevada Libraries and in the Public Document Room of the US Department of Energy, Nevada Operations Office, in Las Vegas

  9. Yucca Mountain and the environmental issue

    International Nuclear Information System (INIS)

    Gertz, C.P.

    1991-01-01

    The scientists and engineers who work on the Yucca Mountain Project keenly feel their responsibility - to solve an important national environmental issue. Addressing the issue of nuclear waste disposal may also help keep the nuclear option viable. Under congressional mandate, they are working to find that solution despite tough opposition from the state of Nevada. Nevada and the US Department of Energy (DOE) have been litigating the issue of environmental permits for almost 2 years now, and the court decisions have all favored DOE. The DOE's site characterization efforts are designed to determine whether Yucca Mountain can safely store spent nuclear fuel for the next 10,000 yr. DOE is studying the rocks, the climate, and the water table to make sure that the site is suitable before anything is built there. The success of the Yucca Mountain Project is vital to settling existing environmental issues as well as maintaining the viability of nuclear energy. Through efforts in Congress and outreach programs in Nevada, DOE hopes to inform the public of the mission and begin the process of site characterization

  10. Yucca aloifolia (Asparagaceae) opts out of an obligate pollination mutualism.

    Science.gov (United States)

    Rentsch, Jeremy D; Leebens-Mack, Jim

    2014-12-01

    • According to Cope's 'law of the unspecialized' highly dependent species interactions are 'evolutionary dead ends,' prone to extinction because reversion to more generalist interactions is thought to be unlikely. Cases of extreme specialization, such as those seen between obligate mutualists, are cast as evolutionarily inescapable, inevitably leading to extinction rather than diversification of participating species. The pollination mutualism between Yucca plants and yucca moths (Tegeticula and Parategeticula) would seem to be locked into such an obligate mutualism. Yucca aloifolia populations, however, can produce large numbers of fruit lacking moth oviposition scars. Here, we investigate the pollination ecology of Y. aloifolia, in search of the non-moth pollination of a Yucca species.• We perform pollinator exclusion studies on Yucca aloifolia and a sympatric yucca species, Y. filamentosa. We then perform postvisit exclusion treatments, an analysis of dissected fruits, and a fluorescent dye transfer experiment.• As expected, Yucca filamentosa plants set fruit only when inflorescences were exposed to crepuscular and nocturnal pollinating yucca moths. In contrast, good fruit set was observed when pollinators were excluded from Y. aloifolia inflorescences from dusk to dawn, and no fruit set was observed when pollinators were excluded during the day. Follow up experiments indicated that European honeybees (Apis mellifera) were passively yet effectively pollinating Y. aloifolia flowers.• These results indicate that even highly specialized mutualisms may not be entirely obligate interactions or evolutionary dead ends. © 2014 Botanical Society of America, Inc.

  11. Potentiometric-surface map, 1993, Yucca Mountain and vicinity, Nevada

    International Nuclear Information System (INIS)

    Tucci, P.; Burkhardt, D.J.

    1995-01-01

    The revised potentiometric surface map here, using mainly 1993 average water levels, updates earlier maps of this area. Water levels are contoured with 20-m intervals, with additional 0.5-m contours in the small-gradient area SE of Yucca Mountain. Water levels range from 728 m above sea level SE of Yucca to 1,034 m above sea level north of Yucca. Potentiometric levels in the deeper parts of the volcanic rock aquifer range from 730 to 785 m above sea level. The potentiometric surface can be divided into 3 regions: A small gradient area E and SE of Yucca, a moderate-gradient area on the west side of Yucca, and a large-gradient area to the N-NE of Yucca. Water levels from wells at Yucca were examined for yearly trends (1986-93) using linear least-squares regression. Of the 22 wells, three had significant positive trends. The trend in well UE-25 WT-3 may be influenced by monitoring equipment problems. Tends in USW WT-7 and USW WTS-10 are similar; both are located near a fault west of Yucca; however another well near that fault exhibited no significant trend

  12. Directional floral orientation in Joshua trees (Yucca brevifolia)

    Science.gov (United States)

    Steve Warren; L. Scott Baggett; Heather Warren

    2016-01-01

    Joshua tree (Yucca brevifolia Engelm.) is a large, arborescent member of the yucca genus. It is an endemic and visually dominant plant in portions of the Mojave Desert, USA. We document the unique and heretofore unreported directional orientation of its flower panicles. The flower panicles grow primarily at the tips of branches that are oriented to the south....

  13. Hydrologeologic characteristics of faults at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, Robert P.

    2001-01-01

    Yucca Mountain is under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  14. Use of thermal data to estimate infiltration, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    LeCain, Gary D.; Kurzmack, Mark

    2001-01-01

    Temperature and pressure monitoring in a vertical borehole in Pagany Wash, Yucca Mountain, Nevada, measured disruptions of the natural gradients associated with the February, 1998, El Nino precipitation events. The temperature and pressure disruptions indicated infiltration and percolation through the 12.1 m of Pagany Wash alluvium and deep percolation to greater than 35.2 m into the Yucca Mountain Tuff

  15. Geology of drill hole USW VH-2, and structure of Crater Flat, southwestern Nevada

    International Nuclear Information System (INIS)

    Carr, W.J.; Parrish, L.D.

    1985-01-01

    A 1219 meter (4000 ft) drill hole in Crater Flat shows the absence of buried Pliocene or Quaternary volcanic rocks, and penetrates a section of Timber Mountain, Paintbrush, and the upper part of the Crater Flat Tuffs, similar to that exposed adjacent to Crater Flat. A prominent negative aeromagnetic anomaly between the drill hole and Bare Mountain is attributed to a westward thickening section of a reversely magnetized Miocene basalt. The relatively shallow depth of this basalt in the west-central part of Crater Flat indicates that no large amount of tectonic movement has occurred in approximately the last 10 m.y. Massive brecciated wedges of Paleozoic rocks are penetrated in two stratigraphic intervals in the drill hole; the older one, between the Tiva Canyon Member of the Paintbrush Tuff and the Rainier Mesa Member of the Timber Mountain Tuff, correlates with the time of maximum faulting east of Crater Flat in the Yucca Mountain area. The younger slide masses are correlated with a large slide block of probable late Miocene age exposed along the southwestern rim of Crater Flat. The structural pattern and style buried beneath central and western Crater Flat is deduced to be similar to that exposed at Yucca Mountain, but less developed. The major fault system controlling the steep east face of Bare Mountain, though probably still active, is believed to have developed mainly as a result of caldera collapse between 13 and 14 m.y. ago. Relations between faulting and four episodes of basalt eruption in the Crater Flat area strongly suggest contemporaneity of the two processes. 17 refs., 2 figs., 3 tabs

  16. The Occurrence of Erionite at Yucca Mountain

    International Nuclear Information System (INIS)

    NA

    2004-01-01

    The naturally-occurring zeolite mineral erionite has a fibrous morphology and is a known human carcinogen (inhalation hazard). Erionite has been found typically in very small quantities and restricted occurrences in the course of mineralogic characterization of Yucca Mountain as a host for a high-level nuclear waste repository. The first identification of erionite was made in 1984 on the basis of morphology and chemical composition and later confirmed by X-ray diffraction analysis. It was found in the lower vitrophyre (Tptpv3) of the Topopah Spring Tuff in a borehole sidewall sample. Most erionite occurrences identified at Yucca Mountain are in the Topopah Spring Tuff, within an irregular zone of transition between the lower boundary of devitrified tuff and underlying glassy tuff. This zone is fractured and contains intermingled devitrified and vitric tuff. In 1997, a second host of erionite mineralization was identified in the Exploratory Studies Facility within and adjacent to a high-angle fracture/breccia zone transgressing the boundary between the lowermost devitrified tuff (Tpcplnc) and underlying moderately welded vitric tuff (Tpcpv2) of the Tiva Canyon Tuff. The devitrified-vitric transition zones where erionite is found tend to have complex secondary-mineral assemblages, some of very localized occurrence. Secondary minerals in addition to erionite may include smectite, heulandite-clinoptilolite, chabazite, opal-A, opal-CT, cristobalite, quartz, kenyaite, and moganite. Incipient devitrification within the Topopah Spring Tuff transition zone includes patches that are highly enriched in potassium feldspar relative to the precursor volcanic glass. Geochemical conditions during glass alteration may have led to local evolution of potassium-rich fluids. Thermodynamic modeling of zeolite stability shows that erionite and chabazite stability fields occur only at aqueous K concentrations much higher than in present Yucca Mountain waters. The association of erionite

  17. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  18. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A.; Wells, S.; Bowker, L.; Finnegan, K.; Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report

  19. Overview of the Yucca Mountain Licensing Process

    International Nuclear Information System (INIS)

    M. Wisenburg

    2004-01-01

    This paper presents an overview of the licensing process for a Yucca Mountain repository for high-level radioactive waste and spent nuclear fuel. The paper discusses the steps in the licensing proceeding, the roles of the participants, the licensing and hearing requirements contained in the Code of Federal Regulations. A description of the Nuclear Regulatory Commission (NRC) staff acceptance and compliance reviews of the Department of Energy (DOE) application for a construction authorization and a license to receive and possess high-level radioactive waste and spent nuclear fuel is provided. The paper also includes a detailed description of the hearing process

  20. Archaeological program for the Yucca Mountain Site

    International Nuclear Information System (INIS)

    Pippin, L.C.; Rhode, D.

    1991-01-01

    Archaeological surveys, limited surface collections and selected test excavations in the Yucca Mountain Project Area have revealed four distinct aboriginal hunting and gathering adaptive strategies and a separate historic Euroamerican occupation. The four aboriginal adaptations are marked by gradual shifts in settlement locations that reflect changing resource procurement strategies. Whereas the earliest hunters and gatherers focused their activities around the exploitation of toolstone along ephemeral drainages and the hunting of game animals in the uplands, the latest aboriginal settlements reflect intensive procurement of early spring plant resources in specific upland environments. The final Euroamerican occupation in the area is marked by limited prospecting activities and travel through the area by early immigrants

  1. Tunneling progress on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Hansmire, W.H.; Munzer, R.J.

    1996-01-01

    The current status of tunneling progress on the Yucca Mountain Project (YMP) is presented in this paper. The Exploratory Studies Facility (ESF), a key part of the YMP, has been long in development and construction is ongoing. This is a progress report on the tunneling aspects of the ESF as of January 1, 1996. For purposes of discussion in this summary, the tunneling has progressed in four general phases. The paper describes: tunneling in jointed rock under low stress; tunneling through the Bow Ridge Fault and soft rock; tunneling through the Imbricate Fault Zone; and Tunneling into the candidate repository formation

  2. Flat-port connectors

    KAUST Repository

    Alrashed, Mohammed

    2017-05-26

    Disclosed are various embodiments for connectors used with electronic devices, such as input and/or output ports to connect peripheral equipment or accessories. More specifically, various flat-port are provided that can be used in place of standard connectors including, but not limited to, audio jacks and Universal Serial Bus (USB) ports. The flat-port connectors are an alternate connection design to replace the traditional receptacle port (female-port), making the device more sealed creation more dust and water resistant. It is unique in the way of using the outer surfaces of the device for the electrical connection between the ports. Flat-port design can allow the manufacture of extremely thin devices by eliminating the side ports slots that take a lot of space and contribute to the increase thickness of the device. The flat-port receptacle improves the overall appearance of the device and makes it more resistant to dust and water.

  3. Flat-space singletons

    International Nuclear Information System (INIS)

    Fronsdal, C.

    1987-01-01

    Singletons exist, as particles and as local fields, only in 3+2 de Sitter space. Their kinematical properties make them natural candidates for constituents of massless fields, and perhaps for quarks. It is interesting to find out how to describe this type of compositeness in flat space. A theory of interacting singleton fields in de Sitter space is now available, and in this paper we study the flat-space limit of the Green's functions of that theory. The flat-space limit is an autonomous theory of Green's functions, but is not an operator field theory. The three-point function is calculated and its flat-space limit is found to reveal glimpses of a physical interpretation. Causal and spectral properties are in accord with the tenets of axiomatic field theory. The theory is a generalization of local field theory, in which photons appear as composite objects although the physical S matrix is the same as in conventional QED

  4. A geologic scenario for catastrophic failure of the Yucca Mountain Nuclear Waste Repository, Nevada

    International Nuclear Information System (INIS)

    McMackin, M.R.

    1993-01-01

    A plausible combination of geologic factors leading to failure can be hypothesized for the Yucca Mountain Nuclear Waste Repository. The scenarios is constructed using elementary fault mechanics combined with geologic observations of exhumed faults and published information describing the repository site. The proposed repository site is located in the Basin and Range Province, a region of active crustal deformation demonstrated by widespread seismicity. The Yucca Mountain area has been characterized as tectonically quiet, which in the context of active crustal deformation may indicate the accumulation of the stresses approaching the levels required for fault slip, essentially stick-slip faulting. Simultaneously, dissolution of carbonate rocks in underlying karst aquifers is lowering the bulk strength of the rock that supports the repository site. Rising levels of hydrostatic stress concurrent with a climatically-driven rise in the water table could trigger faulting by decreasing the effective normal stress that currently retards fault slip. Water expelled from collapsing caverns in the underlying carbonate aquifer could migrate upward with sufficient pressure to open existing fractures or create new fractures by hydrofracturing. Water migrating through fractures could reach the repository in sufficient volume to react with heated rock and waste perhaps creating steam explosions that would further enhance fracture permeability. Closure of conduits in the underlying carbonate aquifer could lead to the elevation of the saturated zone above the level of the repository resulting in sustained saturation of radioactive waste in the repository and contamination of through-flowing groundwater

  5. Restructured site characterization program at Yucca Mountain

    International Nuclear Information System (INIS)

    Dyer, J.R.; Vawter, R.G.

    1995-01-01

    During 1994 and the early part of 1995, the US Department of Energy's Yucca Mountain Site Characterization Office (YMSCO) and its parent organization, the Office of Civilian Radioactive Waste Management (OCRWM) underwent a significant restructuring. Senior Department officials provided the leadership to reorient the management, technical, programmatic, and public interaction approach to the US High Level Radioactive Waste Disposal Program. The restructuring involved reorganizing the federal staff, conducting meaningful strategic planning, improving the management system, rationalizing contractor responsibilities, focusing upon major products, and increasing stakeholder involvement. The restructured program has prioritized technical and scientific activities toward meeting major regulatory milestones in a timely and cost-effective manner. This approach has raised concern among elements of technical, scientific, and oversight bodies that suitability and licensing decisions could be made without obtaining sufficient technical information for this first-of-its-kind endeavor. Other organizations, such as congressional committees, industrial groups, and rate payers believe characterization goals can be met in a timely manner and within the limitation of available funds. To balance these contrasting views in its decision making process, OCRWM management has made a special effort to communicate its strategy to oversight bodies, the scientific community and other stakeholders and to use external independent peer review as a key means of demonstrating scientific credibility. Site characterization of Yucca Mountain in Nevada is one of the key elements of the restructured program

  6. Magma Dynamics at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Krier

    2005-01-01

    Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event

  7. Magma Dynamics at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. Krier

    2005-08-29

    Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event.

  8. Yucca Mountain Climate Technical Support Representative

    International Nuclear Information System (INIS)

    Sharpe, Saxon E

    2007-01-01

    The primary objective of Project Activity ORD-FY04-012, 'Yucca Mountain Climate Technical Support Representative', was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding

  9. Seismic monitoring of the Yucca Mountain facility

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1997-01-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals.) The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in signal detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM

  10. Using science soundly: The Yucca Mountain standard

    International Nuclear Information System (INIS)

    Fri, R.W.

    1995-01-01

    Using sound science to shape government regulation is one of the most hotly argued topics in the ongoing debate about regulatory reform. Even though no one advaocates using unsound science, the belief that even the best science will sweep away regulatory controversy is equally foolish. As chair of a National Research Council (NRC) committee that studied the scientific basis for regulating high-level nuclear waste disposal, the author learned that science alone could resolve few of the key regulatory questions. Developing a standard that specifies a socially acceptable limit on the human health effects of nuclear waste releases involves many decisions. As the NRC committee learned in evaluating the scientific basis for the Yucca Mountain standard, a scientifically best decision rarely exists. More often, science can only offer a useful framework and starting point for policy debates. And sometimes, science's most helpful contribution is to admit that it has nothing to say. The Yucca mountain study clearly illustrates that excessive faith in the power of science is more likely to produce messy frustration than crisp decisions. A better goal for regulatory reform is the sound use of science to clarify and contain the inevitable policy controversy

  11. Yucca Mountain drift scale test progress report

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.; Birkholzer, J.T.; Peterson,J.E.; Sonnenthal, E.; Spycher, N.; Tsang, Y.W.; Williams, K.H.

    1999-01-01

    The Drift Scale Test (DST) is part of the Exploratory Studies Facility (ESF) Thermal Test being conducted underground at the potential high-level nuclear waste repository at Yucca Mountain, Nevada. The purpose of the ESF Thermal Test is to acquire a more in-depth understanding of the coupled thermal, mechanical, hydrological, and chemical processes likely to be encountered in the rock mass surrounding the potential geological repository at Yucca Mountain. These processes are monitored by a multitude of sensors to measure the temperature, humidity, gas pressure, and mechanical displacement, of the rock formation in response to the heat generated by the heaters. In addition to collecting passive monitoring data, active hydrological and geophysical testing is also being carried out periodically in the DST. These active tests are intended to monitor changes in the moisture redistribution in the rock mass, to collect water and gas samples for chemical and isotopic analysis, and to detect microfiacturing due to heating. On December 3, 1998, the heaters in the DST were activated. The planned heating phase of the DST is 4 years, and the cooling phase following the power shutoff will be of similar duration. The present report summarizes interpretation and analysis of thermal, hydrological, chemical, and geophysical data for the first 6 months; it is the first of many progress reports to be prepared during the DST.

  12. Rocky Flats Compliance Program

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE's strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP

  13. Geohydrology of volcanic tuff penetrated by test well UE-25b#1, Yucca Mountain, Nye County, Nevada

    Science.gov (United States)

    Lahoud, R.G.; Lobmeyer, D.H.; Whitfield, M.S.

    1984-01-01

    Test well UE-25bNo1, located on the east side of Yucca Mountain in the southwestern part of the Nevada Test Site, was drilled to a total depth of 1,220 meters and hydraulically tested as part of a program to evaluate the suitability of Yucca Mountain as a nuclear-waste repository. The well penetrated almost 46 meters of alluvium and 1,174 meters of Tertiary volcanic tuffs. The composite hydraulic head for aquifers penetrated by the well was 728.9 meters above sea level (471.4 meters below land surface) with a slight decrease in loss of hydraulic head with depth. Average hydraulic conductivities for stratigraphic units determined from pumping tests, borehole-flow surveys, and packer-injection tests ranged from less than 0.001 meter per day for the Tram Member of the Crater Flat Tuff to 1.1 meters per day for the Bullfrog Member of the Crater Flat Tuff. The small values represented matrix permeability of unfractured rock; the large values probably resulted from fracture permeability. Chemical analyses indicated that the water is a soft sodium bicarbonate type, slightly alkaline, with large concentrations of dissolved silica and sulfate. Uncorrected carbon-14 age dates of the water were 14,100 and 13,400 years. (USGS)

  14. A radiological disadvantage for siting a repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Spiegler, P.

    1996-01-01

    At Yucca mountain, the disposal of large amounts of U-238, U-234, and Pu-238 will result in a long term build-up of Rn-222. In time, because of erosion, the repository horizon will move closer to the surface and large amounts of Rn-222 gas will be able to leak into the atmosphere. The area surrounding Yucca Mountain will become a site of high radioactive background. Sullivan and Pescatore have brought the issue to the attention of the DOE

  15. Slingram survey at Yucca Mountain on the Nevada Test Site

    International Nuclear Information System (INIS)

    Flanigan, V.J.

    1981-01-01

    Electromagnetic (EM) data presented in this report is part of study by the US Geological Survey aimed at evaluating the Miocene and Pliocene Yucca Mountain Member of various units of the Paintbrush Tuff in the vicinity of Yucca Mountain as a possible repository for nuclear wastes. The survey area is located about 97 km northwest of Las Vegas, Nevada on the Nevada Test Site. Data contained in this report were taken along the eastern edge of Yucca Mountain. The specific purpose of this survey was to determine with EM methods, whether or not northwest-trending valleys in the Yucca Mountain area were fault controlled. Fault and fracture zones in the tuff units were expected to have a somewhat higher conductivity than the unfractured tuff. This is due to the greater porosity, clay and moisture content expected in the fault zones than in unfaulted rock. Depending upon a number of factors, such as the conductivity contrast between fault zones and unfaulted rock, and the depth and conductivity of the overburden, it may be possible to recognize fault zones from surface EM measurements. Several EM methods were tested to determine which one gave the best results in this environment. The methods tried included slingram, Turam and VLF (very low frequency). Slingram data proved to be most diagnostic in delineating a mapped fault on the east edge of Yucca Mountain, and hence was used in the survey traverses crossing the northwest valleys cutting into Yucca Mountain

  16. Environmental impact of Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Ahn, Joonhong

    2005-01-01

    Environmental impact of the Yucca Mountain Repository (YMR) has been quantitatively evaluated in terms of the radiotoxicity of transuranic (TRU) and fission-product radionuclides existing in the environment after released from failed packages. Inventory abstraction has been made based on the data published in Final Environmental Impact Statement published by US DOE. Mathematical model and computation code have been developed based on analytical solutions. Environmental impact from the commercial spent nuclear fuel (CSNF) packages is about 90% of the total impact including the contribution from defense waste (DW) packages. Impacts due to isotopes of Cm, Am, Pu and Np, and their decay daughters are dominant, compared with those from fission-product nuclides. Numerical results show that reduction of the TRU nuclides by a factor of 100 makes the impact from CSNF smaller than that from DW. (author)

  17. Environmental radiation protection standards for Yucca Mountain

    International Nuclear Information System (INIS)

    Clark, R.L.

    1996-01-01

    The Environmental Protection Agency (EPA) has been given the responsibility of setting site-specific health and safety standards for the potential repository at Yucca Mountain, Nevada. The same legislation that gave the Agency that responsibility, mandated a study by the National Academy of Sciences (NAS) to provide input into the bases for the EPA standards. The NAS has completed and presented a report to the Agency; this paper summarizes the report's recommendations and conclusions. Following receipt of the report, the Agency opened a comment period and held public meetings to gather comments; the major issues from the comments are summarized. Based upon the report from NAS and the public comments, EPA has started formulating proposed standards which will be known as 40 CFR Part 197. It is planned for the proposal of 40 CFR Part 197 to occur in the summer of 1996

  18. Interface management for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    1988-12-01

    The subject of this report is selection of that portion of physical and informational interfaces that need to be controlled on the Yucca Mountain Project (YMP). Physical interfaces are interactions between physical elements of the mined geologic disposal system; for example, the repository shafts will interface with the shafts in the Exploratory Shaft Facility (ESF), because the ESF shafts will eventually be absorbed into the repository as additional repository shafts. Informational interfaces are interactions involving an exchange of information between organizations working on the mined geologic disposal system; for example, the in situ testing contractor will interact with the site performance assessment contractor and will supply information regarding host rock behavior. This report describes the physical system interfaces that can be identified from analysis of a physical system structure. A discussion of informational interfaces can be found elsewhere. 30 refs., 8 figs., 3 tabs

  19. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Valentine, G.

    2001-01-01

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain shapes

  20. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Valentine

    2001-12-20

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain

  1. Preparing the Yucca Mountain Multimedia Presentation

    International Nuclear Information System (INIS)

    Larkin, Y.; Hartley, J.; Scott, J.

    2002-01-01

    In July 2002, the U.S. Congress approved Yucca Mountain in Nevada for development as a geologic repository for spent nuclear fuel and high-level radioactive waste. This major milestone for the country's high-level radioactive waste disposal program comes after more than 20 years of scientific study and intense public interaction and outreach. The U.S. Department of Energy's (DOE) public involvement activities were driven by two federal regulations-the National Environmental Policy Act (NEPA) and the Nuclear Waste Policy Act (NWPA) of 1982, as amended. The NEPA required that DOE hold public hearings at key points in the development of an Environmental Impact Statement (EIS) and the NWPA required the agency to conduct public hearings in the vicinity of the site prior to making a recommendation regarding the site's suitability. The NWPA also provided a roadmap for how DOE would interact with affected units of government, which include the state of Nevada and the counties surrounding the site. As the Project moves into the next phase--applying for a license to construct a repository-the challenge of public interaction and outreach remains. It has become increasingly important to provide tools to communicate to the public the importance of the Yucca Mountain Project. Sharing the science and engineering research with the general public, as well as teachers, students, and industry professionals, is one of the project's most important activities. Discovering ways to translate project information and communicate this information to local governments, agencies, citizens' groups, schools, the news media, and other stakeholders is critical. With these facts in mind, the authors set out to create a presentation that would bring the ''mountain'' to the public

  2. Flat-port connectors

    KAUST Repository

    Alrashed, Mohammed

    2017-01-01

    and water resistant. It is unique in the way of using the outer surfaces of the device for the electrical connection between the ports. Flat-port design can allow the manufacture of extremely thin devices by eliminating the side ports slots that take a lot

  3. Piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We examine the continuum limit of the piecewise flat locally finite gravity model introduced by ’t Hooft. In the linear weak field limit, we find the energy–momentum tensor and metric perturbation of an arbitrary configuration of defects. The energy–momentum turns out to be restricted to satisfy

  4. Flat out and bluesome

    OpenAIRE

    Wilson, Mark; Snaebjornsdottir, Bryndis; Byatt, Lucy

    2008-01-01

    ‘Nanoq: flat out and bluesome’ is the story of polar bears, the largest land predators on earth, and their journey from the arctic wilderness to the museums and stately homes of the UK. The work documents the histories of each of these bears, the legacies of the hunters who shot them and the skills and expertise of the taxidermists who stuffed them.

  5. Stratigraphy, structure, and some petrographic features of Tertiary volcanic rocks at the USW G-2 drill hole, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Maldonado, F.; Koether, S.L.

    1983-01-01

    A continuously cored drill hole penetrated 1830.6 m of Tertiary volcanic strata comprised of the following in descending order: Paintbrush Tuff, tuffaceous beds of Calico Hills, Crater Flat Tuff, lava and flow breccia (rhyodacitic), tuff of Lithic Ridge, bedded and ash-flow tuff, lava and flow breccia bedded tuff, conglomerate and ash-flow tuff, and older tuffs of USW G-2. Comparison of unit thicknesses at USW G-2 to unit thicknesses at previously drilled holes at Yucca Mountain indicate: (1) thickening of the Paintbrush Tuff members and tuffaceous beds of Calico Hills toward the northern part of Yucca Mountain; (2) thickening of the Prow Pass Member but thinning of the Bullfrog Member and Tram unit; (3) thinning of the tuff of Lithic Ridge; (4) presence of about 280 m of lava and flow breccia not previously penetrated by any drill hole; and (5) presence of an ash-flow tuff unit at the bottom of the drill hole not previously intersected, apparently the oldest unit penetrated at Yucca Mountain to date. Petrographic features of some of the units include: (1) decrease in quartz and K-feldspar and increases in biotite and plagioclase with depth in the tuffaceous beds of Calico Hills; (2) an increase in quartz phenocrysts from the top to the bottom members of the Crater Flat Tuff; (3) a low quartz content in the tuff of Lithic Ridge, suggesting tapping of the magma chamber at quartz-poor levels; (4) a change in zeolitic alteration from heulandite to clinoptilolite to mordenite with increasing depth; (5) lavas characterized by a rhyolitic top and dacitic base, suggesting reverse compositional zoning; and (6) presence of hydrothermal mineralization in the lavas that could be related to an itrusive under Yucca Mountain or to volcanism associated with the Timber Mountain-Claim Canyon caldera complex. A fracture analysis of the core resulted in tabulation of 7848 fractures, predominately open and high angle

  6. Geochemical evidence for waning magmatism and polycyclic volcanism at Crater Flat, Nevada

    International Nuclear Information System (INIS)

    Perry, F.V.; Crowe, B.M.

    1992-01-01

    This paper reports that petrologic and geochemical studies of basaltic rocks in the Yucca Mountain region are currently focused on understanding the evolution of volcanism in the Crater Flat volcanic field and the mechanisms of polycyclic volcanic field and the mechanisms of polycyclic volcanism at the Lathrop Wells volcanic center, the youngest center in the Crater Flat volcanic field. Geochemical and petrologic data indicate that the magma chambers which supplied the volcanic centers at Crater Flat became situated at greater crustal depths as the field evolved. Deep magma chambers may be related to a waning magma flux that was unable to sustain upper crustal magma conduits and chambers. Geochemical data from the Lathrop Wells volcanic center indicate that eruptive units identified from field and geomorphic relationships are geochemically distinct. The geochemical variations cannot be explained by fractional crystallization of a single magma batch, indicating that several magma batches were involved in the formation of the Lathrop Wells center. Considering the low magma flux in the Yucca Mountain region in the Quaternary, the probability of several magma batches erupting essentially simultaneously at Lathrop Wells is considered remote

  7. Revised potentiometric-surface map, Yucca Mountain and vicinity, Nevada

    International Nuclear Information System (INIS)

    Ervin, E.M.; Luckey, R.R.; Burkhardt, D.J.

    1994-01-01

    The revised potentiometric-surface map presented in this report updates earlier maps of the Yucca Mountain area using mainly 1988 average water levels. Because of refinements in the corrections to the water-level measurements, these water levels have increased accuracy and precision over older values. The small-gradient area to the southeast of Yucca Mountain is contoured with a 0.25-meter interval and ranges in water-level altitude from 728.5 to 73 1.0 meters. Other areas with different water levels, to the north and west of Yucca Mountain, are illustrated with shaded patterns. The potentiometric surface can be divided into three regions: (1) A small-gradient area to the southeast of Yucca Mountain, which may be explained by flow through high-transmissivity rocks or low ground-water flux through the area; (2) A moderate-gradient area, on the western side of Yucca Mountain, where the water-level altitude ranges from 775 to 780 meters, and appears to be impeded by the Solitario Canyon Fault and a splay of that fault; and (3) A large-gradient area, to the north-northeast of Yucca Mountain, where water level altitude ranges from 738 to 1,035 meters, possibly as a result of a semi-perched groundwater system. Water levels from wells at Yucca Mountain were examined for yearly trends using linear least-squares regression. Data from five wells exhibited trends which were statistically significant, but some of those may be a result of slow equilibration of the water level from drilling in less permeable rocks. Adjustments for temperature and density changes in the deep wells with long fluid columns were attempted, but some of the adjusted data did not fit the surrounding data and, thus, were not used

  8. Flexible flat feet in children: a real problem?

    Science.gov (United States)

    García-Rodríguez, A; Martín-Jiménez, F; Carnero-Varo, M; Gómez-Gracia, E; Gómez-Aracena, J; Fernández-Crehuet, J

    1999-06-01

    To estimate the prevalence of flexible flat feet in the provincial population of 4- to 13-year-old schoolchildren and the incidence of treatments considered unnecessary. Province of Málaga, Spain. We examined and graded by severity a sample of 1181 pupils taken from a total population of 198 858 primary schoolchildren (CI: 95%; margin of error: 5%). The sample group was separated into three 2-year age groups: 4 and 5 years, 8 and 9 years, and 12 and 13 years. The plantar footprint was classified according to Denis1 into three grades of flat feet: grade 1 in which support of the lateral edge of the foot is half that of the metatarsal support; grade 2 in which the support of the central zone and forefoot are equal; and grade 3 in which the support in the central zone of the foot is greater than the width of the metatarsal support. The statistical analysis for the evaluation of the differences between the groups was performed with Student's t and chi2 tests as appropriate. The prevalence of flat feet was 2.7%. Of the 1181 children sampled, 168 children (14.2%) were receiving orthopedic treatment, but only 2.7% had diagnostic criteria of flat feet. When we inspected the sample, we found that a number of children were being treated for flat feet with boots and arch supports. Most of them did not have a flat plantar footprint according to the criteria that we used for this work. Furthermore, in the group of children that we diagnosed as having flat feet, only 28.1% were being treated. We found no significant differences between the number of children receiving orthopedic treatments and the presence or absence of a flat plantar footprint. Children who were overweight in the 4- and 5-year-old group showed an increased prevalence for flat feet as diagnosed by us. The data suggest that an excessive number of orthopedic treatments had been prescribed in the province. When extrapolated to the 1997 population of schoolchildren within the age groups studied the figures

  9. Preliminary conceptual model for mineral evolution in Yucca Mountain

    International Nuclear Information System (INIS)

    Duffy, C.J.

    1993-12-01

    A model is presented for mineral alteration in Yucca Mountain, Nevada, that suggests that the mineral transformations observed there are primarily controlled by the activity of aqueous silica. The rate of these reactions is related to the rate of evolution of the metastable silica polymorphs opal-CT and cristobalite assuming that a SiO 2(aq) is fixed at the equilibrium solubility of the most soluble silica polymorph present. The rate equations accurately predict the present depths of disappearance of opal-CT and cristobalite. The rate equations have also been used to predict the extent of future mineral alteration that may result from emplacement of a high-level nuclear waste repository in Yucca Mountain. Relatively small changes in mineralogy are predicted, but these predictions are based on the assumption that emplacement of a repository would not increase the pH of water in Yucca Mountain nor increase its carbonate content. Such changes may significantly increase mineral alteration. Some of the reactions currently occurring in Yucca Mountain consume H + and CO 3 2- . Combining reaction rate models for these reactions with water chemistry data may make it possible to estimate water flux through the basal vitrophyre of the Topopah Spring Member and to help confirm the direction and rate of flow of groundwater in Yucca Mountain

  10. Pyritic ash-flow tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Castor, S.B.; Tingley, J.V.; Bonham, H.F. Jr.

    1994-01-01

    The Yucca Mountain site is underlain by a 1,500-m-thick Miocene volcanic sequence that comprises part of the southwestern Nevada volcanic field. Rocks of this sequence, which consists mainly of ash-flow tuff sheets with minor flows and bedded tuff, host precious metal mineralization in several areas as near as 10 km from the site. In two such areas, the Bullfrog and Bare Mountain mining districts, production and reserves total over 60 t gold and 150 t silver. Evidence of similar precious metal mineralization at the Yucca Mountain site may lead to mining or exploratory drilling in the future, compromising the security of the repository. The authors believe that most of the pyrite encountered by drilling at Yucca Mountain was introduced as pyroclastic ejecta, rather than by in situ hydrothermal activity. Pyritic ejecta in ash-flow tuff are not reported in the literature, but there is no reason to believe that the Yucca Mountain occurrence is unique. The pyritic ejecta are considered by us to be part of a preexisting hydrothermal system that was partially or wholly destroyed during eruption of the tuff units. Because it was introduced as ejecta in tuff units that occur at depths of about 1,000 m, such pyrite does not constitute evidence of shallow mineralization at the proposed repository site; however, the pyrite may be evidence for mineralization deep beneath Yucca Mountain or as much as tens of kilometers from it

  11. UNCOVERING BURIED VOLCANOES: NEW DATA FOR PROBABILISTIC VOLCANIC HAZARD ASSESSMENT AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    F.V. Perry

    2005-01-01

    Basaltic volcanism poses a potential hazard to the proposed Yucca Mountain nuclear waste repository because multiple episodes of basaltic volcanism have occurred in the Yucca Mountain region (YMR) in the past 11 Ma. Intervals between eruptive episodes average about 1 Ma. Three episodes have occurred in the Quaternary at approximately 1.1 Ma (5 volcanoes), 350 ka (2 volcanoes), and 80 ka (1 volcano). Because Yucca Mountain lies within the Basin and Range Province, a significant portion of the pre-Quaternary volcanic history of the YMR may be buried in alluvial-filled basins. An exceptionally high-resolution aeromagnetic survey and subsequent drilling program sponsored by the U.S. Department of Energy (DOE) began in 2004 and is gathering data that will enhance understanding of the temporal and spatial patterns of Pliocene and Miocene volcanism in the region (Figure 1). DOE has convened a ten-member expert panel of earth scientists that will use the information gathered to update probabilistic volcanic hazard estimates originally obtained by expert elicitation in 1996. Yucca Mountain is a series of north-trending ridges of eastward-tilted fault blocks that are bounded by north to northeast-trending normal faults. Topographic basins filled with up to 500 m of alluvium surround it to the east, south and west. In the past several decades, nearly 50 holes have been drilled in these basins, mainly for Yucca Mountain Project Site Characterization and the Nye County Early Warning Drilling Program. Several of these drill holes have penetrated relatively deeply buried (300-400 m) Miocene basalt; a Pliocene basalt dated at 3.8 Ma was encountered at a relatively shallow depth (100 m) in the northern Amargosa Desert (Anomaly B in Figure 1). The current drilling program is the first to specifically target and characterize buried basalt. Based on the new aeromagnetic survey and previous air and ground magnetic surveys (Connor et al. 2000; O'Leary et al. 2002), at least eight drill

  12. Estimates of spatial correlation in volcanic tuff, Yucca Mountain, Nevada: Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Rautman, C.A.

    1991-02-01

    The spatial correlation structure of volcanic tuffs at and near the site of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada, is estimated using samples obtained from surface outcrops and drill holes. Data are examined for four rock properties: porosity, air permeability, saturated hydraulic conductivity, and dry bulk density. Spatial continuity patterns are identified in both lateral and vertical (stratigraphic) dimensions. The data are examined for the Calico Hills tuff stratigraphic unit and also without regard for stratigraphy. Variogram models fitted to the sample data from the tuffs of Calico Hills indicate that porosity is correlated laterally over distances of up to 3000 feet. If air permeability and saturated conductivity values are viewed as semi-interchangeable for purposes of identifying spatial structure, the data suggest a maximum range of correlation of 300 to 500 feet without any obvious horizontal to vertical anisotropy. Continuity exists over vertical distances of roughly 200 feet. Similar variogram models fitted to sample data taken from vertical drill holes without regard for stratigraphy suggest that correlation exists over distances of 500 to 800 feet for each rock property examined. Spatial correlation of rock properties violates the sample-independence assumptions of classical statistics to a degree not usually acknowledged. In effect, the existence of spatial structure reduces the ''equivalent'' number of samples below the number of physical samples. This reduction in the effective sampling density has important implications for site characterization for the Yucca Mountain Project. 19 refs., 43 figs., 5 tabs

  13. Numerical studies of rock-gas flow in Yucca Mountain; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Ross, B.; Amter, S.; Lu, Ning [Disposal Safety, Inc., Washington, DC (United States)

    1992-02-01

    A computer model (TGIF -- Thermal Gradient Induced Flow) of two-dimensional, steady-state rock-gas flow driven by temperature and humidity differences is described. The model solves for the ``fresh-water head,`` a concept that has been used in models of variable-density water flow but has not previously been applied to gas flow. With this approach, the model can accurately simulate the flows driven by small differences in temperature. The unsaturated tuffs of Yucca Mountain, Nevada, are being studied as a potential site for a repository for high-level nuclear waste. Using the TGIF model, preliminary calculations of rock-gas flow in Yucca Mountain are made for four east-west cross-sections through the mountain. Calculations are made for three repository temperatures and for several assumptions about a possible semi-confining layer above the repository. The gas-flow simulations are then used to calculate travel-time distributions for air and for radioactive carbon-14 dioxide from the repository to the ground surface.

  14. Transportation access to Yucca Mountain: Critical issues

    International Nuclear Information System (INIS)

    Halstead, R.J.; Souleyrette, R.R.; Bartolo, R. di

    1991-01-01

    Transportation planning for a repository at Yucca Mountain is complicated because of uncertainty about the modes and numbers of nuclear waste shipments and because of uncertainty about the routes which will be used. There could be as many as 76,000 truck shipments, or as few as 1,060 dedicated train shipments, during repository operations. The site lacks rail access. Three rail access options currently under study range in length from 120 miles to more than 400 miles. The site is more than 100 miles from the Interstate highway system. The UNLV Transportation Research Center has evaluated three rail and four highway routes using a broad range of impact measures. This preliminary evaluation found that the routing options differ significantly regarding resident and non-resident populations, environmentally sensitive areas, accident rates, and other factors. Crosscutting issues include impacts on Nevada Indian tribes, potential conflicts with US Air Force operations, and future population growth in southern Nevada. Considerable additional analysis will be required prior to environmental impact statement scoping

  15. BIOSPHERE MODELING AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    NING LIU; JEFFERY, J.; TAPPEN, DE WU; CHAO-HSIUNG TUNG

    1998-01-01

    The objectives of the biosphere modeling efforts are to assess how radionuclides potentially released from the proposed repository could be transported through a variety of environmental media. The study of these transport mechanisms, referred to as pathways, is critical in calculating the potential radiation dose to man. Since most of the existing and pending regulations applicable to the Project are radiation dose based standards, the biosphere modeling effort will provide crucial technical input to support the Viability Assessment (VA), the Working Draft of License Application (WDLA), and the Environmental Impact Statement (EIS). In 1982, the Nuclear Waste Policy Act (NWPA) was enacted into law. This federal law, which was amended in 1987, addresses the national issue of geologic disposal of high-level nuclear waste generated by commercial nuclear power plants, as well as defense programs during the past few decades. As required by the law, the Department of Energy (DOE) is conducting a site characterization project at Yucca Mountain, Nevada, approximately 100 miles northwest of Las Vegas, Nevada, to determine if the site is suitable for the nation's first high-level nuclear waste repository

  16. 1982 biotic survey of Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    O'Farrell, T.P.; Collins, E.

    1983-02-01

    In 1981 an extensive literature review was conducted to determine the current state of knowledge about the ecological characteristics of the Yucca Mountain study area and to identify what site-specific information was lacking. Based on the findings of the review a field study was initiated in 1982 to gather site-specific information on the ecological characteristics of the project area. The biota observed were representative of either the Mojave or Transition deserts that are widely distributed in southern Nevada and the arid Southwest. No unusual vegetation associations or assemblages of animals were observed. Based on observations of tracks and scats it was concluded that low numbers of both mule deer and feral burros used the area seasonally, and that neither species should be severely threatened by the proposed activities. The Mojave fishhook cactus and desert tortoise, both under consideration for federal protection as threatened species, were found to occur in the study area. The former was distributed in notable densities on the rocky ridgelines of Yucca Mountain in areas that should not be greatly disturbed by site characterization or future repository activities. Evidence of desert tortoise was observed throughout the project area to elevations of 5240 ft; however, relative densities were estimated to be low (less than 20 per square mile). Physical destruction of soils and native vegetation was determined to be the most significant negative effect associated with current and proposed characterization activities. Solution holes in exposed flat rock on ridgelines that served as passive collectors of precipitation and runoff were the only sources of free water observed. While these water supplies were not adequate to support riparian vegetation, there was evidence that they served as an important ephemeral source of water for wildlife

  17. Flat feet in children

    Directory of Open Access Journals (Sweden)

    Vukašinović Zoran

    2009-01-01

    Full Text Available The authors describe flatfoot, as one of very frequent deformities in everyday medical practice. A special condition of the deformity associated with a calcaneal valgus position and complicated by a knee valgus position (as a consequence of non-treatment is described. Also, the precise anatomy of the longitudinal foot arches (medial and lateral, definition and classification of the deformity, clinical findings and therapeutic protocols are proposed. The authors especially emphasise that the need for having extensive knowledge on the differences between a flexible and rigid flatfoot, having in mind that the treatment of flexible flat foot is usually not necessary, while the treatment of rigid flatfoot is usually unavoidable.

  18. The vegetation of Yucca Mountain: Description and ecology

    International Nuclear Information System (INIS)

    1996-01-01

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot

  19. The terrestrial ecosystem program for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Ostler, W.K.; O'Farrell, T.P.

    1994-01-01

    DOE has implemented a program to monitor and mitigate impacts associated with site Characterization Activities at Yucca Mountain on the environment. This program has a sound experimental and statistical base. Monitoring data has been collected for parts of the program since 1989. There have been numerous changes in the Terrestrial Ecosystems Program since 1989 that reflect changes in the design and locations of Site Characterization Activities. There have also been changes made in the mitigation techniques implemented to protect important environmental resources based on results from the research efforts at Yucca Mountain. These changes have strengthened DOE efforts to ensure protection of the environmental during Site Characterization. DOE,has developed and implemented an integrated environmental program that protects the biotic environment and will restore environmental quality at Yucca Mountain

  20. Yucca Mountain Site characterization project bibliography, January--June 1991

    International Nuclear Information System (INIS)

    Lorenz, J.J.; Stephan, P.M.

    1991-09-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1991 through June 1991. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  1. Yucca Mountain biological resources monitoring program; Annual report FY92

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  2. Characterization of a desert soil sequence at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Guertal, W.R.; Hofmann, L.L. Hudson, D.B.; Flint, A.L.

    1994-01-01

    Yucca Mountain, Nevada, is currently being evaluated as a potential site for a geologic repository for high level radioactive waste. Hydrologic evaluation of the unsaturated zone of Yucca Mountain is being conducted as an integrated set of surface and subsurface-based activities with a common objective to characterize the temporal and spatial distribution of water flux through the potential repository. Yucca Mountain is covered with a thin to thick layer of colluvial/alluvial materials, where there are not bedrock outcrops. It is across this surface boundary that all infiltration and all exfiltration occurs. This surface boundary effects water movement through the unsaturated zone. Characterization of the hydrologic properties of surficial materials is then a necessary step for short term characterization goals and for long term modeling

  3. Mineralogic alteration history and paleohydrology at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Levy, S.S.

    1990-01-01

    The importance of paleohydrology to the Yucca Mountain Site Characterization Project derives from the role water will play in radioactive-waste repository performance. Changes in hydrologic conditions during the lifetime of the repository may be estimated by investigating past hydrologic variations, including changes in the static water-level position. Based on the distribution of vitric and zeolitized tuffs and the structural history of the site, the highest water levels were reached and receded downward 11.6 to 12.8 myr ago. Since that time, the water level at central Yucca Mountain has probably not risen more than about 60 m above its present position. The history of the high potentiometric gradient running through northern Yucca Mountain may be partly elucidated by the study of tridymite distribution in rocks that have experienced saturated conditions for varying periods of time

  4. Yucca Mountain Site Characterization Project bibliography, January--June 1992

    International Nuclear Information System (INIS)

    1992-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1993, through June 30, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  5. Tectonic stability and expected ground motion at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-10-02

    A workshop was convened on August 7-8, 1984 at the direction of DOE to discuss effects of natural and artificial earthquakes and associated ground motion as related to siting of a high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. A panel of experts in seismology and tectonics was assembled to review available data and analyses and to assess conflicting opinions on geological and seismologic data. The objective of the meeting was to advise the Nevada Nuclear Waste Storage Investigations (NNWSI) Project about how to present a technically balanced and scientifically credible evaluation of Yucca Mountain for the NNWSI Project EA. The group considered two central issues: the magnitude of ground motion at Yucca Mountain due to the largest expected earthquake, and the overall tectonic stability of the site given the current geologic and seismologic data base. 44 refs.

  6. Tectonic stability and expected ground motion at Yucca Mountain

    International Nuclear Information System (INIS)

    1984-01-01

    A workshop was convened on August 7-8, 1984 at the direction of DOE to discuss effects of natural and artificial earthquakes and associated ground motion as related to siting of a high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. A panel of experts in seismology and tectonics was assembled to review available data and analyses and to assess conflicting opinions on geological and seismologic data. The objective of the meeting was to advise the Nevada Nuclear Waste Storage Investigations (NNWSI) Project about how to present a technically balanced and scientifically credible evaluation of Yucca Mountain for the NNWSI Project EA. The group considered two central issues: the magnitude of ground motion at Yucca Mountain due to the largest expected earthquake, and the overall tectonic stability of the site given the current geologic and seismologic data base. 44 refs

  7. The vegetation of Yucca Mountain: Description and ecology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-29

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot.

  8. Yucca Mountain Project bibliography, January--June 1989

    International Nuclear Information System (INIS)

    1990-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1990 through June 1990. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  9. Gravity and magnetic study of Yucca Wash, southwest Nevada

    International Nuclear Information System (INIS)

    Langenheim, V.E.; Ponce, D.A.; Oliver, H.W.; Sikora, R.F.

    1993-01-01

    Gravity and ground magnetic data were collected along five traverses across and one traverse along Yucca Wash in the southwest quadrant of the Nevada Test Site. Two additional ground magnetic profiles were collected approximately 100 m to either side of the longitudinal profile. These data do not indicate major vertical offsets greater than 100 m using a density contrast of 0.2 to 0.3 g/cm 3 along the proposed Yucca Wash fault. A broad magnetic high coincides with the location of the hydrologic gradient. Density profiling, a technique used to determine the average density of small topographic features, suggests that the density of near-surface material in the vicinity of Yucca Wash is about 2.0 g/cm 3

  10. Yucca Mountain Biological Resources Monitoring Program; Annual report, FY91

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmental regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  11. Yucca Mountain Site Characterization Project Bibliography, July--December 1990

    International Nuclear Information System (INIS)

    1991-05-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountains Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from July 1990 through December 1990. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers and articles are included in the sponsoring organizations list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  12. Native American plant resources in the Yucca Mountain Area, Nevada

    International Nuclear Information System (INIS)

    Stoffle, R.W.; Evans, M.J.; Halmo, D.B.

    1989-11-01

    This report presents Native American interpretations of and concerns for plant resources on or near Yucca Mountain, Nevada. This one of three research reports regarding Native American cultural resources that may be affected by site characterization activities related to the Yucca Mountain high-level radioactive waste disposal facility. Representatives of the sixteen involved American Indian tribes identified and interpreted plant resources as part of a consultation relationship between themselves and the US Department of Energy (DOE). Participants in the ethnobotany studies included botanists who have conducted, and continue to conduct, botanical studies for the Yucca Mountain Project. This report is to be used to review research procedures and findings regarding the process of consulting with the sixteen tribes, interviews with tribal plant specialists and elders, and findings from the ethnobotanical visits with representatives of the sixteen tribes. An annual report will include a chapter that summarizes the key findings from this plant resources study. 23 refs., 75 figs., 39 tabs

  13. Mineralogic alteration history and paleohydrology at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Levy, S.S.

    1991-01-01

    The importance of paleohydrology to the Yucca Mountain Site Characterization Project derives from the role water will play in radioactive waste repository performance. Changes in hydrologic conditions during the lifetime of the repository may be estimated by investigating past hydrologic variations, including changes in the static water-level position. Based on the distribution of vitric and zeolitized tuffs and the structural history of the site, the highest water levels were reached and receded downward 11.6 to 12.8 myr ago. Since that time, the water level at central Yucca Mountain has probably not risen more than about 60 m above its present position. The history of the high potentiometric gradient running through northern Yucca Mountain may be partly elucidated by the study of tridymite distribution in rocks that have experienced saturated conditions for varying periods of time

  14. Native American plant resources in the Yucca Mountain Area, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Stoffle, R.W.; Evans, M.J.; Halmo, D.B. [Michigan Univ., Ann Arbor, MI (USA). Inst. for Social Research; Niles, W.E.; O`Farrell, J.T. [EG and G Energy Measurements, Inc., Goleta, CA (USA)

    1989-11-01

    This report presents Native American interpretations of and concerns for plant resources on or near Yucca Mountain, Nevada. This one of three research reports regarding Native American cultural resources that may be affected by site characterization activities related to the Yucca Mountain high-level radioactive waste disposal facility. Representatives of the sixteen involved American Indian tribes identified and interpreted plant resources as part of a consultation relationship between themselves and the US Department of Energy (DOE). Participants in the ethnobotany studies included botanists who have conducted, and continue to conduct, botanical studies for the Yucca Mountain Project. This report is to be used to review research procedures and findings regarding the process of consulting with the sixteen tribes, interviews with tribal plant specialists and elders, and findings from the ethnobotanical visits with representatives of the sixteen tribes. An annual report will include a chapter that summarizes the key findings from this plant resources study. 23 refs., 75 figs., 39 tabs.

  15. Yucca Mountain Site characterization project bibliography, January--June 1992

    International Nuclear Information System (INIS)

    1992-09-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1992, through June 30, 1992. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor resorts, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  16. Modeling fluid-rock interaction at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1992-08-01

    Volcanic rocks at Yucca Mountain, Nevada aie being assessed for their suitability as a potential repository for high-level nuclear waste. Recent progress in modeling fluid-rock interactions, in particular the mineralogical and chemical changes that may accompany waste disposal at Yucca Mountain, will be reviewed in this publication. In Part 1 of this publication, ''Geochemical Modeling of Clinoptilolite-Water Interactions,'' solid-solution and cation-exchange models for the zeolite clinoptilolite are developed and compared to experimental and field observations. At Yucca Mountain, clinoptilolite which is found lining fractures and as a major component of zeolitized tuffs, is expected to play an important role in sequestering radionuclides that may escape from a potential nuclear waste repository. The solid-solution and ion-exchange models were evaluated by comparing predicted stabilities and exchangeable cation distributions of clinoptilolites with: (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff, and (4) high temperature experimental data. Good agreement was found between predictions and expertmental data, especially for binary exchange and Cs and Sr sorption on clinoptilolite. Part 2 of this publication, ''Geochemical Simulation of Fluid-Rock Interactions at Yucca Mountain,'' describes preliminary numerical simulations of fluid-rock interactions at Yucca Mountain. The solid-solution model developed in the first part of the paper is used to evaluate the stability and composition of clinciptilolite and other minerals in the host rock under ambient conditions and after waste emplacement

  17. Volcanism Studies: Final Report for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Crowe, Bruce M.; Perry, Frank V.; Valentine, Greg A.; Bowker, Lynn M.

    1998-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( than about 7 x 10 -8 events yr -1 . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain sit

  18. Cosine components in water levels at Yucca Mountain

    International Nuclear Information System (INIS)

    Rice, J.; Lehman, L.; Keen, K.

    1990-01-01

    Water-level records from wells at Yucca Mountain, Nevada are analyzed periodically to determine if they contain periodic (cosine) components. Water-level data from selected wells are input to an iterative numerical procedure that determines a best fitting cosine function. The available water-level data, with coverage of up to 5 years, appear to be representative of the natural water-level changes. From our analysis of 9 water-level records, it appears that there may be periodic components (periods of 2-3 years) in the groundwater-level fluctuations at Yucca Mountain, Nevada, although some records are fit better than others by cosine functions. It also appears that the periodic behavior has a spatial distribution. Wells west of Yucca Mountain have different periods and phase shifts from wells on and east of Yucca Mountain. Interestingly, a similar spatial distribution of groundwater chemistry at Yucca Mountain is reported by Matuska (1988). This suggests a physical cause may underlie the different physical and chemical groundwater conditions. Although a variety of natural processes could cause water-level fluctuations, hydrologic processes are the most likely, because the periodicities are only a few years. A possible cause could be periodic recharge related to a periodicity in precipitation. It is interesting that Cochran et al., (1988), show a crude two-year cycle of precipitation for 1961 to 1970 in southern Nevada. Why periods and phase shifts may differ across Yucca Mountain is unknown. Different phase shifts could indicate different lag times of response to hydrologic stimuli. Difference in periods could mean that the geologic media is heterogeneous and displays heterogeneous response to a single stimulus, or that stimuli differ in certain regions, or that a hydraulic barrier separates the groundwater system into two regions having different water chemistry and recharge areas. 13 refs., 5 figs., 1 tab

  19. Ricci-flat branes

    International Nuclear Information System (INIS)

    Brecher, D.; Perry, M.J.

    2000-01-01

    Up to overall harmonic factors, the D8-brane solution of the massive type IIA supergravity theory is the product of nine-dimensional Minkowski space (the world-volume) with the real line (the transverse space). We show that the equations of motion allow for the world-volume metric to be generalised to an arbitrary Ricci-flat one. If this nine-dimensional Ricci-flat manifold admits Killing spinors, then the resulting solutions are supersymmetric and satisfy the usual Bogomol'nyi bound, although they preserve fewer than the usual one half of the supersymmetries. We describe the possible choices of such manifolds, elaborating on the connection between the existence of Killing spinors and the self-duality condition on the curvature two-form. Since the D8-brane is a domain wall in ten dimensions, we are led to consider the general case: domain walls in any supergravity theory. Similar considerations hold here also. Moreover, it is shown that the world-volume of any magnetic brane - of which the domain walls are a specific example - can be generalised in precisely the same way. The general class of supersymmetric solutions have gravitational instantons as their spatial sections. Some mention is made of the world-volume solitons of such branes

  20. Flat Engineered Multichannel Reflectors

    Directory of Open Access Journals (Sweden)

    V. S. Asadchy

    2017-09-01

    Full Text Available Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here, we introduce a concept of multichannel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions simultaneously. In particular, we reveal a possibility to engineer multichannel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three basic functionalities of such reflectors: specular, anomalous, and retroreflections. Multichannel response of a general flat reflector can be described by a combination of these functionalities. To demonstrate the potential of the introduced concept, we design and experimentally test three different multichannel reflectors: three- and five-channel retroreflectors and a three-channel power splitter. Furthermore, by extending the concept to reflectors supporting higher-order Floquet harmonics, we forecast the emergence of other multichannel flat devices, such as isolating mirrors, complex splitters, and multi-functional gratings.

  1. Flat Engineered Multichannel Reflectors

    Science.gov (United States)

    Asadchy, V. S.; Díaz-Rubio, A.; Tcvetkova, S. N.; Kwon, D.-H.; Elsakka, A.; Albooyeh, M.; Tretyakov, S. A.

    2017-07-01

    Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here, we introduce a concept of multichannel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions simultaneously. In particular, we reveal a possibility to engineer multichannel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three basic functionalities of such reflectors: specular, anomalous, and retroreflections. Multichannel response of a general flat reflector can be described by a combination of these functionalities. To demonstrate the potential of the introduced concept, we design and experimentally test three different multichannel reflectors: three- and five-channel retroreflectors and a three-channel power splitter. Furthermore, by extending the concept to reflectors supporting higher-order Floquet harmonics, we forecast the emergence of other multichannel flat devices, such as isolating mirrors, complex splitters, and multi-functional gratings.

  2. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    International Nuclear Information System (INIS)

    J.H. Payer

    2005-01-01

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape size and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective

  3. Estimating the consequences of significant fracture flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Gauthier, J.H.; Wilson, M.L.; Lauffer, F.C.

    1992-01-01

    In this paper a simple model is proposed for investigating the possibility of significant fracture flow at Yucca Mountain, Nevada. The model allows an estimate of the number of flowing fractures at Yucca Mountain based on the size of the fractures and the yearly volume of infiltrating water. Given the number of flowing fractures, the number of waste containers they contact is estimated by a geometric argument. Preliminary results indicate that the larger the flowing fractures, the lower the releases of radionuclides. Also, even with significant fracture flow, releases could be well below the limits set by the Environmental Protection Agency

  4. Estimating the consequences of significant fracture flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Gauthier, J.H.; Wilson, M.L.; Lauffer, F.C.

    1991-01-01

    A simple model is proposed for investigating the possibility of significant fracture flow at Yucca Mountain, Nevada. The model allows an estimate of the number of flowing fractures at Yucca Mountain based on the size of the fractures and the yearly volume of infiltrating water. Given the number of flowing fractures, the number of waste containers they contact is estimated by a geometric argument. Preliminary results indicate that the larger the flowing fractures, the lower the releases of radionuclides. Also, even with significant fracture flow, releases could be well below the limits set by the Environmental Protection Agency

  5. Basaltic volcanic episodes of the Yucca Mountain region

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1990-01-01

    The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs

  6. Geohydrology of rocks penetrated by test well USW H-6, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Craig, R.W.; Reed, R.L.

    1991-01-01

    Test well USW H-6 is one of several wells drilled in the Yucca Mountain area near the southwestern part of the Nevada Test Site for investigations related to isolation of high-level nuclear waste. This well was drilled to a depth of 1,220 meters. Rocks penetrated are predominantly ash-flow tuffs of Tertiary age, with the principal exception of dacitic(?) lave penetrated at a depth from 877 to 1,126 meters. The composite static water level was about 526 meters below the land surface; the hydraulic head increased slightly with depth. Most permeability in the saturated zone is in two fractured intervals in Crater Flat Tuff. Based on well-test data using the transitional part of a dual-porosity solution, an interval of about 15 meters in the middle part of the Bullfrog Member of the Crater Flat Tuff has a calculated transmissivity of about 140 meters squared per day, and an interval of about 11 meters in the middle part of the Tram Member of the Crater Flat Tuff has a calculated transmissivity of about 75 meters squared per day. The upper part of the Bullfrog Member has a transmissivity of about 20 meters squared per day. The maximum likely transmissivity of any rocks penetrated by the test well is about 480 meters squared per day, based on a recharge-boundary model. The remainder of the open hole had no detectable production. Matrix hydraulic conductivity ranges from less than 5 x 10 -5 to 1 x 10 -3 meter per day. Ground water is a sodium bicarbonate type that is typical of water from tuffaceous rock of southern Nevada. The apparent age of the water is about 14,6000 years. 29 refs., 26 figs., 5 tabs

  7. Preparing to Submit a License Application for Yucca Mountain

    International Nuclear Information System (INIS)

    W.J. Arthur; M.D. Voegele

    2005-01-01

    In 1982, the U.S. Congress passed the Nuclear Waste Policy Act, a Federal law that established U.S. policy for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Congress amended the Act in 1987, directing the Department of Energy to study only Yucca Mountain, Nevada as the site for a permanent geologic repository. As the law mandated, the Department evaluated Yucca Mountain to determine its suitability as the site for a permanent geologic repository. Decades of scientific studies demonstrated that Yucca Mountain would protect workers, the public, and the environment during the time that a repository would be operating and for tens of thousands of years after closure of the repository. A repository at this remote site would also: preserve the quality of the environment; allow the environmental cleanup of Cold War weapons facilities; provide the nation with additional protection from acts of terrorism; and support a sound energy policy. Throughout the scientific evaluation of Yucca Mountain, there has been no evidence to disqualify Yucca Mountain as a suitable site for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Upon completion of site characterization, the Secretary of Energy considered the results and concluded that a repository at Yucca Mountain would perform in a manner that protects public health and safety. The Secretary recommended the site to the President in February 2002; the President agreed and recommended to Congress that the site be approved. The Governor of Nevada submitted a notice of disapproval, and both houses of Congress acted to override the disapproval. In July 2002, the President's approval allowed the Department to begin the process of submittal of a license application for Yucca Mountain as the site for the nation's first repository for spent nuclear fuel and high-level radioactive waste. Yucca Mountain is located on federal land in Nye County in southern Nevada, an arid region

  8. Yucca Mountain Project Subsurface Facilities Design

    International Nuclear Information System (INIS)

    Linden, A.; Saunders, R.S.; Boutin, R.J.; Harrington, P.G.; Lachman, K.D.; Trautner, L.J.

    2002-01-01

    Four units of the Topopah Springs formation (volcanic tuff) are considered for the proposed repository: the upper lithophysal, the middle non-lithophysal, the lower lithophysal, and the lower non-lithophysal. Yucca Mountain was recently designated the site for a proposed repository to dispose of spent nuclear fuel and high-level radioactive waste. Work is proceeding to advance the design of subsurface facilities to accommodate emplacing waste packages in the proposed repository. This paper summarized recent progress in the design of subsurface layout of the proposed repository. The original Site Recommendation (SR) concept for the subsurface design located the repository largely within the lower lithophysal zone (approximately 73%) of the Topopah The Site Recommendation characterized area suitable for emplacement consisted of the primary upper block, the lower block and the southern upper block extension. The primary upper block accommodated the mandated 70,000 metric tons of heavy metal (MTHM) at a 1.45 kW/m hear heat load. Based on further study of the Site Recommendation concept, the proposed repository siting area footprint was modified to make maximum use of available site characterization data, and thus, reduce uncertainties associated with performance assessment. As a result of this study, a modified repository footprint has been proposed and is presently being review for acceptance by the DOE. A panel design concept was developed to reduce overall costs and reduce the overall emplacement schedule. This concept provides flexibility to adjust the proposed repository subsurface layout with time, as it makes it unnecessary to ''commit'' to development of a large single panel at the earliest stages of construction. A description of the underground layout configuration and influencing factors that affect the layout configuration are discussed in the report

  9. Trace element and REE composition of five samples of the Yucca Mountain calcite-silica deposits. Special report No. 8

    International Nuclear Information System (INIS)

    Livingston, D.

    1993-07-01

    The attached materials document the results of part of a recent effort of geochemical sampling and analysis at Yucca Mountain and nearby regions. The efforts come as a result of interest in comprehensive analyses of rare earth elements (REE), lanthanum (La) through lutecium (Lu). Several additional, non-REE analyses were obtained as well. Commercially available REE analyses have proved to be insufficiently sensitive for geochemical purposes. Dr. Roman Schmitt at the Radiation Center at Oregon State University in Corvallis was sent five samples as a trial effort. The results are very encouraging. The purpose of compiling Dr. Schmitt's report and the other materials is to inform the sponsor of his independent observations of these results and other information that sent to him. To provide a more complete appreciation of the utility of REE analyses a copy of Dave Vaniman's recent article is included in which he notes that REE analyses from Yucca Mountain indicate the occurrence of two distinctly different REE patterns as do several other chemical parameters of the calcite-silica deposits. Our four samples with high equivalent CaCO 3 were collected from sites we believe to be spring deposits. One sample, 24D, is from southern Crater Flat which is acknowledged by U.S.G.S. investigators to be a spring deposit. All four of these samples have REE patterns similar to those from the saturated zone reported by Vaniman

  10. UVIS Flat Field Uniformity

    Science.gov (United States)

    Quijano, Jessica Kim

    2009-07-01

    The stability and uniformity of the low-frequency flat fields {L-flat} of the UVIS detector will be assessed by using multiple-pointing observations of the globular clusters 47 Tucanae {NGC104} and Omega Centauri {NGC5139}, thus imaging moderately dense stellar fields. By placing the same star over different portions of the detector and measuring relative changes in its brightness, it will be possible to determine local variations in the response of the UVIS detector. Based on previous experience with STIS and ACS, it is deemed that a total of 9 different pointings will suffice to provide adequate characterization of the flat field stability in any given band. For each filter to be tested, the baseline consists of 9 pointings in a 3X3 box pattern with dither steps of about 25% of the FOV, or 40.5", in either the x or y direction {useful also for CTE measurements, if needed in the future}. During SMOV, the complement of filters to be tested is limited to the following 6 filters: F225W, F275W, F336W, for Omega Cen, and F438W, F606W, and F814W for 47 Tuc. Three long exposures for each target are arranged such that the initial dither position is observed with the appropriate filters for that target within one orbit at a single pointing, so that filter-to-filter differences in the observed star positions can be checked. In addition to the 9 baseline exposures, two sets of short exposures will be taken:a} one short exposure will be taken of OmegaCen with each of the visible filters {F438W, F606W and F814W} in order to check the geometric distortion solution to be obtained with the data from proposal 11444;b} for each target, a single short exposure will be taken with each filter to facilitate the study of the PSF as a function of position on the detector by providing unsaturated images of sparsely-spaced bright stars.This proposal corresponds to Activity Description ID WF39. It should execute only after the following proposal has executed:WF21 - 11434

  11. Geology of drill hole UE25p No. 1: A test hole into pre-Tertiary rocks near Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Waddell, S.J.; Vick, G.S.; Stock, J.M.; Monsen, S.A.; Harris, A.G.; Cork, B.W.; Byers, F.M. Jr.

    1986-01-01

    Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). These formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression

  12. Yucca Mountain transportation routes: Preliminary characterization and risk analysis

    International Nuclear Information System (INIS)

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R.

    1991-01-01

    This report presents appendices related to the preliminary assessment and risk analysis for high-level radioactive waste transportation routes to the proposed Yucca Mountain Project repository. Information includes data on population density, traffic volume, ecologically sensitive areas, and accident history

  13. Natural gels in the Yucca Mountain Area, Nevada, USA

    International Nuclear Information System (INIS)

    Levy, S.S.

    1991-01-01

    Relict gels at Yucca Mountain include pore- and fracture-fillings of silica and zeolite related to diagenetic and hydrothermal alternation of vitric tuffs. Water-rich free gels in fractures at Rainier Mesa consist of smectite with or without silica-rich gel fragments. Gels are being studied for their potential role in transport of radionuclides from a nuclear-waste repository

  14. Regulatory perspective on NAS recommendations for Yucca Mountain standards

    International Nuclear Information System (INIS)

    Brocoum, S.J.; Nesbit, S.P.; Duguid, J.A.; Lugo, M.A.; Krishna, P.M.

    1996-01-01

    This paper provides a regulatory perspective from the viewpoint of the potential licensee, the US Department of Energy (DOE), on the National Academy of Sciences (NAS) report on Yucca Mountain standards published in August 1995. The DOE agrees with some aspects of the NAS report; however, the DOE has serious concerns with the ability to implement some of the recommendations in a reasonable manner

  15. The status of Yucca Mountain site characterization activities

    International Nuclear Information System (INIS)

    Gertz, Carl P.; Larkin, Erin L.; Hamner, Melissa

    1992-01-01

    The U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is continuing its studies to determine if Yucca Mountain, Nevada, can safely isolate high-level nuclear waste for the next ten thousand years. As mandated by Congress in 1987, DOE is studying the rocks, the climate, and the water table at Yucca Mountain to ensure that the site is suitable before building a repository adopt 305 meters below the surface. Yucca Mountain, located 160.9 kilometers northwest of Las Vegas, lies on the western edge of the Nevada Test Site. Nevada and DOE have been in litigation over environmental permits needed to conduct studies, but recent court decisions have allowed limited new work to begin. This paper will examine progress made on the Yucca Mountain Site Characterization Project (YMP) during 1991 and continuing into 1992, discuss the complex legal issues and describe new site drilling work. Design work on the underground exploratory studies facility (ESF) will also be discussed. (author)

  16. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Drake, R.M. II

    1998-01-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited

  17. Nature and continuity of the Sundance Fault, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Potter, Christopher J.; Dickerson, Robert P.; Day, Warren C.

    2000-01-01

    This report describes the detailed geologic mapping (1:2,400 scale) that was performed in the northern part of the potential nuclear waste repository area at Yucca Mountain, Nevada, to determine the nature and extent of the Sundance Fault zone and to evaluate structural relations between the Sundance and other faults

  18. Understanding the Potential for Volcanoes at Yucca Mountain

    International Nuclear Information System (INIS)

    NA

    2002-01-01

    By studying the rocks and geologic features of an area, experts can assess whether it is vulnerable to future volcanic eruptions. Scientists have performed extensive studies at and near Yucca Mountain to determine whether future volcanoes could possibly affect the proposed repository for nuclear waste

  19. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, R.P. [Geological Survey, Denver, CO (United States); Drake, R.M. II [Pacific Western Technologies, Ltd., Lakewood, CO (United States)

    1998-11-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.

  20. The appropriateness of one-dimensional Yucca Mountain hydrologic calculations

    International Nuclear Information System (INIS)

    Eaton, R.R.

    1993-07-01

    This report brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. it is shown that, in many cases, one-dimensional modeling is more rigorous than previously assumed

  1. Does localized recharge occur at a discharge area within the ground-water flow system of Yucca Mountain, Nevada?

    International Nuclear Information System (INIS)

    Czarnecki, J.B.; Kroitoru, L.; Ronen, D.; Magaritz, M.

    1992-01-01

    Studies done in 1984, at a central site on Franklin Lake playa (also known as Alkali Flat, a major discharge area of the ground-water flow system that includes Yucca Mountain, Nevada, the potential site of a high-level nuclear-waste repository) yield limited hydraulic-head and hydrochemical data from a 3-piezometer nest which indicated a slightly downward hydraulic gradient (-0.02) and decreasing concentration of dissolved solids with increasing depth. Hydraulic-head measurements in June, 1989 made at the piezometer nest showed a substantially larger downward gradient (-0.10) and a 0. 83-meter higher water level in the shallowest piezometer (3.29 meters deep), indicating the possibility of localized recharge. during the period of September-November, 1989, a multilevel sampler was used to obtain detailed hydrochemical profiles of the uppermost 1. 5 m of the saturated zone

  2. Dialogs on the Yucca Mountain controversy. Special report No. 10

    International Nuclear Information System (INIS)

    Schluter, C.M.; Szymanski, J.S.

    1993-08-01

    In an attempt to resolve the controversial issue of tectonic and hydrologic stability of the Yucca Mountain region, the National Academy of Sciences established a Panel on Coupled Hydrologic/Tectonic/HydrothermaI Systems. The Panel has recently released it's findings in a report entitled Ground Water at Yucca Mountain: How High Can It Rise? The representation of data and the scientific validity of this report was the subject of comprehensive evaluations and reviews which has led to correspondence between Dr. Charles Archarnbeau and Dr. Frank Press, the President of the National Academy of Sciences. All such correspondence prior to April 9, 1993 is covered by TRAC Special Report No. 5, open-quotes Dialogs on the Yucca Mountain Controversy.close quotes The present report represents a continuation of the dialog between Dr. Archambeau and Dr. Press; specifically the letter from Dr. Press to Dr. Archambeau dated April 9, 1993 and Archambeau's response to Press, dated August 19, 1993. In addition to the correspondence between Press and Archambeau, a series of recent reports by other investigators, referred to in the correspondence from Archambeau, are included in this report and document new data and inferences of importance for resolution of the question of suitability of the Yucca Mountain site as a high level nuclear waste repository. These reports also demonstrate that other scientists, not previously associated with the government's program at Yucca Mountain or the National Academy review of an aspect of that program, have arrived at conclusions that are different than those stated by the Academy review and DOE program scientists

  3. Dust control at Yucca Mountain project

    International Nuclear Information System (INIS)

    Kissell, F.; Jurani, R.; Dresel, R.; Reaux, C.

    1999-01-01

    This report describes actions taken to control silica dust at the Yucca Mountain Exploratory Studies Facility, a tunnel located in Southern Nevada that is part of a scientific program to determine site suitability for a potential nuclear waste repository. The rock is a volcanic tuff containing significant percentages of both quartz and cristobalite. Water use for dust control was limited because of scientific test requirements, and this limitation made dust control a difficult task. Results are reported for two drifts, called the Main Loop Drift and the Cross Drift. In the Main Loop Drift, dust surveys and tracer gas tests indicated that air leakage from the TBM head, the primary ventilation duct, and movement of the conveyor belt were all significant sources of dust. Conventional dust control approaches yielded no significant reductions in dust levels. A novel alternative was to install an air cleaning station on a rear deck of the TBM trailing gear. It filtered dust from the contaminated intake air and discharged clean air towards the front of the TBM. The practical effect was to produce dust levels below the exposure limit for all TBM locations except close to the head. In the Cross Drift, better ventilation and an extra set of dust seals on the TBM served to cut down the leakage of dust from the TBM cutter head. However, the conveyor belt was much dustier than the belt in the main loop drift. The problem originated with dirt on the bottom of the belt return side and much spillage from the belt top side. Achieving lower dust levels in hard rock tunneling operations will require new approaches as well as a more meticulous application of existing technology. Planning for dust control will require specific means to deal with dust that leaks from the TBM head, dust that originates with leaky ventilation systems, and dust that comes from conveyor belts. Also, the application of water could be more efficient if automatic controls were used to adjust the water flow

  4. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to

  5. Flat plate collector. Solarflachkollektor

    Energy Technology Data Exchange (ETDEWEB)

    Raab, N

    1979-03-29

    The invention refers to a flat solar collector with an absorber plate, which is arranged on a support and is covered by a transparent window, between which and the plate there is an air space. The previously known structures of this type had the disadvantage that the thermal expansion of the enclosed air caused considerable difficulties. The purpose of the invention is therefore to create a collector, which can be used on the modular system, retains its properties and is safe in spite of the great temperature variations. According to the invention this problem is solved by providing a compensating space in the collector, which is separated by a diaphragm from the airspace between the plate and the covering window. The airspace therefore remains sealed against the atmosphere, so that no dirt, corrosion of the inside and no condensation can reduce the efficiency of the collector. A rise in pressure due to an increase in temperature is immediately reduced by expansion of the diaphragm, which enters the compensation space. In order to increase the pressure in the airspace above the plate for increases in temperature, the compensation space is connected to the atmosphere. The diaphragm can be mirrored on the side towards the absorber, which makes the diaphragm into an insulating element, as it reflects radiated heat from the absorber.

  6. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    International Nuclear Information System (INIS)

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne's waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne's metal waste form in light of the Yucca Mountain activities

  7. 40 CFR 230.42 - Mud flats.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Mud flats. 230.42 Section 230.42... Aquatic Sites § 230.42 Mud flats. (a) Mud flats are broad flat areas along the sea coast and in coastal rivers to the head of tidal influence and in inland lakes, ponds, and riverine systems. When mud flats...

  8. Friendly vertical housing: case of walk-up flat housing development in Yogyakarta

    Science.gov (United States)

    Fosterharoldas Swasto, Deva

    2018-03-01

    In Yogyakarta Province, the local government have developed walk-up flats housing for more than ten years since the mid of the 2000s. Yogyakarta City and Sleman Regency was pioneering the construction with some blocks of flats in several locations. However, after this period, there is limited evaluation about the effectiveness of the occupancy. One of the issues is related to the sustainable housing development. Concerning this situation, it is proposed to examine how the development of walk-up flats housing in Yogyakarta City and Sleman Regency can be evaluated based on specific housing indicator, as a part of sustainable housing development concept. This paper would like to explore the phenomenon on how ‘friendly’ the flats is. The researcher will qualitatively asses variables from the walk-up flat cases in Yogyakarta City and Sleman Regency. The results suggested that the physical quality of the vertical housing situation could be enhanced to meet residents’ satisfaction.

  9. Determination of import process during Yucca Mountain Site characterization

    International Nuclear Information System (INIS)

    Hastings, P.S.; Gwyn, D.W.; Wemheuer, R.F.

    1996-01-01

    Construction of an underground Exploratory Studies Facility (ESF) for characterizing the Yucca Mountain site precedes the design of a potential repository, with site characterization testing and ESF construction conducted as parallel activities. As a result of this fact, a program is required to: (1) provide for inclusion of the underground excavation into a potential repository, (2) minimize the potential impact of ESF construction on site characterization test results, and (3) minimize the potential impact of ESF construction and site characterization testing on the waste isolation capabilities of the site. At Yucca Mountain, the Determination of Importance (DI) process fulfills these goals. This paper addresses the evolution of the DI process; describes how the DI process fits into design, testing, and construction programs: and discusses how the process is implemented through specification requirements

  10. Can nuclear waste be stored safely at Yucca mountain?

    International Nuclear Information System (INIS)

    Whipple, C.G.

    1996-01-01

    In 1987 the federal government narrowed to one its long-term options for disposing of nuclear waste: storing it permanently in a series of caverns excavated out of the rock deep below Yucca mountain in southern Nevada. Whether it makes sense at this time to dispose permanently of spent fuel and radioactive waste in a deep geologic repository is hotly disputed. But the Nuclear Waste Policy Act amendements of 1987 decree that waste be consolidated in Yucca Mountain if the mountain is found suitable. Meanwhile the spent fuel continues to pile up across the country, and 1998 looms, adding urgency to the question: What can science tell us about the ability of the mountain to store nuclear waste safely? This paper discusses this issue and describes how studies of the mountain's history and geology can contribute useful insights but not unequivocal conclusions

  11. Development of the Performance Confirmation Program at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    G.D. LeCain; D. Barr; D. Weaver; R. Snell; S.W. Goodin; F.D. Hansen

    2006-01-01

    The Yucca Mountain Performance Confirmation program consists of tests, monitoring activities, experiments, and analyses to evaluate the adequacy of assumptions, data, and analyses that form the basis of the conceptual and numerical models of flow and transport associated with a proposed radioactive waste repository at Yucca Mountain, Nevada. The Performance Confirmation program uses an eight-stage risk-informed, performance-based approach. Selection of the Performance Confirmation activities (a parameter and a test method) for inclusion in the Performance Confirmation program was done using a risk-informed performance-based decision analysis. The result of this analysis and review was a Performance Confirmation base portfolio that consists of 20 activities. The 20 Performance Confirmation activities include geologic, hydrologic, and construction/engineering testing. Several of the activities were initiated during site characterization and are ongoing. Others activities will commence during construction and/or post emplacement and will continue until repository closure

  12. TBM tunneling on the Yucca Mountain Project: Proceedings

    International Nuclear Information System (INIS)

    Williamson, G.E.; Gowring, I.M.

    1995-01-01

    The US Department of Energy's (DOE) Yucca Mountain Project (YMP) is a scientific endeavor to determine the suitability of Yucca Mountain for the first long term, high level nuclear waste repository in the United States. Status of this long-term project form the construction perspective is described. A key element is construction of the Exploratory Studies Facility (ESF), which is being excavated with a 7. 6 m(25 ft) diameter tunnel boring machine (TBM). Development of the ESF may include the excavation of over 15 km (9.3 mi) of tunnel varying in size from 3 to 7.6 m(10 to 25 ft). Prior to construction, extensive constructibility reviews were an interactive part of the final design. Intent was to establish a constructible design that met the long-term stability requirements for radiological safety of a future repository while maintaining flexibility for the scientific investigations and acceptable tunneling productivity

  13. Spotlight back on LHW with Yucca Mountain on Trump's horizon

    International Nuclear Information System (INIS)

    Shepherd, John

    2017-01-01

    After years of argument and delay could the US be edging closer to resurrecting proposals to build a national repository for high level nuclear waste (HLW) at Yucca Mountain in Nevada? The federal government has looked at the site with a view to establishing a repository since the 1970s. However, after pouring billions of dollars into projects and studies over the decades, the project remained bogged down in legal battles and opposition from politicians and pressure groups. Now, the US Nuclear Regulatory Commission (NRC) said it had directed its staff to use the equivalent of about EUR 95,000 from the national Nuclear Waste Fund on ''information-gathering activities'' that could pave the way for resuming a licensing review of Yucca Mountain as a potential deep geologic repository (DGR).

  14. Thermally driven gas flow beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Amter, S.; Lu, Ning; Ross, B.

    1991-01-01

    A coupled thermopneumatic model is developed for simulating heat transfer, rock-gas flow and carbon-14 travel time beneath Yucca Mountain, NV. The aim of this work is to understand the coupling of heat transfer and gas flow. Heat transfer in and near the potential repository region depends on several factors, including the geothermal gradient, climate, and local sources of heat such as radioactive wastes. Our numerical study shows that small temperature changes at the surface can change both the temperature field and the gas flow pattern beneath Yucca Mountain. A lateral temperature difference of 1 K is sufficient to create convection cells hundreds of meters in size. Differences in relative humidities between gas inside the mountain and air outside the mountain also significantly affect the gas flow field. 6 refs., 7 figs

  15. Age constraints on fluid inclusions in calcite at Yucca Mountain

    International Nuclear Information System (INIS)

    Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.; Peterman, Zell E.; Whelan, Joseph F.

    2001-01-01

    The(sup 207)Pb/(sup 235)U ages for 14 subsamples of opal or chalcedony layers younger than calcite formed at elevated temperature range between 1.88(+-) 0.05 and 9.7(+-) 1.5 Ma with most values older than 6-8 Ma. These data indicate that fluids with elevated temperatures have not been present in the unsaturated zone at Yucca Mountain since about 1.9 Ma and most likely since 6-8 Ma. Discordant U-Pb isotope data for chalcedony subsamples representing the massive silica stage in the formation of the coatings are interpreted using a model of the diffusive loss of U decay products. The model gives an age estimate for the time of chalcedony formation around 10-11 Ma, which overlaps ages of clay minerals formed in tuffs below the water table at Yucca Mountain during the Timber Mountain thermal event

  16. CAPILLARY BARRIERS IN UNSATURATED FRACTURED ROCKS OF YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Wu, Y.S.; Zhang, W.; Pan, L.; Hinds, J.; Bodvarsson, G.

    2000-01-01

    This work presents modeling studies investigating the effects of capillary barriers on fluid-flow and tracer-transport processes in the unsaturated zone of Yucca Mountain, Nevada, a potential site for storing high-level radioactive waste. These studies are designed to identify factors controlling the formation of capillary barriers and to estimate their effects on the extent of possible large-scale lateral flow in unsaturated fracture rocks. The modeling approach is based on a continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Flow processes in fractured porous rock are described using a dual-continuum concept. In addition, approximate analytical solutions are developed and used for assessing capillary-barrier effects in fractured rocks. This study indicates that under the current hydrogeologic conceptualization of Yucca Mountain, strong capillary-barrier effects exist for significantly diverting moisture flow

  17. Scientific issues and public interactions: The Yucca Mountain project

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1995-01-01

    This report provides a review of impressions obtained from public interactions regarding the risk of volcanism for underground storage of radioactive waste. These impressions were gained through participation in numerous contacts for the Yucca Mountain Site Characterization Project during the last six years. A conclusion emerging from public interactions is that scientists and those responsible for policy decisions must become more familiar with risk assessment, risk communication, and the requirements of objectively examining decision options for defining acceptable risk

  18. Implementation of NUREG-1318 guidance within the Yucca Mountain Project

    International Nuclear Information System (INIS)

    La Monica, L.B.; Waddell, J.D.; Hardin, E.L.

    1990-01-01

    The US Department of Energy's Yucca Mountain Project is implementing a quality assurance program that fulfills the requirements of the US Nuclear Regulatory Commission (NRC). Additional guidance for this program was provided in NUREG 1318, ''Technical Position on Items and Activities in the High-Level Waste Geologic Repository Program Subject to Quality Assurance Requirements'' for identification of items and activities important to public radiological safety and waste isolation. The process and organization for implementing this guidance is discussed. 3 refs., 2 figs

  19. Determination of Heat Capacity of Yucca Mountain Stratigraphic Layers

    International Nuclear Information System (INIS)

    T. Hadgu; C. Lum; J.E. Bean

    2006-01-01

    The heat generated from the radioactive waste to be placed in the proposed geologic repository at Yucca Mountain, Nevada, will affect the thermal-hydrology of the Yucca Mountain stratigraphic layers. In order to assess the effect of the movement of repository heat into the fractured rocks accurate determination of thermodynamic and hydraulic properties is important. Heat capacity is one of the properties that are required to evaluate energy storage in the fractured rock. Rock-grain heat capacity, the subject of this study, is the heat capacity of the solid part of the rock. Yucca Mountain consists of alternating lithostratigraphic units of welded and non-welded ash-flow tuff, mainly rhyolitic in composition and displaying varying degrees of vitrification and alteration. A number of methods exist that can be used to evaluate heat capacity of the stratigraphic layers that consist of different compositions. In this study, the mineral summation method has been used to quantify the heat capacity of the stratigraphic layers based on Kopp's rule. The mineral summation method is an addition of the weighted heat capacity of each mineral found in a specific layer. For this study the weighting was done based on the mass percentage of each mineral in the layer. The method utilized a mineralogic map of the rocks at the Yucca Mountain repository site. The Calico Hills formation and adjacent bedded tuff layers display a bimodal mineral distribution of vitric and zeolitic zones with differing mineralogies. Based on this bimodal distribution in zeolite abundance, the boundary between the vitric and zeolitic zones was selected to be 15% zeolitic abundance. Thus, based on the zeolite abundance, subdivisions have been introduced to these layers into ''vitric'' and ''zeolitic'' zones. Heat capacity values have been calculated for these layers both as ''layer average'' and ''zone average''. The heat capacity determination method presented in this report did not account for spatial

  20. Yucca Mountain Project bibliography, January--June 1989

    International Nuclear Information System (INIS)

    Henline, D.M.; Bales, J.D.

    1990-03-01

    This update contains information on the Yucca Mountain Project that was added to the Energy Data Base (EDB) during the first six months of 1989. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. The update is categorized by principal project participant organizations, and items are arranged in chronological order according to publication date. Participant-sponsored subcontractor reports, meeting papers, and journal articles are included with sponsoring organization

  1. Hydrological flow analysis at Yucca Mountain, Nevada. Final report

    International Nuclear Information System (INIS)

    1995-01-01

    This final report, prepared by Hydro Geo Chem staff for Los Alamos National Laboratory, summarizes work conducted by the company under Subcontract 52OHHOOI 5-3G, which was terminated by LANL effective 7 February 1995 for practical reasons, in that responsibilities for all tasks in the Statement of Work had been transitioned to LANL employees. The ultimate objective of this work is to characterize the movement of subsurface water in the vicinity of Yucca Mountain, Nevada. Data produced under this contract is to be used by the U.S. Department of Energy in its Yucca Mountain Site Characterization Project (YMP) to help determine hydrologic flows that may affect the performance of a potential nuclear waste,, repository. The data may be used in the licensing proceedings, and certain quality assurance procedures have thus been required. The work has focused on measuring the distribution of environmental tracers- chlorine-36, chlorine, and bromine-and on evaluating the depth to which these conservative solutes have percolated in the unsaturated zone at Yucca Mountain. The period of performance for the original Subcontract was I October 1994 to 31 December 1996. Obviously, we have not completed, nor are we expected to complete, all of the scope of work in the Subcontract. The following discussion summarizes progress made on the tasks outlined in the Statement of Work for this Subcontract Details of this work and all data acquired by Hydro Geo Chem for this Subcontract have, been systematically organized in logbooks and - laboratory notebooks (Appendices A and B). These documents have been structured to make it easy to trace the analytical history of a sample, from time of receipt to the final analytical results. The current status of this work and its relevance for the Yucca Mountain Project are described in a LANL report co-authored by Hydro Geo Chem staff

  2. Nine-component vertical seismic profiling at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Balch, A.H.; Erdemir, C.; Spengler, R.W.; Hunter, W.C.

    1996-01-01

    Nine-component vertical seismic profiling has been conducted at the UE-25 UZ No. 16 borehole at Yucca Mountain, Nevada, in support of investigation of the hydrologic significance of fault and fracture systems. A large data set from multi-component sources and receivers allows state-of-the-art advances in processing using polarization filtering and reverse time migration, for enhanced interpretation of geologic features

  3. Flat slices in Minkowski space

    Science.gov (United States)

    Murchadha, Niall Ó.; Xie, Naqing

    2015-03-01

    Minkowski space, flat spacetime, with a distance measure in natural units of d{{s}2}=-d{{t}2}+d{{x}2}+d{{y}2}+d{{z}2}, or equivalently, with spacetime metric diag(-1, +1, +1, +1), is recognized as a fundamental arena for physics. The Poincaré group, the set of all rigid spacetime rotations and translations, is the symmetry group of Minkowski space. The action of this group preserves the form of the spacetime metric. Each t = constant slice of each preferred coordinate system is flat. We show that there are also nontrivial non-singular representations of Minkowski space with complete flat slices. If the embedding of the flat slices decays appropriately at infinity, the only flat slices are the standard ones. However, if we remove the decay condition, we find non-trivial flat slices with non-vanishing extrinsic curvature. We write out explicitly the coordinate transformation to a frame with such slices.

  4. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    International Nuclear Information System (INIS)

    J.H. Payer

    2005-01-01

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape, size, and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective. A major component of the long-term strategy for safe disposal of nuclear waste at the Yucca Mountain Repository is first to completely isolate the radionuclides in the waste packages for long times and to greatly retard the egress and transport of radionuclides from penetrated packages. Therefore, long-lived waste packages are important. The corrosion resistance of the waste package outer canister is reviewed, and a framework for the analysis of localized corrosion processes is presented. An overview is presented of the Materials Performance targeted thrust of the U.S. Department of Energy/Office of Civilian Radioactive Waste Management's Office of Science and Technology and International. The thrust program strives for increased scientific understanding, enhanced process models and advanced technologies for corrosion control

  5. Probabilistic performance assessments for evaluations of the Yucca Mountain site

    International Nuclear Information System (INIS)

    Rickertsen, L.D.; Noronha, C.J.

    1992-01-01

    Site suitability evaluations are conducted to determine if a repository system at a particular site will be able to meet the performance objectives for that system. Early evaluations to determine if the Yucca Mountain site is suitable for repository development have been made in the face of large uncertainties in site features and conditions. Because of these large uncertainties, the evaluations of the site have been qualitative in nature, focusing on the presence or absence of particular features or conditions thought to be important to performance, rather than on results of quantitative performance assessments. Such a qualitative approach was used in the recently completed evaluation of the Yucca Mountain site, the Early Site-Suitability Evaluation (ESSE). In spite of the qualitative approach, the ESSE was able to conclude that no disqualifying conditions are likely to be present at the site and that all of the geologic conditions that would qualify the site are likely to be met. At the same time, because of the qualitative nature of the approach used in the ESSE, the precise importance of the identified issues relative to performance could not be determined. Likewise, the importance of the issues relative to one another could not be evaluated, and, other than broad recommendations, specific priorities for future testing could not be set. The authors have conducted quantitative performance assessments for the Yucca Mountain site to address these issues

  6. The occurrence and distribution of erionite at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Chipera, S.J.; Bish, D.L.

    1989-09-01

    We have conducted an investigation to determine the occurrence and distribution of erionite, a potential carcinogen, at Yucca Mountain, Nevada. Using x-ray powder diffraction techniques yielding detection limits to below 0.05 wt %, we positively identified erionite in only 3 out of 76 bulk and 12 fracture samples investigated. The three erionite-bearing samples (J12-620/630, UE-25aNo.1-1296.2, and USW G4-1314) all occur above the static water level in clay/zeolite-rich horizons near the top of vitrophyres. Erionite occurs as trace amounts of less than 1 wt % in the whole rock, although it may occur locally in significant amounts as fracture fillings (e.g., UE-25aNo.1-1296.2 where it comprises approximately 45 wt % of the fracture filling material). All three occurrences appear to be extremely isolated cases since erionite was not detected in neighboring samples. Erionite at Yucca Mountain apparently formed only in localized microenvironments, possibly restricted to fractures. Since erionite occurs in trace amounts only in extremely isolated instances, it should pose little or no health hazard to workers in the potential repository at Yucca Mountain or to the public. The amounts of erionite liberated to the biosphere should be negligible, particularly when compared with the amounts of erionite occurring naturally at the surface in Nevada and surrounding states. 24 refs., 7 figs., 2 tabs

  7. Vertical Variability in Saturated Zone Hydrochemistry Near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    G. Patterson; P. Striffler

    2007-01-01

    The differences in the saturated zone hydrochemistry with depth at borehole NC-EWDP-22PC reflect the addition of recharge along Fortymile Wash. The differences in water chemistry with depth at borehole NC-EWDP-19PB appear to indicate that other processes are involved. Water from the lower part of NC-EWDP-19PB possesses chemical characteristics that clearly indicate that it has undergone cation exchange that resulted in the removal of calcium and magnesium and the addition of sodium. This water is very similar to water from the Western Yucca Mountain facies that has previously been thought to flow west of NC-EWDP-19PB. Water from the lower zone in NC-EWDP-19PB also could represent water from the Eastern Yucca Mountain facies that has moved through clay-bearing or zeolitized aquifer material resulting in the altered chemistry. Water chemistry from the upper part of the saturated zone at NC-EWDP-19PB, both zones at NC-EWDP-22PC, and wells in the Fortymile Wash facies appears to be the result of recharge through the alluvium south of Yucca Mountain and within the Fortymile Wash channel

  8. Yucca Mountain public tours: Can they impact public opinion?

    International Nuclear Information System (INIS)

    Reilly, B.; Austin, P.

    1991-01-01

    The Yucca Mountain site in Nevada was selected by Congress in 1987 as the only site for the US Department of Energy (DOE) to study for suitability as a high-level radioactive waste repository. Several years of site characterization studies are needed to determine if the site is suitable. However, DOE's study of the site is one of the most intensely opposed federal programs today. The fight against DOE's effort to study the repository leads the political agendas of Nevada's governor and Congressional delegation. The politicians and the press have been the primary sources of information for Nevada citizens on the Yucca Mountain site characterization program. However, there is a more direct source of factual information regarding the program - the site itself and the participating scientists. The DOE is offering Nevada citizens the opportunity to form their own opinions by touring the Yucca Mountain site and interacting with DOE scientists and engineers. Feedback from monthly tours conducted from March to June 1991 has indicated substantial support from Nevada citizens for DOE's study of the site. In fact, a surprising number of citizens have indicated that the opportunity to gather information and formulate their own opinions led them to change their opinions

  9. Development of stochastic indicator models of lithology, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Rautman, C.A.; Robey, T.H.

    1994-01-01

    Indicator geostatistical techniques have been used to produce a number of fully three-dimensional stochastic simulations of large-scale lithologic categories at the Yucca Mountain site. Each realization reproduces the available drill hole data used to condition the simulation. Information is propagated away from each point of observation in accordance with a mathematical model of spatial continuity inferred through soft data taken from published geologic cross sections. Variations among the simulated models collectively represent uncertainty in the lithology at unsampled locations. These stochastic models succeed in capturing many major features of welded-nonwelded lithologic framework of Yucca Mountain. However, contacts between welded and nonwelded rock types for individual simulations appear more complex than suggested by field observation, and a number of probable numerical artifacts exist in these models. Many of the apparent discrepancies between the simulated models and the general geology of Yucca Mountain represent characterization uncertainty, and can be traced to the sparse site data used to condition the simulations. Several vertical stratigraphic columns have been extracted from the three-dimensional stochastic models for use in simplified total-system performance assessment exercises. Simple, manual adjustments are required to eliminate the more obvious simulation artifacts and to impose a secondary set of deterministic geologic features on the overall stratigraphic framework provided by the indictor models

  10. Study of nuclear waste storage capacity at Yucca mountain repository

    International Nuclear Information System (INIS)

    Zhou Wei; Apted, M.; Kessler, J.H.

    2008-01-01

    The Yucca Mountain repository is applying license for storing 70000 MTHM nuclear waste including commercial spent nuclear fuel (CSNF) and defense high-level radioactive waste (HLW). The 70000 MTHM is a legal not the technical limit. To study the technical limit, the Electric Power Research Institute (EPRI) carried out a systematic study to explore the potential impact if the repository will accept more waste. This paper describes the model and results for evaluating the spent-fuel disposal capacity for a repository at Yucca Mountain from the thermal and hydrological point of view. Two proposed alternative repository designs are analyzed, both of which would fit into the currently well-characterized site and, therefore, not necessitating any additional site characterization at Yucca Mountain. The two- and three-dimensional models for coupled thermo-hydrological analysis extends from the surface to the water table, covering all the major and subgroup rock layers of the planned repository, as well as formations above and below the repository horizon. A dual-porosity and dual-permeability approach is used to model coupled heat and mass transfer through fracture formations. The waste package heating and ventilation are all assumed to follow those of the current design. The results show that the repository is able to accommodate three times the amount of spent fuel compared to the current design, without extra spatial expansion or exceeding current thermal and hydrological constraints. (authors)

  11. A thermomechanical far-field model of Yucca Mountain

    International Nuclear Information System (INIS)

    Brandshaug, T.

    1991-04-01

    Thermal and mechanical finite element far-field models have been constructed for a potential repository site in the Topopah Spring Thermal/mechanical Unit at Yucca Mountain on the Nevada Test Site. The models reflect site-specific information that was available at the time of the study on the material properties and structural character of Yucca Mountain. The thermal model simulates transient heat transfer resulting from the emplacement of heat-generating nuclear waste in the repository. Simulation of boiling of the pore water is included in the model. The mechanical model simulates the tuff at Yucca Mountain as being an elastic/plastic, isotropic, heterogeneous continuum with one ubiquitous vertical joint set. The initial conditions of the mechanical model are based on a gravitational stress field. The model uses the temperatures predicted by the thermal finite element model as input to predict thermal stresses and displacements induced by the presence of the repository. Plasticity is incorporated in shear (fracture slip) and tension (fracture opening) by using a Mohr-Coulomb failure criterion. 6 refs., 15 figs., 2 tabs

  12. Water levels in the Yucca Mountain area, Nevada, 1993

    International Nuclear Information System (INIS)

    Tucci, P.; Goemaat, R.L.; Burkhardt, D.J.

    1996-01-01

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1993. Seventeen wells were monitored periodically, generally on a monthly basis, and 11 wells representing 18 intervals were monitored hourly. All wells monitor water levels in Tertiary volcanic rocks, except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes and pressure transducers; steel-tape measurements were corrected for mechanical stretch, thermal expansion, and borehole deviation to obtain precise water-level altitudes. Water-level altitudes in the Tertiary volcanic rocks ranged from about 728 meters above sea level east of Yucca Mountain to about 1,034 meters above sea level north of Yucca Mountain. Water-level altitudes in the well monitoring the Paleozoic carbonate rocks varied between 752 and 753 meters above sea level during 1993. Water levels were an average of about 0.04 meter lower than 1992 water levels. All data were acquired in accordance with a quality-assurance program to support the reliability of the data

  13. Modeling a ponded infiltration experiment at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Hudson, D.B.; Guertal, W.R.; Flint, A.L.

    1994-01-01

    Yucca Mountain, Nevada is being evaluated as a potential site for a geologic repository for high level radioactive waste. As part of the site characterization activities at Yucca Mountain, a field-scale ponded infiltration experiment was done to help characterize the hydraulic and infiltration properties of a layered dessert alluvium deposit. Calcium carbonate accumulation and cementation, heterogeneous layered profiles, high evapotranspiration, low precipitation, and rocky soil make the surface difficult to characterize.The effects of the strong morphological horizonation on the infiltration processes, the suitability of measured hydraulic properties, and the usefulness of ponded infiltration experiments in site characterization work were of interest. One-dimensional and two-dimensional radial flow numerical models were used to help interpret the results of the ponding experiment. The objective of this study was to evaluate the results of a ponded infiltration experiment done around borehole UE25 UZN number-sign 85 (N85) at Yucca Mountain, NV. The effects of morphological horizons on the infiltration processes, lateral flow, and measured soil hydaulic properties were studied. The evaluation was done by numerically modeling the results of a field ponded infiltration experiment. A comparison the experimental results and the modeled results was used to qualitatively indicate the degree to which infiltration processes and the hydaulic properties are understood. Results of the field characterization, soil characterization, borehole geophysics, and the ponding experiment are presented in a companion paper

  14. Statistical analysis of hydrologic data for Yucca Mountain

    International Nuclear Information System (INIS)

    Rutherford, B.M.; Hall, I.J.; Peters, R.R.; Easterling, R.G.; Klavetter, E.A.

    1992-02-01

    The geologic formations in the unsaturated zone at Yucca Mountain are currently being studied as the host rock for a potential radioactive waste repository. Data from several drill holes have been collected to provide the preliminary information needed for planning site characterization for the Yucca Mountain Project. Hydrologic properties have been measured on the core samples and the variables analyzed here are thought to be important in the determination of groundwater travel times. This report presents a statistical analysis of four hydrologic variables: saturated-matrix hydraulic conductivity, maximum moisture content, suction head, and calculated groundwater travel time. It is important to modelers to have as much information about the distribution of values of these variables as can be obtained from the data. The approach taken in this investigation is to (1) identify regions at the Yucca Mountain site that, according to the data, are distinctly different; (2) estimate the means and variances within these regions; (3) examine the relationships among the variables; and (4) investigate alternative statistical methods that might be applicable when more data become available. The five different functional stratigraphic units at three different locations are compared and grouped into relatively homogeneous regions. Within these regions, the expected values and variances associated with core samples of different sizes are estimated. The results provide a rough estimate of the distribution of hydrologic variables for small core sections within each region

  15. HYDROLOGIC CHARACTERISTICS OF FAULTS AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    R.P. Dickerson

    2000-01-01

    Yucca Mountain comprises a series of north-trending ridges composed of tuffs within the southwest Nevada volcanic field, 120 km northwest of Las Vegas, Nevada. These ridges are formed of east-dipping blocks of interbedded welded and nonwelded tuff that are offset along steep, mostly west-dipping faults that have tens to hundreds of meters of vertical separation. Yucca Mountain is currently under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. To this end, an understanding of the behavior of ground-water flow through the mountain in the unsaturated zone and beneath the mountain in the saturated zone is critical. The percolation of water through the mountain and into the ground-water flow system beneath the potential repository site is predicated on: (1) the amount of water available at the surface as a result of the climatic conditions, (2) the hydrogeologic characteristics of the volcanic strata that compose the mountain. and (3) the hydrogeologic characteristics of the structures, particularly fault zones and fracture networks, that disrupt these strata. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  16. Modeling heterogeneous unsaturated porous media flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Robey, T.H.

    1994-01-01

    Geologic systems are inherently heterogeneous and this heterogeneity can have a significant impact on unsaturated flow through porous media. Most previous efforts to model groundwater flow through Yucca Mountain have used stratigraphic units with homogeneous properties. However, modeling heterogeneous porous and fractured tuff in a more realistic manner requires numerical methods for generating heterogeneous simulations of the media, scaling of material properties from core scale to computational scale, and flow modeling that allows channeling. The Yucca Mountain test case of the INTRAVAL project is used to test the numerical approaches. Geostatistics is used to generate more realistic representations of the stratigraphic units and heterogeneity within units is generated using sampling from property distributions. Scaling problems are reduced using an adaptive grid that minimizes heterogeneity within each flow element. A flow code based on the dual mixed-finite-element method that allows for heterogeneity and channeling is employed. In the Yucca Mountain test case, the simulated volumetric water contents matched the measured values at drill hole USW UZ-16 except in the nonwelded portion of Prow Pass

  17. Surfaced-based investigations plan, Volume 4: Yucca Mountain Project

    International Nuclear Information System (INIS)

    1988-12-01

    This document represents a detailed summary of design plans for surface-based investigations to be conducted for site characterization of the Yucca Mountain site. These plans are current as of December 1988. The description of surface-based site characterization activities contained in this document is intended to give all interested parties an understanding of the current plans for site characterization of Yucca Mountain. The maps presented in Volume 4 are products of the Geographic Information System (GIS) being used by the Yucca Mountain Project. The ARC/INFO GIS software, developed by Environmental Systems Research Institute, was used to digitize and process these SBIP maps. The maps were prepared using existing US Geological Survey (USGS) maps as a planimetric base. Roads and other surface features were interpreted from a variety of sources and entered into the GIS. Sources include the USGS maps, 1976 USGS orthophotoquads and aerial photography, 1986 and 1987 aerial photography, surveyed coordinates of field sites, and a combination of various maps, figures, descriptions and approximate coordinates of proposed locations for future activities

  18. Uncertainty analyses of unsaturated zone travel time at Yucca Mountain

    International Nuclear Information System (INIS)

    Nichols, W.E.; Freshley, M.D.

    1993-01-01

    Uncertainty analysis method can be applied to numerical models of ground-water flow to estimate the relative importance of physical and hydrologic input variables with respect to ground-water travel time. Monte Carlo numerical simulations of unsaturated flow in the Calico Hills nonwelded zeolitic (CHnz) layer at Yucca Mountain, Nevada, indicate that variability in recharge, and to a lesser extent in matrix porosity, explains most of the variability in predictions of water travel time through the unsaturated zone. Variations in saturated hydraulic conductivity and unsaturated curve-fitting parameters were not statistically significant in explaining variability in water travel time through the unsaturated CHnz unit. The results of this study suggest that the large uncertainty associated with recharge rate estimates for the Yucca Mountain site is of concern because the performance of the potential repository would be more sensitive to uncertainty in recharge than to any other parameter evaluated. These results are not exhaustive because of the limited site characterization data available and because of the preliminary nature of this study, which is limited to a single stratigraphic unit, one dimension, and does not account for fracture flow or other potential fast pathways at Yucca Mountain

  19. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    International Nuclear Information System (INIS)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-01-01

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, f ow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  20. The effect of yucca on proliferation, apoptosis, and steroidogenesis of porcine ovarian granulosa cells

    Directory of Open Access Journals (Sweden)

    Aneta Štochmaľová

    2014-02-01

    Full Text Available Yucca shidigera is a medicinal plant native to Mexico. Is a plant widely used in folk medicine to treat a variety of ailmentary disorders, but its action on reproductive processes and possible mechanisms of such action remains unknown. Yucca schidigera extract contains a number of steroidal saponins that, because of their biological activity, have attracted attention from the food industry for many years. Yucca extract is used as a natural feed additive with positive effect to microflora, digestion, metabolism and to improve animal muscle growth. Its extract has been used as a foodstuff and folk medicine to treat a wide variety of diseases for many years. Nevertheless, it remaines unknown, whether consumption of yucca can affect reproductive system. The aim of this study was to examine the effects of yucca on basic ovarian cell functions - proliferation, apoptosis and steroidogenesis. Porcine ovarian granulosa cells were cultured with and without yucca extract (added at doses 0; 1; 10 and 100 μg.mL-1 of medium. Markers of proliferation (% of PCNA-positive cells and apoptosis (% cells containing bax were analysed by immunocytochemistry. Release of steroid hormones (progesterone and testosterone was measured by EIA. It was observed, that addition of yucca inhibited proliferation (expression of PCNA, increased apoptosis (expression of bax, stimulated progesterone and inhibited testosterone release. The ability of yucca to reduce ovarian cell proliferation, to promote ovarian cell apoptosis and affect steroidogenesis demonstrates the direct influence of yucca on female gonads. Furthermore, our observations suggest the multiple sites of action (proliferation, apoptosis, steroidogenesis of yucca on porcine ovarian cell functions. It is not to be excluded, that consumption of yucca can suppress female reproductive functions.

  1. EARTHQUAKE TRIGGERING AND SPATIAL-TEMPORAL RELATIONS IN THE VICINITY OF YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    na

    2001-02-08

    It is well accepted that the 1992 M 5.6 Little Skull Mountain earthquake, the largest historical event to have occurred within 25 km of Yucca Mountain, Nevada, was triggered by the M 7.2 Landers earthquake that occurred the day before. On the premise that earthquakes can be triggered by applied stresses, we have examined the earthquake catalog from the Southern Great Basin Digital Seismic Network (SGBDSN) for other evidence of triggering by external and internal stresses. This catalog now comprises over 12,000 events, encompassing five years of consistent monitoring, and has a low threshold of completeness, varying from M 0 in the center of the network to M 1 at the fringes. We examined the SGBDSN catalog response to external stresses such as large signals propagating from teleseismic and regional earthquakes, microseismic storms, and earth tides. Results are generally negative. We also examined the interplay of earthquakes within the SGBDSN. The number of ''foreshocks'', as judged by most criteria, is significantly higher than the background seismicity rate. In order to establish this, we first removed aftershocks from the catalog with widely used methodology. The existence of SGBDSN foreshocks is supported by comparing actual statistics to those of a simulated catalog with uniform-distributed locations and Poisson-distributed times of occurrence. The probabilities of a given SGBDSN earthquake being followed by one having a higher magnitude within a short time frame and within a close distance are at least as high as those found with regional catalogs. These catalogs have completeness thresholds two to three units higher in magnitude than the SGBDSN catalog used here. The largest earthquake in the SGBDSN catalog, the M 4.7 event in Frenchman Flat on 01/27/1999, was preceded by a definite foreshock sequence. The largest event within 75 km of Yucca Mountain in historical time, the M 5.7 Scotty's Junction event of 08/01/1999, was also

  2. EARTHQUAKE TRIGGERING AND SPATIAL-TEMPORAL RELATIONS IN THE VICINITY OF YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    2001-01-01

    It is well accepted that the 1992 M 5.6 Little Skull Mountain earthquake, the largest historical event to have occurred within 25 km of Yucca Mountain, Nevada, was triggered by the M 7.2 Landers earthquake that occurred the day before. On the premise that earthquakes can be triggered by applied stresses, we have examined the earthquake catalog from the Southern Great Basin Digital Seismic Network (SGBDSN) for other evidence of triggering by external and internal stresses. This catalog now comprises over 12,000 events, encompassing five years of consistent monitoring, and has a low threshold of completeness, varying from M 0 in the center of the network to M 1 at the fringes. We examined the SGBDSN catalog response to external stresses such as large signals propagating from teleseismic and regional earthquakes, microseismic storms, and earth tides. Results are generally negative. We also examined the interplay of earthquakes within the SGBDSN. The number of ''foreshocks'', as judged by most criteria, is significantly higher than the background seismicity rate. In order to establish this, we first removed aftershocks from the catalog with widely used methodology. The existence of SGBDSN foreshocks is supported by comparing actual statistics to those of a simulated catalog with uniform-distributed locations and Poisson-distributed times of occurrence. The probabilities of a given SGBDSN earthquake being followed by one having a higher magnitude within a short time frame and within a close distance are at least as high as those found with regional catalogs. These catalogs have completeness thresholds two to three units higher in magnitude than the SGBDSN catalog used here. The largest earthquake in the SGBDSN catalog, the M 4.7 event in Frenchman Flat on 01/27/1999, was preceded by a definite foreshock sequence. The largest event within 75 km of Yucca Mountain in historical time, the M 5.7 Scotty's Junction event of 08/01/1999, was also preceded by foreshocks. The

  3. Evaluations of Yucca Mountain survey findings about the attitudes, opinions, and evaluations of nuclear waste disposal and Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Flynn, J.H.; Slovic, P.; Mertz, C.K.; Toma, J.

    1990-09-01

    This report provides findings from three surveys conducted during the Fall 1989 as part of the socioeconomic research program sponsored by the Nevada Agency for Nuclear Projects. The US Congress passed the Nuclear Waste Policy Act (NWPA) in 1982 and defined specific oversight responsibilities, including studies of socioeconomic effects and impacts, to the states in which potential high-level nuclear waste repositories might be located. The NWPA was amended in 1987 and Yucca Mountain, Nevada was designated as the only site to be characterized (studied in detail) as a location for the nation's first repository. These surveys were conducted so they could provide information to the state of Nevada in its evaluation of the Yucca Mountain project. This report presents information from these surveys on two major areas. First, respondent evaluations of environmental hazards, especially nuclear waste facilities are reported. Second, an analysis is made of the Nevada State Survey to examine the public response to the positions taken by the officials and institutions of Nevada in regard to the Yucca Mountain project. The survey data support a finding that the respondents from all three surveys are seriously concerned about the environmental effects of technological facilities and hazards. The evaluations of a nuclear waste repository especially is viewed as likely to produce adverse events and impacts in every aspect of its implementation, operation or long-term existence. When compared to other industrial or technological activities, a high-level nuclear waste repository is seen as the most feared and least acceptable. 36 tabs

  4. Potential Future Igneous Activity at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Cline, M.; Perry, F.; Valentine, G.; Smistad, E.

    2005-01-01

    Location, timing, and volumes of post-Miocene volcanic activity, along with expert judgment, provide the basis for assessing the probability of future volcanism intersecting a proposed repository for nuclear waste at Yucca Mountain, Nevada. Analog studies of eruptive centers in the region that may represent the style and extent of possible future igneous activity at Yucca Mountain have aided in defining the consequence scenarios for intrusion into and eruption through a proposed repository. Modeling of magmatic processes related to magma/proposed repository interactions has been used to assess the potential consequences of a future igneous event through a proposed repository at Yucca Mountain. Results of work to date indicate future igneous activity in the Yucca Mountain region has a very low probability of intersecting the proposed repository. Probability of a future event intersecting a proposed repository at Yucca Mountain is approximately 1.7 x 10 -8 per year. Since completion of the Probabilistic Volcanic Hazard Assessment (PVHA) in 1996, anomalies representing potential buried volcanic centers have been identified from aeromagnetic surveys. A re-assessment of the hazard is currently underway to evaluate the probability of intersection in light of new information and to estimate the probability of one or more volcanic conduits located in the proposed repository along a dike that intersects the proposed repository. US Nuclear Regulatory Commission regulations for siting and licensing a proposed repository require that the consequences of a disruptive event (igneous event) with annual probability greater than 1 x 10 -8 be evaluated. Two consequence scenarios are considered: (1) igneous intrusion-poundwater transport case and (2) volcanic eruptive case. These scenarios equate to a dike or dike swarm intersecting repository drifts containing waste packages, formation of a conduit leading to a volcanic eruption through the repository that carries the contents of

  5. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

    KAUST Repository

    Kim, Jeong Im; Murphy, Angus S.; Baek, Dongwon; Lee, Shin-Woo; Yun, Dae-Jin; Bressan, Ray A.; Narasimhan, Meena L.

    2011-01-01

    The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical

  6. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, T.; Buchanan, P.; Trexler, D. [Nevada Univ., Las Vegas, NV (United States). Harry Reid Center for Environmental Studies, Division of Earth Sciences; Shevenell, L., Garside, L. [Nevada Univ., Reno, NV (United States). Mackay School of Mines, Nevada Bureau of Mines and Geology

    1995-12-01

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste.

  7. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    International Nuclear Information System (INIS)

    Flynn, T.; Buchanan, P.; Trexler, D.

    1995-12-01

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste

  8. Wetting of flat gradient surfaces.

    Science.gov (United States)

    Bormashenko, Edward

    2018-04-01

    Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Water levels in the Yucca Mountain Area, Nevada, 1996

    International Nuclear Information System (INIS)

    Graves, R.P.

    1998-01-01

    Water levels were monitored in 24 wells in the Yucca Mountain area, Nevada, during 1996. Twenty-two wells representing 28 depth intervals were monitored periodically, generally on a monthly basis, and 2 wells representing 3 depth intervals were monitored both hourly and periodically. All wells monitor water levels in Tertiary volcanic rocks except one that monitors water levels in paleozoic carbonate rocks. Water levels were measured using either calibrated steel tapes or a pressure sensor. Mean water-level altitudes in the Tertiary volcanic rocks ranged from about 727.86 to about 1,034.58 meters above sea level during 1996. The mean water-level altitude in the well monitoring the Paleozoic carbonate rocks was about 752.57 meters above sea level during 1996. Mean water-level altitudes for 1996 were an average of about 0.06 meter lower than 1995 mean water-level altitudes and 0.03 meter lower than 1985--95 mean water-level altitudes. During 1996, water levels in the Yucca Mountain area could have been affected by long-term pumping at the C-hole complex that began on May 8, 1996. Through December 31, 1996, approximately 196 million liters were pumped from well UE-25 c number-sign 3 at the C-hole complex. Other ground-water pumpage in the Yucca Mountain area includes annual pumpage from water-supply wells UE-25 J-12 and UE-25 J-13 of approximately 163 and 105 million liters, respectively, and pumpage from well USW G-2 for hydraulic testing during February and April 1996 of approximately 6 million liters

  10. Products of an Artificially Induced Hydrothermal System at Yucca Mountain

    International Nuclear Information System (INIS)

    Levy, S.

    2000-01-01

    Studies of mineral deposition in the recent geologic past at Yucca Mountain, Nevada, address competing hypotheses of hydrothermal alteration and deposition from percolating groundwater. The secondary minerals being studied are calcite-opal deposits in fractures and lithophysal cavities of ash-flow tuffs exposed in the Exploratory Studies Facility (ESF), a 7.7-km tunnel excavated by the Yucca Mountain Site Characterization Project within Yucca Mountain. An underground field test in the ESF provided information about the minerals deposited by a short-lived artificial hydrothermal system and an opportunity for comparison of test products with the natural secondary minerals. The heating phase lasted nine months, followed by a nine-month cooling period. Natural pore fluids were the only source of water during the thermal test. Condensation and reflux of water driven away from the heater produced fluid flow in certain fractures and intersecting boreholes. The mineralogic products of the thermal test are calcite-gypsum aggregates of less than 4-micrometer crystals and amorphous silica as glassy scale less than 0.2 mm thick and as mounds of tubules with diameters less than 0.7 micrometers. The minute crystal sizes of calcite and gypsum from the field test are very different from the predominantly coarser calcite crystals (up to cm scale) in natural secondary-mineral deposits at the site. The complex micrometer-scale textures of the amorphous silica differ from the simple forms of opal spherules and coatings in the natural deposits, even though some natural spherules are as small as 1 micrometer. These differences suggest that the natural minerals, especially if they were of hydrothermal origin, may have developed coarser or simpler forms during subsequent episodes of dissolution and redeposition. The presence of gypsum among the test products and its absence from the natural secondary-mineral assemblage may indicate a higher degree of evaporation during the test than

  11. Estimating recharge at yucca mountain, nevada, usa: comparison of methods

    International Nuclear Information System (INIS)

    Flint, A. L.; Flint, L. E.; Kwicklis, E. M.; Fabryka-Martin, J. T.; Bodvarsson, G. S.

    2001-01-01

    Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for and environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 nun/year near Yucca Crest. Site-scale recharge estimates range from less than I to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface. [References: 57

  12. Calculations supporting evaluation of potential environmental standards for Yucca Mountain

    International Nuclear Information System (INIS)

    Duguid, J.O.; Andrews, R.W.; Brandstetter, E.; Dale, T.F.; Reeves, M.

    1994-04-01

    The Energy Policy Act of 1992, Section 801 (US Congress, 1992) provides for the US Environmental Protection Agency (EPA) to contract the National Academy of Sciences (NAS) to conduct a study and provide findings and recommendations on reasonable standards for the disposal of high-level wastes at the Yucca Mountain site. The NAS study is to provide findings and recommendations which include, among other things, whether a health-based standard based on dose to individual members of the public from releases to the accessible environment will provide a reasonable standard for the protection of the health and safety of the public. The EPA, based upon and consistent with the findings and recommendations of the NAS, is required to promulgate standards for protection of the public from releases from radioactive materials stored or disposed of in a repository at the Yucca Mountain site. This document presents a number of different ''simple'' analyses of undisturbed repository performance that are intended to provide input to those responsible for setting appropriate environmental standards for a potential repository at the Yucca Mountain site in Nevada. Each of the processes included in the analyses has been simplified to capture the primary significance of that process in containing or isolating the waste from the biosphere. In these simplified analyses, the complex waste package interactions were approximated by a simple waste package ''failure'' distribution which is defined by the initiation and rate of waste package ''failures''. Similarly, releases from the waste package and the engineered barrier system are controlled by the very near field environment and the presence and rate of advective and diffusive release processes. Release was approximated by either a simple alteration-controlled release for the high solubility radionuclides and either a diffusive or advective-controlled release for the solubility-limited radionuclides

  13. Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods

    Science.gov (United States)

    Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Fabryka-Martin, J. T.; Bodvarsson, G.S.

    2002-01-01

    Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for arid environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 mm/year near Yucca Crest. Site-scale recharge estimates range from less than 1 to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface.

  14. Results and interpretation of preliminary aquifer tests in boreholes UE-25c number-sign 1, UE-25c number-sign 2, and UE-25c number-sign 3, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Geldon, A.L.

    1996-01-01

    Pumping and injection tests conducted in 1983 and 1984 in boreholes UE-25c number-sign 1, UE-25c number-sign 2, and UE-25c number-sign 3 (the c-holes) at Yucca Mountain, Nevada, were analyzed with respect to information obtained from lithologic and borehole geophysical logs, core permeameter tests, and borehole flow surveys. The three closely spaced c-holes, each of which is about 3,000 feet deep, are completed mainly in nonwelded to densely welded, ash-flow tuff of the tuffs and lavas of Calico Hills and the Crater Flat Tuff of Miocene age. Below the water table, tectonic and cooling fractures pervade the tuffaceous rocks but are distributed mainly in 11 transmissive intervals, many of which also have matrix permeability. Information contained in this report is presented as part of ongoing investigations by the US Geological Survey (USGS) regarding the hydrologic and geologic suitability of Yucca Mountain, Nevada, as a potential site for the storage of high-level nuclear waste in an underground mined geologic repository. This investigation was conducted in cooperation with the US Department of Energy under Interagency Agreement DE-AI08-78ET44802, as part of the Yucca Mountain Site Characterization Project

  15. Soil decontamination at Rocky Flats

    International Nuclear Information System (INIS)

    Olsen, R.L.; Hayden, J.A.; Alford, C.E.; Kochen, R.L.; Stevens, J.R.

    1979-01-01

    A soils decontamination project was initiated, to remove actinides from soils at Rocky Flats. Wet screening, attrition scrubbing with Calgon at high pH, attrition scrubbing at low pH, and cationic flotation were investigated. Pilot plant studies were carried out. Conceptual designs have been generated for mounting the process in semi-trailers

  16. ERMYN: Environmental Radiation Model for the Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Wu, D.W.; Wasiolek, M.A.; Tappen, J.J.; Rautenstrauch, K.R.; Smith, A.J.

    2002-01-01

    This paper briefly describes a new biosphere model, ERMYN, that was developed to characterize biosphere processes for radionuclides released from the proposed high-level radioactive waste geologic repository at Yucca Mountain (YM). Biosphere modeling for YM is conducted independently for two radionuclide release modes and resulting exposure scenarios, groundwater release and volcanic release. This paper focuses on the model for groundwater release. The groundwater release exposure scenario addresses the case in which the geosphere-biosphere interface is well extraction of contaminated groundwater

  17. Thermal Management and Analysis for a Potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Dr. A. Van Luik

    2004-01-01

    In the current Yucca Mountain repository design concept, heat from the emplaced waste (mostly from spent nuclear fuel) would keep the temperature of the rock around the waste packages higher than the boiling point of water for hundreds to thousands of years after the repository is closed. The design concept allows below-boiling portions of the pillars between drifts to serve as pathways for the drainage of thermally mobilized water and percolating groundwater by limiting the distance that boiling temperatures extend into the surrounding rock. This design concept takes advantage of host rock dry out, which would create a dry environment within the emplacement drifts and reduce the amount of water that might otherwise be available to enter the drifts and contact the waste packages during this thermal pulse. Table 1 provides an overview of design constraints related to thermal management after repository closure. The Yucca Mountain repository design concept also provides flexibility to allow for operation over a range of lower thermal operating conditions. The thermal conditions within the emplacement drifts can be varied, along with the relative humidity, by modifying operational parameters such as the thermal output of the waste packages, the spacing of the waste packages in the emplacement drifts, and the duration and rate of active and passive ventilation. A lower range has been examined to quantify lower-temperature thermal conditions (temperatures and associated humidity conditions) in the emplacement drifts and to quantify impacts to the required emplacement area and excavated drift length. This information has been used to evaluate the potential long-term performance of a lower-temperature repository and to estimate the increase in costs associated with operating a lower-temperature repository. This presentation provides an overview of the thermal management evaluations that have been conducted to investigate a range of repository thermal conditions and

  18. ERMYN: Environmental Radiation Model for the Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Wu; M.A. Wasiolek; J.J. Tappen; K.R. Rautenstrauch; A.J. Smith

    2002-11-18

    This paper briefly describes a new biosphere model, ERMYN, that was developed to characterize biosphere processes for radionuclides released from the proposed high-level radioactive waste geologic repository at Yucca Mountain (YM). Biosphere modeling for YM is conducted independently for two radionuclide release modes and resulting exposure scenarios, groundwater release and volcanic release. This paper focuses on the model for groundwater release. The groundwater release exposure scenario addresses the case in which the geosphere-biosphere interface is well extraction of contaminated groundwater.

  19. Thermal management and analysis for a potential yucca mountain repository

    International Nuclear Information System (INIS)

    Van Luik, A.

    2005-01-01

    In the current Yucca Mountain repository design concept, heat from the emplaced. waste (mostly from spent nuclear fuel.) would keep the temperature of the rock around the waste packages higher than the boiling point of water for hundreds to thousands of years after the repository is closed. The design concept allows below-boiling portions of the pillars between drifts to serve as pathways for the drainage of thermally mobilized water and percolating groundwater by limiting the distance that boiling temperatures extend into the surrounding rock. This design concept takes advantage of host rock dry out, which would create a dry environment within the emplacement drifts and reduce the amount of water that might otherwise be available to enter the drifts and contact the waste packages during this thermal pulse. The Yucca Mountain repository design concept also provides flexibility to allow for operation over a range of lower thermal operating conditions. The thermal conditions within the emplacement drifts can be varied, along with the relative humidity, by modifying operational parameters such as the thermal output of the waste packages, the spacing of the waste packages in the emplacement drifts, and. the duration and rate of active and passive ventilation. A lower range has been examined to quantify lower-temperature thermal conditions (temperatures and associated humidity conditions) in the emplacement drifts and to quantify impacts to the required emplacement area and excavated drift length. This information has been used to evaluate the potential long-term performance of a lower-temperature repository and to estimate the increase in costs associated with operating a lower-temperature repository. This presentation provides an overview of the thermal management evaluations that have been conducted to investigate a range of repository thermal conditions and includes a summary of the technical basis that supports these evaluations. The majority of the material

  20. System safety analysis of the Yucca Mountain tunnel boring machine

    International Nuclear Information System (INIS)

    Smith, M.G.; Booth, L.; Eisler, L.

    1995-01-01

    The purpose of this analysis was to systematically identify and evaluate hazards related to the tunnel boring machine to be used at Yucca Mountain. This analysis required three steps to complete the risk evaluation: hazard/scenario identification, consequence assessment, and frequency assessment. The result was a 'risk evaluation' of the scenarios identified in this analysis in accordance with MIL-STD-882C. The risk assessment in this analysis characterized the accident scenarios associated with the TBM in terms of relative risk and included recommendations for mitigating all identified risks

  1. Design basis event consequence analyses for the Yucca Mountain project

    International Nuclear Information System (INIS)

    Orvis, D.D.; Haas, M.N.; Martin, J.H.

    1997-01-01

    Design basis event (DBE) definition and analysis is an ongoing and integrated activity among the design and analysis groups of the Yucca Mountain Project (YMP). DBE's are those that potentially lead to breach of the waste package and waste form (e.g., spent fuel rods) with consequent release of radionuclides to the environment. A Preliminary Hazards Analysis (PHA) provided a systematic screening of external and internal events that were candidate DBE's that will be subjected to analyses for radiological consequences. As preparation, pilot consequence analyses for the repository subsurface and surface facilities have been performed to define the methodology, data requirements, and applicable regulatory limits

  2. Anaerobic bacterial quantitation of Yucca Mountain, Nevada DOE site samples

    International Nuclear Information System (INIS)

    Clarkson, W.W.; Krumholz, L.R.; Suflita, J.M.

    1996-01-01

    Anaerobic bacteria were studied from samples of excavated rock material as one phase of the overall Yucca Mountain site characterization effort. An indication of the abundance of important groups of anaerobic bacteria would enable inferences to be made regarding the natural history of the site and allow for more complete risk evaluation of the site as a nuclear repository. Six bacterial groups were investigated including anaerobic heterotrophs, acetogens, methanogens, sulfate-, nitrate-, and iron-reducing bacteria. The purpose of this portion of the study was to detect and quantify the aforementioned bacterial groups

  3. The treatment of conceptual model uncertainty for Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Boak, J.M.; Flint, A.; Dockery, H.A.

    1995-01-01

    A reasonable risk assessment of radioactive waste disposals faces three main problems : 1) the ability of the conceptual model to account for the effective repository process ; 2) the boundary conditions ; 3) the parameters values that model the particular site. Yucca mountain Site Characterization Project deals with these problems through two major approaches that are described here : 1) the evolution of models for the recurrence rate of volcanism ; 2) the nominal hydrologic performance for the site. These two approaches are expected to lead to a reasonable demonstration of the suitability of the site. (D.L.). 13 refs., 2 figs

  4. Unit evaluation at Yucca Mountain, Nevada Test Site: summary report and recommendation

    International Nuclear Information System (INIS)

    Johnstone, J.K.; Peters, R.R.; Gnirk, P.F.

    1984-06-01

    Of the four potential repository units, identified at Yucca Mountain, two potential units the welded, devitrified portions of the Bullfrog and Tram Members of the Crater Flat Tuff are below the water table. The welded, devitrified Topopah Spring Member of the Paintbrush Tuff and the nonwelded, zeolitized Tuffaceous Beds of Calico Hills are above the water table. The results of a study of the four potential repository units are to provide a technical basis for selecting a single target repository unit for future test and evaluation. The unit evaluation studies compared the units rather than provided and absolute assessment. The four ranking evaluation criteria used were: radionuclide isolation time; allowable repository gross thermal loading; excavation stability; and relative economics. Considered the most important of the criteria as well as the most difficult, radionuclide isolation times were estimated using the limited existing data. The allowable repository gross thermal loadings determined from near-field calculations, were nearly the same for all four units. The gross thermal loading supported other criteria by providing the heat source for succeeding thermally related evaluation studies. A large number of studies evaluated excavation stability, including near-field mechanical and thermomechanical finite element code calculations studies. A large number of studies evaluated excavation stability, including near-field mechanical and thermomechanical finite element code calculations, rock matrix property evaluation, and rock mass classification. Relative economics, a minor criterion, did not play an explicit role in the final ranking. Based on all of the analyses, the final recommendation was that the Topopah Springs be selected as the target unit, followed, in order, by the Calico Hills, Bullfrog, and Tram

  5. Distribution of rubidium, strontium, and zirconium in tuff from two deep coreholes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Peterman, Z.E.

    1991-01-01

    Variations in concentrations of trace elements Rb, Sr, and Zr within the sequence of high-silica tuff and dacitic lava beneath Yucca Mountain reflect both primary composition and secondary alteration. Rb and K concentrations have parallel trends. Rb concentrations are significantly lower within intervals containing zeolitic nonwelded to partially welded and bedded tuffs and are higher in thick moderately to densely welded zones. Sr concentrations increase with depth from about 30 parts per million (ppM) in the Topopah Spring Member of the Paintbrush Tuff to almost 300 ppM in the older tuffs. Zr concentrations are about 100 ppM in the Topopah Spring Member and also increase with depth to about 150 ppM in the Lithic Ridge Tuff and upper part of the older tuffs. Conspicuous local high concentrations of Sr in the lower part of the Tram Member, in the dacite lava, and in unit c of the older tuffs in USW G-1, and in the densely welded zone of the Bullfrog Member in USW GU-3/G-3 closely correlate with high concentrations of less-mobile Zr and may reflect either primary composition or elemental redistribution resulting largely from smectitic alteration. Initial 87 Sr/ 86 Sr values from composite samples increase upward in units above the Bullfrog Member of the Crater Flat Tuff. The progressive tenfold increase in Sr with depth coupled with the similarity of initial 87 Sr/ 86 Sr values within the Bullfrog Member and older units to those of Paleozoic marine carbonates are consistent with a massive influx or Sr from water derived from a Paleozoic carbonate aquifer. 23 refs., 4 figs., 1 tab

  6. Individual energy savings for individual flats in blocks of flats

    DEFF Research Database (Denmark)

    Nielsen, Anker; Rose, Jørgen

    2014-01-01

    and 1980. Normally, we expect the reduction in energy consumption to be around 20% for a 2 °C lower temperature, but for an inner flat the reduction can be up to 71%. The owners of the adjoining flats get an increase in energy demand of 10 to 20% each. They will not be able to figure out whether...... this is because the neighbour maintains a low temperature or the fact that they maintain a higher temperature. The best solution is to keep your own indoor temperature low. We can also turn the problem around: if you maintain a higher temperature than your neighbours, then you will pay part of their heating bill....

  7. Results from exploratory drill hole UE2ce, Northwest Yucca Flat, Nevada Test Site, near the NASH Event

    International Nuclear Information System (INIS)

    Pawloski, G.A.

    1982-01-01

    Exploratory drill hole UE2ce was drilled in January 1977 to determine geologic and geophysical characteristics of this site. This report presents geophysical logs, lithology, geologic structure, water table measurements, and physical properties for this drill hole. The data are then extrapolated to the NASH site, an event in U2ce, 55.6 m due north of UE2ce

  8. Preliminary appraisal of gravity and magnetic data at Syncline Ridge, Western Yucca Flat, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Hanna, W.F.

    1982-01-01

    A gravity and magnetic study of the Syncline Ridge area was conducted as part of an investigation of argillite rocks of the Eleana Formation under consideration as a medium for the possible storage of high-level radioactive waste. Bouguer gravity anomaly, low-level aeromagnetic anomaly, density, and magnetization data collectively indicate the following, relative to the Eleana Formation, the principal target of the investigation: (1) in an area extending northwestward from Mine Mountain, through Syncline Ridge, to the Eleana Range, the Eleana Formation, where not exposed, occurs at depths of less than approx. 200 m, except for a small region of exposed older Paleozoic rocks; (2) in the region of shallowly buried Eleana Formation, occurrences of volcanic rock cover are delineated by low-level aeromagnetic anomaly data, which also discriminate normally polarized from reversely polarized tuff units; and (3) selective detection of high-quartz argillite relative to low-quartz argillite using surface gravity data is not feasible if the high-quartz and low-quartz varieties are intimately interbedded, as observed in boreholes. 4 figures, 2 tables

  9. Sorption-desorption studies on tuff III. A continuation of studies with samples from Jackass Flats and Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Wolfsberg, K.; Aguilar, R.D.; Bayhurst, B.P.

    1981-05-01

    This report is the third in a series of reports describing studies of sorption and migration of radionuclides in tuff. The investigations were extended to lithologies of tuff not previously studied. Continuing experiments with uranium, plutonium, and americium are described. The dependence of sorption on the concentration of the sorbing element and on the solution-to-solid ratio was investigated for a number of nuclides and two lithologies. A circulating system was designed for measuring sorption ratios. Values obtained from this system, batch measurements, and column elutions are compared. Progress on measuring and controlling Eh is described

  10. Isotopic discontinuities in ground water beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stuckless, J.S.; Whelan, J.F.; Steinkampf, W.C.

    1991-01-01

    Analytical data for stable isotopes in ground water from beneath Yucca Mountain, when examined in map view, show areal patterns of heterogeneity that can be interpreted in terms of mixing of at least three end members. One end member must be isotopically heavy in terms of hydrogen and oxygen and have a young apparent 14 C age such as water found at the north end of Yucca Mountain beneath Fortymile Wash. A second end member must contain isotopically heavy carbon and have an old apparent 14 C age such as water from the Paleozoic aquifer. The third end member cannot be tightly defined. It must be isotopically lighter than the first with respect of hydrogen and oxygen and be intermediate to the first and second end members with respect to both apparent 14 C age and δ 13 C. The variable isotopic compositions of hydrogen and oxygen indicate that two of the end members are waters, but the variable carbon isotopic composition could represent either a third water end member or reaction of water with a carbon-bearing solids such as calcite. 15 refs., 4 figs., 1 tab

  11. Site characterization plan: Public Handbook, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1989-01-01

    The Yucca Mountain site in Nevada has been designated by the Nuclear Waste Policy Act of 1982, as amended, for detailed study as the candidate site for the first US geologic repository for spent nuclear fuel and high-level radioactive waste. The detailed study --- called ''site characterization'' --- will be conducted by the Department of Energy (DOE) to determine the suitability of the site for a repository and, if the site is suitable, to obtain from the Nuclear Regulatory Commission authorization to construct the repository. As part of the site characterization study, DOE has prepared a Site Characterization Plan (SCP) for the Yucca Mountain site. The Site Characterization Plan is a nine-volume document, approximately 6300 pages in length, which describes the activities that will be conducted to characterize the geologic, hydrologic, and other conditions relevant to the suitability of the site for a repository. Part 1 of this Handbook explains what site characterization is and how the Site Characterization Plan (Plan) relates to it. Part 2 tells how to locate subjects covered in the Plan. Another major purpose of this Handbook is to identify opportunities for public involement in the review of the Site Characterization Plan. DOE wants to be sure that the public has adequate opportunities to learn about the Plan and review the results of the subsequent technical studies. 14 refs

  12. 1989 vegetation studies at Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    1990-02-01

    The overall purpose of the 1989 vegetation ecology studies was to describe the existing vegetation and baseline ecological conditions of the Yucca Mountain study area, before further disturbances due to site characterization occur. Extensive disturbances have already occurred due to preliminary studies associated with the waste repository. If the site is determined to be unsuitable for a waste repository, then reclamation of disturbed sites will be required. Biotic conditions are described within both regional and local contexts because the intensity of local disturbances may result in impacts to outlying areas. The most detailed data collection was conducted in the Focused Baseline Study Area where site characterization activities will be concentrated. Less detailed information was obtained for adjacent areas in the Core Study Area and Cumulative Assessment Study Area. The major tasks of this study were as follows: describe and map the vegetation of the Yucca Mountain study area; identify important relationships between the biotic and physical elements of the ecosystem; identify unique or sensitive resources; preliminary assessment of the baseline ecological conditions of the area

  13. Monitoring the vadose zone in fractured tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Weeks, E.P.; Thamir, F.; Yard, S.N.; Hofrichter, P.B.

    1985-01-01

    Unsaturated tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential repository for high-level radioactive waste. As part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy, the US Geological Survey has been conducting hydrologic, geologic, and geophysical investigations at Yucca Mountain and the surrounding region to provide data evaluation of the potential suitability of the site. Hydrologic investigations of the unsaturated zone at this site were started in 1982. A 17.5-inch- (44.5-centimeter-) diameter borehole (USW UZ-1) was drilled by the reverse-air vacuum-drilling technique to a depth of 1269 feet (387 meters). This borehole was instrumented at 33 depth levels. At 15 of the levels, 3 well screens were embedded in coarse-sand columns. The sand columns were isolated from each other by thin layers of bentonite, columns of silica flour, and isolation plugs consisting of expansive cement. Thermocouple psychrometers and pressure transducers were installed within the screens and connected to the data-acquisition system at the land surface through thermocouple and logging cables. Two of the screens at each level were equipped with access tubes to allow collection of pore-gas samples. In addition to these instruments, 18 heat-dissipation probes were installed within the columns of silica flour, some of which also had thermocouple psychrometers. 20 refs., 13 figs., 2 tabs

  14. Technical data management at the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Statler, J.; Newbury, C.M.; Heitland, G.W.

    1992-01-01

    The Department of Energy/Office of Civilian Radioactive waste Management (DOE/OCRWM) is responsible for the characterization of Yucca Mountain, Nevada, to determine its potential as a site of a high-level radioactive waste repository. The characterization of Yucca Mountain encompasses many diverse investigations, both onsite and in laboratories across the country. Investigations are being conducted of the geology, hydrology, mineralogy, paleoclimate, geotechnical properties, and archeology of the area, to name a few. Effective program management requires that data from site investigations be processed, interpreted and disseminated in a timely manner to support model development and validation, repository design, and performance assessment. The Program must also meet regulatory requirements for making the technical data accessible to a variety of external users throughout the life of the Project. Finally, the DOE/OCRWM must make available the data or its description and access location available for use in support of the license application and supporting documentation. To accomplish these objectives, scientific and engineering data, generated by site characterization activities, and technical data, generated by environmental and socioeconomic impact assessment activities, must be systematically identified, cataloged, stored and disseminated in a controlled manner

  15. Multiscale thermohydrologic model: addressing variability and uncertainty at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T; Rosenberg, N D; Gansemer, J D; Sun, Y

    2000-01-01

    Performance assessment and design evaluation require a modeling tool that simultaneously accounts for processes occurring at a scale of a few tens of centimeters around individual waste packages and emplacement drifts, and also on behavior at the scale of the mountain. Many processes and features must be considered, including non-isothermal, multiphase-flow in rock of variable saturation and thermal radiation in open cavities. Also, given the nature of the fractured rock at Yucca Mountain, a dual-permeability approach is needed to represent permeability. A monolithic numerical model with all these features requires too large a computational cost to be an effective simulation tool, one that is used to examine sensitivity to key model assumptions and parameters. We have developed a multi-scale modeling approach that effectively simulates 3D discrete-heat-source, mountain-scale thermohydrologic behavior at Yucca Mountain and captures the natural variability of the site consistent with what we know from site characterization and waste-package-to-waste-package variability in heat output. We describe this approach and present results examining the role of infiltration flux, the most important natural-system parameter with respect to how thermohydrologic behavior influences the performance of the repository

  16. US strategy for evaluating the Yucca Mountain, Nevada site

    International Nuclear Information System (INIS)

    Gertz, C.

    1988-01-01

    The principal role of a disposal system at Yucca Mountain, Nevada is to isolate waste for a long period into the future. Therefore, the general objective for the entire system is to limit any radionuclide releases to the accessible environment. This objective will be achieved by selecting a site that contains natural barriers against radionuclide releases and by providing an appropriate system of engineered barriers. To provide additional insurance that the system at Yucca Mountain will perform adequately, individual objectives have also been defined for the engineered and natural barriers to radionuclide release and for the design of the disposal system. The general objective for the engineered barriers is that they should limit the release of radionuclides to the natural barriers. The general objective for the natural barriers is that the time of radionuclide travel to the accessible environment through these barriers should be very long. In particular, since groundwater may transport radionuclides, the groundwater travel time should be very long. The general objectives for the design of the disposal system are that its operation should be safe and that its construction should not compromise its ability to meet the other general objectives

  17. Yucca Mountain Project Site Atlas: Volume 1: Draft

    International Nuclear Information System (INIS)

    1988-10-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project Site Atlas is a reference document of field activities which have been, or are being, conducted by the US Department of Energy (DOE) to support investigations of Yucca Mountain as a potential site for an underground repository for high-level radioactive waste. These investigations, as well as future investigations, will yield geologic, geophysical, geochemical, geomechanical, hydrologic, volcanic, seismic, and environmental data necessary to characterize Yucca Mountain and its regional setting. This chapter summarizes the background of the NNWSI Project and the objective, scope, structure, and preparation of the Site Atlas. Chapter 2 describes in more detail the bibliography and map portfolio portions of the Atlas, which are presented in Chapter 4 and Volume 2, respectively. Chapter 3 describes how to use the Atlas. The objective of the Site Atlas is to create a management tool for the DOE Waste Management Project Office (WMPO) that will allow the WMPO to compile and disseminate information regarding the location of NNWSI Project field investigations, and document the permits acquired and the environmental, archaeological, and socioeconomic surveys conducted to support those investigations. The information contained in the Atlas will serve as a historical reference of site investigation field activities. A companion document to the Atlas is the NNWSI Project Surface Based Investigations Plan (SBIP)

  18. Tunneling on the Yucca Mountain Project: Progress and lessons learned

    International Nuclear Information System (INIS)

    Hansmire, W.H.; Rogers, D.J.; Wightman, W.D.

    1996-01-01

    The Yucca Mountain Site Characterization Project is the US's effort to confirm the technical acceptability of Yucca Mountain as a repository for high-level nuclear waste. A key part of the site characterization project is the construction of a 7.8-km-long, 7.6-m-diameter tunnel for in-depth geologic and other scientific investigations. The work is governed in varying degrees by the special requirements for nuclear quality assurance, which imposes uncommon and often stringent limitations on the materials which can be used in construction, the tunneling methods and procedures used, and record-keeping for many activities. This paper presents the current status of what has been learned, how construction has adapted to meet the requirements, and how the requirements were interpreted in a mitigating way to meet the legal obligations, yet build the tunnel as rapidly as possible. With regard to design methodologies and the realities of tunnel construction, ground support with a shielded Tunnel Boring Machine is discussed. Notable lessons learned include the need for broad design analyses for a wide variety of conditions and how construction procedures affect ground support

  19. Autotrophic and heterotrophic bacterial diversity from Yucca Mountain

    International Nuclear Information System (INIS)

    Khalil, M.; Haldeman, D.L.; Igbinovia, A.; Castro, P.

    1996-01-01

    A basic understanding of the types and functions of microbiota present within the deep subsurface of Yucca Mountain will be important in terms of modeling the long term stability of a nuclear waste repository. Microorganisms can degrade building materials used in tunnel construction such as concrete and steel. For example, high concentrations of nitrifying bacteria, may cause corrosion of concrete due to the release of nitric acid. Likewise, sulfur-oxidizing and iron-oxidizing bacteria have been implicated in microbially influenced corrosion (MIC), and may contribute to the degradation of waste packages. In addition, the metabolic activities of microbiota may alter the geochemistry of surrounding environments, which may in turn influence the permeability of subsurface strata and the fate of radioactive compounds. Microorganisms that play roles in these processes have diverse methods of obtaining the energy required for growth and metabolism and have been recovered from a wide range of environments, including the deep subsurface. The purpose of this research was to determine if these bacterial groups, important to the long-term success of a high-level nuclear waste repository, were indigenous to Yucca Mountain

  20. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    International Nuclear Information System (INIS)

    McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

    1994-01-01

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the 13 C content of soil CO 2 , CaCO 3 , precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The 13 C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing 13 C content with depth decreasing 13 C with altitude and reduced 13 C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO 2 loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids

  1. Numerical studies of rock-gas flow in Yucca Mountain

    International Nuclear Information System (INIS)

    Ross, B.; Amter, S.; Lu, Ning

    1992-02-01

    A computer model (TGIF -- Thermal Gradient Induced Flow) of two-dimensional, steady-state rock-gas flow driven by temperature and humidity differences is described. The model solves for the ''fresh-water head,'' a concept that has been used in models of variable-density water flow but has not previously been applied to gas flow. With this approach, the model can accurately simulate the flows driven by small differences in temperature. The unsaturated tuffs of Yucca Mountain, Nevada, are being studied as a potential site for a repository for high-level nuclear waste. Using the TGIF model, preliminary calculations of rock-gas flow in Yucca Mountain are made for four east-west cross-sections through the mountain. Calculations are made for three repository temperatures and for several assumptions about a possible semi-confining layer above the repository. The gas-flow simulations are then used to calculate travel-time distributions for air and for radioactive carbon-14 dioxide from the repository to the ground surface

  2. A demonstration of dose modeling at Yucca Mountain

    International Nuclear Information System (INIS)

    Miley, T.B.; Eslinger, P.W.

    1992-11-01

    The U. S. Environmental Protection Agency is currently revising the regulatory guidance for high-level nuclear waste disposal. In its draft form, the guidelines contain dose limits. Since this is likely to be the case in the final regulations, it is essential that the US Department of Energy be prepared to calculate site-specific doses for any potential repository location. This year, Pacific Northwest Laboratory (PNL) has made a first attempt to estimate doses for the potential geologic repository at Yucca Mountain, Nevada as part of a preliminary total-systems performance assessment. A set of transport scenarios was defined to assess the cumulative release of radionuclides over 10,000 years under undisturbed and disturbed conditions at Yucca Mountain. Dose estimates were provided for several of the transport scenarios modeled. The exposure scenarios used to estimate dose in this total-systems exercise should not, however, be considered a definitive set of scenarios for determining the risk of the potential repository. Exposure scenarios were defined for waterborne and surface contamination that result from both undisturbed and disturbed performance of the potential repository. The exposure scenarios used for this analysis were designed for the Hanford Site in Washington. The undisturbed performance scenarios for which exposures were modeled are gas-phase release of 14 C to the surface and natural breakdown of the waste containers with waterborne release. The disturbed performance scenario for which doses were estimated is exploratory drilling. Both surface and waterborne contamination were considered for the drilling intrusion scenario

  3. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Stuckless; D. O' Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  4. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    J.S. Stuckless; D. O'Leary

    2006-01-01

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain

  5. Geology of the ECRB Cross Drift-Exploratory Studies Facility, Yucca Mountain Project, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    DOE

    1999-01-01

    The Enhanced Characterization of the Repository Block Cross Drift (Cross Drift) excavated at Yucca Mountain is being studied to determine its suitability as a permanent high-level nuclear waste repository. This report presents a summary of data collected by the U.S. Bureau of Reclamation (USBR) personnel on behalf of the U.S. Geological Survey (USGS) for the Department of Energy in the Cross Drift from Sta. 00+00 to 26+64. This report includes descriptions of lithostratigraphic units, an analysis of data from full-periphery geologic maps (FPGM) and detailed line survey (DLS) data, a detailed description of the Solitario Canyon Fault zone (SCFZ), and an analysis of geotechnical and engineering characteristics. The Cross Drift is excavated entirely within the Topopah Spring Tuff formation of the Paintbrush Group. Units exposed in the crystal-poor member of the Topopah Spring Tuff, include the Topopah Spring crystal-poor upper lithophysal zone (Tptpul) (Sta. 0+00 to 10+15), the Topopah Spring crystal-poor middle nonlithophysal zone (Tptpmn) (Sta. 10+15 to 14+44), the Topopah Spring crystal-poor lower lithophysal zone (Tptpll) (Sta. 14+44 to 23+26), and the Topopah Spring crystal-poor lower nonlithophysal zone (Tptpln) (Sta. 23+26 to 25+85). The lower portion of the Topopah Spring crystal-rich lithophysal transition subzone (Tptrl1) is exposed on the west side of the Solitario Canyon fault from Sta. 26+57.5 to 26+64. Lithologically, the units exposed in the Cross Drift are similar in comparable stratigraphic intervals of the Exploratory Studies Facility (ESF), particularly in terms of welding, secondary crystallization, fracturing, and type, size, color, and abundance of pumice and lithic clasts. The most notable difference is the lack of the intensely fractured zone (IFZ) in the Cross Drift. The as-built cross section and the pre-construction cross section compare favorably. Lithostratigraphic contacts and structures on the pre-construction cross section were

  6. Laser illuminated flat panel display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    1995-12-31

    A 10 inch laser illuminated flat panel Planar Optic Display (POD) screen has been constructed and tested. This POD screen technology is an entirely new concept in display technology. Although the initial display is flat and made of glass, this technology lends itself to applications where a plastic display might be wrapped around the viewer. The display screen is comprised of hundreds of planar optical waveguides where each glass waveguide represents a vertical line of resolution. A black cladding layer, having a lower index of refraction, is placed between each waveguide layer. Since the cladding makes the screen surface black, the contrast is high. The prototype display is 9 inches wide by 5 inches high and approximately I inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  7. Polyurethane adhesives in flat roofs

    OpenAIRE

    Bogárová Markéta; Stodůlka Jindřich; Šuhajda Karel

    2017-01-01

    It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is...

  8. Flat space physics from holography

    International Nuclear Information System (INIS)

    Bousso, Raphael

    2004-01-01

    We point out that aspects of quantum mechanics can be derived from the holographic principle, using only a perturbative limit of classical general relativity. In flat space, the covariant entropy bound reduces to the Bekenstein bound. The latter does not contain Newton's constant and cannot operate via gravitational back reaction. Instead, it is protected by - and in this sense, predicts - the Heisenberg uncertainty principle. (author)

  9. Flat panel planar optic display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  10. A small flat fission chamber

    International Nuclear Information System (INIS)

    Li Yijun; Wang Dalun; Chen Suhe

    1999-01-01

    With fission materials of depleted uranium, natural uranium, enriched uranium, 239 Pu, and 237 Np, the authors have designed and made a series of small flat fission chamber. The authors narrated the construction of the fission chamber and its technological process of manufacture, and furthermore, the authors have measured and discussed the follow correct factor, self-absorption, boundary effect, threshold loss factor, bottom scatter and or so

  11. Residue management at Rocky Flats

    International Nuclear Information System (INIS)

    Olencz, J.

    1995-01-01

    Past plutonium production and manufacturing operations conducted at the Rocky Flats Environmental Technology Site (RFETS) produced a variety of plutonium-contaminated by-product materials. Residues are a category of these materials and were categorized as open-quotes materials in-processclose quotes to be recovered due to their inherent plutonium concentrations. In 1989 all RFETS plutonium production and manufacturing operations were curtailed. This report describes the management of plutonium bearing liquid and solid wastes

  12. Flat beams in the SLC

    International Nuclear Information System (INIS)

    Adolphsen, C.; Barklow, T.; Burke, D.; Decker, F.J.; Emma, P.; Hildreth, M.; Himel, T.; Krejcik, P.; Limberg, T.; Minty, M.

    1993-01-01

    The Stanford Linear Collider was designed to operate with round beams; horizontal and vertical emittance made equal in the damping rings. The main motivation was to facilitate the optical matching through beam lines with strong coupling elements like the solenoid spin rotator magnets and the SLC arcs. Tests in 1992 showed that open-quote flat close-quote beams with a vertical to horizontal emittance ratio of around 1/10 can be successfully delivered to the end of the linac. Techniques developed to measure and control the coupling of the SLC arcs allow These beams to be transported to the Interaction Point (IP). Before flat beams could be used for collisions with polarized electrons, a new method of rotating the electron spin orientation with vertical arc orbit bumps had to be developed. Early in the 1993 run, the SLC was switched to open-quote flat close-quote beam operation. Within a short time the peak luminosity of the previous running cycle was reached and then surpassed. The average daily luminosity is now a factor of about two higher than the best achieved last year. In the following the authors present an overview of the problems encountered and their solutions for different parts of the SLC

  13. Investigations of natural groundwater hazards at the proposed Yucca Mountain high level nuclear waste repository. Part A: Geology at Yucca Mountain. Part B: Modeling of hydro-tectonic phenomena relevant to Yucca Mountain. Annual report - Nevada

    International Nuclear Information System (INIS)

    Szymanski, J.S.; Schluter, C.M.; Livingston, D.E.

    1993-05-01

    This document is an annual report describing investigations of natural groundwater hazards at the proposed Yucca Mountain, Nevada High-Level Nuclear Waste Repository.This document describes research studies of the origin of near surface calcite/silica deposits at Yucca Mountain. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski, and others. As part of their first annual report, they take this opportunity to clarify the technical basis of their concerns and summarize the critical geological field evidence and related information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  14. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  15. Harmonic manifolds with minimal horospheres are flat

    Indian Academy of Sciences (India)

    Abstract. In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting ...

  16. Harmonic Manifolds with Minimal Horospheres are Flat

    Indian Academy of Sciences (India)

    In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting theorem.

  17. 49 CFR 231.6 - Flat cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified for...

  18. Trajectory Optimization for Differential Flat Systems

    OpenAIRE

    Kahina Louadj; Benjamas Panomruttanarug; Alexandre Carlos Brandao Ramos; Felix Mora-Camino

    2016-01-01

    International audience; The purpose of this communication is to investigate the applicability of Variational Calculus to the optimization of the operation of differentially flat systems. After introducingcharacteristic properties of differentially flat systems, the applicability of variational calculus to the optimization of flat output trajectories is displayed. Two illustrative examples are also presented.

  19. Flat panel display - Impurity doping technology for flat panel displays

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Toshiharu [Advanced Technology Planning, Sumitomo Eaton Nova Corporation, SBS Tower 9F, 10-1, Yoga 4-chome, Setagaya-ku, 158-0097 Tokyo (Japan)]. E-mail: suzuki_tsh@senova.co.jp

    2005-08-01

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified.

  20. Flat panel display - Impurity doping technology for flat panel displays

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    2005-01-01

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified

  1. Gravity and magnetic investigations of the Ghost Dance and Solitario Canyon faults, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Langenheim, V.E.

    1995-01-01

    Ground magnetic and gravity data collected along traverses across the Ghost Dance and Solitario Canyon faults on the eastern and western flanks, respectively, of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Gravity and magnetic data and models along traverses across the Ghost Dance and Solitario Canyon faults show prominent anomalies associated with known faults and reveal a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flank of Yucca Mountain is characterized by several small amplitude anomalies that probably reflect small scale faulting

  2. Word images as policy instruments: Lessons from the Yucca Mountain Controversey

    International Nuclear Information System (INIS)

    Conary, J.S.; Soden, D.L.; Carns, D.E.

    1993-01-01

    A study is described which explores word images which have developed about nuclear issues by Nevadans. The study is based on results of a survey conducted regarding issues related to the Yucca Mountain repository

  3. Word images as policy instruments: Lessons from the Yucca Mountain Controversey

    Energy Technology Data Exchange (ETDEWEB)

    Conary, J.S.; Soden, D.L.; Carns, D.E.

    1993-08-01

    A study is described which explores word images which have developed about nuclear issues by Nevadans. The study is based on results of a survey conducted regarding issues related to the Yucca Mountain repository.

  4. Interpretive geophysical fault map across the central block of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.

    1996-01-01

    Geophysical data collected along 29 traverses across the central block of Yucca Mountain in southwest Nevada reveal anomalies associated with known fault sand indicate a number of possible concealed faults beneath the eastern flank of Yucca Mountain. Geophysical interpretations indicate that Midway Valley is characterized by several known and previously unknown faults, that the existence of the Yucca Wash fault is equivocal, and that the central part of the eastern flank of Yucca Mountain is characterized by numerous low-amplitude anomalies that probably reflect numerous small-scale faults. Gravity and magnetic data also reveal several large-amplitude anomalies that reflect larger-scale faulting along the margins of the central block

  5. Yucca Mountain Biological Resources Monitoring Program. Progress report, October 1992--December 1993

    International Nuclear Information System (INIS)

    1994-05-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) from October 1992 through December 1993 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  6. Ecology, ethics, and professional environmental practice: The Yucca Mountain, Nevada, project as a case study

    International Nuclear Information System (INIS)

    Malone, C.R.

    1995-01-01

    The US Department of Energy (DOE) is proposing to develop a geologic repository for disposing of high-level nuclear waste at Yucca Mountain, Nevada. In this commentary, the ecology program for the DOE's Yucca Mountain Project is discussed from the perspective of state-of-the-art ecosystem analysis, environmental ethics, and standards of professional practice. Specifically at issue is the need by the Yucca Mountain ecology program to adopt an ecosystem approach that encompasses the current strategy based on population biology and community ecology alone. The premise here is that an ecosystem approach is essential for assessing the long-term potential environmental impacts at Yucca Mountain in light of the thermal effects expected to be associated with heat from radioactive decay

  7. Environmental assessment overview, Yucca Mountain site, Nevada Research and Development Area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendations of Sites for the Nuclear Waste Repositories. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization. 3 figs

  8. Public Interaction and Educational Outreach on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Benson, A.; Riding, Y.

    2002-01-01

    In July 2002, the U.S. Congress approved Yucca Mountain in Nevada as the nation's first long-term geologic repository site for spent nuclear fuel and high-level radioactive waste. This major milestone for the country's high-level radioactive waste disposal program comes after more than twenty years of scientific study and intense public interaction and outreach. This paper describes public interaction and outreach challenges faced by the U.S. Department of Energy's (DOE) Yucca Mountain Project in the past and what additional communication strategies may be instituted following the July 2002 approval by the U.S. Congress to develop the site as the nation's first long-term geologic repository for spent nuclear fuel and high-level radioactive waste. The DOE public involvement activities were driven by two federal regulations--the National Environmental Policy Act (NEPA) and the Nuclear Waste Policy Act (NWPA) of 1982, as amended. The NEPA required that DOE hold public hearings at key points in the development of an Environmental Impact Statement (EIS) and the NWPA required the agency to conduct public hearings in the vicinity of the site prior to making a recommendation regarding the site's suitability. The NWPA also provided a roadmap for how DOE would interact with affected units of government, which include the state of Nevada and the counties surrounding the site. Because the Department anticipated and later received much public interest in this high-profile project, the agency decided to go beyond regulatory-required public involvement activities and created a broad-based program that implemented far-reaching public interaction and outreach tactics. Over the last two decades, DOE informed, educated, and engaged a myriad of interested local, national, and international parties using various traditional and innovative approaches. The Yucca Mountain Project's intensive public affairs initiatives were instrumental in involving the public, which in turn resulted in

  9. Public Interaction and Educational Outreach on the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    A. Benson; Y. Riding

    2002-11-14

    In July 2002, the U.S. Congress approved Yucca Mountain in Nevada as the nation's first long-term geologic repository site for spent nuclear fuel and high-level radioactive waste. This major milestone for the country's high-level radioactive waste disposal program comes after more than twenty years of scientific study and intense public interaction and outreach. This paper describes public interaction and outreach challenges faced by the U.S. Department of Energy's (DOE) Yucca Mountain Project in the past and what additional communication strategies may be instituted following the July 2002 approval by the U.S. Congress to develop the site as the nation's first long-term geologic repository for spent nuclear fuel and high-level radioactive waste. The DOE public involvement activities were driven by two federal regulations--the National Environmental Policy Act (NEPA) and the Nuclear Waste Policy Act (NWPA) of 1982, as amended. The NEPA required that DOE hold public hearings at key points in the development of an Environmental Impact Statement (EIS) and the NWPA required the agency to conduct public hearings in the vicinity of the site prior to making a recommendation regarding the site's suitability. The NWPA also provided a roadmap for how DOE would interact with affected units of government, which include the state of Nevada and the counties surrounding the site. Because the Department anticipated and later received much public interest in this high-profile project, the agency decided to go beyond regulatory-required public involvement activities and created a broad-based program that implemented far-reaching public interaction and outreach tactics. Over the last two decades, DOE informed, educated, and engaged a myriad of interested local, national, and international parties using various traditional and innovative approaches. The Yucca Mountain Project's intensive public affairs initiatives were instrumental in involving the public

  10. Thermal analysis of Yucca Mountain commercial high-level waste packages

    International Nuclear Information System (INIS)

    Altenhofen, M.K.; Eslinger, P.W.

    1992-10-01

    The thermal performance of commercial high-level waste packages was evaluated on a preliminary basis for the candidate Yucca Mountain repository site. The purpose of this study is to provide an estimate for waste package component temperatures as a function of isolation time in tuff. Several recommendations are made concerning the additional information and modeling needed to evaluate the thermal performance of the Yucca Mountain repository system

  11. Preliminary mapping of surficial geology of Midway Valley Yucca Mountain Project, Nye County, Nevada

    International Nuclear Information System (INIS)

    Wesling, J.R.; Bullard, T.F.; Swan, F.H.; Perman, R.C.; Angell, M.M.; Gibson, J.D.

    1992-04-01

    The tectonics program for the proposed high-level nuclear waste repository at Yucca Mountain in southwestern Nevada must evaluate the potential for surface faulting beneath the prospective surface facilities. To help meet this goal, Quaternary surficial mapping studies and photolineament analyses were conducted to provide data for evaluating the location, recency, and style of faulting with Midway Valley at the eastern base of Yucca Mountain, the preferred location of these surface facilities. This interim report presents the preliminary results of this work

  12. Three-year movement patterns of adult desert tortoises at Yucca Mountain

    International Nuclear Information System (INIS)

    Holt, E.A.; Rautenstrauch, K.R.

    1995-01-01

    We studied the home-range size and site fidelity of adult desert tortoises (Gopherus agassizii) at Yucca Mountain, Nevada, during 1992-1994. Of 67 adult tortoises monitored at Yucca Mountain during this period, we evaluated the movements of 22 female and 16 male radiomarked tortoises that were located >50 times during each of the 1992, 1993, and 1994 activity seasons. We measured annual and three-year home range sizes by either 100% minimum convex polygon (MCP) or by 95% cluster

  13. Magnetic investigations along selected high-resolution seismic traverses in the central block of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Sikora, R.F.; Roberts, C.W.; Morin, R.L.; Halvorson, P.F.

    1995-01-01

    Ground magnetic data collected along several traverses across the central block of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Magnetic data and models along traverses across the central block of Yucca Mountain reveal anomalies associated with known faults and indicate a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flank of Yucca Mountain is characterized by numerous small-amplitude anomalies that probably reflect small-scale faulting. Magnetic modeling of the terrain along the eastern flank of Yucca Mountain indicates that terrain induced magnetic anomalies of about 100 to 150 nT are present along some profiles where steep terrain exists above the magnetometer

  14. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.D.; Yount, J.C. (eds.)

    1988-12-31

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  15. Gas exchange and leaf anatomy of a C3-CAM hybrid, Yucca gloriosa (Asparagaceae).

    Science.gov (United States)

    Heyduk, Karolina; Burrell, Nia; Lalani, Falak; Leebens-Mack, Jim

    2016-03-01

    While the majority of plants use the typical C3 carbon metabolic pathway, ~6% of angiosperms have adapted to carbon limitation as a result of water stress by employing a modified form of photosynthesis known as Crassulacean acid metabolism (CAM). CAM plants concentrate carbon in the cells by temporally separating atmospheric carbon acquisition from fixation into carbohydrates. CAM has been studied for decades, but the evolutionary progression from C3 to CAM remains obscure. In order to better understand the morphological and physiological characteristics associated with CAM photosynthesis, phenotypic variation was assessed in Yucca aloifolia, a CAM species, Yucca filamentosa, a C3 species, and Yucca gloriosa, a hybrid species derived from these two yuccas exhibiting intermediate C3-CAM characteristics. Gas exchange, titratable leaf acidity, and leaf anatomical traits of all three species were assayed in a common garden under well-watered and drought-stressed conditions. Yucca gloriosa showed intermediate phenotypes for nearly all traits measured, including the ability to acquire carbon at night. Using the variation found among individuals of all three species, correlations between traits were assessed to better understand how leaf anatomy and CAM physiology are related. Yucca gloriosa may be constrained by a number of traits which prevent it from using CAM to as high a degree as Y. aloifolia. The intermediate nature of Y. gloriosa makes it a promising system in which to study the evolution of CAM. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Annotated bibliography of the physical data of Rainier Mesa and Yucca Mountain

    International Nuclear Information System (INIS)

    Russell, C.E.

    1988-09-01

    Yucca Mountain, located on and adjacent to the Nevada Test Site (NTS) has been designated as the only site to undergo characterization to determine if it meets the criteria to become the Nation's first high-level nuclear waste repository. During this process, care must be taken to not compromise the site's integrity through excessive testing. In order to supplement the limited data to be gathered at Yucca Mountain, analog areas are to be considered. This annotated bibliography was compiled by the Desert Research Institute to help investigate ways in which Rainier Mesa could either be used as a supplemental repository test site or where existing Rainier Mesa data can be used either to support or refute test results from Yucca Mountain. Rainier Mesa, the location of numerous underground nuclear tests on the NTS, possesses some geologic characteristics similar to those of Yucca Mountain, which makes it a likely candidate for comparison. Almost 500 references regarding geology, hydrology, meteorology, biology, and archaeology were annotated and entered alpha-numerically into the bibliography. These references were categorized into 50 topics which are defined in Section 2 and presented in Section 3. Each reference is categorized as to whether it contains Yucca Mountain data, Rainier Mesa data, or both, and a final category consists of those reports that contain Rainier Mesa data that have already been applied to Yucca Mountain research. The annotated bibliography is presented in Section 4

  17. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Yount, J.C.

    1988-01-01

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation's first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey's continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base

  18. Yucca Mountain transportation routes: Preliminary characterization and risk analysis

    International Nuclear Information System (INIS)

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R.

    1991-01-01

    In this study, rail and highway routes which may be used for shipments of high-level nuclear waste to a proposed repository at Yucca Mountain, Nevada are characterized. This characterization facilitates three types of impact analysis: comparative study, limited worst-case assessment, and more sophisticated probabilistic risk assessment techniques. Data for relative and absolute impact measures are provided to support comparisons of routes based on selected characteristics. A worst-case scenario assessment is included to determine potentially critical and most likely places for accidents or incidents to occur. The assessment facilitated by the data in this study is limited because impact measures are restricted to the identification of potential areas or persons affected. No attempt is made to quantify the magnitude of these impacts. Most likely locations for accidents to occur are determined relative to other locations within the scope of this study. Independent factors and historical trends used to identify these likely locations are only proxies for accident probability

  19. Geotechnical Issues in Total System Performance Assessments of Yucca Mountain

    International Nuclear Information System (INIS)

    HO, CLIFFORD K.; HOUSEWORTH, JIM; WILSON, MICHAEL L.

    1999-01-01

    A Total System Performance Assessment (TSPA) of Yucca Mountain consists of integrated sub-models and analyses of natural and engineered systems. Examples of subsystem models include unsaturated-zone flow and transport, seepage into drifts, coupled thermal hydrologic processes, transport through the engineered barrier system, and saturated-zone flow and transport. The TSPA evaluates the interaction of important processes among these subsystems, and it determines the impact of these processes on the overall performance measures (e.g., dose rate to humans). This paper summarizes the evaluation, abstraction, and combination of these subsystem models in a TSPA calculation, and it provides background on the individual TSPA subsystem components that are most directly impacted by geotechnical issues. The potential impact that geologic features, events, and processes have on the overall performance is presented, and an evaluation of the sensitivity of TSPA calculations to these issues is also provided

  20. Post-closure radiation dose assessment for Yucca Mountain repository

    International Nuclear Information System (INIS)

    Jia Mingyan; Zhang Xiabin; Yang Chuncai

    2006-01-01

    A brief introduction of post-closure long-term radiation safety assessment results was represented for the yucca mountain high-level waste geographic disposal repository. In 1 million years after repository closure, for the higher temperature repository operating mode, the peak annual dose would be 150 millirem (120 millirem under the lower-temperature operating mode) to a reasonably maximally exposed individual approximately 18 kilometers (11 miles) from the repository. The analysis of a drilling intrusion event occurring at 30,000 years indicated a peak of the mean annual dose to the reasonably maximally exposed individual approximately 18 kilometers (11 miles) downstream of the repository would be 0.002 millirem. The analysis of an igneous activity scenario, including a volcanic eruption event and igneous intrusion event indicated a peak of the mean annual dose to the reasonably maximally exposed individual approximately 18 kilometers downstream of the repository would be 0.1 millirem. (authors)

  1. Summary report on the geochemistry of Yucca Mountain and environs

    International Nuclear Information System (INIS)

    Daniels, W.R.; Wolfsberg, K.; Rundberg, R.S.

    1982-12-01

    This report gives a detailed description of work at Los Alamos that will help resolve geochemical issues pertinent to siting a high-level nuclear waste repository in tuff at Yucca Mountain, Nevada. It is necessary to understand the properties and setting of the host tuff because this rock provides the first natural barrier to migration of waste elements from a repository. The geochemistry of tuff is being investigated with particular emphasis on retardation processes. This report addresses the various aspects of sorption by tuff, physical and chemical makeup of tuff, diffusion processes, tuff/groundwater chemistry, waste element chemistry under expected repository conditions, transport processes involved in porous and fracture flow, and geochemical and transport modeling

  2. Design considerations for the Yucca Mountain project exploratory shaft facility

    International Nuclear Information System (INIS)

    Bullock, R.L. Sr.

    1990-01-01

    This paper reports on the regulatory/requirements challenges of this project which exist because this is the first facility of its kind to ever be planned, characterized, designed, and built under the purview of a U.S. Nuclear Regulatory Agency. The regulations and requirements that flow down to the Architect/Engineer (A/E) for development of the Exploratory Shaft Facility (ESF) design are voluminous and unique to this project. The subsurface design and construction of the ESF underground facility may eventually become a part of the future repository facility and, if so, will require licensing by the Nuclear Regulatory Commission (NRC). The Fenix and Scisson of Nevada-Yucca Mountain Project (FSN-YMP) group believes that all of the UMP design and construction related activities, with good design/construct control, can be performed to meet all engineering requirements, while following a strict quality assurance program that will also meet regulatory requirements

  3. Illuminating the Decision Path: The Yucca Mountain Site Recommendation

    Energy Technology Data Exchange (ETDEWEB)

    Knox, E.; Slothouber, L.

    2003-02-25

    On February 14, 2002, U.S. Secretary of Energy Spencer Abraham provided to the President the ''Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982.'' This Recommendation, along with supporting materials, complied with statutory requirements for communicating a site recommendation to the President, and it did more: in 49 pages, the Recommendation also spoke directly to the Nation, illuminating the methodology and considerations that led toward the decision to recommend the site. Addressing technical suitability, national interests, and public concerns, the Recommendation helped the public understand the potential risks and benefits of repository development and placed those risks and benefits in a meaningful national context.

  4. Fault stress analysis for the Yucca Mountain site characterization project

    International Nuclear Information System (INIS)

    Bauer, S.J.; Hardy, M.P.; Goodrich, R.; Lin, M.

    1992-01-01

    An understanding of the state of stress on faults is important for pre- and post-closure performance considerations for the potential high-level radioactive waste repository at Yucca Mountain. This paper presents the results of three-dimensional numerical analyses that provide estimates of the state of stress through time (10,000 years) along three major faults in the vicinity of the potential repository due to thermal stresses resulting from waste emplacement. it was found, that the safety factor for slip close to the potential repository increases with time after waste emplacement. Possible fault slip is predicted above and below the potential repository for certain loading conditions and times. In general, thermal loading reduces the potential for slip in the vicinity of the potential repository

  5. Science and students: Yucca Mountain project's education outreach program

    International Nuclear Information System (INIS)

    Gil, A.V.; Larkin, E.L.; Reilly, B.; Austin, P.

    1992-01-01

    The U.S. Department of Energy (DOE) is very concerned about the lack of understanding of basic science. Increasingly, critical decisions regarding the use of energy, technology, and the environment are being made. A well-educated and science-literate public is vital to the success of these decisions. Science education and school instruction are integral parts of the DOE's public outreach program on the Yucca Mountain Site Characterization Project (YMP). Project staff and scientists speak to elementary, junior high, high school, and university students, accepting all speaking invitations. The objectives of this outreach program include the following: (1) educating Nevada students about the concept of a high-level nuclear waste repository; (2) increasing awareness of energy and environmental issues; (3) helping students understand basic concepts of earth science and geology in relation to siting a potential repository; and (4) giving students information about careers in science and engineering

  6. Geophysical borehole logging in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schimschal, U.; Nelson, P.H.

    1991-01-01

    Borehole geophysical logging for site characterization in the volcanic rocks at the proposed nuclear waste repository at Yucca Mountain, Nevada, requires data collection under rather unusual conditions. Logging tools must operate in rugose, dry holes above the water table in the unsaturated zone. Not all logging tools will operate in this environment, therefore; careful consideration must be given to selection and calibration. A sample suite of logs is presented that demonstrates correlation of geological formations from borehole to borehole, the definition of zones of altered mineralogy, and the quantitative estimates of rock properties. The authors show the results of an exploratory calculation of porosity and water saturation based upon density and epithermal neutron logs. Comparison of the results with a few core samples is encouraging, particularly because the logs can provide continuous data in boreholes where core samples are not available

  7. DEGRADATION MODES OF ALLOY 22 IN YUCCA MOUNTAIN REPOSITORY CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; G.M. Gordon; R.B. Rebak

    2005-10-13

    The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking.

  8. DEGRADATION MODES OF ALLOY 22 IN YUCCA MOUNTAIN REPOSITORY CONDITIONS

    International Nuclear Information System (INIS)

    Hua, F.; Gordon, G.M.; Rebak, R.B.

    2005-01-01

    The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking

  9. Evolution of the unsaturated zone testing at Yucca Mountain

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Bodvarsson, G.S.

    2002-01-01

    The evaluation of the Yucca Mountain site has evolved from intensive surface based investigations in the early 1980s to current focus on testing in underground drifts. Different periods of site-characterization activities and prominent issues concerning the unsaturated zone are summarized. Data-collection activities have evolved from mapping of faults and fractures, to estimation of percolation through tuff layers, and to quantification of seepage into drifts. Evaluation of discrete flow paths in drifts has led to fracture-matrix interaction and matrix diffusion tests over different scales. The effects of tuff interfaces and local faults are evaluated in fractured-welded and porous-nonwelded units. Mobilization of matrix water and redistribution of moisture are measured in thermal tests. Lessons learned from underground tests are used to focus on processes needed for additional quantification. Migration through the drift shadow zone and liquid flow through faults are two important issues that have evolved from current knowledge

  10. Fault stress analysis for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Bauer, S.J.; Hardy, M.P.; Goodrich, R.; Lin, M.

    1991-01-01

    An understanding of the state of stress on faults is important for pre- and postclosure performance considerations for the potential high-level radioactive waste repository at Yucca Mountain. This paper presents the results of three-dimensional numerical analyses that provide estimates of the state of stress through time (10,000 years) along three major faults in the vicinity of the potential repository due to thermal stresses resulting from waste emplacement. It was found, that the safety factor for slip close to the potential repository increases with time after waste emplacement. Possible fault slip is predicted above and below the potential repository for certain loading conditions and times. In general, thermal loading reduces the potential for slip in the vicinity of the potential repository

  11. DNA fingerprinting, biological and chemical investigation of certain Yucca species.

    Science.gov (United States)

    El Hawary, Seham; El Sayed, Abeer; Helmy, Maged W; El Naggar, El Moataz Bellah; Marzouk, Hanan S; Bassam, Samar M

    2018-01-05

    Yucca aloifolia, Y. aloifolia variegata, Y. elephantipes and Y. filamentosa were investigated. DNA sequencing was performed for the four plants and a genomic DNA fingerprint was obtained and provided. The cytotoxic activities against four human cancer cell lines were investigated. The ethanolic extracts of leaves of Y. aloifolia variegata prevailed, especially against liver cancer HepG-2 and breast cancer MCF-7. In vivo assessment of hepatoprotective activity in rats also revealed the hepatoprotective potential of the ethanolic extracts of the four plants against CCl 4 - induced rats' liver damage. Qualitative and quantitative analysis of the flavonoid and phenolic content of the promising species was performed using HPLC. The analysis identified and quantified 18 flavonoids and 19 phenolic acids in the different fractions of Y. aloifolia variegata, among which the major flavonoids were hesperidin and kaemp-3-(2-p-coumaroyl) glucose and the major phenolic acids were gallic acid and protocatechuic acid.

  12. Infiltration at Yucca Mountain, Nevada, traced by 36Cl

    International Nuclear Information System (INIS)

    Norris, A.E.; Wolfsberg, K.; Gifford, S.K.; Bentley, H.W.; Elmore, D.

    1987-04-01

    Measurements of chloride and 36 Cl in soils from two locations near Yucca Mountain, Nevada, have been used to trace the infiltration of precipitation in this arid region. The results show that the 36 Cl fallout from nuclear weapons testing formed a well-defined peak at one location, with a maximum 0.5m below the surface. The structure of the 36 Cl bomb pulse at the other location was much more complex, and quantity of 36 Cl in the bomb pulse was 12 atoms 36 Cl/m 2 in the bomb pulse at the first location. The data indicate hydrologic activity subsequent to the 36 Cl bomb pulse fallout at one location, but none at the other location. 11 refs

  13. Yucca Mountain engineered barrier system corrosion model (EBSCOM)

    International Nuclear Information System (INIS)

    King, F.; Kolar, M.; Kessler, J.H.; Apted, M.

    2008-01-01

    A revised engineered barrier system model has been developed by the Electric Power Research Institute to predict the time dependence of the failure of the drip shields and waste packages in the proposed Yucca Mountain repository. The revised model is based on new information on various corrosion processes developed by the US Department of Energy and others and for a 20-mm-thick waste package design with a double closure lid system. As with earlier versions of the corrosion model, the new EBSCOM code produces a best-estimate of the failure times of the various barriers. The model predicts that only 15% of waste packages will fail within a period of 1 million years. The times for the first corrosion failures are 40,000 years, 336,000 years, and 375,000 years for the drip shield, waste package, and combination of drip shield and the associated waste package, respectively

  14. Stability of underground openings in the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    1989-01-01

    The licensing of a repository for high level radioactive waste will require assurances that underground openings do not experience frequent major instabilities, which are defined here as sudden movements of blocks of rock that limit the functions of the openings. Although the design of nuclear power plant structure is controlled by strict adherence to building or professional- engineering codes, this approach is not practical for the structural design of underground facilities because the design must accommodate a varied and partially defined geologic setting. However, regulations require the reduction of the potential for deleterious rock movement and the design of openings to maintain the option to retrieve waste. The present plans for meeting these requirements for a repository at Yucca Mountain, Nevada, include a program of state-of-the- art analyses and modified forms of existing empirically based design methods. An extensive experimental program is required to provide confidence in the results of the design- analysis process

  15. Total-System Performance Assessment for the Yucca Mountain Site

    International Nuclear Information System (INIS)

    Wilson, M.L.

    2001-01-01

    Yucca Mountain, Nevada, is under consideration as a potential site for a repository for high-level radioactive waste. Total-system performance-assessment simulations are performed to evaluate the safety of the site. Features, events, and processes have been systematically evaluated to determine which ones are significant to the safety assessment. Computer models of the disposal system have been developed within a probabilistic framework, including both engineered and natural components. Selected results are presented for three different total-system simulations, and the behavior of the disposal system is discussed. The results show that risk is dominated by igneous activity at early times, because the robust waste-package design prevents significant nominal (non-disruptive) releases for tens of thousands of years or longer. The uncertainty in the nominal performance is dominated by uncertainties related to waste-package corrosion at early times and by uncertainties in the natural system, most significantly infiltration, at late times

  16. Hydrologic modeling and field testing at Yucca mountain, Nevada

    International Nuclear Information System (INIS)

    Hoxie, D.T.

    1991-01-01

    Yucca Mountain, Nevada, is being evaluated as a possible site for a mined geologic repository for the disposal of high-level nuclear waste. The repository is proposed to be constructed in fractured, densely welded tuff within the thick (500 to 750 meters) unsaturated zone at the site. Characterization of the site unsaturated-zone hydrogeologic system requires quantitative specification of the existing state of the system and the development of numerical hydrologic models to predict probable evolution of the hydrogeologic system over the lifetime of the repository. To support development of hydrologic models for the system, a testing program has been designed to characterize the existing state of the system, to measure hydrologic properties for the system and to identify and quantify those processes that control system dynamics. 12 refs

  17. Regulatory perspective on future climates at Yucca Mountain

    International Nuclear Information System (INIS)

    Coleman, N.M.; Eisenberg, N.A.; Brooks, D.J.

    1996-01-01

    Current regulations of the U.S. Nuclear Regulatory Commission (NRC) require that any performance assessment supporting the license application for a high-level waste (HLW) repository must consider the potential for changes in hydrologic conditions caused by reasonably foreseeable climatic conditions. The requirement is important because the earth's climate will almost certainly change significantly during the thousands of years that disposed nuclear wastes will remain hazardous. More importantly, climate controls the range of precipitation, which in turn controls the rates of infiltration, deep percolation, and groundwater flux through a geologic repository located in an unsaturated environment. Therefore, future changes in climate could significantly influence waste isolation in a repository at Yucca Mountain

  18. Topography, stresses, and stability at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Swolfs, H.S.; Savage, W.Z.

    1985-01-01

    Plane-strain solutions are used to analyze the influence of topography on the state of stress at Yucca Mountain, Nye County, Nevada. The results are in good agreement with the measured stress components obtained in drill holes by the hydraulic-fracturing technique, particularly those measured directly beneath the crest of the ridge, and indicate that these stresses are gravitationally induced. A separate analysis takes advantage of the fact that a well-developed set of vertical faults and fractures, subparallel to the ridge trend, imparts a vertical transverse isotropy to the rock and that, as a consequence of gravitational loading, unequal horizontal stresses are induced in directions perpendicular and parallel to the anisotropy

  19. Illuminating the Decision Path: The Yucca Mountain Site Recommendation

    International Nuclear Information System (INIS)

    Knox, E.; Slothouber, L.

    2003-01-01

    On February 14, 2002, U.S. Secretary of Energy Spencer Abraham provided to the President the ''Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982.'' This Recommendation, along with supporting materials, complied with statutory requirements for communicating a site recommendation to the President, and it did more: in 49 pages, the Recommendation also spoke directly to the Nation, illuminating the methodology and considerations that led toward the decision to recommend the site. Addressing technical suitability, national interests, and public concerns, the Recommendation helped the public understand the potential risks and benefits of repository development and placed those risks and benefits in a meaningful national context

  20. Assessment of faulting and seismic hazards at Yucca Mountain

    International Nuclear Information System (INIS)

    King, J.L.; Frazier, G.A.; Grant, T.A.

    1989-01-01

    Yucca Mountain is being evaluated for the nation's first high-level nuclear-waste repository. Local faults appear to be capable of moderate earthquakes at recurrence intervals of tens of thousands of years. The major issues identified for the preclosure phase (<100 yrs) are the location and seismic design of surface facilities for handling incoming waste. It is planned to address surface fault rupture by locating facilities where no discernible recent (<100,000 yrs) faulting has occurred and to base the ground motion design on hypothetical earthquakes, postulated on nearby faults, that represent 10,000 yrs of average cumulative displacement. The major tectonic issues identified for the postclosure phase (10,000 yrs) are volcanism (not addressed here) and potential changes to the hydrologic system resulting from a local faulting event which could trigger potential thermal, mechanical, and chemical interactions with the ground water. Extensive studies are planned for resolving these issues. 33 refs., 3 figs

  1. Software quality assurance on the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Matras, J.R.

    1993-01-01

    The Yucca Mountain Site Characterization Project (YMP) has been involved over the years in the continuing struggle with establishing acceptable Software Quality Assurance (SQA) requirements for the development, modification, and acquisition of computer programs used to support the Mined Geologic Disposal System. These computer programs will be used to produce or manipulate data used directly in site characterization, design, analysis, performance assessment, and operation of repository structures, systems, and components. Scientists and engineers working on the project have claimed that the SQA requirements adopted by the project are too restrictive to allow them to perform their work. This paper will identify the source of the original SQA requirements adopted by the project. It will delineate the approach used by the project to identify concerns voiced by project engineers and scientists regarding the original SQA requirements. It will conclude with a discussion of methods used to address these problems in the rewrite of the original SQA requirements

  2. [Paleoclimatology studies for Yucca Mountain site characterization]. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    This report consists of two separate papers: Fernley Basin studies; and Influence of sediment supply and climate change on late Quaternary eolian accumulation patterns in the Mojave Desert. The first study involved geologic mapping of late Quaternary sediments and lacustrine features combined with precise control of elevations and descriptions of sediments for each of the major sedimentary units. The second paper documents the response of a major eolian sediment transport system in the east-central Mojave Desert: that which feeds the Kelso Dune field. Information from geomorphic, stratigraphic, and sedimentologic studies of eolian deposits and landforms is combined with luminescence dating of these deposits to develop a chronology of periods of eolian deposition. Both studies are related to site characterization studies of Yucca Mountain and the forecasting of rainfall patterns possible for the high-level radioactive waste repository lifetime

  3. Preliminary postclosure risk assessment: Yucca Mountain, Nevada, candidate repository site

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Elwood, D.M.; Freshley, M.D.; Reimus, P.W.; Tanner, J.E.; Doctor, P.G.; Engel, D.W.; Liebetrau, A.M.; Strenge, D.L.; Van Luik, A.E.

    1989-10-01

    A study was conducted by the Pacific Northwest Laboratory for the US Department of Energy, Office of Civilian Radioactive Waste Management, to estimate the postclosure risk, in terms of population health effects, of a proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The risk estimates cover a time span of 1 million years following repository closure. Representative disruptive and intrusive events were selected and evaluated in addition to expected conditions. The estimates were generated assuming spent fuel as the waste form and included all important nuclides from inventory, half-life and dose perspectives. The base case results yield an estimate of 36 health effects over the first million years of repository operation. The doses attributed to the repository corresponds to about 0.1 percent of the doses received from natural background radiation. 16 refs., 1 fig

  4. Yucca Mountain Site Characterization Project Waste Package Plan

    International Nuclear Information System (INIS)

    Harrison-Giesler, D.J.; Jardine, L.J.

    1991-02-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package program is to develop, confirm the effectiveness of, and document a design for a waste package and associated engineered barrier system (EBS) for spent nuclear fuel and solidified high-level nuclear waste (HLW) that meets the applicable regulatory requirements for a geologic repository. The Waste Package Plan describes the waste package program and establishes the technical approach against which overall progress can be measured. It provides guidance for execution and describes the essential elements of the program, including the objectives, technical plan, and management approach. The plan covers the time period up to the submission of a repository license application to the US Nuclear Regulatory Commission (NRC). 1 fig

  5. Repository-relevant testing applied to the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.; Veleckis, E.

    1989-04-01

    A repository environment poses a challenge to developing a testing program because of the diverse nature of conditions that may exist at a given time during the life of the repository. A starting point is to identify whether any potential waste-water contact modes are particularly deleterious to the waste form performance, and whether any interactions between materials present in the waste package environment need to be accounted for during modeling the waste form reaction. The Unsaturated Test method in one approach that has been developed by the Yucca Mountain Project (YMP) to investigate the above issues, and a description of results that have been obtained during the testing of glass and unirradiated UO 2 are the subject of this report. 10 refs., 7 figs., 4 tabs

  6. Candidate container materials for Yucca Mountain waste package designs

    International Nuclear Information System (INIS)

    McCright, R.D.; Halsey, W.G.; Gdowski, G.E.; Clarke, W.L.

    1991-09-01

    Materials considered as candidates for fabricating nuclear waste containers are reviewed in the context of the Conceptual Design phase of a potential repository located at Yucca Mountain. A selection criteria has been written for evaluation of candidate materials for the next phase -- Advanced Conceptual Design. The selection criteria is based on the conceptual design of a thin-walled container fabricated from a single metal or alloy; the criteria consider the performance requirements on the container and the service environment in which the containers will be emplaced. A long list of candidate materials is evaluated against the criteria, and a short list of materials is proposed for advanced characterization in the next design phase

  7. In situ characterization of the microbiota in Yucca Mountain sediments

    International Nuclear Information System (INIS)

    Ringelberg, D.B.; Stair, J.O.; White, D.C.

    1996-01-01

    A specific goal of the research being performed at the Exploratory Study Facility (ESF), Yucca Mountain, NV, is the characterization of the microbiota surrounding the proposed high level nuclear waste repository site. Research has been initiated whereby not only the magnitude but also the extent of microbial colonization of the volcanic tuffs is being measured. By performing this research it was postulated that assessments of the potential for microbially facilitated transport of radioactive material away from the repository site could be made. In order to quantify the extant microbiota in situ, it was necessary to utilize techniques independent of the need for culture and isolation of the organisms. Through the analysis of cellular lipid components we were able to provide an estimation of microbial cell numbers and community composition in these volcanic tuff sediments

  8. Waste package performance assessment for the Yucca Mountain project

    International Nuclear Information System (INIS)

    O'Connell, W.J.; Lappa, D.A.; Thatcher, R.M.

    1989-01-01

    The authors completed a first cycle of model development from a specification to a computer program, PANDORA-1, for long-term performance assessment of waste packages. The model for one waste package at a time incorporates processes specific to the unsaturated environment at the proposed Yucca Mountain, NV, site. PANDORA-1 models the most likely processes and several modes of waste alteration and release. The development identified information needs for future models; many processes, local details, and combinations will have to be examined. Integration of ensemble performance and quantification of uncertainties are modeling steps at higher aggregation. Methodologies for these steps include sampling, which is well studied; we have focused on several open questions. The authors can now calculate the amount of variance reduction available from Latin hypercube sampling; it is a limited reduction. A new method, uncertainty analysis test-bed program compares the new with old sampling methods

  9. Smelters as Analogs for a Volcanic Eruption at Yucca Mountain

    International Nuclear Information System (INIS)

    Ross, Benjamin

    2004-01-01

    The distribution of trace radionuclides in secondary metal smelters provides an analog for spent fuel released from packages during a volcanic eruption. The fraction of the inventory of a radionuclide that would be released into the air in a volcanic eruption is called the dust partitioning factor. In consequence analyses of a volcanic eruption at Yucca Mountain, a value of one has been used for this parameter for all elements. This value is too high for the refractory elements. Reducing the dust partitioning factor for refractory elements to a value equal to the fraction of the magma that becomes ash would still yield conservative estimates of how much radioactivity would be released in an eruption

  10. Total-System Analyzer for performance assessment of Yucca Mountain

    International Nuclear Information System (INIS)

    Wilson, M.L.; Lauffer, F.C.; Cummings, J.C.; Zieman, N.B.

    1990-01-01

    The Total-System Analyzer is a modular computer program for probabilistic total-system performance calculations. The code employs stratified random sampling from model parameter distribution functions to generate multiple realizations of the system. The results of flow and transport calculations for each realization are combined into a probability distribution function of the system response as indicated by the performance measure. We give a detailed description of the code and present results for four example problems simulating the release of radionuclides from a proposed high-level-waste repository at Yucca Mountain, Nevada. The example simulations illustrate the impact of significant variation of percolation flux and sorption on radionuclide releases. We discuss the effects of numerical sampling error and of correlations among the model parameters. 20 refs., 7 figs., 2 tabs

  11. Focusing Yucca Mountain program priorities through performance assessment

    International Nuclear Information System (INIS)

    Shaw, R.A.; Stepp, J.C.; Williams, R.F.; McGuire, R.K.

    1992-01-01

    A probability-based methodology has been developed and applied to predict the release of radioisotopes to the environment from an underground nuclear waste repository, considering the features and the characteristics that are present at Yucca Mountain. Experts in specific scientific and engineering disciplines combined their talents to generate a model to determine these radioactive releases. The disciplines represented by these experts include climatology, soil physics, volcanology, seismology, rock mechanics, waste package design, engineered barrier system design, gaseous transport, thermal analysis, geochemistry, hydrology, and risk analysis. The model was developed using a logic-tree approach in which uncertainties were quantified by specifying discrete alternatives, which constitute the various branches of the logic tree. Significant revisions and modifications of the model have been performed recently and are the subject of this paper

  12. Reflections on a flat wall

    International Nuclear Information System (INIS)

    Stevenson, G.R.; Huhtinen, M.

    1995-01-01

    This paper describes an investigation into whether estimates of attenuation in the flat sidewalls of the tunnel for the MC main ring can be based on a simple point-source/line-of-sight model. Having seen the limitations of such a model, an alternative is proposed where the main radiation source is not the initial object struck by the beam but the plane source provided by the first interactions of secondaries from the target in the shield-wall. This is shown to have a closer relation to reality than the point-source/line-of-sight model. (author)

  13. Blowup for flat slow manifolds

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall

    2017-01-01

    In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a......) the regularization of piecewise smooth systems by tanh, (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b)....

  14. Blowup for flat slow manifolds

    Science.gov (United States)

    Kristiansen, K. U.

    2017-05-01

    In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a) the regularization of piecewise smooth systems by \\tanh , (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b).

  15. SEEPAGE INTO DRIFTS IN UNSATRUATED FRACTURED ROCK AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    JENS BIRHOLZER; GUOMIN LI; CHIN-FU TSANG; YVONNE TSANG

    1998-01-01

    An important issue for the long-term performance of underground nuclear waste repositories is the rate of seepage into the waste emplacement drifts. A prediction of the future seepage rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, as it is located in thick, partially saturated, fractured tuff formations. The long-term situation in the drifts several thousand years after waste emplacement will be characterized by a relative humidity level close to or equal to 100%. as the drifts will be sealed and unventilated, and the waste packages will have cooled. The underground tunnels will then act as capillary barriers for the unsaturated flow, ideally diverting water around them, if the capillary forces are stronger than gravity and viscous forces. Seepage into the drifts will only be possible if the hydraulic pressure in the rock close to the drift walls increases to positive values; i.e., the flow field becomes locally saturated. In the present work, we have developed and applied a methodology to study the potential rate of seepage into underground cavities embedded in a variably saturated, heterogeneous fractured rock formation. The fractured rock mass is represented as a stochastic continuum where the fracture permeabilities vary by several orders of magnitude. Three different realizations of random fracture permeability fields are generated, with the random permeability structure based on extensive fracture mapping, borehole video analysis, and in-situ air permeability testing. A 3-D numerical model is used to simulate the heterogeneous steady-state flow field around the drift, with the drift geometry explicitly represented within the numerical discretization grid. A variety of flow scenarios are considered assuming present-day and future climate conditions at Yucca Mountain. The numerical study is complemented by theoretical evaluations of the drift seepage problem, using stochastic perturbation theory to develop a better

  16. Dialogs on the Yucca Mountain controversy. Special report No. 5

    Energy Technology Data Exchange (ETDEWEB)

    Archambeau, C.B.; Szymanski, J.S.

    1993-03-01

    The recent, 1992, report prepared by the Panel on Coupled Hydrologic/Tectonic/Hydrothermal Systems at Yucca Mountain for the National Research Council of the National Academy of Sciences, entitled Ground Water at Yucca Mountain: How High Can It Rise? has generated critical reviews by Somerville et al. (1992) and by Archambeau (1992). These reviews were submitted as reports to the Nuclear Waste Project Office, State of Nevada by Technology and Resource Assessment Corporation under Contract No. 92/94.0004. A copy of the review report by C. B. Archambeau was also sent to Dr. Frank Press, President of the National Academy of Sciences, along with a cover letter from Dr. Archambeau expressing his concerns with the NRC report and his suggestion that the Academy President consider a re-evaluation of the issues covered by the NRC report. Dr. Press responded in a letter to Dr. Archambeau in February of this year which stated that, based on his staff recommendations and a review report by Dr. J. F. Evernden of the United States Geological Survey, he declined to initiate any further investigations and that, in his view, the NRC report was a valid scientific evaluation which was corroborated by Evernden`s report. He also enclosed, with his letter, a copy of the report he received from his staff. In March of this year Dr. Archambeau replied to the letter and NRC staff report sent by Dr. Press with a detailed point-by-point rebuttal of the NRC staff report to Press. Also, in March, a critical review of Dr. Evernden`s report by M. Somerville was submitted to the Nuclear Waste Project Office of the State of Nevada and this report, along with the earlier review of the NRC report by Somerville et al., was included as attachments to the letter sent to Dr. Press.

  17. Dialogs on the Yucca Mountain controversy. Special report No. 5

    International Nuclear Information System (INIS)

    Archambeau, C.B.; Szymanski, J.S.

    1993-03-01

    The recent, 1992, report prepared by the Panel on Coupled Hydrologic/Tectonic/Hydrothermal Systems at Yucca Mountain for the National Research Council of the National Academy of Sciences, entitled Ground Water at Yucca Mountain: How High Can It Rise? has generated critical reviews by Somerville et al. (1992) and by Archambeau (1992). These reviews were submitted as reports to the Nuclear Waste Project Office, State of Nevada by Technology and Resource Assessment Corporation under Contract No. 92/94.0004. A copy of the review report by C. B. Archambeau was also sent to Dr. Frank Press, President of the National Academy of Sciences, along with a cover letter from Dr. Archambeau expressing his concerns with the NRC report and his suggestion that the Academy President consider a re-evaluation of the issues covered by the NRC report. Dr. Press responded in a letter to Dr. Archambeau in February of this year which stated that, based on his staff recommendations and a review report by Dr. J. F. Evernden of the United States Geological Survey, he declined to initiate any further investigations and that, in his view, the NRC report was a valid scientific evaluation which was corroborated by Evernden's report. He also enclosed, with his letter, a copy of the report he received from his staff. In March of this year Dr. Archambeau replied to the letter and NRC staff report sent by Dr. Press with a detailed point-by-point rebuttal of the NRC staff report to Press. Also, in March, a critical review of Dr. Evernden's report by M. Somerville was submitted to the Nuclear Waste Project Office of the State of Nevada and this report, along with the earlier review of the NRC report by Somerville et al., was included as attachments to the letter sent to Dr. Press

  18. Constructing the Exploratory Studies Facility at Yucca Mountain

    International Nuclear Information System (INIS)

    Kalia, H.N.; Replogle, J.M.

    1996-01-01

    Yucca Mountain Site Characterization Office of the US Department of Energy (DOE) is constructing an underground Exploratory Studies Facility (ESF), approximately 160 km (100 miles) northwest of Las Vegas, Nevada. This facility is being used to obtain geological, hydrological, geomechanical, thermomechanical and geochemical information to characterize, Yucca Mountain as a potential site to isolate High-Level Radioactive Waste from the accessible environment. The ESF, when completed, will consist of two ramps from surface (North and South ramp) to the potential repository horizon formations, a drift connecting the two ramps, test alcoves, and above and below ground operational support facilities. The ramps and connecting drift are being mined by a 7.62 m (25 ft) diameter, fully shielded, Tunnel Boring Machine (TBM). This paper describes the current status of the construction of the ESF and test alcoves. At the time of this writing, the following has been accomplished: North Ramp excavation is complete; four test alcoves have been excavated and are in use for scientific experiments; the excavation has reached the potential repository horizon; the drift connecting the two ramps is being excavated, and the excavation of a test alcove for thermal testing is in progress. The mining operations are ahead of schedule, and to date March 26, 1996, the TBM has excavated over 4623 m(15,160 ft.) without any major breakdowns or accidents. The average advance for a three shift (two mining shifts) production day has been 33.46 m (110 ft.). Maximum advance for a week was 218.3 m (716 ft.). An Alpine Miner (AM 75) roadheader is being used to excavate test alcoves. The major ground support system consists of Supper Swellex rock bolts, steel sets as required, Williams rock bolts and channels, and welded wire fabric. Various sections of the tunnel have been instrumented, and the entire excavation has been geologically mapped. To date, the site conditions have been those predicted

  19. Continuing Science and Technology at the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Finch, R.J.

    2005-01-01

    Yucca Mountain, Nevada, was designated in 2002 to be the site for the nation's first permanent geological repository for spent nuclear fuel and high-level radioactive waste. The process of selecting a site for the repository began nearly 25 years ago with passage of the Nuclear Waste Policy Act in 1982. The Department of Energy (DOE) is responsible for submitting a license application to the Nuclear Regulatory Commission for constructing and operating the repository, and DOE's Office of Civilian Radioactive Waste Management (OCRWM) is charged with carrying out this action. The use of multiple natural and engineered barriers in the current repository design are considered by OCRWM to be sufficiently robust to warrant license approval; however, potential design enhancements and increased understanding of both natural and engineered barriers, especially over the long time frames during which the waste is to remain isolated from human contact continue to be examined. The Office of Science and Technology and International (OST andI) was created within OCRWM to help explore novel technologies that might lower overall costs and to develop a greater understanding of processes relevant to the long-term performance of the repository. A brief overview of Yucca Mountain, and the role that OST andI has in identifying technological or scientific advances that could make repository operations more efficient or performance more robust, will be presented. It is important to note, however, that adopting any of OST andI's technological or scientific developments will be at the discretion of OCRWM's Office of Repository Development (ORD)

  20. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    Science.gov (United States)

    Flint, L.E.

    1998-01-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relation- ships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally. Parameters of the hydrogeologic units developed in this study and the

  1. Preliminary report on the geology and geophysics of drill hole UE25a-1, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Spengler, R.W.; Muller, D.C.; Livermore, R.B.

    1979-01-01

    A subsurface geologic study in connection with the Nevada Nuclear Waste Storage Investigations has furnished detailed stratigraphic and structural information about tuffs underlying northeastern Yucca Mountain on the Nevada Test Site. Drill hole UE25a-1 penetrated thick sequences of nonwelded to densely welded ash-flow and bedded tuffs of Tertiary age. Stratigraphic units that were identified from the drill-hole data include the Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, tuffaceous beds of Calico Hills, and the Prow Pass and Bullfrog Members of the Crater Flat Tuff. Structural analysis of the core indicated densely welded zones to be highly fractured. Many fractures show near-vertical inclinations and are commonly coated with secondary silica, manganese and iron oxides, and calcite. Five falt zones were recognized, most of which occurred in the Topopah Spring Member. Shear fractures commonly show oblique-slip movement and some suggest a sizable component of lateral compression. Graphic logs are included that show the correlation of lithology, structural properties, and geophysical logs. Many rock units have characteristic log responses but highly fractured zones, occurring principally in the Tiva Canyon and Topopah Spring Members restricted log coverage to the lower half of the drill hole

  2. Calcite deposits in drill cores USW G-2 and USW GU-3/G-3 at Yucca Mountain, Nevada: Preliminary report

    International Nuclear Information System (INIS)

    Vaniman, D.T.

    1994-04-01

    Yucca Mountain is being studied as a potential site for deep geologic disposal of high-level radioactive waste. Should a repository be developed at Yucca Mountain, the preferred location is within the upper unsaturated tuffaceous volcanic rocks. In this location, one factor of concern is the amount and rate of aqueous transport through the unsaturated rocks toward the underlying saturated intervals. Calcite, one of the most recently-formed minerals at Yucca Mountain, is of minor abundance in the unsaturated rocks but is widely distributed. Studies of calcite ages, isotopic systematics, chemistry and petrography could lead to a better understanding of transport processes at Yucca Mountain

  3. Modeling unsaturated-zone flow at Rainier Mesa as a possible analog for a future Yucca Mountain

    International Nuclear Information System (INIS)

    Gauthier, J.H.

    1998-01-01

    Rainier Mesa is structurally similar to Yucca Mountain, and receives precipitation similar to the estimated long-term average for Yucca Mountain. Tunnels through the unsaturated zone at Rainier Mesa have encountered perched water and, after the perched water was drained, flow in fractures and faults. Although flow observations have been primarily qualitative, Rainier Mesa hydrology is a potential analog for Yucca Mountain hydrology in a wetter climate. In this paper, a groundwater flow model that has been used in the performance assessment of Yucca Mountain--the weeps model--is applied to Rainier Mesa. The intent is to gain insight in both Rainier Mesa and the weeps flow model

  4. Polyurethane adhesives in flat roofs

    Directory of Open Access Journals (Sweden)

    Bogárová Markéta

    2017-01-01

    Full Text Available It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is to calculate the exact amount of adhesive, which is required to guarantee the resistance against wind suction. In this problematic we can not find help neither in technical data sheets provided by the manufactures. Some of these data sheets contain at least information about amount of adhesive depending on location in roof plane and building height, but they do not specify the strength of such connection. It was therefore resorted to select several representatives polyurethane adhesives and their subsequent testing on specimens simulating the flat roof segment. The paper described the test methodology and results for two types of polyurethane adhesives.

  5. Closing Rocky Flats by 2006

    International Nuclear Information System (INIS)

    Tuor, N. R.; Schubert, A. L.

    2002-01-01

    Safely accelerating the closure of Rocky Flats to 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy, Kaiser-Hill and its team of subcontractors, the site's employees, and taxpayers across the country. On June 30, 2000, Kaiser-Hill (KH) submitted to the Department of Energy (DOE), KH's plan to achieve closure of Rocky Flats by December 15, 2006, for a remaining cost of $3.96 billion (February 1, 2000, to December 15, 2006). The Closure Project Baseline (CPB) is the detailed project plan for accomplishing this ambitious closure goal. This paper will provide a status report on the progress being made toward the closure goal. This paper will: provide a summary of the closure contract completion criteria; give the current cost and schedule variance of the project and the status of key activities; detail important accomplishments of the past year; and discuss the challenges ahead

  6. Flat Coalgebraic Fixed Point Logics

    Science.gov (United States)

    Schröder, Lutz; Venema, Yde

    Fixed point logics are widely used in computer science, in particular in artificial intelligence and concurrency. The most expressive logics of this type are the μ-calculus and its relatives. However, popular fixed point logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the μ-calculus. The family of such flat fixed point logics includes, e.g., CTL, the *-nesting-free fragment of PDL, and the logic of common knowledge. Here, we extend this notion to the generic semantic framework of coalgebraic logic, thus covering a wide range of logics beyond the standard μ-calculus including, e.g., flat fragments of the graded μ-calculus and the alternating-time μ-calculus (such as ATL), as well as probabilistic and monotone fixed point logics. Our main results are completeness of the Kozen-Park axiomatization and a timed-out tableaux method that matches ExpTime upper bounds inherited from the coalgebraic μ-calculus but avoids using automata.

  7. National construction, Denmark. Flat roofs

    Energy Technology Data Exchange (ETDEWEB)

    Rode, C

    1995-04-01

    The Paris meeting of IEA Annex 24 (held in the spring of 1991) declared a set of typical building constructions, the Heat, Air and Moisture characteristics of which should be dealt with as part of the Annex work. Each type of construction was assigned to one or more countries as their National Construction, and it has been the responsibility of each country to prepare a report on what may be regarded as common knowledge in the country on the hygrothermal behaviour of their construction. This knowledge is in part due to experimental work carried out by research bodies in the countries, and due to experience form practice. This report has two main sections: Section 2 gives a general overview of the design of the most common variants of flat roofs and common knowledge reported for such roofs. Section 3 gives an account of research projects carried out in Denmark on flat roofs to analyze their hygrothermal performance. Whenever possible, an emphasis will be put on the hygrothermal consequences of thermally insulating such constructions. (EG) 19 refs.

  8. Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States); Laub, T.W. [Sandia National Labs., Albuquerque, NM (United States)

    1992-06-01

    This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10{sup {minus}11}/yr to 10{sup {minus}5}/yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10{sup {minus}9}/yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution.

  9. Bedrock geologic Map of the Central Block Area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    W.C. Day; C. Potter; D. Sweetkind; R.P. Dickerson; C.A. San Juan

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. As such, this map focuses on the central block at Yucca Mountain, which contains the potential repository site. The central block is a structural block of Tertiary volcanic rocks bound on the west by the Solitario Canyon Fault, on the east by the Bow Ridge Fault, to the north by the northwest-striking Drill Hole Wash Fault, and on the south by Abandoned Wash. Earlier reconnaissance mapping by Lipman and McKay (1965) provided an overview of the structural setting of Yucca Mountain and formed the foundation for selecting Yucca Mountain as a site for further investigation. They delineated the main block-bounding faults and some of the intrablock faults and outlined the zoned compositional nature of the tuff units that underlie Yucca Mountain. Scott and Bonk (1984) provided a detailed reconnaissance geologic map of favorable area at Yucca Mountain in which to conduct further site-characterization studies. Of their many contributions, they presented a detailed stratigraphy for the volcanic units, defined several other block-bounding faults, and outlined numerous intrablock faults. This study was funded by the U.S. Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bonk (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the

  10. Structural character of the northern segment of the Paintbrush Canyon fault, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Spengler, R.W.

    1994-01-01

    Detailed mapping of exposed features along the northern part of the Paintbrush Canyon fault was initiated to aid in construction of the computer-assisted three-dimensional lithostratigraphic model of Yucca Mountain, to contribute to kinematic reconstruction of the tectonic history of the Paintbrush Canyon fault, and to assist in the interpretation of geophysical data from Midway Valley. Yucca Mountain is segmented into relatively intact blocks of east-dipping Miocene volcanic strata, bounded by north-striking, west-dipping high-angle normal faults. The Paintbrush Canyon fault, representing the easternmost block-bounding normal fault, separates Fran Ridge from Midway Valley and continues northward across Yucca Wash to at least the southern margin of the Timber Mountain Caldera complex. South of Yucca Wash, the Paintbrush Canyon Fault is largely concealed beneath thick Quaternary deposits. Bedrock exposures to the north reveal a complex fault, zone, displaying local north- and west-trending grabens, and rhombic pull-apart features. The fault scarp, discontinuously exposed along a mapped length of 8 km north of Yucca Wash, dips westward by 41 degrees to 74 degrees. Maximum vertical offset of the Rhyolite of Comb Peak along the fault measures about 210 m in Paintbrush Canyon and, on the basis of drill hole information, vertical offset of the Topopoah Spring Tuff is about 360 m near the northern part of Fran Ridge. Observed displacement along the fault in Paintbrush Canyon is down to the west with a component of left-lateral oblique slip. Unlike previously proposed tectonic models, strata adjacent to the fault dip to the east. Quaternary deposits do not appear displaced along the fault scarp north of Yucca Wash, but are displaced in trenches south of Yucca Wash

  11. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

    KAUST Repository

    Kim, Jeong Im

    2011-04-21

    The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity. In addition, plants over-expressing YUCCA6 exhibited classical, delayed dark-induced and hormone-induced senescence in assays using detached rosette leaves. However, plants over-expressing an allele of YUCCA6, that carries mutations in the NADPH cofactor binding site, exhibited neither delayed leaf senescence phenotypes nor phenotypes typical of auxin overproduction. When the level of free IAA was reduced in yuc6-1D by conjugation to lysine, yuc6-1D leaves senesced at a rate similar to the wild-type leaves. Dark-induced senescence in detached leaves was accompanied by a decrease in their free IAA content, by the reduced expression of auxin biosynthesis enzymes such as YUCCA1 and YUCCA6 that increase cellular free IAA levels, and by the increased expression of auxin-conjugating enzymes encoded by the GH3 genes that reduce the cellular free auxin levels. Reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc6-1D compared with the wild type suggested that auxin delays senescence by directly or indirectly regulating the expression of senescence-associated genes. 2011 The Author(s).

  12. Application of natural analogues in the Yucca Mountain project - overview

    International Nuclear Information System (INIS)

    Simmons, Ardyth M.

    2003-01-01

    The Natural Analogue Synthesis Report (NASR) [1] provides a compilation of information from analogues that test, corroborate, and add confidence to process models and model predictions pertinent to total system performance assessment (TSPA). The report updated previous work [2] with new literature examples and results of quantitative studies conducted by the Yucca Mountain Project (YMP). The intent of the natural analogue studies was to collect corroborative evidence from analogues to demonstrate greater understanding of processes expected to occur during postclosure of a proposed Yucca Mountain repository. Natural analogues, as used here, refer to either natural or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have occurred over long time periods (decades to millenia) and large spatial scales (up to tens of kilometers). In the past, the YMP has used analogues for testing and building confidence in conceptual and numerical process models in a number of ways. Yucca Mountain mineral alteration phases provided a self-analogue for postclosure alteration [3]. Thermodynamic parameters for silica minerals of the Wairakai, New Zealand geothermal field were added to databases used in geochemical modeling [4]. Scoping calculations of radionuclide transport using the Yucca Mountain TSPA numerical model were conducted for the Peqa Blanca site [5]. Eruption parameters from the Cerro Negro volcano, Nicaragua, were used to verify codes that model ash plume dispersion [6]. Analogues have also been used in supplemental science and performance analyses to provide multiple lines of evidence in support of both analyses and model reports (AMRs) [7]; in screening arguments for inclusion or exclusion of features, events, and processes (FEP)s in TSPAs; in the quantification of uncertainties [7]; in expert elicitations of volcanic and seismic hazards [8, 9] and in peer reviews [10]. Natural analogues may be applied

  13. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  14. US Geological Survey Committee for the Advancement of Science in the Yucca Mountain Project symposium on open-quotes Fractures, Hydrology, and Yucca Mountainclose quotes: Abstracts and summary

    International Nuclear Information System (INIS)

    Gomberg, J.

    1991-01-01

    The principal objective of this symposium is to review the available information on fractured/faulted terrains in terms of a coherent hydrogeologic model of ground-water fluid flow and transport, particularly as it pertains to the Yucca Mountain region. This review addresses the influence and significance of fractures on ground-water flow and the transport of conservative-species solutes within the context of the hydrogeologic setting of the Yucca Mountain area. The relations between fluid flow and fractured or faulted host rock are examined integrally from information on geologic, seismologic, hydrologic, and geomechanical properties of the system. The development of new hydrogeologic approaches that incorporate information from this integrated database are contrasted with more standard approaches toward understanding flow in fractured reservoirs. Ground-water flow in both the unsaturated zone and the saturated zone are considered. The application of various models of flow is addressed, examples include porous-media equivalent and discontinuum fracture-network models. Data and interpretations from the Yucca Mountain area are presented to establish a context for information exchange. The symposium includes discussions relevant to technical considerations for characterizing the Yucca Mountain area hydrogeology. On the basis of these discussions, CASY has compiled this document in order to formally summarize the proceedings and communicate recommendations for future directions of research and investigation

  15. Effects of Dietary Supplementation of Dried Distillers Grain with Solubles (DDGS and Yucca (Yucca schidigera on Broiler Performance, Carcass Traits, Intestinal Viscosity and Marketing

    Directory of Open Access Journals (Sweden)

    Savaş Sariozkan

    2016-01-01

    Full Text Available This study was conducted to determine the effects of dietary supplementation of dried distillers’ grain with soluble (DDGS and yucca (Yucca schidigera on broiler performance, intestinal viscosity, carcass traits, and marketing. A total of 360, 21-d-old male broiler chickens were divided into 4 groups as 1: Control (C, corn based diet, without DDGS and yucca (Y supplementation, 2: DDGS (30%, 3: C + Y (120 mg/kg Yucca and 4: DDGS (30% + Y (120 mg/kg with 6 replicates (15 chicks x 6 replicates. The study was performed between 21 to 42 days of age. As a result, there were no significant differences among the groups in terms of body weight, body weight gain, feed consumption, feed conversion ratio and mortality rate (P>0.05. The carcass traits and effects of different marketing type (whole sale or cutting parts on profit were compared. A slight decrease was determined in group 4 in terms of leg quarter ratio to cold carcass weight and carcass yield. Intestinal viscosity, bacterial counts and pH values (in duodenum and ileum were not different among the groups (P>0.05. The lowest production cost was determined in DDGS and DDGS+Y groups (P

  16. Yucca Mountain Feature, Event, and Process (FEP) Analysis

    International Nuclear Information System (INIS)

    Freeze, G.

    2005-01-01

    A Total System Performance Assessment (TSPA) model was developed for the U.S. Department of Energy (DOE) Yucca Mountain Project (YMP) to help demonstrate compliance with applicable postclosure regulatory standards and support the License Application (LA). Two important precursors to the development of the TSPA model were (1) the identification and screening of features, events, and processes (FEPs) that might affect the Yucca Mountain disposal system (i.e., FEP analysis), and (2) the formation of scenarios from screened in (included) FEPs to be evaluated in the TSPA model (i.e., scenario development). YMP FEP analysis and scenario development followed a five-step process: (1) Identify a comprehensive list of FEPs potentially relevant to the long-term performance of the disposal system. (2) Screen the FEPs using specified criteria to identify those FEPs that should be included in the TSPA analysis and those that can be excluded from the analysis. (3) Form scenarios from the screened in (included) FEPs. (4) Screen the scenarios using the same criteria applied to the FEPs to identify any scenarios that can be excluded from the TSPA, as appropriate. (5) Specify the implementation of the scenarios in the computational modeling for the TSPA, and document the treatment of included FEPs. This paper describes the FEP analysis approach (Steps 1 and 2) for YMP, with a brief discussion of scenario formation (Step 3). Details of YMP scenario development (Steps 3 and 4) and TSPA modeling (Step 5) are beyond scope of this paper. The identification and screening of the YMP FEPs was an iterative process based on site-specific information, design, and regulations. The process was iterative in the sense that there were multiple evaluation and feedback steps (e.g., separate preliminary, interim, and final analyses). The initial YMP FEP list was compiled from an existing international list of FEPs from other radioactive waste disposal programs and was augmented by YMP site- and design

  17. Seepage into drifts in unsaturated fractured rock at Yucca Mountain

    International Nuclear Information System (INIS)

    Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

    1998-01-01

    An important issue for the long-term performance of underground nuclear waste repository is the rate of seepage into the waste emplacement drifts. A prediction of the future seepage rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, as it is located in thick, partially saturated, fractured tuff formations. The long-term situation in the drifts several thousand years after waste emplacement will be characterized by a relative humidity level close to or equal to 100%, as the drifts will be sealed and unventilated, and the waste packages will have cooled. The underground tunnels will then act as capillary barriers for the unsaturated flow, ideally diverting water around them, if the capillary forces are stronger than gravity and viscous forces. Seepage into the drifts will only be possible if the hydraulic pressure in the rock close to the drift walls increases to positive values; i.e., the flow field becomes locally saturated. In the present work, they have developed and applied a methodology to study the potential rate of seepage into underground cavities embedded in a variably saturated, heterogeneous fractured rock formation. The fractured rock mass is represented as a stochastic continuum where the fracture permeabilities vary by several orders of magnitude. Three different realizations of random fracture permeability fields are generated, with the random permeability structure based on extensive fracture mapping, borehole video analysis, and in-situ air permeability testing. A 3-D numerical model is used to simulate the heterogeneous steady-state flow field around the drift, with the drift geometry explicitly represented within the numerical discretization grid. A variety of flow scenarios are considered assuming present-day and future climate conditions at Yucca Mountain. The numerical study is complemented by theoretical evaluations of the drift seepage problem, using stochastic perturbation theory to develop a better

  18. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Perry, F.; Youngs, B.

    2000-01-01

    The purpose of this Analysis/Model (AMR) report is twofold. (1) The first is to present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the Probabilistic Volcanic Hazard Analysis (PVHA) (CRWMS M and O 1996). Conceptual models presented in the PVHA are summarized and extended in areas in which new information has been presented. Alternative conceptual models are discussed as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) The second purpose of the AMR is to present probability calculations based on PVHA outputs. Probability distributions are presented for the length and orientation of volcanic dikes within the repository footprint and for the number of eruptive centers located within the repository footprint (conditional on the dike intersecting the repository). The probability of intersection of a basaltic dike within the repository footprint was calculated in the AMR ''Characterize Framework for Igneous Activity at Yucca Mountain, Nevada'' (CRWMS M and O 2000g) based on the repository footprint known as the Enhanced Design Alternative [EDA II, Design B (CRWMS M and O 1999a; Wilkins and Heath 1999)]. Then, the ''Site Recommendation Design Baseline'' (CRWMS M and O 2000a) initiated a change in the repository design, which is described in the ''Site Recommendation Subsurface Layout'' (CRWMS M and O 2000b). Consequently, the probability of intersection of a basaltic dike within the repository footprint has also been calculated for the current repository footprint, which is called the 70,000 Metric Tons of Uranium (MTU) No-Backfill Layout (CRWMS M and O 2000b). The calculations for both footprints are presented in this AMR. In

  19. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    F. Perry; B. Youngs

    2000-11-06

    The purpose of this Analysis/Model (AMR) report is twofold. (1) The first is to present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the Probabilistic Volcanic Hazard Analysis (PVHA) (CRWMS M&O 1996). Conceptual models presented in the PVHA are summarized and extended in areas in which new information has been presented. Alternative conceptual models are discussed as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) The second purpose of the AMR is to present probability calculations based on PVHA outputs. Probability distributions are presented for the length and orientation of volcanic dikes within the repository footprint and for the number of eruptive centers located within the repository footprint (conditional on the dike intersecting the repository). The probability of intersection of a basaltic dike within the repository footprint was calculated in the AMR ''Characterize Framework for Igneous Activity at Yucca Mountain, Nevada'' (CRWMS M&O 2000g) based on the repository footprint known as the Enhanced Design Alternative [EDA II, Design B (CRWMS M&O 1999a; Wilkins and Heath 1999)]. Then, the ''Site Recommendation Design Baseline'' (CRWMS M&O 2000a) initiated a change in the repository design, which is described in the ''Site Recommendation Subsurface Layout'' (CRWMS M&O 2000b). Consequently, the probability of intersection of a basaltic dike within the repository footprint has also been calculated for the current repository footprint, which is called the 70,000 Metric Tons of Uranium (MTU) No-Backfill Layout (CRWMS M&O 2000b). The calculations for both

  20. Yucca Mountain program summary of research, site monitoring and technical review activities (January 1987--June 1988)

    International Nuclear Information System (INIS)

    1988-12-01

    Although studies of orbital mechanics provide speculative notions of future climatic trends, they cannot predict how these trends will manifest themselves in the immediate area around Yucca Mountain. The generally accepted approach to this question is to consider the climatic variations that have occurred during the last 10,000 years, and use these as a guide to the likely range of future variation in climate. However, because climatic studies around the world indicate that we are potentially on the verge of another ice age, we should also consider the conditions that predominated during the Pleistocene. The specific aim of this project is to derive the climatic history of Yucca Mountain during the last 20,000 years from the vegetation history. By integrating data obtained from pollen records, woodrat dens (middens), and tree-ring sequences from the Nevada Test Site (NTS) area, a regional climatic record is being generated that can be correlated to data obtained at Yucca Mountain to formulate a local climatic sequence there. This will then be used to determine the magnitude and frequency of climatic variation that have occurred during that time at Yucca Mountain. These data can then be used by other researchers to provide estimates of rainfall, recharge and soil chemical changes for modeling the past hydrology of Yucca Mountain

  1. THE DEVELOPMENT OF THE YUCCA MOUNTAIN PROJECT FEATURE, EVENT, AND PROCESS (FEP) DATABASE

    International Nuclear Information System (INIS)

    Freeze, G.; Swift, P.; Brodsky, N.

    2000-01-01

    A Total System Performance Assessment for Site Recommendation (TSPA-SR) has recently been completed (CRWMS M andO, 2000b) for the potential high-level waste repository at the Yucca Mountain site. The TSPA-SR is an integrated model of scenarios and processes relevant to the postclosure performance of the potential repository. The TSPA-SR scenarios and model components in turn include representations of all features, events, and processes (FEPs) identified as being relevant (i.e., screened in) for analysis. The process of identifying, classifying, and screening potentially relevant FEPs thus provides a critical foundation for scenario development and TSPA analyses for the Yucca Mountain site (Swift et al., 1999). The objectives of this paper are to describe (a) the identification and classification of the comprehensive list of FEPs potentially relevant to the postclosure performance of the potential Yucca Mountain repository, and (b) the development, structure, and use of an electronic database for storing and retrieving screening information about the inclusion and/or exclusion of these Yucca Mountain FEPs in TSPA-SR. The FEPs approach to scenario development is not unique to the Yucca Mountain Project (YMP). General systematic approaches are summarized in NEA (1992). The application of the FEPs approach in several other international radioactive waste disposal programs is summarized in NEA ( 1999)

  2. Regional groundwater modeling of the saturated zone in the vicinity of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ahola, M.; Sagar, B.

    1992-10-01

    Results of groundwater modeling of the saturated zone in the vicinity of Yucca Mountain are presented. Both a regional (200 x 200 km) and subregional (50 x 50 km) model were used in the analyses. Simulations were conducted to determine the impact of various disruptive that might take place over the life span of a proposed Yucca Mountain geologic conditions repository on the groundwater flow field, as well as changes in the water-table elevations. These conditions included increases in precipitation and groundwater recharge within the regional model, changes in permeability of existing hydrogeologic barriers, a:nd the vertical intrusion of volcanic dikes at various orientations through the saturated zone. Based on the regional analysis, the rise in the water-table under Yucca Mountain due to various postulated conditions ranged from only a few meters to 275 meters. Results of the subregional model analysis, which was used to simulate intrusive dikes approximately 4 kilometers in length in the vicinity of Yucca Mountain, showed water-table rises ranging from a few meters to as much as 103 meters. Dikes oriented approximately north-south beneath Yucca Mountain produced the highest water-table rises. The conclusions drawn from this analysis are likely to change as more site-specific data become available and as the assumptions in the model are improved

  3. Major results of geophysical investigations at Yucca Mountain and vicinity, southern Nevada

    International Nuclear Information System (INIS)

    Oliver, H.W.; Ponce, D.A.; Hunter, W.C.

    1995-01-01

    In the consideration of Yucca Mountain as a possible site for storing high level nuclear waste, a number of geologic concerns have been suggested for study by the National Academy of Sciences which include: (1) natural geologic and geochemical barriers, (2) possible future fluctuations in the water table that might flood a mined underground repository, (3) tectonic stability, and (4) considerations of shaking such as might be caused by nearby earthquakes or possible volcanic eruptions. This volume represents the third part of an overall plan of geophysical investigation of Yucca Mountain, preceded by the Site Characterization Plan (SCP; dated 1988) and the report referred to as the Geophysical White Paper, Phase 1, entitled Status of Data, Major Results, and Plans for Geophysical Activities, Yucca Mountain Project (Oliver and others, 1990). The SCP necessarily contained uncertainty about applicability and accuracy of methods then untried in the Yucca Mountain volcano-tectonic setting, and the White Paper, Phase 1, focused on summarization of survey coverage, data quality, and applicability of results. For the most part, it did not present data or interpretation. The important distinction of the current volume lies in presentation of data, results, and interpretations of selected geophysical methods used in characterization activities at Yucca Mountain. Chapters are included on the following: gravity investigations; magnetic investigations; regional magnetotelluric investigations; seismic refraction investigations; seismic reflection investigations; teleseismic investigations; regional thermal setting; stress measurements; and integration of methods and conclusions. 8 refs., 60 figs., 2 tabs

  4. Sequential evaluation of the potential geologic repository site at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Bjerstedt, T.W.

    1996-01-01

    This paper discusses the changes that are planned for the characterization program at Yucca Mountain due to budget changes. Yucca Mountain is the only site being studied in the US for a geologic repository. Funding for the site characterization program at Yucca Mountain program was cut by roughly one half from the 1994 projected budget to complete three major milestones. These project milestones included: (1) a time-phased determination of site suitability, and if a positive finding, (2) completion of an Environmental Impact Statement, and (3) preparation of a License Application to the US NRC to authorize repository construction. In reaction, Yucca Mountain Site Characterization Project has shifted from parallel development of these milestones to a sequenced approach with the site suitability evaluation being replaced with a management assessment. Changes to the regulatory structure for the disposal program are under consideration by DOE and the NRC. The possibility for NRC and Doe to develop a site-specific regulatory structure follows from the National Energy Policy Act of 1992 that authorized the US EPA to develop a site specific environmental standard for Yucca Mountain

  5. Bedrock geologic map of the central block area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; San Juan, C.A.

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. This study was funded by the US Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bon, (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a constituent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described here

  6. Preclosure seismic hazards and their impact on site suitability of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Gibson, J.D.

    1992-01-01

    This paper presents an overview of the preclosure seismic hazards and the influence of these hazards on determining the suitability of Yucca Mountain as a national high-level nuclear-waste repository. Geologic data, engineering analyses, and regulatory guidelines must be examined collectively to assess this suitability. An environmental assessment for Yucca Mountain, written in 1986, compiled and evaluated the existing tectonic data and presented arguments to satisfy, in part, the regulatory requirements that must be met if the Yucca Mountain site is to become a national waste repository. Analyses have been performed in the past five years that better quantify the local seismic hazards and the possibility that these hazards could lead to release of radionuclides to the environment. The results from these analyses increase the confidence in the ability of Yucca Mountain and the facilities that may be built there to function satisfactorily in their role as a waste repository. Uncertainties remain, however, primarily in the input parameters and boundary conditions for the models that were used to complete the analyses. These models must be validated and uncertainties reduced before Yucca Mountain can qualify as a viable high-level nuclear waste repository

  7. Environmental program overview for a high-level radioactive waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    1988-12-01

    The United States plans to begin operating the first repository for the permanent disposal of high-level nuclear waste early in the next century. In February 1983, the US Department of Energy (DOE) identified Yucca Mountain, in Nevada, as one of nine potentially acceptable sites for a repository. To determine its suitability, the DOE evaluated the Yucca Mountain site, along with eight other potentially acceptable sites, in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The purpose of the Environmental Program Overview (EPO) for the Yucca Mountain site is to provide an overview of the overall, comprehensive approach being used to satisfy the environmental requirements applicable to sitting a repository at Yucca Mountain. The EPO states how the DOE will address the following environmental areas: aesthetics, air quality, cultural resources (archaeological and Native American components), noise, radiological studies, soils, terrestrial ecosystems, and water resources. This EPO describes the environmental program being developed for the sitting of a repository at Yucca Mountain. 1 fig., 3 tabs

  8. Management and research of desert tortoises for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Rautenstrauch, K.R.; Cox, M.K.; Doerr, T.B.; Green, R.A.; Mueller, J.M.; O'Farrell, T.P.; Rakestraw, D.L.

    1991-01-01

    A program has been developed for the Yucca Mountain Project (YMP) to manage and study the desert tortoise (Gopherus agassizi), a threatened species that occurs at low densities at Yucca Mountain. The goals of this program are to better understand the biology and status of the desert tortoise population at Yucca Mountain, assess impacts on tortoises of site characterization (SC) activities, and minimize those impacts. The first steps we took to develop this program were to compile the available information on tortoise biology at Yucca Mountain, ascertain what information was lacking, and identify the potential impacts on tortoises of SC. We then developed a technical design for identifying and mitigating direct and cumulative impacts and providing information on tortoise biology. Interrelated studies were developed to achieve these objectives. The primary sampling unit for the impact monitoring studies is radiomarked tortoises. Three populations of tortoises will be sampled: individuals isolated from disturbances (control), individuals near major SC activities (direct effects treatment and worst-case cumulative effects treatment), and individuals from throughout Yucca Mountain (cumulative effects treatment). Impacts will be studied by measuring and comparing survival, reproduction, movements, habitat use, health, and diet of these tortoises. A habitat quality model also will be developed and the efficacy of mitigation techniques, such as relocating tortoises, will be evaluated. 29 refs

  9. Expert judgment in assessing radwaste risks: What Nevadans should know about Yucca Mountain; [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shrader-Frechette, K. [University of South Florida, Tampa, FL (United States)

    1992-06-01

    For phenomena characterized by accurate and largely complete data, quantitative risk assessment (QRA) provides extraordinarily valuable and objective information. However, with phenomena for which the data, models, or probabilities are incomplete or uncertain, QRA may be less useful and more questionable, because its conclusions are typically empirically and theoretically underdetermined. In the face of empirical or theoretical underdetermination, scientists often are forced to make a number of methodological value judgments and inferences about how to estimate and evaluate the associated risks. The purpose of this project is to evaluate instances of methodological value judgments and invalid or imprecise inferences that have occurred in the QRA done for the proposed Yucca Mountain high-level radioactive waste facility. We shall show (1) that questionable methodological value judgments and inferences have occurred in some Yucca Mountain QRA`S; (2) that questionable judgments and inferences, similar to those in the Yucca Mountain studies, have occurred in previous QRA`s done for other radiation-related facilities and have likely caused earlier QRA`s to err in specific ways; and (3) that, because the value judgments and problems associated with some Yucca Mountain QRA`s include repetitions of similar difficulties in earlier studies, therefore the QRA conclusions of some Yucca Mountain analyses are, at best, uncertain.

  10. Expert judgment in assessing radwaste risks: What Nevadans should know about Yucca Mountain

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.

    1992-06-01

    For phenomena characterized by accurate and largely complete data, quantitative risk assessment (QRA) provides extraordinarily valuable and objective information. However, with phenomena for which the data, models, or probabilities are incomplete or uncertain, QRA may be less useful and more questionable, because its conclusions are typically empirically and theoretically underdetermined. In the face of empirical or theoretical underdetermination, scientists often are forced to make a number of methodological value judgments and inferences about how to estimate and evaluate the associated risks. The purpose of this project is to evaluate instances of methodological value judgments and invalid or imprecise inferences that have occurred in the QRA done for the proposed Yucca Mountain high-level radioactive waste facility. We shall show (1) that questionable methodological value judgments and inferences have occurred in some Yucca Mountain QRA'S; (2) that questionable judgments and inferences, similar to those in the Yucca Mountain studies, have occurred in previous QRA's done for other radiation-related facilities and have likely caused earlier QRA's to err in specific ways; and (3) that, because the value judgments and problems associated with some Yucca Mountain QRA's include repetitions of similar difficulties in earlier studies, therefore the QRA conclusions of some Yucca Mountain analyses are, at best, uncertain

  11. Laser Doppler thermometry in flat flames

    NARCIS (Netherlands)

    Maaren, van A.; Goey, de L.P.H.

    1994-01-01

    Laser Doppler Velocimetry measurements are performed in flat flames, stabilized on a newly developed flat-flame burner. It is shown that the velocity component perpendicular to the main flow direction, induced by expansion in the reaction zone and buoyancy in the burnt gas, is significant. A method

  12. Radiation monitor training program at Rocky Flats

    International Nuclear Information System (INIS)

    Medina, L.C.; Kittinger, W.D.; Vogel, R.M.

    The Rocky Flats Radiation Monitor Training Program is tailored to train new health physics personnel in the field of radiation monitoring. The purpose of the prescribed materials and media is to be consistent in training in all areas of Rocky Flats radiation monitoring job involvement

  13. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI)

    International Nuclear Information System (INIS)

    Peppin, W.A.

    1988-01-01

    This document describes activities for the year ending 30 June 1988 by staff members of the Seismological Laboratory in support of the Yucca Mountain site assessment program. Activities during the year centered largely around acquisition of equipment to be used for site assessment and around a review of the draft site characterization plan for Yucca Mountain. Due to modifications in the scheduling and level of funding, this work has not progressed as originally anticipated. The report describes progress in seven areas, listed in approximate order of significance to the Yucca Mountain project. These are: (1) equipment acquisition, (2) review of the draft site characterization plan, (3) studies of earthquake sequence related to the tectonic problems at Yucca Mountain, (4) a review of the work of Szymanski in relation to Task 4 concerns, (5) coordination meetings with USGS, DOE, and NRC personnel, (6) studies related to Yucca Mountain, and (7) other studies

  14. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area, Nevada Nuclear Waste Site Investigation (NNWSI)

    International Nuclear Information System (INIS)

    1988-10-01

    This document describes activities for the year ending 30 June 1988 by staff members of the Seismological Laboratory in support of the Yucca Mountain site assessment program. Participants include James N. Brune, Director, John Anderson, William Peppin, Keith Priestley, Martha Savage, and Ute Vetter. Activities during the year centered largely around acquisition of equipment to be used for site characterization plan for Yucca Mountain. Due to modifications in the scheduling and level of funding, this work has not progressed as originally anticipated. The report describes progress in seven areas, listed in approximate order of significance to the Yucca Mountain project. These are: (1) equipment acquisition, (2) review of the draft site characterization plan, (3) studies of earthquake sequence related to the tectonic problems at Yucca Mountain, (4) a review of the work of Szymanski in relation to Task 4 concerns, (5) coordination meetings with USGS, DOE and NRC personnel, (6) studies related to Yucca Mountain and (7) other studies

  15. Impact of Quaternary Climate on Seepage at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    J.F. Whelan; J.B. Paces; L.A. Neymark; A.K. Schmitt; M. Grove

    2006-01-01

    Uranium-series ages, oxygen-isotopic compositions, and uranium contents were determined in outer growth layers of opal and calcite from 0.5- to 3-centimeter-thick mineral coatings hosted by lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a permanent repository for high-level radioactive waste. Micrometer-scale growth layering in the minerals was imaged using a cathodoluminescence detector on a scanning electron microscope. Determinations of the chemistry, ages, and delta oxygen-18 values of the growth layers were conducted by electron microprobe analysis and secondary ion mass spectrometry techniques at spatial resolutions of 1 to about 20 micrometers ((micro)m) and 25 to 40 micrometers, respectively. Growth rates for the last 300 thousand years (k.y.) calculated from about 300 new high-resolution uranium-series ages range from approximately 0.5 to 1.5 (micro)m/k.y. for 1- to 3-centimeter-thick coatings, whereas coatings less than about I-centimeter-thick have growth rates less than 0.5 (micro)m/k.y. At the depth of the proposed repository, correlations of uranium concentration and delta oxygen-18 values with regional climate records indicate that unsaturated zone percolation and seepage water chemistries have responded to changes in climate during the last several hundred thousand years

  16. Yucca Mountain Site Characterization Project: Technical Data Catalog quarterly supplement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-31

    The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

  17. Effects of actinide burning on waste disposal at Yucca Mountain

    International Nuclear Information System (INIS)

    Hirschfelder, J.

    1992-01-01

    Release rates of 15 radionuclides from waste packages expected to result from partitioning and transmutation of Light-Water Reactor (LWR) and Actinide-Burning Liquid-Metal Reactor (ALMR) spent fuel are calculated and compared to release rates from standard LWR spent fuel packages. The release rates are input to a model for radionuclide transport from the proposed geologic repository at Yucca Mountain to the water table. Discharge rates at the water table are calculated and used in a model for transport to the accessible environment, defined to be five kilometers from the repository edge. Concentrations and dose rates at the accessible environment from spent fuel and wastes from reprocessing, with partitioning and transmutation, are calculated. Partitioning and transmutation of LWR and ALMR spent fuel reduces the inventories of uranium, neptunium, plutonium, americium and curium in the high-level waste by factors of 40 to 500. However, because release rates of all of the actinides except curium are limited by solubility and are independent of package inventory, they are not reduced correspondingly. Only for curium is the repository release rate much lower for reprocessing wastes

  18. Waste package performance assessment for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    O'Connell, W.J.; Lappa, D.A.; Thatcher, R.M.

    1989-02-01

    We completed a first cycle of model development from a specification to a computer program, PANDORA-1, for long-term performance assessment of waste packages. The model for one waste package at a time incorporates processes specific to the unsaturated environment at the proposed Yucca Mountain, NV, site. PANDORA-1 models the most likely processes and several modes of waste alteration and release. The development identified information needs for future models; many processes, local details, and combinations will have to be examined. Integration of ensemble performance and quantification of uncertainties are modeling steps at higher aggregation. Methodologies for these steps include sampling, which is well studied; we have focused on several open questions. We can now calculate the amount of variance reduction available from Latin hypercube sampling; it is a limited reduction. A new method, controlled sampling, provides substantial variance reduction for a broad range of model functions. An uncertainty analysis test-bed program compares the new with old sampling methods. 7 refs., 1 tab

  19. Yucca Mountain Site Characterization Project Technical Data Catalog (quarterly supplement)

    International Nuclear Information System (INIS)

    1993-01-01

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated December 31, 1992, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1993

  20. Illstrative probabilistic biosphere model for Yucca Mountain individual risk calculations

    International Nuclear Information System (INIS)

    Wilems, R.E.

    1994-01-01

    The proposed EPA Standards for the disposal of spent fuel, high-level and transuranic radioactive waste prescribe future biosphere--one in which no sustained human activity occurs inside the controlled zone, yet sustained use of groundwater occurs just outside the controlled zone boundary. Performance assessments have generally assumed a person at this location extracts all his water needs directly from the projected contaminated plume for all of his life. Dose to this maximally-exposed individual is too conservative a measure of performance for a nuclear waste repository and does not reflect the isolation characteristics of a site. A better measure is individual risk in which uncertainties in biosphere characteristics for the longer periods of performance, for a site like Yucca Mountain only those characteristics associated with well water scenarios need be prescribed. Such a prescription of the biosphere is appropriate because the goal of the regulations is to provide indicators of future performance so the regulators can make a responsible decision regarding reasonable assurance of public health and safety

  1. Yucca Mountain Site Characterization Project Technical Data Catalog

    International Nuclear Information System (INIS)

    1992-01-01

    The June 1, 1985, Department of Energy (DOE)/Nuclear, Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. Each new publication of the Technical Data Catalog supersedes the previous edition

  2. Yucca Mountain Site Characterization Project technical data catalog

    International Nuclear Information System (INIS)

    1992-01-01

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. Each new publication of the Technical Data Catalog supersedes the previous edition

  3. Integrity of radioactive waste packages at the Yucca mountain repository

    International Nuclear Information System (INIS)

    Sandquist, G.; Biaglow, A.; Huber, M.; Jagmin, C.

    2004-01-01

    Several of the important physical and chemical processes that impact the integrity of the radioactive waste packages planned for disposal at the proposed Repository at Yucca Mountain are examined. These processes are described by the aerodynamic, thermodynamic, and chemical interactions associated with the waste packages. The effects of chemical corrosion, mechanical erosion, temperature distributions throughout the repository environs, interactions of air, water, and solid particles, and radiological and biological influences are addressed. Materials will be exposed to at least 3 conditions threatening the integrity of the waste package: 1) accumulated dust and particles on the package surface and suspended in the air, 2) chemical reactions from deposits on the waste package infrastructure materials and tight contact areas, and crevices, and 3) environmental factors affecting chemical reactions such as moisture, pH, Eh, and radiolysis. All 3 of these conditions can combine and produce damaging impacts upon the thin protective layer on the alloy surface of the waste package. There are certain benefits from the low-temperature operating mode with ambient temperature below 85 Celsius degrees, but the materials could be subjected to a maximum temperature of 180 Celsius degrees which might introduce stress corrosion cracking and high temperature effects

  4. ELECTRICAL IMAGING AT THE LARGE BLOCK TEST YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Ramirez, A.

    2000-01-01

    A monolithic block of densely welded tuff was excavated from a site on Fran Ridge near Yucca Mountain, Nevada so that coupled thermohydrological processes could be studied in a controlled, in situ experiment. A series of heaters were placed in a horizontal plane about 3 m from the top of the 3 m by 3 m by 4.5 m high block. Temperatures were measured at many points within and on the block surface and a suite of other measurements were taken to define the thermal and hydrologic response. Electrical resistance tomography (ERT) was used to map 2 dimensional images of moisture content changes along four planes in the block. The ERT images clearly delineate the drying and wetting of the rockmass during the 13 months of heating and subsequent six months of cool down. The main feature is a prominent dry zone that forms around the heaters then gradually disappears as the rock cools down. Other features include linear anomalies of decreasing moisture content which are fractures dehydrating as the block heats up. There are also examples of compact anomalies of wetting. Some of these appear to be water accumulation in fractures which are draining condensate from the block. Others may be rain water entering a fracture at the top of the block. During cooldown a general rewetting is observed although this is less certain because of poor data quality during this stage of the experiment

  5. Volcanic hazard studies for the Yucca Mountain project

    International Nuclear Information System (INIS)

    Crowe, B.; Turrin, B.; Wells, S.; Perry, F.; McFadden, L.; Renault, C.E.; Champion, D.; Harrington, C.

    1989-01-01

    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located a minimum distance of 12 km and a maximum distance of 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10/sup /minus/8/ to 10/sup /minus/10/ yr/sup /minus/1/. These values are currently being reexamined based on new developments in the understanding of the evaluation of small volume, basaltic volcanic centers including: (1) Many, perhaps most, of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity. (2) The centers may be active for time spans exceeding 10 5 yrs, (3) There is a decline in the volume of eruptions of the centers through time, and (4) Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene time. We classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 10 3 to 10 5 yrs. Magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes. 25 refs., 2 figs

  6. Corrosion of candidate container materials by Yucca Mountain bacteria

    International Nuclear Information System (INIS)

    Horn, J; Jones, D; Lian, T; Martin, S; Rivera, A

    1999-01-01

    Several candidate container materials have been studied in modified Yucca Mountain (YM) ground water in the presence or absence of YM bacteria. YM bacteria increased corrosion rates by 5-6 fold in UNS G10200 carbon steel, and nearly 100-fold in UNS NO4400 Ni-Cu alloy. YM bacteria caused microbiologically influenced corrosion (MIC) through de-alloying or Ni-depletion of Ni-Cu alloy as evidenced by scanning electronic microscopy (SEM) and inductively coupled plasma spectroscopy (ICP) analysis. MIC rates of more corrosion-resistant alloys such as UNS NO6022 Ni-Cr- MO-W alloy, UN's NO6625 Ni-Cr-Mo alloy, and UNS S30400 stainless steel were measured below 0.05 umyr, however YM bacteria affected depletion of Cr and Fe relative to Ni in these materials. The chemical change on the metal surface caused by depletion was characterized in anodic polarization behavior. The anodic polarization behavior of depleted Ni-based alloys was similar to that of pure Ni. Key words: MIC, container materials, YM bacteria, de-alloying, Ni-depletion, Cr-depletion, polarization resistance, anodic polarization,

  7. Stability of underground openings in the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    1989-01-01

    The licensing of a repository for high-level radioactive waste will require assurances that underground openings do not experience frequent major instabilities, which are defined here as sudden movements of blocks of rock that limit the functions of the openings. Although the design of nuclear power plant structures is controlled by strict adherence to building or professional-engineering codes, this approach is not practical for the structural design of underground facilities because the design must accommodate a varied and partially defined geologic setting. However, regulations require the reduction of the potential for deleterious rock movement and the design of openings to maintain the option to retrieve waste. The present plans for meeting these requirements for a repository at Yucca Mountain, Nevada, include a program of state-of-the-art analyses and modified forms of existing empirically based design methods. An extensive experimental program is required to provide confidence in the results of the design-analysis process. 7 refs., 1 fig

  8. Yucca Mountain Site Characterization Project technical data catalog: Quarterly supplement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed-in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

  9. Distributional equity problems at the proposed Yucca Mountain facility

    International Nuclear Information System (INIS)

    Kasperson, R.E.; Abdollahzadeh, S.

    1988-07-01

    This paper addresses one quite specific part of this broad range of issues -- the distribution of impacts to the state of Nevada and to the nation likely to be associated with the proposed Yucca Mountain repository. As such, it is one of four needed analyses of the overall equity problems and needs to be read in conjunction with our proposed overall framework for equity studies. The objective of this report is to consider how an analysis might be made of the distribution of projected outcomes between the state and nation. At the same time, it needs to be clear that no attempt will be made actually to implement the analysis that is proposed. What follows is a conceptual statement that identifies the analytical issues and pro poses an approach for overcoming them. Significantly, it must also be noted that this report will not address procedural equity issues between the state and nation for this is the subject of a separate analysis. 14 refs., 8 figs., 3 tabs

  10. The reclamation program for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Ostler, W.K.; O'Farrell, T.P.; Winkel, V.K.; Schultz, B.W.

    1991-01-01

    The US Department of Energy (DOE) is required by law and other regulatory requirements to reclaim disturbances created by site characterization activities at Yucca Mountain. Because of the difficulty of reclaiming arid areas and the lack of site specific information on successful reclamation techniques and procedures, the DOE has developed a comprehensive reclamation program. The program consists of three phases: planning, operational and research. The planning phase is a continuing process that ensures that program policy, goals, tasks and responsibilities are clearly identified and linked. The operational phase uses best available knowledge to develop and implement reclamation plans that are site-specific for each disturbance. Reclamation activities start prior to any surface disturbance with a survey of each disturbance by trained scientists. The scientists survey the area for the presence of protected species or critical wildlife habitat. They also gather vegetation, landscape, soils and other environmental data that is used to assess the impact of the proposed disturbance. Recommendations can be made to either avoid areas or mitigate impacts. The operational phase includes interim reclamation to protect valuable resources and control erosion prior to final reclamation. Monitoring of reclaimed sites is conducted to correct problem areas and insure that reclamation objectives are achieved. The third phase of the reclamation program is designed to provide site-specific information on effective reclamation techniques through research and field demonstrations. 52 refs., 1 tab

  11. Shallow infiltration processes in arid watersheds at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Flint, L.E.; Flint, A.L. Hevesi, J.A.

    1994-01-01

    A conceptual model of shallow infiltration processes at Yucca Mountain, Nevada, was developed for use in hydrologic flow models to characterize net infiltration (the penetration of the wetting front below the zone influenced by evapotranspiration). The model categorizes the surface of the site into four infiltration zones. These zones were identified as ridgetops, sideslopes, terraces, and active channels on the basis of water-content changes with depth and time. The maximum depth of measured water-content change at a specific site is a function of surface storage capacity, the timing and magnitude of precipitation, evapotranspiration, and the degree of saturation of surficial materials overlying fractured bedrock. Measured water-content profiles for the four zones indicated that the potential for net infiltration is higher when evapotranspiration is low (i.e winter, cloudy periods), where surface concentration of water is likely to occur (i.e. depressions, channels), where surface storage capacity is low, and where fractured bedrock is close to the surface

  12. Testing the Concept of Drift Shadow at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    J.B. Paces; L.A. Neymark; T. Ghezzehei; P.F. Dobson

    2006-01-01

    If proven, the concept of drift shadow, a zone of reduced water content and slower ground-water travel time beneath openings in fractured rock of the unsaturated zone, may increase performance of a proposed geologic repository for high-level radioactive waste at Yucca Mountain. To test this concept under natural-flow conditions present in the proposed repository horizon, isotopes within the uranium-series decay chain (uranium-238, uranium-234, and thorium-230, or 238 U- 234 U- 230 Th) have been analyzed in samples of rock from beneath four naturally occurring lithophysal cavities. All samples show 234 U depletion relative to parent 238 U, indicating varying degrees of water-rock interaction over the past million years. Variations in 234 U/ 238 U activity ratios indicate that depletion of 234 U relative to 238 U can be either smaller or greater in rock beneath cavity floors relative to rock near cavity margins. These results are consistent with the concept of drift shadow and with numerical simulations of meter-scale spherical cavities in fractured tuff. Differences in distribution patterns of 234 U/ 238 U activity ratios in rock beneath the cavity floors are interpreted to reflect differences in the amount of past seepage into lithophysal cavities, as indicated by the abundance of secondary mineral deposits present on the cavity floors

  13. Waste package for Yucca Mountain repository: Strategy for regulatory compliance

    International Nuclear Information System (INIS)

    Cloninger, M.; Short, D.; Stahl, D.

    1989-02-01

    This document summarizes the strategy given in the Site Characterization Plan (1) for demonstrating compliance with the post closure performance objectives for the waste package and the Engineered Barrier System (EBS) contained in the Code of Federal Regulations. The strategy consists of the development of a conservative waste package design that will meet the regulatory requirements with sufficient margin for uncertainty using a multi-barrier approach that takes advantage of the unsaturated nature of the Yucca Mountain site. This strategy involves an iterative process designed to achieve compliance with the requirements for substantially complete containment and EBS release. The strategy will be implemented in such a manner that sufficient evidence will be provided for presentation to the Nuclear Regulatory Commission (NRC) so that it may make a finding that there is ''reasonable assurance'' that these performance requirements will indeed be met. In implementing the strategy, DOE recognizes four fundamental goals: (1) protect public health and safety; (2) minimize financial and other resource commitments; (3) comply with applicable laws and regulations; and (4) maintain an aggressive schedule. The strategy is intended to be a reasonable balance of these competing goals. 7 refs., 3 figs., 1 tab

  14. Water levels in the Yucca Mountain area, Nevada, 1995

    International Nuclear Information System (INIS)

    Graves, R.P.; Goemaat, R.L.

    1998-01-01

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1995. Seventeen wells representing 18 depth intervals were monitored periodically, generally on a monthly basis, 2 wells representing 3 depth intervals were monitored hourly, and 9 wells representing 15 depth intervals were monitored both periodically and hourly. All wells monitor water levels in Tertiary volcanic rocks except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes, a multiconductor cable unit, and/or pressure transducers. Mean water-level altitudes in the Tertiary volcanic rocks ranged from about 728 to about 1,034 meters above sea level during 1995. The mean water-level altitude in the well monitoring the Paleozoic carbonate rocks was about 753 meters above sea level during 1995. Mean water level altitudes were only an average of about 0.01 meters higher than 1994 mean water level altitudes. A single-well aquifer test was conducted on well UE-25 WT number-sign 12 during August and September 1995. Well USW 0-2 was also pumped during October and November 1995, in preparation for single-well aquifer test at that well. All data were acquired in accordance with a quality-assurance program to support the reliability of the data

  15. TSPA Model for the Yucca Mountain Unsaturated Zone

    International Nuclear Information System (INIS)

    M.L. Wilson; C.K. Ho

    2001-01-01

    Yucca Mountain, Nevada, is being considered as a potential site for a repository for spent nuclear fuel and high-level radioactive waste. Total-system performance-assessment (TSPA) calculations are performed to evaluate the safety of the site. Such calculations require submodels for all important engineered and natural components of the disposal system. There are five submodels related to the unsaturated zone: climate, infiltration, mountain-scale flow of water, seepage into emplacement drifts, and radionuclide transport. For each of these areas, models have been developed and implemented for use in TSPA. The climate model is very simple (a set of climate states have been deduced from paleoclimate data, and the times when climate changes occur in the future have been estimated), but the other four models make use of complex process models involving time-consuming computer runs. An important goal is to evaluate the impact of uncertainties (e.g., incomplete knowledge of the site) on the estimates of potential repository performance, so particular attention is given to the key uncertainties for each area. Uncertainties in climate, infiltration, and mountain-scale flow are represented in TSPA simulations by means of discrete high, medium, and low cases, Uncertainties in seepage and radionuclide transport are represented by means of continuous probability distributions for several key parameters

  16. THE PROPOSED YUCCA MOUNTAIN REPOSITORY FROM A CORROSIVE PERSPECTIVE

    International Nuclear Information System (INIS)

    PAYER JH

    2006-01-01

    The proposed Yucca Mountain Repository presents a familiar materials performance application that is regularly encountered in energy, transportation and other industries. The widely accepted approach to dealing with materials performance is to identify the performance requirements, to determine the operating conditions to which materials will be exposed and to select materials of construction that perform well in those conditions. A special feature of the proposed Repository is the extremely long time frame of interest, i.e. 10,000's of years and longer. Thus, the time evolution of the environment in contact with waste package surfaces and the time evolution of corrosion damage that may result are of primary interest in the determination of expected performance. Researchers at Case are part of a Department of Energy Corrosion and Materials Performance Cooperative. This team of leading scientists/engineers from major universities and national laboratories is working together to further enhance the understanding of the role of engineered barriers in waste isolation. The team is organized to address important topics: (1) Long-term behavior of protective, passive films; (2) Composition and properties of moisture in contact with metal surfaces; and (3) Rate of penetration and extent of corrosion damage over extremely long times. The work will also explore technical enhancements and seek to offer improvements in materials costs and reliability

  17. Flat flexible polymer heat pipes

    International Nuclear Information System (INIS)

    Oshman, Christopher; Li, Qian; Liew, Li-Anne; Yang, Ronggui; Bright, Victor M; Lee, Y C

    2013-01-01

    Flat, flexible, lightweight, polymer heat pipes (FPHP) were fabricated. The overall geometry of the heat pipe was 130 mm × 70 mm × 1.31 mm. A commercially available low-cost film composed of laminated sheets of low-density polyethylene terephthalate, aluminum and polyethylene layers was used as the casing. A triple-layer sintered copper woven mesh served as a liquid wicking structure, and water was the working fluid. A coarse nylon woven mesh provided space for vapor transport and mechanical rigidity. Thermal power ranging from 5 to 30 W was supplied to the evaporator while the device was flexed at 0°, 45° and 90°. The thermal resistance of the FPHP ranged from 1.2 to 3.0 K W −1 depending on the operating conditions while the thermal resistance for a similar-sized solid copper reference was a constant at 4.6 K W −1 . With 25 W power input, the thermal resistance of the liquid–vapor core of the FPHP was 23% of a copper reference sample with identical laminated polymer material. This work shows a promising combination of technologies that has the potential to usher in a new generation of highly flexible, lightweight, low-cost, high-performance thermal management solutions. (paper)

  18. Status of data, major results, and plans for geophysical activities, Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, H.W. [Geological Survey, Menlo Park, CA (USA); Hardin, E.L. [Science Applications International Corp., Las Vegas, NV (USA); Nelson, P.H. [Geological Survey, Denver, CO (USA)] [eds.

    1990-07-01

    This report describes past and planned geophysical activities associated with the Yucca Mountain Project and is intended to serve as a starting point for integration of geophysical activities. This report relates past results to site characterization plans, as presented in the Yucca Mountain Site Characterization Plan (SCP). This report discusses seismic exploration, potential field methods, geoelectrical methods, teleseismic data collection and velocity structural modeling, and remote sensing. This report discusses surface-based, airborne, borehole, surface-to-borehole, crosshole, and Exploratory Shaft Facility-related activities. The data described in this paper, and the publications discussed, have been selected based on several considerations; location with respect to Yucca Mountain, whether the success or failure of geophysical data is important to future activities, elucidation of features of interest, and judgment as to the likelihood that the method will produce information that is important for site characterization. 65 refs., 19 figs., 12 tabs.

  19. Stratigraphic relations and hydrologic properties of the Paintbrush Tuff (PTn) hydrologic unit, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Moyer, T.C.; Geslin, J.K.; Flint, L.E.

    1996-01-01

    Yucca Mountain is being investigated as a potential site for a high- level nuclear waste repository. The intent of this study was to clarify stratigraphic relations within the Paintbrush Tuff (PTn) unit at Yucca Mountain in order to better understand vertical and lateral variations in hydrologic properties as they relate to the lithologic character of these rocks. This report defines informal stratigraphic units within the PTn interval, demonstrates their lateral continuity in the Yucca Mountain region, describes later and vertical variations within them, and characterizes their hydrologic properties and importance to numerical flow and transport models. We present tables summarizing the depth to stratigraphic contacts in cored borehole studies, and unit descriptions and correlations in 10 measured sections

  20. Yucca Mountain Site Characterization Project bibliography, January--June 1995. Supplement 4, Add.3: An update

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, P.M. [ed.

    1996-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1995, through June 30, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  1. Geohydrologic data and models of Rainier Mesa and their implications to Yucca Mountain

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Cook, N.G.W.; Wollenberg, H.A.; Carnahan, C.L.; Javandel, I.; Tsang, C.F.

    1993-01-01

    The geohydrologic data collected at Rainier Mesa provide the only extensive observations in tunnels presently available on flow and transport in tuff units similar to those of a potential nuclear waste repository at Yucca Mountain. This information can, therefore, be of great value in planning the Exploratory Studies Facility (ESF) testing in underground drifts at Yucca Mountain. In this paper, we compare the geohydrologic characteristics of tuff units of these two sites and summarize the hydrochemical data indicating the presence of nearly meteoric water in Rainier Mesa tunnels. A simple analytic model is used to evaluate the possibility of propagating transient pulses of water along fractures or faults through the Paintbrush nonwelded tuff unit to reach the tunnel beds below. The results suggest that fast flow could occur without significant mixing between meteoric fracture water and matrix pore water. The implications of these findings on planning for the ESF Calico Hills study at Yucca Mountain are discussed

  2. Yucca Mountain site characteriztion project bibliography. Progress Report, 1994--1995

    International Nuclear Information System (INIS)

    1996-08-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project which was added to the Department of Energy's Energy Science and Technology Database from January 1, 1994, through December 31, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology database which were not sponsored by the project but have some relevance to it

  3. Yucca Mountain Site Characterization Project bibliography, July--December 1992: An update, Supplement 3, Addendum 2

    International Nuclear Information System (INIS)

    1993-04-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from July 1, 1992, through December 31, 1992. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  4. Three dimensional visualization in support of Yucca Mountain Site characterization activities

    International Nuclear Information System (INIS)

    Brickey, D.W.

    1992-01-01

    An understanding of the geologic and hydrologic environment for the proposed high-level nuclear waste repository at Yucca Mountain, NV is a critical component of site characterization activities. Conventional methods allow visualization of geologic data in only two or two and a half dimensions. Recent advances in computer workstation hardware and software now make it possible to create interactive three dimensional visualizations. Visualization software has been used to create preliminary two-, two-and-a-half-, and three-dimensional visualizations of Yucca Mountain structure and stratigraphy. The three dimensional models can also display lithologically dependent or independent parametric data. Yucca Mountain site characterization studies that will be supported by this capability include structural, lithologic, and hydrologic modeling, and repository design

  5. Status of data, major results, and plans for geophysical activities, Yucca Mountain Project

    International Nuclear Information System (INIS)

    Oliver, H.W.; Hardin, E.L.; Nelson, P.H.

    1990-07-01

    This report describes past and planned geophysical activities associated with the Yucca Mountain Project and is intended to serve as a starting point for integration of geophysical activities. This report relates past results to site characterization plans, as presented in the Yucca Mountain Site Characterization Plan (SCP). This report discusses seismic exploration, potential field methods, geoelectrical methods, teleseismic data collection and velocity structural modeling, and remote sensing. This report discusses surface-based, airborne, borehole, surface-to-borehole, crosshole, and Exploratory Shaft Facility-related activities. The data described in this paper, and the publications discussed, have been selected based on several considerations; location with respect to Yucca Mountain, whether the success or failure of geophysical data is important to future activities, elucidation of features of interest, and judgment as to the likelihood that the method will produce information that is important for site characterization. 65 refs., 19 figs., 12 tabs

  6. K/AR dating of clinoptilolite, mordenite, and associated clays from Yucca Mountains, Nevada

    International Nuclear Information System (INIS)

    WoldeGabriel, G.

    1993-01-01

    Zeolites are abundant in the geologic record in both continental and marine environments. The purpose of the present study is to evaluate the utility of K-bearing zeolites for dating by the K/Ar method to determine the time of zeolite diagenesis at Yucca Mountain, Nevada (Fig. 1). At Yucca Mountain, K-rich clinoptilolite and possibly mordenite are the only potentially K/Ar dateable secondary minerals present in the zeolite-rich tuffs except for some illite/smectites (≥10% illite layers) associated with these minerals. Direct dating of K-rich clinoptilolite, the most abundant zeolite in the altered tuffs, is important to delineate zeolite chronology as part of the site characterization of Yucca Mountain

  7. Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Lukens, Wayne W. (Lawrence Berkeley National Laboratory)

    2006-03-01

    The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop also covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.

  8. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1993--September 30, 1993, No. 9

    International Nuclear Information System (INIS)

    1994-02-01

    In accordance with requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended, and 10 CFR 60.18(g), the U.S. Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period April 1, 1993, through September 30, 1993. This report is the ninth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of high-level radioactive waste. Also included in this report are activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies

  9. Strontium isotope geochemistry of soil and playa deposits near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Mahan, S.A.

    1994-01-01

    The isotopic composition of strontium contained in the carbonate fractions of soils provides an excellent tracer which can be used to test models for their origin. This paper reports data on surface coatings and cements, eolian sediments, playas and alluvial fan soils which help to constrain a model for formation of the extensive calcretes and fault infillings in the Yucca Mountain region. The playas contain carbonate with a wide range of strontium compositions; further work will be required to fully understand their possible contributions to the pedogenic carbonate system. Soils from an alluvial fan to the west of Yucca Mountain show that only small amounts of strontium are derived from a fan draining a carbonate terrane have strontium component. Although much evidence points to an eolian source for at least some of the strontium in the pedogenic carbonates near Yucca Mountain, an additional component or past variation of strontium composition in the eolian source is required to model the pedogenic carbonate system

  10. Yucca Mountain site characteriztion project bibliography. Progress Report, 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project which was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994, through December 31, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology database which were not sponsored by the project but have some relevance to it.

  11. Yucca Mountain Site Characterization Project Bibliography, July--December 1994: An update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Charactrization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Science and Technology Database from July 1, 1994 through December 31, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  12. Making the post-closure safety case for the proposed yucca mountain repository

    International Nuclear Information System (INIS)

    Swift, P.; Van Luik, A.

    2008-01-01

    This presentation provided an overview of the Yucca Mountain repository post-closure safety case. The safety case concept is being integrated into the license application being prepared for Yucca Mountain, by giving particularly close attention to the treatment of uncertainties, thereby bringing available lines of evidence into the supporting information, as appropriate, to build a comprehensive argument for safety and regulatory compliance. For Yucca Mountain, it is expected that there will be open questions in the safety case to be presented to the regulator and a programme will be outlined on what information is to be gathered (and how) prior to the next iteration in the licensing process to address such open issues. A one-hundred year operational phase is foreseen and planned, and the changes in knowledge and approaches that occur over time will have to be accommodated through the formal licensing process. (authors)

  13. The origin and history of alteration and carbonatization of the Yucca Mountain ignimbrites. Volume I

    International Nuclear Information System (INIS)

    Szymanski, J.S.

    1992-04-01

    This document contains Volume I of the report entitled The Origin and History of Alteration and Carbonatization of the Yucca Mountain Ignimbrites by Jerry S. Szymanski and a related correspondence with comments by Donald E. Livingston. In the Great Basin, the flow of terrestrial heat through the crust is affected in part by the flow of fluids. At Yucca Mountain, the role of fluids in crustal heat transport is manifested at the surface by youthful calcretes, sinters, bedrock veins, hydrothermal eruption breccias and hydrothermal alteration. This report discusses evidence for recent metasomatism high in the stratigraphic section at Yucca Mountain. Over the last several hundred years, episodes of calcite emplacement contemporaneous with local mafic volcanism have occurred at intervals that are not long in comparison with the isolation time required for a High-Level Radioactive Waste repository

  14. Stratigraphic relations and hydrologic properties of the Paintbrush Tuff (PTn) hydrologic unit, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, T.C.; Geslin, J.K. [Science Applications International Corp., Golden, CO (United States); Flint, L.E. [U.S. Geological Survey, Yucca Mountain Project, Mercury, NV (United States)

    1996-08-01

    Yucca Mountain is being investigated as a potential site for a high- level nuclear waste repository. The intent of this study was to clarify stratigraphic relations within the Paintbrush Tuff (PTn) unit at Yucca Mountain in order to better understand vertical and lateral variations in hydrologic properties as they relate to the lithologic character of these rocks. This report defines informal stratigraphic units within the PTn interval, demonstrates their lateral continuity in the Yucca Mountain region, describes later and vertical variations within them, and characterizes their hydrologic properties and importance to numerical flow and transport models. We present tables summarizing the depth to stratigraphic contacts in cored borehole studies, and unit descriptions and correlations in 10 measured sections.

  15. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1992--March 31, 1993, No. 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-08-01

    In accordance with requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended, and 10 CFR 60.18(g), the US Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period October 1, 1992, through March 31, 1993. This report is the eighth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of high-level radioactive waste. Also included in this report are activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies.

  16. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1993--September 30, 1993, No. 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    In accordance with requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended, and 10 CFR 60.18(g), the U.S. Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period April 1, 1993, through September 30, 1993. This report is the ninth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of high-level radioactive waste. Also included in this report are activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies.

  17. Department of Energy perspective on high-level waste standards for Yucca Mountain

    International Nuclear Information System (INIS)

    Brocoum, S.J.; Gil, A.V.; Van Luik, A.E.; Lugo, M.A.

    1996-01-01

    This paper provides a regulatory perspective from the viewpoint of the potential licensee, the U.S. Department of Energy (DOE), on the National Academy of Sciences (NAS) report on Yucca Mountain standards issued in August 1995, and on how the recommendations in that report should be considered in the development of high-level radioactive waste standards applicable to Yucca Mountain. The paper first provides an overview of the DOE perspective and then discusses several of the issues that are of most importance in the development of the regulatory framework for Yucca Mountain, including both the U.S. Environmental Protection Agency (EPA) standard and the U.S. Nuclear Regulatory Commission (NRC) implementing regulation. These issues include: the regulatory time frame, the risk/dose limit, the definition of the reference biosphere, human intrusion, and natural processes and events

  18. Yucca Mountain Site Characterization Project Bibliography, July, December 194: An update

    International Nuclear Information System (INIS)

    1995-03-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Charactrization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Science and Technology Database from July 1, 1994 through December 31, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  19. Effect of variations in the geologic data base on mining at Yucca Mountain for NNWSI

    International Nuclear Information System (INIS)

    1984-12-01

    This study was conducted to assess the impact of the known geologic factors and their variations at Yucca Mountain on the mining of the underground repository. The repository horizon host rock was classified according to the Norwegian Geotechnical Institute Tunneling Quality Index, which, in turn, qualified the range of ground support for the geologic and hydrologic conditions in the proposed repository area. The CSIR Classification System was used to verify the results of the NGI System. The expected range of requirements are well within normal mining industry standards and unusual or expensive ground support requirements are not expected to be required at Yucca Mountain. The amount of subsurface geologic information on Yucca Mountain is limited to data from a few drill holes. Variations in the existing data base are probable and should be provided for in the conceptual designs

  20. Yucca Mountain Site Characterization Project Bibliography, January--June 1993. An update: Supplement 4, Addendum 1

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, P.M. [ed.

    1995-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994 through June 30, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers,and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  1. Yucca Mountain Site Characterization Project Bibliography, January--June 1993. An update: Supplement 4, Addendum 1

    International Nuclear Information System (INIS)

    Stephan, P.M.

    1995-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1994 through June 30, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers,and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  2. Yucca Mountain Site Characterization Project bibliography, January--June 1995. Supplement 4, Add.3: An update

    International Nuclear Information System (INIS)

    Stephan, P.M.

    1996-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1995, through June 30, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  3. Calcite/opal deposits at Yucca Mountain, Nevada: Pedogenic or hypogene?

    International Nuclear Information System (INIS)

    Hill, C.A.; Schluter, C.M.; Harmon, R.S.

    1994-01-01

    This study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. The purpose of this paper is to consider all of the geological and geochemical data available for the calcite/opal deposits at Yucca Mountain and to ascertain whether this data favors a pedogenic or hyogene origin for these deposits. Far from being of esoteric concern, this subject is of paramount importance to the debate which rages around the suitability of Yucca Mountain as a high-level radioactive waste repository site. It is also the purpose of this paper to serve as a foundation for a lengthy feature article to be submitted for publication in 1994. In addition, a stand has been taken by the National Research Council of the National Academy of Sciences against the upwelling-water model (a vote of 17 to 0 against), and this same panel report has concluded that open-quotes there is no compelling evidence for the repetitive flooding of the environment by expulsion of groundwaterclose quotes and that open-quotes instead, the evidence strongly supports the idea that the near-surface mineral deposits resulted from percolating rainwater, which carried soil minerals down into rock fracturesclose quotes. Based on such information the Department of Energy has stated that it open-quotes finds no basis to continue to study the origin of these specific depositsclose quotes. This study, based upon many different independent lines of evidence, reaches the opposite conclusion and instead favors a hypogene spring-travertine origin for the controversial calcite/opal deposits at Yucca Mountain. This study recognizes a pedogenic carbonate component at Yucca Mountain, but argues that this component is distinct from, and sometimes intermixed with, the calcite/opal deposits

  4. Independent management and financial review, Yucca Mountain Project, Nevada. Final report

    International Nuclear Information System (INIS)

    1995-01-01

    The Yucca Mountain Project is one part of the Department of Energy's Office of Civilian Radioactive Waste Management Program (the Program) which was established by the Nuclear Waste Policy Act of 1982, and as amended in 1987. The Program's goal is to site the nation's first geologic repository for the permanent disposal of high-level nuclear waste, in the form of spent fuel rod assemblies, generated by the nuclear power industry and a smaller quantity of Government radioactive waste. The Program, which also encompasses the transportation system and the multipurpose canister system was not the subject of this Report. The subject of this Review was only the Yucca Mountain Project in Nevada. While the Review was directed toward the Yucca Mountain Project rather than the Program as a whole, there are certain elements of the Project which cannot be addressed except through discussion of some Program issues. An example is the Total System Life Cycle Cost addressed in Section 7 of this report. Where Program issues are discussed in this Report, the reader is reminded of the scope limitations of the National Association of Regulatory Utility Commissioners (NARUC) contract to review only the Yucca Mountain Project. The primary scope of the Review was to respond to the specific criteria contained in the NARUC scope of work. In responding to these criteria, the Review Team understood that some interested parties have expressed concern over the requirements of the Nuclear Waste Policy Act relative to the Yucca Mountain Project and the nature of activities currently being carried out by the Department of Energy at the Yucca Mountain Project site. The Review Team has attempted to analyze relevant portions of the Nuclear Waste Policy Act as Amended, but has not conducted a thorough analysis of this legislation that could lead to any specific legal conclusions about all aspects of it

  5. Independent management and financial review, Yucca Mountain Project, Nevada. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-15

    The Yucca Mountain Project is one part of the Department of Energy`s Office of Civilian Radioactive Waste Management Program (the Program) which was established by the Nuclear Waste Policy Act of 1982, and as amended in 1987. The Program`s goal is to site the nation`s first geologic repository for the permanent disposal of high-level nuclear waste, in the form of spent fuel rod assemblies, generated by the nuclear power industry and a smaller quantity of Government radioactive waste. The Program, which also encompasses the transportation system and the multipurpose canister system was not the subject of this Report. The subject of this Review was only the Yucca Mountain Project in Nevada. While the Review was directed toward the Yucca Mountain Project rather than the Program as a whole, there are certain elements of the Project which cannot be addressed except through discussion of some Program issues. An example is the Total System Life Cycle Cost addressed in Section 7 of this report. Where Program issues are discussed in this Report, the reader is reminded of the scope limitations of the National Association of Regulatory Utility Commissioners (NARUC) contract to review only the Yucca Mountain Project. The primary scope of the Review was to respond to the specific criteria contained in the NARUC scope of work. In responding to these criteria, the Review Team understood that some interested parties have expressed concern over the requirements of the Nuclear Waste Policy Act relative to the Yucca Mountain Project and the nature of activities currently being carried out by the Department of Energy at the Yucca Mountain Project site. The Review Team has attempted to analyze relevant portions of the Nuclear Waste Policy Act as Amended, but has not conducted a thorough analysis of this legislation that could lead to any specific legal conclusions about all aspects of it.

  6. Progress report on colloid-facilitated transport at Yucca Mountain: Yucca Mountain site characterization program milestone 3383

    International Nuclear Information System (INIS)

    Triay, I.R.; Degueldre, C.; Wistrom, A.O.; Cotter, C.R.; Lemons, W.W.

    1996-06-01

    To assess colloid-facilitated radionuclide transport in groundwaters at the potential nuclear waste repository at Yucca Mountain, it is very important to understand the generation and stability of colloids, including naturally occurring colloids. To this end, we measured the colloid concentration in waters from Well J-13, which is on the order of 106 particles per milliliter (for particle sizes larger than 100 manometers). At this low particle loading, the sorption of radionuclides to colloids would have to be extremely high before the colloids could carry a significant amount of radionuclides from the repository to the accessible environment. We also performed aggregation experiments to evaluate the stability of silica (particle diameter: 85 nm) and clay colloids (particle diameter: 140 nm) as a function of ionic strength in a carbonate-rich synthetic groundwater. When the concentration of electrolyte is increased to induce aggregation, the aggregation is irreversible and the rate of aggregation increases with increasing electrolyte strength. We used autocorrelation photon spectroscopy to estimate the rate of particle aggregation for both types of colloids. By relating the measured aggregation rate to the Smoluchowski rate expression, we determined the stability ratio, W. Aggregation of silica particles and kaolinite clay particles decreased dramatically for an electrolyte concentration, C NaCl , below 300 mM and 200 mM, respectively

  7. TSPA 1991: An initial total-system performance assessment for Yucca Mountain; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, R.W.; Wilson, M.L.; Dockery, H.A.; Kaplan, P.G.; Eaton, R.R.; Bingham, F.W. [Sandia National Labs., Albuquerque, NM (United States); Gauthier, J.H.; Robey, T.H. [Spectra Research Inst., Albuquerque, NM (United States)

    1992-07-01

    This report describes an assessment of the long-term performance of a repository system that contains deeply buried highly radioactive waste; the system is assumed to be located at the potential site at Yucca Mountain, Nevada. The study includes an identification of features, events, and processes that might affect the potential repository, a construction of scenarios based on this identification, a selection of models describing these scenarios (including abstraction of appropriate models from detailed models), a selection of probability distributions for the parameters in the models, a stochastic calculation of radionuclide releases for the scenarios, and a derivation of complementary cumulative distribution functions (CCDFs) for the releases. Releases and CCDFs are calculated for four categories of scenarios: aqueous flow (modeling primarily the existing conditions at the site, with allowances for climate change), gaseous flow, basaltic igneous activity, and human intrusion. The study shows that models of complex processes can be abstracted into more simplified representations that preserve the understanding of the processes and produce results consistent with those of more complex models.

  8. Unclassified Source Term and Radionuclide Data for Corrective Action Unit 98: Frenchman Flat Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene

    2005-09-01

    Frenchman Flat is one of several areas of the Nevada Test Site (NTS) used for underground nuclear testing (Figure 1-1). These nuclear tests resulted in groundwater contamination in the vicinity of the underground test areas. As a result, the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently conducting a corrective action investigation (CAI) of the Frenchman Flat underground test areas. Since 1996, the Nevada Division of Environmental Protection (NDEP) has regulated NNSA/NSO corrective actions through the ''Federal Facility Agreement and Consent Order'' ([FFACO], 1996). Appendix VI of the FFACO agreement, ''Corrective Action Strategy'', was revised on December 7, 2000, and describes the processes that will be used to complete corrective actions, including those in the Underground Test Area (UGTA) Project. The individual locations covered by the agreement are known as corrective action sites (CASs), which are grouped into corrective action units (CAUs). The UGTA CASs are grouped geographically into five CAUs: Frenchman Flat, Central Pahute Mesa, Western Pahute Mesa, Yucca Flat/Climax Mine, and Rainier Mesa/Shoshone Mountain (Figure 1-1). These CAUs have distinctly different contaminant source, geologic, and hydrogeologic characteristics related to their location (FFACO, 1996). The Frenchman Flat CAU consists of 10 CASs located in the northern part of Area 5 and the southern part of Area 11 (Figure 1-1). This report documents the evaluation of the information and data available on the unclassified source term and radionuclide contamination for Frenchman Flat, CAU 98. The methodology used to estimate hydrologic source terms (HSTs) for the Frenchman Flat CAU is also documented. The HST of an underground nuclear test is the portion of the total inventory of radionuclides that is released over time into the groundwater following the test. The total residual inventory

  9. Unclassified Source Term and Radionuclide Data for Corrective Action Unit 98: Frenchman Flat Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Farnham, Irene

    2005-01-01

    Frenchman Flat is one of several areas of the Nevada Test Site (NTS) used for underground nuclear testing (Figure 1-1). These nuclear tests resulted in groundwater contamination in the vicinity of the underground test areas. As a result, the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently conducting a corrective action investigation (CAI) of the Frenchman Flat underground test areas. Since 1996, the Nevada Division of Environmental Protection (NDEP) has regulated NNSA/NSO corrective actions through the ''Federal Facility Agreement and Consent Order'' ([FFACO], 1996). Appendix VI of the FFACO agreement, ''Corrective Action Strategy'', was revised on December 7, 2000, and describes the processes that will be used to complete corrective actions, including those in the Underground Test Area (UGTA) Project. The individual locations covered by the agreement are known as corrective action sites (CASs), which are grouped into corrective action units (CAUs). The UGTA CASs are grouped geographically into five CAUs: Frenchman Flat, Central Pahute Mesa, Western Pahute Mesa, Yucca Flat/Climax Mine, and Rainier Mesa/Shoshone Mountain (Figure 1-1). These CAUs have distinctly different contaminant source, geologic, and hydrogeologic characteristics related to their location (FFACO, 1996). The Frenchman Flat CAU consists of 10 CASs located in the northern part of Area 5 and the southern part of Area 11 (Figure 1-1). This report documents the evaluation of the information and data available on the unclassified source term and radionuclide contamination for Frenchman Flat, CAU 98. The methodology used to estimate hydrologic source terms (HSTs) for the Frenchman Flat CAU is also documented. The HST of an underground nuclear test is the portion of the total inventory of radionuclides that is released over time into the groundwater following the test. The total residual inventory of radionuclides associated with one or

  10. Today's Yucca mountain project and a new concept of multi-barrier system

    International Nuclear Information System (INIS)

    Xu Guoqing

    2008-01-01

    This paper mainly deals with the current status of Yucca Mountain project and the progress in study on engineering barrier in Belgium and introduces the future plan for Yucca Mountain project, two reports on draft supplemental environmental impact statement, and the view of New York Sen. Hillary Clinton and Illinois Sen. Barack Obama during the 2008 president elections related to the building a nuclear waste repository in Nevada. In order to enhance the security of geological disposal of high-level radioactive waste, a new concept about multi-barrier system is given by Belgium and is concisely described here. (authors)

  11. Secondary mineral evidence of large-scale water table fluctuations at Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whelan, J.F.; Moscati, R.J.; Marshall, B.D

    1997-12-01

    At Yucca Mountain, currently under consideration as a potential permanent underground repository for high-level radioactive wastes, the present-day water table is 500 to 700 m deep. This thick unsaturated zone (UZ) is part of the natural barrier system and is regarded as a positive attribute of the potential site. The USGS has studied the stable isotopes and petrography of secondary calcite and silica minerals that coat open spaces in the UZ and form irregular veins and masses in the saturated zone (SZ). This paper reviews the findings from the several studies undertaken at Yucca Mountain on its mineralogy

  12. Applications of in situ cosmogenic nuclides in the geologic site characterization of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Gosse, J.C.; Harrington, C.D.

    1995-01-01

    The gradual buildup of rare isotopes from interactions between cosmic rays and atoms in an exposed rock provides a new method of directly determining the exposure age of rock surfaces. The cosmogenic nuclide method can also provide constraints on erosion rates and the length of time surface exposure was interrupted by burial. Numerous successful applications of the technique have been imperative to the complete surface geologic characterization of Yucca Mountain, Nevada, a potential high level nuclear waste repository. In this short paper, we summarize the cosmogenic nuclide method and describe with examples some the utility of the technique in geologic site characterization. We report preliminary results from our ongoing work at Yucca Mountain

  13. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    International Nuclear Information System (INIS)

    R.A. Levich; J.S. Stuckless

    2006-01-01

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation

  14. Site environmental report for calendar year 1996: Yucca Mountain site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1997-11-01

    The environmental program established by the Yucca Mountain Site Characterization Office (YMSCO) has been designed and implemented to protect, maintain, and restore environmental quality, minimize potential threats to the environment and the public, and comply with environmental policies and US Department of Energy (DOE) Orders. In accordance with DOE Order 5400.1, General Environmental Protection Program (DOE, 1990a), to be superseded by DOE Order 231.1 (under review), the status of the Yucca Mountain Site Characterization Project (YMP) environmental program has been summarized in this annual Site Environmental Report (SER) to characterize performance, document compliance with environmental requirements, and highlight significant programs and efforts during calendar year 1996

  15. Los Alamos National Laboratory Yucca Mountain Project Publications (1979-1996)

    International Nuclear Information System (INIS)

    Ruhala, E.R.; Klein, S.H.

    1997-06-01

    This over-350 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1996 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/ground-water chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance

  16. Los Alamos National Laboratory Yucca Mountain Project publications (1979--1994)

    International Nuclear Information System (INIS)

    Bowker, L.M.; Espinosa, M.L.; Klein, S.H.

    1995-11-01

    This over-300 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1994 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/groundwater chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance

  17. Excavation effects on tuff - recent findings and plans for investigations at Yucca Mountain

    International Nuclear Information System (INIS)

    Blejwas, T.E.; Zimmerman, R.M.; Shephard, L.E.

    1989-01-01

    Plans for site-characterization testing and constructing an exploratory shaft facility (ESF) at Yucca Mountain, Nevada, have been influenced by the construction and monitoring of stable openings in G-Tunnel on the Nevada Test Site. G-Tunnel provides access for testing in a thin bed of unsaturated welded tuff that is similar to that at Yucca Mountain. The data from the experiments in the ESF will be used to validate analytical methods for predicting the response of underground openings to the excavation process and to the heat generated by the waste

  18. 36Cl measurements of the unsaturated zone flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Norris, A.E.; Wolfsberg, K.; Gifford, S.K.

    1985-01-01

    Determining the unsaturated zone percolation rate, or flux, is an extremely important site characterization issue for the proposed Yucca Mountain nuclear waste repository. A new technique that measures the 36 Cl content of tuff from the Exploratory Shaft will be used to calculate flux through the unsaturated zone over longer times than could be measured by the more conventional 14 C method. Measurements of the 36 Cl ''bomb pulse'' in soil samples from Yucca Mountain have been used to confirm that infiltration is not an important recharge mechanism. 5 refs., 3 figs

  19. Release of radon contaminants from Yucca Mountain: The role of buoyancy driven flow

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Pescatore, C.

    1994-02-01

    The potential for the repository heat source to promote buoyancy driven flow and thereby cause release of radon gas out of Yucca Mountain has been examined through a critical review of the theoretical and experimental studies of this process. The review indicates that steady-state buoyancy enhanced release of natural radon and other contaminant gases should not be a major concern at Yucca Mountain. Barometric pumping and wind pumping are identified as two processes that will have a potentially greater effect on surface releases of gases

  20. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Levich; J.S. Stuckless

    2006-09-25

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  1. Long-range Rocky Flats utilization study

    International Nuclear Information System (INIS)

    1983-02-01

    The purpose of this Study was to provide information concerning the Rocky Flats Plant and its operations that will be useful to the Nation's decision-makers in determining the long-range future of the Plant. This Study was conducted under the premise that national defense policy must be supported and, accordingly, the capabilities at Rocky Flats must be maintained there or at some other location(s). The Study, therefore, makes no attempt to speculate on how possible future changes in national defense policy might affect decisions regarding the utilization of Rocky Flats. Factors pertinent to decisions regarding Rocky Flats, which are included in the Study, are: physical condition of the Plant and its vulnerabilities to natural phenomena; risks associated with plutonium to Plant workers and the public posed by postulated natural phenomena and operational accidents; identification of alternative actions regarding the future use of the Rocky Flats Plant with associated costs and time scales; local socioeconomic impacts if Rocky Flats operations were relocated; and potential for other uses if Rocky Flats facilities were vacated. The results of the tasks performed in support of this Study are summarized in the context of these five factors

  2. Remotely sensed evidence of the rapid loss of tidal flats in the Yellow Sea

    Science.gov (United States)

    Murray, N. J.; Phinn, S. R.; Clemens, R. S.; Possingham, H.; Fuller, R. A.

    2013-12-01

    strategies. Tidal flat conversion to agricultural land in Chungcheongnam-do Province, South Korea (1982, 2010). The Landsat MSS and TM images show widespread conversion of tidal flats (left) to agricultural land (right) over two decades.

  3. Chaotic inflation in models with flat directions

    International Nuclear Information System (INIS)

    Graziani, F.; Olive, K.

    1989-01-01

    We consider the chaotic inflationary scenario in models with flat directions. We find that unless the scalars along the flat directions have vacuum expectation values p or 10 14 M p 15 M p depending on the expectation values of the chaotic inflator, Ψ, one or two or more periods of inflation occur but with a resulting energy density perturbation δρ/ρ ≅ 10 -16 , far too small to be of any consequence for galaxy formation. Even with p only limited initial values of ≅ (3-200) M p result in inflation with reasonable density perturbations. Thus chaotic inflation in models with flat directions require rather special initial conditions. (orig.)

  4. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Flint, L.E.

    1998-01-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relationships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally

  5. Construction features of the exploratory shaft at Yucca Mountain

    International Nuclear Information System (INIS)

    Adair, G.W.; Fiore, J.N.

    1984-01-01

    The Exploratory Shaft (ES) at Yucca Mountain is planned to be constructed during 1985 and 1986 as part of the detailed site characterization for one of three sites which may be selected as candidates for location of a high-level radioactive waste repository. Conventional mining methods will be used for the shaft sinking phase of the ES project. The ES will be comprised of surface support facilities, a 1480-ft-deep circular shaft lined with concrete to a finished inside diameter of 12 ft, lateral excavations and test installations extending up to 200 ft from the shaft, and long lateral borings extending up to 2300 ft from the shaft. The estimated time for sinking the shaft to a total depth of about 1480 ft and completing the lateral excavations and borings is about two years. The major underground development planned for the primary test level at a depth of 1200 ft consists of the equivalent of 1150 ft of 15- by 15-ft drift. The total volume of rock to be removed from the shaft proper and the lateral excavations totals about 1/2 million cubic feet. Construction equipment for the shaft and underground excavation phases consists of conventional mine hoisting equipment, shot hole and rock bolt drilling jumbos, mucking machines, and hauling machines. The desire to maintain relatively uniform and even walls in selected shaft and drift intervals will require that controlled blasting techniques be employed. Certain lateral boring operations associated with tests to be conducted in the underground development may pose some unusual problems or require specialized equipment. One of the operations is boring and lining a 30-in.-diam by 600-ft-long horizontal hole with a boring machine being developed under the direction of Sandia National Laboratories. Another special operation is coring long lateral holes (500 to 2000 ft) with minimum use of liquid circulating fluids. 8 figures

  6. Construction features of the Exploratory Shaft at Yucca Mountain

    International Nuclear Information System (INIS)

    Adair, G.W.; Fiore, J.N.

    1984-01-01

    The Exploratory Shaft (ES) at Yucca Mountain is planned to be constructed during 1985 and 1986 as part of the detailed site characterization for one of three sites which may be selected as candidates for location of a high-level radioactive waste repository. Conventional mining methods will be used for the shaft sinking phase of the ES project. The ES will be comprised of surface support facilities, a 1,480-foot-deep circular shaft lined with concrete to a finished inside diameter of 12 feet, lateral excavations and test installations extending up to 200 feet from the shaft, and long lateral borings extending up to 2,300 feet from the shaft. The estimated time for sinking the shaft to a total depth of about 1,480 feet and completing the lateral excavations and borings is about two years. The major underground development planned for the primary test level at a depth of 1,200 feet consists of the equivalent of 1,150 feet of 15- by 15-foot drift. The total volume of rock to be removed from the shaft proper and the lateral excavations totals about 1/2 million cubic feet. Construction equipment for the shaft and underground excavation phases consists of conventional mine hoisting equipment, shot hole and rock bolt drilling jumbos, mucking machines, and hauling machines. The desire to maintain relatively uniform and even walls in selected shaft and drift intervals will require that controlled blasting techniques be employed. Such techniques generally classified as ''smooth blasting'' are commonly used for excavation in the construction industry

  7. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    F. Perry; R. Youngs

    2004-10-14

    The purpose of this scientific analysis report is threefold: (1) Present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the probabilistic volcanic hazard analysis (PVHA) (CRWMS M&O 1996 [DIRS 100116]). Conceptual models presented in the PVHA are summarized and applied in areas in which new information has been presented. Alternative conceptual models are discussed, as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) Present revised probability calculations based on PVHA outputs for a repository footprint proposed in 2003 (BSC 2003 [DIRS 162289]), rather than the footprint used at the time of the PVHA. This analysis report also calculates the probability of an eruptive center(s) forming within the repository footprint using information developed in the PVHA. Probability distributions are presented for the length and orientation of volcanic dikes located within the repository footprint and for the number of eruptive centers (conditional on a dike intersecting the repository) located within the repository footprint. (3) Document sensitivity studies that analyze how the presence of potentially buried basaltic volcanoes may affect the computed frequency of intersection of the repository footprint by a basaltic dike. These sensitivity studies are prompted by aeromagnetic data collected in 1999, indicating the possible presence of previously unrecognized buried volcanoes in the YMR (Blakely et al. 2000 [DIRS 151881]; O'Leary et al. 2002 [DIRS 158468]). The results of the sensitivity studies are for informational purposes only and are not to be used for purposes of assessing repository performance.

  8. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    F. Perry; R. Youngs

    2004-01-01

    The purpose of this scientific analysis report is threefold: (1) Present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the probabilistic volcanic hazard analysis (PVHA) (CRWMS M and O 1996 [DIRS 100116]). Conceptual models presented in the PVHA are summarized and applied in areas in which new information has been presented. Alternative conceptual models are discussed, as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) Present revised probability calculations based on PVHA outputs for a repository footprint proposed in 2003 (BSC 2003 [DIRS 162289]), rather than the footprint used at the time of the PVHA. This analysis report also calculates the probability of an eruptive center(s) forming within the repository footprint using information developed in the PVHA. Probability distributions are presented for the length and orientation of volcanic dikes located within the repository footprint and for the number of eruptive centers (conditional on a dike intersecting the repository) located within the repository footprint. (3) Document sensitivity studies that analyze how the presence of potentially buried basaltic volcanoes may affect the computed frequency of intersection of the repository footprint by a basaltic dike. These sensitivity studies are prompted by aeromagnetic data collected in 1999, indicating the possible presence of previously unrecognized buried volcanoes in the YMR (Blakely et al. 2000 [DIRS 151881]; O'Leary et al. 2002 [DIRS 158468]). The results of the sensitivity studies are for informational purposes only and are not to be used for purposes of assessing repository performance

  9. Repository relevant testing applied to the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Bates, J.K.; Woodland, A.B.; Wronkiewicz, D.J.; Cunnane, J.C.

    1990-10-01

    The tuff beds of Yucca Mountain, Nevada, are currently being investigated as a site for the disposal of high-level nuclear waste in an underground repository. If this site is found suitable, the repository would be located in the unsaturated zone above the water table, and a description of the site and the methodology of assessing the performance of the repository are described in the Site Characterization Plan (SCP). While many factors are accounted for during performance assessment, an important input parameter is the degradation behavior of the waste forms, which may be either spent fuel or reprocessed waste contained in a borosilicate glass matrix. To develop the necessary waste form degradation input, the waste package environment needs to be identified. This environment will change as the waste decays and also is a function of the repository design which has not yet been finalized. At the present time, an exact description of the waste package environment is not available. The SCP does provide an initial description of conditions that can be used to guide waste form evaluation. However, considerable uncertainty exists concerning the conditions under which waste form degradation and radionuclide release may occur after the waste package containment barriers are finally breached. The release conditions that are considered to be plausible include (1) a open-quotes bathtubclose quotes condition in which the waste becomes fully or partially submerged in water that enters the breached container and accumulates to fill the container up to the level of the breach opening, (2) a open-quotes wet dripclose quotes or open-quotes trickle throughclose quotes condition in which the waste form is exposed to dripping water that enters through the top and exits the bottom of a container with multiple holes, and (3) a open-quotes dryclose quotes condition in which the waste form is exposed to a humid air environment

  10. Significance of geochemical characterization to performance at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Simmons, A.M.

    1993-01-01

    The U.S. concept for permanent disposal of high-level radioactive waste resembles those of other countries in that it relies upon burial in a deep geologic medium. This concept relies upon multiple barriers to retard transport of radionuclides to the accessible environment; those barriers consist of the waste form, waste container, engineered barrier system (including possible backfill) and retardant properties of the host rock. Because mobilization of radionuclides is fundamentally a geochemical problem, an understanding of past, present, and future geochemical processes is a requisite part of site characterization studies conducted by the U.S. Department of Energy at Yucca Mountain, Nevada. Geochemical information is needed for evaluating three favorable conditions (the rates of geochemical processes, conditions that promote precipitation or sorption of radionuclides or prohibit formation of colloids, and stable mineral assemblages) and four potentially adverse conditions of the site (groundwater conditions that could increase the chemical reactivity of the engineered barried system or reduce sorption, potential for gaseous radionuclide movement, and oxidizing groundwaters) for key issues of radionuclide release, groundwater quality, and stability of the geochemical environment. Preliminary results of long-term heating experiments indicate that although zeolites can be modified by long-term, low temperature reactions, their beneficial sorptive properties will not be adversely affected. Mineral reactions will be controlled by the aqueous activity of silica in groundwater with which the minerals are in contact. Geochemical barriers alone may satisfy release requirements to the accessible environment for many radionuclides; however, additional site specific geochemical and mineralogical data are needed to test existing and future radionuclide transport models

  11. Ventilation design for Yucca Mountain Exploratory Studies Facility

    International Nuclear Information System (INIS)

    Jurani, R.S.

    1995-01-01

    Yucca Mountain, located in Southern Nevada approximately 160 km northwest of Las Vegas, is currently the site of intensive surface-based and underground investigations. The investigations are required to determine if the site is suitable for long term isolation of the Nation's high level nuclear waste inventory. A major component of the program is the Exploratory Studies Facility, or ESF. The ESF, when completed, will consist of approximately 25,600 meters of tunnels and drifts. The network of tunnels and drifts will house and support a wide array of testing programs conceived to provide physical information about the site. Information on geologic, geomechanical, and hydrologic data will be used in the repository design if the site is found suitable. Besides a few special requirements, the general ESF ventilation criteria during construction are similar to that of commercial tunneling and mining operations. The minimum air velocity at the Tunnel Boring Machine (TBM) and other active mining faces is 0.51 meter per second (m/s) (100 feet per minute [fpm]). Airways, estimated leakages and ventilation controls are converted into equivalent resistances for input to mine ventilation network computer simulations. VNETPC Version 3.1 computer software is used to generate the ventilation models for optimized system design and component selection. Subsequently, actual performance of the ventilation system will be verified and validated to comply with applicable nuclear regulatory quality assurance requirements. Dust control in the ESF is dependent on effective dust collection, enclosure, and airflow dilution. Minimum use of water, as feasible, is necessary to avoid adding moisture to the potential repository horizon. The limitation of water use for test drilling and TBM operation, and the rigid compliance with applicable federal and state regulations, make the ESF a ventilation design challenge

  12. Secondary plant succession on disturbed sites at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

    1994-12-01

    This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented

  13. Secondary plant succession on disturbed sites at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

    1994-12-01

    This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented.

  14. Reactive Transport Modeling of the Yucca Mountain Site, Nevada

    International Nuclear Information System (INIS)

    G. Bodvarsson

    2004-01-01

    The Yucca Mountain site has a dry climate and deep water table, with the repository located in the middle of an unsaturated zone approximately 600 m thick. Radionuclide transport processes from the repository to the water table are sensitive to the unsaturated zone flow field, as well as to sorption, matrix diffusion, radioactive decay, and colloid transport mechanisms. The unsaturated zone flow and transport models are calibrated against both physical and chemical data, including pneumatic pressure, liquid saturation, water potential, temperature, chloride, and calcite. The transport model predictions are further compared with testing specific to unsaturated zone transport: at Alcove 1 in the Exploratory Studies Facility (ESF), at Alcove 8 and Niche 3 of the ESF, and at the Busted Butte site. The models are applied to predict the breakthroughs at the water table for nonsorbing and sorbing radionuclides, with faults shown as the important paths for radionuclide transport. Daughter products of some important radionuclides, such as 239 Pu and 241 Am, have faster transport than the parents and must be considered in the unsaturated zone transport model. Colloid transport is significantly affected by colloid size, but only negligibly affected by lunetic declogging (reverse filtering) mechanisms. Unsaturated zone model uncertainties are discussed, including the sensitivity of breakthrough to the active fracture model parameter, as an example of uncertainties related to detailed flow characteristics and fracture-matrix interaction. It is expected that additional benefits from the unsaturated zone barrier for transport can be achieved by full implementation of the shadow zone concept immediately below the radionuclide release points in the waste emplacement drifts

  15. Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2004 to September 30, 2006

    International Nuclear Information System (INIS)

    Smith, Ken

    2007-01-01

    This report describes earthquake activity within approximately 65 km of Yucca Mountain site during the October 1, 2004 to September 30, 2006 time period (FY05-06). The FY05-06 earthquake activity will be compared with the historical and more recent period of seismic activity in the Yucca Mountain region. The relationship between the distribution of seismicity and active faults, historical patterns of activity, and rates of earthquakes (number of events and their magnitudes) are important components in the assessment of the seismic hazard for the Yucca Mountain site. Since October 1992 the University of Nevada has compiled a catalog of earthquakes in the Yucca Mountain area. Seismicity reports have identified notable earthquake activity, provided interpretations of the seismotectonics of the region, and documented changes in the character of earthquake activity based on nearly 30 years of site-characterization monitoring. Data from stations in the seismic network in the vicinity of Yucca Mountain is collected and managed at the Nevada Seismological Laboratory (NSL) at the University of Nevada Reno (UNR). Earthquake events are systematically identified and cataloged under Implementing Procedures developed in compliance with the Nevada System of Higher Education (NSHE) Quality Assurance Program. The earthquake catalog for FY05-06 in the Yucca Mountain region submitted to the Yucca Mountain Technical Data Management System (TDMS) forms the basis of this report

  16. Morphodynamic Modeling of Tidal Mud Flats

    National Research Council Canada - National Science Library

    Winterwerp, Johan C

    2008-01-01

    The objective of the current research proposal is to develop and test a numerical model to simulate and predict the seasonal morphodynamic evolution of intertidal mud flats in macrotidal environments...

  17. Near-field flat focusing mirrors

    Science.gov (United States)

    Cheng, Yu-Chieh; Staliunas, Kestutis

    2018-03-01

    This article reviews recent progress towards the design of near-field flat focusing mirrors, focusing/imaging light patterns in reflection. An important feature of such flat focusing mirrors is their transverse invariance, as they do not possess any optical axis. We start with a review of the physical background to the different focusing mechanisms of near- and far-field focusing. These near-field focusing devices like flat lenses and the reviewed near-field focusing mirrors can implement planar focusing devices without any optical axis. In contrast, various types of far-field planar focusing devices, such as high-contrast gratings and metasurfaces, unavoidably break the transverse invariance due to their radially symmetrical structures. The particular realizations of near-field flat focusing mirrors including Bragg-like dielectric mirrors and dielectric subwavelength gratings are the main subjects of the review. The first flat focusing mirror was demonstrated with a chirped mirror and was shown to manage an angular dispersion for beam focusing, similar to the management of chromatic dispersion for pulse compression. Furthermore, the reviewed optimized chirped mirror demonstrated a long near-field focal length, hardly achieved by a flat lens or a planar hyperlens. Two more different configurations of dielectric subwavelength gratings that focus a light beam at normal or oblique incidence are also reviewed. We also summarize and compare focusing performance, limitations, and future perspectives between the reviewed flat focusing mirrors and other planar focusing devices including a flat lens with a negative-index material, a planar hyperlens, a high-contrast grating, and a metasurface.

  18. Potentially disruptive hydrologic features, events and processes at the Yucca Mountain Site, Nevada

    International Nuclear Information System (INIS)

    Hoxie, D.T.

    1995-01-01

    Yucca Mountain, Nevada, has been selected by the United States to be evaluated as a potential site for the development of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the site is determined to be suitable for repository development and construction is authorized, the repository at the Yucca Mountain site is planned to be constructed in unsaturated tuff at a depth of about 250 meters below land surface and at a distance of about 250 meters above the water table. The intent of locating a repository in a thick unsaturated-zone geohydrologic setting, such as occurs at Yucca Mountain under the arid to semi-arid climatic conditions that currently prevail in the region, is to provide a natural setting for the repository system in which little ground water will be available to contact emplaced waste or to transport radioactive material from the repository to the biosphere. In principle, an unsaturated-zone repository will be vulnerable to water entry from both above and below. Consequently, a major effort within the site-characterization program at the Yucca Mountain site is concerned with identifying and evaluating those features, events, and processes, such as increased net infiltration or water-table rise, whose presence or future occurrence could introduce water into a potential repository at the site in quantities sufficient to compromise the waste-isolation capability of the repository system

  19. Equilibrium modeling of the formation of zeolites in fractures at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Chipera, S.J.; Bish, D.L.; Carlos, B.A.

    1993-01-01

    Yucca Mountain, in southern Nevada, is currently being investigated to determine its suitability to host the first US high-level nuclear waste repository. One of the reasons that Yucca Mountain was chosen for study is the presence of thick sequences of zeolite-rich horizons. In as much as fractures may serve as potential pathways for aqueous transport, the minerals that line fractures are of particular interest. Zeolites are common in fractures at Yucca Mountain and consist mainly of clinoptilolite/heulandite and mordenite although sporadic occurrences of chabazite, erionite, phillipsite, and stellrite have been identified using X-ray powder diffraction. To understand better the conditions under which the observed zeolite species were formed, thermodynamic data were estimated and calculations of log a((K + ) 2 /Ca ++ ) versus log a((Na + ) 2 /Ca ++ ) were conducted at various temperatures and silica activities. Using present-day Yucca Mountain water chemistries as a lower constraint on silica activity, clinoptilolite/heulandite and mordenite are still the zeolite species that would form under present conditions

  20. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1995 quality program status report

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1996-07-01

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project's (YMP's) quality assurance program for January 1 to September 30, 1995. The report includes major sections on program activities and trend analysis