Sample records for providing high damping

  1. Damping in high-temperature superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R.


    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  2. DAMPE

    CERN Multimedia

    Chen, D

    The $\\textbf{DA}$rk $\\textbf{M}$atter $\\textbf{P}$article $\\textbf{E}$xplorer (DAMPE) experiment is a high-energy astroparticle physics satellite mission to search for Dark Matter signatures in space, study the cosmic ray spectrum and composition up to 100 TeV, and perform high-energy gamma astronomy. The launch is planned for end 2015, initially for 3 years, to compliment existing space missions FERMI, AMS and CALET.

  3. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...

  4. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars


    This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil with focus on the horizontal sliding and rocking. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and ......-parameter models with respect to the prediction of the maximum response during excitation and the geometrical damping related to free vibrations of a footing....

  5. Damping and support in high-temperature superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R [Sammamish, WA; McIver, Carl R [Everett, WA; Mittleider, John A [Kent, WA


    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  6. Highly Damping Hard Coatings for Protection of Titanium Blades

    National Research Council Canada - National Science Library

    Movchan, Boris A; Ustinov, Anatolii I


    Sn-Cr-MgO system is used as an example to show the basic capability to produce by EBPVD protective metal-ceramic coatings with a high adhesion strength, high values of hardness and damping capacity...

  7. Development of Composite Materials with High Passive Damping Properties

    National Research Council Canada - National Science Library

    Crocker, Malcolm J


    ... structure with high damping. Composite sandwich structures have several advantages, such as their high strength-to-weight ratio, excellent thermal insulation, and good performance as water and vapor barriers...

  8. Fast damping in mismatched high intensity beam transportation

    Directory of Open Access Journals (Sweden)

    V. Variale


    Full Text Available A very fast damping of beam envelope oscillation amplitudes was recently observed in simulations of high intensity beam transport, through periodic FODO cells, in mismatched conditions [V. Variale, Nuovo Cimento Soc. Ital. Fis. 112A, 1571–1582 (1999 and T. Clauser et al., in Proceedings of the Particle Accelerator Conference, New York, 1999 (IEEE, Piscataway, NJ, 1999, p. 1779]. A Landau damping mechanism was proposed at the origin of observed effect. In this paper, to further investigate the source of this fast damping, extensive simulations have been carried out. The results presented here support the interpretation of the mechanism at the origin of the fast damping as a Landau damping effect.

  9. Design, Fabrication, and Properties of High Damping Metal Matrix Composites?A Review


    Qianfeng Fang; Zhijun Cheng; Tao Zhang; Xianping Wang; Hui Lu


    Nowadays it is commonly considered that high damping materials which have both the good mechanical properties as structural materials and the high damping capacity for vibration damping are the most direct vibration damping solution. In metals and alloys however, exhibiting simultaneously high damping capacity and good mechanical properties has been noted to be normally incompatible because the microscopic mechanisms responsible for internal friction (namely damping capacity) are dependent up...

  10. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Dezhen [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhou, Yumei, E-mail: [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ding, Xiangdong [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Otsuka, Kazuhiro [Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sun, Jun [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Xiaobing [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan)


    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti{sub 50}(Pd{sub 50−x}D{sub x}) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q{sup −1}~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q{sup −1}~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges.

  11. High Frequency Longitudinal Damped Vibrations of a Cylindrical Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Mihai Valentin Predoi


    Full Text Available Ultrasonic piezoelectric transducers used in classical nondestructive testing are producing in general longitudinal vibrations in the MHz range. A simple mechanical model of these transducers would be very useful for wave propagation numerical simulations, avoiding the existing complicated models in which the real components of the transducer are modeled by finite elements. The classical model for longitudinal vibrations is not adequate because the generated longitudinal wave is not dispersive, the velocity being the same at any frequency. We have adopted the Rayleigh-Bishop model, which avoids these limitations, even if it is not converging to the first but to the second exact longitudinal mode in an elastic rod, as obtained from the complicated Pochhammer-Chree equations. Since real transducers have significant vibrations damping, we have introduced a damping term in the Rayleigh-Bishop model, increasing the imaginary part and keeping almost identical real part of the wavenumber. Common transducers produce amplitude modulated signals, completely attenuated after several periods. This can be modeled by two close frequencies, producing a “beat” phenomenon, superposed on the high damping. For this reason, we introduce a two-rod Rayleigh-Bishop model with damping. Agreement with measured normal velocity on the transducer free surface is encouraging for continuation of the research.

  12. Design, Fabrication, and Properties of High Damping Metal Matrix Composites—A Review

    Directory of Open Access Journals (Sweden)

    Qianfeng Fang


    Full Text Available Nowadays it is commonly considered that high damping materials which have both the good mechanical properties as structural materials and the high damping capacity for vibration damping are the most direct vibration damping solution. In metals and alloys however, exhibiting simultaneously high damping capacity and good mechanical properties has been noted to be normally incompatible because the microscopic mechanisms responsible for internal friction (namely damping capacity are dependent upon the parameters that control mechanical strength. To achieve a compromise, one of the most important methods is to develop two-phase composites, in which each phase plays a specific role: damping or mechanical strength. In this review, we have summarized the development of the design concept of high damping composite materials and the investigation of their fabrication and properties, including mechanical and damping properties, and suggested a new design concept of high damping composite materials where the hard ceramic additives exhibit high damping capacity at room temperature owing to the stress-induced reorientation of high density point defects in the ceramic phases and the high damping capacity of the composite comes mainly from the ceramic phases.

  13. Optimal Design of High-Order Passive-Damped Filters for Grid-Connected Applications

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede


    Harmonic stability problems caused by the resonance of high-order filters in power electronic systems are ever increasing. The use of passive damping does provide a robust solution to address these issues, but at the price of reduced efficiency due to the presence of additional passive components...... filter resonance. The passive filters are designed, built and validated both analytically and experimentally for verification........ Hence, a new method is proposed in this paper to optimally design the passive damping circuit for the LCL filters and LCL with multi-tuned LC traps. In short, the optimization problem reduces to the proper choice of the multi-split capacitors or inductors in the high-order filter. Compared to existing...... design procedures, the proposed method simplifies the iterative design of the overall filter while ensuring the minimum resonance peak with a lower damping capacitor and a lower rated resistor. It is shown that there is only one optimal value of the damping resistor or quality factor to achieve a minimum...

  14. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    substantially with the level of damping. For example, a strongly damped pendulum, with a hinge vibrated at high frequency along an elliptical path with horizontal or vertical axis, will line up along a line offset from the vertical; the offset vanishes for very light or very strong damping, attaining a maximum...... on a slightly modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical...

  15. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel


    substantially with the level of damping. For example, a strongly damped pendulum, with a hinge vibrated at high frequency along an elliptical path with horizontal or vertical axis, will line up along a line offset from the vertical; the offset vanishes for very light or very strong damping, attaining a maximum...... modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical optimally...

  16. High Temperature Damping Behavior of Plasma-Sprayed Thermal Barrier and Protective Coatings (United States)

    Zhu, Dongming; Miller, Robert A.; Duffy, Kirsten P.; Ghosn, Louis J.


    A high temperature damping test apparatus has been developed using a high heat flux CO 2 laser rig in conjunction with a TIRA S540 25 kHz Shaker and Polytec OFV 5000 Vibrometer system. The test rig has been successfully used to determine the damping performance of metallic and ceramic protective coating systems at high temperature for turbine engine applications. The initial work has been primarily focused on the microstructure and processing effects on the coating temperature-dependence damping behavior. Advanced ceramic coatings, including multicomponent tetragonal and cubic phase thermal barrier coatings, along with composite bond coats, have also been investigated. The coating high temperature damping mechanisms will also be discussed.

  17. Sub-synchronous resonance damping using high penetration PV plant (United States)

    Khayyatzadeh, M.; Kazemzadeh, R.


    The growing need to the clean and renewable energy has led to the fast development of transmission voltage-level photovoltaic (PV) plants all over the world. These large scale PV plants are going to be connected to power systems and one of the important subjects that should be investigated is the impact of these plants on the power system stability. Can large scale PV plants help to damp sub-synchronous resonance (SSR) and how? In this paper, this capability of a large scale PV plant is investigated. The IEEE Second Benchmark Model aggregated with a PV plant is utilized as the case study. A Wide Area Measurement System (WAMS) based conventional damping controller is designed and added to the main control loop of PV plant in order to damp the SSR and also investigation of the destructive effect of time delay in remote feedback signal. A new optimization algorithm called teaching-learning-based-optimization (TLBO) algorithm has been used for managing the optimization problems. Fast Furrier Transformer (FFT) analysis and also transient simulations of detailed nonlinear system are considered to investigate the performance of the controller. Robustness of the proposed system has been analyzed by facing the system with disturbances leading to significant changes in generator and power system operating point, fault duration time and PV plant generated power. All the simulations are carried out in MATLAB/SIMULINK environment.

  18. Energy conservation and high-frequency damping in numerical time integration

    DEFF Research Database (Denmark)

    Krenk, Steen


    additional variables to represent damping. In the present paper it is demonstrated, how damping equivalent to the α-damping of the Newmark algorithm can be introduced directly via displacement and velocity dependent terms. It is furthermore shown, how this damping can be improved by introduction of a new set...... this often leads to a fairly large number of high-frequency modes, that are not represented well – and occasionally directly erroneously – by the model. It is desirable to cure this problem by devising algorithms that include the possibility of introducing algorithmic energy dissipation of the high......-frequency modes. The problem is well known from classic collocation based algorithms – notably various forms of the Newmark algorithm – where the equation of motion is supplemented by approximate relations between displacement, velocity and acceleration. Here adjustment of the algorithmic parameters can be used...

  19. Design of high gradient, high repetition rate damped C -band rf structures (United States)

    Alesini, David; Bellaveglia, Marco; Bini, Simone; Gallo, Alessandro; Lollo, Valerio; Pellegrino, Luigi; Piersanti, Luca; Cardelli, Fabio; Migliorati, Mauro; Mostacci, Andrea; Palumbo, Luigi; Tocci, Simone; Ficcadenti, Luca; Pettinacci, Valerio


    The gamma beam system of the European Extreme Light Infrastructure-Nuclear Physics project foresees the use of a multibunch train colliding with a high intensity recirculated laser pulse. The linac energy booster is composed of 12 traveling wave C -band structures, 1.8 m long with a field phase advance per cell of 2 π /3 and a repetition rate of 100 Hz. Because of the multibunch operation, the structures have been designed with a dipole higher order mode (HOM) damping system to avoid beam breakup (BBU). They are quasiconstant gradient structures with symmetric input couplers and a very effective damping of the HOMs in each cell based on silicon carbide (SiC) rf absorbers coupled to each cell through waveguides. An optimization of the electromagnetic and mechanical design has been done to simplify the fabrication and to reduce the cost of the structures. In the paper, after a review of the beam dynamics issues related to the BBU effects, we discuss the electromagnetic and thermomechanic design criteria of the structures. We also illustrate the criteria to compensate the beam loading and the rf measurements that show the effectiveness of the HOM damping.

  20. Design of high gradient, high repetition rate damped C-band rf structures

    Directory of Open Access Journals (Sweden)

    David Alesini


    Full Text Available The gamma beam system of the European Extreme Light Infrastructure–Nuclear Physics project foresees the use of a multibunch train colliding with a high intensity recirculated laser pulse. The linac energy booster is composed of 12 traveling wave C-band structures, 1.8 m long with a field phase advance per cell of 2π/3 and a repetition rate of 100 Hz. Because of the multibunch operation, the structures have been designed with a dipole higher order mode (HOM damping system to avoid beam breakup (BBU. They are quasiconstant gradient structures with symmetric input couplers and a very effective damping of the HOMs in each cell based on silicon carbide (SiC rf absorbers coupled to each cell through waveguides. An optimization of the electromagnetic and mechanical design has been done to simplify the fabrication and to reduce the cost of the structures. In the paper, after a review of the beam dynamics issues related to the BBU effects, we discuss the electromagnetic and thermomechanic design criteria of the structures. We also illustrate the criteria to compensate the beam loading and the rf measurements that show the effectiveness of the HOM damping.

  1. Comparison of high order modes damping techniques for 800 MHz single cell superconducting cavities

    CERN Document Server

    Shashkov, Ya V; Zobov, M M


    Currently, applications of 800 MHz harmonic cavities in both bunch lengthening and shortening regimes are under consideration and discussion in the framework of the High Luminosity LHC project. In this paper we study electromagnetic characteristics of high order modes (HOM) for a single cell 800 MHz superconducting cavity and arrays of such cavities connected by drifts tubes. Different techniques for the HOM damping such as beam pipe grooves, coaxial-notch loads, fluted beam pipes etc. are investigated and compared. The influence of the sizes and geometry of the drift tubes on the HOM damping is analyzed.

  2. Method of Obtaining High Resolution Intrinsic Wire Boom Damping Parameters for Multi-Body Dynamics Simulations (United States)

    Yew, Alvin G.; Chai, Dean J.; Olney, David J.


    The goal of NASA's Magnetospheric MultiScale (MMS) mission is to understand magnetic reconnection with sensor measurements from four spinning satellites flown in a tight tetrahedron formation. Four of the six electric field sensors on each satellite are located at the end of 60- meter wire booms to increase measurement sensitivity in the spin plane and to minimize motion coupling from perturbations on the main body. A propulsion burn however, might induce boom oscillations that could impact science measurements if oscillations do not damp to values on the order of 0.1 degree in a timely fashion. Large damping time constants could also adversely affect flight dynamics and attitude control performance. In this paper, we will discuss the implementation of a high resolution method for calculating the boom's intrinsic damping, which was used in multi-body dynamics simulations. In summary, experimental data was obtained with a scaled-down boom, which was suspended as a pendulum in vacuum. Optical techniques were designed to accurately measure the natural decay of angular position and subsequently, data processing algorithms resulted in excellent spatial and temporal resolutions. This method was repeated in a parametric study for various lengths, root tensions and vacuum levels. For all data sets, regression models for damping were applied, including: nonlinear viscous, frequency-independent hysteretic, coulomb and some combination of them. Our data analysis and dynamics models have shown that the intrinsic damping for the baseline boom is insufficient, thereby forcing project management to explore mitigation strategies.

  3. Application of a high-performance damping metal to gravitational wave detectors

    CERN Document Server

    Mio, N; Moriwaki, S


    We have investigated applications of a high-performance damping metal, called M2052, which is a manganese-based alloy containing copper, nickel and iron. Using an all-metal prototype of a vibration isolation system, we have tested the property of M2052. As its actual application to a gravitational wave detector, we have used M2052 in the damping system of a suspended optics in TAMA300, which is a 300 m long interferometric gravitational wave detector built at the Mitaka campus of the National Astronomical Observatory in Japan. The results of the experiments are reported.

  4. Power oscillation damping controller

    DEFF Research Database (Denmark)


    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...... signal in response to the oscillation indicating signal, by processing the oscillation damping control signal in a signal processing chain. The signal processing chain includes a filter configured for passing only signals within a predetermined frequency range....

  5. High-damping-performance magnetorheological material for passive or active vibration control (United States)

    Liu, Taixiang; Yang, Ke; Yan, Hongwei; Yuan, Xiaodong; Xu, Yangguang


    Optical assembly and alignment system plays a crucial role for the construction of high-power or high-energy laser facility, which attempts to ignite fusion reaction and go further to make fusion energy usable. In the optical assembly and alignment system, the vibration control is a key problem needs to be well handled and a material with higher damping performance is much desirable. Recently, a new kind of smart magneto-sensitive polymeric composite material, named magnetorheological plastomer (MRP), was synthesized and reported as a high-performance magnetorheological material and this material has a magneto-enhanced high-damping performance. The MRP behaves usually in an intermediate state between fluid-like magnetorheological fluid and solid-like magnetorheological elastomer. The state of MRP, as well as the damping performance of MRP, can be tuned by adjusting the ratio of hard segments and soft segments, which are ingredients to synthesize the polymeric matrix. In this work, a series of MRP are prepared by dispersing micron-sized, magneto-sensitive carbonyl iron powders with related additives into polyurethane-based, magnetically insensitive matrix. It is found that the damping performance of MRP depends much on magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. Especially, the damping capacity of MRP can be tuned in a large range by adjusting external magnetic field. It is promising that the MRP will have much application in passive and active vibration control, such as vibration reduction in optical assembly and alignment system, vibration isolation or absorption in vehicle suspension system, etc.

  6. Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry (United States)

    Remillieux, Marcel C.; Ulrich, T. J.; Payan, Cédric; Rivière, Jacques; Lake, Colton R.; Le Bas, Pierre-Yves


    Resonant ultrasound spectroscopy (RUS) is a powerful and established technique for measuring elastic constants of a material with general anisotropy. The first step of this technique consists of extracting resonance frequencies and damping from the vibrational frequency spectrum measured on a sample with free boundary conditions. An inversion technique is then used to retrieve the elastic tensor from the measured resonance frequencies. As originally developed, RUS has been mostly applicable to (i) materials with small damping such that the resonances of the sample are well separated and (ii) samples with simple geometries for which analytical solutions exist. In this paper, these limitations are addressed with a new RUS approach adapted to materials with high damping and samples of arbitrary geometry. Resonances are extracted by fitting a sum of exponentially damped sinusoids to the measured frequency spectrum. The inversion of the elastic tensor is achieved with a genetic algorithm, which allows searching for a global minimum within a discrete and relatively wide solution space. First, the accuracy of the proposed approach is evaluated against numerical data simulated for samples with isotropic symmetry and transversely isotropic symmetry. Subsequently, the applicability of the approach is demonstrated using experimental data collected on a composite structure consisting of a cylindrical sample of Berea sandstone glued to a large piezoelectric disk. In the proposed experiments, RUS is further enhanced by the use of a 3-D laser vibrometer allowing the visualization of most of the modes in the frequency band studied.

  7. Cosmochemistry, Cosmology, and Fundamental Constants High-Resolution Spectroscopy of Damped Lyman-Alpha Systems (United States)

    Quast, R.; Reimers, D.; Smette, A.; Garcet, O.; Ledoux, C.; Lopez, S.; Wisotzki, L.

    Spectroscopy of QSO absorption lines provides essential observational input for the study of nucleosynthesis and chemical evolution of galaxies at high redshift. But new observations may indicate that present chemical abundance data are biased due to deficient spectral resolution and unknown selection effects: Recent high-resolution spectra reveal the hitherto unperceived chemical nonuniformity of a molecule-bearing damped Lyman-alpha (DLA) system, and the still ongoing H/ESO DLA survey produces convincing evidence for the effect of dust attenuation. We present a revised analysis of the H2-bearing DLA complex toward the QSO HE 0515.4414 showing nonuniform differential depletion of chemical elements onto dust grains, and introduce the H/ESO DLA survey and its implications. Conclusively, we aim at starting an unbiased chemical abundance database established on high-resolution spectroscopic observations. New data to probe the temperature-redshift relation predicted by standard cosmology and to test the constancy of fundamental constants will be potential spin-offs.

  8. Measurements of High Order Modes in High Phase Advance Damped Detuned Accelerating Structure for NLC

    CERN Document Server

    Khabiboulline, N; Carter, H


    The RF Technology Development group at Fermilab is working together with the NLC and JLC groups at SLAC and KEK on developing technology for room temperature X-band accelerating structures for a future linear collider. We have built several series of structures for high gradient tests. We have also built 150° phase advance per cell, 60 cm long, damped and detuned structures (HDDS or FXC series). Some of these structures will be used for the 8-pack test at SLAC by the end of 2004, as part of the JLC/NLC effort to demonstrate the readiness of room temperature RF technology for a linear collider. HDSS structures are very close to the final design for the linear collider, and it was very interesting to study the properties of high order modes in the structures produced by semi-industrial methods. In this study advanced RF technique and methods developed at Fermilab for structure low power testing and tuning have been used. The results of these measurements are presented in this paper.

  9. High Damping of Lightweight TiNi-Ti2Ni Shape Memory Composites for Wide Temperature Range Usage (United States)

    Yang, Bing; Luo, Zheng; Yuan, Bin; Liu, Jiangwen; Gao, Yan


    A bimodal porous TiNi-Ti2Ni shape memory alloy composite (SMAC) with 59% porosity was fabricated by sintering Ti-46at.%Ni elemental powders with pore-forming agent. The porous TiNi-Ti2Ni SMAC contains two irregular pores of about 400 and 120 μm. We investigated the microstructure and pore morphology correlated with the mechanical properties and damping capacities of the SMAC. Ti2Ni intermetallic phases with size of 1-3 μm were homogeneously distributed in the TiNi matrix. The porous TiNi-Ti2Ni SMAC exhibits exceptionally high inverse mechanical quality factor ( Q -1) of 0.25 at < 40 °C, which is among the highest value reported for porous/dense shape memory alloys or composites to best of our knowledge, and it shows very high compressive fracture strain of about 25%. Moreover, the fabricated porous SMAC at relatively low strain amplitude can exhibit considerable high Q -1 of 0.06 0.11 for a wide range of temperature between - 90 and 200 °C, which is attributed to the stress concentration distribution provided by the bimodal structure of pores and the massive interfaces between pore/matrix and TiNi/Ti2Ni. These porous SMACs can be an ideal candidate for using as a lightweight damping material in the energy-saving applications.

  10. Natural rubber/nitrile butadiene rubber/hindered phenol composites with high-damping properties

    Directory of Open Access Journals (Sweden)

    Xiuying Zhao


    Full Text Available New natural rubber (NR/nitrile butadiene rubber (NBR/hindered phenol (AO-80 composites with high-damping properties were prepared in this study. The morphological, structural, and mechanical properties were characterized by atomic force microscopy (AFM, polarized Fourier transform infrared spectrometer (FTIR, dynamic mechanical thermal analyzer (DMTA, and a tensile tester. Each composite consisted of two phases: the NR phase and the NBR/AO-80 phase. There was partial compatibility between the NR phase and the NBR/AO-80 phase, and the NR/NBR/AO-80 (50/50/20 composite exhibited a co-continuous morphology. Strain-induced crystallization occurred in the NR phase at strains higher than 200%, and strain-induced orientation appeared in the NBR/AO-80 phase with the increase of strain from 100% to 500%. The composites had a special stress–strain behavior and mechanical properties because of the simultaneous strain-induced orientation and strain-induced crystallization. In the working temperature range of a seismic isolation bearing, the composites (especially the NR/NBR/AO-80 (50/50/20 composite presented a high loss factor, high area of loss peak (TA, and high hysteresis energy. Therefore, the NR/NBR/AO-80 rubber composites are expected to have important application as a high-performance damping material for rubber bearing.

  11. On the Possibility of Using Nonlinear Elements for Landau Damping in High-Intensity Beams

    Energy Technology Data Exchange (ETDEWEB)

    Alexahin, Y. [Fermilab; Gianfelice-Wendt, E. [Fermilab; Lebedev, V. [Fermilab; Valishev, A. [Fermilab


    Direct space-charge force shifts incoherent tunes downwards from the coherent ones breaking the Landau mechanism of coherent oscillations damping at high beam intensity. To restore it nonlinear elements can be employed which move back tunes of large amplitude particles. In the present report we consider the possibility of creating a “nonlinear integrable optics” insertion in the Fermilab Recycler to host either octupoles or hollow electron lens for this purpose. For comparison we also consider the classic scheme with distributed octupole families. It is shown that for the Proton Improvement Plan II (PIP II) parameters the required nonlinear tune shift can be created without destroying the dynamic aperture.

  12. Quadratic Damping (United States)

    Fay, Temple H.


    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  13. A Four-Cell Periodically HOM-Damped RF Cavity for High Current Accelerators

    CERN Document Server

    Wu, G; Wang, H


    A periodically Higher Order Mode (HOM) damped RF cavity is a weakly coupled multi-cell RF cavity with HOM couplers periodically mounted between the cells. It was studied as an alternative RF structure between the single cell cavity and superstructure cavity in high beam current application requiring strong damping of the HOMs. The acceleration mode in this design is the lowest frequency mode (Zero Mode) in the pass band, in contrast to the traditional “π” acceleration mode. The acceleration mode of a four-cell Zero Mode cavity has been studied along with the monopole and dipole HOMs. Some HOMs have been modeled in HFSS with waveguide HOM couplers, which were subsequently verified by MAFIA time domain analysis. To understand the tuning challenge for the weakly coupled cavity, ANSYS and SUPERFISH codes were used to simulate the cavity frequency sensitivity and field flatness change within proper tuning range, which will influence the design of the tuner structure. This paper presen...

  14. A high phase advance damped and detuned structure for the main linacs of CLIC

    CERN Document Server

    Khan, V.F.; Grudiev, A.; Jones, R.M.; Wuensch, W.


    The main accelerating structures for the CLIC are designed to operate at an average accelerating gradient of 100 MV/m. The accelerating frequency has been optimised to 11.994 GHz with a phase advance of 2π/3 [1] of the main accelerating mode. The moderately damped and detuned structure (DDS) design [2-3] is being studied as an alternative to the strongly damped WDS design [1]. Both these designs are based on the nominal accelerating phase advance. Here we explore high phase advance (HPA) structures in which the group velocity of the rf fields is reduced compared to that of standard (2π/3) structures. The electrical breakdown strongly depends on the fundamental mode group velocity. Hence it is expected that electrical breakdown is less likely to occur in the HPA structures. We report on a study of both the fundamental and dipole modes in a CLIC_DDS_ HPA structure, designed to operate at 5π/6 phase advance per cell. Higher order dipole modes in both the standard and HPA structures are also studied.

  15. Energy conservation and high-frequency damping in numerical time-integration

    DEFF Research Database (Denmark)

    Krenk, Steen


    by introduction of a new set of variables related to the displacement and velocity vectors by a suitable first order filter with scalar coefficients. By this device an algorithmic damping can be obtained that is of third order in the low-frequency regime. It is an important feature of both algorithms...... this often leads to a fairly large number of high-frequency modes, that are not represented well - and occasionally directly erroneously - by the model. It is desirable to cure this problem by devising algorithms that include the possibility of introducing algorithmic energy dissipation of the high......-frequency modes. The problem is well known from classic collocation based algorithms - notably various forms of the Newmark algorithm where the equation of motion is supplemented by approximate relations between displacement, velocity and acceleration. Here adjustment of the algorithmic parameters can be used...

  16. A Forced Damped Oscillation Framework for Undulatory Swimming Provides New Insights into How Propulsion Arises in Active and Passive Swimming (United States)

    Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Patankar, Neelesh A.


    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions (“active” swimming) or by forces imparted by the surrounding fluid (“passive” swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained. PMID:23785272

  17. Highly Accurate Derivatives for LCL-Filtered Grid Converter with Capacitor Voltage Active Damping

    DEFF Research Database (Denmark)

    Xin, Zhen; Loh, Poh Chiang; Wang, Xiongfei


    The middle capacitor voltage of an LCL-filter, if fed back for synchronization, can be used for active damping. An extra sensor for measuring the capacitor current is then avoided. Relating the capacitor voltage to existing popular damping techniques designed with capacitor current feedback would...

  18. A Novel DFIG Damping Control for Power System with High Wind Power Penetration

    Directory of Open Access Journals (Sweden)

    Aiguo Tan


    Full Text Available Aiming at the fact that large-scale penetration of wind power will to some extent weaken the small signal stability of power systems, in this paper, the dynamic model of a doubly fed induction generator (DFIG is established firstly, to analyze the impact of wind generation on power oscillation damping. Then, based on the conventional maximum power point tracking control of variable speed wind turbine, a supplementary control scheme is proposed to increase the damping of power system. To achieve best performance, parameters of the damping control are tuned by using a genetic algorithm. Results of eigenvalue analysis and simulations demonstrate the effectiveness of supplementary damping control with fixed wind speed. At last, due to the problem that fluctuation of output power of wind generators would cause the unstable performance of the DFIG damping controller above, a new algorithm that adapts to the wind variation is added to the supplementary damping control scheme. Results of the simulation show that an improved damping control scheme can stably enhance system damping under various wind speeds and has higher practical value.

  19. Introduction to the scientific application system of DAMPE (On behalf of DAMPE collaboration) (United States)

    Zang, Jingjing


    The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. The science data processing and payload operation maintenance for DAMPE will be provided by the DAMPE Scientific Application System (SAS) at the Purple Mountain Observatory (PMO) of Chinese Academy of Sciences. SAS is consisted of three subsystems - scientific operation subsystem, science data and user management subsystem and science data processing subsystem. In cooperation with the Ground Support System (Beijing), the scientific operation subsystem is responsible for proposing observation plans, monitoring the health of satellite, generating payload control commands and participating in all activities related to payload operation. Several databases developed by the science data and user management subsystem of DAMPE methodically manage all collected and reconstructed science data, down linked housekeeping data, payload configuration and calibration data. Under the leadership of DAMPE Scientific Committee, this subsystem is also responsible for publication of high level science data and supporting all science activities of the DAMPE collaboration. The science data processing subsystem of DAMPE has already developed a series of physics analysis software to reconstruct basic information about detected cosmic ray particle. This subsystem also maintains the high performance computing system of SAS to processing all down linked science data and automatically monitors the qualities of all produced data. In this talk, we will describe all functionalities of whole DAMPE SAS system and show you main performances of data processing ability.

  20. Harnessing the damping properties of materials for high-speed atomic force microscopy. (United States)

    Adams, Jonathan D; Erickson, Blake W; Grossenbacher, Jonas; Brugger, Juergen; Nievergelt, Adrian; Fantner, Georg E


    The success of high-speed atomic force microscopy in imaging molecular motors, enzymes and microbes in liquid environments suggests that the technique could be of significant value in a variety of areas of nanotechnology. However, the majority of atomic force microscopy experiments are performed in air, and the tapping-mode detection speed of current high-speed cantilevers is an order of magnitude lower in air than in liquids. Traditional approaches to increasing the imaging rate of atomic force microscopy have involved reducing the size of the cantilever, but further reductions in size will require a fundamental change in the detection method of the microscope. Here, we show that high-speed imaging in air can instead be achieved by changing the cantilever material. We use cantilevers fabricated from polymers, which can mimic the high damping environment of liquids. With this approach, SU-8 polymer cantilevers are developed that have an imaging-in-air detection bandwidth that is 19 times faster than those of conventional cantilevers of similar size, resonance frequency and spring constant.

  1. Coulomb Damping (United States)

    Fay, Temple H.


    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  2. Directional damping material for integrally damped composite plates (United States)

    Biggerstaff, Janet M.; Kosmatka, John B.


    Current viscoelastic-damping materials behave isotopically so that their stiffness and damping properties are the same in all directions. There is a desire to develop viscoelastic- damping materials that behave orthotropically so that the stiffness and damping properties vary with material orientation. These damping materials can be made othrotropic by embedding rows of thin wires within the viscoelastic damping material. These wires add significant directional stiffness and strength to the damping materials, where the stiffness and strength variation with wire orientation follows classical lamination theory. The presence of these wires introduce different damping mechanisms (longitudinal, transverse, and longitudinal shear damping coefficients) that depend upon mode type and orientation angle. Results from experimental studies show that the magnitude of the loss factor and shear modulus depends upon the mode type and orientation angle of these wires within the damping material. The in-plane axial mode loss factor is highly dependent upon the longitudinal coefficient for (0 degrees) wire orientation, the transverse coefficient for (90 degree) wire orientation, and the longitudinal shear-damping coefficient for all other off-angle wire orientations. The loss factor for the out-of- plane bending and torsion modes is highly dependent upon all three damping coefficients.

  3. High Frequency Effects of Impedances and Coatings in the CLIC Damping Rings

    CERN Document Server

    Koukovini Platia, Eirini; Rumolo, G

    The Compact Linear Collider (CLIC) is a 3 TeV eÅe¡ machine, currently under design at CERN, that targets to explore the terascale particle physics regime. The experiment requires a high luminosity of 2£1034 cm2 s¡1, which can be achieved with ultra low emittances delivered from the Damping Rings (DRs) complex. The high bunch brightness of the DRs gives rise to several collective effects that can limit the machine performance. Impedance studies during the design stage of the DR are of great importance to ensure safe operation under nominal parameters. As a first step, the transverse impedance model of the DRis built, accounting for the wholemachine. Beam dynamics simulations are performedwith HEADTAIL to investigate the effect on beam dynamics. For the correct impedancemodeling of the machine elements, knowledge of the material properties is essential up to hundreds of GHz, where the bunch spectrum extends. Specifically, Non Evaporable Getter (NEG) is a commonly used coating for good vacuumbut its properti...

  4. Controllable damping of high-Q violin modes in fused silica suspension fibers (United States)

    Dmitriev, A. V.; Mescheriakov, S. D.; Tokmakov, K. V.; Mitrofanov, V. P.


    Fused silica fiber suspension of the test masses will be used in the interferometric gravitational wave detectors of the next generation. This allows a significant reduction of losses in the suspension and thermal noise associated with the suspension. Unfortunately, unwanted violin modes may be accidentally excited in the suspension fibers. The Q-factor of the violin modes also exceeds 108. They have a ring-down time that is too long and may complicate the stable control of the interferometer. Results of the investigation of a violin mode active damping system are described. An original sensor and actuator were especially developed to realize the effective coupling of a thin, optically transparent, non-conducting fused silica fiber with an electric circuit. The damping system allowed the changing of the violin mode's damping rate over a wide range.

  5. Controllable damping of high-Q violin modes in fused silica suspension fibers

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, A V; Mescheriakov, S D; Mitrofanov, V P [Faculty of Physics, Moscow State University, Moscow 119991 (Russian Federation); Tokmakov, K V, E-mail: dmitriev@hbar.phys.msu.r, E-mail: mitr@hbar.phys.msu.r [Present address: Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)


    Fused silica fiber suspension of the test masses will be used in the interferometric gravitational wave detectors of the next generation. This allows a significant reduction of losses in the suspension and thermal noise associated with the suspension. Unfortunately, unwanted violin modes may be accidentally excited in the suspension fibers. The Q-factor of the violin modes also exceeds 10{sup 8}. They have a ring-down time that is too long and may complicate the stable control of the interferometer. Results of the investigation of a violin mode active damping system are described. An original sensor and actuator were especially developed to realize the effective coupling of a thin, optically transparent, non-conducting fused silica fiber with an electric circuit. The damping system allowed the changing of the violin mode's damping rate over a wide range.

  6. Experimental Equipment for Damping Capacity Analyze of High or Low Internal Friction Metallic Materials (United States)

    Gârnet, I. A.; Stanciu, S.; Hopulele, I.; Zaharia, M. G.; Cimpoesu, N.; Chicet, D. L.; Crăciun, R. C.


    An experimental equipment, type torsion pendulum was made in laboratory in order to analyze the damping capacity of metallic materials. The scheme of the equipment is presented, 2D and 3D visions at real scale. The equipment functioning (mechanical and electrical part) and principles are presented. In this article we present some preliminary experimental results obtained on different materials (aluminium, steel etc.) using two different methods for registration the outputs (one based on optoelectronic device with Arduino acquisition board and second on video analyze (cinematic review: video to jpeg) of the damped motion of the lead pendulum). Steel materials were with shoot penning surface modification with and without heat treatment in order to establish the heat treatment influence on the damping capacity property.

  7. Prediction of Liquid Slosh Damping Using a High Resolution CFD Tool (United States)

    Yang, H. Q.; Purandare, Ravi; Peugeot, John; West, Jeff


    Propellant slosh is a potential source of disturbance critical to the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. Our previous effort has demonstrated the soundness of a CFD approach in modeling the detailed fluid dynamics of tank slosh and the excellent accuracy in extracting mechanical properties (slosh natural frequency, slosh mass, and slosh mass center coordinates). For a practical partially-filled smooth wall propellant tank with a diameter of 1 meter, the damping ratio is as low as 0.0005 (or 0.05%). To accurately predict this very low damping value is a challenge for any CFD tool, as one must resolve a thin boundary layer near the wall and must minimize numerical damping. This work extends our previous effort to extract this challenging parameter from first principles: slosh damping for smooth wall and for ring baffle. First the experimental data correlated into the industry standard for smooth wall were used as the baseline validation. It is demonstrated that with proper grid resolution, CFD can indeed accurately predict low damping values from smooth walls for different tank sizes. The damping due to ring baffles at different depths from the free surface and for different sizes of tank was then simulated, and fairly good agreement with experimental correlation was observed. The study demonstrates that CFD technology can be applied to the design of future propellant tanks with complex configurations and with smooth walls or multiple baffles, where previous experimental data is not available.

  8. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Miao, E-mail:; Qi, Song; Fu, Jie; Zhu, Mi [Key Lab for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)


    A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when the orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.

  9. Identification of Light Damping in Structures

    DEFF Research Database (Denmark)

    Jensen, J. L.; Brincker, Rune; Rytter, A.


    Different methods to identification of linear and nonlinear damping in lightly damped structures are discussed in this paper. The discussion is based on experiments with a 4 meter high monopile. Two alternative methods have been used for experimental cases of linear and nonlinear damping. Method 1...... case was a naturally damped monopile which was considered to be linear viscous damped. The second case was nonlinear viscous damping of the monopile due to a mounted damper on the monopile. The two cases illustrates identification of lightly damping in the linear and nonlinear case....

  10. Identification of Light Damping in Structures

    DEFF Research Database (Denmark)

    Jensen, Jacob Laigaard; Brincker, Rune; Rytter, Anders

    Different methods to identification of linear and nonlinear damping in lightly damped structures are discussed in this paper. The discussion is based on experiments with a 4 meter high monopile. Two alternative methods have been used for experimental cases of linear and nonlinear damping. Method 1...... case was a naturally damped monopile which was considered to be linear viscous damped. The second case was nonlinear viscous damping of the monopile due to a mounted damper on the monopile. The two cases illustrate identification of lightly damping in the linear and the nonlinear case....

  11. Output-only modal dynamic identification of frames by a refined FDD algorithm at seismic input and high damping (United States)

    Pioldi, Fabio; Ferrari, Rosalba; Rizzi, Egidio


    The present paper deals with the seismic modal dynamic identification of frame structures by a refined Frequency Domain Decomposition (rFDD) algorithm, autonomously formulated and implemented within MATLAB. First, the output-only identification technique is outlined analytically and then employed to characterize all modal properties. Synthetic response signals generated prior to the dynamic identification are adopted as input channels, in view of assessing a necessary condition for the procedure's efficiency. Initially, the algorithm is verified on canonical input from random excitation. Then, modal identification has been attempted successfully at given seismic input, taken as base excitation, including both strong motion data and single and multiple input ground motions. Rather than different attempts investigating the role of seismic response signals in the Time Domain, this paper considers the identification analysis in the Frequency Domain. Results turn-out very much consistent with the target values, with quite limited errors in the modal estimates, including for the damping ratios, ranging from values in the order of 1% to 10%. Either seismic excitation and high values of damping, resulting critical also in case of well-spaced modes, shall not fulfill traditional FFD assumptions: this shows the consistency of the developed algorithm. Through original strategies and arrangements, the paper shows that a comprehensive rFDD modal dynamic identification of frames at seismic input is feasible, also at concomitant high damping.

  12. Next generation HOM-damping (United States)

    Marhauser, Frank


    Research and development for superconducting radio-frequency cavities has made enormous progress over the last decades from the understanding of theoretical limitations to the industrial mass fabrication of cavities for large-scale particle accelerators. Key technologies remain hot topics due to continuously growing demands on cavity performance, particularly when in pursuit of high quality beams at higher beam currents or higher luminosities than currently achievable. This relates to higher order mode (HOM) damping requirements. Meeting the desired beam properties implies avoiding coupled multi-bunch or beam break-up instabilities depending on the machine and beam parameters that will set the acceptable cavity impedance thresholds. The use of cavity HOM-dampers is crucial to absorb the wakefields, comprised by all beam-induced cavity Eigenmodes, to beam-dynamically safe levels and to reduce the heat load at cryogenic temperature. Cavity damping concepts may vary, but are principally based on coaxial and waveguide couplers as well as beam line absorbers or any combination. Next generation energy recovery linacs and circular colliders call for cavities with strong HOM-damping that can exceed the state-of-the-art, while the operating mode efficiency shall not be significantly compromised concurrently. This imposes major challenges given the rather limited damping concepts. A detailed survey of established cavities is provided scrutinizing the achieved damping performance, shortcomings, and potential improvements. The scaling of the highest passband mode impedances is numerically evaluated in dependence on the number of cells for a single-cell up to a nine-cell cavity, which reveals the increased probability of trapped modes. This is followed by simulations for single-cell and five-cell cavities, which incorporate multiple damping schemes to assess the most efficient concepts. The usage and viability of on-cell dampers is elucidated for the single-cell cavity since it

  13. High frequency, multi-axis dynamic stiffness analysis of a fractionally damped elastomeric isolator using continuous system theory (United States)

    Fredette, Luke; Singh, Rajendra


    A spectral element approach is proposed to determine the multi-axis dynamic stiffness terms of elastomeric isolators with fractional damping over a broad range of frequencies. The dynamic properties of a class of cylindrical isolators are modeled by using the continuous system theory in terms of homogeneous rods or Timoshenko beams. The transfer matrix type dynamic stiffness expressions are developed from exact harmonic solutions given translational or rotational displacement excitations. Broadband dynamic stiffness magnitudes (say up to 5 kHz) are computationally verified for axial, torsional, shear, flexural, and coupled stiffness terms using a finite element model. Some discrepancies are found between finite element and spectral element models for the axial and flexural motions, illustrating certain limitations of each method. Experimental validation is provided for an isolator with two cylindrical elements (that work primarily in the shear mode) using dynamic measurements, as reported in the prior literature, up to 600 Hz. Superiority of the fractional damping formulation over structural or viscous damping models is illustrated via experimental validation. Finally, the strengths and limitations of the spectral element approach are briefly discussed.

  14. Analysis of inelasticity in high-damping Zn - Al alloys, gray irons, and iron alloys with internal friction of a magnetomechanical nature (United States)

    Skvortsov, A. I.


    Results are presented from a comparative analysis of the main mechanisms of internal friction in high-damping alloys based on the Zn - Al system, cast iron with flaked graphite, and iron alloys that exhibit internal friction of a magnetomechanical nature. A study is made of the damping capacity of alloys Zn - 26% Al, SCh25, and Fe - 5% Cr - 3% Al and steel 45, which are typical representatives of the types of materials in question. Their set of physico-mechanical properties is determined with allowance for damping capacity.

  15. Research on the impact of surface properties of particle on damping effect in gear transmission under high speed and heavy load (United States)

    Xiao, Wangqiang; Chen, Zhiwei; Pan, Tianlong; Li, Jiani


    The vibration and noise from gear transmission have great damage on the mechanical equipment and operators. Through inelastic collisions and friction between particles, the energy can be dissipated in gear transmission. A dynamic model of particle dampers in gear transmission was put forward in this paper. The performance of particle dampers in centrifugal fields under different rotational speeds and load was investigated. The surface properties such as the impact of coefficient of restitution and friction coefficient of the particle on the damping effect were analyzed and the total energy loss was obtained by discrete element method (DEM). The vibration from time-varying mesh stiffness was effectively reduced by particle dampers and the optimum coefficient of restitution was discovered under different rotational speeds and load. Then, a test bench for gear transmission was constructed, and the vibration of driven gear and driving gear were measured through a three-directional wireless acceleration sensor. The research results agree well with the simulation results. While at relatively high speed, smaller coefficient of restitution achieves better damping effect. As to friction coefficient, at relatively high speed, the energy dissipation climbs up and then declines with the increase of the friction coefficient. The results can provide guidelines for the application of particle damper in gear transmission.

  16. Landau damping

    CERN Document Server

    Hofmann, A


    Abstract Landau damping is the suppression of an instability by a spread of frequencies in the beam. It is treated here from an experimental point of view. To introduce the concept we consider a set of oscillators having a spread in resonant frequencies !r and calculate the response of their there center-of-mass to an external driving force. A pulse excitation gives each oscillator the same initial velocity but, due to their different frequencies, the center-of-mass motion will decay with time. A harmonic excitation with a frequency ! being inside the distribution in !r results in oscillators responding with different phases and only a few of them having !r ! will grow to large amplitudes and absorb energy. The oscillator response to a pulse excitation, called Green function, and the one to a harmonic excitation, called transfer function, serve as a basis to calculate Landau damping which suppresses an instability at infinitesimal level before any large amplitudes are reached. This is illustrated by a negativ...

  17. Real-time weak signal detecting using FPGA-based Duffing oscillator with auto-damping and high speed ADC (United States)

    Shen, Zhongtao; Feng, Changqing


    In this paper, a hardware real-time weak signal detection method using Field-Programmable Gate Array (FPGA) Duffing Oscillator (DUOS) and high speed Analog-to-Digital Converter (ADC) is presented. In the design, the Xilinx Kintex-7 FPGA is chosen as the controller and the DUOS weak signal detecting algorithm is implemented in it with single floating precision. The ADS5409, a dual-channel, 12-bit, 900 MSPS ADC of TI, is used for data acquisition. Besides, to guarantee the same detection Signal-Noise Ratio (SNR) for signals of different amplitudes, a signal auto-damping strategy is adopted in the FPGA, which can adjust the amplitudes of the input signals automatically. The method introduced in this paper achieves not only the ability of efficient weak signal detection in noisy environment but also the advantages of hardware processing such as real-time, low power and so on.

  18. Stability Analysis and Active Damping for LLCL-filter-Based Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Huang, Min; Wang, Xiongfei; Loh, Poh Chiang


    to use either passive or active damping methods. This paper analyzes the stability of the LLCL-filter based grid-connected inverter and identifies a critical resonant frequency for the LLCL-filter when sampling and transport delays are considered. In a high resonant frequency region the active damping...... is not required but in a low resonant frequency region the active damping is necessary. The basic LLCL resonance damping properties of different feedback states based on a notch filter concept are also studied. Then an active damping method which is using the capacitor current feedback for LLCL......-filter is introduced. Based on this active damping method, a design procedure for the controller is given. Last, both simulation and experimental results are provided to validate the theoretical analysis of this paper....

  19. Damping in Materials for Spintronic Applications (United States)

    Mewes, Claudia

    The next generation of spintronic devices relies strongly on the development of new materials with high spin polarization, optimized intrinsic damping and tunable magnetic anisotropy. Therefore, technological progress in this area depends heavily on the successful search for new materials as well as on a deeper understanding of the fundamental mechanisms of the spin polarization, the damping and the magnetic anisotropy. This talk will focus on different aspects of materials with a low intrinsic relaxation rate. Our results are based on first principles calculations in combination with a non-orthogonal tight-binding model to predict those material properties for complex materials which can be used for example in new spin based memory devices or logic devices. However, the intrinsic damping parameter predicted from first principle calculations does not take into account adjacent layers that are present in the final device. Spin pumping is a well-known contribution that has to be taken into account for practical applications using multilayer structures. More recently a strong unidirectional contribution to the relaxation in exchange bias systems has been observed experimentally. To describe this phenomenon theoretically we use the formalism of an anisotropic Gilbert damping tensor that takes the place of the (scalar) Gilbert damping parameter in the Landau-Lifshitz-Gilbert equation of motion. While for single crystals this anisotropy is expected to be small, making experimental confirmation difficult, the broken symmetry in exchange bias systems provides an excellent testing ground to study the modified magnetization dynamics under the influence of unidirectional damping. C.K.A. Mewes would like to thank her colleague T. Mewes and her students J.B. Mohammadi, A.E. Farrar. We acknowledge support by the NSF-CAREER Award No. 1452670, and NSF-CAREER Award No. 0952929.

  20. ICAN/DAMP-integrated composite analyzer with damping analysis capabilities: User's manual (United States)

    Saravanos, Dimitrious A.; Sanfeliz, Jose G.


    This manual describes the use of the computer code ICAN/DAMP (Integrated Composite Analyzer with Damping Analysis Capabilities) for the prediction of damping in polymer-matrix composites. The code is written in FORTRAN 77 and is a version of the ICAN (Integrated Composite ANalyzer) computer program. The code incorporates a new module for synthesizing the material damping from micromechanics to laminate level. Explicit micromechanics equations based on hysteretic damping are programmed relating the on-axis damping capacities to the fiber and matrix properties and fiber volume ratio. The damping capacities of unidirectional composites subjected to off-axis loading are synthesized from on-axis damping values. The hygrothermal effect on the damping performance of unidirectional composites caused by temperature and moisture variation is modeled along with the damping contributions from interfacial friction between broken fibers and matrix. The temperature rise is continuously vibrating composite plies and composite laminates is also estimated. The ICAN/DAMP user's manual provides descriptions of the damping analysis module's functions, structure, input requirements, output interpretation, and execution requirements. It only addresses the changes required to conduct the damping analysis and is used in conjunction with the 'Second Generation Integrated Composite Analyzer (ICAN) Computer Code' user's manual (NASA TP-3290).

  1. Damping mechanisms in high-Q micro and nanomechanical string resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Jensen, K. D.; Nielsen, K. H.


    Resonant micro and nanostrings were found to have extraordinarily high quality factors (Qs). Since the discovery of the high Qs of silicon nitride nanostrings, the understanding of the underlying mechanisms allowing such high quality factors has been a topic of several investigations. So far it has...

  2. Corrosion Performance of High Damping Alloys in 3.5% Sodium Chloride Environment. (United States)


    were originally provided in various forms (bars, plates , rods, etc...). Most of the alloys were machined into 9.55 mm diameter by 9.55 mm height right...Akhtar, Pakistan Navy 3 B-68, Block II, Gulshan-e-Iqbal Karachi, Pakistan 7. Commander Logistics 1 c/o F.M.O. PN Dockyard Karachi, Pakistan 8. Assistant...10. General Manager Dockyard 1 c/o F.M.O., PN Dockyard Karachi, Pakistan 11. Director Naval Training 1 Naval Headquarter Islamabad, Pakistan 111 12

  3. Landau damping in Kaniadakis and Tsallis distributed electron plasmas (United States)

    López, Rodrigo A.; Navarro, Roberto E.; Pons, Sebastian I.; Araneda, Jaime A.


    The damping arrest and saturation stages in the evolution of the electric field amplitude are characteristic imprint of the nonlinear Landau damping. Scaling laws for the wave amplitudes and times and critical parameters which separate the monotonic damping from nondamping regimes are well known for Maxwellian and Tsallis-like plasmas. Here, the properties of electrostatic waves in unmagnetized, collisionless, and non-Maxwellian electron plasmas are studied by taking into account the α-deformed Kaniadakis distribution and compared with results using the q-Tsallis formalism. It is checked that the damping arrest and saturation characteristics scale as power-laws for the α-Kaniadakis, similarly as for the q-Tsallis parameter, indicating that a universal behaviour exists for the transition between linear and non-linear regimes. It is shown that the damping of electrostatic waves is much weaker when using Kaniadakis distributions, even in situations where this distribution exhibits more enhanced high-velocity tails. Furthermore, it is observed that in cases where the Tsallis distribution damps out completely the initial perturbation, the equivalent Kaniadakis distributed plasmas still support particle trapping, or even if wider Kaniadakis distributions are used. This important signature may provide a new tool to diagnose the nature of the distribution function and its relation to wave measurements in laboratory and space plasmas.

  4. Eddy damping effect of additional conductors in superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhao-Fei; Gou, Xiao-Fan, E-mail:


    Highlights: • In this article, for the eddy current damper attached to the HTSC, we • quantitatively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. • presented four different arrangements of the copper damper, and comparatively studied their damping effects and Joule heating, and finally proposed the most advisable arrangement. - Abstract: Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC–PM levitation system, the HTSC with higher critical current density J{sub c} can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC–PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/V{sub Cu}, in which V{sub Cu} is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.

  5. Damping Ring R&D at CESR-TA

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, David L. [Cornell Univ., Ithaca, NY (United States). Dept. of Physics


    Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams of electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring

  6. Modelling of Dampers and Damping in Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Riess


    The present thesis consists of an extended summary and four papers concerning damping of structures and algorithmic damping in numerical analysis. The first part of the thesis deals with the efficiency and the tuning of external collocated dampers acting on flexible structures. The dynamics......, and thereby the damping, of flexible structures are generally described in terms of the dominant vibration modes. A system reduction technique, where the damped vibration mode is constructed as a linear combination of the undamped mode shape and the mode shape obtained by locking the damper, is applied....... This two-component representation leads to a simple solution for the modal damping representing the natural frequency and the associated damping ratio. It appears from numerical examples that this system reduction technique provides very accurate results. % Analytical expressions for the optimal tuning...

  7. Allergy and respiratory health effects of dampness and dampness-related agents in schools and homes

    DEFF Research Database (Denmark)

    Holst, G; Høst, Arne; Doekes, G


    Little is known about the health effects of school-related indoor dampness and microbial exposures. In this study we investigated dampness and dampness-related agents in both homes and schools and their association with allergy and respiratory health effects in 330 Danish pupils. Classroom dampness...... was identified based on technical inspection and bedroom dampness on parents' self-report. Classroom and bedroom dust was analysed for seven microbial components. Skin-prick-testing determined atopic sensitisation. Lung function was expressed as z-scores for forced expiratory volume in one second (zFEV1...... ), forced vital capacity (zFVC) and the ratio zFEV1 /zFVC using GLI-2012-prediction-equations. The parents reported children's allergies, airway symptoms and doctor-diagnosed asthma. High classroom dampness, but not bedroom dampness, was negatively associated with zFEV1 (β-coef. -0.71; 95%CI -1.17 - -0...

  8. Two-dimensional unwrapped phase inversion with damping and a Gaussian filter

    KAUST Repository

    Choi, Yun Seok


    Phase wrapping is one of main causes of the local minima problem in waveform inversion. However, the unwrapping process for 2D phase maps that includes singular points (residues) is complicated and does not guarantee unique solutions. We employ an exponential damping to eliminate the residues in the 2D phase maps, which makes the 2D phase unwrapping process easy and produce a unique solution. A recursive inversion process using the damped unwrapped phase provides an opportunity to invert for smooth background updates first, and higher resolution updates later as we reduce the damping. We also apply a Gaussian filter to the gradient to mitigate the edge artifacts resulting from the narrow shape of the sensitivity kernels at high damping. Numerical examples demonstrate that our unwrapped phase inversion with damping and a Gaussian filter produces good convergent results even for a 3Hz single frequency of Marmousi dataset and with a starting model far from the true model.

  9. The frequency and damping of ion acoustic waves in collisional and collisionless two-species plasma

    Energy Technology Data Exchange (ETDEWEB)

    Berger, R L; Valeo, E J


    The dispersion properties of ion acoustic waves (IAW) are sensitive to the strength of ion-ion collisions in multi-species plasma in which the different species usually have differing charge-to-mass ratios. The modification of the frequency and damping of the fast and slow acoustic modes in a plasma composed of light (low Z) and heavy (high Z) ions is considered. In the fluid limit where the light ion scattering mean free path, {lambda}{sub th} is smaller than the acoustic wavelength, {lambda} = 2{pi}/k, the interspecies friction and heat flow carried by the light ions scattering from the heavy ions causes the damping. In the collisionless limit, k{lambda}{sub lh} >> 1, Landau damping by the light ions provides the dissipation. In the intermediate regime when k{lambda}{sub lh} {approx} 1, the damping is at least as large as the sum of the collisional and Landau damping.

  10. The Frequency and Damping of Ion Acoustic Waves in Collisional and Collisionless Two-species Plasma

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Berger; E.J. Valeo


    The dispersion properties of ion acoustic waves (IAW) are sensitive to the strength of ion-ion collisions in multi-species plasma in which the different species usually have differing charge-to-mass ratios. The modification of the frequency and damping of the fast and slow acoustic modes in a plasma composed of light (low Z) and heavy (high Z) ions is considered. In the fluid limit where the light ion scattering mean free path, {lambda}{sub th} is smaller than the acoustic wavelength, {lambda} = 2{pi}/k, the interspecies friction and heat flow carried by the light ions scattering from the heavy ions causes the damping. In the collisionless limit, k{lambda}{sub th} >> 1, Landau damping by the light ions provides the dissipation. In the intermediate regime when k{lambda}{sub th} {approx} 1, the damping is at least as large as the sum of the collisional and Landau damping.

  11. A High Order Element Based Method for the Simulation of Velocity Damping in the Hyporheic Zone of a High Mountain River (United States)

    Preziosi-Ribero, Antonio; Peñaloza-Giraldo, Jorge; Escobar-Vargas, Jorge; Donado-Garzón, Leonardo


    Groundwater - Surface water interaction is a topic that has gained relevance among the scientific community over the past decades. However, several questions remain unsolved inside this topic, and almost all the research that has been done in the past regards the transport phenomena and has little to do with understanding the dynamics of the flow patterns of the above mentioned interactions. The aim of this research is to verify the attenuation of the water velocity that comes from the free surface and enters the porous media under the bed of a high mountain river. The understanding of this process is a key feature in order to characterize and quantify the interactions between groundwater and surface water. However, the lack of information and the difficulties that arise when measuring groundwater flows under streams make the physical quantification non reliable for scientific purposes. These issues suggest that numerical simulations and in-stream velocity measurements can be used in order to characterize these flows. Previous studies have simulated the attenuation of a sinusoidal pulse of vertical velocity that comes from a stream and goes into a porous medium. These studies used the Burgers equation and the 1-D Navier-Stokes equations as governing equations. However, the boundary conditions of the problem, and the results when varying the different parameters of the equations show that the understanding of the process is not complete yet. To begin with, a Spectral Multi Domain Penalty Method (SMPM) was proposed for quantifying the velocity damping solving the Navier - Stokes equations in 1D. The main assumptions are incompressibility and a hydrostatic approximation for the pressure distributions. This method was tested with theoretical signals that are mainly trigonometric pulses or functions. Afterwards, in order to test the results with real signals, velocity profiles were captured near the Gualí River bed (Honda, Colombia), with an Acoustic Doppler

  12. Relaxation damping in oscillating contacts. (United States)

    Popov, M; Popov, V L; Pohrt, R


    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect "relaxation damping". The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed.

  13. Landau damping dynamic aperture and octupole in LHC

    CERN Document Server

    Gareyte, Jacques; Ruggiero, F


    Maximization of the dynamic aperture and Landau damping of the collective instabilities are partly conflicting requirements. On the one hand, the non-linearities of the lattice must be minimized at large oscillation amplitude to guarantee the stability of the single particle motion. On the other hand, a spread of the betatron frequencies is necessary to guarantee the stability of the collective motion of bunches of particles; this requires the introduction of non-linearities effective at small amplitudes. We show in this note that the `natural' spread of betatron tunes due to the field imperfections is inadequate or Landau damping. An octupole scheme is required to provide collective stability at high energy. At low energy it may be used to find the optimum between the correction of the octupolar field imperfections and Landau damping. The solution of the stability problem taking into account the two degrees of freedom of the transverse motion allows a significant saving in octupole strength: 144 octupoles wi...

  14. Eddy damping effect of additional conductors in superconducting levitation systems (United States)

    Jiang, Zhao-Fei; Gou, Xiao-Fan


    Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC-PM levitation system, the HTSC with higher critical current density Jc can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC-PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/VCu, in which VCu is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.

  15. Dr. Dampe - Doctor Democracy

    DEFF Research Database (Denmark)

    Andreasen, John


    On Dr.phil. J.J.Dampe's fight for democracy in the first part of the 19th century in Denmark and his dramatic writings......On Dr.phil. J.J.Dampe's fight for democracy in the first part of the 19th century in Denmark and his dramatic writings...

  16. Turbojet engine blade damping (United States)

    Srinivasan, A. V.; Cutts, D. G.; Sridhar, S.


    The potentials of various sources of nonaerodynamic damping in engine blading are evaluated through a combination of advanced analysis and testing. The sources studied include material hysteresis, dry friction at shroud and root disk interfaces as well as at platform type external dampers. A limited seris of tests was conducted to evaluate damping capacities of composite materials (B/AL, B/AL/Ti) and thermal barrier coatings. Further, basic experiments were performed on titanium specimens to establish the characteristics of sliding friction and to determine material damping constants J and n. All the tests were conducted on single blades. Mathematical models were develthe several mechanisms of damping. Procedures to apply this data to predict damping levels in an assembly of blades are developed and discussed.

  17. Vibrational Damping of Composite Materials


    Biggerstaff, Janet M.


    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss facto...

  18. CO-dark molecular gas at high redshift: very large H2 content and high pressure in a low-metallicity damped Lyman alpha system (United States)

    Balashev, S. A.; Noterdaeme, P.; Rahmani, H.; Klimenko, V. V.; Ledoux, C.; Petitjean, P.; Srianand, R.; Ivanchik, A. V.; Varshalovich, D. A.


    We present a detailed analysis of an H2-rich, extremely strong intervening damped Ly α absorption system (DLA) at zabs = 2.786 towards the quasar J 0843+0221, observed with the Ultraviolet and Visual Echelle Spectrograph on the Very Large Telescope. The total column density of molecular (resp. atomic) hydrogen is log N(H2) = 21.21 ± 0.02 (resp. log N(H I) = 21.82 ± 0.11), making it to be the first case in quasar absorption line studies with H2 column density as high as what is seen in 13CO-selected clouds in the Milky Way. We find that this system has one of the lowest metallicity detected among H2-bearing DLAs, with [Zn/H] = -1.52^{+0.08}_{-0.10}. This can be the reason for the marked differences compared to systems with similar H2 column densities in the local Universe: (I) the kinetic temperature, T ˜ 120 K, derived from the J = 0, 1 H2 rotational levels is at least twice higher than expected; (II) there is little dust extinction with AV 2 × 1023 cm-2/(km s-1 K), in the very low metallicity gas. Low CO and high H2 contents indicate that this system represents 'CO-dark/faint' gas. We investigate the physical conditions in the H2-bearing gas using the fine-structure levels of C I, C II, Si II and the rotational levels of HD and H2. We find the number density to be about n ˜ 260-380 cm-3, implying a high thermal pressure of 3-5 × 104 cm-3 K. We further identify a trend of increasing pressure with increasing total hydrogen column density. This independently supports the suggestion that extremely strong DLAs (with log N(H) ˜22) probe high-z galaxies at low impact parameters.

  19. Piezoelectric RL shunt damping of flexible structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Krenk, Steen


    Resonant RL shunt circuits represent a robust and effective approach to piezoelectric damping, provided that the individual shunt circuit components are calibrated accurately with respect to the dynamic properties of the corresponding flexible structure. The balanced calibration procedure applied...

  20. Elastic moduli, damping and modulus of rupture changes in a high alumina refractory castable due to different types of thermal shock

    Directory of Open Access Journals (Sweden)

    Pereira, A. H. A.


    Full Text Available The work herein verifies the changes of the elastic moduli, damping and modulus of rupture (MOR of a high alumina refractory castable due to heating, cooling and heating-cooling thermal shock damage. Twelve prismatic specimens were prepared for the tests and divided into four groups. The thermal shocks were performed on three groups, each containing three specimens having abrupt temperature changes of 1100°C during heating in the first group, during cooling in the second and during heating followed by cooling in the third group. The fourth group, which was taken as a reference did not receive any thermal shock. The elastic moduli were measured after each thermal shock cycle. After 10 cycles, the MOR, the damping and the damping dependence on excitation amplitude were measured at room temperature for all specimens. The elastic moduli showed a similar decrease and the damping a similar increase due to the cooling and heating-cooling thermal shocks. The heating thermal shocks caused no significant changes on the elastic moduli and damping. However, the MOR appeared to be sensitive to the heating thermal shock. This work also shows that the damping for the studied refractory castable is non-linear (i.e., amplitude of excitation sensitive and that this non-linearity increases when the damage level rises.

    En este trabajo se investigaron las alteraciones de los módulos elásticos dinámicos, del amortiguamiento y del módulo de rotura (MOR de un material refractario moldeable de alta alúmina después de recibir choques térmicos de calentamiento, enfriamiento y calentamiento seguido de enfriamiento (calentamiento-enfriamiento. Para ello se prepararon doce cuerpos prismáticos dividiéndolos en cuatro grupos. Los choques térmicos se le aplicaron a sólo tres grupos, cada uno con tres muestras. Al primer grupo se le aplicó un cambio brusco de temperatura de 1100 °C en calentamiento, en enfriamiento al segundo grupo y calentamiento seguido

  1. Use of blade pitch control to provide power train damping for the Mod-2, 2.5-mW wind turbine (United States)

    Blissell, W. A., Jr.


    The Control System for the Mod-2 wind turbine system is required to provide not only for startup, RPM regulation, maximizing or regulating power, and stopping the rotor, but also for load limiting, especially in the power train. Early operations with above-rated winds revealed an instability which was caused primarily by coupling between the quill shaft and the rotor air loads. This instability caused the first of several major Mod-2 Control System changes which are reviewed in the paper.

  2. Tuning high frequency magnetic properties and damping of FeGa, FeGaN and FeGaB thin films

    Directory of Open Access Journals (Sweden)

    Derang Cao


    Full Text Available A series of FeGa, FeGaN and FeGaB films with varied oblique angles were deposited by sputtering method on silicon substrates, respectively. The microstructure, soft magnetism, microwave properties, and damping factor for the films were investigated. The FeGa films showed a poor high frequency magnetic property due to the large stress itself. The grain size of FeGa films was reduced by the additional N element, while the structure of FeGa films was changed from the polycrystalline to amorphous phase by the involved B element. As a result, N content can effectively improve the magnetic softness of FeGa film, but their high frequency magnetic properties were still poor both when the N2/Ar flow rate ratio is 2% and 5% during the deposition. The additional B content significantly led to the excellent magnetic softness and the self-biased ferromagnetic resonance frequency of 1.83 GHz for FeGaB film. The dampings of FeGa films were adjusted by the additional N and B contents from 0.218 to 0.139 and 0.023, respectively. The combination of these properties for FeGa films are helpful for the development of magnetostrictive microwave devices.

  3. The Damping Tail of CMB Anisotropies


    Hu, Wayne; White, Martin


    By decomposing the damping tail of CMB anisotropies into a series of transfer functions representing individual physical effects, we provide ingredients that will aid in the reconstruction of the cosmological model from small-scale CMB anisotropy data. We accurately calibrate the model-independent effects of diffusion and reionization damping which provide potentially the most robust information on the background cosmology. Removing these effects, we uncover model-dependent processes such as ...

  4. Striplines for CLIC Pre-damping and Damping Rings

    CERN Document Server

    Belver-Aguilar, C; Barnes, M J; Rumolo, G; Zannini, C; Toral, F


    The Compact Linear Collider (CLIC) study explores the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV: CLIC will complement LHC physics in the multi-TeV range. The CLIC design relies on the presence of Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve, through synchrotron radiation, the very low emittance needed to fulfill the luminosity requirements. The specifications for the kicker systems are very challenging and include very low beam coupling impedance and excellent field homogeneity: striplines have been chosen for the kicker elements. Analytical calculations have been carried out to determine the effect of tapering upon the high frequency beam coupling impedance. In addition detailed numerical modeling of the field homogeneity has been performed and the sensitivity of the homogeneity to various parameters, including stripline cross-section, have been studied. This paper presents the main conclusions of the beam impedance calculations an...

  5. Sensitivity Analysis for the CLIC Damping Ring Inductive Adder

    CERN Document Server

    Holma, Janne


    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse generators for the damping ring kickers must provide extremely flat, high-voltage pulses. The specifications for the extraction kickers of the CLIC damping rings are particularly demanding: the flattop of the output pulse must be 160 ns duration, 12.5 kV and 250 A, with a combined ripple and droop of not more than ±0.02 %. An inductive adder allows the use of different modulation techniques and is therefore a very promising approach to meeting the specifications. PSpice has been utilised to carry out a sensitivity analysis of the predicted output pulse to the value of both individual and groups of circuit compon...

  6. Development of Amorphous/Microcrystalline Silicon Tandem Thin-Film Solar Modules with Low Output Voltage, High Energy Yield, Low Light-Induced Degradation, and High Damp-Heat Reliability


    Chin-Yi Tsai; Chin-Yao Tsai


    In this work, tandem amorphous/microcrystalline silicon thin-film solar modules with low output voltage, high energy yield, low light-induced degradation, and high damp-heat reliability were successfully designed and developed. Several key technologies of passivation, transparent-conducting-oxide films, and cell and segment laser scribing were researched, developed, and introduced into the production line to enhance the performance of these low-voltage modules. A 900 kWp photovoltaic system w...

  7. A Resonant Damping Study Using Piezoelectric Materials (United States)

    Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.


    Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.

  8. Study of Track Reconstruction for DAMPE (United States)

    Lu, Tong-suo; Lei, Shi-jun; Zang, Jing-jing; Chang, Jin; Wu, Jian


    The Dark Matter Particle Explorer (DAMPE) is aimed to study the existence and distribution of dark matter via the observation of high-energy particles in space with a large energy bandwidth, high energy resolution, and high spatial resolution. The track reconstruction is to restore the positions and angles of the incident particles using the multiple observations of different channels at different positions, and its accuracy determines the angular resolution of the explorer. The track reconstruction is mainly based on the observations of two sub-detectors, namely, the Silicon Tracker (STK) and the BGO (Bi4Ge3O12) calorimeter. In accordance with the design and structure of the two sub-detectors, and using the data collected during the beam tests and ground tests of cosmic rays, we discuss in detail the method of track reconstruction for the DAMPE, which includes mainly three basic procedures: the selection of track hits, the fitting of track hits, and the judgement of the optimal track. Since an energetic particle most probably leaves multiple hits in different layers of the STK and BGO crystals, we first provide a method to obtain a rough track in the BGO calorimeter by the centroid method, and hereby to constrain the track hits in the STK. Then for the selected one group of possible track hits in the STK, we apply two different algorithms, the Kalman filter and the least square linear fitting, to fit these track hits. The consistency of the results obtained independently via the two algorithms confirms the validity of our track reconstruction results. Finally, several criteria for picking out the most possible track among all the tracks found in the reconstruction by combining the results of the BGO calorimeter and STK are discussed. Using the track reconstruction method proposed in this article and the beam test data, we confirm that the angular resolution of the DAMPE satisfies its design requirement.

  9. Roll Damping By Rudder Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.H.; Blanke, M.


    Roll damping and simultaneous course steering by rudder control is a challenging problem where a key factor is roll damping performance in waves.......Roll damping and simultaneous course steering by rudder control is a challenging problem where a key factor is roll damping performance in waves....

  10. Power Oscillation Damping from VSC-HVDC Connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Eriksson, Robert; Goumalatsos, Spyridon


    regarding real wind power plants are discussed: 1) robustness against control/communication delays; 2) limitations due to mechanical resonances in wind turbine generators; 3) actual capability of wind power plants to provide damping without curtailing production; and 4) power-ramp rate limiters.......The implementation of power oscillation damping service on offshore wind power plants connected to onshore grids by voltage-source-converter-based high voltage direct current transmission is discussed. Novel design guidelines for damping controllers on voltage-source converters and wind power plant...... controllers are derived, using phasor diagrams and a test network model and are then verified on a generic power system model. The effect of voltage regulators is analyzed, which is important for selecting the most robust damping strategy. Furthermore, other often disregarded practical implementation aspects...

  11. Robust Rudder Roll Damping Control

    DEFF Research Database (Denmark)

    Yang, C.

    -infinity theory is used to deal with the problem. The necessary mathematical tools and the H-Infinity theory as the basis of controller design are presented in Chapter 2 and 3. The mu synthesis and the D-K iteration are introduced in Chapter 3. The ship dynamics and modeling technology are discussed in Chapter 4......The results of a systematic research to solve a specific ship motion control problem, simultaneous roll damping and course keeping using the rudder are presented in this thesis. The fundamental knowledge a priori is that rudder roll damping is highly sensitive to the model uncertainty, therefore H......, two kinds of ship model have been obtained: linear ship model used for designing the controller and nonlinear model used for simulation. The ship model uncertainty is discussed in this chapter and so is a wave model because the ship's roll motion is caused by waves. Using an unstructured model...

  12. Damping performance of cocured composite laminates with embedded viscoelastic layers (United States)

    Biggerstaff, Janet M.; Kosmatka, John B.


    Cocuring viscoelastic damping materials in composites has been shown to be successful in greatly increasing the damping of composite structures. The damping performance, however, is often not as high in cocured composites as in secondarily bonded composites, where the damping material does not undergo the cure process. The reason for the discrepancy in damping between the cocured and secondarily bonded samples was found to be resin penetration into the damping material. Samples with a barrier layer between the damping material and the epoxy resin had a 15.7% to 92.3% higher loss factor (depending on the frequency) than cocured FasTapeTM 1125 samples without the barrier and at least 168% higher loss factor than cocured ISD 112 samples without the barrier. These higher damping values are very close to the values achieved by secondarily bonding. Viscoelastic damping materials typically have maximum recommended temperatures below that of the composite cure cycles. The effect of cure temperature on viscoelastic damping materials was also studied and it was determined that most damping materials are marginally affected by cure cycle temperature.

  13. The DAMPE silicon tungsten tracker

    CERN Document Server

    Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D


    The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...

  14. Providing Internet Access to High-Resolution Mars Images (United States)

    Plesea, Lucian


    The OnMars server is a computer program that provides Internet access to high-resolution Mars images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of Mars. The OnMars server is an implementation of the Open Geospatial Consortium (OGC) Web Map Service (WMS) server. Unlike other Mars Internet map servers that provide Martian data using an Earth coordinate system, the OnMars WMS server supports encoding of data in Mars-specific coordinate systems. The OnMars server offers access to most of the available high-resolution Martian image and elevation data, including an 8-meter-per-pixel uncontrolled mosaic of most of the Mars Global Surveyor (MGS) Mars Observer Camera Narrow Angle (MOCNA) image collection, which is not available elsewhere. This server can generate image and map files in the tagged image file format (TIFF), Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. The OnMars server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  15. Providing Internet Access to High-Resolution Lunar Images (United States)

    Plesea, Lucian


    The OnMoon server is a computer program that provides Internet access to high-resolution Lunar images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of the Moon. The OnMoon server implements the Open Geospatial Consortium (OGC) Web Map Service (WMS) server protocol and supports Moon-specific extensions. Unlike other Internet map servers that provide Lunar data using an Earth coordinate system, the OnMoon server supports encoding of data in Moon-specific coordinate systems. The OnMoon server offers access to most of the available high-resolution Lunar image and elevation data. This server can generate image and map files in the tagged image file format (TIFF) or the Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. Full-precision spectral arithmetic processing is also available, by use of a custom SLD extension. This server can dynamically add shaded relief based on the Lunar elevation to any image layer. This server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  16. Damping Effects of Drogue Parachutes on Orion Crew Module Dynamics (United States)

    Aubuchon, Vanessa V.; Owens, D. Bruce


    Because simulations of the Orion Crew Module (CM) dynamics with drogue parachutes deployed were under-predicting the amount of damping seen in free-flight tests, an attach-point damping model was applied to the Orion system. A key hypothesis in this model is that the drogue parachutes' net load vector aligns with the CM drogue attachment point velocity vector. This assumption seems reasonable and has historically produced good results, but has never been experimentally verified. The wake of the CM influences the drogue parachutes, which makes performance predictions of the parachutes difficult. Many of these effects are not currently modeled in the simulations. A forced oscillation test of the CM with parachutes was conducted in the NASA LaRC 20-Ft Vertical Spin Tunnel (VST) to gather additional data to validate and refine the attach-point damping model. A second loads balance was added to the original Orion VST model to measure the drogue parachute loads independently of the CM. The objective of the test was to identify the contribution of the drogues to CM damping and provide additional information to quantify wake effects and the interactions between the CM and parachutes. The drogue parachute force vector was shown to be highly dependent on the CM wake characteristics. Based on these wind tunnel test data, the attach-point damping model was determined to be a sufficient approximation of the parachute dynamics in relationship to the CM dynamics for preliminary entry vehicle system design. More wake effects should be included to better model the system.

  17. Method for providing a low density high strength polyurethane foam (United States)

    Whinnery, Jr., Leroy L.; Goods, Steven H.; Skala, Dawn M.; Henderson, Craig C.; Keifer, Patrick N.


    Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft.sup.3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is "pre-reacted" with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the "pre-reacted" resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.

  18. Damping element for reducing the vibration of an airfoil (United States)

    Campbell, Christian X; Marra, John J


    An airfoil (10) is provided with a tip (12) having an opening (14) to a center channel (24). A damping element (16) is inserted within the opening of the center channel, to reduce an induced vibration of the airfoil. The mass of the damping element, a spring constant of the damping element within the center channel, and/or a mounting location (58) of the damping element within the center channel may be adjustably varied, to shift a resonance frequency of the airfoil outside a natural operating frequency of the airfoil.

  19. Selective spatial damping of propagating kink waves due to resonant absorption (United States)

    Terradas, J.; Goossens, M.; Verth, G.


    Context. There is observational evidence of propagating kink waves driven by photospheric motions. These disturbances, interpreted as kink magnetohydrodynamic (MHD) waves are attenuated as they propagate upwards in the solar corona. Aims: We show that resonant absorption provides a simple explanation to the spatial damping of these waves. Methods: Kink MHD waves are studied using a cylindrical model of solar magnetic flux tubes, which includes a non-uniform layer at the tube boundary. Assuming that the frequency is real and the longitudinal wavenumber complex, the damping length and damping per wavelength produced by resonant absorption are analytically calculated in the thin tube (TT) approximation, valid for coronal waves. This assumption is relaxed in the case of chromospheric tube waves and filament thread waves. Results: The damping length of propagating kink waves due to resonant absorption is a monotonically decreasing function of frequency. For kink waves with low frequencies, the damping length is exactly inversely proportional to frequency, and we denote this as the TGV relation. When moving to high frequencies, the TGV relation continues to be an exceptionally good approximation of the actual dependency of the damping length on frequency. This dependency means that resonant absorption is selective as it favours low-frequency waves and can efficiently remove high-frequency waves from a broad band spectrum of kink waves. The efficiency of the damping due to resonant absorption depends on the properties of the equilibrium model, in particular on the width of the non-uniform layer and the steepness of the variation in the local Alfvén speed. Conclusions: Resonant absorption is an effective mechanism for the spatial damping of propagating kink waves. It is selective because the damping length is inversely proportional to frequency so that the damping becomes more severe with increasing frequency. This means that radial inhomogeneity can cause solar

  20. Unwrapped phase inversion with an exponential damping

    KAUST Repository

    Choi, Yun Seok


    Full-waveform inversion (FWI) suffers from the phase wrapping (cycle skipping) problem when the frequency of data is not low enough. Unless we obtain a good initial velocity model, the phase wrapping problem in FWI causes a result corresponding to a local minimum, usually far away from the true solution, especially at depth. Thus, we have developed an inversion algorithm based on a space-domain unwrapped phase, and we also used exponential damping to mitigate the nonlinearity associated with the reflections. We construct the 2D phase residual map, which usually contains the wrapping discontinuities, especially if the model is complex and the frequency is high. We then unwrap the phase map and remove these cycle-based jumps. However, if the phase map has several residues, the unwrapping process becomes very complicated. We apply a strong exponential damping to the wavefield to eliminate much of the residues in the phase map, thus making the unwrapping process simple. We finally invert the unwrapped phases using the back-propagation algorithm to calculate the gradient. We progressively reduce the damping factor to obtain a high-resolution image. Numerical examples determined that the unwrapped phase inversion with a strong exponential damping generated convergent long-wavelength updates without low-frequency information. This model can be used as a good starting model for a subsequent inversion with a reduced damping, eventually leading to conventional waveform inversion.

  1. Vibrational damping of composite materials (United States)

    Biggerstaff, Janet M.

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss factor and modulus could be tailored by changing the angle, were produced and investigated. The addition of particles between composite prepreg layers to increase damping was studied. Electroviscoelastic materials that drastically changed properties such as loss factor and modulus with an applied voltage were manufactured and tested.

  2. On Landau damping

    KAUST Repository

    Mouhot, Clément


    Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of non-linear echoes; sharp "deflection" estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the non-linear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications. Finally, we extend these results to some Gevrey (non-analytic) distribution functions. © 2011 Institut Mittag-Leffler.

  3. Harnessing Three Dimensional Anatomy of Graphene Foam to Induce Superior Damping in Hierarchical Polyimide Nanostructures. (United States)

    Nautiyal, Pranjal; Boesl, Benjamin; Agarwal, Arvind


    Graphene foam-based hierarchical polyimide composites with nanoengineered interface are fabricated in this study. Damping behavior of graphene foam is probed for the first time. Multiscale mechanisms contribute to highly impressive damping in graphene foam. Rippling, spring-like interlayer van der Waals interactions and flexing of graphene foam branches are believed to be responsible for damping at the intrinsic, interlayer and anatomical scales, respectively. Merely 1.5 wt% graphene foam addition to the polyimide matrix leads to as high as ≈300% improvement in loss tangent. Graphene nanoplatelets are employed to improve polymer-foam interfacial adhesion by arresting polymer shrinkage during imidization and π-π interactions between nanoplatelets and foam walls. As a result, damping behavior is further improved due to effective stress transfer from the polymer matrix to the foam. Thermo-oxidative stability of these nanocomposites is investigated by exposing the specimens to glass transition temperature of the polyimide (≈400 °C). The composites are found to retain their damping characteristics even after being subjected to such extreme temperature, attesting their suitability in high temperature structural applications. Their unique hierarchical nanostructure provides colossal opportunity to engineer and program material properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 76 FR 28789 - Draft Alert Entitled “Preventing Occupational Respiratory Disease From Dampness in Office... (United States)


    ... Respiratory Disease From Dampness in Office Buildings, Schools, and Other Nonindustrial Buildings'' AGENCY... Occupational Respiratory Disease from Dampness in Office Buildings, Schools, and other Nonindustrial Buildings... is to provide workers and employers with information necessary for prevention of respiratory disease...

  5. Fixation system with high-efficiency vibration damping for titanium milling. Chip removal; Werkzeugspannsystem mit hoher Vibrationsdaempfung zur Titanbearbeitung. Schwerzerspanung

    Energy Technology Data Exchange (ETDEWEB)

    Broennimann, Martin [Rego-Fix AG, Tenniken (Switzerland)


    Difficult materials like titanium are common in the aerospace industry. With a high-efficiency fixation system and an optimized milling strategy, propulsion system producer MTU was able to enhance productivity in titanium blisk production. The working time was reduced by 42 % and the tool cost by 76 %. (orig.)

  6. Optimal C-type Filter for Harmonics Mitigation and Resonance Damping in Industrial Distribution Systems


    Abdel Aleem, SHE; Zobaa, AF


    Single-tuned passive filters offer reasonable mitigation for harmonic distortion at a specific harmonic frequency with a high filtering percentage, but resonance hazards exist. Traditional damped filters offer high-pass filtering for the high-frequency range, but suffer from extra ohmic losses. C-type filters may operate in a manner similar to the tuned filters with low damping losses and marginal resonance damping capabilities. Also, they can be designed as damped filters with increased reso...

  7. Optimal Coordinated Design of Multiple Damping Controllers Based on PSS and UPFC Device to Improve Dynamic Stability in the Power System

    Directory of Open Access Journals (Sweden)

    A. N. Hussain


    Full Text Available Unified Power Flow Controller (UPFC device is applied to control power flow in transmission lines. Supplementary damping controller can be installed on any control channel of the UPFC inputs to implement the task of Power Oscillation Damping (POD controller. In this paper, we have presented the simultaneous coordinated design of the multiple damping controllers between Power System Stabilizer (PSS and UPFC-based POD or between different multiple UPFC-based POD controllers without PSS in a single-machine infinite-bus power system in order to identify the design that provided the most effective damping performance. The parameters of the damping controllers are optimized utilizing a Chaotic Particle Swarm Optimization (CPSO algorithm based on eigenvalue objective function. The simulation results show that the coordinated design of the multiple damping controllers has high ability in damping oscillations compared to the individual damping controllers. Furthermore, the coordinated design of UPFC-based POD controllers demonstrates the superiority over the coordinated design of PSS and UPFC-based POD controllers for enhancing greatly the stability of the power system.

  8. Present status of development of damping ring extraction kicker system for CLIC

    CERN Document Server

    Holma, Janne; Belver-Aguilar, Caroline; Faus-Golfe, Angeles; Toral, Fernando


    The CLIC damping rings will produce ultra-low emittance beam, with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the damping ring kickers must provide extremely flat, high-voltage pulses: specifications call for a 160 ns duration and a flattop of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. The stripline design is also extremely challenging: the field for the damping ring kicker system must be homogenous to within ±0.01 % over a 1 mm radius, and low beam coupling impedance is required. The solid-state modulator, the inductive adder, is a very promising approach to meeting the demanding specifications for the field pulse ripple and droop. This paper describes the initial design of the inductive adder and the striplines of the kicker system.

  9. The High AV Quasar Survey: A z = 2.027 metal-rich damped Lyman-α absorber towards a red quasar at z = 3.21 (United States)

    Fynbo, J. P. U.; Krogager, J.-K.; Heintz, K. E.; Geier, S.; Møller, P.; Noterdaeme, P.; Christensen, L.; Ledoux, C.; Jakobsson, P.


    It is important to understand the selection effects behind the quasar samples to fully exploit the potential of quasars as probes of cosmic chemical evolution and the internal gas dynamics of galaxies; in particular, it is vital to understand whether the selection criteria exclude foreground galaxies with certain properties, most importantly a high dust content. Here we present spectroscopic follow-up from the 10.4 m GTC telescope of a dust-reddened quasar, eHAQ0111+0641, from the extended High AV Quasar (HAQ) survey. We find that the z = 3.21 quasar has a foreground damped Lyman-α absorber (DLA) at z = 2.027 along the line of sight. The DLA has very strong metal lines due to a moderately high metallicity with an inferred lower limit of 25% of the solar metallicity, but a very large gas column density along the line of sight in its host galaxy. This discovery is further evidence that there is a dust bias affecting the census of metals, caused by the combined effect of dust obscuration and reddening, in existing samples of z > 2 DLAs. The case of eHAQ0111+0641 illustrates that dust bias is not only caused by dust obscuration, but also dust reddening. The reduced spectrum (FITS file) is only available at the CDS via anonymous ftp to ( or via

  10. Damping actions of the neuromuscular system with inertial loads: human flexor pollicis longus muscle. (United States)

    Lin, D C; Rymer, W Z


    supported this postulate of a reduced reflex gain following prior motion. The functional significance of these nonlinear damping properties is that during the initial muscle stretch, the stiffness is high, which helps to preserve the initial position (although at the expense of promoting oscillation). Subsequently, the ensuing increase in damping helps suppress continuing oscillation. This sequence of varying mechanical properties is broadly analogous to the features of a predictive, or feed-forward controller, designed to produce a response that initially maintains position, and subsequently dampens oscillations. These results show that the intrinsic properties of muscle and spinal reflexes automatically provide a complex time-varying response, appropriate for maintenance of stable limb posture.

  11. Preliminary Study on the Damping Effect of a Lateral Damping Buffer under a Debris Flow Load

    Directory of Open Access Journals (Sweden)

    Zheng Lu


    Full Text Available Simulating the impact of debris flows on structures and exploring the feasibility of applying energy dissipation devices or shock isolators to reduce the damage caused by debris flows can make great contribution to the design of disaster prevention structures. In this paper, we propose a new type of device, a lateral damping buffer, to reduce the vulnerability of building structures to debris flows. This lateral damping buffer has two mechanisms of damage mitigation: when debris flows impact on a building, it acts as a buffer, and when the structure vibrates due to the impact, it acts as a shock absorber, which can reduce the maximum acceleration response and subsequent vibration respectively. To study the effectiveness of such a lateral damping buffer, an impact test is conducted, which mainly involves a lateral damping buffer attached to a two-degree-of-freedom structure under a simulated debris flow load. To enable the numerical study, the equation of motion of the structure along with the lateral damping buffer is derived. A subsequent parametric study is performed to optimize the lateral damping buffer. Finally, a practical design procedure is also provided.

  12. Vibration and Damping Analysis of Composite Fiber Reinforced Wind Blade with Viscoelastic Damping Control

    Directory of Open Access Journals (Sweden)

    Tai-Hong Cheng


    Full Text Available Composite materials are increasingly used in wind blade because of their superior mechanical properties such as high strength-to-weight and stiffness-to-weight ratio. This paper presents vibration and damping analysis of fiberreinforced composite wind turbine blade with viscoelastic damping treatment. The finite element method based on full layerwise displacement theory was employed to analyze the damping, natural frequency, and modal loss factor of composite shell structure. The lamination angle was considered in mathematical modeling. The curved geometry, transverse shear, and normal strains were exactly considered in present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The frequency response functions of curved composite shell structure and wind blade were calculated. The results show that the damping ratio of viscoelastic layer is found to be very sensitive to determination of magnitude of composite structures. The frequency response functions with variety of thickness of damping layer were investigated. Moreover, the natural frequency, modal loss factor, and mode shapes of composite fiber reinforced wind blade with viscoelastic damping control were calculated.

  13. Stimulation of dendritic cells by DAMPs in ALA-PDT treated SCC tumor cells. (United States)

    Wang, Xiaojie; Ji, Jie; Zhang, Haiyan; Fan, Zhixia; Zhang, Linglin; Shi, Lei; Zhou, Feifan; Chen, Wei R; Wang, Hongwei; Wang, Xiuli


    Photodynamic therapy (PDT) not only kills tumor cells directly but also rapidly recruits and activates immune cells favoring the development of antitumor adaptive immunity. It is believed that Topical 5-aminolevulinic acid mediated photodynamic therapy (ALA-PDT) can induce anti-tumor immune responses through dangerous signals damage-associated molecular patterns (DAMPs). In this study, we investigated the effect of ALA-PDT induced DAMPs on immune cells. We focused on the stimulation of dendritic cells by major DAMPs, enhanced the expression of calreticulin (CRT), heat shock proteins 70 (HSP70), and high mobility group box 1 (HMGB1), either individually or in combination. We evaluated in vitro and in vivo expressions of DAMPs induced by ALA-PDT using immunohistochemistry, western blot, and ELISA in a squamous cell carcinoma (SCC) mouse model. The role of DAMPs in the maturation of DCs potentiated by ALA-PDT-treated tumor cells was detected by FACS and ELISA. Our results showed that ALA-PDT enhanced the expression of CRT, HSP70, and HMGB1. These induced DAMPs played an important part in activating DCs by PDT-treated tumor cells, including phenotypic maturation (increase of surface expression of MHC-II, CD80, and CD86) and functional maturation (enhanced capability to secrete IFN-γ and IL-12). Furthermore, injecting ALA-PDT-treated tumor cells into naïve mice resulted in complete protection against cancer cells of the same origin. Our findings indicate that ALA-PDT can increase DAMPs and enhance tumor immunogenicity, providing a promising strategy for inducing a systemic anticancer immune response.

  14. Bounce-harmonic Landau Damping of Plasma Waves (United States)

    Anderegg, Francois


    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v harmonics damping, controlled by an applied ``squeeze'' potential, which generates harmonics in the wave potential and in the particle dynamics. A particle moving in z experiences a non-sinusoidal mode potential caused by the squeeze, producing high spatial harmonics with lower phase velocity. These harmonics are Landau damped even when the mode phase velocity vph is large compared to the thermal velocity v , since the nth harmonic is resonant with a particle bouncing at velocity vb =vph / n . Here we increase the bounce harmonics through applied squeeze potential; but some harmonics are always present in finite length systems. For our centered squeeze geometry, theory shows that only odd harmonics are generated, and predicts the Landau damping rate from vph / n . Experimentally, the squeeze potential increases the wave damping and reduces its frequency. The frequency shift occurs because the squeeze potential reduces the number of particle where the mode velocity is the largest, therefore reducing the mode frequency. We observe an increase in the damping proportional to Vs2,and a frequency reduction proportional to Vs , in quantitative agreement with theory. Wave-coherent laser induced fluorescence allows direct observation of bounce resonances on the particle distribution, here predominantly at vph / 3 . A clear increase of the bounce harmonics is visible on the particle distribution when the squeeze potential is applied. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.

  15. The Duffing oscillator with damping

    DEFF Research Database (Denmark)

    Johannessen, Kim


    An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....

  16. Reparable, high-density microelectronic module provides effective heat sink (United States)

    Carlson, K. J.; Maytone, F. F.


    Reparable modular system is used for packaging microelectronic flat packs and miniature discrete components. This three-dimensional compartmented structure incorporates etched phosphor bronze sheets and frames with etched wire conductors. It provides an effective heat sink for electric power dissipation in the absence of convective cooling means.

  17. Development of Amorphous/Microcrystalline Silicon Tandem Thin-Film Solar Modules with Low Output Voltage, High Energy Yield, Low Light-Induced Degradation, and High Damp-Heat Reliability

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai


    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film solar modules with low output voltage, high energy yield, low light-induced degradation, and high damp-heat reliability were successfully designed and developed. Several key technologies of passivation, transparent-conducting-oxide films, and cell and segment laser scribing were researched, developed, and introduced into the production line to enhance the performance of these low-voltage modules. A 900 kWp photovoltaic system with these low-voltage panels was installed and its performance ratio has been simulated and projected to be 92.1%, which is 20% more than the crystalline silicon and CdTe counterparts.

  18. High School Child Development Courses Provide a Valuable Apprenticeship (United States)

    McCombie, Sally M.


    The current media are laden with reports of the many significant problems facing today's youth. In fact, parenting has become a national topic of discussion. Parenting instruction, a responsibility that had previously rested in the home, has become part of educational curricula. Courses in child development are offered for high school students in…

  19. Identifying the damping contribution of building components based on measured top vibration

    NARCIS (Netherlands)

    Berg, R.L.J. van den; Steenbergen, R.D.J.M.


    In this paper, a damping model for a high-rise building is introduced. This model is used to investigate the possibilities to identify the relative damping contribution of the internal material damping in building elements, energy loss at element interfaces and energy outflow at the interface with

  20. Collisional damping rates for electron plasma waves reassessed (United States)

    Banks, J. W.; Brunner, S.; Berger, R. L.; Arrighi, W. J.; Tran, T. M.


    Collisional damping of electron plasma waves, the primary damping for high phase velocity waves, is proportional to the electron-ion collision rate, νei ,th. Here, it is shown that the damping rate normalized to νei ,th depends on the charge state, Z , on the magnitude of νei ,th and the wave number k in contrast with the commonly used damping rate in plasma wave research. Only for weak collision rates in low-Z plasmas for which the electron self-collision rate is comparable to the electron-ion collision rate is the damping rate given by the commonly accepted value. The result presented here corrects the result presented in textbooks at least as early as 1973. The complete linear theory requires the inclusion of both electron-ion pitch-angle and electron-electron scattering, which itself contains contributions to both pitch-angle scattering and thermalization.

  1. Persistent Motor Deficits in DAMP


    J Gordon Millichap


    Motor control in ability to perform everyday and spare-time activities was assessed at 11 to 12 years of age in 10 boys with deficits in attention, motor control and perception (DAMP) and compared with a group of 20 boys without DAMP.

  2. Systems Engineering Provides Successful High Temperature Steam Electrolysis Project

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Emmanuel Ohene Opare, Jr.


    This paper describes two Systems Engineering Studies completed at the Idaho National Laboratory (INL) to support development of the High Temperature Stream Electrolysis (HTSE) process. HTSE produces hydrogen from water using nuclear power and was selected by the Department of Energy (DOE) for integration with the Next Generation Nuclear Plant (NGNP). The first study was a reliability, availability and maintainability (RAM) analysis to identify critical areas for technology development based on available information regarding expected component performance. An HTSE process baseline flowsheet at commercial scale was used as a basis. The NGNP project also established a process and capability to perform future RAM analyses. The analysis identified which components had the greatest impact on HTSE process availability and indicated that the HTSE process could achieve over 90% availability. The second study developed a series of life-cycle cost estimates for the various scale-ups required to demonstrate the HTSE process. Both studies were useful in identifying near- and long-term efforts necessary for successful HTSE process deployment. The size of demonstrations to support scale-up was refined, which is essential to estimate near- and long-term cost and schedule. The life-cycle funding profile, with high-level allocations, was identified as the program transitions from experiment scale R&D to engineering scale demonstration.

  3. Electrolysis Propulsion Provides High-Performance, Inexpensive, Clean Spacecraft Propulsion (United States)

    deGroot, Wim A.


    An electrolysis propulsion system consumes electrical energy to decompose water into hydrogen and oxygen. These gases are stored in separate tanks and used when needed in gaseous bipropellant thrusters for spacecraft propulsion. The propellant and combustion products are clean and nontoxic. As a result, costs associated with testing, handling, and launching can be an order of magnitude lower than for conventional propulsion systems, making electrolysis a cost-effective alternative to state-of-the-art systems. The electrical conversion efficiency is high (>85 percent), and maximum thrust-to-power ratios of 0.2 newtons per kilowatt (N/kW), a 370-sec specific impulse, can be obtained. A further advantage of the water rocket is its dual-mode potential. For relatively high thrust applications, the system can be used as a bipropellant engine. For low thrust levels and/or small impulse bit requirements, cold gas oxygen can be used alone. An added innovation is that the same hardware, with modest modifications, can be converted into an energy-storage and power-generation fuel cell, reducing the spacecraft power and propulsion system weight by an order of magnitude.

  4. The DAMPE silicon–tungsten tracker

    Energy Technology Data Exchange (ETDEWEB)

    Azzarello, P., E-mail: [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Ambrosi, G. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Asfandiyarov, R. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Bernardini, P. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Bertucci, B.; Bolognini, A. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Cadoux, F. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Caprai, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); De Mitri, I. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Domenjoz, M. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Dong, Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Duranti, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Fan, R. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); and others


    The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV–10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon–tungsten tracker–converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m{sup 2}. The STK has been extensively tested for space qualification. Also, numerous beam tests at CERN have been done to study particle detection at silicon module level, and at full detector level. After description of the DAMPE payload and its scientific mission, we will describe the STK characteristics and assembly. We will then focus on some results of single ladder performance tests done with particle beams at CERN.

  5. Experimental Observations on Material Damping at Cryogenic Temperatures (United States)

    Peng, Chia-Yen; Levine, Marie; Shido, Lillian; Leland, Robert


    This paper describes a unique experimental facility designed to measure damping of materials at cryogenic temperatures for the Terrestrial Planet Finder (TPF) mission at the Jet Propulsion Laboratory. The test facility removes other sources of damping in the measurement by avoiding frictional interfaces, decoupling the test specimen from the support system, and by using a non-contacting measurement device. Damping data reported herein are obtained for materials (Aluminum, Aluminum/Terbium/Dysprosium, Titanium, Composites) vibrating in free-free bending modes with low strain levels (< 10(exp -6) ppm). The fundamental frequencies of material samples are ranged from 14 to 202 Hz. To provide the most beneficial data relevant to TPF-like precision optical space missions, the damping data are collected from room temperatures (around 293 K) to cryogenic temperatures (below 40 K) at unevenly-spaced intervals. More data points are collected over any region of interest. The test data shows a significant decrease in viscous damping at cryogenic temperatures. The cryogenic damping can be as low as 10(exp -4) %, but the amount of the damping decrease is a function of frequency and material. However, Titanium 15-3-3-3 shows a remarkable increase in damping at cryogenic temperatures. It demonstrates over one order of magnitude increase in damping in comparison to Aluminum 6061-T6. Given its other properties (e.g., good stiffness and low conductivity) this may prove itself to be a good candidate for the application on TPF. At room temperatures, the test data are correlated well with the damping predicted by the Zener theory. However, large discrepancies at cryogenic temperatures between the Zener theory and the test data are observed.

  6. Atomistic Mechanisms for Viscoelastic Damping in Inorganic Solids (United States)

    Ranganathan, Raghavan

    Viscoelasticity, a ubiquitous material property, can be tuned to engineer a wide range of fascinating applications such as mechanical dampers, artificial tissues, functional foams and optoelectronics, among others. Traditionally, soft matter such as polymers and polymer composites have been used extensively for viscoelastic damping applications, owing to the inherent viscous nature of interactions between polymer chains. Although this leads to good damping characteristics, the stiffness in these materials is low, which in turn leads to limitations. In this context, hard inorganic materials and composites are promising candidates for enhanced damping, owing to their large stiffness and, in some cases large loss modulus. Viscoelasticity in these materials has been relatively unexplored and atomistic mechanisms responsible for damping are not apparent. Therefore, the overarching goal of this work is to understand mechanisms for viscoelastic damping in various classes of inorganic composites and alloys at an atomistic level from molecular dynamics simulations. We show that oscillatory shear deformation serves as a powerful probe to explain mechanisms for exceptional damping in hitherto unexplored systems. The first class of inorganic materials consists of crystalline phases of a stiff inclusion in a soft matrix. The two crystals within the composite, namely the soft and a stiff phase, individually show a highly elastic behavior and a very small loss modulus. On the other hand, a composite with the two phases is seen to exhibit damping that is about 20 times larger than predicted theoretical bounds. The primary reason for the damping is due to large anharmonicity in phonon-phonon coupling, resulting from the composite microstructure. A concomitant effect is the distribution of shear strain, which is observed to be highly inhomogeneous and mostly concentrated in the soft phase. Interestingly, the shear frequency at which the damping is greatest is observed to scale with

  7. Nonlinear damping and quasi-linear modelling. (United States)

    Elliott, S J; Ghandchi Tehrani, M; Langley, R S


    The mechanism of energy dissipation in mechanical systems is often nonlinear. Even though there may be other forms of nonlinearity in the dynamics, nonlinear damping is the dominant source of nonlinearity in a number of practical systems. The analysis of such systems is simplified by the fact that they show no jump or bifurcation behaviour, and indeed can often be well represented by an equivalent linear system, whose damping parameters depend on the form and amplitude of the excitation, in a 'quasi-linear' model. The diverse sources of nonlinear damping are first reviewed in this paper, before some example systems are analysed, initially for sinusoidal and then for random excitation. For simplicity, it is assumed that the system is stable and that the nonlinear damping force depends on the nth power of the velocity. For sinusoidal excitation, it is shown that the response is often also almost sinusoidal, and methods for calculating the amplitude are described based on the harmonic balance method, which is closely related to the describing function method used in control engineering. For random excitation, several methods of analysis are shown to be equivalent. In general, iterative methods need to be used to calculate the equivalent linear damper, since its value depends on the system's response, which itself depends on the value of the equivalent linear damper. The power dissipation of the equivalent linear damper, for both sinusoidal and random cases, matches that dissipated by the nonlinear damper, providing both a firm theoretical basis for this modelling approach and clear physical insight. Finally, practical examples of nonlinear damping are discussed: in microspeakers, vibration isolation, energy harvesting and the mechanical response of the cochlea. © 2015 The Author(s).

  8. Damping layout optimization for ship's cabin noise reduction based on statistical energy analysis

    Directory of Open Access Journals (Sweden)

    WU Weiguo


    Full Text Available An optimization analysis study concerning the damping control of ship's cabin noise was carried out in order to improve the effect and reduce the weight of damping. Based on the Statistical Energy Analysis (SEA method, a theoretical deduction and numerical analysis of the first-order sensitivity analysis of the A-weighted sound pressure level concerning the damping loss factor of the subsystem were carried out. On this basis, a mathematical optimization model was proposed and an optimization program developed. Next, the secondary development of VA One software was implemented through the use of MATLAB, while the cabin noise damping control layout optimization system was established. Finally, the optimization model of the ship was constructed and numerical experiments of damping control optimization conducted. The damping installation region was divided into five parts with different damping thicknesses. The total weight of damping was set as an objective function and the A-weighted sound pressure level of the target cabin was set as a constraint condition. The best damping thickness was obtained through the optimization program, and the total damping weight was reduced by 60.4%. The results show that the damping noise reduction effect of unit weight is significantly improved through the optimization method. This research successfully solves the installation position and thickness selection problems in the acoustic design of damping control, providing a reliable analysis method and guidance for the design.

  9. Suboptimal Rayleigh damping coefficients in seismic analysis of viscously-damped structures (United States)

    Pan, Danguang; Chen, Genda; Wang, Zuocai


    An optimization method for the consistent evaluation of two Rayleigh damping coefficients is proposed. By minimizing an objective function such as an error term of the peak displacement of a structure, the two coefficients can be determined with response spectral analysis. The optimization method degenerates into the conventional method used in current practices when only two modes of vibration are included in the objective function. Therefore, the proposed method with all significant modes included for simplicity in practical applications results in suboptimal damping coefficients. The effects of both spatial distribution and frequency content of excitations as well as structural dynamic characteristics on the evaluation of Rayleigh damping coefficients were investigated with a five-story building structure. Two application examples with a 62-story high-rise building and a 840 m long cable-stayed bridge under ten earthquake excitations demonstrated the accuracy and effectiveness of the proposed method to account for all of the above effects.

  10. Damping and energy dissipation in soft tissue vibrations during running. (United States)

    Khassetarash, Arash; Hassannejad, Reza; Enders, Hendrik; Ettefagh, Mir Mohammad


    It has been well accepted that the vibrations of soft tissue cannot be simulated by a single sinusoidal function. In fact, these vibrations are a combination of several vibration modes. In this study, these modes are extracted applying a recently developed method namely, partly ensemble empirical mode decomposition (PEEMD). Then, a methodology for estimating the damping properties and energy dissipation caused by damping for each mode is used. Applying this methodology on simulated signals demonstrates high accuracy. This methodology is applied to the acceleration signals of the gastrocnemius muscle during sprinting and the differences between the damping properties of different vibration modes were identified. The results were 1) the damping property of high-frequency mode was higher than that for low-frequency modes. 2) All identified modes were in under damped condition, therefore, the vibrations had an oscillatory nature. 3) The damping ratios of lower modes are about 100% increased compared to higher modes. 4) The energy dissipation occurred in lower modes were much more than that for higher mode; According to the power spectrum of the ground reaction force (GRF), which is the input force into the body, the recent finding supports the muscle tuning paradigm. It is suggested that the damping properties and energy dissipation can be used to distinguish between different running conditions (surface, fatigue, etc.). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Active damping technique for small DC-link capacitor based drive system

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig; Henriksen, Bjarne


    A detailed model of Adjustable Speed Drive (ASD) is discussed, which yield a general rule for active damping in a small DC link based drive. A desired value of input LC resonance damping coefficient can be achieved by changing gain parameters. The modified state space matrix due to active damping...... terms is also presented. The performance of the active damping is evaluated based on experimental results. A simple model is presented which can be used to measure the damping factor provided by the system parameters only....

  12. An Improved Model for Air Damping of Perforated Structures (United States)

    Lu, Cunhao; Li, Pu


    the prediction of air damping of micromachined mechanical resonant structures is significant in the design of high quality factor devices. In rarefied air, based on Bao’s molecule model, Li gives an analytical model for air damping of perforated structures. By studying the action of molecules going through holes and reflected by the fixed plate, this paper gives a probability of molecules through holes going into the gap between the moving plate and the fixed one. Comparison with Li’s model, the new model can play a better performance of air damping for perforated structures, at a wide range of size of holes.

  13. Amplitude damping of vortex modes

    CSIR Research Space (South Africa)

    Dudley, Angela L


    Full Text Available An interferometer, mimicking an amplitude damping channel for vortex modes, is presented. Experimentally the action of the channel is in good agreement with that predicted theoretically. Since we can characterize the action of the channel on orbital...

  14. The effect of damping in prosthetic ankle and knee joints on the biomechanical outcomes: A literature review. (United States)

    Safaeepour, Zahra; Eshraghi, Arezoo; Geil, Mark


    Given the growing number of variable-damping prosthetic knee and ankle components and broad number of potential biomechanical outcomes, a systematic review is needed to assess advantages of damped knee and ankle units over non-damped prostheses. This study provides an overview of the biomechanical outcomes associated with the use of prosthetic knees and ankles with damping mechanisms in individuals with lower limb amputation. Literature review. A systematic search was performed through PubMed, Science Direct, Web of Science, Cochrane, and Scopus databases from June 1994 to March 2016. The level of evidence of each article was assessed using a 13-element checklist for evaluating non-randomized controlled trials for quality assessment. Afterward, the studies were classified as A-level, B-level, or C-level based on total score and positive scores from certain key categories. In total, 22 papers remained for the quality assessment based on the inclusion criteria. In total, 15 studies scored sufficiently high quality scores to be classified. One article scored as A-level, eight as B-level, and six as C-level. In total, 10 studied knees and 5 examined ankles. Sample sizes ranged from 5 to 28 subjects. Available studies were evaluated in detail and biomechanical outcomes were extracted from the studies that met criteria. Results of this review indicate that study methodology and outcome measures were heterogeneous across reviewed papers. This could be an explanation for inconsistent findings of the reviewed studies. Only self-selected gait speed showed a consistent difference when dampers were applied to the leg. Thus, further research is required in this area. Clinical relevance This study provides an overview of evidence related to prosthetic knee and foot/ankle components with damping attachments. Research related to biomechanical outcomes is of great importance for researchers and practitioners in this area. The studies drew mixed conclusions, but walking speed was

  15. Frequency and damping ratio assessment of high-rise buildings using an Automatic Model-Based Approach applied to real-world ambient vibration recordings (United States)

    Nasser, Fatima; Li, Zhongyang; Gueguen, Philippe; Martin, Nadine


    This paper deals with the application of the Automatic Model-Based Approach (AMBA) over actual buildings subjected to real-world ambient vibrations. In a previous paper, AMBA was developed with the aim of automating the estimation process of the modal parameters and minimizing the estimation error, especially that of the damping ratio. It is applicable over a single-channel record, has no parameters to be set, and no manual initialization phase. The results presented in this paper should be regarded as further documentation of the approach over real-world ambient vibration signals.

  16. Extracting Damping Ratio from Dynamic Data and Numerical Solutions (United States)

    Casiano, M. J.


    There are many ways to extract damping parameters from data or models. This Technical Memorandum provides a quick reference for some of the more common approaches used in dynamics analysis. Described are six methods of extracting damping from data: the half-power method, logarithmic decrement (decay rate) method, an autocorrelation/power spectral density fitting method, a frequency response fitting method, a random decrement fitting method, and a newly developed half-quadratic gain method. Additionally, state-space models and finite element method modeling tools, such as COMSOL Multiphysics (COMSOL), provide a theoretical damping via complex frequency. Each method has its advantages which are briefly noted. There are also likely many other advanced techniques in extracting damping within the operational modal analysis discipline, where an input excitation is unknown; however, these approaches discussed here are objective, direct, and can be implemented in a consistent manner.

  17. Effects of cold-damp and hot-damp environment on VEGF and IL-1 expression in joint cartilage cells in adjuvant arthritis in rats. (United States)

    Bai, Yun-Jing; Jiang, De-xun; An, Na; Shen, Hong-bo; Hu, Yin-qi


    To study the effects of environmental factors on the degree of injury and expression of vascular endothelial growth factor (VEGF) and interleukin-1 (IL-1) in cartilage cells of the joint in a rat model of adjuvant arthritis (AA). SD rats aged 10 months were randomly divided into 4 groups that varied by temperature and humidity housing conditions and induction of AA: a control group, a model group, a cold-damp group, and a hot-damp group. All groups except the control group were induced with AA. After 4 w, VEGF and IL-1 expression in cartilage cells of ankle joints of hind limbs were observed. Mean area, optical density, and numbers of VEGF- and IL-1-positive cells in the model group, the cold-damp group, and the hot-damp group were significantly higher than that of the control group (all P damp group and the hot-damp group were significantly higher than that of the model group (all P damp group were significantly higher than that of the cold-damp group. Bone in the hot-damp and cold-damp groups was severely injured. Environmental factors such as high humidity combined with either high or low temperature increase the severity of damage and expression of VEGF and IL-1 in cartilage cells of joints in rats induced with AA.

  18. Spatial Damping of Linear Compressional Magnetoacoustic Waves ...

    Indian Academy of Sciences (India)

    shows greater wave damping at low values of radiative time and then attains some maximum value and then decreases. The slow mode wave has higher values of damping per wavelength, showing higher levels of damping due to radiation. For τR → ∞, the wave takes infinite time to damp and therefore travels very long ...

  19. Experimental validation of solid rocket motor damping models (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio


    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  20. Viscous damping of toroidal angular momentum in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M. [Georgia Tech Fusion Research Center, Atlanta, Georgia 30332 (United States)


    The Braginskii viscous stress tensor formalism was generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry in order to provide a representation for the viscous damping of toroidal rotation in tokamaks arising from various “neoclassical toroidal viscosity” mechanisms. In the process, it was verified that the parallel viscosity contribution to damping toroidal angular momentum still vanishes even in the presence of toroidal asymmetries, unless there are 3D radial magnetic fields.

  1. Key Role of DAMP in Inflammation, Cancer, and Tissue Repair. (United States)

    Pandolfi, Franco; Altamura, Simona; Frosali, Simona; Conti, Pio


    This review aimed to take stock of the current status of research on damage-associated molecular pattern (DAMP) protein. We discuss the Janus-faced role of DAMP molecules in inflammation, cancer, and tissue repair. The high-mobility group box (HMGB)-1 and adenosine triphosphate proteins are well-known DAMP molecules and have been primarily associated with inflammation. However, as we shall see, recent data have linked these molecules to tissue repair. HMGB1 is associated with cancer-related inflammation. It activates nuclear factor kB, which is involved in cancer regulation via its receptor for advanced glycation end-products (RAGE), Toll-like receptors 2 and 4. Proinflammatory activity and tissue repair may lead to pharmacologic intervention, by blocking DAMP RAGE and Toll like receptor 2 and 4 role in inflammation and by increasing their concentration in tissue repair, respectively. We conducted a MEDLINE search for articles pertaining to the various issues related to DAMP, and we discuss the most relevant articles especially (ie, not only those published in journals with a higher impact factor). A cluster of remarkable articles on DAMP have appeared in the literature in recent years. Regarding inflammation, several strategies have been proposed to target HMGB1, from antibodies to recombinant box A, which interacts with RAGE, competing with the full molecule. In tissue repair, it was reported that the overexpression of HMGB1 or the administration of exogenous HMGB1 significantly increased the number of vessels and promoted recovery in skin-wound, ischemic injury. Due to the bivalent nature of DAMP, it is often difficult to explain the relative role of DAMP in inflammation versus its role in tissue repair. However, this point is crucial as DAMP-related treatments move into clinical practice. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  2. Influence of damping on quantum interference - An exactly soluble model (United States)

    Caldeira, A. O.; Leggett, A. J.


    This paper reports the result of a calculation which shows the effect of damping on the quantum interference of two Gaussian wave packets in a harmonic potential. The influence-functional method, which seems to be the most appropriate one for this kind of calculation, is used. It is shown that quantum-interference effects are severely diminished by the presence of damping even when its influence on the system is only light. The corrections to the undamped formulas are always expressible in terms of the phenomenological damping constant, the temperature (in the high-temperature limit), the cutoff frequency of the reservoir oscillators, and the mean number of quanta of energy intially present in the system. Both weakly and strongly damped systems are analyzed in the regime of low and high temperatures.

  3. A tapered damped accelerating structure for CLIC

    CERN Document Server

    Dehler, M; Wuensch, Walter


    A new 30 GHz multibunch accelerating structure incorporating both damping and detuning has been designed for the Compact LInear Collider (CLIC). Each cell of the 150-cell structure is damped by its ow n set of four radial waveguides resulting in a Q of 16 for the lowest dipole mode. A simple linear taper of the beam-pipe dimension provides a detuning frequency spread of 2 GHz (5.4%). Predictions of the transverse wakefield levels in this structure have been made using both uncoupled, and two-band coupled equivalent circuit models with non-perfect loads. The short-range wakefield has been calcula ted to be about 1000 V/( decreasing to less than 1% at the second bunch (0.67 ns) and with a long time level below 0.1%.

  4. System Reduction and Damping of Flexible Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Riess; Krenk, Steen


    An increasing number of flexible structures such as cable-stayed bridges, pedestrian bridges and high-rise buildings are fitted with local dampers to mitigate vibration problems. In principle the effect of local dampers can be analyzed by use of complex modes, e.g. in conjunction with an averaging...... technique for local linearization of the damper characteristics. However, the complex mode shapes and frequencies depend on the magnitude of the damper and therefore are less suitable for design of the damper system. An efficient alternative consists in the use of a two-component representation...... of the damped modes of the structure. The idea is to represent the damped mode as a linear combination of the modes that occur in two distinctly different situations representing extreme conditions: the mode shape of the structure without the damper(s), and the mode shape of the structure, when the damper...


    Directory of Open Access Journals (Sweden)



    Full Text Available The IEEE bench mark model 2 series compensated system is considered for analysis. It consists of single machine supplying power to infinite bus through two parallel lines one of which is series compensated. The mechanical system considered consists of six mass, viz, high pressure turbine, intermediate pressure turbine, two low pressure turbines, generator and an exciter. The excitation system considered is IEEE type 1 with saturation. The auxiliary controls considered to damp the unstable subsynchronous modes of oscillations are Power System Stabilizer (PSS and Static var Compensator (SVC. The different cases of power system stabilizer and reactive power controls are adapted to study the effectiveness of damping these unstable subsynchronous modes of oscillations.

  6. Rapidly moving contact lines and damping contributions (United States)

    Xia, Yi; Daniel, Susan; Steen, Paul


    Contact angle varies dynamically with contact line (CL) speed when a liquid moves across a solid support, as when a liquid spreads rapidly. For sufficiently rapid spreading, inertia competes with capillarity to influence the interface shape near the support. We use resonant-mode plane-normal support oscillations of droplets to drive lateral contact-line motion. Reynolds numbers based on CL speeds are high and capillary numbers are low. These are inertial-capillary motions. By scanning the driving frequency, we locate the frequency at peak amplification (resonance), obtain the scaled peak height (amplification factor) and a measure of band-width (damping ratio). We report how a parameter for CL mobility depends on these scanning metrics, with the goal of distinguishing contributions from the bulk- and CL-dissipation to overall damping.

  7. An Active Damping at Blade Resonances Using Piezoelectric Transducers (United States)

    Choi, Benjamin; Morrison, Carlos; Duffy, Kirsten


    The NASA Glenn Research Center (GRC) is developing an active damping at blade resonances using piezoelectric structure to reduce excessive vibratory stresses that lead to high cycle fatigue (HCF) failures in aircraft engine turbomachinery. Conventional passive damping work was shown first on a nonrotating beam made by Ti-6A1-4V with a pair of identical piezoelectric patches, and then active feedback control law was derived in terms of inductor, resister, and capacitor to control resonant frequency only. Passive electronic circuit components and adaptive feature could be easily programmable into control algorithm. Experimental active damping was demonstrated on two test specimens achieving significant damping on tip displacement and patch location. Also a multimode control technique was shown to control several modes.

  8. Fundamental Design Principles of Linear Collider Damping Rings, with an Application to CLIC

    CERN Document Server

    Potier, J P


    Damping Rings for Linear Colliders have to produce very small normalised emittances at a high repetition rate. A previous paper presented analytical expressions for the equilibrium emittance of an arc cell as a function of the deflection angle per dipole. In addition, an expression for the lattice parameters providing the minimum emittance, and a strategy to stay close to this, were proposed. This analytical approach is extended to the detailed design of Damping Rings, taking into account the straight sections and the damping wigglers. Complete rings, including wiggler and injection insections, were modelled with the MAD [1] program, and their performance was found to be in good agreement with the analytical calculation. With such an approach it is shown that a Damping Ring corresponding to the Compact Linear Collider (CLIC) parameters at 0.5 and 1 TeV centre-of-mass energy, and tunable for two different sets of emittance and injection repetition rate, can be designed using the same ring layout.

  9. A Cenozoic diffuse alkaline magmatic province (DAMP) in the southwest Pacific without rift or plume origin (United States)

    Finn, Carol A.; Müller, R. Dietmar; Panter, Kurt S.


    Common geological, geochemical, and geophysical characteristics of continental fragments of East Gondwana and adjacent oceanic lithosphere define a long-lived, low-volume, diffuse alkaline magmatic province (DAMP) encompassing the easternmost part of the Indo-Australian Plate, West Antarctica, and the southwest portion of the Pacific Plate. A key to generating the Cenozoic magmatism is the combination of metasomatized lithosphere underlain by mantle at only slightly elevated temperatures, in contrast to large igneous provinces where mantle temperatures are presumed to be high. The SW Pacific DAMP magmatism has been conjecturally linked to rifting, strike-slip faulting, mantle plumes, or hundreds of hot spots, but all of these associations have flaws. We suggest instead that sudden detachment and sinking of subducted slabs in the late Cretaceous induced Rayleigh-Taylor instabilities along the former Gondwana margin that in turn triggered lateral and vertical flow of warm Pacific mantle. The interaction of the warm mantle with metasomatized subcontinental lithosphere that characterizes much of the SW Pacific DAMP concentrates magmatism along zones of weakness. The model may also provide a mechanism for warming south Pacific mantle and resulting Cenozoic alkaline magmatism, where the oceanic areas are characterized primarily, but not exclusively, by short-lived hot spot tracks not readily explained by conventional mantle plume theory. This proposed south Pacific DAMP is much larger and longer-lived than previously considered.

  10. Dampness in buildings and health

    DEFF Research Database (Denmark)

    Bornehag, Carl-Gustaf; Blomquist, G.; Gyntelberg, F.


    Several epidemiological investigations concerning indoor environments have indicated that "dampness" in buildings is associated to health effects such as respiratory symptoms, asthma and allergy The aim of the present interdisciplinary review is to evaluate this association as shown in the epidem......Several epidemiological investigations concerning indoor environments have indicated that "dampness" in buildings is associated to health effects such as respiratory symptoms, asthma and allergy The aim of the present interdisciplinary review is to evaluate this association as shown...... in the epidemiological literature. A literature search identified 590 peer-reviewed articles of which 61 have been the foundation for this review. The review shows that "dampness" in buildings appears to increase the risk for health effects in the airways, such as cough, wheeze and asthma. Relative risks...... are in the range of OR 1.4-2.2. There also seems to be an association between "dampness" and other symptoms Such as tiredness, headache and airways infections. It is concluded that the evidence for a causal association between "dampness" and health effects is strong. However, the mechanisms are unknown. Several...

  11. Damping mechanisms of a pendulum (United States)

    Dolfo, Gilles; Castex, Daniel; Vigué, Jacques


    In this paper, we study the damping mechanisms of a pendulum. The originality of our setup is the use of a metal strip suspension and the development of extremely sensitive electric measurements of the pendulum velocity and position. Their sensitivity is absolutely necessary for a reliable measurement of the pendulum damping time constant because this measurement is possible only for very low oscillation amplitudes, when air friction forces quadratic in velocity have a negligible contribution to the observed damping. We have thus carefully studied damping by air friction forces, which is the dominant mechanism for large values of the Reynolds number Re but which is negligible in the Stokes regime, {Re} ∼ 1. In this last case, we have found that the dominant damping is due to internal friction in the metal strip, a universal effect called anelasticity, and, for certain frequencies, to resonant coupling to the support of the pendulum. All our measurements are well explained by theory. We believe this paper would be of interest to students in an undergraduate classical mechanics course.

  12. Pulse Power Modulator development for the CLIC Damping Ring Kickers

    CERN Document Server

    Holma, Janne


    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity (10-34 – 10-35 cm-2s-1) and a nominal centre-of-mass energy of 3 TeV: CLIC would complement LHC physics in the multi-TeV range. The CLIC design relies on Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve the very low emittance, through synchrotron radiation, needed for the luminosity requirements of CLIC. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the DR kickers must provide extremely flat, high-voltage pulses: the 2 GHz specification called for a 160 ns duration flat-top of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. In order to meet these demanding specifications, a combination of broadband impedance matching, optimized electrical circuit layout and advanced control techniques is required. A solid-state modulator, the inductive adder, is the most promising approach to meeting the demanding specifications...

  13. First Results from the DAMPE Mission

    CERN Document Server

    CERN. Geneva


    DAMPE (DArk Matter Particle Explorer) is a satellite mission of the Chinese Academy of Sciences (CAS) dedicated to high energy cosmic ray detections. Since its successful launch on December 17th, 2015 a large amount of cosmic ray data has been collected. With relatively large acceptance, DAMPE is designed to detect electrons (and positrons) up to 10 TeV with unprecedented energy resolution to search for new features in the cosmic ray electron plus positron (CRE) spectrum. It will also study cosmic ray nuclei up to 100 TeV with good precision, which will bring new input to the study of their still unknown origin and their propagation through the Galaxy. In this talk, the DAMPE mission will be introduced, together with some details of the construction and on-ground calibration of the detector subsystems. The in-orbit detector commissioning, calibration and operation will be described. First data analysis results, including the recently published CRE spectrum from 25 GeV to 4.6 TeV based on the data collected i...

  14. MANGO – Modal Analysis for Grid Operation: A Method for Damping Improvement through Operating Point Adjustment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.; Chen, Yousu; Trudnowski, Daniel J.; Diao, Ruisheng; Fuller, Jason C.; Mittelstadt, William A.; Hauer, John F.; Dagle, Jeffery E.


    Small signal stability problems are one of the major threats to grid stability and reliability in the U.S. power grid. An undamped mode can cause large-amplitude oscillations and may result in system breakups and large-scale blackouts. There have been several incidents of system-wide oscillations. Of those incidents, the most notable is the August 10, 1996 western system breakup, a result of undamped system-wide oscillations. Significant efforts have been devoted to monitoring system oscillatory behaviors from measurements in the past 20 years. The deployment of phasor measurement units (PMU) provides high-precision, time-synchronized data needed for detecting oscillation modes. Measurement-based modal analysis, also known as ModeMeter, uses real-time phasor measurements to identify system oscillation modes and their damping. Low damping indicates potential system stability issues. Modal analysis has been demonstrated with phasor measurements to have the capability of estimating system modes from both oscillation signals and ambient data. With more and more phasor measurements available and ModeMeter techniques maturing, there is yet a need for methods to bring modal analysis from monitoring to actions. The methods should be able to associate low damping with grid operating conditions, so operators or automated operation schemes can respond when low damping is observed. The work presented in this report aims to develop such a method and establish a Modal Analysis for Grid Operation (MANGO) procedure to aid grid operation decision making to increase inter-area modal damping. The procedure can provide operation suggestions (such as increasing generation or decreasing load) for mitigating inter-area oscillations.

  15. Active Damping Techniques for LCL-Filtered Inverters-Based Microgrids

    DEFF Research Database (Denmark)

    Lorzadeh, Iman; Firoozabadi, Mehdi Savaghebi; Askarian Abyaneh, Hossein


    LCL-type filters are widely used in gridconnected voltage source inverters, since it provides switching ripples reduction with lower cost and weight than the L-type counterpart. However, the inclusion of LCL-filters in voltage source inverters complicates the current control design regarding syst...... the different active damping approaches for grid-connected inverters with LCL filters, which are based on high-order filters and additional feedbacks methods. These techniques are analyzed and discussed in detail....

  16. Enhancing the Damping Properties of Viscoelastic Composites by Topology Optimization

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Andreassen, Erik; Sigmund, Ole

    in engineering structures. Thus, materials or composites with high stiffness and high damping are of great interest to the industry. The inherent compromise between high stiffness and high damping in viscoelastic materials has been treated theoretically [2, 3] and experimentally [1]. It has been shown that high...... stiffness and high damping can be realized by Hashin-type composites or Rank-N laminates. However, in order to manufacture such composites it is favorable to obtain single length scale microstructures, i.e. without multiscale structures such that the materials can be manufactured by modern manufacturing...... techniques. As an example, by the use of e.g. SLM/SLS - Selective Laser Melting/Sintering, an open metallic microstructure can be printed and in a subsequent process the porespace can be filled with a high loss compliant material. Yi and co-workers [6] applied topology optimization to design the 2D...


    Directory of Open Access Journals (Sweden)

    Ladaev Nikolay Mikhaylovich


    Centrifugal grinders were used to analyze the grinding process. The experimental data have proven that the probability of destruction of damp samples is a lot higher than the one of dry samples, given the same initial dimensions of particles and the loading intensity. The rise in the probability of destruction is stipulated by the fact that that the grinder speed at which crushing is triggered is lower in case of damp samples than in case of dry ones. Expressions for speed that describes destruction initiation and the probability of destruction depending on the type of materials, the moisture content and the loading intensity have been derived.

  18. High stakes and high emotions: providing safe care in Canadian emergency departments

    Directory of Open Access Journals (Sweden)

    Ali S


    Full Text Available Samina Ali,1,2 Denise Thomson,3 Timothy A D Graham,4 Sean E Rickard,3 Antonia S Stang5 1Women and Children’s Health Research Institute, 2Department of Pediatrics, 3Cochrane Child Health Field, Department of Pediatrics, University of Alberta, Edmonton, 4Department of Emergency Medicine, 5Section of Emergency Medicine, Department of Pediatrics, University of Calgary, Calgary, AB, Canada Background: The high-paced, unpredictable environment of the emergency department (ED contributes to errors in patient safety. The ED setting becomes even more challenging when dealing with critically ill patients, particularly with children, where variations in size, weight, and form present practical difficulties in many aspects of care. In this commentary, we will explore the impact of the health care providers’ emotional reactions while caring for critically ill patients, and how this can be interpreted and addressed as a patient safety issue. Discussion: ED health care providers encounter high-stakes, high-stress clinical scenarios, such as pediatric cardiac arrest or resuscitation. This health care providers’ stress, and at times, distress, and its potential contribution to medical error, is underrepresented in the current medical literature. Most patient safety research is limited to error reporting systems, especially medication-related ones, an approach that ignores the effects of health care provider stress as a source of error, and limits our ability to learn from the event. Ways to mitigate this stress and avoid this type of patient safety concern might include simulation training for rare, high-acuity events, use of pre-determined clinical order sets, and post-event debriefing. Conclusion: While there are physiologic and anatomic differences that contribute to patient safety, we believe that they are insufficient to explain the need to address critical life-threatening event-related patient safety issues for both adults and, especially, children

  19. Red cell DAMPs and inflammation. (United States)

    Mendonça, Rafaela; Silveira, Angélica A A; Conran, Nicola


    Intravascular hemolysis, or the destruction of red blood cells in the circulation, can occur in numerous diseases, including the acquired hemolytic anemias, sickle cell disease and β-thalassemia, as well as during some transfusion reactions, preeclampsia and infections, such as those caused by malaria or Clostridium perfringens. Hemolysis results in the release of large quantities of red cell damage-associated molecular patterns (DAMPs) into the circulation, which, if not neutralized by innate protective mechanisms, have the potential to activate multiple inflammatory pathways. One of the major red cell DAMPs, heme, is able to activate converging inflammatory pathways, such as toll-like receptor signaling, neutrophil extracellular trap formation and inflammasome formation, suggesting that this DAMP both activates and amplifies inflammation. Other potent DAMPs that may be released by the erythrocytes upon their rupture include heat shock proteins (Hsp), such as Hsp70, interleukin-33 and Adenosine 5' triphosphate. As such, hemolysis represents a major inflammatory mechanism that potentially contributes to the clinical manifestations that have been associated with the hemolytic diseases, such as pulmonary hypertension and leg ulcers, and likely plays a role in specific complications of sickle cell disease such as endothelial activation, vaso-occlusive processes and tissue injury.

  20. Dampness in Buildings and Health

    DEFF Research Database (Denmark)

    Clausen, Geo; Rode, Carsten; Bornehag, Carl-Gustaf


    . The main themes are:· Continued research in human perception of indoor air quality, especially by identification of the factors that may cause annoyance to the occupants. Such annoyances may be emissions from materials or biological activity, and is often linked to the dampness of buildings.· Studies...

  1. Composite Struts Would Damp Vibrations (United States)

    Dolgin, Benjamin P.


    New design of composite-material (fiber/matrix laminate) struts increases damping of longitudinal vibrations without decreasing longitudinal stiffness or increasing weight significantly. Plies with opposing chevron patterns of fibers convert longitudinal vibrational stresses into shear stresses in intermediate viscoelastic layer, which dissipate vibrational energy. Composite strut stronger than aluminum strut of same weight and stiffness.

  2. Vibration Damping Circuit Card Assembly (United States)

    Hunt, Ronald Allen (Inventor)


    A vibration damping circuit card assembly includes a populated circuit card having a mass M. A closed metal container is coupled to a surface of the populated circuit card at approximately a geometric center of the populated circuit card. Tungsten balls fill approximately 90% of the metal container with a collective mass of the tungsten balls being approximately (0.07) M.

  3. Very Oblique Whistler Mode Propagation in the Radiation Belts: Effects of Hot Plasma and Landau Damping (United States)

    Ma, Q.; Artemyev, A. V.; Mourenas, D.; Li, W.; Thorne, R. M.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Reeves, G. D.; Spence, H. E.; Wygant, J.


    Satellite observations of a significant population of very oblique chorus waves in the outer radiation belt have fueled considerable interest in the effects of these waves on energetic electron scattering and acceleration. However, corresponding diffusion rates are extremely sensitive to the refractive index N, controlled by hot plasma effects including Landau damping and wave dispersion modifications by suprathermal (15-100 eV) electrons. A combined investigation of wave and electron distribution characteristics obtained from the Van Allen Probes shows that peculiarities of the measured electron distribution significantly reduce Landau damping, allowing wave propagation with high N ˜ 100-200. Further comparing measured refractive indexes with theoretical estimates incorporating hot plasma corrections to the wave dispersion, we provide the first experimental demonstration that suprathermal electrons indeed control the upper limit of the refractive index of highly oblique whistler mode waves. Such results further support the importance of incorporating very oblique waves into radiation belt models.

  4. Power oscillation damping by a converter-based power generation device

    DEFF Research Database (Denmark)


    output power to the power output. The power generation park further comprises a controller being configured for receiving an oscillation indicating signal indicative of a power oscillation in the electricity network, the controller being further configured for providing a damping control signal...... in response to the oscillation indicating signal; the converter device being configured for modulating the electrical output power in response to the damping control signal so as to damp the power oscillation in the electricity network....

  5. Elimination of periodic damped artifacts in scanning probe microscopy images (United States)

    Chen, Yuhang; Huang, Wenhao


    When scanning probe microscopy (SPM) is operated at high scan rates, stripe-like artifacts will appear frequently in the SPM images. The removal of the image artifacts is highly demanded because they will distort the results in precise measurements. In this work, a method based on Prony analysis has been introduced to erase such periodic damped artifacts. Results demonstrate that this method prevails against the conventional fast Fourier transformation (FFT) method. Clean eliminations of the image artifacts are obtained, with almost no sacrifice of the detailed surface information. Even for arbitrary rough surfaces, the image artifacts can also be reduced by more than one order of magnitude. However, small amounts of stripes may still remain in the images. In these cases, the Prony analysis combined with locally weighted smoothing will provide better image quality. The artifacts reduction can have a meaning in the SPM-based visualization of dynamic phenomena with a nanoscale resolution.

  6. Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors. (United States)

    Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia


    Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design

  7. Loss of Landau Damping in the LHC

    CERN Document Server

    Shaposhnikova, E N; Bohl, T; Bhat, C M; Baudrenghien, P; Butterworth, A C; Mastoridis, T; Esteban Muller, J; Papotti, G; Tuckmantel, J; Venturini Delsolaro, W; Wehrle, U


    Loss of Landau damping leading to a single bunch longitudinal instability has been observed in the LHC during the ramp and on the 3.5 TeV flat top for small injected longitudinal emittances. The first measurements are in reasonable agreement with the threshold calculated for the expected longitudinal reactive impedance budget of the LHC as well as with the threshold dependence on beam energy. The cure is a controlled longitudinal emittance blow-up during the ramp which for a constant threshold through the cycle should provide an emittance proportional to the square root of energy.

  8. Damping of gravitational waves by matter (United States)

    Baym, Gordon; Patil, Subodh P.; Pethick, C. J.


    We develop a unified description, via the Boltzmann equation, of damping of gravitational waves by matter, incorporating collisions. We identify two physically distinct damping mechanisms—collisional and Landau damping. We first consider damping in flat spacetime, and then generalize the results to allow for cosmological expansion. In the first regime, maximal collisional damping of a gravitational wave, independent of the details of the collisions in the matter is, as we show, significant only when its wavelength is comparable to the size of the horizon. Thus damping by intergalactic or interstellar matter for all but primordial gravitational radiation can be neglected. Although collisions in matter lead to a shear viscosity, they also act to erase anisotropic stresses, thus suppressing the damping of gravitational waves. Damping of primordial gravitational waves remains possible. We generalize Weinberg's calculation of gravitational wave damping, now including collisions and particles of finite mass, and interpret the collisionless limit in terms of Landau damping. While Landau damping of gravitational waves cannot occur in flat spacetime, the expansion of the universe allows such damping by spreading the frequency of a gravitational wave of given wave vector.

  9. Roll Damping Characterisation Program: User Guide (United States)


    Cubic roll damping coefficient blin Linear roll damping coefficient bqua Quadratic roll damping coefficient Cxx Roll restoring moment coefficient g...testing conducted on a 32 bit Hewlett Packard desktop personal computer the RDCP was observed to function satisfactorily, however, the processing of

  10. A modified precise integration method for transient dynamic analysis in structural systems with multiple damping models (United States)

    Ding, Zhe; Li, Li; Hu, Yujin


    Sophisticated engineering systems are usually assembled by subcomponents with significantly different levels of energy dissipation. Therefore, these damping systems often contain multiple damping models and lead to great difficulties in analyzing. This paper aims at developing a time integration method for structural systems with multiple damping models. The dynamical system is first represented by a generally damped model. Based on this, a new extended state-space method for the damped system is derived. A modified precise integration method with Gauss-Legendre quadrature is then proposed. The numerical stability and accuracy of the proposed integration method are discussed in detail. It is verified that the method is conditionally stable and has inherent algorithmic damping, period error and amplitude decay. Numerical examples are provided to assess the performance of the proposed method compared with other methods. It is demonstrated that the method is more accurate than other methods with rather good efficiency and the stable condition is easy to be satisfied in practice.

  11. A study on the damping capacity of BaTiO3-reinforced Al-matrix ...

    Indian Academy of Sciences (India)

    strength and high damping capacity. Ferroelectric and piezoelectric ceramics can exhibit con- siderable high vibration damping capacity due to the anelas- tic response of ferroelastic domains to an external applied stress. Some piezoelectric materials such as BaTiO3 PZT. (Pb(ZrTi)O3) and LiNbO3 have been focussed and ...

  12. Analysis of the Passive Damping Losses in LCL-Filter-Based Grid Converters

    DEFF Research Database (Denmark)

    Alzola, Rafael Pena; Liserre, Marco; Blaabjerg, Frede


    Passive damping is the most adopted method to guarantee the stability of LCL-filter-based grid converters. The method is simple and, if the switching and sampling frequencies are sufficiently high, the damping losses are negligible. This letter proposes the tuning of different passive damping...... methods and an analytical estimation of the damping losses allowing the choice of the minimum resistor value resulting in a stable current control and not compromising the LCL-filter effectiveness. Stability, including variations in the grid inductance, is studied through root locus analysis in the z...

  13. A macromodel for squeeze-film air damping in the free-molecule regime

    KAUST Repository

    Hong, Gang


    A three-dimensional Monte Carlo(MC) simulation approach is developed for the accurate prediction of the squeeze-film air damping on microresonators in the free-molecule gas regime. Based on the MC simulations and the analytical traveling-time distribution, a macromodel, which relates air damping directly with device dimensions and operation parameters, is constructed. This model provides an efficient tool for the design of high-performance microresonators. The accuracy of the macromodel is validated through the modeling of the quality factors of several microresonators. It has been found that the relative errors of the quality factors of two resonators, as compared with experimental data, are 3.9% and 5.7%, respectively. The agreements between the macromodel results and MC simulation results, on the other hand, are excellent in all cases considered.

  14. Beam dynamics and wakefield suppression in interleaved damped and detuned structures for CLIC

    CERN Document Server

    D'Elia, A; Khan, V F; Jones, R M; Latina, A; Nesmiyan, I; Riddone, G


    Acceleration of multiple bunches of charged particles in the main linacs of the Compact Linear Collider (CLIC) with high accelerating fields provides two major challenges: firstly, to ensure the surface electromagnetic fields do not cause electrical breakdown and subsequent surface damage, and secondly, to ensure the beam-excited wakefields are sufficiently suppressed to avoid appreciable emittance dilution. In the baseline design for CLIC, heavy wakefield suppression is used (Q ~ 10) [1] and this ensures the beam quality is well-preserved [2]. Here we discuss an alternative means to suppress the wakefield which relies on strong detuning of the cell dipole frequencies, together with moderate damping, effected by manifolds which are slot-coupled to each accelerating cell. This damped and detuned wakefield suppression scheme is based on the methodology developed for the Japanese Linear Collider/Next Linear Collider (JLC/NLC) [3]. Here we track the multi-bunch beam down the complete collider, u...

  15. Evaluation of Drogue Parachute Damping Effects Utilizing the Apollo Legacy Parachute Model (United States)

    Currin, Kelly M.; Gamble, Joe D.; Matz, Daniel A.; Bretz, David R.


    Drogue parachute damping is required to dampen the Orion Multi Purpose Crew Vehicle (MPCV) crew module (CM) oscillations prior to deployment of the main parachutes. During the Apollo program, drogue parachute damping was modeled on the premise that the drogue parachute force vector aligns with the resultant velocity of the parachute attach point on the CM. Equivalent Cm(sub q) and Cm(sub alpha) equations for drogue parachute damping resulting from the Apollo legacy parachute damping model premise have recently been developed. The MPCV computer simulations ANTARES and Osiris have implemented high fidelity two-body parachute damping models. However, high-fidelity model-based damping motion predictions do not match the damping observed during wind tunnel and full-scale free-flight oscillatory motion. This paper will present the methodology for comparing and contrasting the Apollo legacy parachute damping model with full-scale free-flight oscillatory motion. The analysis shows an agreement between the Apollo legacy parachute damping model and full-scale free-flight oscillatory motion.

  16. Damping Effects in Aerospace Structures (United States)


    dapeadeat «a the applied damping values. Incorrect daoping values m^ lead to an inpropcr desigo. CoUeetioB and evaluation of available wmavanA...23) (24) Ref. [36] n b^ rr a Z , r rk (a Z ^ s rk arV < E rk u b r rr (25) where: y is the oodal daoping factor t> /2üI and e is a

  17. Damping Improvement of Multiple Damping Controllers by Using Optimal Coordinated Design Based on PSS and FACTS-POD in a Multi-Machine Power System

    Directory of Open Access Journals (Sweden)

    Ali Nasser Hussain


    Full Text Available The aim of this study is to present a comprehensive comparison and assessment of the damping function improvement of power system oscillation for the multiple damping controllers using the simultaneously coordinated design based on Power System Stabilizer (PSS and Flexible AC Transmission System (FACTS devices. FACTS devices can help in the enhancing the stability of the power system by adding supplementary damping controller to the control channel of the FACTS input to implement the task of Power Oscillation Damping (FACT POD controller. Simultaneous coordination can be performed in different ways. First, the dual coordinated designs between PSS and FACTS POD controller or between different FACTS POD controllers are arranged in a multiple FACTS devices without PSS. Second, the simultaneous coordination has been extended to triple coordinated design among PSS and different FACTS POD controllers. The parameters of the damping controllers have been tuned in the individual controllers and coordinated designs by using a Chaotic Particle Swarm Optimization (CPSO algorithm that optimized the given eigenvalue-based objective function. The simulation results for a multi-machine power system show that the dual coordinated design provide satisfactory damping performance over the individual control responses. Furthermore, the triple coordinated design has been shown to be more effective in damping oscillations than the dual damping controllers.

  18. Provider Knowledge of Trivalent Inactivated and High-Dose Influenza Vaccines


    Tewell, Chad; Wright, Patty W.; Talbot, H. Keipp


    The objective of this study was to assess provider knowledge about trivalent inactivated and high dose influenza vaccines. Hence, a 20 item survey was distributed to providers within the Internal Medicine department at an urban academic medical center.

  19. Effect of Temperature and Electric Field on the Damping and Stiffness Characteristics of ER Fluid Short Squeeze Film Dampers

    Directory of Open Access Journals (Sweden)

    H. P. Jagadish


    Full Text Available Squeeze film dampers are novel rotor dynamic devices used to alleviate small amplitude, large force vibrations and are used in conjunction with antifriction bearings in aircraft jet engine bearings to provide external damping as these possess very little inherent damping. Electrorheological (ER fluids are controllable fluids in which the rheological properties of the fluid, particularly viscosity, can be controlled in accordance with the requirements of the rotor dynamic system by controlling the intensity of the applied electric field and this property can be utilized in squeeze film dampers, to provide variable stiffness and damping at a particular excitation frequency. The paper investigates the effect of temperature and electric field on the apparent viscosity and dynamic (stiffness and damping characteristics of ER fluid (suspension of diatomite in transformer oil using the available literature. These characteristics increase with the field as the viscosity increases with the field. However, these characteristics decrease with increase in temperature and shear strain rate as the viscosity of the fluid decreases with temperature and shear strain rate. The temperature is an important parameter as the aircraft jet engine rotors are located in a zone of high temperature gradients and the damper fluid is susceptible to large variations in temperature.

  20. Structural Damping with Friction Beams

    Directory of Open Access Journals (Sweden)

    L. Gaul


    Full Text Available In the last several years, there has been increasing interest in the use of friction joints for enhancing damping in structures. The joints themselves are responsible for the major part of the energy dissipation in assembled structures. The dissipated work in a joint depends on both the applied normal force and the excitation force. For the case of a constant amplitude excitation force, there is an optimal normal force which maximizes the damping. A ‘passive’ approach would be employed in this instance. In most cases however, the excitation force, as well as the interface parameters such as the friction coefficient, normal pressure distribution, etc., are not constant. In these cases, a ‘semi-active’ approach, which implements an active varying normal force, is necessary. For the ‘passive’ and ‘semi-active’ approaches, the normal force has to be measured. Interestingly, since the normal force in a friction joint influences the local stiffness, the natural frequencies of the assembled structure can be tuned by adjusting the normal force. Experiments and simulations are performed for a simple laboratory structure consisting of two superposed beams with friction in the interface. Numerical simulation of the friction interface requires non-linear models. The response of the double beam system is simulated using a numerical algorithm programmed in MATLAB which models point-to-point friction with the Masing friction model. Numerical predictions and measurements of the double beam free vibration response are compared. A practical application is then described, in which a friction beam is used to damp the vibrations of the work piece table on a milling machine. The increased damping of the table reduces vibration amplitudes, which in turn results in enhanced surface quality of the machined parts, reduction in machine tool wear, and potentially higher feed rates. Optimal positioning of the friction beams is based on knowledge of the mode

  1. The Nonlinear Landau Damping Rate of a Driven Plasma Wave

    Energy Technology Data Exchange (ETDEWEB)

    Benisti, D; Strozzi, D J; Gremillet, L; Morice, O


    In this Letter, we discuss the concept of the nonlinear Landau damping rate, {nu}, of a driven electron plasma wave, and provide a very simple, practical, analytic formula for {nu} which agrees very well with results inferred from Vlasov simulations of stimulated Raman scattering. {nu} actually is more complicated an operator than a plain damping rate, and it may only be seen as such because it assumes almost constant values before abruptly dropping to 0. The decrease of {nu} to 0 is moreover shown to occur later when the wave amplitude varies in the direction transverse to its propagation.

  2. On strain-rate independent damping in continuum mechanics (United States)

    Mulder, Gerben


    Strain-rate independent damping is a theory of energy dissipation in solids. It is based on the assumption that an increase or decrease in the strain-energy density correlates with a multiplication of 1+η or 1-η respectively, of the material stiffness matrix, with 0≤ η derived for strain-rate independent damping can be solved for 1, 2 or 3 dimensions via direct integration, provided that the software supports PDE coefficients that are functions of the solution and its space and time derivatives. A 3D problem with 22,000 DOF's and 10,000 time steps was solved successfully and convincingly.

  3. Damping Force Tracking Control of MR Damper System Using a New Direct Adaptive Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Xuan Phu Do


    Full Text Available This paper presents a new direct adaptive fuzzy controller and its effectiveness is verified by investigating the damping force tracking control of magnetorheological (MR fluid based damper (MR damper in short system. In the formulation of the proposed controller, a model of interval type 2 fuzzy controller is combined with the direct adaptive control to achieve high performance in vibration control. In addition, H∞ (H infinity tracking technique is used in building a model of the direct adaptive fuzzy controller in which an enhanced iterative algorithm is combined with the fuzzy model. After establishing a closed-loop control structure to achieve high control performance, a cylindrical MR damper is adopted and damping force tracking results are obtained and discussed. In addition, in order to demonstrate the effectiveness of the proposed control strategy, two existing controllers are modified and tested for comparative work. It has been demonstrated from simulation and experiment that the proposed control scheme provides much better control performance in terms of damping force tracking error. This leads to excellent vibration control performance of the semiactive MR damper system associated with the proposed controller.


    Directory of Open Access Journals (Sweden)

    Murat Aydın


    Full Text Available Vibration damping and sound insulation are essential for all vehicles. Because moving parts and external factors such as wind, tracks, etc. can cause vibration and noise. Wave which is a dynamic force, drive system and HVAC systems are the main vibration and noise generators in a vessel. These all can affect comfort level on board yachts. Different types of isolators and absorbers such as sylomer®, cork panels, etc. are used to reduce these effects. Comfort level on board yachts can be increased using these types of materials. Otherwise, discomfort of passenger and crew may increase. These materials not only reduce structure-borne and air-borne noise and vibrations from waves, air, engines, pumps, generators and HVAC systems but also protect vibration sensitive interior or fittings. Noise and vibration evaluation is an important issue for this reason. And, measurement tools must be used not only to minimize this problem but also fulfill the regulations such as “comfort class”. Besides, providing quiet and low vibration increases the costs too. From this point of view, this study aims to explain clearly how noise and vibration damping can be done in a yacht.

  5. An Estimate of P-Mode Damping by Wave Leakage (United States)

    De Moortel, I.; Rosner, R.


    High-cadence TRACE observations show that outward-propagating intensity disturbances are a common feature in large, quiescent coronal loops. Analysis of the frequency distribution of these modes shows peaks at both three- and five-minute periods, indicating that they may be driven by the solar surface oscillations ( p modes). The energy flux contained within the coronal intensity disturbances is of the order of (1.1±0.4)×103 ergs cm-2 s-1. A simple order-of-magnitude estimate of the damping rate of the relevant p modes allows us to put an observational constraint on the damping of p modes and shows that leakage into the overlying coronal atmosphere might be able to account for a significant fraction of p-mode damping.

  6. Research overview on vibration damping of mistuned bladed disk assemblies

    Directory of Open Access Journals (Sweden)

    Liang ZHANG


    Full Text Available Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home and abroad, the mistuning vibration mechanism of the bladed disk assemblies is introduced, and the main technical methods of the vibration damping of bladed disk assemblies are reviewed, such as artificially active mistuning, collision damping, friction damping and optimization of the blade position. Some future research directions are presented.

  7. Turbulence damping as a measure of the flow dimensionality

    CERN Document Server

    Shats, M; Xia, H


    The dimensionality of turbulence in fluid layers determines their properties. We study electromagnetically driven flows in finite depth fluid layers and show that eddy viscosity, which appears as a result of three-dimensional motions, leads to increased bottom damping. The anomaly coefficient, which characterizes the deviation of damping from the one derived using a quasi-two-dimensional model, can be used as a measure of the flow dimensionality. Experiments in turbulent layers show that when the anomaly coefficient becomes high, the turbulent inverse energy cascade is suppressed. In the opposite limit turbulence can self-organize into a coherent flow.

  8. Anisotropic damping of Timoshenko beam elements

    DEFF Research Database (Denmark)

    Hansen, M.H.


    This report contains a description of a structural damping model for Timoshenko beam elements used in the aeroelastic code HawC developed at Risø for modeling wind turbines. The model has been developed to enable modeling of turbine blades which oftenhave different damping characteristics...... for ¤flapwise¤, ¤edgewise¤ and ¤torsional¤ vibrations. The structural damping forces acting on the beam element are modeled by viscous damping described by an element damping matrix. The composition of this matrix is basedon the element mass and stiffness matrices. It is shown how the coefficients for the mass...... and stiffness contributions can be calibrated to give the desired modal damping in the complete model of a blade....


    Energy Technology Data Exchange (ETDEWEB)



    The dynamic response of a jointed beam was measured in laboratory experiments. The data were analyzed and the system was mathematically modeled to establish plausible representations of joint damping behavior. Damping is examined in an approximate, local linear framework using log decrement and half power bandwidth approaches. in addition, damping is modeled in a nonlinear framework using a hybrid surface irregularities model that employs a bristles-construct. Experimental and analytical results are presented.

  10. Optics Design and Performance of an Ultra-Low Emittance Damping Ring for the Compact Linear Collider

    CERN Document Server

    Korostelev, M S


    A high-energy (0.5-3.0 TeV centre of mass) electron-positron Compact Linear Collider (CLIC) is being studied at CERN as a new physics facility. The design study has been optimized for 3 TeV centre-of-mass energy. Intense bunches injected into the main linac must have unprecedentedly small emittances to achieve the design luminosity 1035cm-2s-1 required for the physics experiments. The positron and electron bunch trains will be provided by the CLIC injection complex. This thesis describes an optics design and performance of a positron damping ring developed for producing such ultra-low emittance beam. The linear optics of the CLIC damping ring is optimized by taking into account the combined action of radiation damping, quantum excitation and intrabeam scattering. The required beam emittance is obtained by using a TME (Theoretical Minimum Emittance) lattice with compact arcs and short period wiggler magnets located in dispersionfree regions. The damping ring beam energy is chosen as 2.42 GeV. The lattice featu...

  11. Phenomenology of chiral damping in noncentrosymmetric magnets

    KAUST Repository

    Akosa, Collins Ashu


    A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.

  12. Parametric Landau damping of space charge modes

    Energy Technology Data Exchange (ETDEWEB)

    Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab


    Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.

  13. Dampness, food habits, and sick building syndrome symptoms in elementary school pupils. (United States)

    Saijo, Yasuaki; Nakagi, Yoshihiko; Ito, Toshihiro; Sugioka, Yoshihiko; Endo, Hitoshi; Yoshida, Takahiko


    We investigated dampness/mold in schools and dwellings, and food habits and subjective symptoms in elementary school pupils, in order to clarify the effect of dampness and food habits on subjective symptoms in elementary school pupils. Questionnaires were used to investigate dampness in classrooms and dwellings in Hokkaido, Japan, and its effect on subjective symptoms in 1,077 pupils in 8 elementary schools. We used a dampness index for both the home and classroom; the index was the sum of the presence of four dampness indicators: (1) visible mold, (2) moldy odor, (3) water leakage, and (4) condensation on windowpanes. The questionnaire also contained queries about food habits, as follows: the frequency of eating breakfast, whether the energy provided by the school lunch was sufficient, and whether eating too many snacks and/or sweets were consumed. Adjusted logistic regression was used to determine whether dampness and food habits were related to the subjective symptoms. In fully adjusted models, the home dampness index was significantly related to cough, general symptoms, and having at least one symptom; the classroom dampness index was significantly related to nasal symptoms. In addition, usually not eating breakfast was significantly related to eye symptoms, and too many snacks and/or sweets was significantly related to eye, nasal, and general symptoms. Both home and classroom dampness can affect pupils' health. Home dampness, in particular, was significantly related to cough and general symptoms, and classroom dampness was significantly related to nasal symptoms. Furthermore, favorable food habits have a positive effect on pupils' subjective symptoms.

  14. An Active Damping Technique for Small DC-Link Capacitor Based Drive System

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig; Lu, Kaiyuan


    A small dc-link capacitor based drive system shows instability when it is operated with large input line inductance at operating points with high power. This paper presents a simple, new active damping technique that can stabilize effectively the drive system at unstable operating points, offering...... greatly reduced input line current total harmonic distortion (THD). The proposed method requires only a first-order, high-pass filter with a gain. Active damping voltage terms, linked directly to the dc-link voltage ripple through gain units, are injected to the drive machine for stabilizing the operating...... points. The stabilizing effect of the active damping terms is demonstrated for an induction machine based drive system. The effects of the added damping terms on the machine current and dc-link voltage are analyzed in detail. A design recommendation for the proposed active damping terms is given...

  15. Damping augmentation of helicopter rotors using magnetorheological dampers (United States)

    Zhao, Yongsheng

    parameter perturbation. In first case, it is assumed that some MR dampers are damaged which lead to an unstable or marginally stable rotor. The use of the remaining operational MR dampers to recover the stability margin is investigated. It is shown that using the developed control strategy, the MR dampers can successfully recover the stability and stability margin of the rotor in most studied cases. The robustness of parameter perturbations are studied by perturbing mass, damping, and stiffness parameters. The method to improve the robustness of the feedback linearization control is suggested and is approved feasible. To evaluate the damping provided by lead lag dampers and predict the aeromechnical instability, damping identification algorithms from rotor stability test data are developed. First, the linear damping identification is researched. Three existing methods: Hilbert transform, moving block method with time domain window, and wavelet transform are evaluated and compared. Hybrid algorithms combining the advantages of the three methods are developed and applied to experimental test data. A nonlinear damping identification algorithm designed specifically for the system with MR dampers is developed. The envelope of the free response of such system is derived and the damping identification problem is transformed to envelope detection problem, so that algorithms used in linear damping identification can be applied. For the single degree of freedom system, all three methods accurately identify dampings: Hilbert transform, moving block method with time domain window, and wavelet transform. For the system with persistent excitation such as rotor stability test data, the hybrid methods again show better performance than other methods.

  16. Superconductive material and magnetic field for damping and levitation support and damping of cryogenic instruments (United States)

    Dolgin, Benjamin P. (Inventor)


    A superconductive load bearing support without a mechanical contact and vibration damping for cryogenic instruments in space is presented. The levitation support and vibration damping is accomplished by the use of superconducting magnets and the 'Meissner' effect. The assembly allows for transfer of vibration energy away from the cryogenic instrument which then can be damped by the use of either an electronic circuit or conventional vibration damping mean.

  17. Susceptibility for cigarette smoke-induced DAMP release and DAMP-induced inflammation in COPD. (United States)

    Pouwels, Simon D; Hesse, Laura; Faiz, Alen; Lubbers, Jaap; Bodha, Priya K; Ten Hacken, Nick H T; van Oosterhout, Antoon J M; Nawijn, Martijn C; Heijink, Irene H


    Cigarette smoke (CS) exposure is a major risk factor for chronic obstructive pulmonary disease (COPD). We investigated whether CS-induced damage-associated molecular pattern (DAMP) release or DAMP-mediated inflammation contributes to susceptibility for COPD. Samples, including bronchial brushings, were collected from young and old individuals, susceptible and nonsusceptible for the development of COPD, before and after smoking, and used for gene profiling and airway epithelial cell (AEC) culture. AECs were exposed to CS extract (CSE) or specific DAMPs. BALB/cByJ and DBA/2J mice were intranasally exposed to LL-37 and mitochondrial (mt)DAMPs. Functional gene-set enrichment analysis showed that CS significantly increases the airway epithelial gene expression of DAMPs and DAMP receptors in COPD patients. In cultured AECs, we observed that CSE induces necrosis and DAMP release, with specifically higher galectin-3 release from COPD-derived compared with control-derived cells. Galectin-3, LL-37, and mtDAMPs increased CXCL8 secretion in AECs. LL-37 and mtDAMPs induced neutrophilic airway inflammation, exclusively in mice susceptible for CS-induced airway inflammation. Collectively, we show that in airway epithelium from COPD patients, the CS-induced expression of DAMPs and DAMP receptors in vivo and the release of galectin-3 in vitro is exaggerated. Furthermore, our studies indicate that a predisposition to release DAMPs and subsequent induction of inflammation may contribute to the development of COPD. Copyright © 2016 the American Physiological Society.

  18. Stability analysis and active damping for LLCL-filter based grid-connected inverters

    DEFF Research Database (Denmark)

    Huang, Min; Blaabjerg, Frede; Loh, Poh Chiang


    A higher order passive power filter (LLCL-filter) for the grid-tied inverter is becoming attractive for the industrial applications due to the possibility to reduce the cost of the copper and the magnetic material. To avoid the well-known stability problems of the LLCL-filter it is requested to use...... either passive or active damping methods. This paper analyzes the stability when damping is required and when damping is not necessary considering sampling and transport delay. Basic LLCL resonance damping properties of different feedback states are also studied. Then an active damping method which...... is using the capacitor current feedback for LLCL-filter is introduced. Based on this method, a design procedure for the control method is given. Last, both simulation and experimental results are provided to validate the theoretical analysis of this paper....

  19. State protection under collective damping and diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Ponte, M. A. de [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 369, 13560-590 Sao Carlos, SP (Brazil); Departamento de Fisica, Universidade Regional do Cariri, 63010-970 Juazeiro do Norte, CE (Brazil); Mizrahi, S. S. [Departamento de Fisica, Universidade Federal de Sao Carlos, 13565-905 Sao Carlos, SP (Brazil); Moussa, M. H. Y. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 369, 13560-590 Sao Carlos, SP (Brazil)


    In this paper we provide a recipe for state protection in a network of oscillators under collective damping and diffusion. Our strategy is to manipulate the network topology, i.e., the way the oscillators are coupled together, the strength of their couplings, and their natural frequencies, in order to create a relaxation-diffusion-free channel. This protected channel defines a decoherence-free subspace (DFS) for nonzero-temperature reservoirs. Our development also furnishes an alternative approach to build up DFSs that offers two advantages over the conventional method: it enables the derivation of all the network-protected states at once, and also reveals, through the network normal modes, the mechanism behind the emergence of these protected domains.

  20. Eddy-current-damped microelectromechanical switch

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, Todd R. (Albuquerque, NM); Polosky, Marc A. (Tijeras, NM)


    A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).

  1. Eddy-current-damped microelectromechanical switch

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, Todd R [Albuquerque, NM; Polosky, Marc A [Tijeras, NM


    A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).

  2. Improvement of viscoelastic damping in nickel aluminum bronze by indium-tin (United States)

    Lee, Taeyong


    Reduction of the vibration noise from submarine propellers is of interest in naval operations. Such an objective can be achieved via the use of materials with the ability to dissipate energy of vibration by means of heat, i.e. high damping materials. An additional problem is that the extreme hydrostatic pressure environment of a submarine requires the chosen material to exhibit considerably high stiffness. Most materials demonstrate a compromise between the two properties, i.e. stiffness and damping. This paper aims to discuss research into high stiffness and high damping materials conducted using a dynamic mechanical analyzer (DMA) under variations of testing temperature, frequency, and strain amplitude. Alloys of nickel aluminum bronze and indium tin are the subjects of this study. Defect damping represents a large portion of the overall damping properties of the nickel aluminum bronze while increasing indium content is shown to boost the damping properties of the indium tin alloy. The study then continues with the development of a new material that combines both indium alloying and defects introduction into the nickel aluminum bronze alloy. The new alloy is observed to have high damping, as measured in its high tan δ, with minimum reduction of the stiffness | E*|.

  3. Providing Behavioral Feedback to Students in an Alternative High School Setting (United States)

    Whitcomb, Sara A.; Hefter, Sheera; Barker, Elizabeth


    This column provides an example method for improving the consistency and quality of daily behavioral feedback provided to students in an alternative high school setting. Often, homeroom or advisory periods are prime points in the day for students to review their behavior from the previous day and set goals for a successful day to come. The method…

  4. On incorporating damping and gravity effects in models of structural dynamics of the SCOLE configuration (United States)

    Taylor, Larry; Leary, Terry; Stewart, Eric


    The damping for structural dynamic models of flexible spacecraft is usually ignored and then added after modal frequencies and mode shapes are calculated. It is common practice to assume the same damping ratio for all modes, although it is known that damping due to bending and that due to torsion are sometimes ignored. Two methods of including damping in the modeling process from its onset are examined. First, the partial derivative equations of motion are analyzed for a pinned-pinned beam with damping. The end conditions are altered to handle bodies with mass and inertia for the Spacecraft Control Laboratory Experiment (SCOLE) configuration. Second, a massless beam approximation is used for the modes with low frequencies, and a clamped-clamped system is used to approximate the modes for arbitrarily high frequency. The model is then modified to include gravity effects and is compared with experimental results.

  5. Design of a choke-mode damped accelerating structure for CLIC Main LINAC

    CERN Document Server

    Shi, J; Grudiev, A; Wuensch, W; Tang, C; Chen, H; Huang, W


    Choke-mode damped accelerating structures are being studied as an alternative to the baseline structure of the compact linear collider (CLIC) by a CERN-Tsinghua collaboration. Choke-mode structures hold the potential for much lower levels of pulsed surface heating and, since milling is not needed, reduced cost. Structures with radial choke attached are simulated in GdfidL to investigate the damping of the transverse wake. The first pass-band of the dipole modes is well damped, while the higher order dipole modes are possibly reflected by the choke. Therefore, the geometry of the choke is tuned to minimize the reflection of these higher order dipole modes. Based on this damping scheme, an accelerating structure with the same iris dimensions as the nominal CLIC design but with choke-mode damping has been designed. A prototype structure will be manufactured and high power tested in the near future.

  6. Thermoelastic damping in torsion microresonators with coupling effect between torsion and bending (United States)

    Tai, Yongpeng; Li, Pu; Fang, Yuming


    Predicting thermoelastic damping (TED) is crucial in the design of high Q MEMS resonators. In the past, there have been few works on analytical modeling of thermoelastic damping in torsion microresonators. This could be related to the assumption of pure torsional mode for the supporting beams in the torsion devices. The pure torsional modes of rectangular supporting beams involve no local volume change, and therefore, they do not suffer any thermoelastic loss. However, the coupled motion of torsion and bending usually exists in the torsion microresonator when it is not excited by pure torque. The bending component of the coupled motion causes flexural vibrations of supporting beams which may result in significant thermoelastic damping for the microresonator. This paper presents an analytical model for thermoelastic damping in torsion microresonators with the coupling effect between torsion and bending. The theory derives a dynamic model for torsion microresonators considering the coupling effect, and approximates the thermoelastic damping by assuming the energy loss to occur only in supporting beams of flexural vibrations. The thermoelastic damping obtained by the present model is compared to the measured internal friction of single paddle oscillators. It is found that thermoelastic damping contributes significantly to internal friction for the case of the higher modes at room temperature. The present model is validated by comparing its results with the finite-element method (FEM) solutions. The effects of structural dimensions and other parameters on thermoelastic damping are investigated for the representative case of torsion microresonators.

  7. Nurses and Dietitians Differ in Food Safety Information Provided to Highly Susceptible Clients (United States)

    Buffer, Janet; Kendall, Patricia; Medeiros, Lydia; Schroeder, Mary; Sofos, John


    Objective: To determine content, education channels, and motivational factors that influence what health professionals teach about safe food handling to populations who are highly susceptible for foodborne illnesses. To assess the differences in information provided by health professionals to highly susceptible populations. Design: Descriptive,…

  8. Parameter identification in a generalized time-harmonic Rayleigh damping model for elastography.

    Directory of Open Access Journals (Sweden)

    Elijah E W Van Houten

    Full Text Available The identifiability of the two damping components of a Generalized Rayleigh Damping model is investigated through analysis of the continuum equilibrium equations as well as a simple spring-mass system. Generalized Rayleigh Damping provides a more diversified attenuation model than pure Viscoelasticity, with two parameters to describe attenuation effects and account for the complex damping behavior found in biological tissue. For heterogeneous Rayleigh Damped materials, there is no equivalent Viscoelastic system to describe the observed motions. For homogeneous systems, the inverse problem to determine the two Rayleigh Damping components is seen to be uniquely posed, in the sense that the inverse matrix for parameter identification is full rank, with certain conditions: when either multi-frequency data is available or when both shear and dilatational wave propagation is taken into account. For the multi-frequency case, the frequency dependency of the elastic parameters adds a level of complexity to the reconstruction problem that must be addressed for reasonable solutions. For the dilatational wave case, the accuracy of compressional wave measurement in fluid saturated soft tissues becomes an issue for qualitative parameter identification. These issues can be addressed with reasonable assumptions on the negligible damping levels of dilatational waves in soft tissue. In general, the parameters of a Generalized Rayleigh Damping model are identifiable for the elastography inverse problem, although with more complex conditions than the simpler Viscoelastic damping model. The value of this approach is the additional structural information provided by the Generalized Rayleigh Damping model, which can be linked to tissue composition as well as rheological interpretations.

  9. Gyroscopic Stabilization of Indefinite Damped Systems

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Müller, Peter C.


    Modelling of mechanical systems with sliding bearings, or with dry friction, can lead to linear systems with an indefinite damping matrix. We ask under what conditions such a system is unstable (the indefiniteness of the damping matrix is not enough) and under what conditions we can stabilize the...... the system by adding a gyroscopic term....

  10. Damping device for a stationary labyrinth seal (United States)

    El-Aini, Yehia M. (Inventor); Mitchell, William S. (Inventor); Roberts, Lawrence P. (Inventor); Montgomery, Stuart K. (Inventor); Davis, Gary A. (Inventor)


    A stationary labyrinth seal system includes a seal housing having an annular cavity, a plurality of damping devices, and a retaining ring. The damping devices are positioned within the annular cavity and are maintained within the annular cavity by the retaining ring.

  11. DAMPs from death to new life

    Directory of Open Access Journals (Sweden)

    Emilie eVénéreau


    Full Text Available Our body handles tissue damage by activating the immune system in response to intracellularmolecules released by injured tissues (Damage-Associated Molecular Patterns, DAMPs, in a similar way as it detects molecular motifs conserved in pathogens (pathogen-associated molecular patterns, PAMPs. DAMPs are molecules that have a physiological role inside the cell, but acquire additional functions when they are released outside the cell: they alert the body about danger, stimulate an inflammatory response, and finally promote the regeneration process. Beside their passive release by dead cells, some DAMPs can be secreted or exposed by living cells undergoing a life-threatening stress. DAMPs have been linked to inflammation and related disorders: hence, inhibition of DAMP-mediated inflammatory responses is a promising strategy to improve the clinical management of infection- and injury-elicited inflammatory diseases. However, it is important to consider that DAMPs are not only danger signals but also central players in tissue repair. Indeed, some DAMPs have been studied for their role in tissue healing after sterile or infection-associated inflammation. This review is focused on two exemplary DAMPs, HMGB1 and ATP, and their contribution to both inflammation and tissue repair.

  12. Damping-off in forest nurseries (United States)

    Carl Hartley


    Damping-off is the commonest English name for a symptomatic group of diseases affecting great numbers of plant species of widely separated phylogenetic groups. It is commonly used for any disease which results in the rapid decay of young succulent seedlings or soft cuttings. Young shoots from underground rootstocks may also be damped-off before they break through the...

  13. Modified Composite Struts Would Damp Vibrations (United States)

    Chen, Gun-Shing; Dolgin, Benjamin P.


    Composite-material (fiber/matrix laminate) struts damping longitudinal vibrations fabricated more easily in proposed new design. Prior design described in "Composite Struts Would Damp Vibrations" (NPO-17914). New design similar except pattern of fibers includes rounded bends (instead of sharp bends) in fibers.

  14. On Collisionless Damping of Ion Acoustic Waves

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Petersen, P.I.


    Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero.......Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero....

  15. Spatial damping of propagating sausage waves in coronal cylinders (United States)

    Guo, Ming-Zhe; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui


    Context. Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. Aims: We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Methods: Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued, longitudinal wavenumber k at given real angular frequencies ω. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of ωc, the critical angular frequency separating trapped from leaky waves. Results: In contrast to the standing case, propagating sausage waves are allowed for ω much lower than ωc. However, while able to direct their energy upward, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping length shows little dependence on the density contrast between the cylinder and its surroundings, and depends only weakly on frequency. This spatial damping length is of the order of the cylinder radius for ω ≲ 1.5vAi/a, where a and vAi are the cylinder radius and the Alfvén speed in the cylinder, respectively. Conclusions: If a coronal cylinder is perturbed by symmetric boundary drivers (e.g., granular motions) with a broadband spectrum, wave leakage efficiently filters out the low-frequency components.

  16. Fluid Surface Damping: A Technique for Vibration Suppression of Beams

    Directory of Open Access Journals (Sweden)

    Hany Ghoneim


    Full Text Available A fluid surface damping (FSD technique for vibration suppression of beamlikestructures is proposed. The technique is a modification of the surface layer damping method. Two viscoelastic surface layers containing fluid-filled cavities are attached symmetrically to the opposite surfaces of the beam. The cavities on one side are attached to the corresponding cavities on the other side via connection passages. As the beam vibrates, the fluid is pumped back and forth through the connecting passages. Therefore, in addition to the viscoelastic damping provided by the surface layers, the technique offers viscous damping due to the fluid flow through the passage. A mathematical model for the proposed technique is developed, normalized, and solved in the frequency domain to investigate the effect of various parameters on the vibration suppression of a cantilever beam. The steady-state frequency response for a base white-noise excitation is calculated at the beam's free tip and over a frequency range containing the first five resonant frequencies. The parameters investigated are the flow-through passage viscous resistance, the length and location of the layers, the hydraulic capacitance of the fluid-filled cavities, and inertia of the moving fluid (hydraulic inertance. Results indicate that the proposed technique has promising potential in the field of vibration suppression of beamlike structures. With two FSD elements, all peak vibration amplitudes can be well suppressed over the entire frequency spectrum studied.

  17. Damping insert materials for settling chambers of supersonic wind tunnels (United States)

    Wu, Jie; Radespiel, Rolf


    This study describes the application of a novel damping insert material for reducing the flow fluctuations in a tandem nozzle supersonic wind tunnel. This new damping material is composed of multi-layer stainless steel wired meshes. The influences of the multi-layer mesh, such as the quantity of the mesh layer and the installed location in the settling chamber, to the freestream quality have been investigated. A Pitot probe instrumented with a Kulite pressure sensor and a hot-wire probe are employed to monitor the flow fluctuation in the test section of the wind tunnel. Thereafter, a combined modal analysis is applied for the disturbance qualification. Additionally, the transient Mach number in the test section is measured. The disturbance qualification indicates that the multi-layer mesh performs well in providing reduction of vorticity reduction and acoustic fluctuations. Comparable flow quality of the freestream was also obtained using a combination of flexible damping materials. However, the life-span of the new damping materials is much longer. The time transient of the Mach number measured in the test section indicates that the mean flow is rather constant over run time. Furthermore, the time-averaged pressure along the settling chamber is recorded and it shows the distribution of pressure drop by settling chamber inserts.

  18. GOES-R Active Vibration Damping Controller Design, Implementation, and On-Orbit Performance (United States)

    Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.


    GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. In order to meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping of the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural

  19. Modeling of interfacial friction damping of carbon nanotube-based nanocomposites (United States)

    Lin, R. M.; Lu, C.


    Carbon nanotube-based composite is becoming increasingly popular and offers great potential for highly demanding practical high strength and high damping applications. The excellent damping capacity of CNTs is primarily due to the interfacial friction between carbon nanotubes and polymer resins and the extremely large interfacial surface area over a given specific mass (specific area). In this paper, damping characteristics of carbon nanotube-based composites have been investigated, with an objective of developing an effective and accurate analytical model, which can be used as a design tool for the damping design of such materials. Based on the interfacial slips between the resin and nanotubes and between the nanotubes themselves, a micro stick-slip damping model has been developed. Such a physically derived model is believed to be appropriate and representative of the actual complex damping mechanism of the material system. The model, developed for the first time, is analytical and relates explicitly the material properties of the resin and nanotubes and the processing parameters to the overall material damping loss factor and hence it offers the possibility for material engineers to possibly optimize the damping for required applications. Due to the nonlinear force-displacement relationship derived under the micro stick-slip, a harmonic linearization method, the Describing Function method, has been employed to analyse its vibration characteristics and to derive the required damping loss factors. From the analytical formula, it can be seen that the damping loss factor of the material system depends on the individual material properties of the resin and the nanotubes, structural deformation, nanotube volume fraction and the critical shear stresses at which interfacial slips take place. By taking careful considerations of these design parameters, optimized carbon nanotube-based composites for advanced damping applications can be developed. Extensive numerical

  20. Vibration damping using a spiral acoustic black hole. (United States)

    Lee, Jae Yeon; Jeon, Wonju


    This study starts with a simple question: can the vibration of plates or beams be efficiently reduced using a lightweight structure that occupies a small space? As an efficient technique to damp vibration, the concept of an acoustic black hole (ABH) is adopted with a simple modification of the geometry. The original shape of an ABH is a straight wedge-type profile with power-law thickness, with the reduction of vibration in beams or plates increasing as the length of the ABH increases. However, in real-world applications, there exists an upper bound of the length of an ABH due to space limitations. Therefore, in this study, the authors propose a curvilinear shaped ABH using the simple mathematical geometry of an Archimedean spiral, which allows a uniform gap distance between adjacent baselines of the spiral. In numerical simulations, the damping performance increases as the arc length of the Archimedean spiral increases, regardless of the curvature of the spiral in the mid- and high-frequency ranges. Adding damping material to an ABH can also strongly enhance the damping performance while not significantly increasing the weight. In addition, the radiated sound power of a spiral ABH is similar to that of a standard ABH.

  1. Damping time of transverse kink oscillations in active region coronal loops observed by AIA/SDO

    Directory of Open Access Journals (Sweden)

    Abbas Abedini


    Full Text Available A coronal loop can be oscillated in various directions. A basic type of coronal loop oscillation is called transverse oscillation that can be caused by different factors, such as nearby active regions and flares. The damping of transverse oscillation may be produced by the dissipation mechanism or the wake of the traveling disturbance. The aim of this paper is to estimate the damping time of transverse (kink coronal loop oscillations and the quantitative dependence of these oscillations on their frequencies in the solar corona loops that are situated near an active region with the Atmospheric Imaging Assembly (AIA onboard Solar Dynamic Observatory (SDO. The observed data on 2014-Oct-17, consisting of 130 images with an interval of 24 seconds in the 171 A0 pass band is analyzed for evidence of transvers kink oscillations along the coronal loops and for estimate of physical parameters by fast Fourier transform (FFT of data times series. In this analyzed signatures of transvers oscillations that are damped rapidly were found, with oscillation periods in the range of P=2-9.5 minutes. Also, damping times and damping qualities of filtered intensities centered on the dominant frequencies are measured in the range of minutes and , respectively. The observational results of this study indicate that the damping times increase with increasing the oscillation periods, and are highly sensitive function of oscillation period, but damping qualities are not very sensitive to the oscillations period. The order of magnitude of the damping times and damping qualities that obtained from this analysis are in good agreement with previous findings by authors and the theoretical prediction for damping of fast kink mode oscillations.

  2. High-fidelity multiactor emergency preparedness training for patient care providers. (United States)

    Scott, Lancer A; Maddux, P Tim; Schnellmann, Jennifer; Hayes, Lauren; Tolley, Jessica; Wahlquist, Amy E


    Providing comprehensive emergency preparedness training (EPT) for patient care providers is important to the future success of emergency preparedness operations in the United States. Disasters are rare, complex events involving many patients and environmental factors that are difficult to reproduce in a training environment. Few EPT programs possess both competency-driven goals and metrics to measure life-saving performance during a multiactor simulated disaster. The development of an EPT curriculum for patient care providers-provided first to medical students, then to a group of experienced disaster medical providers-that recreates a simulated clinical disaster using a combination of up to 15 live actors and six high-fidelity human simulators is described. Specifically, the authors detail the Center for Health Professional Training and Emergency Response's (CHPTER's) 1-day clinical EPT course including its organization, core competency development, medical student self-evaluation, and course assessment. Two 1-day courses hosted by CHPTER were conducted in a university simulation center. Students who completed the course improved their overall knowledge and comfort level with EPT skills. The authors believe this is the first published description of a curriculum method that combines high-fidelity, multiactor scenarios to measure the life-saving performance of patient care providers utilizing a clinical disaster scenario with > 10 patients at once. A larger scale study, or preferably a multicenter trial, is needed to further study the impact of this curriculum and its potential to protect provider and patient lives.

  3. An Optimal Reactive Power Control Strategy for a DFIG-Based Wind Farm to Damp the Sub-Synchronous Oscillation of a Power System

    Directory of Open Access Journals (Sweden)

    Bin Zhao


    Full Text Available This study presents the auxiliary damping control with the reactive power loop on the rotor-side converter of doubly-fed induction generator (DFIG-based wind farms to depress the sub-synchronous resonance oscillations in nearby turbogenerators. These generators are connected to a series capacitive compensation transmission system. First, the damping effect of the reactive power control of the DFIG-based wind farms was theoretically analyzed, and a transfer function between turbogenerator speed and the output reactive power of the wind farms was introduced to derive the analytical expression of the damping coefficient. The phase range to obtain positive damping was determined. Second, the PID phase compensation parameters of the auxiliary damping controller were optimized by a genetic algorithm to obtain the optimum damping in the entire subsynchronous frequency band. Finally, the validity and effectiveness of the proposed auxiliary damping control were demonstrated on a modified version of the IEEE first benchmark model by time domain simulation analysis with the use of DigSILENT/PowerFactory. Theoretical analysis and simulation results show that this derived damping factor expression and the condition of the positive damping can effectively analyze their impact on the system sub-synchronous oscillations, the proposed wind farms reactive power additional damping control strategy can provide the optimal damping effect over the whole sub-synchronous frequency band, and the control effect is better than the active power additional damping control strategy based on the power system stabilizator.

  4. Provider knowledge of trivalent inactivated and high-dose influenza vaccines. (United States)

    Tewell, Chad; Wright, Patty W; Talbot, H Keipp


    The objective of this study was to assess provider knowledge about trivalent inactivated and high dose influenza vaccines. Hence, a 20-item survey was distributed to providers within the Internal Medicine department at an urban academic medical center. Two hundred and eighty-one (24.5%) providers responded. The correct response rate was 63.2%. The highest performing subspecialties were infectious diseases (80.5%), endocrinology (69.2%), and pulmonary (68%). Those who received an influenza vaccine during the most recent season scored significantly higher than those who did not (63.6% vs. 43.6%, p=.001). Areas where respondents did poorly included questions pertaining to contraindications to immunizations (27.4%), common adverse events after immunization (29.2%), target antigen (73.5%), number of strains in the trivalent inactivated vaccine (62.9%), and time to immunity (61.4%). High dose vaccine knowledge was poor, with 37% of providers unaware of its existence. Significant gaps in provider knowledge exist regarding both trivalent inactivated and high dose influenza vaccines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Providing wireless bandwidth for high-speed rail operations : final report. (United States)


    This project examined the possibility of providing wireless communication for train control systems on American high-speed trains. In this : study, the key issue is that the frequencies allocated for rail operations in the U.S. and the frequencies us...

  6. Providing high-quality HIV care in a deeply rural setting – the ...

    African Journals Online (AJOL)

    Providing high-quality HIV care in a deeply rural setting – the Zithulele experience. C Young, B Gaunt. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · · AJOL African Journals Online. HOW TO ...

  7. A Monte Carlo Simulation approach for the modeling of free-molecule squeeze-film damping of flexible microresonators

    KAUST Repository

    Leung, Roger


    Squeeze-film damping on microresonators is a significant damping source even when the surrounding gas is highly rarefied. This article presents a general modeling approach based on Monte Carlo (MC) simulations for the prediction of squeeze-film damping on resonators in the freemolecule regime. The generality of the approach is demonstrated in its capability of simulating resonators of any shape and with any accommodation coefficient. The approach is validated using both the analytical results of the free-space damping and the experimental data of the squeeze-film damping on a clamped-clamped plate resonator oscillating at its first flexure mode. The effect of oscillation modes on the quality factor of the resonator has also been studied and semi-analytical approximate models for the squeeze-film damping with diffuse collisions have been developed.

  8. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects (United States)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.


    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  9. Application and design of induction machine damping unit (IMDU) for eliminating subsynchronous resonance (United States)

    Purushothaman, Sujit

    The IEEE First and Second Benchmark Models for subsynchronous resonance (SSR) are used to analyze the damping properties of an induction machine damping unit (IMDU) coupled to the shaft of a turbo-generator set. This study investigates the rating and location of the induction machine that, without the aid of any controllers, effectively damps sub-synchronous resonance for all line series compensation levels. Eigenvalue analyses are performed on linearized models of the shaft system including the induction machine to find the optimum location. The best location of the IMDU, providing maximum damping, is next to the HP turbine at the end of the shaft. Time domain simulations are conducted to find the adequate rating of the induction machine. It is observed that a small size, high power (about 10% of the generator rating), low energy machine effectively damps SSR. The IMDU reduces peak torques in shaft sections during transients. In the study, it is demonstrated that the addition of an IMDU at the end of the shaft would have prevented the SSR events of 1970 and 1971 that caused major damage to the Mohave Desert generator shafts. A basic design of the IMDU is presented derived from a closed form solution of Maxwell's equations in squirrel cage induction motors. The solution is obtained for a cylindrical multi-layer geometry. The squirrel cage is represented by an equivalent anisotropic homogeneous medium. The effect of stator slots and teeth is included by a second anisotropic homogeneous medium. The induction motor is modeled as six concentric cylindrical layers representing the different construction components of the motor. The governing partial differential equations are solved for the excitation source, conducting and non-conducting regions. The formulas obtained allow for efficient calculations of machine performance which may help the motor designer to select the proper parameters of the machine that fit the design requirements. Accuracy of the modeling method

  10. Radiation damping of a polarizable particle (United States)

    Novotny, Lukas


    A polarizable body moving in an external electromagnetic field will slow down. This effect is referred to as radiation damping and is analogous to Doppler cooling in atomic physics. Using the principles of special relativity we derive an expression for the radiation damping force and find that it solely depends on the scattered power. The cooling of the particle's center-of-mass motion is balanced by heating due to radiation pressure shot noise, giving rise to an equilibrium that depends on the ratio of the field's frequency and the particle's mass. While damping is of relativistic nature, heating has its roots in quantum mechanics.

  11. Lifetime measurement of ATF damping ring

    Energy Technology Data Exchange (ETDEWEB)

    Okugi, T. [Tokyo Metropolitan Univ. (Japan); Hayano, H.; Kubo, K.; Naito, T.; Terunuma, N.; Urakawa, J. [High Energy Accelerator Research Organization, Tsukuba (Japan); Zimmermann, F. [Stanford Univ., CA (US). Stanford Linear Accelerator Center


    The purpose of the ATF damping ring is the development of technologies for producing a low emittance beam required in future linear colliders such as JLC. The lifetime of the damping ring is very short (typically a few minutes). It is limited by elastic beam-gas scattering along with a small dynamic aperture, and by single intra-beam scattering (Touschek effect). The Touschek lifetime strongly depends upon the charge density of the beam, especially, the size of the vertical emittance. In this paper, the authors report the results of beam lifetime measurements in the ATF damping ring and the estimation of the vertical emittance from these measurements.

  12. Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: Design, modeling and experiments (United States)

    Xie, Longhan; Li, Jiehong; Li, Xiaodong; Huang, Ledeng; Cai, Siqi


    Hydraulic dampers are used to decrease the vibration of a vehicle, where vibration energy is dissipated as heat. In addition to resulting in energy waste, the damping coefficient in hydraulic dampers cannot be changed during operation. In this paper, an energy-harvesting vehicle damper was proposed to replace traditional hydraulic dampers. The goal is not only to recover kinetic energy from suspension vibration but also to change the damping coefficient during operation according to road conditions. The energy-harvesting damper consists of multiple generators that are independently controlled by switches. One of these generators connects to a tunable resistor for fine tuning the damping coefficient, while the other generators are connected to a control and rectifying circuit, each of which both regenerates electricity and provides a constant damping coefficient. A mathematical model was built to investigate the performance of the energy-harvesting damper. By controlling the number of switched-on generators and adjusting the value of the external tunable resistor, the damping can be fine tuned according to the requirement. In addition to the capability of damping tuning, the multiple controlled generators can output a significant amount of electricity. A prototype was built to test the energy-harvesting damper design. Experiments on an MTS testing system were conducted, with results that validated the theoretical analysis. Experiments show that changing the number of switched-on generators can obviously tune the damping coefficient of the damper and simultaneously produce considerable electricity.

  13. PGE2 induced in and released by dying cells functions as an inhibitory DAMP. (United States)

    Hangai, Sho; Ao, Tomoka; Kimura, Yoshitaka; Matsuki, Kosuke; Kawamura, Takeshi; Negishi, Hideo; Nishio, Junko; Kodama, Tatsuhiko; Taniguchi, Tadatsugu; Yanai, Hideyuki


    Cellular components released into the external milieu as a result of cell death and sensed by the body are generally termed damage-associated molecular patterns (DAMPs). Although DAMPs are conventionally thought to be protective to the host by evoking inflammatory responses important for immunity and wound repair, there is the prevailing notion that dysregulated release of DAMPs can also underlie or exacerbate disease development. However, the critical issue for how resultant DAMP-mediated responses are regulated has heretofore not been fully addressed. In the present study, we identify prostaglandin E2 (PGE2) as a DAMP that negatively regulates immune responses. We show that the production of PGE2 is augmented under cell death-inducing conditions via the transcriptional induction of the cyclooxygenase 2 (COX2) gene and that cell-released PGE2 suppresses the expression of genes associated with inflammation, thereby limiting the cell's immunostimulatory activities. Consistent with this, inhibition of the PGE2 synthesis pathway potentiates the inflammation induced by dying cells. We also provide in vivo evidence for a protective role of PGE2 released upon acetaminophen-induced liver injury as well as a pathogenic role for PGE2 during tumor cell growth. Our study places this classically known lipid mediator in an unprecedented context-that is, an inhibitory DAMP vis-à-vis activating DAMPs, which may have translational implications for designing more effective therapeutic regimens for inflammation-associated diseases.

  14. Characterization of hydrofoil damping due to fluid-structure interaction using piezocomposite actuators (United States)

    Seeley, Charles; Coutu, André; Monette, Christine; Nennemann, Bernd; Marmont, Hugues


    Hydroelectric power generation is an important non-fossil fuel power source to help meet the world’s energy needs. Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Although the effects of fluid mass loading are well documented, fluid damping is also a critical quantity that may limit vibration amplitudes during service, and therefore help to avoid premature failure of the turbines. However, fluid damping has received less attention in the literature. This paper presents an experimental investigation of damping due to FSI. Three hydrofoils were designed and built to investigate damping due to FSI. Piezoelectric actuation using macrofiber composites (MFCs) provided excitation to the hydrofoil test structure, independent of the flow conditions, to overcome the noisy environment. Natural frequency and damping estimates were experimentally obtained from sine sweep frequency response functions measured with a laser vibrometer through a window in the test section. The results indicate that, although the natural frequencies were not substantially affected by the flow, the damping ratios were observed to increase in a linear manner with respect to flow velocity.

  15. Simplified Model of Nonlinear Landau Damping

    Energy Technology Data Exchange (ETDEWEB)

    N. A. Yampolsky and N. J. Fisch


    The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.

  16. Damping of wind turbine tower vibrations

    DEFF Research Database (Denmark)

    Brodersen, Mark Laier; Pedersen, Mikkel Melters

    Damping of wind turbine vibrations by supplemental dampers is a key ingredient for the continuous use of monopiles as support for offshore wind turbines. The present thesis consists of an extended summary with four parts and appended papers [P1-P4] concerning novel strategies for damping of tower...... in a stroke amplifying brace, which amplifies the displacement across the damper and thus reduces the desired level of damper force. For optimal damping of the two lowest tower modes, a novel toggle-brace concept for amplifying the bending deformation of the tower is presented. Numerical examples illustrate...... that a minimum of three braces in a symmetric circumferential configuration are needed to introduce homogeneous damping in the two lowest vibration modes, independent of the rotor direction. A novel hybrid viscous damper concept is described in the second part. The hybriddamper consists of a viscous dash...

  17. Structural dynamic modification using additive damping

    Indian Academy of Sciences (India)

    Some current trends for vibration control are also discussed. Keywords. Structural modifications; viscoelastic damping; perturbation; sensitivity analysis; optimization; vibration control. 1. Introduction. Vibrations in machines and structures, if not properly controlled, may cause component fatigue and human discomfort.

  18. Offline software for the DAMPE experiment (United States)

    Wang, Chi; Liu, Dong; Wei, Yifeng; Zhang, Zhiyong; Zhang, Yunlong; Wang, Xiaolian; Xu, Zizong; Huang, Guangshun; Tykhonov, Andrii; Wu, Xin; Zang, Jingjing; Liu, Yang; Jiang, Wei; Wen, Sicheng; Wu, Jian; Chang, Jin


    A software system has been developed for the DArk Matter Particle Explorer (DAMPE) mission, a satellite-based experiment. The DAMPE software is mainly written in C++ and steered using a Python script. This article presents an overview of the DAMPE offline software, including the major architecture design and specific implementation for simulation, calibration and reconstruction. The whole system has been successfully applied to DAMPE data analysis. Some results obtained using the system, from simulation and beam test experiments, are presented. Supported by Chinese 973 Program (2010CB833002), the Strategic Priority Research Program on Space Science of the Chinese Academy of Science (CAS) (XDA04040202-4), the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China (NSFC) and CAS (U1531126) and 100 Talents Program of the Chinese Academy of Science

  19. Center Impedance Method for Damping Measurement

    Directory of Open Access Journals (Sweden)

    D. Malogi


    Full Text Available Damping materials are used extensively for reduction of vibration and noise. These damping materials have viscoelastic characteristics and are used by automotive and other industries. Testing of these materials is important in order to predict their performance and traditionally the damping properties are measured by the Oberst method. This paper discusses an alternate method called the Center Impedance method where force and response are measured directly and the damping properties are obtained. The Center Impedance method is easy to use requiring only standard vibration equipment for excitation, namely, shaker, and is easy to control the experiment for repeatability. Results of beams tested by both Oberst and Center Impedance methods are presented in order to validate this test method.

  20. Resonant Electromagnetic Shunt Damping of Flexible Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker


    Electromagnetic transducers convert mechanical energy to electrical energy and vice versa. Effective passive vibration damping of flexible structures can therefore be introduced by shunting with an accurately calibrated resonant electrical network thatcontains a capacitor to create the desired...

  1. Simultaneously enhanced mechanical and damping properties of Mg-Zn-Y alloys reinforced with LPSO phase (United States)

    Wang, Jingfeng; Wang, Haibo; Li, Shun; Wang, Shaohua


    The microstructure, mechanical properties and damping capacities of Mg-Zn-Y alloys were investigated and compared systematically. The results showed that strength and damping of the alloy were increasing markedly with the increase of the volume fraction of long period stacking ordered (LPSO) phase (8%, 16%, 32%, 64%, respectively) on the whole. The corporate effect of LPSO phase and solid solution atoms was beneficial to the strengths. The Mg-1.36Zn-2.28Y can be classified as high damping metals (Q-1≧0.01) at strain amplitudes surpassing 1×10-3. With increasing of the LPSO phase, the critical strain amplitudes of alloys gradually decreased so that alloys can break away from pinning points more easily, thus, achieving a more superior damping performance. In addition, the strain amplitude-independent damping and strain amplitude-dependent damping of the Mg-Zn-Y alloys both increased. The damping capacities of the alloys cannot be explained by the Granato-Lücke theory exclusively.

  2. Alternative design of the CLIC Damping Ring Lattice

    CERN Document Server

    Braun, Hans; Papaphilippou, Yannis; Siniatkin, Sergei; Zolotarev, Konstantin


    An original design of the CLIC damping ring demonstrates the parameters required for the linear collider together with the highly compact lattice (the circumference of the ring is only about 365 m). However, this design can hardly be implemented in a real machine because of such drawbacks as the lack of space between the magnetic elements to accommodate other accelerator components, serious problems with the evacuation of the high radiation power from damping wigglers and strong gradient of quadrupoles and sextupoles, which can hardly be achieved in the frame of the existing magnet technology. From this point of view this design can be considered as an ideal solution and an aim to be approached. In this paper we explore a possibility to design alternative solutions although with a larger size but with the same performance and with the realistic technical parameters.

  3. Nonlinear damping and quasi-linear modelling


    Elliott, S J; Ghandchi Tehrani, Maryam; Langley, R.


    The mechanism of energy dissipation in mechanical systems is often nonlinear. Even though there may be other forms of nonlinearity in the dynamics, nonlinear damping is the dominant source of nonlinearity in a number of practical systems. The analysis of such systems is simplified by the fact that they show no jump or bifurcation behaviour, and indeed can often be well represented by an equivalent linear system, whose damping parameters depend on the form and amplitude of the excitation, in a...

  4. CLIC Waveguide Damped Accelerating Structure Studies

    CERN Document Server

    Dehler, M; Wuensch, Walter


    Studies of waveguide damped 30 GHz accelerating structures for multibunching in CLIC are described. Frequency discriminated damping using waveguides with a lowest cutoff frequency above the fundamental but below the higher order modes was considered. The wakefield behavior was investigated using time domain MAFIA computations over up to 20 cells and for frequencies up to 150 GHz. A configuration consisting of four T-cross-sectioned waveguides per cell reduces the transverse wake below 1% at typical CLIC bunch spacings.

  5. On a Nonlocal Damping Model in Ferromagnetism

    Directory of Open Access Journals (Sweden)

    M. Moumni


    Full Text Available We consider a mathematical model describing nonlocal damping in magnetization dynamics. The model consists of a modified form of the Landau-Lifshitz-Gilbert (LLG equation for the evolution of the magnetization vector in a rigid ferromagnet. We give a global existence result and characterize the long time behaviour of the obtained solutions. The sensitivity of the model with respect to large and small nonlocal damping parameters is also discussed.

  6. Resonant Electromagnetic Shunt Damping of Flexible Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker


    Electromagnetic transducers convert mechanical energy to electrical energy and vice versa. Effective passive vibration damping of flexible structures can therefore be introduced by shunting with an accurately calibrated resonant electrical network thatcontains a capacitor to create the desired...... resonance and a resistor to dissipate the correct amount of vibration energy. The modal interaction with residual vibration forms not targeted by the resonant shunt is represented by supplemental flexibility and inertia terms. This leads to modified calibration formulae that maintain the desired damping...

  7. Investigations on Void Formation in Composite Molding Processes and Structural Damping in Fiber-Reinforced Composites with Nanoscale Reinforcements (United States)

    DeValve, Caleb Joshua

    Fiber-reinforced composites (FRCs) offer a stronger and lighter weight alternative to traditional materials used in engineering components such as wind turbine blades and rotorcraft structures. Composites for these applications are often fabricated using liquid molding techniques, such as injection molding or resin transfer molding. One significant issue during these processing methods is void formation due to incomplete wet-out of the resin within the fiber preform, resulting in discontinuous material properties and localized failure zones in the material. A fundamental understanding of the resin evolution during processing is essential to designing processing conditions for void-free filling, which is the first objective of the dissertation. Secondly, FRCs used in rotorcraft experience severe vibrational loads during service, and improved damping characteristics of the composite structure are desirable. To this end, a second goal is to explore the use of matrix-embedded nanoscale reinforcements to augment the inherent damping capabilities in FRCs. The first objective is addressed through a computational modeling and simulation of the infiltrating dual-scale resin flow through the micro-architectures of woven fibrous preforms, accounting for the capillary effects within the fiber bundles. An analytical model is developed for the longitudinal permeability of flow through fibrous bundles and applied to simulations which provide detailed predictions of local air entrapment locations as the resin permeates the preform. Generalized design plots are presented for predicting the void content and processing time in terms of the Capillary and Reynolds Numbers governing the molding process. The second portion of the research investigates the damping enhancement provided to FRCs in static and rotational configurations by different types and weight fractions of matrix-embedded carbon nanotubes (CNTs) in high fiber volume fraction composites. The damping is measured using

  8. Linear control strategies for damping of flexible structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Riess; Krenk, Steen


    Starting from the two-component representation technique for damping of structures the possible increase in damping efficiency obtained by introducing collocated active damping is illustrated. The two-component representation of the damped vibration mode is constructed as a linear combination of ...

  9. Comparing Sources of Damping of Cross-Wind Motion

    DEFF Research Database (Denmark)

    Tarp-Johansen, Niels Jacob; Andersen, Lars; Christensen, Erik Damgaard


    importance of the sources of damping clearly depends on the damping forces caused, but equally important is the displacements at the point of attack of the forces which is decisive for the amount of mechanical work performed, i.e. damping acting at the tower base has less potential than damping acting...

  10. Dynamic Optimization of Constrained Layer Damping Structure for the Headstock of Machine Tools with Modal Strain Energy Method

    Directory of Open Access Journals (Sweden)

    Yakai Xu


    Full Text Available Dynamic stiffness and damping of the headstock, which is a critical component of precision horizontal machining center, are two main factors that influence machining accuracy and surface finish quality. Constrained Layer Damping (CLD structure is proved to be effective in raising damping capacity for the thin plate and shell structures. In this paper, one kind of high damping material is utilized on the headstock to improve damping capacity. The dynamic characteristic of the hybrid headstock is investigated analytically and experimentally. The results demonstrate that the resonant response amplitudes of the headstock with damping material can decrease significantly compared to original cast structure. To obtain the optimal configuration of damping material, a topology optimization method based on the Evolutionary Structural Optimization (ESO is implemented. Modal Strain Energy (MSE method is employed to analyze the damping and to derive the sensitivity of the modal loss factor. The optimization results indicate that the added weight of damping material decreases by 50%; meanwhile the first two orders of modal loss factor decrease by less than 23.5% compared to the original structure.

  11. Health-risk behaviors among high school athletes and preventive services provided during sports physicals. (United States)

    Johnson, Karen E; McRee, Annie-Laurie


    Preparticipation examinations (PPEs), or sports physicals, present opportunities for health care providers to identify and discuss common adolescent health-risk behaviors. We sought to examine the prevalence of health-risk behaviors among high school athletes and the proportion of providers who address these behaviors during PPEs. For this descriptive study we used data from two statewide surveys: a survey of adolescents (n = 46,492) and a survey of nurse practitioners and physicians (n = 561). The most prevalent risk behaviors reported by student athletes were low levels of physical activity (70%), bullying perpetration (41%), and alcohol use (41%). Most providers (≥75%) addressed many common risk behaviors during PPEs but fewer addressed bullying, violence, and prescription drug use. Topics discussed differed by provider type and patient population. Many providers addressed critical threats to adolescent health during PPEs, but findings suggest potential disconnects between topics addressed during PPEs and behaviors of athletes. Copyright © 2015 National Association of Pediatric Nurse Practitioners. Published by Elsevier Inc. All rights reserved.

  12. Importance of Added Mass and Damping in Flow-Induced Vibration Analysis of Tubes Bundle: An Overview

    Directory of Open Access Journals (Sweden)

    Faisal Karim Shami


    Full Text Available Flow-induced vibration is of prime concern to the designers of heat exchangers subjected to high flows of gases or liquids. Excessive vibration may cause tube failure due to fatigue or fretting-wear. Tube failure results in, expensive plant upholding and suffers loss of production. Therefore, tube failure due to unwarranted vibration must be avoided in process heat exchangers and nuclear steam generators, preferably at design stage. Such vibration problems may be avoided through a comprehensive flowinduced vibration analysis before fabrication of heat exchangers. However, it requires an understanding of vibration mechanism and parameters related to flow-induced vibration. For an accurate vibration analysis, it is of prime importance to have good estimates of structural and flow related dynamic parameters. Thus dynamic parameters such as added mass and damping are of significant concern in a flow regime. The purpose of this paper is to provide an overview of our state of knowledge and role of dynamic parameters in flow-induced vibration on tube bundles due to current trend of larger heat exchangers. The present paper provides published data, analysis, evaluation, formulation, and experimental studies related to hydrodynamic mass and damping by a large number of researchers. Guidelines for experimental research and heat exchangers design related to added mass and damping mechanisms subjected to both single and two-phase flow are outlined in this paper.

  13. Effect of Skin Cancer Training Provided to Maritime High School Students on Their Knowledge and Behaviour. (United States)

    Sümen, Adem; Öncel, Selma


    This study was conducted with the purpose of evaluating the effect of skin cancer training provided to maritime high school students on their knowledge and behaviour. The study had a quasi-experimental design with pre-test and post-test intervention and control groups. Two maritime high schools located in the city of Antalya were included within the scope of the study between March and June 2013, covering a total of 567 students. While the knowledge mean scores of students regarding skin cancer and sun protection did not vary in the pre-test (6.2 ± 1.9) and post-test (6.8 ± 1.9) control group, the knowledge mean scores of students in the experimental group increased from 6.0 ± 2.3 to 10.6 ± 1.2 after the provided training. Some 25.4% of students in the experimental group had low knowledge level and 62.2% had medium knowledge level in the pre-test; whereas no students had low knowledge level and 94.3% had high knowledge level in the post-test. It was determined that tenth grade students, those who had previous knowledge on the subject, who considered themselves to be protecting from the sun better, had higher knowledge levels and their knowledge levels increased as the risk level increased. It was found that the provided training was effective and increased positively the knowledge, attitude and behaviour levels of students in the experimental group in terms of skin cancer and sun protection. Along with the provided training which started to form a lifestyle, appropriate attitudes and behaviours concerning skin cancer and sun protection could be brought to students who will work in outdoor spaces and are members of the maritime profession within the risk group.

  14. Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice. (United States)

    Pouwels, Simon D; Zijlstra, G Jan; van der Toorn, Marco; Hesse, Laura; Gras, Renee; Ten Hacken, Nick H T; Krysko, Dmitri V; Vandenabeele, Peter; de Vries, Maaike; van Oosterhout, Antoon J M; Heijink, Irene H; Nawijn, Martijn C


    Recent data indicate a role for airway epithelial necroptosis, a regulated form of necrosis, and the associated release of damage-associated molecular patterns (DAMPs) in the development of chronic obstructive pulmonary disease (COPD). DAMPs can activate pattern recognition receptors (PRRs), triggering innate immune responses. We hypothesized that cigarette smoke (CS)-induced epithelial necroptosis and DAMP release initiate airway inflammation in COPD. Human bronchial epithelial BEAS-2B cells were exposed to cigarette smoke extract (CSE), and necrotic cell death (membrane integrity by propidium iodide staining) and DAMP release (i.e., double-stranded DNA, high-mobility group box 1, heat shock protein 70, mitochondrial DNA, ATP) were analyzed. Subsequently, BEAS-2B cells were exposed to DAMP-containing supernatant of CS-induced necrotic cells, and the release of proinflammatory mediators [C-X-C motif ligand 8 (CXCL-8), IL-6] was evaluated. Furthermore, mice were exposed to CS in the presence and absence of the necroptosis inhibitor necrostatin-1, and levels of DAMPs and inflammatory cell numbers were determined in bronchoalveolar lavage fluid. CSE induced a significant increase in the percentage of necrotic cells and DAMP release in BEAS-2B cells. Stimulation of BEAS-2B cells with supernatant of CS-induced necrotic cells induced a significant increase in the release of CXCL8 and IL-6, in a myeloid differentiation primary response gene 88-dependent fashion. In mice, exposure of CS increased the levels of DAMPs and numbers of neutrophils in bronchoalveolar lavage fluid, which was statistically reduced upon treatment with necrostatin-1. Together, we showed that CS exposure induces necrosis of bronchial epithelial cells and subsequent DAMP release in vitro, inducing the production of proinflammatory cytokines. In vivo, CS exposure induces neutrophilic airway inflammation that is sensitive to necroptosis inhibition. Copyright © 2016 the American Physiological Society.

  15. The in-plane anisotropic magnetic damping of ultrathin epitaxial Co2FeAl film

    Directory of Open Access Journals (Sweden)

    Shuang Qiao


    Full Text Available The in-plane orientation-dependent effective damping of ultrathin Co2FeAl film epitaxially grown on GaAs(001 substrate by molecular beam epitaxy (MBE has been investigated by employing the time-resolved magneto-optical Kerr effect (TR-MOKE measurements. It is found that the interface-induced uniaxial anisotropy is favorable for precession response and the anisotropy of precession frequency is mainly determined by this uniaxial anisotropy, while the magnetic relaxation time and damping factor exhibit the fourfold anisotropy at high-field regime. The field-independent anisotropic damping factor obtained at high fields indicates that the effective damping shows an intrinsic fourfold anisotropy for the epitaxial Co2FeAl thin films.

  16. Optics design of Intrabeam Scattering dominated damping rings

    CERN Document Server

    Antoniou, Fanouria; Papaphilippou, Ioannis

    A e+/e- linear collider, the Compact Linear Collider (CLIC) is under design at CERN, aiming to explore the terascale particle physics regime. The collider has been optimized at 3 TeV center of mass energy and targets a luminosity of 1034 cm-2 s-1. In order to achieve this high luminosity, high intensity bunches with ultra low emittances, in all three planes, are required. The generation of ultra low emittance is achieved in the Damping Rings (DR) complex of the collider. The large input beam emittances, especially the ones coming from the positron source, and the requirement of ultra low emittance production in a fast repetition time of 20 ms, imply that the beam damping is done in two stages. Thus, a main-damping ring (DR) and a predamping ring (PDR) are needed, for each particle species. The high bunch brightness gives rise to several collective effects, with Intra-beam scattering (IBS) being the main limitation to the ultra-low emittance. This thesis elaborates the lattice design and non-linear optimizatio...

  17. Damped bead on a rotating circular hoop - a bifurcation zoo

    CERN Document Server

    Dutta, Shovan


    The evergreen problem of a bead on a rotating hoop shows a multitude of bifurcations when the bead moves with friction. This motion is studied for different values of the damping coefficient and rotational speeds of the hoop. Phase portraits and trajectories corresponding to all different modes of motion of the bead are presented. They illustrate the rich dynamics associated with this simple system. For some range of values of the damping coefficient and rotational speeds of the hoop, linear stability analysis of the equilibrium points is inadequate to classify their nature. A technique involving transformation of coordinates and order of magnitude arguments is presented to examine such cases. This may provide a general framework to investigate other complex systems.

  18. Effects of ion-atom collisions on the propagation and damping of ion-acoustic waves

    DEFF Research Database (Denmark)

    Andersen, H.K.; D'Angelo, N.; Jensen, Vagn Orla


    Experiments are described on ion-acoustic wave propagation and damping in alkali plasmas of various degrees of ionization. An increase of the ratio Te/Ti from 1 to approximately 3-4, caused by ion-atom collisions, results in a decrease of the (Landau) damping of the waves. At high gas pressure and....../or low wave frequency a "fluid" picture adequately describes the experimental results....

  19. Investigation of Roll Damping on an FPSO with Sponsons and Bilge Keels


    Borgenhov, Tobias Rasen


    Within Hydrodynamics, estimating the roll damping are associated with difficulties and uncertainty. This is due to roll motion being highly non-linear compared to other degrees of freedom. The non-linearity arises from flow separation. Therefore, empirical formulas have been developed \\cite{ikeda1977roll} for classical ship shapes. Nonetheless, what happens when the ship hull no longer are conventional? This theses have addressed the roll damping problem of an FPSO with sponsons by condu...

  20. Meeting Tight Frequency Requirement of Rounded Damped Detuned Structure

    CERN Document Server

    Higo, T; Higashi, Y; Hitomi, N; Suzuki, T; Takata, K; Takatomi, T; Toge, N; Watanabe, Y; Li, Z; Miller, R H; Wang, J W


    Following successful design and fabrication of damped detuned structures, the R&D for the accelerating structures of the NLC/JLC linear collider project proceeded to studies of Rounded Damped Detuned Structure with curved cross section of the cavity shape for increased shunt impedance. The important features of the structure are the accurately tuned accelerating mode frequency and the distribution of the first dipole modes smooth and close to the design distribution. These requirements were met based on the high-accuracy diamond turning with its capability to realize the periphery tolerance of two microns. The lowest dipole mode frequencies scattered by 0.6 MHz RMS. The error in the accelerating mode frequency averaged over a structure was 0.1 MHz by applying a feed-forward method.

  1. Theoretical Investigation of the Viscous Damping Coefficient of Hydraulic Actuators (United States)

    Huang, Ming-Hui; Pan, Qing; Li, Yi-Bo; Ma, Peng-Da; Ma, Jun


    The viscous damping coefficient (VDC) of hydraulic actuators is crucial for system modeling, control and dynamic characteristic analysis. Currently, the researches on hydraulic actuators focus on behavior assessment, promotion of control performance and efficiency. However, the estimation of the VDC is difficult due to a lack of study. Firstly, using two types of hydraulic cylinders, behaviors of the VDC are experimentally examined with velocities and pressure variations. For the tested plunger type hydraulic cylinder, the exponential model B = α υ^{ - β } ,(α > 0,β > 0) or B = α1 e^{{ - β1 υ }} + α2 e^{{ - β2 υ }} (α1 ,α2 > 0,β1 ,β2 > 0), fits the relation between the VDC and velocities for a given pressure of chamber with high precision. The magnitude of the VDC decreases almost linearly under certain velocities when increasing the chamber pressure from 0.6 MPa to 6.0 MPa. Furthermore, the effects of the chamber pressures on the VDC of piston and plunge type hydraulic cylinders are different due to different sealing types. In order to investigate the VDC of a plunger type hydraulic actuator drastically, a steady-state numerical model has been developed to describe the mechanism incorporating tandem seal lubrication, back-up ring related friction behaviors and shear stress of fluid. It is shown that the simulated results of VDC agree with the measured results with a good accuracy. The proposed method provides an instruction to predict the VDC in system modeling and analysis.

  2. A model program: neonatal nurse practitioners providing community health care for high-risk infants. (United States)

    Vasquez, Elias Provencio; Pitts, Kathleen; Mejia, Nilson Enrique


    Perinatal drug exposure costs our communities millions of dollars each year in hospital fees and in services such as foster care, child protection, and drug treatment. Infants and their families in this group require substantial long-term health care and community resources. Neonatal health care providers should take an active role in developing and implementing home visitation programs to support early hospital discharge and continuity of care for these high-risk infants and their families. Neonatal nurse practitioners should prepare in the future to practice not only in secondary-- and tertiary--level neonatal centers, but also in follow-up clinics, long-term developmental centers, and the community This article describes a home intervention program delivered by neonatal nurse practitioners for high-risk infants and their mothers. The target population is infants exposed prenatally to drugs and/or alcohol.

  3. Perils of providing visual health information overviews for consumers with low health literacy or high stress (United States)

    Miller, Trudi


    This pilot study explores the impact of a health topics overview (HTO) on reading comprehension. The HTO is generated automatically based on the presence of Unified Medical Language System terms. In a controlled setting, we presented health texts and posed 15 questions for each. We compared performance with and without the HTO. The answers were available in the text, but not always in the HTO. Our study (n=48) showed that consumers with low health literacy or high stress performed poorly when the HTO was available without linking directly to the answer. They performed better with direct links in the HTO or when the HTO was not available at all. Consumers with high health literacy or low stress performed better regardless of the availability of the HTO. Our data suggests that vulnerable consumers relied solely on the HTO when it was available and were misled when it did not provide the answer. PMID:20190068

  4. Ion Landau Damping on Drift Tearing Modes

    CERN Document Server

    Connor, J W; Zocco, A


    The equations governing the ion Landau damping (ILD) layers for a drift tearing mode are derived and solved to provide a matching to ideal MHD solutions at large $x$ and to the drift tearing solution emerging from the ion kinetic region, $k\\rho_{i}\\sim1$, at small $x,$ the distance from the rational surface. The ILD layers lie on either side of the mode rational surface at locations defined by $k_{y}xV_{Ti}/L_{s}=\\omega_{*e}(1+0.73\\eta_{e})$ and have been ignored in many previous analyses of linear drift tearing stability. The effect of the ILD layer on the drift tearing mode is to introduce an additional stabilizing contribution, requiring even larger values of the stability index, $\\Delta^{\\prime}$ for instability, than predicted by Connor Hastie and Zocco [PPCF,54, 035003, (2012)] and Cowley, Kulsrud and Hahm [Phys. Fluids,29, 3230, (1986)]. The magnitude and scaling of the new stabilizing effect in slab geometry is discussed.

  5. An ultimate storage ring lattice with vertical emittance generated by damping wigglers

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaobiao [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)


    We discuss the approach of generating round beams for ultimate storage rings using vertical damping wigglers (with horizontal magnetic field). The vertical damping wigglers provide damping and excite vertical emittance. This eliminates the need to generate large linear coupling that is impractical with traditional off-axis injection. We use a PEP-X compatible lattice to demonstrate the approach. This lattice uses separate quadrupole and sextupole magnets with realistic gradient strengths. Intrabeam scattering effects are calculated. As a result, the horizontal and vertical emittances are 22.3 pm and 10.3 pm, respectively, for a 200 mA, 4.5 GeV beam, with a vertical damping wiggler of a total length of 90 m, a peak field of 1.5 T and a wiggler period of 100 mm.

  6. On the Empirical Estimation of Utility Distribution Damping Parameters Using Power Quality Waveform Data

    Directory of Open Access Journals (Sweden)

    Irene Y. H. Gu


    Full Text Available This paper describes an efficient yet accurate methodology for estimating system damping. The proposed technique is based on linear dynamic system theory and the Hilbert damping analysis. The proposed technique requires capacitor switching waveforms only. The detected envelope of the intrinsic transient portion of the voltage waveform after capacitor bank energizing and its decay rate along with the damped resonant frequency are used to quantify effective X/R ratio of a system. Thus, the proposed method provides complete knowledge of system impedance characteristics. The estimated system damping can also be used to evaluate the system vulnerability to various PQ disturbances, particularly resonance phenomena, so that a utility may take preventive measures and improve PQ of the system.

  7. Experimental and theoretical investigation of passive damping concepts for member forced and free vibration (United States)

    Razzaq, Zia; Mykins, David W.


    Potential passive damping concepts for use in space structures are identified. The effectiveness of copper brush, wool swab, and silly putty in chamber dampers is investigated through natural vibration tests on a tubular aluminum member. The member ends have zero translation and possess partial rotational restraints. The silly putty in chamber dampers provide the maximum passive damping efficiency. Forced vibration tests are then conducted with one, two, and three damper chambers containing silly putty. Owing to the limitation of the vibrator used, the performance of these dampers could not be evaluated experimentally until the forcing function was disengaged. Nevertheless, their performance is evaluated through a forced dynamic finite element analysis conducted as a part of this investigation. The theoretical results based on experimentally obtained damping ratios indicate that the passive dampers are considerably more effective under member natural vibration than during forced vibration. Also, the maximum damping under forced vibration occurs at or near resonance.

  8. Susceptibility for cigarette smoke-induced DAMP release and DAMP-induced inflammation in COPD

    NARCIS (Netherlands)

    Pouwels, Simon D.; Hesse, Laura; Faiz, Alen; Lubbers, Jaap; Bodha, Priya K.; ten Hacken, Nick H. T.; van Oosterhout, Antoon J. M.; Nawijn, Martijn C.; Heijink, Irene H.


    Cigarette smoke (CS) exposure is a major risk factor for chronic obstructive pulmonary disease (COPD). We investigated whether CS-induced damage-associated molecular pattern (DAMP) release or DAMP-mediated inflammation contributes to susceptibility for COPD. Samples, including bronchial brushings,

  9. Dampness and Moisture Problems in Norwegian Homes

    Directory of Open Access Journals (Sweden)

    Rune Becher


    Full Text Available The occurrence of dampness and mold in the indoor environment is associated with respiratory-related disease outcomes. Thus, it is pertinent to know the magnitude of such indoor environment problems to be able to estimate the potential health impact in the population. In the present study, the moisture damage in 10,112 Norwegian dwellings was recorded based on building inspection reports. The levels of moisture damage were graded based on a condition class (CC, where CC0 is immaculate and CC1 acceptable (actions not required, while CC2 and CC3 indicate increased levels of damage that requires action. Of the 10,112 dwellings investigated, 3125 had verified moisture or mold damage. This amounts to 31% of the surveyed dwellings. Of these, 27% had CC2 as the worst grade, whereas 4% had CC3 as the worst grade level. The room types and building structures most prone to moisture damage were (in rank order crawl spaces, basements, un-insulated attics, cooling rooms, and bathrooms. The high proportion of homes with moisture damage indicate a possible risk for respiratory diseases in a relatively large number of individuals, even if only the more extensive moisture damages and those located in rooms where occupants spend the majority of their time would have a significant influence on adverse health effects.

  10. Seismic Analysis of a Viscoelastic Damping Isolator

    Directory of Open Access Journals (Sweden)

    Bo-Wun Huang


    Full Text Available Seismic prevention issues are discussed much more seriously around the world after Fukushima earthquake, Japan, April 2011, especially for those countries which are near the earthquake zone. Approximately 1.8×1012 kilograms of explosive energy will be released from a magnitude 9 earthquake. It destroys most of the unprotected infrastructure within several tens of miles in diameter from the epicenter. People can feel the earthquake even if living hundreds of miles away. This study is a seismic simulation analysis for an innovated and improved design of viscoelastic damping isolator, which can be more effectively applied to earthquake prevention and damage reduction of high-rise buildings, roads, bridges, power generation facilities, and so forth, from earthquake disaster. Solidworks graphic software is used to draw the 3D geometric model of the viscoelastic isolator. The dynamic behavior of the viscoelastic isolator through shock impact of specific earthquake loading, recorded by a seismometer, is obtained via ANSYS finite element package. The amplitude of the isolator is quickly reduced by the viscoelastic material in the device and is shown in a time response diagram. The result of this analysis can be a crucial reference when improving the design of a seismic isolator.

  11. Dampness and Moisture Problems in Norwegian Homes (United States)

    Becher, Rune; Høie, Anja Hortemo; Bakke, Jan Vilhelm; Holøs, Sverre Bjørn; Øvrevik, Johan


    The occurrence of dampness and mold in the indoor environment is associated with respiratory-related disease outcomes. Thus, it is pertinent to know the magnitude of such indoor environment problems to be able to estimate the potential health impact in the population. In the present study, the moisture damage in 10,112 Norwegian dwellings was recorded based on building inspection reports. The levels of moisture damage were graded based on a condition class (CC), where CC0 is immaculate and CC1 acceptable (actions not required), while CC2 and CC3 indicate increased levels of damage that requires action. Of the 10,112 dwellings investigated, 3125 had verified moisture or mold damage. This amounts to 31% of the surveyed dwellings. Of these, 27% had CC2 as the worst grade, whereas 4% had CC3 as the worst grade level. The room types and building structures most prone to moisture damage were (in rank order) crawl spaces, basements, un-insulated attics, cooling rooms, and bathrooms. The high proportion of homes with moisture damage indicate a possible risk for respiratory diseases in a relatively large number of individuals, even if only the more extensive moisture damages and those located in rooms where occupants spend the majority of their time would have a significant influence on adverse health effects. PMID:29039816

  12. Notes on the nonlinear beam dynamics with strong damping in the CLIC Damping Ring

    CERN Document Server

    Levichev, Eugene; Shatilov, Dmitry


    The beam is injected into the CLIC damping ring with the relatively large emittance and energy spread and then is damped to the extremely low phase volume. During the damping process the betatron frequency of each particle changes due to the space charge tune shift and nonlinear dependence of the betatron tune on the amplitude. This nonlinearity is produced by the strong chromatic sextupoles, wiggler nonlinear field components and, again, by the space charge force. During the damping, the particle cross resonances, which can trap some fraction of the beam, cause the loss of intensity, the beam blow up and degrade the beam quality. In this paper we study the evolution of the beam distribution in time during the damping for the original lattice of the CLIC DR (May 2005). Geneva, Switzerland June 2010 CLIC – Note – 850

  13. Numerical studies of shear damped composite beams using a constrained damping layer

    DEFF Research Database (Denmark)

    Kristensen, R.F.; Nielsen, Kim Lau; Mikkelsen, Lars Pilgaard


    Composite beams containing one or more damping layers are studied numerically. The work is based on a semi-analytical model using a Timoshenko beam theory and a full 2D finite element model. The material system analysed, is inspired by a train wagon suspension system used in a EUREKA project Sigma......!1841. For the material system, the study shows that the effect of the damping layer is strongly influenced by the presence of a stiff constraining layer, that enforces large shear strain amplitudes. The thickness of the damping rubber layer itself has only a minor influence on the overall damping....... In addition, a large influence of ill positioned cuts in the damping layer is observed....

  14. Dampness in buildings and health. Building characteristics as predictors for dampness in 8681 Swedish dwellings

    DEFF Research Database (Denmark)

    Hagerhed, L.; Bornehag, Carl-Gustaf; Sundell, Jan


    Questionnaire data on 8681 dwellings included in the Swedish study "Dampness in Buildings and Health" have been analysed for associations between dampness indicators, perceptions of indoor air quality and building characteristics such as time of construction, type of ventilation and type...... of foundation. Visible mold or damp stains were reported in 1.3 and 1.6% of single-family and multi-family houses respectively, dampness connected to the floor in 6.5 and 13.9% and condensation on windows in 12.5 and 16.9%. "Stuffy air" was reported in 22.3 and 42.8%, "Moldy odor" in 3.9 and 5.8% and perception...... of "Dry air" in 17.3 and 33.7% respectively. Older buildings and the use of natural ventilation were associated with increased frequency of dampness indicators as well as to increased frequencies of complaints on bad indoor air quality....

  15. Wave vector dependent damping of THz collective modes in a liquid metal (United States)

    Demmel, F.


    Well-defined damped collective modes have been observed in liquid metals over a wide range of wave vectors. Hydrodynamics predicts that viscosity and thermal conductivity are the cause for the damping of the collective modes. Here we present experimental data from neutron spectroscopy on the damping of collective modes of liquid rubidium over a wide range of wave vectors. We propose a phenomenological model derived from generalized hydrodynamics to describe the damping of the modes and the evolution with increasing wave vector based on the viscoelastic picture of liquid response. As necessary ingredients a wave vector dependent high frequency shear modulus and shear relaxation time appear. We obtain a remarkable good agreement on a quantitative basis between experiment and calculation over a wide range of wave vectors. The emergent picture is that the lifetime of the collective modes in the THz regime is mainly limited through the diffusion of momentum. The proposed methodology might be applicable to a wide range of liquids.

  16. Effect of substitutional defects on Kambersky damping in L1{sub 0} magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Qu, T. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Victora, R. H., E-mail: [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)


    Kambersky damping, representing the loss of magnetic energy from the electrons to the lattice through the spin orbit interaction, is calculated for L1{sub 0} FePt, FePd, CoPt, and CoPd alloys versus chemical degree of order. When more substitutional defects exist in the alloys, damping is predicted to increase due to the increase of the spin-flip channels allowed by the broken symmetry. It is demonstrated that this corresponds to an enhanced density of states (DOS) at the Fermi level, owing to the rounding of the DOS with loss of long-range order. Both the damping and the DOS of the Co-based alloy are found to be less affected by the disorder. Pd-based alloys are predicted to have lower damping than Pt-based alloys, making them more suitable for high density spintronic applications.

  17. Analysis of long-range wakefields in CLIC main Linac Accelerating Structures with Damping Loads

    CERN Document Server

    De Michele, G


    The baseline design of the CLIC accelerating structure foresees a moderate detuning and heavy damping of high order modes (HOMs), which are the source of long-range transverse wakefields. Such unwanted fields produce bunch-to-bunch instabilities so the HOMs must be suppressed. In order to damp these modes, the CLIC RF structure is equipped with lossy material inserted into four rectangular waveguides coupled to each accelerating cell. The lossy material absorbs EM (electromagnetic) wave energy with little reflection back to the accelerating cells. In the past, computations of the long-range wake of CLIC accelerating modes have been done using perfectly absorbing boundaries to terminate the damping waveguides. In this paper, 3D EM simulations of CLIC baseline accelerating structure with HOMs damping loads will be presented. A comparison between different EM codes (GdfidL, CST PARTICLE STUDIO®) will be discussed as well as the analysis of different types of absorbing materials with respect to the wakefields da...

  18. Multiple-mode large deflection random response of beams with nonlinear damping subjected to acoustic excitation (United States)

    Prasad, C. B.; Mei, Chuh


    Multiple-mode nonlinear analysis is carried out for beams subjected to acoustic excitation. Effects of both nonlinear damping and large-deflection are included in the analysis in an attempt to explain the experimental phenomena of aircraft panels excited at high sound pressure levels; that is the broadening of the strain response peaks and the increase of modal frequency. An amplitude dependent nonlinear damping model is used in the anlaysis to study the effects and interactions of multiple modes, nonlinear stiffness and nonlinear damping on the random response of beams. Mean square maximum deflection, mean square maximum strain, and spectral density function of maximum strain for simple supported and clamped beams are obtained. It is shown analytically that nonlinear damping contributes significantly to the broadening of the response peak and to the mean square deflection and strain.

  19. Defining the essential anatomical coverage provided by military body armour against high energy projectiles. (United States)

    Breeze, John; Lewis, E A; Fryer, R; Hepper, A E; Mahoney, Peter F; Clasper, Jon C


    Body armour is a type of equipment worn by military personnel that aims to prevent or reduce the damage caused by ballistic projectiles to structures within the thorax and abdomen. Such injuries remain the leading cause of potentially survivable deaths on the modern battlefield. Recent developments in computer modelling in conjunction with a programme to procure the next generation of UK military body armour has provided the impetus to re-evaluate the optimal anatomical coverage provided by military body armour against high energy projectiles. A systematic review of the literature was undertaken to identify those anatomical structures within the thorax and abdomen that if damaged were highly likely to result in death or significant long-term morbidity. These structures were superimposed upon two designs of ceramic plate used within representative body armour systems using a computerised representation of human anatomy. Those structures requiring essential medical coverage by a plate were demonstrated to be the heart, great vessels, liver and spleen. For the 50th centile male anthropometric model used in this study, the front and rear plates from the Enhanced Combat Body Armour system only provide limited coverage, but do fulfil their original requirement. The plates from the current Mark 4a OSPREY system cover all of the structures identified in this study as requiring coverage except for the abdominal sections of the aorta and inferior vena cava. Further work on sizing of plates is recommended due to its potential to optimise essential medical coverage. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  20. Providing high-quality care in primary care settings: how to make trade-offs. (United States)

    Beaulieu, Marie-Dominique; Geneau, Robert; Del Grande, Claudio; Denis, Jean-Louis; Hudon, Eveline; Haggerty, Jeannie L; Bonin, Lucie; Duplain, Réjean; Goudreau, Johanne; Hogg, William


    To gain a deeper understanding of how primary care (PC) practices belonging to different models manage resources to provide high-quality care. Multiple-case study embedded in a cross-sectional study of a random sample of 37 practices. Three regions of Quebec. Health care professionals and staff of 5 PC practices. Five cases showing above-average results on quality-of-care indicators were purposefully selected to contrast on region, practice size, and PC model. Data were collected using an organizational questionnaire; the Team Climate Inventory, which was completed by health care professionals and staff; and 33 individual interviews. Detailed case histories were written and thematic analysis was performed. The core common feature of these practices was their ongoing effort to make trade-offs to deliver services that met their vision of high-quality care. These compromises involved the same 3 areas, but to varying degrees depending on clinic characteristics: developing a shared vision of high-quality care; aligning resource use with that vision; and balancing professional aspirations and population needs. The leadership of the physician lead was crucial. The external environment was perceived as a source of pressure and dilemmas rather than as a source of support in these matters. Irrespective of their models, PC practices' pursuit of high-quality care is based on a vision in which accessibility is a key component, balanced by appropriate management of available resources and of external environment expectations. Current PC reforms often create tensions rather than support PC practices in their pursuit of high-quality care. Copyright© the College of Family Physicians of Canada.

  1. Spectral damping scaling factors for shallow crustal earthquakes in active tectonic regions (United States)

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Campbell, Kenneth; Abrahamson, Norman; Silva, Walter


    Ground motion prediction equations (GMPEs) for elastic response spectra, including the Next Generation Attenuation (NGA) models, are typically developed at a 5% viscous damping ratio. In reality, however, structural and non-structural systems can have damping ratios other than 5%, depending on various factors such as structural types, construction materials, level of ground motion excitations, among others. This report provides the findings of a comprehensive study to develop a new model for a Damping Scaling Factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE to spectral ordinates with damping ratios between 0.5 to 30%. Using the updated, 2011 version of the NGA database of ground motions recorded in worldwide shallow crustal earthquakes in active tectonic regions (i.e., the NGA-West2 database), dependencies of the DSF on variables including damping ratio, spectral period, moment magnitude, source-to-site distance, duration, and local site conditions are examined. The strong influence of duration is captured by inclusion of both magnitude and distance in the DSF model. Site conditions are found to have less significant influence on DSF and are not included in the model. The proposed model for DSF provides functional forms for the median value and the logarithmic standard deviation of DSF. This model is heteroscedastic, where the variance is a function of the damping ratio. Damping Scaling Factor models are developed for the “average” horizontal ground motion components, i.e., RotD50 and GMRotI50, as well as the vertical component of ground motion.

  2. Epidemiology of tuberculosis in a high HIV prevalence population provided with enhanced diagnosis of symptomatic disease.

    Directory of Open Access Journals (Sweden)

    Elizabeth L Corbett


    Full Text Available Directly observed treatment short course (DOTS, the global control strategy aimed at controlling tuberculosis (TB transmission through prompt diagnosis of symptomatic smear-positive disease, has failed to prevent rising tuberculosis incidence rates in Africa brought about by the HIV epidemic. However, rising incidence does not necessarily imply failure to control tuberculosis transmission, which is primarily driven by prevalent infectious disease. We investigated the epidemiology of prevalent and incident TB in a high HIV prevalence population provided with enhanced primary health care.Twenty-two businesses in Harare, Zimbabwe, were provided with free smear- and culture-based investigation of TB symptoms through occupational clinics. Anonymised HIV tests were requested from all employees. After 2 y of follow-up for incident TB, a culture-based survey for undiagnosed prevalent TB was conducted. A total of 6,440 of 7,478 eligible employees participated. HIV prevalence was 19%. For HIV-positive and -negative participants, the incidence of culture-positive tuberculosis was 25.3 and 1.3 per 1,000 person-years, respectively (adjusted incidence rate ratio = 18.8; 95% confidence interval [CI] = 10.3 to 34.5: population attributable fraction = 78%, and point prevalence after 2 y was 5.7 and 2.6 per 1,000 population (adjusted odds ratio = 1.7; 95% CI = 0.5 to 6.8: population attributable fraction = 14%. Most patients with prevalent culture-positive TB had subclinical disease when first detected.Strategies based on prompt investigation of TB symptoms, such as DOTS, may be an effective way of controlling prevalent TB in high HIV prevalence populations. This may translate into effective control of TB transmission despite high TB incidence rates and a period of subclinical infectiousness in some patients.

  3. Elementary damping properties in braided composite materials (United States)

    Dion, Bernard L.; Sadler, Robert; Silverberg, Larry


    This paper investigates the damping level trends of three-dimensionally braided composites as a function of matrix material, fiber-matrix interface, fiber braid angle, fiber volume, and axial fiber tow size. With knowledge of such trends, designers may increase the structural damping in a 3-D braided composite component, thereby reducing component vibration, shock response, and fatigue. The logarithmic decrements of the fundamental mode response of cantilevered, 3-D braided composite beam specimens were calculated for comparison. Although the logarithmic decrements of two specimens, differing only in their matrix materials (Tactix 123 and Epon 828), were essentially identical, both were considerably larger than that for steel. The value for the decrement of these two composite specimens' response was taken as a reference. Altering the nature of the fiber-matrix interface by lubricating the fibers before specimen consolidation greatly increased the damping relative to the baseline. Trends of increasing damping were measured with both increasing fiber braid angle and fiber volume. Finally, increasing levels of damping are reported for decreases in axial fiber tow size. Explanations for these trends, based on the possible microscopic and macroscopic nature of the braided composites, are offered.

  4. Damping modification factors for acceleration response spectra

    Directory of Open Access Journals (Sweden)

    Heng Li


    Full Text Available DMF (Damping modification factors are used to modify elastic response spectral values corresponding to damping ratio 5% to other damping levels. The influence of seismological parameters (magnitude, epicentral distances and site conditions on DMF for acceleration spectra was analysed. The results show that for a given period as the magnitude or distance increase, the effect of damping on the seismic response will also increase, which indicates the response reduction from the structural damping will become more efficient. In the near-field of small earthquakes, the influence of site conditions on DMF is obvious, but it does not show a consistent rule. Furthermore, the DMF corresponding to different site conditions gradually close to unity with increasing magnitude and distance. The influence of the above mentioned parameters is related to the relative attenuation of the frequency components of the ground motion. The attenuation index alone is sufficient to take into account the influence. Based on these features, this paper proposes a formula of DMF for acceleration response spectra.

  5. Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ruochan [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Fu, Sha; Fan, Xue-Gong [Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Lotze, Michael T.; Zeh, Herbert J. [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Tang, Daolin, E-mail: [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Kang, Rui, E-mail: [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States)


    High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis and necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death.

  6. Power system damping - Structural aspects of controlling active power

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, O.


    Environmental and economical aspects make it difficult to build new power lines and to reinforce existing ones. The continued growth in demand for electric power must therefore to a great extent be met by increased loading of available lines. A consequence is that power system damping is reduced, leading to a risk of poorly damped power oscillations between the generators. This thesis proposes the use of controlled active loads to increase damping of such electro-mechanical oscillations. The focus is on structural aspects of controller interaction and of sensor and actuator placement. On-off control based on machine frequency in a single machine infinite bus system is analysed using energy function analysis and phase plane plots. An on-off controller with estimated machine frequency as input has been implemented. At a field test it damped oscillations of a 0.9 MW hydro power generator by controlling a 20kW load. The linear analysis uses two power system models with three and twenty-three machines respectively. Each damper has active power as output and local bus frequency or machine frequency as input. The power system simulator EUROSTAG is used both for generation of the linearized models and for time simulations. Measures of active power mode controllability and phase angle mode observability are obtained from the eigenvectors of the differential-algebraic models. The geographical variation in the network of these quantities is illustrated using the resemblance to bending modes of flexible mechanical structures. Eigenvalue sensitivities are used to determine suitable damper locations. A spring-mass equivalent to an inter-area mode provides analytical expressions, that together with the concept of impedance matching explain the structural behaviour of the power systems. For large gains this is investigated using root locus plots. 64 refs, 99 figs, 20 tabs

  7. Grid-Current-Feedback Active Damping for LCL Resonance in Grid-Connected Voltage-Source Converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang


    This paper investigates active damping of LCL-filter resonance in a grid-connected voltage-source converter with only grid-current feedback control. Basic analysis in the s-domain shows that the proposed damping technique with a negative high-pass filter along its damping path is equivalent...... to adding a virtual impedance across the grid-side inductance. This added impedance is more precisely represented by a series RL branch in parallel with a negative inductance. The negative inductance helps to mitigate phase lag caused by time delays found in a digitally controlled system. The mitigation...... of phase-lag, in turn, helps to shrink the region of nonminimum-phase behavior caused by negative virtual resistance inserted unintentionally by most digitally implemented active damping techniques. The presented high-pass-filtered active damping technique with a single grid-current feedback loop is thus...

  8. Passive damping concepts for slender columns in space structures (United States)

    Razzaq, Z.; Ekhelikar, R. K.


    An experimental and theoretical study of three different passive damping concepts is conducted for a slender member with partial rotational end restraints. Over a hundred full-scale natural vibration experiments were conducted to evaluate the effectiveness of mass-string, polyethylene tubing, and chain damping concepts. The damping properties obtained from the experiments were used in the approximate analyses based on the partial differential equation of motion for the problem. The comparison of the experimental and the theoretical deflection-time relations shows that the velocity-dependent damping model used in the theory is adequate. From the experimental results, the effect of end connection friction and induced axial forces on damping is identified. The definition of an efficiency index is proposed based on the damping ratio and the mass of a given passive damping device. Using this definition, the efficiencies of the three damping devices are compared. The polyethylene tubing concept resulted into a low damping efficiency.

  9. Sports Cardiology: Core Curriculum for Providing Cardiovascular Care to Competitive Athletes and Highly Active People. (United States)

    Baggish, Aaron L; Battle, Robert W; Beckerman, James G; Bove, Alfred A; Lampert, Rachel J; Levine, Benjamin D; Link, Mark S; Martinez, Matthew W; Molossi, Silvana M; Salerno, Jack; Wasfy, Meagan M; Weiner, Rory B; Emery, Michael S


    The last few decades have seen substantial growth in the populations of competitive athletes and highly active people (CAHAP). Although vigorous physical exercise is an effective way to reduce the risk of cardiovascular (CV) disease, CAHAP remain susceptible to inherited and acquired CV disease, and may be most at risk for adverse CV outcomes during intense physical activity. Traditionally, multidisciplinary teams comprising athletic trainers, physical therapists, primary care sports medicine physicians, and orthopedic surgeons have provided clinical care for CAHAP. However, there is increasing recognition that a care team including qualified CV specialists optimizes care delivery for CAHAP. In recognition of the increasing demand for CV specialists competent in the care of CAHAP, the American College of Cardiology has recently established a Sports and Exercise Council. An important primary objective of this council is to define the essential skills necessary to practice effective sports cardiology. Copyright © 2017. Published by Elsevier Inc.

  10. CESAME: Providing High Quality Professional Development in Science and Mathematics for K-12 Teachers (United States)

    Hickman, Paul


    It is appropriate that after almost half a century of Science and Mathematics education reform we take a look back and a peek forward to understand the present state of this wonderfully complex system. Each of the components of this system including teaching, professional development, assessment, content and the district K-12 curriculum all need to work together if we hope to provide quality science, mathematics and technology education for ALL students. How do the state and national standards drive the system? How do state policies on student testing and teacher licensure come into play? How do we improve the preparation, retention and job satisfaction of our K-12 teachers? What initiatives have made or are making a difference? What else needs to be done? What can the physics community do to support local efforts? This job is too big for any single organization or individual but we each can contribute to the effort. Our Center at Northeastern University, with support from the National Science Foundation, has a sharply defined focus: to get high quality, research-based instructional materials into the hands of K-12 classroom teachers and provide the support they need to use the materials effectively in their classrooms.

  11. Dynamics of damped oscillations: physical pendulum (United States)

    Quiroga, G. D.; Ospina-Henao, P. A.


    The frictional force between a physical damped pendulum and the medium is usually assumed to be proportional to the pendulum velocity. In this work, we investigate how the pendulum motion will be affected when the drag force is modeled using power-laws bigger than the usual 1 or 2, and we will show that such assumption leads to contradictions with experimental observations. For this purpose, a more general model of a damped pendulum is introduced, assuming a power-law with integer exponents in the damping term of the equation of motion, and also in the non-harmonic regime. A Runge–Kutta solver is implemented to compute the numerical solutions for the first five powers, showing that the linear drag has the fastest decay to rest, and that bigger exponents have long-time fluctuation around the equilibrium position, which have no correlation (as is expected) with experimental results.

  12. Damping Estimation by Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Brincker, Rune; Ventura, C. E.; Andersen, P.


    In this paper it is explained how the damping can be estimated using the Frequency Domain Decomposition technique for output-only modal identification, i.e. in the case where the modal parameters is to be estimated without knowing the forces exciting the system. Also it is explained how the natural...... back to time domain to identify damping and frequency. The technique is illustrated on a simple simulation case with 2 closely spaced modes. On this example it is illustrated how the identification is influenced by very closely spacing, by non-orthogonal modes, and by correlated input. The technique...... is further illustrated on the output-only identification of the Great Belt Bridge. On this example it is shown how the damping is identified on a weakly exited mode and a closely spaced mode....

  13. Passively damped vibration welding system and method (United States)

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao


    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  14. Can high resolution 3D topographic surveys provide reliable grain size estimates in gravel bed rivers? (United States)

    Pearson, E.; Smith, M. W.; Klaar, M. J.; Brown, L. E.


    High resolution topographic surveys such as those provided by Structure-from-Motion (SfM) contain a wealth of information that is not always exploited in the generation of Digital Elevation Models (DEMs). In particular, several authors have related sub-metre scale topographic variability (or 'surface roughness') to sediment grain size by deriving empirical relationships between the two. In fluvial applications, such relationships permit rapid analysis of the spatial distribution of grain size over entire river reaches, providing improved data to drive three-dimensional hydraulic models, allowing rapid geomorphic monitoring of sub-reach river restoration projects, and enabling more robust characterisation of riverbed habitats. However, comparison of previously published roughness-grain-size relationships shows substantial variability between field sites. Using a combination of over 300 laboratory and field-based SfM surveys, we demonstrate the influence of inherent survey error, irregularity of natural gravels, particle shape, grain packing structure, sorting, and form roughness on roughness-grain-size relationships. Roughness analysis from SfM datasets can accurately predict the diameter of smooth hemispheres, though natural, irregular gravels result in a higher roughness value for a given diameter and different grain shapes yield different relationships. A suite of empirical relationships is presented as a decision tree which improves predictions of grain size. By accounting for differences in patch facies, large improvements in D50 prediction are possible. SfM is capable of providing accurate grain size estimates, although further refinement is needed for poorly sorted gravel patches, for which c-axis percentiles are better predicted than b-axis percentiles.

  15. Assessing Equivalent Viscous Damping Using Piping System test Results

    Energy Technology Data Exchange (ETDEWEB)

    Nie, J.; Morante, R.


    The specification of damping for nuclear piping systems subject to seismic-induced motions has been the subject of many studies and much controversy. Damping estimation based on test data can be influenced by numerous factors, consequently leading to considerable scatter in damping estimates in the literature. At present, nuclear industry recommendations and nuclear regulatory guidance are not consistent on the treatment of damping for analysis of nuclear piping systems. Therefore, there is still a need to develop a more complete and consistent technical basis for specification of appropriate damping values for use in design and analysis. This paper summarizes the results of recent damping studies conducted at Brookhaven National Laboratory.

  16. Damping Characterization of Friction Energy Dissipation for Particle Systems Based on Powder Mechanics and Experimental Verification

    Directory of Open Access Journals (Sweden)

    Wangqiang XIAO


    Full Text Available We established a friction energy dissipation model for particle damping based on powder mechanics. We investigated the influence of geometric features of the damper on damping characteristics; and the geometric feature studied was the depth and length of the rectangular particle container. The work done by the frictional force between the particle layer and the effect of particle filling rate on the vibration damping characteristics was also explored. We analyzed the friction energy dissipation model, and the relationship between the particle filling rate and the vibration damping. The experimental results show good agreement with the friction energy dissipation model, which verifies the proposed simulation prediction. The results have shown that the particle damping technology can greatly consume the structure kinetic energy, and the vibration reduction effect of particle damping depends mainly on the interaction of the particles near the top. A proper filling rate of particle systems can result in an optimal effect on vibration reduction, which will provide the engineering applications with the theoretical guidance and design criteria.

  17. Development of Semi-Empirical Damping Equation for Baffled Tank with Oblate Spheroidal Dome (United States)

    Yang, H. Q.; West, Jeff; Brodnick, Jacob; Eberhart, Chad


    Propellant slosh is a potential source of disturbance that can significantly impact the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring-mass-damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. The typical parameters required by the mechanical model include natural frequency of the slosh, slosh mass, slosh mass center location, and the critical damping ratio. A fundamental study has been undertaken at NASA MSFC to understand the fluid damping physics from a ring baffle in the barrel section of a propellant tank. An asymptotic damping equation and CFD blended equation have been derived by NASA MSFC team to complement the popularly used Miles equation at different flow regimes. The new development has found success in providing a nonlinear damping model for the Space Launch System. The purpose of this study is to further extend the semi-empirical damping equations into the oblate spheroidal dome section of the propellant tanks. First, previous experimental data from the spherical baffled tank are collected and analyzed. Several methods of taking the dome curvature effect, including a generalized Miles equation, area projection method, and equalized fill height method, are assessed. CFD simulation is used to shed light on the interaction of vorticity around the baffle with the locally curved wall and liquid-gas interface. The final damping equation will be validated by a recent subscale test with an oblate spheroidal dome conducted at NASA MSFC.

  18. Mode damping in a commensurate monolayer solid

    DEFF Research Database (Denmark)

    Bruch, Ludwig Walter; Hansen, Flemming Yssing


    The normal modes of a commensurate monolayer solid may be damped by mixing with elastic waves of the substrate. This was shown by Hall, Mills, and Black [Phys. Rev. B 32, 4932 (1985)], for perpendicular adsorbate vibrations in the presence of an isotropic elastic medium. That work is generalized...... anisotropy of the elastic behavior of the graphite leads to quite different wave-vector dependence of the damping for modes polarized perpendicular and parallel to the substrate. A phenomenological extension of the elasticity theory of the graphite to include bond-bending energies improves the description...

  19. Damping of Crank–Nicolson error oscillations

    DEFF Research Database (Denmark)

    Britz, Dieter; Østerby, Ole; Strutwolf, J.


    The Crank–Nicolson (CN) simulation method has an oscillatory response to sharp initial transients. The technique is convenient but the oscillations make it less popular. Several ways of damping the oscillations in two types of electrochemical computations are investigated. For a simple one...... be computationally more expensive with some systems. The simple device of starting with one backward implicit (BI, or Laasonen) step does damp the oscillations, but not always sufficiently. For electrochemical microdisk simulations which are two-dimensional in space and using CN, the use of a first BI step is much...

  20. Power Oscillations Damping in DC Microgrids

    DEFF Research Database (Denmark)

    Hamzeh, Mohsen; Ghafouri, Mohsen; Karimi, Houshang


    This paper proposes a new control strategy for damping of power oscillations in a multi-source dc microgrid. A parallel combination of a fuel cell (FC), a photovoltaic (PV) system and a supercapacitor (SC) are used as a hybrid power conversion system (HPCS). The SC compensates for the slow...... transient response of the FC stack. The HPCS controller comprises a multi-loop voltage controller and a virtual impedance loop for power management. The virtual impedance loop uses a dynamic droop gain to actively damp the low-frequency oscillations of the power sharing control unit. The gain of virtual...

  1. Wind turbine blade with viscoelastic damping (United States)

    Sievers, Ryan A.; Mullings, Justin L.


    A wind turbine blade (60) damped by viscoelastic material (54, 54A-F) sandwiched between stiffer load-bearing sublayers (52A, 52B, 56A, 56B) in portions of the blade effective to damp oscillations (38) of the blade. The viscoelastic material may be located in one or more of: a forward portion (54A) of the shell, an aft portion (54D) of the shell, pressure and suction side end caps (54B) of an internal spar, internal webbing walls (54C, 54E), and a trailing edge core (54F).

  2. Dynamic characteristics of proportional control valve with damping chokes; Damping shibori wo yusuru hirei seigyoben no dotokusei

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, M. [Meiji University, Tokyo (Japan). School of Science and Technology; Yoshidak, K.; Yokota, S. [Tokyo Inst. of Technology. Tokyo (Japan). Precision Engineering Lab.; Masuda, K.


    To investigate the effect of working fluid in solenoids on dynamic characteristics of proportional control valves for improving the valve responses, as an example under one of most severe conditions, dynamic characteristics of a proportional control valve with damping chokes are experimentally investigated. Damping chokes are usually used to improve the stability of spool position control, however, the effect on the dynamic characteristics has not yet been sufficiently clarified. For example, it is known that the dynamic characteristics are changed by the tank line back pressure when high water content fluid is used. The phenomena thought to be caused by cavitation bubbles, however, has not yet been clarified. In this paper, firstly, the dynamic characteristics of a proportional control valve equipped with additional damping chokes are experimentally investigated. Secondly, a mathematical model describing the nonlinear dynamic characteristics is derived and verified by computer simulation. Finally, a robust control method using a disturbance observer is applied to improve the characteristics and the performance is subsequently examined with computer simulations and experiments. (author)

  3. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions (United States)

    Mason, Lee S.


    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  4. Damping of Inter-Area Low Frequency Oscillation Using an Adaptive Wide-Area Damping Controller

    DEFF Research Database (Denmark)

    Yao, Wei; Jiang, L.; Fang, Jiakun


    This paper presents an adaptive wide-area damping controller (WADC) based on generalized predictive control (GPC) and model identification for damping the inter-area low frequency oscillations in large-scale inter-connected power system. A recursive least-squares algorithm (RLSA) with a varying...... in each sampling interval. Case studies are undertaken on a two-area fourmachine power system and the New England 10-machine 39-bus power system, respectively. Simulation results show that the proposed adaptive WADC not only can damp the inter-area oscillations effectively under a wide range of operation...

  5. Plant Growth under Natural Light Conditions Provides Highly Flexible Short-Term Acclimation Properties toward High Light Stress (United States)

    Schumann, Tobias; Paul, Suman; Melzer, Michael; Dörmann, Peter; Jahns, Peter


    Efficient acclimation to different growth light intensities is essential for plant fitness. So far, most studies on light acclimation have been conducted with plants grown under different constant light regimes, but more recent work indicated that acclimation to fluctuating light or field conditions may result in different physiological properties of plants. Thale cress (Arabidopsis thaliana) was grown under three different constant light intensities (LL: 25 μmol photons m−2 s−1; NL: 100 μmol photons m−2 s−1; HL: 500 μmol photons m−2 s−1) and under natural fluctuating light (NatL) conditions. We performed a thorough characterization of the morphological, physiological, and biochemical properties focusing on photo-protective mechanisms. Our analyses corroborated the known properties of LL, NL, and HL plants. NatL plants, however, were found to combine characteristics of both LL and HL grown plants, leading to efficient and unique light utilization capacities. Strikingly, the high energy dissipation capacity of NatL plants correlated with increased dynamics of thylakoid membrane reorganization upon short-term acclimation to excess light. We conclude that the thylakoid membrane organization and particularly the light-dependent and reversible unstacking of grana membranes likely represent key factors that provide the basis for the high acclimation capacity of NatL grown plants to rapidly changing light intensities. PMID:28515734

  6. Block periodization of high-intensity aerobic intervals provides superior training effects in trained cyclists. (United States)

    Rønnestad, B R; Hansen, J; Ellefsen, S


    The purpose of this study was to compare the effect of two different methods of organizing endurance training in trained cyclists. One group of cyclists performed block periodization, wherein the first week constituted five sessions of high-intensity aerobic training (HIT), followed by 3 weeks of one weekly HIT session and focus on low-intensity training (LIT) (BP; n = 10, VO2max  = 62 ± 2 mL/kg/min). Another group of cyclists performed a more traditional organization, with 4 weeks of two weekly HIT sessions interspersed with LIT (TRAD; n = 9, VO2max  = 63 ± 2 mL/kg/min). Similar volumes of both HIT and LIT was performed in the two groups. While BP increased VO2max , peak power output (Wmax) and power output at 2 mmol/L [la(-)] by 4.6 ± 3.7%, 2.1 ± 2.8%, and 10 ± 12%, respectively (P training compared with TRAD training (ES = 1.34, ES = 0.85, and ES = 0.71, respectively). The present study suggests that block periodization of training provides superior adaptations to traditional organization during a 4-week endurance training period, despite similar training volume and intensity. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    Directory of Open Access Journals (Sweden)

    Keith Smettem


    Full Text Available Quantifying the travel times, pathways, and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for stream reaches in Luxembourg and Western Australia. The reaches were selected to provide a range of increasingly complex in-channel flow patterns. Mid-channel sensor results are comparable to data obtained from more expensive electrical conductivity meters, but simultaneous acquisition of tracer data at several positions across the channel allows far greater spatial resolution of hydrodynamic mixing processes and identification of chemical ‘dead zones’ in the study reaches.

  8. Passive damping concepts for free and forced member and grillage vibration (United States)

    Razzaq, Zia; Najjar, Bassam


    The performance of potential passive damping concepts is investigted for a long tubular aluminum alloy member, and a two-bar grillage structure. The members are restrained partially at the ends and are of the type being considered by NASA for possible use in the construction of a future space station. Four different passive damping concepts are studied and include nylon brush, wool swab, copper brush, and silly putty in chamber dampers. Both free and forced vibration tests are conducted. It is found that the silly putty in chamber damper concept provides considerably greater passive damping as compared to that of the other three concepts. For the grillage natural vibration, a five wool swab damper configuration provides greater damping than the five silly putty dampers in chamber configuration. Due to the constrained motion imposed by the vibrator used in the tests, the effectiveness of the passive dampers could not be adequately evaluated for the individual member. However, it is found that for the grillage under forced vibration, the five silly putty dampers in chamber damper configuration provides very effective passive damping although only at and around the resonant frequency. At resonance, these dampers provide a 51 percent reduction in the dynamic magnification factor for this case.

  9. Gyroscopic Stabilization of Indefinite Damped Systems

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Müller, Peter C.


    The paper deals with linear systems of differential equationswith symmetric system matrices M,D, and K.The mass matrix M and the stiffness matrix K are both assumed to bepositive definite. The damping matrix D is indefinite. Three questionsare of interest: 1) When is the system unstable? Apparent...

  10. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué, Emilie


    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  11. Rage mediated DAMP signaling in intestinal tumorigenesis

    NARCIS (Netherlands)

    Heijmans, Jarom; Büller, Nikè V. J. A.; Muncan, Vanesa; van den Brink, Gijs R.


    In the intestine, a large variety of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) can instigate innate immune responses, which have been shown to promote colorectal carcinogenesis. We have recently demonstrated an important role for the receptor for

  12. Amplitude damping channel for orbital angular momentum

    CSIR Research Space (South Africa)

    Dudley, Angela L


    Full Text Available of a previously reported OAM sorting device. A Mech-Zehnder interferometer with a Dove prism in each arm is used to sort OAM states according to their parity. The authors extend this concept to implement an amplitude damping channel, and prove its...

  13. An Equivalent Circuit for Landau Damping

    DEFF Research Database (Denmark)

    Pécseli, Hans


    An equivalent circuit simulating the effect of Landau damping in a stable plasma‐loaded parallel‐plate capacitor is presented. The circuit contains a double infinity of LC components. The transition from stable to unstable plasmas is simulated by the introduction of active elements into the circuit....

  14. Hyperchaotic circuit with damped harmonic oscillators

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.


    A simple fourth-order hyperchaotic circuit with damped harmonic oscillators is described. ANP3 and PSpice simulations including an eigenvalue study of the linearized Jacobian are presented together with a hardware implementation. The circuit contains two inductors with series resistance, two ideal...

  15. Spatial Damping of Linear Compressional Magnetoacoustic Waves ...

    Indian Academy of Sciences (India)


    Jan 27, 2016 ... We study the spatial damping of magnetoacoustic waves in an unbounded quiescent prominence invoking the technique of MHD seismology. We consider Newtonian radiation in the energy equation and derive a fourth order general dispersion relation in terms of wavenumber . Numerical solution of ...

  16. Structural dynamic modification using additive damping

    Indian Academy of Sciences (India)

    In order to control dynamic response in structures and machines, modofications using additive viscoelastic damping materials are highlighted. The techniques described for analysis include analytical methods for structural elements, FEM and perturbation methods for reanalysis or structural dynamic modifications for ...

  17. Damping mechanisms and models in structural dynamics

    DEFF Research Database (Denmark)

    Krenk, Steen


    Several aspects of damping models for dynamic analysis of structures are investigated. First the causality condition for structural response is used to identify rules for the use of complex-valued frequency dependent material models, illustrated by the shortcomings of the elastic hysteretic model...

  18. Nonlinear Landau damping and Alfven wave dissipation (United States)

    Vinas, Adolfo F.; Miller, James A.


    Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.

  19. Stiffness and damping in mechanical design

    National Research Council Canada - National Science Library

    Rivin, Eugene I


    ... important conceptual issues are stiffness of mechanical structures and their components and damping in mechanical systems sensitive to and/or generating vibrations. Stiffness and strength are the most important criteria for many mechanical designs. However, although there are hundreds of books on various aspects of strength, and strength issues ar...

  20. Uncertainty Models for Rudder-Roll Damping Control

    DEFF Research Database (Denmark)

    Blanke, M.


    Experience has shown that rudder-roll damping and simultaneous heading control of ships has inherent robustness problems.......Experience has shown that rudder-roll damping and simultaneous heading control of ships has inherent robustness problems....

  1. Predictors of early acceptance of free spectacles provided to junior high school students in China. (United States)

    Keay, Lisa; Zeng, Yangfa; Munoz, Beatriz; He, Mingguang; Friedman, David S


    To examine factors influencing adherence to spectacle wear and perceived value within a prospective 1-month trial of ready-made and custom spectacles in school-aged children with uncorrected refractive error in urban China. A total of 428 students aged 12 to 15 years with at least 1 diopter of uncorrected refractive error were given free spectacles and evaluated 1 month later at an unannounced visit. Demographic factors, vision, optical effects, and perceptions were modeled as predictors of observed use and perceived value using logistic regression adjusted for spectacle allocation. Of 415 students, 388 (93.5%) planned to use their spectacles, 227 (54.7%) valued their spectacles highly, 204 (49.2%) had their spectacles on hand, and 13 (3.0%) were lost to follow-up. Female students were 1.72 times (95% confidence interval [CI], 1.10-2.68), students from lower income households were 1.78 times (1.32-2.39), and those not concerned over appearance were 2.04 times (1.25-3.36) more likely to have spectacles on hand. Students with a pupil size of 4 mm or greater were 2.55 times (95% CI, 1.61-4.03) and students with spectacle vision worse than 20/20 were 2.06 times (1.20-3.49) more likely to have spectacles on hand. Self-report of high perceived value was 2.23 times (95% CI, 1.30-3.80) more likely with 20/20 spectacle vision, 1.63 times (1.06-2.52) more likely with base-in prismatic effects of 0.5 prism diopters or more, 3.52 times (2.03-6.13) more likely when students would not tolerate blur to avoid wearing spectacles, and 2.16 times (1.24-3.76) more likely with disbelief that spectacles would make vision worse. Spectacle type had no effect. Although most students planned to use their spectacles, only half were observed using them. Day-to-day use might increase if students were less concerned over appearance. Optical factors and beliefs surrounding spectacles are also predictive of acceptance. These findings provide further understanding of spectacle acceptance in

  2. Anti-damping effect of radiation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G; Yuan, X Z [School of Physics and Electric Information, Wenzhou University, Wenzhou 325035 (China); Li, H [Department of Physics, Yantai University, Yantai 264005 (China); Shen, Y F [Department of Physics, China University of Mining and Technology, Xuzhou 221008 (China); Zi, J [National Laboratory of Surface Physics, Fudan University, Shanghai 200433 (China)], E-mail:


    The anti-damping effect of radiation reaction, which means the radiation reaction does non-negative work on a radiating charge, is investigated at length by using the Lorentz-Dirac equation (LDE) for the motion of a point charge respectively acted on by (a) a pure electric field, (b) a pure magnetic field and (c) the fields of an electromagnetic wave. We found that the curvature of the charge's trajectory plays an important role in the radiation reaction force, and the anti-damping effect cannot take place for the real macroscopic motions of a point charge. The condition for this anti-damping effect to take place is that the gradient of the external force field must exceed a certain value over the region of magnitude of the classical radius of massive charges ({approx}10{sup -15} m). Our results are potentially helpful to lessen the controversy on LDE and justify it as the correct classical equation describing the radiating charge's motion. If this anti-damping effect of LDE were a real existing physical process, it could serve as a mechanism within the context of classical electrodynamics for the stability of hydrogen atoms. Using the picture of an electron in quantum electrodynamics, namely the negative bare charge surrounded by the polarized positive charges of vacuum, we can obtain a reasonable explanation for the energy transferred to the electron during the occurrence of the anti-damping effect, on which the venerable work of Wheeler and Feynman has thrown some light.

  3. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material (United States)

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,


    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  4. Exploring damping characteristics of composite tower of cable ...

    Indian Academy of Sciences (India)


    The process of modeling damping matrices and their experimental verification is challenging because damping cannot be determined via static tests as mass and stiffness can be. Furthermore, damping is more difficult to determine from dynamic measurements than natural frequency. There have been detailed studies on ...

  5. Active and passive damping based on piezoelectric elements -controllability issues-

    NARCIS (Netherlands)

    Holterman, J.; de Vries, Theodorus J.A.; van Amerongen, J.; Jonker, Jan B.; Jonker, J.B.


    Piezoelectric elements are widely used for damping micro-vibrations in mechanical structures. Active damping can be realised robustly by means of collocated actuator-sensor-pairs, controlled so as to extract vibration energy. Excellent damping performance is possible as long as sufficient

  6. Recovering the damping rates of cyclotron damped plasma waves from simulation data

    CERN Document Server

    Schreiner, Cedric; Spanier, Felix


    Plasma waves with frequencies close to the particular gyrofrequencies of the charged particles in the plasma lose energy due to cyclotron damping. We briefly discuss the gyro-resonance of low frequency plasma waves and ions particularly with regard to particle-in-cell (PiC) simulations. A setup is outlined which uses artificially excited waves in the damped regime of the wave mode's dispersion relation to track the damping of the wave's electromagnetic fields. Extracting the damping rate directly from the field data in real or Fourier space is an intricate and non-trivial task. We therefore present a simple method of obtaining the damping rate {\\Gamma} from the simulation data. This method is described in detail, focusing on a step-by-step explanation of the course of actions. In a first application to a test simulation we find that the damping rates obtained from this simulation generally are in good agreement with theoretical predictions. We then compare the results of one-, two- and three-dimensional simul...

  7. DAMPE: A gamma and cosmic ray observatory in space (United States)

    D'Urso, D.; Dampe Collaboration


    DAMPE (DArk Matter Particle Explorer) is one of the five satellite missions in the framework of the Strategic Pioneer Research Program in Space Science of the Chinese Academy of Sciences (CAS). Launched on December 17th 2015 at 08:12 Beijing time, it is taking data into a sun-synchronous orbit, at the altitude of 500km. The main scientific objective of DAMPE is to detect electrons and photons in the range 5GeV-10TeV with unprecedented energy resolution, in order to identify possible Dark Matter signatures. It will also measure the flux of nuclei up to 100TeV with excellent energy resolution. The satellite is equipped with a powerful space telescope for high energy gamma-ray, electron and cosmic rays detection. It consists of a plastic scintillator strips detector (PSD) that serves as anti-coincidence detector, a silicon-tungsten tracker (STK), a BGO imaging calorimeter of about 32 radiation lengths, and a neutron detector. With its excellent photon detection capability and its detector performances (at 100GeV energy resolution ˜1% , angular resolution ˜0.1° , the DAMPE mission is well placed to make strong contributions to high-energy gamma-ray observations: it covers the gap between space and ground observation; it will allow to detect a line signature in the gamma-ray spectrum, if present, in the sub-TeV to TeV region; it will allow a high precision gamma-ray astronomy. A report on the mission goals and status will be discussed, together with in-orbit first data coming from space.

  8. Temperature-dependent Gilbert damping of Co2FeAl thin films with different degree of atomic order (United States)

    Kumar, Ankit; Pan, Fan; Husain, Sajid; Akansel, Serkan; Brucas, Rimantas; Bergqvist, Lars; Chaudhary, Sujeet; Svedlindh, Peter


    Half-metallicity and low magnetic damping are perpetually sought for spintronics materials, and full Heusler compounds in this respect provide outstanding properties. However, it is challenging to obtain the well-ordered half-metallic phase in as-deposited full Heusler compound thin films, and theory has struggled to establish a fundamental understanding of the temperature-dependent Gilbert damping in these systems. Here we present a study of the temperature-dependent Gilbert damping of differently ordered as-deposited Co2FeAl full Heusler compound thin films. The sum of inter- and intraband electron scattering in conjunction with the finite electron lifetime in Bloch states governs the Gilbert damping for the well-ordered phase, in contrast to the damping of partially ordered and disordered phases which is governed by interband electronic scattering alone. These results, especially the ultralow room-temperature intrinsic damping observed for the well-ordered phase, provide fundamental insights into the physical origin of the Gilbert damping in full Heusler compound thin films.

  9. Status of the ATF Damping Ring BPM Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Briegel, C.; /Fermilab; Eddy, N.; /Fermilab; Haynes, B.; /Fermilab; May, J.; /SLAC; McCormick, D.; /SLAC; Nelson, J.; /SLAC; Nicklaus, D.; /Fermilab; Prieto, P.; /Fermilab; Rechenmacher, R.; /Fermilab; Smith, T.; /SLAC; Teranuma, N.; /KEK, Tsukuba; Urakawa, J.; /KEK, Tsukuba; Voy, D.; /Fermilab; Wendt, M.; /Fermilab; Woodley, M.; /SLAC


    A substantial upgrade of the beam position monitors (BPM) at the ATF (Accelerator Test Facility) damping ring is currently in progress. Implementing digital read-out signal processing techniques in line with an optimized, low-noise analog downconverter, a resolution well below 1 mum could be demonstrated at 20 (of 96) upgraded BPM stations. The narrowband, high resolution BPM mode permits investigation of all types of non-linearities, imperfections and other obstacles in the machine which may limit the very low target aimed vertical beam emittance of < 2 pm. The technical status of the project, first beam measurements and an outlook to it's finalization are presented.

  10. Damping of hard excitations in strongly coupled N=4 plasma

    Energy Technology Data Exchange (ETDEWEB)

    III, John F. Fuini; Uhlemann, Christoph F.; Yaffe, Laurence G. [Department of Physics, University of Washington,Seattle, WA 98195-1560 (United States)


    The damping of high momentum excitations in strongly coupled maximally supersymmetric Yang-Mills plasma is studied. Previous calculations of the asymptotic behavior of the quasinormal mode spectrum are extended and clarified. We confirm that subleading corrections to the lightlike dispersion relation ω(q)=|q| have a universal |q|{sup −1/3} form. Sufficiently narrow, weak planar shocks may be viewed as coherent superpositions of short wavelength quasinormal modes. The attenuation and evolution in profile of narrow planar shocks are examined as an application of our results.

  11. Damping of hard excitations in strongly coupled N = 4 plasma (United States)

    Fuini, John F.; Uhlemann, Christoph F.; Yaffe, Laurence G.


    The damping of high momentum excitations in strongly coupled maximally supersymmetric Yang-Mills plasma is studied. Previous calculations of the asymptotic behavior of the quasinormal mode spectrum are extended and clarified. We confirm that subleading corrections to the lightlike dispersion relation ω( q) = | q| have a universal | q|-1/3 form. Sufficiently narrow, weak planar shocks may be viewed as coherent superpositions of short wavelength quasinormal modes. The attenuation and evolution in profile of narrow planar shocks are examined as an application of our results.

  12. Training Physicians to Provide High-Value, Cost-Conscious Care A Systematic Review

    NARCIS (Netherlands)

    Stammen, L.A.; Stalmeijer, R.E.; Paternotte, E.; Pool, A.O.; Driessen, E.W.; Scheele, F.; Stassen, L.P.S.


    Importance Increasing health care expenditures are taxing the sustainability of the health care system. Physicians should be prepared to deliver high-value, cost-conscious care. Objective To understand the circumstances in which the delivery of high-value, cost-conscious care is learned, with a goal

  13. Practicing provider-initiated HIV testing in high prevalence settings: consent concerns and missed preventive opportunities


    Shayo Elizabeth H; Blystad Astrid; Njeru Mercy K; Nyamongo Isaac K; Fylkesnes Knut


    Abstract Background Counselling is considered a prerequisite for the proper handling of testing and for ensuring effective HIV preventive efforts. HIV testing services have recently been scaled up substantially with a particular focus on provider-initiated models. Increasing HIV test rates have been attributed to the rapid scale-up of the provider-initiated testing model, but there is limited documentation of experiences with this new service model. The aim of this study was to determine the ...

  14. Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures (United States)

    Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.


    Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.

  15. Effects of Landau-Lifshitz-Gilbert damping on domain growth (United States)

    Kudo, Kazue


    Domain patterns are simulated by the Landau-Lifshitz-Gilbert (LLG) equation with an easy-axis anisotropy. If the Gilbert damping is removed from the LLG equation, it merely describes the precession of magnetization with a ferromagnetic interaction. However, even without the damping, domains that look similar to those of scalar fields are formed, and they grow with time. It is demonstrated that the damping has no significant effects on domain growth laws and large-scale domain structure. In contrast, small-scale domain structure is affected by the damping. The difference in small-scale structure arises from energy dissipation due to the damping.

  16. Measuring Collisionless Damping in Heliospheric Plasmas using Field-Particle Correlations

    CERN Document Server

    Klein, Kristopher G


    An innovative field-particle correlation technique is proposed that uses single-point measurements of the electromagnetic fields and particle velocity distribution functions to investigate the net transfer of energy from fields to particles associated with the collisionless damping of turbulent fluctuations in weakly collisional plasmas, such as the solar wind. In addition to providing a direct estimate of the local rate of energy transfer between fields and particles, it provides vital new information about the distribution of that energy transfer in velocity space. This velocity-space signature can potentially be used to identify the dominant collisionless mechanism responsible for the damping of turbulent fluctuations in the solar wind. The application of this novel field-particle correlation technique is illustrated using the simplified case of the Landau damping of Langmuir waves in an electrostatic 1D-1V Vlasov-Poisson plasma, showing that the procedure both estimates the local rate of energy transfer f...

  17. Model Predictive Vibration Control Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures

    CERN Document Server

    Takács, Gergely


    Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: ·         the implementation of ...


    Directory of Open Access Journals (Sweden)

    А. М. Hashimov


    Full Text Available The article presents design engineering methods for the high-voltage pulse installations of technological purpose for disinfection of drinking water, sewage, and edible liquids by high field micro- and nanosecond pulsing exposure. Designing potentialities are considered of the principal elements of the high-voltage part and the discharge circuit of the installations towards assuring the best efficient on-load utilization of the source energy and safe operation of the high-voltage equipment. The study shows that for disinfection of drinking water and sewage it is expedient to apply microsecond pulse actions causing the electrohydraulic effect in aqueous media with associated complex of physical processes (ultraviolet emission, generation of ozone and atomic oxygen, mechanical compression waves, etc. having detrimental effect on life activity of the microorganisms. In case of disinfecting edible liquids it is recommended to use the nanosecond pulses capable of straight permeating the biological cell nucleus, inactivating it. Meanwhile, the nutritive and biological values of the foodstuffs are saved and their organoleptic properties are improved. It is noted that in elaboration process of high-frequency pulse installations special consideration should be given to issues of the operating personnel safety discipline and securing conditions for the entire installation uninterrupted performance. With this objective in view the necessary requirements should be fulfilled on shielding the high- and low-voltage installation parts against high-frequency electromagnetic emissions registered by special differential sensors. Simultaneously, the abatement measures should be applied on the high-voltage equipment operational noise level. The authors offer a technique for noise abatement to admissible levels (lower than 80 dB A by means of coating the inside surface with shielded enclosure of densely-packed abutting sheets of porous electro-acoustic insulating

  19. Access to high-volume surgeons and the opportunity cost of performing radical prostatectomy by low-volume providers. (United States)

    Barzi, Afsaneh; Klein, Eric A; Daneshmand, Siamak; Gill, Inderbir; Quinn, David I; Sadeghi, Sarmad


    Evidence suggests that redirecting surgeries to high-volume providers may be associated with better outcomes and significant societal savings. Whether such referrals are feasible remains unanswered. Medicare Provider Utilization and Payment Data, SEER 18, and US Incidence data were used to determine the geographic distribution and radical prostatectomy volume for providers. Access was defined as availability of a high-volume provider within driving distance of 100 miles. The opportunity cost was defined as the value of benefits achievable by performing the surgery by a high-volume provider that was forgone by not making a referral. The savings per referral were derived from a published Markov model for radical prostatectomy. A total of 14% of providers performed>27% of the radical prostatectomies with>30 cases per year and were designated high-volume providers. Providers with below-median volume (≤16 prostatectomies per year) performed>32% of radical prostatectomies. At least 47% of these were within a 100-mile driving distance (median = 22 miles), and therefore had access to a high-volume provider (>30 prostatectomies per year). This translated into a discounted savings of more than $24 million per year, representing the opportunity cost of not making a referral. The average volume for high- and low-volume providers was 55 and 13, respectively, resulting in an annual experience gap of 43 and a cumulative gap of 125 surgeries over 3 years. In 2014, the number of surgeons performing radical prostatectomy decreased by 5% while the number of high- and low-volume providers decreased by 25% and 11% showing a faster decline in the number of high-volume providers compared with low-volume surgeons. About half of prostatectomies performed by surgeons with below-median annual volume were within a 100-mile driving distance (median of 22 miles) of a high-volume surgeon. Such a referral may result in minimal additional costs and substantially improved outcomes. Copyright

  20. Classical acoustic waves in damped media. (United States)

    Albuquerque, E L; Mauriz, P W


    A Green function technique is employed to investigate the propagation of classical damped acoustic waves in complex media. The calculations are based on the linear response function approach, which is very convenient to deal with this kind of problem. Both the displacement and the gradient displacement Green functions are determined. All deformations in the media are supposed to be negligible, so the motions considered here are purely acoustic waves. The damping term gamma is included in a phenomenological way into the wave vector expression. By using the fluctuation-dissipation theorem, the power spectrum of the acoustic waves is also derived and has interesting properties, the most important of them being a possible relation with the analysis of seismic reflection data.

  1. Barotropic FRW cosmologies with Chiellini damping

    Energy Technology Data Exchange (ETDEWEB)

    Rosu, Haret C., E-mail: [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, SLP (Mexico); Mancas, Stefan C., E-mail: [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Chen, Pisin, E-mail: [Leung Center for Cosmology and Particle Astrophysics (LeCosPA) and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China)


    It is known that barotropic FRW equations written in the conformal time variable can be reduced to simple linear equations for an exponential function involving the conformal Hubble rate. Here, we show that an interesting class of barotropic universes can be obtained in the linear limit of a special type of nonlinear dissipative Ermakov–Pinney equations with the nonlinear dissipation built from Chiellini's integrability condition. These cosmologies, which evolutionary are similar to the standard ones, correspond to barotropic fluids with adiabatic indices rescaled by a particular factor and have amplitudes of the scale factors inverse proportional to the adiabatic index. - Highlights: • Chiellini-damped Ermakov–Pinney equations are used in barotropic FRW cosmological context. • Chiellini-damped scale factors of the barotropic FRW universes are introduced. • These scale factors are similar to the undamped ones.

  2. Fabrication Process of Rounded Damped Detuned Structure

    CERN Document Server

    Hitomi, N; Higashi, Y; Higo, T; Koike, S; Suzuki, T; Takata, K; Takatomi, T; Toge, T; Watanabe, Y


    Following the successful design and fabrication of Damped Detuned Structures (DDS), the JLC/NLC linear collider project advanced to Rounded Damped Detuned Structures (RDDS) with curved cross section of the cavity shape for increased shunt impedance. Various advanced techniques for fabricating RDDS1 disks comparing to those for DDS were established to satisfy the dimension accuracy of +-1 micron over the entire surface made by ultra-precision turning. These disks were assembled with almost the same stacking and bonding jigs and processes as those of DDS3 assembly. In consequence, the assembly showed little disk-to-disk misalignment within 1 micron before and after the process. Though, it had 200 micron smooth bowing, which was subsequently corrected as DDS3, and flares at both ends.

  3. A Novel Strain Gauge with Damping Capability

    Directory of Open Access Journals (Sweden)

    Xiaohua LI


    Full Text Available The goal of this work is to investigate the properties of a new type of multifunctional composite which is based on multi-walled carbon nanotubes (MWCNT. The composite was prepared from a paper like MWCNT film which was sandwiched between two adhesive layers. Two point probe and four point probe methods were used to test its mechanical strain sensing properties. Nanoindentation and direct shear tests were used to acquire the Young’s modulus and shear modulus of MWCNT film composite. Its structural damping properties were investigated via a free vibration test. This new type of carbon nanotube based composite may potentially serve simultaneously as both a strain gauge and a damping treatment for use in structural vibration control.

  4. Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions: "average" horizontal component (United States)

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter


    Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.

  5. Proceedings of Damping Volume 1 of 3 (United States)


    passive damping studies familiar to him in the last decade. As mentioned above, many current space missions require stringent performance...friction within the alpha joint is thought to be sufficient to keep the joint locked, producing essentially linear behavior and the familiar modal peak...effects. ACKNOWLEDGMENTS This work is sponsored in part by Consiglio Nazionale delle Ricerche under grant CTB 91.2073.CTll :"Analisi dinamica combinata

  6. Gyroscopic stabilization and indefimite damped systems

    DEFF Research Database (Denmark)

    Pommer, Christian

    matrix. d and g are scaling factors used to control the stability of the system. It is quite astonnishing that when the damping matrix D is indefinite the system can under certain conditions be stable even if there are no gyroscopic forces G present The Lyapunov matrix equation is used to predict...... the stabilty limit for pure dissipative systems as well as for dissipative systems with gyroscopic stabilization....

  7. Analytical and Experimental Studies of Beam Waveguide Absorbers for Structural Damping. (United States)


    8217% ibration control mecans such as isolaIon1, detuineIL. cearc damping anid dxnatnic absorption. All of- these approaches have Kecn stuameu rm!icr tlioOU~hI...the energy loss Factor of’ the constrained layer beam. The impedance of r1he high damping constrained laver beam shows the smooth and shilcd...frequency range (�z) the impedances of the test , plate were higher than those of’ waveguide absorbers and at high frequency range >lJ .)lz) impedances

  8. Minimizing Emittance for the CLIC Damping Ring

    CERN Document Server

    Braun, H; Levitchev, E; Piminov, P; Schulte, Daniel; Siniatkin, S; Vobly, P P; Zimmermann, Frank; Zolotarev, Konstantin V; CERN. Geneva


    The CLIC damping rings aim at unprecedented small normalized equilibrium emittances of 3.3 nm vertical and 550 nm horizontal, for a bunch charge of 2.6·109 particles and an energy of 2.4 GeV. In this parameter regime the dominant emittance growth mechanism is intra-beam scattering. Intense synchrotron radiation damping from wigglers is required to counteract its effect. Here the overall optimization of the wiggler parameters is described, taking into account state-of-the-art wiggler technologies, wiggler effects on dynamic aperture, and problems of wiggler radiation absorption. Two technical solutions, one based on superconducting magnet technology the other on permanent magnets are presented. Although dynamic aperture and tolerances of this ring design remain challenging, benefits are obtained from the strong damping. For optimized wigglers, only bunches for a single machine pulse may need to be stored, making injection/extraction particularly simple and limiting the synchrotron-radiation power. With a 36...

  9. High-resolution phylogeny providing insights towards the epidemiology, zoonotic aspects and taxonomy of sapoviruses

    NARCIS (Netherlands)

    Barry, A.F.; Durães-Carvalho, R.; Oliveira-Filho, Edmilson F.; Alfieri, A.; Poel, Van der W.H.M.


    The evolution, epidemiology and zoonotic aspects of Sapoviruses (SaV) are still not well explored. In this study, we applied high-resolution phylogeny to investigate the epidemiological and zoonotic origins as well as taxonomic classification of animal and human SaV. Bayesian framework analyses

  10. New Policies Allow High School Child Development Programs to Provide CDA Licensure (United States)

    Langlais, Amanda G.


    Recent changes made by the Council for Professional Recognition to the Child Development Associate (CDA) credentialing program create an opportunity to redesign high school child development programs. On April 1, 2011, the Council for Professional Recognition lifted the age restriction in the CDA credentialing requirements, now allowing students…

  11. Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. (United States)

    Wang, Linhai; Yu, Sheng; Tong, Chaobo; Zhao, Yingzhong; Liu, Yan; Song, Chi; Zhang, Yanxin; Zhang, Xudong; Wang, Ying; Hua, Wei; Li, Donghua; Li, Dan; Li, Fang; Yu, Jingyin; Xu, Chunyan; Han, Xuelian; Huang, Shunmou; Tai, Shuaishuai; Wang, Junyi; Xu, Xun; Li, Yingrui; Liu, Shengyi; Varshney, Rajeev K; Wang, Jun; Zhang, Xiurong


    Sesame, Sesamum indicum L., is considered the queen of oilseeds for its high oil content and quality, and is grown widely in tropical and subtropical areas as an important source of oil and protein. However, the molecular biology of sesame is largely unexplored. Here, we report a high-quality genome sequence of sesame assembled de novo with a contig N50 of 52.2 kb and a scaffold N50 of 2.1 Mb, containing an estimated 27,148 genes. The results reveal novel, independent whole genome duplication and the absence of the Toll/interleukin-1 receptor domain in resistance genes. Candidate genes and oil biosynthetic pathways contributing to high oil content were discovered by comparative genomic and transcriptomic analyses. These revealed the expansion of type 1 lipid transfer genes by tandem duplication, the contraction of lipid degradation genes, and the differential expression of essential genes in the triacylglycerol biosynthesis pathway, particularly in the early stage of seed development. Resequencing data in 29 sesame accessions from 12 countries suggested that the high genetic diversity of lipid-related genes might be associated with the wide variation in oil content. Additionally, the results shed light on the pivotal stage of seed development, oil accumulation and potential key genes for sesamin production, an important pharmacological constituent of sesame. As an important species from the order Lamiales and a high oil crop, the sesame genome will facilitate future research on the evolution of eudicots, as well as the study of lipid biosynthesis and potential genetic improvement of sesame.

  12. Increased expression of damage-associated molecular patterns (DAMPs) in osteoarthritis of human knee joint compared to hip joint. (United States)

    Rosenberg, John H; Rai, Vikrant; Dilisio, Matthew F; Sekundiak, Todd D; Agrawal, Devendra K


    Osteoarthritis (OA) is a degenerative disease characterized by the destruction of cartilage. The greatest risk factors for the development of OA include age and obesity. Recent studies suggest the role of inflammation in the pathogenesis of OA. The two most common locations for OA to occur are in the knee and hip joints. The knee joint experiences more mechanical stress, cartilage degeneration, and inflammation than the hip joint. This could contribute to the increased incidence of OA in the knee joint. Damage-associated molecular patterns (DAMPs), including high-mobility group box-1, receptor for advanced glycation end products, and alarmins (S100A8 and S100A9), are released in the joint in response to stress-mediated chondrocyte and cartilage damage. This facilitates increased cartilage degradation and inflammation in the joint. Studies have documented the role of DAMPs in the pathogenesis of OA; however, the comparison of DAMPs and its influence on OA has not been discussed. In this study, we compared the DAMPs between OA knee and hip joints and found a significant difference in the levels of DAMPs expressed in the knee joint compared to the hip joint. The increased levels of DAMPs suggest a difference in the underlying pathogenesis of OA in the knee and the hip and highlights DAMPs as potential therapeutic targets for OA in the future.

  13. Particle Damping with Granular Materials for Multi Degree of Freedom System

    Directory of Open Access Journals (Sweden)

    Masanobu Inoue


    Full Text Available A particle damper consists of a bed of granular materials moving in cavities within a multi degree-of-freedom (MDOF structure. This paper deals with the damping effects on forced vibrations of a MDOF structure provided with the vertical particle dampers. In the analysis, the particle bed is assumed to be a single mass, and the collisions between the granules and the cavities are completely inelastic, i.e., all energy dissipation mechanisms are wrapped into zero coefficient of restitution. To predict the particle damping effect, equations of motion are developed in terms of equivalent single degree-of-freedom (SDOF system and damper mass with use made of modal approach. In this report, the periodic vibration model comprising sustained contact on or separation of the damper mass from vibrating structure is developed. A digital model is also formulated to simulate the damped motion of the physical system, taking account of all vibration modes. Numerical and experimental studies are made of the damping performance of plural dampers located at selected positions throughout a 3MDOF system. The experimental results confirm numerical prediction that collision between granules and structures is completely inelastic as the contributing mechanism of damping in the vertical vibration. It is found that particle dampers with properly selected mass ratios and clearances effectively suppress the resonance peaks over a wide frequency range.

  14. Silicon depletion in damped Ly α systems. The S/Zn method

    NARCIS (Netherlands)

    Vladilo, G.; Abate, C.|info:eu-repo/dai/nl/328199362; Yin, J.; Cescutti, G.; Matteucci, F.


    Silicates are an important component of interstellar dust that has been poorly investigated in high redshift galaxies. As a preliminary step to studying silicates at high redshift, we survey silicon depletions in damped Ly α (DLA) systems. Silicon depletion is mild in the Galactic interstellar

  15. High-Speed AFM Images of Thermal Motion Provide Stiffness Map of Interfacial Membrane Protein Moieties


    Preiner, Johannes; Horner, Andreas; Karner, Andreas; Ollinger, Nicole; Siligan, Christine; Pohl, Peter; Hinterdorfer, Peter


    The flexibilities of extracellular loops determine ligand binding and activation of membrane receptors. Arising from fluctuations in inter- and intraproteinaceous interactions, flexibility manifests in thermal motion. Here we demonstrate that quantitative flexibility values can be extracted from directly imaging the thermal motion of membrane protein moieties using high-speed atomic force microscopy (HS-AFM). Stiffness maps of the main periplasmic loops of single reconstituted water channels ...

  16. Software project estimation the fundamentals for providing high quality information to decision makers

    CERN Document Server

    Abran, Alain


    Software projects are often late and over-budget and this leads to major problems for software customers. Clearly, there is a serious issue in estimating a realistic, software project budget. Furthermore, generic estimation models cannot be trusted to provide credible estimates for projects as complex as software projects. This book presents a number of examples using data collected over the years from various organizations building software. It also presents an overview of the non-for-profit organization, which collects data on software projects, the International Software Benchmarking Stan

  17. EMODNet Bathymetry - building and providing a high resolution digital bathymetry for European seas (United States)

    Schaap, D.


    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. The EMODnet Bathymetry project develops and publishes Digital Terrain Models (DTM) for the European seas. These are produced from survey and aggregated data sets that are indexed with metadata by adopting from SeaDataNet the Common Data Index (CDI) data discovery and access service and the Sextant data products catalogue service. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. SeaDataNet is also setting and governing marine data standards, and exploring and establishing interoperability solutions to connect to other e-infrastructures on the basis of standards such as ISO and OGC. The SeaDataNet portal provides users a number of interrelated meta directories, an extensive range of controlled vocabularies, and the various SeaDataNet standards and tools. SeaDataNet at present gives overview and access to more than 1.8 million data sets for physical oceanography, chemistry, geology, geophysics, bathymetry and biology from more than 100 connected data centres from 34 countries riparian to European seas. The latest EMODnet Bathymetry DTM has a resolution of 1/8 arcminute * 1/8 arcminute and covers all European sea regions. Use is made of available and gathered surveys and already more than 13.000 surveys have been indexed by 27 European data providers from 15 countries. Also use is made of composite DTMs as generated and maintained by several data providers for their areas of interest. Already 44 composite DTMs are included in the Sextant data products catalogue. For areas without coverage use is made of the latest global DTM of GEBCO who is partner in the EMODnet Bathymetry project. In return GEBCO integrates the EMODnet

  18. Design Optimization for Vibration Reduction of Viscoelastic Damped Structures Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Zhengchao Xie


    Full Text Available Due to the large number of design variables that can be present in complex systems incorporating visco-elastic damping, this work examines the application of genetic algorithms in optimizing the response of these structures. To demonstrate the applicability of genetic algorithms (GAs, the approach is applied to a simple viscoelastically damped constrained-layer beam. To that end, a finite element model (FEM derived by Zapfe, which was based on Rao's formulation, was used for a beam with constrained-layer damping. Then, a genetic algorithm is applied to simultaneously determine the thicknesses of the viscoelastic damping layer and the constraining layer that provide the best response. While the targeted response is ultimately at the discretion of the designer, a few different choices for the fitness function are shown along with their corresponding impact on the vibratory response. By integrating the FEM code within the GA routine, it is easier to include the frequency-dependence of both the shear modulus and the loss factors for the viscoelastic layer. Examples are provided to demonstrate the capabilities of the method. It is shown that while a multi-mode optimization target provides significant reductions, the response for that configuration is inferior to the response when only single-mode reduction is considered. The results also reveal that the optimum configuration has a lower response level than when a thick layer of damping material is used. By demonstrating the applicability of GA for a simple beam structure, the approach can be extended to more complex damped structures.

  19. Home Dampness Signs in Association with Asthma and Allergic Diseases in 4618 Preschool Children in Urumqi, China-The Influence of Ventilation/Cleaning Habits.

    Directory of Open Access Journals (Sweden)

    Zhijing Lin

    Full Text Available There is an increasing prevalence of childhood asthma and allergic diseases in mainland of China. Few studies investigated the indoor dampness, ventilation and cleaning habits and their interrelationship with childhood asthma and allergic diseases. A large-scale cross-sectional study was performed in preschool children in Urumqi, China. Questionnaire was used to collect information on children's health, home dampness and ventilation/cleaning (V/C habits. Multiple logistic regressions were applied to analyze the associations between childhood asthma/allergic diseases and each sign of home dampness, dampness levels, each V/C habit and total V/C scores. The associations between dampness and health were further performed by strata analyses in two groups with low and high V/C scores. Totally 4618(81.7% of 5650 children returned the questionnaire. Reports on home dampness were most common for water condensation on windows (20.8% followed by damp beddings (18.0%. The most common ventilation measure was the use of exhaust fan in bathroom (59.3%, followed by daily home cleaning (48.3%, frequently putting beddings to sunshine (29.9% and frequently opening windows in winter (8.4%. There were positive associations between the 6 signs of home dampness and children's health particularly the symptoms last 12 months. By comparing with the reference dampness level (dampness scored 0, both the low dampness (scored 1~2 level and the high dampness level (scored 3~6 showed significantly increasing associations with childhood symptoms. There were crude negative associations between V/C habits and childhood health but not significant adjusting for home dampness levels. The risks of home dampness on children's health were lower in the group with higher V/C score but the differences were not statistically significant. Home dampness is a potential risk factor for childhood asthma and allergic symptoms in preschool children in Urumqi, China. No significant effects were

  20. Stochastic finite element method for random harmonic analysis of composite plates with uncertain modal damping parameters (United States)

    Sepahvand, K.


    Damping parameters of fiber-reinforced composite possess significant uncertainty due to the structural complexity of such materials. Considering the parameters as random variables, this paper uses the generalized polynomial chaos (gPC) expansion to capture the uncertainty in the damping and frequency response function of composite plate structures. A spectral stochastic finite element formulation for damped vibration analysis of laminate plates is employed. Experimental modal data for samples of plates is used to identify and realize the range and probability distributions of uncertain damping parameters. The constructed gPC expansions for the uncertain parameters are used as inputs to a deterministic finite element model to realize random frequency responses on a few numbers of collocation points generated in random space. The realizations then are employed to estimate the unknown deterministic functions of the gPC expansion approximating the responses. Employing modal superposition method to solve harmonic analysis problem yields an efficient sparse gPC expansion representing the responses. The results show while the responses are influenced by the damping uncertainties at the mid and high frequency ranges, the impact in low frequency modes can be safely ignored. Utilizing a few random collocation points, the method indicates also a very good agreement compared to the sampling-based Monte Carlo simulations with large number of realizations. As the deterministic finite element model serves as black-box solver, the procedure can be efficiently adopted to complex structural systems with uncertain parameters in terms of computational time.

  1. Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). (United States)

    Turner, Neil A


    Cardiac fibroblasts (CF) are well-established as key regulators of extracellular matrix (ECM) turnover in the context of myocardial remodelling and fibrosis. Recently, this cell type has also been shown to act as a sensor of myocardial damage by detecting and responding to damage-associated molecular patterns (DAMPs) upregulated with cardiac injury. CF express a range of innate immunity pattern recognition receptors (TLRs, NLRs, IL-1R1, RAGE) that are stimulated by a host of different DAMPs that are evident in the injured or remodelling myocardium. These include intracellular molecules released by necrotic cells (heat shock proteins, high mobility group box 1 protein, S100 proteins), proinflammatory cytokines (interleukin-1α), specific ECM molecules up-regulated in response to tissue injury (fibronectin-EDA, tenascin-C) or molecules modified by a pathological environment (advanced glycation end product-modified proteins observed with diabetes). DAMP receptor activation on fibroblasts is coupled to altered cellular function including changes in proliferation, migration, myofibroblast transdifferentiation, ECM turnover and production of fibrotic and inflammatory paracrine factors, which directly impact on the heart's ability to respond to injury. This review gives an overview of the important role played by CF in responding to myocardial DAMPs and how the DAMP/CF axis could be exploited experimentally and therapeutically. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Neuraminidase activity provides a practical read-out for a high throughput influenza antiviral screening assay

    Directory of Open Access Journals (Sweden)

    Wu Meng


    Full Text Available Abstract Background The emergence of influenza strains that are resistant to commonly used antivirals has highlighted the need to develop new compounds that target viral gene products or host mechanisms that are essential for effective virus replication. Existing assays to identify potential antiviral compounds often use high throughput screening assays that target specific viral replication steps. To broaden the search for antivirals, cell-based replication assays can be performed, but these are often labor intensive and have limited throughput. Results We have adapted a traditional virus neutralization assay to develop a practical, cell-based, high throughput screening assay. This assay uses viral neuraminidase (NA as a read-out to quantify influenza replication, thereby offering an assay that is both rapid and sensitive. In addition to identification of inhibitors that target either viral or host factors, the assay allows simultaneous evaluation of drug toxicity. Antiviral activity was demonstrated for a number of known influenza inhibitors including amantadine that targets the M2 ion channel, zanamivir that targets NA, ribavirin that targets IMP dehydrogenase, and bis-indolyl maleimide that targets protein kinase A/C. Amantadine-resistant strains were identified by comparing IC50 with that of the wild-type virus. Conclusion Antivirals with specificity for a broad range of targets are easily identified in an accelerated viral inhibition assay that uses NA as a read-out of replication. This assay is suitable for high throughput screening to identify potential antivirals or can be used to identify drug-resistant influenza strains.

  3. High sensitivity troponin T provides useful prognostic information in non-acute chest pain. (United States)

    George, J; Jack, D; Mackle, G; Callaghan, T S; Wei, L; Lang, C C; Dow, E; Struthers, A D


    To evaluate the prognostic value of high-sensitivity troponin T (hs-cTnT) in patients who present to General Practitioners (GPs) with non-acute chest pain. A total of 625 patients who were referred by their GPs to a regional Rapid Access Chest Pain Clinic in Tayside, Scotland were consented and recruited. Diamond-Forrester pretest probability of coronary artery disease (CAD) was used to select patients with intermediate and high-pretest probability. Hs-cTnT and B-type Natriuretic Peptide (BNP) were measured and final diagnosis recorded. Twelve-month follow-up for cardiac events and hospital admission data was collected. Sensitivity, specificity, positive predictive value and negative predictive value (NPV), for both prognosis and diagnosis, were produced using various pre-specified cut-off values for hs-cTnT and BNP. A total of 579 patients were included in the final analysis. Of these, 477 had intermediate/high-pretest probability of CAD. A total of 431 (90.4%) of patients had a hs-cTnT ≤14 ng/l. In this study, hs-cTnT of 14 ng/l was the best cut-off for ruling out if a patient would have an admission for cardiac chest pain in the following 12 months (specificity 90%, NPV 91.4%). It performed well as a predictor of a subsequent negative diagnosis of cardiac chest pain with a specificity of 92.4% and NPV of 83.5%. Hs-cTnT, at the same level currently used in clinical practice as a diagnostic cut-off for myocardial infarction and acute coronary syndromes, is also a clinically-meaningful indicator for further 12-month cardiac chest pain hospital admissions in patients with non-acute chest pain referred to chest pain clinics by GPs.

  4. Attitudes of high school students regarding intimate relationships and gender norms in New Providence, The Bahamas

    Directory of Open Access Journals (Sweden)

    Nicolls, Donna


    Full Text Available This paper reports the attitudes and actions on relationships with the opposite sex of 1,002 Grade 10 and Grade 12 students in New Providence. Girls were more likely than boys to use aggressive behaviours in teen relationships. Some of the behaviours noted in teen relationships informed expectations of marital relationships, such as restricted access to friends of the opposite sex. The students endorsed a number of sex-related stereotypes, such as a man being the head of the household. Both male and female students indicated that it was acceptable for men to control their wives. Participation in aggressive and controlling behaviours by teens points to the need to educate students about how to develop more respectful relationships.

  5. A Highly Flexible, Automated System Providing Reliable Sample Preparation in Element- and Structure-Specific Measurements. (United States)

    Vorberg, Ellen; Fleischer, Heidi; Junginger, Steffen; Liu, Hui; Stoll, Norbert; Thurow, Kerstin


    Life science areas require specific sample pretreatment to increase the concentration of the analytes and/or to convert the analytes into an appropriate form for the detection and separation systems. Various workstations are commercially available, allowing for automated biological sample pretreatment. Nevertheless, due to the required temperature, pressure, and volume conditions in typical element and structure-specific measurements, automated platforms are not suitable for analytical processes. Thus, the purpose of the presented investigation was the design, realization, and evaluation of an automated system ensuring high-precision sample preparation for a variety of analytical measurements. The developed system has to enable system adaption and high performance flexibility. Furthermore, the system has to be capable of dealing with the wide range of required vessels simultaneously, allowing for less cost and time-consuming process steps. However, the system's functionality has been confirmed in various validation sequences. Using element-specific measurements, the automated system was up to 25% more precise compared to the manual procedure and as precise as the manual procedure using structure-specific measurements. © 2015 Society for Laboratory Automation and Screening.

  6. Bio-Inspired Supramolecular Chemistry Provides Highly Concentrated Dispersions of Carbon Nanotubes in Polythiophene

    Directory of Open Access Journals (Sweden)

    Yen-Ting Lin


    Full Text Available In this paper we report the first observation, through X-ray diffraction, of noncovalent uracil–uracil (U–U dimeric π-stacking interactions in carbon nanotube (CNT–based supramolecular assemblies. The directionally oriented morphology determined using atomic force microscopy revealed highly organized behavior through π-stacking of U moieties in a U-functionalized CNT derivative (CNT–U. We developed a dispersion system to investigate the bio-inspired interactions between an adenine (A-terminated poly(3-adeninehexyl thiophene (PAT and CNT–U. These hybrid CNT–U/PAT materials interacted through π-stacking and multiple hydrogen bonding between the U moieties of CNT–U and the A moieties of PAT. Most importantly, the U···A multiple hydrogen bonding interactions between CNT–U and PAT enhanced the dispersion of CNT–U in a high-polarity solvent (DMSO. The morphology of these hybrids, determined using transmission electron microscopy, featured grape-like PAT bundles wrapped around the CNT–U surface; this tight connection was responsible for the enhanced dispersion of CNT–U in DMSO.

  7. Perpendicularly magnetized Co20Fe60B20 layer sandwiched between Au with low Gilbert damping (United States)

    Kuświk, Piotr; Głowiński, Hubert; Coy, Emerson; Dubowik, Janusz; Stobiecki, Feliks


    Nowadays, the CoFeB thin layered film is intensively studied because of its potential applications in spintronic devices, especially devices based on spin-transfer torque phenomena. Hitherto, it has been shown that CoFeB may possess perpendicular magnetic anisotropy (PMA) when it is sandwiched between different layers (e.g. MgO, Pt, Pd, Ta, W). However, there is no experimental evidence that CoFeB, sandwiched between Au layers, has strong PMA. Moreover, in comparison with other noble metals, Au-based film systems exhibit the smallest spin pumping effect, which provides the main contribution to the damping in thin films in contact with heavy metals. Therefore, Au/CoFeB/Au may be a good candidate for future applications, where perpendicular magnetic anisotropy and low damping are required. Here, we show that PMA and low damping can be achieved in a Au/CoFeB/Au system without annealing.

  8. Field-dependent elastic modulus and damping in pure iron, nickel and cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Morales, A.L., E-mail: AngelLuis.Morales@uclm.e [Area de Ingenieria Mecanica, E.T.S. Ingenieros Industriales, Universidad de Castilla - La Mancha, Edificio Politecnico, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain); Nieto, A.J.; Chicharro, J.M.; Pintado, P. [Area de Ingenieria Mecanica, E.T.S. Ingenieros Industriales, Universidad de Castilla - La Mancha, Edificio Politecnico, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)


    Measurements of the DELTAE-effect and magnetomechanical damping are reported for crystalline pure iron, nickel and cobalt bars. An automatic experimental system for measuring both magnitudes simultaneously has been used, taking advantage of its improved features which make it possible to include stress-dependence and path-dependence (due to magnetic hysteresis loop) studies in this work. Our results not only provide a useful qualitative comparison among the magnetoelastic behaviour of these three classic ferromagnetic materials, but also show a useful set of quantitative DELTAE-effect and magnetomechanical damping values.

  9. Non-Linear Slosh Damping Model Development and Validation (United States)

    Yang, H. Q.; West, Jeff


    Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can

  10. Reversible dissipative processes, conformal motions and Landau damping

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L., E-mail: [Departamento de Física Teórica e Historia de la Ciencia, Universidad del País Vasco, Bilbao (Spain); Di Prisco, A., E-mail: [Departamento de Física Teórica e Historia de la Ciencia, Universidad del País Vasco, Bilbao (Spain); Ibáñez, J., E-mail: [Departamento de Física Teórica e Historia de la Ciencia, Universidad del País Vasco, Bilbao (Spain)


    The existence of a dissipative flux vector is known to be compatible with reversible processes, provided a timelike conformal Killing vector (CKV) χ{sup α}=(V{sup α})/T (where V{sup α} and T denote the four-velocity and temperature respectively) is admitted by the spacetime. Here we show that if a constitutive transport equation, either within the context of standard irreversible thermodynamics or the causal Israel–Stewart theory, is adopted, then such a compatibility also requires vanishing dissipative fluxes. Therefore, in this later case the vanishing of entropy production generated by the existence of such CKV is not actually associated to an imperfect fluid, but to a non-dissipative one. We discuss also about Landau damping. -- Highlights: ► We review the problem of compatibility of dissipation with reversibility. ► We show that the additional assumption of a transport equation renders such a compatibility trivial. ► We discuss about Landau damping.

  11. Significant Attenuation of Lightly Damped Resonances Using Particle Dampers (United States)

    Smith, Andrew; LaVerde, Bruce; Hunt, Ron; Knight, Joseph Brent


    When equipment designs must perform in a broad band vibration environment it can be difficult to avoid resonances that affect life and performance. This is especially true when an organization seeks to employ an asset from a heritage design in a new, more demanding vibration environment. Particle dampers may be used to provide significant attenuation of lightly damped resonances to assist with such a deployment of assets by including only a very minor set of modifications. This solution may be easier to implement than more traditional attenuation schemes. Furthermore, the cost in additional weight to the equipment can be very small. Complexity may also be kept to a minimum, because the particle dampers do not require tuning. Attenuating the vibratory response with particle dampers may therefore be simpler (in a set it and forget it kind of way) than tuned mass dampers. The paper will illustrate the use of an "equivalent resonance test jig" that can assist designers in verifying the potential resonance attenuation that may be available to them during the early trade stages of the design. An approach is suggested for transforming observed attenuation in the jig to estimated performance in the actual service design. KEY WORDS: Particle Damper, Performance in Vibration Environment, Damping, Resonance, Attenuation, Mitigation of Vibration Response, Response Estimate, Response Verification.

  12. Dissipative quantum trajectories in complex space: Damped harmonic oscillator (United States)

    Chou, Chia-Chun


    Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton-Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.

  13. Clustering of galaxies near damped Lyman-alpha systems with (z) = 2.6 (United States)

    Wolfe, A. M


    The galaxy two-point correlation function, xi, at (z) = 2.6 is determined by comparing the number of Ly-alpha-emitting galaxies in narrowband CCD fields selected for the presence of damped L-alpha absorption to their number in randomly selected control fields. Comparisons between the presented determination of (xi), a density-weighted volume average of xi, and model predictions for (xi) at large redshifts show that models in which the clustering pattern is fixed in proper coordinates are highly unlikely, while better agreement is obtained if the clustering pattern is fixed in comoving coordinates. Therefore, clustering of Ly-alpha-emitting galaxies around damped Ly-alpha systems at large redshifts is strong. It is concluded that the faint blue galaxies are drawn from a parent population different from normal galaxies, the presumed offspring of damped Ly-alpha systems.

  14. Heating of heavy plasma species by damping electron beam in beam-generated plasma (United States)

    Levko, Dmitry


    The heating of heavy species (both ions and neutrals) in the beam-generated plasma by damping electron beam is analyzed using a self-consistent one-dimensional Particle-in-Cell Monte Carlo collisions model. It is observed that the damping of the electron beam leads to the excitation of a wide spectrum of electrostatic waves. These waves lead to the heating not only of the thermal plasma electrons but also of the plasma ions. The first less efficient mechanism of the ion heating is the ponderomotive force due to the generation of non-homogeneous high-frequency electric field which is excited by the damping electron beam. The second more efficient mechanism of the ion heating obtained in the simulations is the acceleration by slow plasma waves. This mechanism is responsible for the acceleration of ions to the velocities few times higher than the ion thermal velocity.

  15. High-density surface electromyography provides reliable estimates of motor unit behavior. (United States)

    Martinez-Valdes, E; Laine, C M; Falla, D; Mayer, F; Farina, D


    To assess the intra- and inter-session reliability of estimates of motor unit behavior and muscle fiber properties derived from high-density surface electromyography (HDEMG). Ten healthy subjects performed submaximal isometric knee extensions during three recording sessions (separate days) at 10%, 30%, 50% and 70% of their maximum voluntary effort. The discharge timings of motor units of the vastus lateralis and medialis muscles were automatically identified from HDEMG by a decomposition algorithm. We characterized the number of detected motor units, their discharge rates, the coefficient of variation of their inter-spike intervals (CoVisi), the action potential conduction velocity and peak-to-peak amplitude. Reliability was assessed for each motor unit characteristics by intra-class correlation coefficient (ICC). Additionally, a pulse-to-noise ratio (PNR) was calculated, to verify the accuracy of the decomposition. Good to excellent reliability within and between sessions was found for all motor unit characteristics at all force levels (ICCs>0.8), with the exception of CoVisi that presented poor reliability (ICC95%). Motor unit features can be assessed non-invasively and reliably within and across sessions over a wide range of force levels. These results suggest that it is possible to characterize motor units in longitudinal intervention studies. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. A review of atomic layer deposition providing high performance lithium sulfur batteries (United States)

    Yan, Bo; Li, Xifei; Bai, Zhimin; Song, Xiaosheng; Xiong, Dongbin; Zhao, Mengli; Li, Dejun; Lu, Shigang


    With the significant obstacles that have been conquered in lithium-sulfur (Li-S) batteries, it is urgent to impel accelerating development of room-temperature Li-S batteries with high energy density and long-term stability. In view of the unique solid-liquid-solid conversion processes of Li-S batteries, however, designing effective strategies to address the insulativity and volume effect of cathode, shuttle of soluble polysulfides, and/or safety hazard of Li metal anode has been challenging. An atomic layer deposition (ALD) is a representative thin film technology with exceptional capabilities in developing atomic-precisely conformal films. It has been demonstrated to be a promise strategy of solving emerging issues in advanced electrical energy storage (EES) devices via the surface modification and/or the fabrication of complex nanostructured materials. In this review, the recent developments and significances on how ALD improves the performance of Li-S batteries were discussed in detail. Significant attention mainly focused on the various strategies with the use of ALD to refine the electrochemical interfaces and cell configurations. Furthermore, the novel opportunities and perspective associated with ALD for future research directions were summarized. This review may boost the development and application of advanced Li-S batteries using ALD.

  17. A Vesicle-to-Worm Transition Provides a New High-Temperature Oil Thickening Mechanism. (United States)

    Derry, Matthew J; Mykhaylyk, Oleksandr O; Armes, Steven P


    Diblock copolymer vesicles are prepared via RAFT dispersion polymerization directly in mineral oil. Such vesicles undergo a vesicle-to-worm transition on heating to 150 °C, as judged by TEM and SAXS. Variable-temperature 1 H NMR spectroscopy indicates that this transition is the result of surface plasticization of the membrane-forming block by hot solvent, effectively increasing the volume fraction of the stabilizer block and so reducing the packing parameter for the copolymer chains. The rheological behavior of a 10 % w/w copolymer dispersion in mineral oil is strongly temperature-dependent: the storage modulus increases by five orders of magnitude on heating above the critical gelation temperature of 135 °C, as the non-interacting vesicles are converted into weakly interacting worms. SAXS studies indicate that, on average, three worms are formed per vesicle. Such vesicle-to-worm transitions offer an interesting new mechanism for the high-temperature thickening of oils. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The IceCube MasterClass: providing high school students an authentic research experience (United States)

    Bravo Gallart, Silvia; Bechtol, Ellen; Schultz, David; Madsen, Megan; Demerit, Jean; IceCube Collaboration


    In May 2014, the first one-day long IceCube Masterclass for high school students was offered. The program was inspired by the masterclasses started in 2005 by the International Particle Physics Outreach Group and supported in the U.S. by QuarkNet. Participation in the IceCube masterclasses has grown each year, with a total of over 500 students in three U.S states and three European countries after three editions. In a masterclass, students join an IceCube research team to learn about astrophysics and replicate the results of a published paper, such as the discovery of astrophysical neutrinos or a measurement of the cosmic ray flux. We will discuss both the scientific and educational goals of the program as well as the organizational challenges. Data from the program evaluation will be used to support the need of educational activities based on actual research as a powerful approach for motivating more students to pursue STEM college programs, making science and scientists more approachable to teenagers, and helping students envision a career in science.

  19. Design and System Integration of the Superconducting Wiggler Magnets for the Compact Linear Collider Damping Rings

    CERN Document Server

    Schoerling, D; Bernhard, A; Bragin, A; Karppinen, M; Maccaferri, R; Mezentsev, N; Papaphilippou, Y; Peiffer, P; Rossmanith, R; Rumolo, G; Russenschuck, S; Vobly, P; Zolotarev, K


    To achieve high luminosity at the collision point of the Compact Linear Collider (CLIC) the normalized horizontal and vertical emittances of the electron and positron beams must be reduced to 500 nm and 4 nm before the beams enter the 1.5TeV linear accelerators. An effective way to accomplish ultra-low emittances with only small effects on the electron polarization is using damping rings operating at 2.86 GeV equipped with superconducting wiggler magnets. This paper describes a technical design concept for the CLIC damping wigglers.

  20. A New Control Structure for Multi-Terminal dc Grids to Damp Inter-Area Oscillations

    DEFF Research Database (Denmark)

    Eriksson, Robert


    This article analyzes the control structure of the multi-terminal dc (MTDC) system to damp ac system interarea oscillations through active power modulation. A new control structure is presented that maximizes the relative controllability without the need for communication among the dc terminals....... In point-to-point high voltage dc (HVDC) transmission, the active power modulation of the two terminals occurs in opposite directions. In this case the control direction is given and only needs to be phase compensated to align for maximal damping. In the case of MTDC systems the control direction...

  1. Sick building syndrome in relation to building dampness in multi-family residential buildings in Stockholm. (United States)

    Engvall, K; Norrby, C; Norbäck, D


    The aim was to study relationships between symptoms compatible with sick building syndrome (SBS) on one hand, and different indicators of building dampness in Swedish multi-family buildings on the other. In Stockholm, 609 multi-family buildings with 14,235 dwellings were identified, and selected by stratified random sampling. The response rate was 77%. Information on weekly symptoms, age, gender, population density in the apartment, water leakage during the past 5 years, mouldy odour, condensation on windows, and high air humidity in the bathroom was assessed by a postal questionnaire. In addition, independent information on building characteristics was gathered from the building owners, and the central building register in Stockholm. Multiple logistic regression analysis was applied, and adjusted odds ratios (OR) were calculated, adjusted for age and gender, population density, and selected building characteristics. Condensation on windows, high air humidity in the bathroom, mouldy odour, and water leakage was reported from 9.0%, 12.4%, 7.7% and 12.7% of the dwellings, respectively. In total 28.5% reported at least one sign of dampness. All indicators of dampness were related to an increase of all types of symptoms, significant even when adjusted for age, gender, population density, type of ventilation system, and ownership of the building. A combination of mouldy odour and signs of high air humidity was related to an increased occurrence of all types of symptoms (OR = 3.7-6.0). Similar findings were observed for a combination of mouldy odour and structural building dampness (water leakage) (OR = 2.9 5.2). In addition, a dose-response relationship between symptoms and number of signs of dampness was observed. In dwellings with all four dampness indicators, OR was 6.5, 7.1, 19.9, 5.8, 6.1, 9.4, 15.0 for ocular, nasal, throat, dermal symptoms, cough, headache and tiredness, respectively. Signs of high air humidity, as well as of structural building dampness, are

  2. Damped button electrode for B-Factory BPM system

    Energy Technology Data Exchange (ETDEWEB)

    Shintake, T.; Akasaka, N.; Obina, T.; Chin, Y.H. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)


    A new concept of damping of resonances in a button electrode has been proposed and tested in the BPM system for the B-Factory project at KEK (KEKB). Since a very high current beam has to be stored in the machine, even a small resonance in the ring will result in losing a beam due to multi-bunch instabilities. In a conventional button electrode used in BPMs, a TE110 mode resonance can be trapped in the gap between the electrode and the vacuum chamber. In order to damp this mode, the diameter of the electrode has been chosen to be small to increase the resonance frequency and to radiate the power into the beam pipe. In addition, an asymmetric structure is applied to extract the EM energy of the TE110 mode into the coaxial cable as the propagating TEM mode which has no cut-off frequency. Results of the computer simulations and tests with cold models are reported. The quality factor of the TE110 mode was small enough due to the radiation into the beam pipe even in the conventional electrode and the mode coupling effect due to the asymmetric shape was significant on a cavity-like TE111 mode. (author)

  3. Metabolites of Trichoderma species isolated from damp building materials. (United States)

    McMullin, David R; Renaud, Justin B; Barasubiye, Tharcisse; Sumarah, Mark W; Miller, J David


    Buildings that have been flooded often have high concentrations of Trichoderma spores in the air while drying. Inhaled spores and spore and mycelial fragments contain large amounts of fungal glucan and natural products that contribute to the symptoms associated with indoor mould exposures. In this study, we considered both small molecules and peptaibol profiles of T. atroviride, T. koningiopsis, T. citrinoviride, and T. harzianum strains obtained from damp buildings in eastern Canada. Twenty-residue peptaibols and sorbicillin-derived metabolites (1-6) including a new structure, (R)-vertinolide (1), were characterized from T. citrinoviride. Trichoderma koningiopsis produced several koninginins (7-10), trikoningin KA V, and the 11-residue lipopeptaibols trikoningin KB I and trikoningin KB II. Trichoderma atroviride biosynthesized a mixture of 19-residue trichorzianine-like peptaibols, whereas T. harzianum produced 18-residue trichokindin-like peptaibols and the 11-residue harzianin HB I that was subsequently identified from the studied T. citrinoviride strain. Two α-pyrones, 6-pentyl-pyran-2-one (11) and an oxidized analog (12), were produced by both T. atroviride and T. harzianum. Aside from exposure to low molecular weight natural products, inhalation of Trichoderma spores and mycelial fragments may result in exposure to membrane-disrupting peptaibols. This investigation contributes to a more comprehensive understanding of the biologically active natural products produced by fungi commonly found in damp buildings.

  4. Damping identification in frequency domain using integral method (United States)

    Guo, Zhiwei; Sheng, Meiping; Ma, Jiangang; Zhang, Wulin


    A new method for damping identification of linear system in frequency domain is presented, by using frequency response function (FRF) with integral method. The FRF curve is firstly transformed to other type of frequency-related curve by changing the representations of horizontal and vertical axes. For the newly constructed frequency-related curve, integral is conducted and the area forming from the new curve is used to determine the damping. Three different methods based on integral are proposed in this paper, which are called FDI-1, FDI-2 and FDI-3 method, respectively. For a single degree of freedom (Sdof) system, the formulated relation of each method between integrated area and loss factor is derived theoretically. The numeral simulation and experiment results show that, the proposed integral methods have high precision, strong noise resistance and are very stable in repeated measurements. Among the three integral methods, FDI-3 method is the most recommended because of its higher accuracy and simpler algorithm. The new methods are limited to linear system in which modes are well separated, and for closely spaced mode system, mode decomposition process should be conducted firstly.

  5. Truncated exponential versus damped sinusoidal waveform shocks for transthoracic defibrillation. (United States)

    Behr, J C; Hartley, L L; York, D K; Brown, D D; Kerber, R E


    Currently available transthoracic defibrillators use either a damped sinusoidal or truncated exponential (TE) waveform. Truncated exponential waveforms deliver a long pulse if the transthoracic impedance is high; it has been suggested that such a long pulse may be less effective for defibrillation. Our objective was to compare the ability of damped sinusoidal (DS) waveform shocks versus TE waveform shocks to terminate ventricular fibrillation (VF) and achieve survival from witnessed cardiac arrest. We retrospectively reviewed field-recorded electrocardiograms from 86 patients with witnessed VF, treated by prehospital personnel equipped with DS or TE waveform defibrillators. Forty-four patients received 130 shocks from TE defibrillators; 42 patients received 108 shocks from DS defibrillators. There were no significant differences in time from arrest to first shock (8.0 vs 8.1 minutes), nor were there any differences in the size of the communities involved. The shocks resulted in the following rhythms: organized rhythm: TE: 15 of 130 (12%), DS: 24 of 108 (22%), p = 0.10 (NS); persistent VF: TE: 85 of 130 (65%), DS: 45 of 108 (42%), p <0.01; asystole: TE: 30 of 130 (23%), DS: 39 of 108 (36%), p = NS; and survival to hospital discharge: TE: 5 of 44 (11%), DS: 8 of 42 (19%), p = NS. We conclude that DS waveforms terminated VF more frequently than TE, but there was no significant difference in resumption of an organized rhythm or survival. A prospective comparison of these 2 waveforms is needed.

  6. Dynamic Stall in Pitching Airfoils: Aerodynamic Damping and Compressibility Effects (United States)

    Corke, Thomas C.; Thomas, Flint O.


    Dynamic stall is an incredibly rich fluid dynamics problem that manifests itself on an airfoil during rapid, transient motion in which the angle of incidence surpasses the static stall limit. It is an important element of many manmade and natural flyers, including helicopters and supermaneuverable aircraft, and low-Reynolds number flapping-wing birds and insects. The fluid dynamic attributes that accompany dynamic stall include an eruption of vorticity that organizes into a well-defined dynamic stall vortex and massive excursions in aerodynamic loads that can couple with the airfoil structural dynamics. The dynamic stall process is highly sensitive to surface roughness that can influence turbulent transition and to local compressibility effects that occur at free-stream Mach numbers that are otherwise incompressible. Under some conditions, dynamic stall can result in negative aerodynamic damping that leads to limit-cycle growth of structural vibrations and rapid mechanical failure. The mechanisms leading to negative damping have been a principal interest of recent experiments and analysis. Computational fluid dynamic simulations and low-order models have not been good predictors so far. Large-eddy simulation could be a viable approach although it remains computationally intensive. The topic is technologically important owing to the desire to develop next-generation rotorcraft that employ adaptive rotor dynamic stall control.

  7. Lysophospholipids and Their Receptors Serve as Conditional DAMPs and DAMP Receptors in Tissue Oxidative and Inflammatory Injury. (United States)

    Shao, Ying; Nanayakkara, Gayani; Cheng, Jiali; Cueto, Ramon; Yang, William Y; Park, Joon-Young; Wang, Hong; Yang, Xiaofeng


    We proposed lysophospholipids (LPLs) and LPL-G-protein-coupled receptors (GPCRs) as conditional danger-associated molecular patterns (DAMPs) and conditional DAMP receptors as a paradigm shift to the widely accepted classical DAMP and DAMP receptor model. Recent Advances: The aberrant levels of LPLs and GPCRs activate pro-inflammatory signal transduction pathways, trigger innate immune response, and lead to tissue oxidative and inflammatory injury. Classical DAMP model specifies only the endogenous metabolites that are released from damaged/dying cells as DAMPs, but fails to identify elevated endogenous metabolites secreted from viable/live cells during pathologies as DAMPs. The current classification of DAMPs also fails to clarify the following concerns: (i) Are molecules, which bind to pattern recognition receptors (PRRs), the only DAMPs contributing to inflammation and tissue injury? (ii) Are all DAMPs acting only via classical PRRs during cellular stress? To answer these questions, we reviewed the molecular characteristics and signaling mechanisms of LPLs, a group of endogenous metabolites and their specific receptors and analyzed the significant progress achieved in characterizing oxidative stress mechanisms of LPL mediated tissue injury. Further LPLs and LPL-GPCRs may serve as potential therapeutic targets for the treatment of pathologies induced by sterile inflammation. Antioxid. Redox Signal. 00, 000-000.

  8. Distribution of large-earthquake input energy in viscous damped outrigger structures

    NARCIS (Netherlands)

    Morales Beltran, M.G.; Turan, Gursoy; Yildirim, Umut


    This article provides an analytical framework to assess the distribution of seismic energy in outrigger structures equipped with viscous dampers. The principle of damped outriggers for seismic control applications lies on the assumption that the total earthquake energy will be absorbed by the

  9. Evaluation of damping estimates in the presence of closely spaced modes using operational modal analysis techniques

    DEFF Research Database (Denmark)

    Bajric, Anela; Brincker, Rune; Thöns, Sebastian


    ). The evaluation is based on identification using random response from white noise loading of a three degree-of-freedom (3DOF) system numerically established from specified modal parameters for a range of natural frequencies. The numerical model provides comparisons of the effectiveness of damping estimation...

  10. Shear measurements of viscoelastic damping materials embedded in composite plates (United States)

    Biggerstaff, Janet M.; Kosmatka, John B.


    Embedding viscoelastic damping materials into graphite/epoxy composites can greatly increase the damping of composite structures. Cocuring the damping material with the composite, however, has been shown to increase the modulus and lower the damping in many viscoelastic materials because epoxy penetrates many damping materials (especially acrylics). In this paper, the changes in shear modulus were measured using double lap shear tests. Also presented are shear moduli comparisons of samples cured with three different barrier film layers, KaptonR, TedlarR,and polyester, which are used to prevent the epoxy penetration. Lastly, samples with an embedded loosely woven scrim cloth placed between two damping material layers are tested to measure how the scrim affects the shear modulus.

  11. Air damping effect on the air-based CMUT operation (United States)

    Cha, Bu-Sang; Kanashima, Takeshi; Lee, Seung-Mok; Okuyama, Masanori


    The vibration amplitude, damping ratio and viscous damping force in capacitive micromachinedultrasonic transducers (CMUTs) with a perforated membrane have been calculated theoretically and compared with the experimental data on its vibration behavior. The electrical bias of the DC and the AC voltages and the operation frequency conditions influence the damping effect because leads to variations in the gap height and the vibration velocity of the membrane. We propose a new estimation method to determine the damping ratio by the decay rate of the vibration amplitudes of the perforated membrane plate are measured using a laser vibrometer at each frequency, and the damping ratios were calculated from those results. The influences of the vibration frequency and the electrostatic force on the damping effect under the various operation conditions have been studied.

  12. Damping characteristics of a footbridge: Mysteries and truths

    DEFF Research Database (Denmark)

    Cantieni, Reto; Bajric, Anela; Brincker, Rune


    As a consequence of a paper presented by Michael Mistler at the VDI-Baudynamik-Tagung in Kassel, Germany, in April 2015, the authors checked the damping coefficients having been estimated for a footbridge in autumn 2014. Mistler stated that the critical damping ratio estimated from a halfpower...... world but not in the world of engineers applying OMA in practice. In this paper it is presented how the leakage on the spectral density estimate is affecting the damping estimation through OMA based frequency domain identification. Finally the paper compares the damping estimated in the time...... and frequency domain from ambient tests, with the damping estimated from the free decays. Unfortunately, bias error on damping values determined from analyses in the frequency domain is worst on low frequency modes usually being the most important ones when dealing with a resonance problem in practice....

  13. Dynamic analysis of systems having large damping variations

    Energy Technology Data Exchange (ETDEWEB)

    Philippacopoulos, A.J.


    In the earthquake response analysis of structures in which the damping characteristics between the elements varies significantly the standard mode superposition method cannot be used. Several approximations have been proposed that allow the application of the modal superposition method for cases in which the damping matrix is not orthogonal with respect to the modal shapes. The most commonly used approximation is based on a composite damping value which is employed in the modal equations. This value is a weighted average of the damping values of the individual components of the structural model. In this paper an investigation of the errors introduced by the composite damping in the response of simple structures is presented. The results given in the paper can be used for benchmarking the approximations in more complex systems for which composite damping solutions are employed.

  14. Landau Damping of Beam Instabilities by Electron Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V. [Fermilab; Alexahin, Yuri; Burov, A. [Fermilab; Valishev, A. [Fermilab


    Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers and use of chromatic effects, become less effective and insufficient. We show that, in contrast, Lorentz forces of a low-energy, a magnetically stabilized electron beam, or "electron lens", easily introduces transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at the beam core, thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.

  15. Quantum information reclaiming after amplitude damping

    Energy Technology Data Exchange (ETDEWEB)

    Memarzadeh, Laleh; Cafaro, Carlo; Mancini, Stefano, E-mail:, E-mail:, E-mail: [School of Science and Technology, University of Camerino, I-62032 Camerino (Italy)


    We design an effective method to investigate the quantum information reclaim from the environment after amplitude damping has occurred. In particular, we address the question of optimal measurement on the environment to perform the best possible correction on two- and three-dimensional quantum systems. While for qubits we show that the entanglement fidelity is the same for all possible measurements, for qutirits we find that different measurements give rise to different values of the entanglement fidelity. By searching over all possible measurements on the environment we uncover the optimal one leading to the maximum entanglement fidelity.

  16. Viscous damping of gravity waves over a permeable bed

    Directory of Open Access Journals (Sweden)

    K. K. Puri


    Full Text Available The damping of gravity waves over the surface of a layer of viscous fluid which overlies a porous bed saturated with the same fluid is studied. It is shown that viscosity may not be the dominant influence in the damping mechanism; the damping effects due to percolation in the fixed bed may be of the same or even higher order than those due to viscosity.

  17. Damp Flat Artist's Books:Retrospective of Damp Flat Artist's Books


    Batey, Jacqueline


    As part of the Phoenix Gallery's Press & Release artists' books exhibition, I will be showing everything in the Damp Flat Books catalogue. All 22 artists' book titles, along with 14 issues of my art-zine Future Fantasteek! and a selection of sketchbooks.

  18. Providing better indoor environmental quality brings economicbenefits

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Seppanen, Olli


    This paper summarizes the current scientific evidence that improved indoor environmental quality can improve work performance and health. The review indicates that work and school work performance is affected by indoor temperature and ventilation rate. Pollutant source removal can sometimes improve work performance. Based on formal statistical analyses of existing research results, quantitative relationships are provided for the linkages of work performance with indoor temperature and outdoor air ventilation rate. The review also indicates that improved health and related financial savings are obtainable from reduced indoor tobacco smoking, prevention and remediation of building dampness, and increased ventilation. Example cost-benefit analyses indicate that many measures to improve indoor temperature control and increase ventilation rates will be highly cost effective, with benefit-cost ratios as high as 80 and annual economic benefits as high as $700 per person.

  19. Seed rot and damping-off of alfalfa in Minnesota caused by Pythium and Fusarium species (United States)

    Globally, 15 Pythium species have been found to cause damping-off and seed rot of alfalfa, although surveys of species causing disease on alfalfa in the Midwestern U.S. are lacking. Pathogens were isolated by a seedling baiting technique from soil of five alfalfa fields in Minnesota with high levels...

  20. Active Damping Control Methods for Three-Phase Slim DC-link Drive System

    DEFF Research Database (Denmark)

    Yang, Feng; Wang, Dong; Blaabjerg, Frede


    for stabilizing such slim dc-link drives together with the benefit of low cost and high flexibility. This paper gives an overview of the state-of-the-art active damping methods for the three-phase slim dc-link drive. The main pros and cons of each method are identified. The theoretical comparison is validated...

  1. Estimation of Damping for one of the new European Court Towers in Luxembourg

    DEFF Research Database (Denmark)

    Brincker, Rune; Brandt, Anders; Georgakis, Christos


    The two new high rise buildings for the European court in Luxembourg have been tested by a harmonic shaker and by Operational Modal Analysis. The background for the tests is to estimate the influence on the damping of one of the towers from a series of Tuned Liquid Dampers (TLDs) placed on top...

  2. Estimation of damping for one of the new European court towers in Luxembourg

    DEFF Research Database (Denmark)

    Brincker, Rune; Brandt, Anders; Georgakis, Christos T.


    The two new high rise buildings for the European Court of Justice in Luxembourg have been tested by harmonic shakers and by Operational Modal Analysis. The background for the tests is to estimate the influence on the damping of one of the towers from an array of Tuned Liquid Dampers (TLDs) placed...

  3. HI column density distribution function at z=0 : Connection to damped Ly alpha statistics

    NARCIS (Netherlands)

    Zwaan, Martin; Verheijen, MAW; Briggs, FH

    We present a measurement of the HI column density distribution function f(N-HI) at the present epoch for column densities > 10(20) cm(-2). These high column densities compare to those measured in damped Ly alpha lines seen in absorption against background quasars. Although observationally rare, it

  4. Serum proteomes of hypertension patients with abundant phlegm-dampness. (United States)

    Chu, Yu-guang; Shi, Jie; Hu, Yuan-hui; Wu, Hua-qin; Liu, Gui-jian; Hu, Chao-jun; Li, Yong-zhe; Li, Yi; Chen, Zi-jing; He, Qing


    To study the serum proteomes of essential hypertension (EH) patients with abundant phlegm-dampness, and try to find special proteins associated with abundant phlegm-dampness syndrome. Fifty-nine hypertension patients were included, and the patients were divided into abundant phlegm-dampness syndrome group (39 cases) and non-phlegm-dampness syndrome group (20 cases). To find the special proteins associated with abundant phlegm-dampness, the EH patients with non-phlegm-dampness and another 30 healthy persons were regarded as control. Weak cation nano-magnetic beads were used to capture proteins in serum, and proteomic fingerprint was made by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). All the proteomic fingerprints were analyzed by Biomarker Wizard 3.1 Software. Then Biomarker Patterns Software (BPS) 5.0 was used to identify the differentiated proteins, which could induce phlegm-dampness. There were 102 differentiated protein peaks between abundant phlegm-dampness and the control group. The best markers of abundant phlegm-dampness were protein peaks with the mass to charge ratio (m/z) of 9,334.958 m/z (the expression increased), 9,280.191 m/z (the expression decreased), 8,030.794 m/z (the expression increased), and 2,941.551 m/z (the expression increased). These four protein peaks found by BPS could induce abundant phlegm-dampness. They could be used to separate the abundant phlegm-dampness syndrome from the healthy persons and the hypertension patients with non-phlegm-dampness. The sensitivity of the model was 93.103% (27/29), specificity was 92% (23/25), false positive rate was 8% (2/25), false negative rate was 6.897% (2/29) and Youden's index was 85.103%. Blind test data indicated a sensitivity of 90% (9/10) and a specificity of 88% (22/25), and the false positive rate was 12% (3/25), false negative rate was 10% (1/10), and Youden's index was 78%. The differentiated proteins between the abundant phlegm-dampness

  5. Simulating Nonlinear Oscillations of Viscoelastically Damped Mechanical Systems

    Directory of Open Access Journals (Sweden)

    M. D. Monsia


    Full Text Available The aim of this work is to propose a mathematical model in terms of an exact analytical solution that may be used in numerical simulation and prediction of oscillatory dynamics of a one-dimensional viscoelastic system experiencing large deformations response. The model is represented with the use of a mechanical oscillator consisting of an inertial body attached to a nonlinear viscoelastic spring. As a result, a second-order first-degree Painlevé equation has been obtained as a law, governing the nonlinear oscillatory dynamics of the viscoelastic system. Analytical resolution of the evolution equation predicts the existence of three solutions and hence three damping modes of free vibration well known in dynamics of viscoelastically damped oscillating systems. Following the specific values of damping strength, over-damped, critically-damped and under-damped solutions have been obtained. It is observed that the rate of decay is not only governed by the damping degree but, also by the magnitude of the stiffness nonlinearity controlling parameter. Computational simulations demonstrated that numerical solutions match analytical results very well. It is found that the developed mathematical model includes a nonlinear extension of the classical damped linear harmonic oscillator and incorporates the Lambert nonlinear oscillatory equation with well-known solutions as special case. Finally, the three damped responses of the current mathematical model devoted for representing mechanical systems undergoing large deformations and viscoelastic behavior are found to be asymptotically stable.

  6. NLSE for quantum plasmas with the radiation damping

    CERN Document Server

    Andreev, Pavel A


    We consider contribution of the radiation damping in the quantum hydrodynamic equations for spinless particles. We discuss possibility of obtaining of corresponding non-linear Schrodinger equation (NLSE) for the macroscopic wave function. We compare contribution of the radiation damping with weakly (or semi-) relativistic effects appearing in the second order by v/c. The radiation damping appears in the third order by v/c. So it might be smaller than weakly relativistic effects, but it gives damping of the Langmuir waves which can be considerable.

  7. Respiratory Diseases in University Students Associated with Exposure to Residential Dampness or Mold. (United States)

    Lanthier-Veilleux, Mathieu; Baron, Geneviève; Généreux, Mélissa


    University students are frequently exposed to residential dampness or mold (i.e., visible mold, mold odor, dampness, or water leaks), a well-known contributor to asthma, allergic rhinitis, and respiratory infections. This study aims to: (a) describe the prevalence of these respiratory diseases among university students; and (b) examine the independent contribution of residential dampness or mold to these diseases. An online survey was conducted in March 2014 among the 26,676 students registered at the Université de Sherbrooke (Quebec, Canada). Validated questions and scores were used to assess self-reported respiratory diseases (i.e., asthma-like symptoms, allergic rhinitis, and respiratory infections), residential dampness or mold, and covariates (e.g., student characteristics). Using logistic regressions, the crude and adjusted odd ratios between residential dampness or mold and self-reported respiratory diseases were examined. Results from the participating students (n = 2097; response rate: 8.1%) showed high prevalence of allergic rhinitis (32.6%; 95% CI: 30.6-34.7), asthma-like symptoms (24.0%; 95% CI: 22.1-25.8) and respiratory infections (19.4%; 95% CI: 17.7-21.2). After adjustment, exposure to residential dampness or mold was associated with allergic rhinitis (OR: 1.25; 95% CI: 1.01-1.55) and asthma-like symptoms (OR: 1.70; 95% CI: 1.37-2.11), but not with respiratory infections (OR: 1.07; 95% CI: 0.85-1.36). Among symptomatic students, this exposure was also associated with uncontrolled and burdensome respiratory symptoms (p mold, may play a role in increasing atopic respiratory diseases and their suboptimal control in young adults. These results emphasize the importance for public health organizations to tackle poor housing conditions, especially amongst university students who should be considered "at-risk".

  8. Preliminary Design Study of a Pre-booster Damping Ring for the FCC e+e− Injector

    CERN Document Server

    Etisken, O; Papaphilippou, Y


    The aim of the FCC e+e− lepton collider is to collide particles in the energy range 40–175 GeV. The FCC e+e− injector complex needs to produce and transport high-intensity e+e− beams at a fast repetition rate of about 0.1 Hz to top up the collider at its collision energy. A basic parameter set exists for all collider energies, assuming a 10 GeV linac operating with a large number of bunches accumulating in the existing SPS, which serves as pre-accelerator and damping ring before the bunches are transferred to the high-energy booster. The purpose of this study is to provide the conceptual design of an alternative damping and accelerator ring, replacing the SPS in the current scheme. This ring will have an injection energy of around 6 GeV and an extraction energy of around 20 GeV. Apart from establishing the basic ring parameters, the final study will include the optics design and layout, and single particle linear and non-linear dynamics optimization, including magnetic and alignment error tolerances. ...

  9. Principles of TRIP Steel Optimization for Passive Damping Applications (United States)

    Fraley, George Jay

    Globally many historic structures of cultural significance which do not have systems to mitigate seismic damage are located in areas with heavy seismic activity. Efforts have been undertaken to develop strategies to retrofit such structures, however any intervention must be limited in size for aesthetic reasons. To contribute to this effort, ArcelorMittal aims to create steel-based solutions for passive energy dissipation through plastic deformation during cyclic loading. High-strength TRansformation-Induced Plasticity (TRIP) steels are proposed as an excellent candidate material for this application, due to the extreme combination of high strength and large ductility they are well-known to exhibit. To evaluate high-strength TRIP steels for passive damping applications, isothermal, fully-reversed, displacement-controlled Ultra-Low Cycle Fatigue (ULCF) experiments (Nf sigma = -8 °C) was found to have approximately twice the fatigue life and a lower rate of cyclic hardening at fixed displacement amplitudes for low to intermediate levels of plastic strain range (2-10%) compared to the lower stability austenite condition (Mssigma = 27 °C). However, at higher levels of plastic straining (10-16% strain range) the fatigue lives and strain hardening behavior converged for the two stabilities, indicating a likely exhaustion of transformation during the first few cycles. ULCF life behavior for the high-stability austenite condition compared favorably with literature values for structural stainless steel 316, despite having a yield strength approximately four times larger. For a similar number of cycles to failure the high stability condition dissipated 2.4 times more energy than stainless steel 316 upon initial cycling. The stress-strain hysteresis curves and fatigue life data generated can be input into computational models of passive damping devices for initial concurrent material/device design iterations. Evidence of shear lips, large primary inclusions serving as

  10. A HST spectroscopic study of QSOs with intermediate redshift damped Lyalpha systems (United States)

    Boisse, Patrick; Le Brun, Vincent; Bergeron, Jacqueline; Deharveng, Jean-Michel


    We present HST spectra for a sample of six QSOs with intermediate redshift (z_ale 1.) damped Lyalpha systems. These observations aim at measuring the Hi column density and detect metal lines in order to investigate the metal enrichment of the gas, as well as the presence of neutral species, molecules and dust. All systems selected on the basis of 21 cm absorption and/or strong Feii lines relative to Mgii\\ ones turn out to have N(H{sc i}) larger than 10(20) cm(-2) . From our detection of weak lines from minor metals and already published optical data, we determine relative abundances of Si, Mn, Fe, Ni, Zn. In PKS 1229-021, we measure [Zn/H] = -0.5 at z_a = 0.3950 while in two other cases with intervening spiral galaxies and for which only [Fe/H] and [Mn/H] could be estimated, the metallicity could be close to solar. Thus, it appears that although the scatter of metallicities is as large at z_ale 1. as at high redshift, an increasing proportion of systems with metallicities =~ 30% solar are found when going to lower redshifts. Ci lines are tentatively detected in two systems. Given the low metallicity, the observed Ci/Hi ratio suggests that physical conditions in the absorbers are comparable to those in our Galaxy. In PKS 1229-021, the 21 cm absorption data combined with the new Lyalpha observations, imply a low temperature, T_s extinction causes a preferential selection of QSOs with intervening gas relatively poor in metals, dust and molecules. As a consequence, the high end of the Hi column density distribution (and hence Omega_g , the contribution of neutral gas to the cosmological mass density) is probably more heavily underestimated than previously thought, especially at low redshift. Such a bias could also explain the high incidence of non-spiral morphologies in our sample. We stress that observation of a larger sample of low z damped Lyalpha systems as well as surveys of damped Lyalpha systems in fainter QSOs would give a more representative view of the true

  11. Dynamic Output Feedback Power-Level Control for the MHTGR Based On Iterative Damping Assignment

    Directory of Open Access Journals (Sweden)

    Zhe Dong


    Full Text Available Because of its strong inherent safety features and high outlet temperature, the modular high temperature gas-cooled nuclear reactor (MHTGR is already seen as the central part of the next generation of nuclear plants. Such power plants are being considered for industrial applications with a wide range of power levels, and thus power-level control is an important technique for their efficient and stable operation. Stimulated by the high regulation performance provided by nonlinear controllers, a novel dynamic output-feedback nonlinear power-level regulator is developed in this paper based on the technique of iterative damping assignment (IDA. This control strategy can provide the L2 disturbance attenuation performance under modeling uncertainty or exterior disturbance, and can also guarantee the globally asymptotic closed-loop stability without uncertainty and disturbance. This newly built control strategy is then applied to the power-level regulation of the HTR-PM plant, and numerical simulation results show both the feasibility and high performance of this newly-built control strategy. Furthermore, the relationship between the values of the parameters and the performance of this controller is not only illustrated numerically but also analyzed theoretically.

  12. Hamiltonian and Lagrangian dynamics of charged particles including the effects of radiation damping (United States)

    Qin, Hong; Burby, Joshua; Davidson, Ronald; Fisch, Nathaniel; Chung, Moses


    The effects of radiation damping (radiation reaction) on accelerating charged particles in modern high-intensity accelerators and high-intensity laser beams have becoming increasingly important. Especially for electron accelerators and storage rings, radiation damping is an effective mechanism and technique to achieve high beam luminosity. We develop Hamiltonian and Lagrangian descriptions of the classical dynamics of a charged particle including the effects of radiation damping in the general electromagnetic focusing channels encountered in accelerators. The direct connection between the classical Hamiltonian and Lagrangian theories and the more fundamental QED description of the synchrotron radiation process is also addressed. In addition to their theoretical importance, the classical Hamiltonian and Lagrangian theories of the radiation damping also enable us to numerically integrate the dynamics using advanced structure-preserving geometric algorithms. These theoretical developments can also be applied to runaway electrons and positrons generated during the disruption or startup of tokamak discharges. This research was supported by the U.S. Department of Energy (DE-AC02-09CH11466).

  13. Effects of radiation damping for biomolecular NMR experiments in solution: a hemisphere concept for water suppression. (United States)

    Ishima, Rieko


    Abundant solvent nuclear spins, such as water protons in aqueous solution, cause radiation damping in NMR experiments. It is important to know how the effect of radiation damping appears in high-resolution protein NMR because macromolecular studies always require very high magnetic field strengths with a highly sensitive NMR probe that can easily cause radiation damping. Here, we show the behavior of water magnetization after a pulsed-field gradient (PFG) using nutation experiments at 900 MHz with a cryogenic probe: when water magnetization is located in the upper hemisphere (having +Z component, parallel to the external magnetic field), dephasing of the magnetization by a PFG effectively suppresses residual water magnetization in the transverse plane. In contrast, when magnetization is located in the lower hemisphere (having -Z component), the small residual transverse component remaining after a PFG is still sufficient to induce radiation damping. Based on this observation, we designed 1 H- 15 N HSQC experiments in which water magnetization is maintained in the upper hemisphere, but not necessarily along Z, and compared them with the conventional experiments, in which water magnetization is inverted during the t 1 period. The result demonstrates moderate gain of signal-to-noise ratio, 0-28%. Designing the experiments such that water magnetization is maintained in the upper hemisphere allows shorter pulses to be used compared to the complete water flip-back and, thereby, is useful as a building block of protein NMR pulse programs in solution.

  14. Public health and economic impact of dampness and mold. (United States)

    Mudarri, D; Fisk, W J


    The public health risk and economic impact of dampness and mold exposures was assessed using current asthma as a health endpoint. Individual risk of current asthma from exposure to dampness and mold in homes from W.J. Fisk, Q. Lei-Gomez & M.J. Mendell [(2007) Indoor Air, [corrected] 17, 284-296], and [corrected] asthma risks calculated from additional studies that reported the prevalence of dampness and mold in homes were used to estimate the proportion of US current asthma cases that are attributable to dampness and mold exposure at 21% (95% confidence internal 12-29%). An examination of the literature covering dampness and mold in schools, offices, and institutional buildings, which is summarized in the Appendix, suggests that risks from exposure in these buildings are similar to risks from exposures in homes. Of the 21.8 million people reported to have asthma in the USA, approximately 4.6 (2.7-6.3) million cases are estimated to be attributable to dampness and mold exposure in the home. Estimates of the national cost of asthma from two prior studies were updated to 2004 and used to estimate the economic impact of dampness and mold exposures. By applying the attributable fraction to the updated national annual cost of asthma, the national annual cost of asthma that is attributable to dampness and mold exposure in the home is estimated to be $3.5 billion ($2.1-4.8 billion). Analysis indicates that exposure to dampness and mold in buildings poses significant public health and economic risks in the USA. These findings are compatible with public policies and programs that help control moisture and mold in buildings. There is a need to control moisture in both new and existing construction because of the significant health consequences that can result from dampness and mold. This paper demonstrates that dampness and mold in buildings is a significant public health problem with substantial economic impact.


    Energy Technology Data Exchange (ETDEWEB)

    Klein, K. G. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Howes, G. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States)


    An innovative field–particle correlation technique is proposed that uses single-point measurements of the electromagnetic fields and particle velocity distribution functions to investigate the net transfer of energy from fields to particles associated with the collisionless damping of turbulent fluctuations in weakly collisional plasmas, such as the solar wind. In addition to providing a direct estimate of the local rate of energy transfer between fields and particles, it provides vital new information about the distribution of that energy transfer in velocity space. This velocity-space signature can potentially be used to identify the dominant collisionless mechanism responsible for the damping of turbulent fluctuations in the solar wind. The application of this novel field–particle correlation technique is illustrated using the simplified case of the Landau damping of Langmuir waves in an electrostatic 1D-1V Vlasov–Poisson plasma, showing that the procedure both estimates the local rate of energy transfer from the electrostatic field to the electrons and indicates the resonant nature of this interaction. Modifications of the technique to enable single-point spacecraft measurements of fields and particles to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, yielding a method with the potential to transform our ability to maximize the scientific return from current and upcoming spacecraft missions, such as the Magnetospheric Multiscale ( MMS ) and Solar Probe Plus missions.

  16. Plastic Behavior of Metallic Damping Materials under Cyclical Shear Loading

    Directory of Open Access Journals (Sweden)

    Chaofeng Zhang


    Full Text Available Metallic shear panel dampers (SPDs have been widely adopted in seismic engineering. In this study, axial and torsional specimens of four types of metallic damping materials, including three conventional metallic steels as well as low yield strength steel 160 (LYS160, were tested in order to investigate the material response under repeated large plastic strain and low cycle fatigue between 10 and 30 cycles. The present study demonstrated that both the deformation capacity and fatigue performance of LYS160 were underestimated by the conversion from the traditional uniaxial tensile test. The main difference in the failure mechanism between LYS160 and the three conventional materials was determined from the scanning electron microscopy data. The dominant failure mode in LYS160 is stable interlaminate slip and not bucking. Our results provide physical insights into the origin of the large deformation capacity, which is an important foundation for the lightweight design of SPDs.

  17. Guy cable design and damping for vertical axis wind turbines (United States)

    Carne, T. G.


    Guy cables are frequently used to support vertical axis wind turbines since guying the turbine reduces some of the structural requirements on the tower. The guys must be designed to provide both the required strength and the required stiffness at the top of the turbine. The axial load which the guys apply to the tower, bearings, and foundations is an undesirable consequence of using guys to support the turbine. Limiting the axial load so that it does not significantly affect the cost of the turbine is an important objective of the cable design. The lateral vibrations of the cables is another feature of the cable design which needs to be considered. These aspects of the cable design are discussed, and a technique for damping cable vibrations was mathematically analyzed and demonstrated with experimental data.

  18. Providing High Quality Care in Low-Income Areas of Maryland: Definitions, Resources, and Challenges from Parents and Child Care Providers' Perspectives. Publication #2012-45 (United States)

    Forry, Nicole; Simkin, Shana; Wessel, Julia; Rodrigues, Katherine


    Early life experiences are critical to a child's development. Research has shown that, for a variety of reasons, children born into low-income families are at a disadvantage when compared to their higher-income peers. Fortunately, research has also shown a positive association between high quality child care and the academic and social-emotional…

  19. Nonlinear collisionless damping of Weibel turbulence in relativistic blast waves (United States)

    Lemoine, Martin


    The Weibel/filamentation instability is known to play a key role in the physics of weakly magnetized collisionless shock waves. From the point of view of high energy astrophysics, this instability also plays a crucial role because its development in the shock precursor populates the downstream with a small-scale magneto-static turbulence which shapes the acceleration and radiative processes of suprathermal particles. The present work discusses the physics of the dissipation of this Weibel-generated turbulence downstream of relativistic collisionless shock waves. It calculates explicitly the first-order nonlinear terms associated to the diffusive nature of the particle trajectories. These corrections are found to systematically increase the damping rate, assuming that the scattering length remains larger than the coherence length of the magnetic fluctuations. The relevance of such corrections is discussed in a broader astrophysical perspective, in particular regarding the physics of the external relativistic shock wave of a gamma-ray burst.

  20. An identification method for damping ratio in rotor systems (United States)

    Wang, Weimin; Li, Qihang; Gao, Jinji; Yao, Jianfei; Allaire, Paul


    Centrifugal compressor testing with magnetic bearing excitations is the last step to assure the compressor rotordynamic stability in the designed operating conditions. To meet the challenges of stability evaluation, a new method combining the rational polynomials method (RPM) with the weighted instrumental variables (WIV) estimator to fit the directional frequency response function (dFRF) is presented. Numerical simulation results show that the method suggested in this paper can identify the damping ratio of the first forward and backward modes with high accuracy, even in a severe noise environment. Experimental tests were conducted to study the effect of different bearing configurations on the stability of rotor. Furthermore, two example centrifugal compressors (a nine-stage straight-through and a six-stage back-to-back) were employed to verify the feasibility of identification method in industrial configurations as well.

  1. PID motion control tuning rules in a damping injection framework

    NARCIS (Netherlands)

    Tadele, T.S.; de Vries, Theodorus J.A.; Stramigioli, Stefano


    This paper presents a general design approach for a performance based tuning of a damping injection framework impedance controller by using insights from PID motion control tuning rules. The damping injection framework impedance controller is suitable for human friendly robots as it enhances safety

  2. Analysis of damping characteristics of arterial catheter blood ...

    African Journals Online (AJOL)

    Background. For many reasons, the invasive measurement of systolic and diastolic blood pressure should be accurate. Accuracy is determined, in part, by the damping characteristics of the arterial catheter blood pressure monitoring system. Objectives. To ascertain the damping characteristics of arterial catheter blood ...

  3. Simple model with damping of the mode-coupling instability

    Energy Technology Data Exchange (ETDEWEB)

    Pestrikov, D.V. [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki


    In this paper we use a simple model to study the suppression of the transverse mode-coupling instability. Two possibilities are considered. One is due to the damping of particular synchrobetatron modes, and another - due to Landau damping, caused by the nonlinearity of betatron oscillations. (author)

  4. The effect of damping on the perception of hardness

    NARCIS (Netherlands)

    van Beek, F.E.; Heck, D.J.F.; Nijmeijer, H.; Bergmann Tiest, W.M.; Kappers, A.M.L.


    In controlling teleoperation systems subject to communication delays, unstable behavior is often prevented by injecting damping. A proper perception of hardness is required to efficiently interact with an object, but it is unknown if and how this injected damping influences the perceived hardness of

  5. The Study of Damped Harmonic Oscillations Using an Electronic Counter (United States)

    Wadhwa, Ajay


    We study damped harmonic oscillations in mechanical systems like the loaded spring and simple pendulum with the help of an oscillation measuring electronic counter. The experimental data are used in a software program that solves the differential equation for damped vibrations of any system and determines its position, velocity and acceleration as…

  6. Exponential decay for solutions to semilinear damped wave equation

    KAUST Repository

    Gerbi, Stéphane


    This paper is concerned with decay estimate of solutions to the semilinear wave equation with strong damping in a bounded domain. Intro- ducing an appropriate Lyapunov function, we prove that when the damping is linear, we can find initial data, for which the solution decays exponentially. This result improves an early one in [4].

  7. Study of Ion Acoustic Wave Damping through Green's Functions

    DEFF Research Database (Denmark)

    Hsuan, H.C.S.; Jensen, Vagn Orla


    Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter.......Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter....

  8. Complex modes and frequencies in damped structural vibrations

    DEFF Research Database (Denmark)

    Krenk, Steen


    It is demonstrated that the state space formulation of the equation of motion of damped structural elements like cables and beams leads to a symmetric eigenvalue problem if the stiffness and damping operators are self-adjoint, and that this is typically the case in the absence of gyroscopic force...

  9. Dynamic stability of a lightly damped column trapped by a ...

    African Journals Online (AJOL)

    In this paper we initiate an analytical approach for determining the dynamic buckling load of a finite viscously damped column acted upon by a harmonically slowly varying explicitly time dependent load. The viscous damping is considered light and the column rests on an elastic foundation that produces a nonlinear ...

  10. Estimation of hysteretic damping of structures by stochastic subspace identification

    DEFF Research Database (Denmark)

    Bajric, Anela; Høgsberg, Jan Becker


    identification method suitable for random response of dynamic systems with hysteretic damping. The method applies the concept of Stochastic Subspace Identification (SSI) to estimate the model parameters of a dynamic system with hysteretic damping. The restoring force is represented by the Bouc-Wen model...

  11. Quantum theory of damped harmonic oscillator | Antia | Global ...

    African Journals Online (AJOL)

    The exact solutions of the Schrödinger equation for damped harmonic oscillator with pulsating mass and modified Caldirola-Kanai Hamiltonian are evaluated. We also investigated the case of under-damped for the two models constructed and the results obtained in both cases do not violate Heisenberg uncertainty principle ...

  12. Dynamic response analysis of a 24-story damped steel structure (United States)

    Feng, Demin; Miyama, Takafumi


    In Japanese and Chinese building codes, a two-stage design philosophy, damage limitation (small earthquake, Level 1) and life safety (extreme large earthquake, Level 2), is adopted. It is very interesting to compare the design method of a damped structure based on the two building codes. In the Chinese code, in order to be consistent with the conventional seismic design method, the damped structure is also designed at the small earthquake level. The effect of damper systems is considered by the additional damping ratio concept. The design force will be obtained from the damped design spectrum considering the reduction due to the additional damping ratio. The additional damping ratio by the damper system is usually calculated by a time history analysis method at the small earthquake level. The velocity dependent type dampers such as viscous dampers can function well even in the small earthquake level. But, if steel damper is used, which usually remains elastic in the small earthquake, there will be no additional damping ratio achieved. On the other hand, a time history analysis is used in Japan both for small earthquake and extreme large earthquake level. The characteristics of damper system and ductility of the structure can be modelled well. An existing 24-story steel frame is modified to demonstrate the design process of the damped structure based on the two building codes. Viscous wall type damper and low yield steel panel dampers are studied as the damper system.

  13. The patient-provider relationship as experienced by a diverse sample of highly adherent HIV-infected people. (United States)

    Brion, John


    Qualitative interviews with 23 HIV-infected people who self-reported high-level adherence to antiretroviral therapy were used to examine the process by which they came to accept their HIV infection and engage in high-level adherence behaviors. A major theme that emerged during data analysis was the importance of the patient-provider relationship. The quality of the relationship between patient and provider emerged as an important component of working through early struggles with diagnosis and the on-going struggles of living with a chronic illness. A variety of factors impacting the patient-provider relationship emerged as subthemes. What can be taken from this study is the importance of the patient-provider relationship in the effective self-management of HIV infection. Additionally, several specific behaviors can enhance the patient-provider relationship and help assure movement toward patient acceptance of the illness and engagement in high-level adherence behaviors. Copyright © 2014 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  14. A feedback system in residency to evaluate CanMEDS roles and provide high-quality feedback : Exploring its application

    NARCIS (Netherlands)

    Renting, Nienke; Gans, Rijk O. B.; Borleffs, Jan C. C.; Van Der Wal, Martha A.; Jaarsma, A. Debbie C.; Cohen-Schotanus, Janke

    Introduction: Residents benefit from regular, high quality feedback on all CanMEDS roles during their training. However, feedback mostly concerns Medical Expert, leaving the other roles behind. A feedback system was developed to guide supervisors in providing feedback on CanMEDS roles. We analyzed

  15. Self-damping cementitious composites with multi-layer graphene (United States)

    Ruan, Yanfeng; Zhou, Daocheng; Sun, Shengwei; Wu, Xinyi; Yu, Xun; Hou, Jilin; Dong, Xufeng; Han, Baoguo


    Cementitious composites are quasi-brittle and susceptible to damage under dynamic loads. The addition of nanoscale fillers into cementitious composites is an effective approach to address this issue. In this paper, multi-layer graphenes (MLGs) are incorporated into cementitious composites to enhance its damping property. The underlying modification mechanism of MLGs to cementitous composites is also investigated. Experimental results showed that the addition of MLGs can effectively modify the damping property of cementitious composites. Compared with cementitious composites without MLGs, the damping ratio of cementitious composites filled with 1% and 5% of MLGs increases by 16.22% and 45.73%, respectively. The improvement of MLGs to damping property of cementitious composites can be attributed to the interlayer slip of MLGs, viscous friction between MLGs and matrix, and excellent thermal conductivity of MLGs. Moreover, the damping ratio measured by time-domain exponential decay method and frequency-domain half-power bandwidth method is consistent.

  16. Prevalence of dampness and mold in European housing stock. (United States)

    Haverinen-Shaughnessy, Ulla


    An assessment of the prevalence of dampness and mold in European housing stock was carried out. It is based on general indicators of dampness and mold in dwellings reported in the literature. The assessment relies on recent studies, taking into account regional and climatic differences, as well as differences in study design, methodology, and definitions. Data were available from 31 European countries. Weighted prevalence estimates are 12.1% for damp, 10.3% for mold, 10.0% for water damage, and 16.5% for a combination of any one or more indicators. Significant (up to 18%) differences were observed for dampness and mold prevalence estimates depending on survey factors, region, and climate. In conclusion, dampness and/or mold problems could be expected to occur in one of every six of the dwellings in Europe. Prevalence and occurrence of different types of problems may vary across geographical areas, which can be partly explained by differences in climate.

  17. Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks (United States)

    Saravanos, Dimitris A.


    Multi-field mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive electric networks are directly formulated and solved using a finite element methodology. The modal damping and frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezoelectric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on piezoelectric damping.

  18. Digital notch filter based active damping for LCL filters

    DEFF Research Database (Denmark)

    Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin


    LCL filters are widely used in Pulse Width Modulation (PWM) inverters. However, it also introduces a pair of unstable resonant poles that may challenge the controller stability. The passive damping is a convenient possibility to tackle the resonance problem at the cost of system overall efficiency....... In contrast, the active damping does not require any dissipation elements, and thus has become of increasing interest. As a result, a vast of active damping solutions have been reported, among which multi-loop control systems and additional sensors are necessary, leading to increased cost and complexity....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated...

  19. Passively Shunted Piezoelectric Damping of Centrifugally-Loaded Plates (United States)

    Duffy, Kirsten P.; Provenza, Andrew J.; Trudell, Jeffrey J.; Min, James B.


    Researchers at NASA Glenn Research Center have been investigating shunted piezoelectric circuits as potential damping treatments for turbomachinery rotor blades. This effort seeks to determine the effects of centrifugal loading on passively-shunted piezoelectric - damped plates. Passive shunt circuit parameters are optimized for the plate's third bending mode. Tests are performed both non-spinning and in the Dynamic Spin Facility to verify the analysis, and to determine the effectiveness of the damping under centrifugal loading. Results show that a resistive shunt circuit will reduce resonant vibration for this configuration. However, a tuned shunt circuit will be required to achieve the desired damping level. The analysis and testing address several issues with passive shunt circuit implementation in a rotating system, including piezoelectric material integrity under centrifugal loading, shunt circuit implementation, and tip mode damping.

  20. Calibrating damping rates with LEGACY linewidths (United States)

    Houdek, Günter


    Linear damping rates of radial oscillation modes in selected Kepler stars are estimated with the help of a nonadiabatic stability analysis. The convective fluxes are obtained from a nonlocal, time-dependent convection model. The mixing-length parameter is calibrated to the surface-convection-zone depth of a stellar model obtained from fitting adiabatic frequencies to the LEGACY* observations, and two of the three nonlocal convection parameters are calibrated to the corresponding LEGACY* linewidth measurements. The atmospheric structure in the 1D stability analysis adopts a temperature-optical-depth relation derived from 3D hydrodynamical simulations. Results from 3D simulations are also used to calibrate the turbulent pressure and to guide the functional form of the depth-dependence of the anisotropy of the turbulent velocity field in the 1D stability computations.

  1. Active vibration damping using smart material (United States)

    Baras, John S.; Yan, Zhuang


    We consider the modeling and active damping of an elastic beam using distributed actuators and sensors. The piezoelectric ceramic material (PZT) is used to build the actuator. The sensor is made of the piezoelectric polymer polyvinylidene fluoride (PVDF). These materials are glued on both sides of the beam. For the simple clamped beam, the closed loop controller has been shown to be able to extract energy from the beam. The shape of the actuator and its influence on the closed loop system performance are discussed. It is shown that it is possible to suppress the selected mode by choosing the appropriate actuator layout. It is also shown that by properly installing the sensor and determining the sensor shape we can further extract and manipulate the sensor signal for our control need.

  2. problem for the damped Boussinesq equation

    Directory of Open Access Journals (Sweden)

    Vladimir V. Varlamov


    Full Text Available For the damped Boussinesq equation utt−2butxx=−αuxxxx+uxx+β(u2xx,x∈(0,π,t>0;α,b=const>0,β=const∈R1, the second initial-boundary value problem is considered with small initial data. Its classical solution is constructed in the form of a series in small parameter present in the initial conditions and the uniqueness of solutions is proved. The long-time asymptotics is obtained in the explicit form and the question of the blow up of the solution in a certain case is examined. The possibility of passing to the limit b→+0 in the constructed solution is investigated.

  3. Temporal damping effect of the Yucca Mountain fractured unsaturated rock on transient infiltration pulses (United States)

    Zhang, Keni; Wu, Yu-Shu; Pan, Lehua


    SummaryPerformance assessment of the Yucca Mountain unsaturated zone (UZ) as the site for an underground repository of high-level radioactive waste relies on the crucial assumption that water percolation processes in the unsaturated zone can be approximated as a steady-state condition. Justification of such an assumption is based on temporal damping effects of several geological units within the unsaturated tuff formation. In particular, the nonwelded tuff of the Painbrush Group (PTn unit) at Yucca Mountain, because of its highly porous physical properties, has been conceptualized to have a significant capacity for temporally damping transient percolation fluxes. The objective of this study is to investigate these damping effects, using a three-dimensional (3-D) mountain-scale model as well as several one-dimensional (1-D) models. The 3-D model incorporates a wide variety of the updated field data for the highly heterogeneous unsaturated formation at Yucca Mountain. The model is first run to steady state and calibrated using field-measured data and then transient pulse infiltrations are applied to the model top boundary. Subsequent changes in percolation fluxes at the bottom of and within the PTn unit are examined under episodic infiltration boundary conditions. The 1-D model is used to examine the long-term response of the flow system to higher infiltration pulses, while the damping effect is also investigated through modeling tracer transport in the UZ under episodic infiltration condition. Simulation results show the existence of damping effects within the PTn unit and also indicate that the assumption of steady-state flow conditions below the PTn unit is reasonable. However, the study also finds that some fast flow paths along faults exist, causing vertical-flux quick responses at the PTn bottom to the episodic infiltration at the top boundary.

  4. Dimensionless Analysis of Segmented Constrained Layer Damping Treatments with Modal Strain Energy Method

    Directory of Open Access Journals (Sweden)

    Shitao Tian


    Full Text Available Constrained layer damping treatments promise to be an effective method to control vibration in flexible structures. Cutting both the constraining layer and the viscoelastic layer, which leads to segmentation, increases the damping efficiency. However, this approach is not always effective. A parametric study was carried out using modal strain energy method to explore interaction between segmentation and design parameters, including geometry parameters and material properties. A finite element model capable of handling treatments with extremely thin viscoelastic layer was developed based on interlaminar continuous shear stress theories. Using the developed method, influence of placing cuts and change in design parameters on the shear strain field inside the viscoelastic layer was analyzed, since most design parameters act on the damping efficiency through their influence on the shear strain field. Furthermore, optimal cut arrangements were obtained by adopting a genetic algorithm. Subject to a weight limitation, symmetric and asymmetric configurations were compared. It was shown that symmetric configurations always presented higher damping. Segmentation was found to be suitable for treatments with relatively thin viscoelastic layer. Provided that optimal viscoelastic layer thickness was selected, placing cuts would only be applicable to treatments with low shear strain level inside the viscoelastic layer.

  5. Design and damping force characterization of a new magnetorheological damper activated by permanent magnet flux dispersion (United States)

    Lee, Tae-Hoon; Han, Chulhee; Choi, Seung-Bok


    This work proposes a novel type of tunable magnetorheological (MR) damper operated based solely on the location of a permanent magnet incorporated into the piston. To create a larger damping force variation in comparison with the previous model, a different design configuration of the permanent-magnet-based MR (PMMR) damper is introduced to provide magnetic flux dispersion in two magnetic circuits by utilizing two materials with different magnetic reluctance. After discussing the design configuration and some advantages of the newly designed mechanism, the magnetic dispersion principle is analyzed through both the formulated analytical model of the magnetic circuit and the computer simulation based on the magnetic finite element method. Sequentially, the principal design parameters of the damper are determined and fabricated. Then, experiments are conducted to evaluate the variation in damping force depending on the location of the magnet. It is demonstrated that the new design and magnetic dispersion concept are valid showing higher damping force than the previous model. In addition, a curved structure of the two materials is further fabricated and tested to realize the linearity of the damping force variation.

  6. Damping of a fluid-conveying pipe surrounded by a viscous annulus fluid (United States)

    Kjolsing, Eric J.; Todd, Michael D.


    To further the development of a downhole vibration based energy harvester, this study explores how fluid velocity affects damping in a fluid-conveying pipe stemming from a viscous annulus fluid. A linearized equation of motion is formed which employs a hydrodynamic forcing function to model the annulus fluid. The system is solved in the frequency domain through the use of the spectral element method. The three independent variables investigated are the conveyed fluid velocity, the rotational stiffness of the boundary (using elastic springs), and the annulus fluid viscosity. It was found that, due to the hydrodynamic functions frequency-dependence, increasing the conveyed fluid velocity increases the systems damping ratio. It was also noted that stiffer systems saw the damping ratio increase at a slower rate when compared to flexible systems as the conveyed fluid velocity was increased. The results indicate that overestimating the stiffness of a system can lead to underestimated damping ratios and that this error is made worse if the produced fluid velocity or annulus fluid viscosity is underestimated. A numeric example was provided to graphically illustrate these errors. Approved for publication, LA-UR-15-28006.

  7. A damping circadian clock drives weak oscillations in metabolism and locomotor activity of aphids (Acyrthosiphon pisum). (United States)

    Beer, Katharina; Joschinski, Jens; Arrazola Sastre, Alazne; Krauss, Jochen; Helfrich-Förster, Charlotte


    Timing seasonal events, like reproduction or diapause, is crucial for the survival of many species. Global change causes phenologies worldwide to shift, which requires a mechanistic explanation of seasonal time measurement. Day length (photoperiod) is a reliable indicator of winter arrival, but it remains unclear how exactly species measure day length. A reference for time of day could be provided by a circadian clock, by an hourglass clock, or, as some newer models suggest, by a damped circadian clock. However, damping of clock outputs has so far been rarely observed. To study putative clock outputs of Acyrthosiphon pisum aphids, we raised individual nymphs on coloured artificial diet, and measured rhythms in metabolic activity in light-dark illumination cycles of 16:08 hours (LD) and constant conditions (DD). In addition, we kept individuals in a novel monitoring setup and measured locomotor activity. We found that A. pisum is day-active in LD, potentially with a bimodal distribution. In constant darkness rhythmicity of locomotor behaviour persisted in some individuals, but patterns were mostly complex with several predominant periods. Metabolic activity, on the other hand, damped quickly. A damped circadian clock, potentially driven by multiple oscillator populations, is the most likely explanation of our results.

  8. Stochastic acceleration and magnetic damping in Tycho's SNR (United States)

    Wilhelm, Alina; Telezhinsky, Igor; Dwarkadas, Vikram; Pohl, Martin


    Tycho's Supernova remnant (SNR) is also known as historical Supernova SN 1572 of Type Ia. Having exploded in a relatively clean environment and with a known age, it represents an ideal astrophysical testbed for the study of cosmic-ray acceleration and related phenomena. A number of studies suggest that shock acceleration with very efficient magnetic-field amplification is needed to explain the rather soft radio spectrum and the narrow rims observed in X-rays. We show that the wideband spectrum of Tycho's SNR can be alternatively well explained when accounting for stochastic acceleration as a secondary process. The re-acceleration of particles in the turbulent region immediately downstream of the shock provided by the fast-mode waves is efficient enough to impact particle spectra over several decades in energy. Our self-consistent model contains hydrodynamic simulations of the SNR plasma flow. The particle spectra are obtained from the time-dependent transport equation and the background magnetic field is computed either from the induction equation or it follows analytic profiles depending on the considered model. Although not as efficient as standard diffusive shock acceleration, stochastic acceleration leaves its imprint on the particle spectra. This is especially notable in the emission at radio wavelengths and soft γ-rays. Excessively strong magnetic fields and the so-called Alfvénic drift are not required in this scenario. The narrow X-ray and radio rims arise from damping of the turbulent magnetic field. We find a lower limit for the downstream magnetic field strength, Bd = 173 µG and investigate the energy-dependence of the X-ray filament width. We conclude that stochastic re-acceleration is an important mechanism for modifying particle and emission spectra in SNR and that the magnetic-field damping should be taken into account to properly explain the synchrotron intensity profiles of Tycho.

  9. Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer

    Directory of Open Access Journals (Sweden)

    Jitka eFucikova


    Full Text Available It is now clear that human neoplasms form, progress and respond to therapy in the context of an intimate crosstalk with the host immune system. In particular, accumulating evidence demonstrates that the efficacy of most, if not all, chemo- and radiotherapeutic agents commonly employed in the clinic critically depends on the (reactivation of tumor-targeting immune response. One of the mechanisms whereby conventional chemotherapeutics, targeted anticancer agents and radiotherapy can provoke a therapeutically relevant, adaptive immune response against malignant cells is commonly known as „immunogenic cell death (ICD. Importantly, dying cancer cells are perceived as immunogenic only when they emit a set of immunostimulatory signals upon the activation of intracellular stress response pathways. The emission of these signals, which are generally referred to as „damage-associated molecular patterns (DAMPs, may therefore predict whether patients will respond to chemotherapy or not, at least in some settings. Here, we review clinical data indicating that DAMPs and DAMP-associated stress responses might have prognostic or predictive value for cancer patients.

  10. Damping Dependence of Reversal Magnetic Field on Co-based Nano-Ferromagnetic with Thermal Activation

    Directory of Open Access Journals (Sweden)

    Nadia Ananda Herianto


    Full Text Available Currently, hard disk development has used HAMR technology that applies heat to perpendicular media until near Curie temperature, then cools it down to room temperature. The use of HAMR technology is significantly influence by Gilbert damping constants. Damping affects the magnetization reversal and coercivity field. Simulation is used to evaluate magnetization reversal by completing Landau-Lifshitz-Gilbert explicit equation. A strong ferromagnetic cobalt based material with size 50×50×20 nm3 is used which parameters are anisotropy materials 3.51×106 erg/cm3, magnetic saturation 5697.5 G, exchange constant 1×10-7 erg/cm, and various Gilbert damping from 0.09 to 0.5. To observe the thermal effect, two schemes are used which are Reduced Barrier Writing and Curie Point Writing. As a result, materials with high damping is able to reverse the magnetizations faster and reduce the energy barrier. Moreover, it can lower the minimum field to start the magnetizations reversal, threshold field, and probability rate. The heating near Curie temperature has succeeded in reducing the reversal field to 1/10 compared to writing process in absence of thermal field.

  11. Tower Based Load Measurements for Individual Pitch Control and Tower Damping of Wind Turbines (United States)

    Kumar, A. A.; Hugues-Salas, O.; Savini, B.; Keogh, W.


    The cost of IPC has hindered adoption outside of Europe despite significant loading advantages for large wind turbines. In this work we presented a method for applying individual pitch control (including for higher-harmonics) using tower-top strain gauge feedback instead of blade-root strain gauge feedback. Tower-top strain gauges offer hardware savings of approximately 50% in addition to the possibility of easier access for maintenance and installation and requiring a less specialised skill-set than that required for applying strain gauges to composite blade roots. A further advantage is the possibility of using the same tower-top sensor array for tower damping control. This method is made possible by including a second order IPC loop in addition to the tower damping loop to reduce the typically dominating 3P content in tower-top load measurements. High-fidelity Bladed simulations show that the resulting turbine spectral characteristics from tower-top feedback IPC and from the combination of tower-top IPC and damping loops largely match those of blade-root feedback IPC and nacelle- velocity feedback damping. Lifetime weighted fatigue analysis shows that the methods allows load reductions within 2.5% of traditional methods.

  12. Effects of gas temperature on nozzle damping experiments on cold-flow rocket motors (United States)

    Sun, Bing-bing; Li, Shi-peng; Su, Wan-xing; Li, Jun-wei; Wang, Ning-fei


    In order to explore the impact of gas temperature on the nozzle damping characteristics of solid rocket motor, numerical simulations were carried out by an experimental motor in Naval Ordnance Test Station of China Lake in California. Using the pulse decay method, different cases were numerically studied via Fluent along with UDF (User Defined Functions). Firstly, mesh sensitivity analysis and monitor position-independent analysis were carried out for the computer code validation. Then, the numerical method was further validated by comparing the calculated results and experimental data. Finally, the effects of gas temperature on the nozzle damping characteristics were studied in this paper. The results indicated that the gas temperature had cooperative effects on the nozzle damping and there had great differences between cold flow and hot fire test. By discussion and analysis, it was found that the changing of mainstream velocity and the natural acoustic frequency resulted from gas temperature were the key factors that affected the nozzle damping, while the alteration of the mean pressure had little effect. Thus, the high pressure condition could be replaced by low pressure to reduce the difficulty of the test. Finally, the relation of the coefficients "alpha" between the cold flow and hot fire was got.

  13. Effects of Active Sting Damping on Common Research Model Data Quality (United States)

    Acheson, Michael J.; Balakrishna, S.


    Recent tests using the Common Research Model (CRM) at the Langley National Transonic Facility (NTF) and the Ames 11-foot Transonic Wind Tunnel (11' TWT) produced large sets of data that have been used to examine the effects of active damping on transonic tunnel aerodynamic data quality. In particular, large statistically significant sets of repeat data demonstrate that the active damping system had no apparent effect on drag, lift and pitching moment repeatability during warm testing conditions, while simultaneously enabling aerodynamic data to be obtained post stall. A small set of cryogenic (high Reynolds number) repeat data was obtained at the NTF and again showed a negligible effect on data repeatability. However, due to a degradation of control power in the active damping system cryogenically, the ability to obtain test data post-stall was not achieved during cryogenic testing. Additionally, comparisons of data repeatability between NTF and 11-ft TWT CRM data led to further (warm) testing at the NTF which demonstrated that for a modest increase in data sampling time, a 2-3 factor improvement in drag, and pitching moment repeatability was readily achieved not related with the active damping system.

  14. Simulated and Experimental Damping Properties of a SMA/Fiber Glass Laminated Composite (United States)

    Arnaboldi, S.; Bassani, P.; Biffi, C. A.; Tuissi, A.; Carnevale, M.; Lecis, N.; Loconte, A.; Previtali, B.


    In this article, an advanced laminated composite is developed, combining the high damping properties of shape memory alloy (SMA) with mechanical properties and light weight of a glass-fiber reinforced polymer. The composite is formed by stacking a glass-fiber reinforced epoxy core between two thin patterned strips of SMA alloy, and two further layers of fiber-glass reinforced epoxy. The bars of the laminated composite were assembled and cured in autoclave. The patterning was designed to enhance the interface adhesion between matrix and SMA inserts and optimally exploit the damping capacity of the SMA thin ribbons. The patterned ribbons of the SMA alloy were cut by means of a pulsed fiber laser source. Damping properties at different amplitudes on full scale samples were investigated at room temperature with a universal testing machine through dynamic tension tests, while temperature dependence was investigated by dynamic mechanical analyses (DMA) on smaller samples. Experimental results were used in conjunction with FEM analysis to optimize the geometry of the inserts. Experimental decay tests on the laminated composite have been carried out to identify the adimensional damping value related to their first flexural mode.

  15. Radiative seesaw models linking to dark matter candidates inspired by the DAMPE excess


    Nomura, Takaaki; Okada, Hiroshi


    We propose two possibilities to explain an excess of electron/positron flux around 1.4 TeV recently reported by Dark Matter Explore (DAMPE) in the framework of radiative seesaw models where one of them provides a fermionic dark matter candidate, and the other one provides a bosonic dark matter candidate. We also show unique features of both models regarding neutrino mass structure.

  16. Respiratory Diseases in University Students Associated with Exposure to Residential Dampness or Mold

    Directory of Open Access Journals (Sweden)

    Mathieu Lanthier-Veilleux


    Full Text Available University students are frequently exposed to residential dampness or mold (i.e., visible mold, mold odor, dampness, or water leaks, a well-known contributor to asthma, allergic rhinitis, and respiratory infections. This study aims to: (a describe the prevalence of these respiratory diseases among university students; and (b examine the independent contribution of residential dampness or mold to these diseases. An online survey was conducted in March 2014 among the 26,676 students registered at the Université de Sherbrooke (Quebec, Canada. Validated questions and scores were used to assess self-reported respiratory diseases (i.e., asthma-like symptoms, allergic rhinitis, and respiratory infections, residential dampness or mold, and covariates (e.g., student characteristics. Using logistic regressions, the crude and adjusted odd ratios between residential dampness or mold and self-reported respiratory diseases were examined. Results from the participating students (n = 2097; response rate: 8.1% showed high prevalence of allergic rhinitis (32.6%; 95% CI: 30.6–34.7, asthma-like symptoms (24.0%; 95% CI: 22.1–25.8 and respiratory infections (19.4%; 95% CI: 17.7–21.2. After adjustment, exposure to residential dampness or mold was associated with allergic rhinitis (OR: 1.25; 95% CI: 1.01–1.55 and asthma-like symptoms (OR: 1.70; 95% CI: 1.37–2.11, but not with respiratory infections (OR: 1.07; 95% CI: 0.85–1.36. Among symptomatic students, this exposure was also associated with uncontrolled and burdensome respiratory symptoms (p < 0.01. University students report a high prevalence of allergic rhinitis, asthma-like symptoms and respiratory infections. A common indoor hazard, residential dampness or mold, may play a role in increasing atopic respiratory diseases and their suboptimal control in young adults. These results emphasize the importance for public health organizations to tackle poor housing conditions, especially amongst university

  17. Strain Dependent Damping Characteristics of a High Damping Manganese-Copper Alloy (United States)


    gear trains , brake discs . et,. (Figure 1.2). 4. 1 虮 % Potential applications of quiet metals General: Plug inserts to noisy machine parts Cladding...and gear weos Pump castings Diesel engine parts Brake discs Wheel rims Suomarine/toroedo/shio prooellers Helicopter gears Machinery frames and bases

  18. HOM damping properties of fundamental power couplers in the superconducting electron gun of the energy recovery LINAC at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, L.; Hahn, H.


    Among the accelerator projects under construction at the Relativistic Heavy Ion Collider (RHIC) is an R and D energy recovery LINAC (ERL) test facility. The ERL includes both a five-cell superconducting cavity as well as a superconducting, photoinjector electron gun. Because of the high-charge and high-current demands, effective higher-order mode (HOM) damping is essential, and several strategies are being pursued. Among these is the use of the fundamental power couplers as a means for damping some HOMs. Simulation studies have shown that the power couplers can play a substantial role in damping certain HOMs, and this presentation discusses these studies along with measurements.

  19. Review of a Method for Local Damping Identification in the Low- and Mid-Frequency Range Based on a Finite Element Model


    Tang, Martin


    Passenger demand for enhanced cabin comfort have made cabin noise to an important factor. The damping behaviour of the cabin must be understood in order to predict noise emission. Due to the high modal density and overlap, state-of-the-art methods are not able to accurately identify damping in the mid- and high-frequency range. However, these frequency ranges are relevant in the field of acoustics. 2016 a method was proposed for local damping identification, which was applied to an aircra...

  20. Physicians cite hurdles ranging from lack of coverage to poor communication in providing high-quality care to latinos. (United States)

    Vargas Bustamante, Arturo; Chen, Jie


    We surveyed physicians about their ability to provide high-quality care to patients from diverse ethnic backgrounds. Primarily, we wanted to explore the challenges faced by physicians treating Latino patients compared to physicians whose patients were primarily white and non-Latino. We found that physicians treating Latinos, particularly those who worked in primary care in comparison to specialists, were less likely than physicians treating primarily white patients to believe in their ability to provide high-quality care. They cited problems of inadequate time with patients, patients' ability to pay, patients' nonadherence to recommended treatment, difficulties communicating with patients, relative lack of specialist availability, and lack of timely transmission of reports among physicians. Insurance expansions and complementary reforms mandated by the Affordable Care Act of 2010 and other recent legislation should aid physicians in closing some of these gaps in quality.


    Directory of Open Access Journals (Sweden)

    N. Börlin


    Full Text Available The aim of this paper is to investigate whether the Matlab-based Damped Bundle Adjustment Toolbox (DBAT can be used to provide independent verification of the BA computation of two popular software—PhotoModeler (PM and PhotoScan (PS. For frame camera data sets with lens distortion, DBAT is able to reprocess and replicate subsets of PM results with high accuracy. For lens-distortion-free data sets, DBAT can furthermore provide comparative results between PM and PS. Data sets for the discussed projects are available from the authors. The use of an external verification tool such as DBAT will enable users to get an independent verification of the computations of their software. In addition, DBAT can provide computation of quality parameters such as estimated standard deviations, correlation between parameters, etc., something that should be part of best practice for any photogrammetric software. Finally, as the code is free and open-source, users can add computations of their own.

  2. Vadose zone controls on damping of climate-induced transient recharge fluxes in U.S. agroecosystems (United States)

    Gurdak, Jason


    Understanding the physical processes in the vadose zone that link climate variability with transient recharge fluxes has particular relevance for the sustainability of groundwater-supported irrigated agriculture and other groundwater-dependent ecosystems. Natural climate variability on interannual to multidecadal timescales has well-documented influence on precipitation, evapotranspiration, soil moisture, infiltration flux, and can augment or diminish human stresses on water resources. Here the behavior and damping depth of climate-induced transient water flux in the vadose zone is explored. The damping depth is the depth in the vadose zone that the flux variation damps to 5% of the land surface variation. Steady-state recharge occurs when the damping depth is above the water table, and transient recharge occurs when the damping depth is below the water table. Findings are presented from major agroecosystems of the United States (U.S.), including the High Plains, Central Valley, California Coastal Basin, and Mississippi Embayment aquifer systems. Singular spectrum analysis (SSA) is used to identify quasi-periodic signals in precipitation and groundwater time series that are coincident with the Arctic Oscillation (AO) (6-12 mo cycle), Pacific/North American oscillation (PNA) (climate variability and the local soil textures, layering, and depth to the water table. Simulation results for homogeneous profiles generally show that shorter-period climate oscillations, smaller mean fluxes, and finer-grained soil textures generally produce damping depths closer to land surface. Simulation results for layered soil textures indicate more complex responses in the damping depth, including the finding that finer-textured layers in a coarser soil profile generally result in damping depths closer to land surface, while coarser-textured layers in coarser soil profile result in damping depths deeper in the vadose zone. Findings from this study improve understanding of how vadose

  3. Public health and economic impact of dampness and mold

    Energy Technology Data Exchange (ETDEWEB)

    Mudarri, David; Fisk, William J.


    The public health risk and economic impact of dampness and mold exposures was assessed using current asthma as a health endpoint. Individual risk of current asthma from exposure to dampness and mold in homes from Fisk et al. (2007), and asthma risks calculated from additional studies that reported the prevalence of dampness and mold in homes were used to estimate the proportion of U.S. current asthma cases that are attributable to dampness and mold exposure at 21% (95% confidence internal 12-29%). An examination of the literature covering dampness and mold in schools, offices, and institutional buildings, which is summarized in the appendix, suggests that risks from exposure in these buildings are similar to risks from exposures in homes. Of the 21.8 million people reported to have asthma in the U.S., approximately 4.6 (2.7-6.3) million cases are estimated to be attributable to dampness and mold exposure in the home. Estimates of the national cost of asthma from two prior studies were updated to 2004 and used to estimate the economic impact of dampness and mold exposures. By applying the attributable fraction to the updated national annual cost of asthma, the national annual cost of asthma that is attributable to dampness and mold exposure in the home is estimated to be $3.5 billion ($2.1-4.8 billion). Analysis indicates that exposure to dampness and mold in buildings poses significant public health and economic risks in the U.S. These findings are compatible with public policies and programs that help control moisture and mold in buildings.

  4. Inhibition of DAMP signaling as an effective adjunctive treatment strategy in pneumococcal meningitis. (United States)

    Masouris, Ilias; Klein, Matthias; Dyckhoff, Susanne; Angele, Barbara; Pfister, H W; Koedel, Uwe


    Pneumococcal meningitis remains a potentially lethal and debilitating disease, mainly due to brain damage from sustained inflammation. The release of danger-associated molecular patterns (DAMPs), like myeloid-related protein 14 (MRP14) and high mobility group box 1 protein (HMGB1), plays a major role in persistence of inflammation. In this study, we evaluated if paquinimod, an MRP14-inhibitor, and an anti-HMGB1 antibody can improve clinical outcome as adjunctive therapeutics in pneumococcal meningitis. We tested the adjuvant administration of paquinimod and the anti-HMGB1 antibody in our pneumococcal meningitis mouse model assessing clinical (clinical score, open-field-test, temperature) and pathophysiological parameters (intracranial pressure, white blood cell count in CSF, bleeding area) as well as bacterial titers in blood and brain 24 h after administration and 48 h after infection. Furthermore, we explored the interactions of these two agents with dexamethasone, the standard adjuvant treatment in pneumococcal meningitis (PM), and daptomycin, a non-bacteriolytic antibiotic preventing pathogen-associated molecular pattern (PAMP) release. Adjunctive inhibition of MRP14 or HMGB1 reduced mortality in mice with PM. This effect was lost when the two anti-DAMP agents were given simultaneously, possibly due to excessive immunosuppression. Combining anti-PAMP (daptomycin) and anti-DAMP treatments did not produce synergistic results; instead, the anti-DAMP treatment alone was sufficient and superior. The combination of anti-HMGB1 with dexamethasone did not diminish the effect of the former. DAMP inhibition possesses good potential as an adjuvant treatment approach in PM, as it improves clinical outcome and can be given together with the standard adjuvant dexamethasone without drug effect loss in experimental PM.

  5. Effect of particulate tougheners on the damping of composite laminates (United States)

    Biggerstaff, Janet M.; Kosmatka, John B.


    Rubber is commonly added to composites to increase the toughness. This research investigates adding toughening particles to graphite/epoxy composites for the purpose of increasing the vibrational damping. Adding toughening particles to the interlaminar regions of graphite/epoxy is shown to significantly increase the loss factor, although the increase is much less than can be achieved by embedding a viscoelastic damping layer. The bending stiffness and shear modulus, however, are much higher for the samples with embedded particles than samples with a viscoelastic layer. The addition of damping particles could therefore be used for stiffness-critical parts.

  6. A frequency domain analysis for damped space structures (United States)

    Hagood, Nesbitt W.; Crawley, Edward F.


    A method is presented for the analysis of damped structural systems in which the structural components are represented by impedance models and analyzed in the frequency domain. Methods are presented to assemble and condense system impedance matrices, and then to identify approximate mass, stiffness, and damping matrices for systems whose impedances are complicated functions of frequency. Formulas are derived for determination of approximate values for system natural frequencies and damping using frequency domain quantities. The sensitivities of these approximate values to system parameter changes are analyzed. The implementation of these analysis tools is discussed and applied to a simple mechanical system.

  7. Active Damping of Oscillations in Off-Road Vehicles

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn


    This paper relates to analyse and control of the oscillations occuring in many off-road vehicles, which are designed without any suspension. Without suspension, the tire is the only elastic element acting between the vichle and the ground, but the suspension and damping properties of the tires...... simulation model that describes dynamics of the tractor with mechanica栬inkkages, and the hitch actuator and an typical implemenet. The developed model was used and is in use for both stability and damping analysis, and for evaluation of control strategies, incliding active damping of oscillations....

  8. Indirect linear locally distributed damping of coupled systems

    Directory of Open Access Journals (Sweden)

    Annick BEYRATH


    Full Text Available The aim of this paper is to prove indirect internal stabilization results for different coupled systems with linear locally distributed damping (coupled wave equations, wave equations with different speeds of propagation. In our case, a linear local damping term appears only in the first equation whereas no damping term is applied to the second one (this is indirect stabilization, see [11]. Using thepiecewise multiplier method we prove that the full system is stabilized and that the total energy of the solution of this system decays polynomially.

  9. Comparing Sources of Damping of Cross-Wind Motion

    DEFF Research Database (Denmark)

    Tarp-Johansen, Niels Jacob; Mørch, Christian; Andersen, Lars


    Cross-wind vibrations due to wave loading misaligned with the wind causes fatigue known to be design driving for support structures of large turbines offshore increasing fatigue loads notably compared to the along-wind fatigue. The small amount of damping assumed for cross-wind motion in current...... practise plays a key role in this. The questions are: does more damping exist and is one of the sources of damping the main contributor allowing for site-independent guidelines. The aim of this paper is to address these issues. It is demonstrated that tower dampers are important in order to tackle...

  10. Damping and Frequency Shift of Large Amplitude Electron Plasma Waves

    DEFF Research Database (Denmark)

    Thomsen, Kenneth; Juul Rasmussen, Jens


    The initial evolution of large-amplitude one-dimensional electron waves is investigated by applying a numerical simulation. The initial wave damping is found to be strongly enhanced relative to the linear damping and it increases with increasing amplitude. The temporal evolution of the nonlinear...... damping rate γ(t) shows that it increases with time within the initial phase of propagation, t≲π/ωB (ωB is the bounce frequency), whereafter it decreases and changes sign implying a regrowth of the wave. The shift in the wave frequency δω is observed to be positive for t≲π/ωB; then δω changes sign...

  11. Energy-based damping evaluation of cable-stayed bridges and its application to Tsurumi Tsubasa bridge; Shachokyo shindo gensui no energy teki hyokaho to Tsurumi Tsubasakyo eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H. [Saitama University, Saitama (Japan). Faculty of Engineering; Takano, H.; Ogasawara, M.; Shimosato, T. [Metropolitan Expressway Public Corp., Tokyo (Japan); Kato, M.; Kato, H. [NKK Corp., Tokyo (Japan)


    This paper provides and discusses a more common energy-based evaluation method of vibration damping in cable-stayed bridges. This method was applied to data obtained from the field vibration test of the Tsurumi Tsubasa Bridge. The damping was defined as dissipation energy in one cycle against the total potential energy. The dissipation energy from shoe friction, aerodynamic damping, and dampers for cables was added to the method proposed by Yamaguchi, et. al., in which the energy of girders, towers, and cables were quantitated, and the dissipation energy was determined from the loss factor of each constituent, to evaluate the damping of whole bridge. Thus, a more common energy-based evaluation method was provided. This method was applied to the damping obtained from the field vibration test of Tsurumi Tsubasa Bridge. Consequently, it was found that the damping of whole bridge was significantly affected by the shoe friction, aerodynamic damping, and dampers for cables. Distinguished damping characteristics of the Tsurumi Tsubasa Bridge could be explained by the energy-based evaluation. Validity of the energy-based evaluation method for damping of cable-stayed bridges was demonstrated. 15 refs., 9 figs., 6 tabs.

  12. The costs and cost-efficiency of providing food through schools in areas of high food insecurity. (United States)

    Gelli, Aulo; Al-Shaiba, Najeeb; Espejo, Francisco


    The provision of food in and through schools has been used to support the education, health, and nutrition of school-aged children. The monitoring of financial inputs into school health and nutrition programs is critical for a number of reasons, including accountability, transparency, and equity. Furthermore, there is a gap in the evidence on the costs, cost-efficiency, and cost-effectiveness of providing food through schools, particularly in areas of high food insecurity. To estimate the programmatic costs and cost-efficiency associated with providing food through schools in food-insecure, developing-country contexts, by analyzing global project data from the World Food Programme (WFP). Project data, including expenditures and number of schoolchildren covered, were collected through project reports and validated through WFP Country Office records. Yearly project costs per schoolchild were standardized over a set number of feeding days and the amount of energy provided by the average ration. Output metrics, such as tonnage, calories, and micronutrient content, were used to assess the cost-efficiency of the different delivery mechanisms. The average yearly expenditure per child, standardized over a 200-day on-site feeding period and an average ration, excluding school-level costs, was US$21.59. The costs varied substantially according to choice of food modality, with fortified biscuits providing the least costly option of about US$11 per year and take-home rations providing the most expensive option at approximately US$52 per year. Comparisons across the different food modalities suggested that fortified biscuits provide the most cost-efficient option in terms of micronutrient delivery (particularly vitamin A and iodine), whereas on-site meals appear to be more efficient in terms of calories delivered. Transportation and logistics costs were the main drivers for the high costs. The choice of program objectives will to a large degree dictate the food modality

  13. The perceptions of teachers and principals toward providing additional compensation to teachers in high-need subject areas (United States)

    Longing, Jeffrey Lucian

    The purpose of this study was to determine possible differences in the perceptions of teachers teaching in high-need areas (i.e., math, science, special education, etc.) and teachers not teaching in high-need areas, (i.e., business education, physical education, etc.) as defined by the states of Arkansas and Louisiana, regarding higher compensation for high-need teachers. In addition, possible perception differences among principals and teachers were determined. The independent variables consisted of gender, position held, years of certified experience, and certification areas. The dependent variable was the perceptions of the participants on providing higher compensation for high-need teachers in order to attract and retain them. The data for all variables were collected using the Teacher Compensation Survey. The sample for this study was limited to teachers, grades 9 through 12, and principals of public high schools in south Arkansas and north Louisiana. Forty-four school districts in south Arkansas (Arkansas Department of Education, 2008a) and north Louisiana (Louisiana Department of Education, 2008a) met the criteria for this study. Twenty-two superintendents gave permission for their districts to participate in the research. A sample of 849 teachers and 38 principals were identified in these districts. Surveys were returned from 350 teachers, creating a 41% response rate. When the 31 principals that returned surveys were added to the total population, the response rate increased to 43% with 381 of the 887 surveyed responding. However, 42 of the teachers and two of the principals skipped some of the questions on the survey and were not included in the study. The researcher used a One-Way ANOVA and independent t-tests to determine the presence of statistical differences at the .05 level. The data showed that most math and science teachers agreed that high-need teachers should be compensated at a higher rate than teachers not teaching in high-need areas. The data

  14. Abstinence and teenagers: prevention counseling practices of health care providers serving high-risk patients in the United States. (United States)

    Harper, Cynthia C; Henderson, Jillian T; Schalet, Amy; Becker, Davida; Stratton, Laura; Raine, Tina R


    Abstinence-only education has had little demonstrable impact on teenagers' sexual behaviors, despite significant policy and funding efforts. Given the struggle over resources to improve teenagers' reproductive health outcomes, the views of clinicians serving teenagers at high risk for unintended pregnancy and STDs merit particular attention. In 2005, a qualitative study with 31 clinicians serving low-income, at-risk patients was conducted. A semistructured interview guide was used to ask clinicians about adolescent pregnancy, HIV and STD prevention counseling, and when they include abstinence. Thematic content analysis was used to examine the content of the counseling and the techniques used in different situations. Providers reported offering comprehensive counseling, presenting abstinence as a choice for teenagers, along with information about contraceptives and condoms. Several providers mentioned that with young, sexually inexperienced teenagers, they discuss delaying sexual activity and suggest other ways to be affectionate, while giving information on condoms. Providers explained how they assess whether teenagers feel ready to be sexually active and try to impart skills for healthy relationships. Some described abstinence as giving teenagers a way to opt out of unwanted sexual activity. Many support abstinence if that is the patient's desire, but routinely dispense condoms and contraceptives. Overall, providers did not give abstinence counseling as a rigid categorical concept in their preventive practices, but as a health tool to give agency to teenagers within a harm reduction framework. Their approach may be informative for adolescent policies and programs in the future.

  15. Experimental Characterization of Damped CFRP Materials with an Application to a Lightweight Car Door

    Directory of Open Access Journals (Sweden)

    Alessandro Fasana


    Full Text Available This paper presents a complete design procedure for defining a dynamic model of a Carbon Fibre Reinforced Polymer (CFRP component with an embedded damping material layer. The experiment to determine the mechanical characteristics of the materials is performed by the Oberst beam technique to provide precise material properties for a Finite Element (FE model. The technique implemented, namely, the Linear Identification by Polynomial Expansion in the Z-domain (LIPEZ method, is used to compare the experimental data with the numerical simulation results provided by the modal parameters to be compared with the numerical results. Two automotive components (a leaf spring and an outer shell of front door have been tested. The research revealed the utter importance of a correct definition of the geometry for the numerical models. Finally, the positive effects for acoustic performance with a thin layer of KRAIBON® SUT9609/24 damping material, included in the stacking sequence of the CFRP component, are highlighted.

  16. Root parsley protection against damping off

    Directory of Open Access Journals (Sweden)

    Bogdan Nowicki


    Full Text Available Seed treatment ofroot parsley was done to protect Petroselinum santivum seedlings against damping off. Fungicides used as seed dressers were applied in 3 doses: 3, 5 and 10 g/kg. Seeds were treated with 7 dressers (Table l used separately and in mixture with 3 g/kg of Rovral 50 WP (50% iprodione and 1 g/kg of Apron 35 SD (35% metalaxyl. Two seed samples of Berlińska cultivar were used: first sample was strongly infected by Alternaria petroselini and A.radicina both 27,6% and also by Fusarium spp. 5,4% (Test I, and second sample revealed lower percentage of infection 4,6% and 1,2%, respectively (Test II. The experiments were conducted under laboratory, glasshouse and field conditions. Complete seedlings protection in all experiments was achieved for treatments when fungicide mixture was used in the highest dose (10 g/kg. Decrease of fungicides concentrations were connected with lower effectiveness of disease control. No phytotoxic effects of the tested fungicide mixtures were observed under the glasshouse or field conditions.

  17. Investigation of damping liquids for aircraft instruments (United States)

    Keulegan, G H


    This report covers the results of an investigation carried on at the Bureau of Standards under a research authorization from, and with the financial assistance of, the National Advisory Committee for Aeronautics. The choice of a damping liquid for aircraft instruments is difficult owing to the range of temperature at which aircraft operate. Temperature changes affect the viscosity tremendously. The investigation was undertaken with the object of finding liquids of various viscosities otherwise suitable which had a minimum change in viscosity with temperature. The new data relate largely to solutions. The effect of temperature on the kinematic viscosity of the following liquids and solutions was determined in the temperature interval -18 degrees to +30 degrees C. (1) solutions of animal and vegetable oils in xylene. These were poppy-seed oil, two samples of neat's-foot oils, castor oil, and linseed oil. (2) solutions of mineral oil in xylene. These were Squibb's petrolatum of naphthene base and transformer oil. (3) glycerine solutions in ethyl alcohol and in mixture of 50-50 ethyl alcohol and water. (4) mixtures of normal butyl alcohol with methyl alcohol. (5) individual liquids, kerosene, mineral spirits, xylene, recoil oil. The apparatus consisted of four capillary-tube viscometers, which were immersed in a liquid bath in order to secure temperature control. The method of calibration and the related experimental data are presented.

  18. Spring pendulum with dry and viscous damping (United States)

    Butikov, Eugene I.


    Free and forced oscillations of a torsion spring pendulum damped by viscous and dry friction are investigated analytically and with the help of numerical simulations. A simplified mathematical model is assumed (Coulomb law) which nevertheless can explain many peculiarities in behavior of various oscillatory systems with dry friction. The amplitude of free oscillations diminishes under dry friction linearly, and the motion stops after a final number of cycles. The amplitude of sinusoidally driven pendulum with dry friction grows at resonance without limit if the threshold is exceeded. At strong enough non-resonant sinusoidal forcing dry friction causes transients that typically lead to definite limit cycles - periodic steady-state regimes of symmetric non-sticking forced oscillations which are independent of initial conditions. However, at the subharmonic sinusoidal forcing interesting peculiarities of the steady-state response are revealed such as multiple coexisting regimes of asymmetric oscillations that depend on initial conditions. Under certain conditions simple dry friction pendulum shows complicated stick-slip motions and chaos.

  19. Loss of Landau Damping for Bunch Oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Burov, A.; /Fermilab


    Conditions for the existence, uniqueness and stability of self-consistent bunch steady states are considered. For the existence and uniqueness problems, simple algebraic criteria are derived for both the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. The onset of a discrete van Kampen mode means the emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch or multi-turn wake is sufficient to drive the instability. The method presented here assumes an arbitrary impedance, RF shape, and beam distribution function. Available areas on the intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Thresholds calculated for the Tevatron parameters and impedance model are in agreement with the observations. These thresholds are found to be extremely sensitive to the small-argument behaviour of the bunch distribution function. Accordingly, a method to increase the LLD threshold is suggested. This article summarizes and extends recent author's publications.

  20. Physicians' assessments of their ability to provide high-quality care in a changing health care system. (United States)

    Reschovsky, J; Reed, M; Blumenthal, D; Landon, B


    With the growth of managed care, there are increasing concerns but inconclusive evidence regarding deterioration in the quality of medical care. To assess physicians' perceptions of their ability to provide high-quality care and explore what factors, including managed care, affect these perceptions. Bivariate and multivariate analyses of the Community Tracking Study Physician Survey, a cross-sectional, nationally representative telephone survey of 12,385 patient-care physicians conducted in 1996/1997. The response rate was 65%. Physicians who provide direct patient care for > or =20 h/wk, excluding federal employees and those in selected specialties. Level of agreement with 4 statements: 1 regarding overall ability to provide high-quality care and 3 regarding aspects of care delivery associated with quality. Between 21% and 31% of physicians disagreed with the quality statements. Specialists were generally 50% more likely than primary care physicians to express concerns about their ability to provide quality care. Generally, the number of managed care contracts, but not the percent of practice revenue from managed care, was negatively associated with perceived quality. Market-level managed care penetration independently affected physicians' perceptions. Practice setting affected perceptions of quality, with physicians in group settings less likely to express concerns than physicians in solo and 2-physician practices. Specific financial incentives and care management tools had limited positive or negative associations with perceived quality. Managed care involvement is only modestly associated with reduced perceptions of quality among physicians, with some specific tools enhancing perceived quality. Physicians may be able to moderate some negative effects of managed care by altering their practice arrangements.

  1. Medical School Anatomy and Pathology Workshops for High School Students Enhance Learning and Provide Inspiration for Careers in Medicine (United States)

    Fenderson, Bruce A.; Veloski, J. Jon; Livesey, Michael; Wojdon-Smith, Tracey


    “Anatomy and Pathology Workshop” is a cadaver-based outreach program that models medical education to large groups of high school students. This study was designed to evaluate the impact of this program on students’ knowledge of anatomy and interest in biomedical science. A total of 144 high school students participated in the workshop in 2015. Preworkshop and postworkshop assessments were administered to assess students’ learning. A postworkshop survey was conducted to solicit students’ reflections and feedback. It was found that student performance in the postworkshop examination (mean 78%) had significantly improved when compared to the performance in the preexamination (mean 54%), indicating that this program enhances learning. Students were also inspired to consider opportunities in medicine and allied health professions—97% indicated that they had a better understanding of medical education; 95% agreed that they had better understanding of the human body; 84% thought anatomy was interesting and exciting; and 62% of the students indicated that they looked forward to studying medicine or another health profession. Students rated the instructors highly—95% agreed that the instructors were professional and served as role models. Medical/graduate student instructors were also highly regarded by the high school students—96% thought it was valuable to have student instructors and 94% thought that student instructors were caring and enthusiastic about teaching. In summary, this study demonstrates that outreach programs provided by medical schools help young adults during their formative years by modeling professionalism, providing role models, enhancing learning, and encouraging many to consider opportunities in the health professions. PMID:28725784

  2. Determining the effective system damping of highway bridges. (United States)


    This project investigates four methods for modeling modal damping ratios of short-span and isolated : concrete bridges subjected to strong ground motion, which can be used for bridge seismic analysis : and design based on the response spectrum method...

  3. Elasticity modulus and damping ratio of macaw palm rachillas

    National Research Council Canada - National Science Library

    Villar, Flora Maria de Melo; Pinto, Francisco de Assis de Carvalho; Santos, Fábio Lúcio; Grossi, José Antônio Saraiva; Velloso, Nara Silveira


    .... Thus, this study seeks to determine the modulus of elasticity and the damping ratio of four different plant accessions obtained from the Active Germplasm Bank of the Universidade Federal de Viçosa (UFV...

  4. Breathing pulses in the damped-soliton model for nerves (United States)

    Fongang Achu, G.; Moukam Kakmeni, F. M.; Dikande, A. M.


    Unlike the Hodgkin-Huxley picture in which the nerve impulse results from ion exchanges across the cell membrane through ion-gate channels, in the so-called soliton model the impulse is seen as an electromechanical process related to thermodynamical phenomena accompanying the generation of the action potential. In this work, account is taken of the effects of damping on the nerve impulse propagation, within the framework of the soliton model. Applying the reductive perturbation expansion on the resulting KdV-Burgers equation, a damped nonlinear Schrödinger equation is derived and shown to admit breathing-type solitary wave solutions. Under specific constraints, these breathing pulse solitons become self-trapped structures in which the damping is balanced by nonlinearity such that the pulse amplitude remains unchanged even in the presence of damping.

  5. Mimicking an amplitude damping channel for Laguerre Gaussian Modes

    CSIR Research Space (South Africa)

    Dudley, Angela L


    Full Text Available An amplitude damping channel for Laguerre-Gaussian (LG) modes is presented. Experimentally the action of the channel on LG modes is in good agreement with that predicted theoretically....

  6. Nonlinear damped Schrodinger equation in two space dimensions

    Directory of Open Access Journals (Sweden)

    Tarek Saanouni


    Full Text Available In this article, we study the initial value problem for a semi-linear damped Schrodinger equation with exponential growth nonlinearity in two space dimensions. We show global well-posedness and exponential decay.

  7. Projectile Motion with Quadratic Damping in a Constant ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Projectile Motion with Quadratic Damping in a Constant Gravitational Field. Chandra Das Dhiranjan Roy. General Article Volume 19 Issue 5 May 2014 pp 446-465 ...

  8. Damping of Torsional Beam Vibrations by Control of Warping Displacement

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Hoffmeyer, David; Ejlersen, Christian


    Supplemental damping of torsional beam vibrations is considered by viscous bimoments acting on the axial warping displacement at the beam supports. The concept is illustrated by solving the governing eigenvalue problem for various support configurations with the applied bimoments represented...

  9. Mooring line damping estimation for a floating wind turbine. (United States)

    Qiao, Dongsheng; Ou, Jinping


    The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT). Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design.

  10. Mooring Line Damping Estimation for a Floating Wind Turbine

    Directory of Open Access Journals (Sweden)

    Dongsheng Qiao


    Full Text Available The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT. Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design.

  11. HiRadMat at CERN/SPS - A dedicated facility providing high intensity beam pulses to material samples

    CERN Multimedia

    Charitonidis, N; Efthymiopoulos, I


    HiRadMat (High Radiation to Materials), constructed in 2011, is a facility at CERN designed to provide high‐intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, high power beam targets, collimators…) can be tested. The facility uses a 440 GeV proton beam extracted from the CERN SPS with a pulse length of up to 7.2 us, and with a maximum pulse energy of 3.4 MJ (3xE13 proton/pulse). In addition to protons, ion beams with energy of 440 GeV/charge and total pulse energy of 21 kJ can be provided. The beam parameters can be tuned to match the needs of each experiment. HiRadMat is not an irradiation facility where large doses on equipment can be accumulated. It is rather a test area designed to perform single pulse experiments to evaluate the effect of high‐intensity pulsed beams on materials or accelerator component assemblies in a controlled environment. The fa‐ cility is designed for a maximum of 1E16 protons per year, dist...

  12. Ultra-low damping in lift-off structured yttrium iron garnet thin films (United States)

    Krysztofik, A.; Coy, L. E.; Kuświk, P.; Załeski, K.; Głowiński, H.; Dubowik, J.


    We show that using maskless photolithography and the lift-off technique, patterned yttrium iron garnet thin films possessing ultra-low Gilbert damping can be accomplished. The films of 70 nm thickness were grown on (001)-oriented gadolinium gallium garnet by means of pulsed laser deposition, and they exhibit high crystalline quality, low surface roughness, and the effective magnetization of 127 emu/cm3. The Gilbert damping parameter is as low as 5 ×10-4. The obtained structures have well-defined sharp edges which along with good structural and magnetic film properties pave a path in the fabrication of high-quality magnonic circuits and oxide-based spintronic devices.

  13. Dynamics of vibration isolation system with rubber-cord-pneumatic spring with damping throttle (United States)

    Burian, Yu A.; Silkov, M. V.


    The study refers to the important area of applied mechanics; it is the theory of vibration isolation of vibroactive facilities. The design and the issues of mathematical modeling of pneumatic spring perspective design made on the basis of rubber-cord shell with additional volume connected with its primary volume by means of throttle passageway are considered in the text. Damping at the overflow of air through the hole limits the amplitude of oscillation at resonance. But in contrast to conventional systems with viscous damping it does not increase transmission ratio at high frequencies. The mathematical model of suspension allowing selecting options to reduce the power transmission ratio on the foundation, especially in the high frequency range is obtained

  14. Soil Damping at Walney 2 Offshore Wind Farm

    DEFF Research Database (Denmark)

    Andersen, Lars

    The present report presents the results of a finite-element analysis carried out in order to quantify the soil damping for a specific offshore wind turbine to be placed at the Walney 2 site.......The present report presents the results of a finite-element analysis carried out in order to quantify the soil damping for a specific offshore wind turbine to be placed at the Walney 2 site....

  15. Viperid Envenomation Wound Exudate Contributes to Increased Vascular Permeability via a DAMPs/TLR-4 Mediated Pathway (United States)

    Rucavado, Alexandra; Nicolau, Carolina A.; Escalante, Teresa; Kim, Junho; Herrera, Cristina; Gutiérrez, José María; Fox, Jay W.


    Viperid snakebite envenomation is characterized by inflammatory events including increase in vascular permeability. A copious exudate is generated in tissue injected with venom, whose proteomics analysis has provided insights into the mechanisms of venom-induced tissue damage. Hereby it is reported that wound exudate itself has the ability to induce increase in vascular permeability in the skin of mice. Proteomics analysis of exudate revealed the presence of cytokines and chemokines, together with abundant damage associated molecular pattern molecules (DAMPs) resulting from both proteolysis of extracellular matrix and cellular lysis. Moreover, significant differences in the amounts of cytokines/chemokines and DAMPs were detected between exudates collected 1 h and 24 h after envenomation, thus highlighting a complex temporal dynamic in the composition of exudate. Pretreatment of mice with Eritoran, an antagonist of Toll-like receptor 4 (TLR4), significantly reduced the exudate-induced increase in vascular permeability, thus suggesting that DAMPs might be acting through this receptor. It is hypothesized that an “Envenomation-induced DAMPs cycle of tissue damage” may be operating in viperid snakebite envenomation through which venom-induced tissue damage generates a variety of DAMPs which may further expand tissue alterations. PMID:27886127

  16. Effects of extreme wind shear on aeroelastic modal damping of wind turbines

    DEFF Research Database (Denmark)

    Skjoldan, P.F.; Hansen, Morten Hartvig


    to stall. The first longitudinal tower mode decreases slightly in damping, whereas the first flapwise backward whirling and symmetric modes increase in damping. This change in damping is attributed to an interaction between the periodic blade mode shapes and the azimuth-dependent local aerodynamic damping...

  17. Improving capacitance/damping ratio in a capacitive MEMS transducer (United States)

    Dias, Rosana A.; Rocha, Luis A.


    Damping forces play an important role in capacitive MEMS (microelectromechanical systems) behavior, and typical damper design (parallel-plates) cannot address the design conflict between increase in electrical capacitance and damping reduction. Squeeze-film damping in in-plane parallel-plate MEMS is discussed here and a novel damper geometry for gap-varying parallel-plates is introduced and used to increase the capacitance/damping ratio. The new geometry is compared with a typical parallel-plate design for an silicon-on-insulator process (25 µm thick) and experimental data shows an approximate 25% to 50% reduction for the damping coefficient in structures with 500 µm long dampers (for a gap variation between 0.75 and 3.75 µm), in agreement with computational fluid dynamics simulations, without significantly affecting the capacitance value (∼4% reduction). Preliminary simulations to study the role of the different geometric parameters involved in the improved geometry are also performed and reveal that the channel width is the most critical value for effective damping reduction.

  18. Studying low-redshift universe through observation of Damped Lyman-alpha quasar absorbers (United States)

    Gharanfoli, Soheila


    In recent years, an extremely successful method to study galaxy formation and evolution, has been provided by observation of quasar absorbers. Quasar absorbers are systems intercepting our line-of-sight to a given quasar and thus produce a feature in the quasar spectrum, the so-called absorption lines. The Damped Lyman-a (DLA) and sub-Damped Lyman-a (sub-DLA) absorption features in quasar spectra are believed to be produced by intervening galaxies. However, the connection of quasar absorbers to galaxies is not well-understood, since attempts to image the absorbing galaxies have often failed. DLAs and sub-DLAs were originally thought to be the precursors of present day disk galaxies, but there is evidence that they may be dominated by gas-rich, proto-dwarf galaxies representing the basic building blocks of hierarchical growth of structure. While most DLAs appear to be metal-poor, a population of metal-rich absorbers, mostly sub-DLAs, has been discovered in recent spectroscopic studies. It is of great interest to image these metal-rich absorbers, especially with high spatial resolution, to understand the connection between the stellar and interstellar content of the underlying galaxies. This dissertation consists of several projects designed to further our understanding of galaxies and galactic structures associated with intervening quasar absorption lines. Two projects were completed that involved the imaging of 13 DLA/sub-DLA galaxies at z projects, follow-up spectroscopy was performed to confirm the spectroscopic redshifts of the candidate absorbers. In addition, optical and near-infrared spectroscopy provide necessary information to understand the luminosities, dust extinction, and star formation rates and thus the nature of these galaxies. Spectroscopy of 5 DLA/sub-DLA galaxies was performed using the 10-m Keck telescope with LRIS spectrograph, and 8-m Gemini- North telescope with the GMOS spectrograph. Several emission lines (e.g., Ha, Hb, [N II], [O II], [O

  19. Vibration damping and heat transfer using material phase changes (United States)

    Kloucek, Petr [Houston, TX; Reynolds, Daniel R [Oakland, CA


    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  20. Vibration damping and heat transfer using material phase changes (United States)

    Kloucek, Petr (Inventor); Reynolds, Daniel R. (Inventor)


    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.