WorldWideScience

Sample records for proven reactor technology

  1. Defining the "proven technology" technical criterion in the reactor technology assessment for Malaysia's nuclear power program

    Science.gov (United States)

    Anuar, Nuraslinda; Kahar, Wan Shakirah Wan Abdul; Manan, Jamal Abdul Nasir Abd

    2015-04-01

    Developing countries that are considering the deployment of nuclear power plants (NPPs) in the near future need to perform reactor technology assessment (RTA) in order to select the most suitable reactor design. The International Atomic Energy Agency (IAEA) reported in the Common User Considerations (CUC) document that "proven technology" is one of the most important technical criteria for newcomer countries in performing the RTA. The qualitative description of five desired features for "proven technology" is relatively broad and only provides a general guideline to its characterization. This paper proposes a methodology to define the "proven technology" term according to a specific country's requirements using a three-stage evaluation process. The first evaluation stage screens the available technologies in the market against a predefined minimum Technology Readiness Level (TRL) derived as a condition based on national needs and policy objectives. The result is a list of technology options, which are then assessed in the second evaluation stage against quantitative definitions of CUC desired features for proven technology. The potential technology candidates produced from this evaluation is further narrowed down to obtain a list of proven technology candidates by assessing them against selected risk criteria and the established maximum allowable total score using a scoring matrix. The outcome of this methodology is the proven technology candidates selected using an accurate definition of "proven technology" that fulfills the policy objectives, national needs and risk, and country-specific CUC desired features of the country that performs this assessment. A simplified assessment for Malaysia is carried out to demonstrate and suggest the use of the proposed methodology. In this exercise, ABWR, AP1000, APR1400 and EPR designs assumed the top-ranks of proven technology candidates according to Malaysia's definition of "proven technology".

  2. Defining the “proven technology” technical criterion in the reactor technology assessment for Malaysia’s nuclear power program

    Energy Technology Data Exchange (ETDEWEB)

    Anuar, Nuraslinda, E-mail: nuraslinda@uniten.edu.my [College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Kahar, Wan Shakirah Wan Abdul, E-mail: shakirah@tnb.com.my; Manan, Jamal Abdul Nasir Abd [Nuclear Energy Department, Regulatory Economics and Planning Division, Tenaga Nasional Berhad, No. 8 Jalan Tun Sambanthan, Brickfields, 50470 Kuala Lumpur (Malaysia)

    2015-04-29

    Developing countries that are considering the deployment of nuclear power plants (NPPs) in the near future need to perform reactor technology assessment (RTA) in order to select the most suitable reactor design. The International Atomic Energy Agency (IAEA) reported in the Common User Considerations (CUC) document that “proven technology” is one of the most important technical criteria for newcomer countries in performing the RTA. The qualitative description of five desired features for “proven technology” is relatively broad and only provides a general guideline to its characterization. This paper proposes a methodology to define the “proven technology” term according to a specific country’s requirements using a three-stage evaluation process. The first evaluation stage screens the available technologies in the market against a predefined minimum Technology Readiness Level (TRL) derived as a condition based on national needs and policy objectives. The result is a list of technology options, which are then assessed in the second evaluation stage against quantitative definitions of CUC desired features for proven technology. The potential technology candidates produced from this evaluation is further narrowed down to obtain a list of proven technology candidates by assessing them against selected risk criteria and the established maximum allowable total score using a scoring matrix. The outcome of this methodology is the proven technology candidates selected using an accurate definition of “proven technology” that fulfills the policy objectives, national needs and risk, and country-specific CUC desired features of the country that performs this assessment. A simplified assessment for Malaysia is carried out to demonstrate and suggest the use of the proposed methodology. In this exercise, ABWR, AP1000, APR1400 and EPR designs assumed the top-ranks of proven technology candidates according to Malaysia’s definition of “proven technology”.

  3. Defining the “proven technology” technical criterion in the reactor technology assessment for Malaysia’s nuclear power program

    International Nuclear Information System (INIS)

    Anuar, Nuraslinda; Kahar, Wan Shakirah Wan Abdul; Manan, Jamal Abdul Nasir Abd

    2015-01-01

    Developing countries that are considering the deployment of nuclear power plants (NPPs) in the near future need to perform reactor technology assessment (RTA) in order to select the most suitable reactor design. The International Atomic Energy Agency (IAEA) reported in the Common User Considerations (CUC) document that “proven technology” is one of the most important technical criteria for newcomer countries in performing the RTA. The qualitative description of five desired features for “proven technology” is relatively broad and only provides a general guideline to its characterization. This paper proposes a methodology to define the “proven technology” term according to a specific country’s requirements using a three-stage evaluation process. The first evaluation stage screens the available technologies in the market against a predefined minimum Technology Readiness Level (TRL) derived as a condition based on national needs and policy objectives. The result is a list of technology options, which are then assessed in the second evaluation stage against quantitative definitions of CUC desired features for proven technology. The potential technology candidates produced from this evaluation is further narrowed down to obtain a list of proven technology candidates by assessing them against selected risk criteria and the established maximum allowable total score using a scoring matrix. The outcome of this methodology is the proven technology candidates selected using an accurate definition of “proven technology” that fulfills the policy objectives, national needs and risk, and country-specific CUC desired features of the country that performs this assessment. A simplified assessment for Malaysia is carried out to demonstrate and suggest the use of the proposed methodology. In this exercise, ABWR, AP1000, APR1400 and EPR designs assumed the top-ranks of proven technology candidates according to Malaysia’s definition of “proven technology”

  4. Proven commercial reactor types: an introduction to their principal advantages and disadvantages

    International Nuclear Information System (INIS)

    Alesso, H.P.

    1981-01-01

    This study deals with the principal advantages and disadvantages of the five types of proven commercial reactors. A description of each class of commercial reactor (light water, gas-cooled, and heavy water) and their proven reactors is followed by a comparison of reactor types on the basis of technical merit, economics of operation, availability of technology, and associated political issues. (author)

  5. A mechanism for proven technology foresight for emerging fast reactor designs and concepts

    International Nuclear Information System (INIS)

    Anuar, Nuraslinda; Muhamad Pauzi, Anas

    2016-01-01

    The assessment of emerging nuclear fast reactor designs and concepts viability requires a combination of foresight methods. A mechanism that allows for the comparison and quantification of the possibility of being a proven technology in the future, β for the existing fast reactor designs and concepts is proposed as one of the quantitative foresight method. The methodology starts with the identification at the national or regional level, of the factors that would affect β. The factors are then categorized into several groups; economic, social and technology elements. Each of the elements is proposed to be mathematically modelled before all of the elemental models can be combined. Once the overall β model is obtained, the β min is determined to benchmark the acceptance as a candidate design or concept. The β values for all the available designs and concepts are then determined and compared with the β min , resulting in a list of candidate designs that possess the β value that is larger than the β min . The proposed methodology can also be applied to purposes other than technological foresight

  6. A mechanism for proven technology foresight for emerging fast reactor designs and concepts

    Energy Technology Data Exchange (ETDEWEB)

    Anuar, Nuraslinda, E-mail: nuraslinda@uniten.edu.my; Muhamad Pauzi, Anas, E-mail: anas@uniten.edu.my [College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    The assessment of emerging nuclear fast reactor designs and concepts viability requires a combination of foresight methods. A mechanism that allows for the comparison and quantification of the possibility of being a proven technology in the future, β for the existing fast reactor designs and concepts is proposed as one of the quantitative foresight method. The methodology starts with the identification at the national or regional level, of the factors that would affect β. The factors are then categorized into several groups; economic, social and technology elements. Each of the elements is proposed to be mathematically modelled before all of the elemental models can be combined. Once the overall β model is obtained, the β{sub min} is determined to benchmark the acceptance as a candidate design or concept. The β values for all the available designs and concepts are then determined and compared with the β{sub min}, resulting in a list of candidate designs that possess the β value that is larger than the β{sub min}. The proposed methodology can also be applied to purposes other than technological foresight.

  7. A new small modular high-temperature gas-cooled reactor plant concept based on proven technology

    International Nuclear Information System (INIS)

    McDonald, C.F.; Goodjohn, A.J.

    1982-01-01

    Based on the established and proven high-temperature gas-cooled reactor (HTGR) technologies from the Peach Bottom 1 and Fort St. Vrain utility-operated units, a new small modular HTGR reactor is currently being evaluated. The basic nuclear reactor heat source, with a prismatic core, is being designed so that the decay heat can be removed by passive means (i.e., natural circulation). Although this concept is still in the preconceptual design stage, emphasis is being placed on establishing an inherently safe or benign concept which, when engineered, will have acceptable capital cost and power generation economics. The proposed new HTGR concept has a variety of applications, including electrical power generation, cogeneration, and high-temperature process heat. This paper discusses the simplest application, i.e., a steam Rankine cycle electrical power generating version. The gas-cooled modular reactor concepts presented are based on a graphite moderated prismatic core of low-power density (i.e., 4.1 W/cm 3 ) with a thermal rating of 250 MW(t). With the potential for inherently safe characteristics, a new small reactor could be sited close to industrial and urban areas to provide electrical power and thermal heating needs (i.e., district and space heating). Incorporating a multiplicity of small modular units to provide a larger power output is also discussed. The potential for a small, inherently safe HTGR reactor concept is highlighted

  8. Cryogenics in nuclear reactor technology

    International Nuclear Information System (INIS)

    Dharmadurai, G.

    1982-01-01

    The cryogenic technology has significantly contributed to the development of several proven techniques for use in the nuclear power industry. A noteworthy feature is the unique role of cryogenics in minimising the release of radioactive and some chemical pollutants to the environment during the operation of various plants associated with this industry. The salient technological features of several cryogenic processes relevant to the nuclear reactor technology are discussed. (author)

  9. Different types of power reactors and provenness

    International Nuclear Information System (INIS)

    Goodman, E.I.

    1977-01-01

    The lecture guides the potential buyer in the selection of a reactor type. Recommended criteria regarding provenness, licensability, and contractual arrangements are defined and discussed. Tabular data summarizing operating experience and commercial availability of units are presented and discussed. The status of small and medium power reactors which are of interest to many developing countries is presented. It is stressed that each prospective buyer will have to establish his own criteria based on specific conditions which will be applied to reactor selection. In all cases it will be found that selection, either pre-selection of bidders or final selection of supplier, will be a fairly complex evaluation. (orig.) [de

  10. Experience in Reviewing Small Modular Reactor Technology

    International Nuclear Information System (INIS)

    Ahmad Nabil Abdul Rahim; Alfred, S.L.; Phongsakorn, P.

    2015-01-01

    Malaysia is in the stage of conducting Preliminary Technical Feasibility Study for the Deployment of Small Modular Reactor (SMR). There are different types of SMR, some already under construction in Argentina (CAREM) and China (HTR-PM) - (light water reactor and high temperature reactor technologies), others with near-term deployment such as SMART in South Korea, ACP100 in China, mPower and NuScale in the US, and others with longer term deployment prospects (liquid-metal cooled reactor technologies). The study was mainly to get an overview of the technology available in the market. The SMR ranking in the study was done through listing out the most deployable technology in the market according to their types. As a new comer country, the proven technology with an excellent operation history will usually be the main consideration points. (author)

  11. The status and prospects of nuclear reactor technology development

    International Nuclear Information System (INIS)

    Juhn, P.E.

    2001-01-01

    Nuclear power is a proven technology which currently contributes about 16% to the world electricity supply and, to a much lesser extent, to heat supply in some countries. Nuclear Power is economically competitive with fossil fuels for base load electricity generation in many countries, and is one of the commercially proven energy supply options that could be extended in the future to reduce environmental burdens, especially greenhouse gas emissions, from the electricity sector. Over the past five decades, nearly ten thousand reactor-years of operating experience have been accumulated with current nuclear power plants. However, nuclear power is currently at a cross-road. There are no new nuclear power construction projects in most parts of the world, except some countries in East Asia and Eastern Europe. The main issues are economic competitiveness with cheap gas plants and public concerns on nuclear waste disposal and safety. Strong economic growth and the shrinking of existing electricity over-capacities could favour nuclear power. Since nuclear power emits no greenhouse gases to the environment, its development could be further accelerated by a breakthrough in innovative nuclear reactor technology development. Great attention also needs to be paid to the design of new nuclear reactors, which are modularized and faster to construct, thus reducing capital investment and construction period, and thereby improving their overall economics and their compatibility with the infrastructure of, in particular, developing countries, where new energy demands are expected. This paper discusses the future world energy outlook, challenges for and progresses on nuclear power; overview of new nuclear reactor technology development; and the role of the International Atomic Energy Agency (IAEA) in the development of new innovative nuclear reactors. (author)

  12. Improving economics and safety of water cooled reactors. Proven means and new approaches

    International Nuclear Information System (INIS)

    2002-05-01

    Nuclear power plants (NPPs) with water cooled reactors [either light water reactors (LWRs) or heavy water reactors (HWRs)] constitute the large majority of the currently operating plants. Water cooled reactors can make a significant contribution to meeting future energy needs, to reducing greenhouse gas emissions, and to energy security if they can compete economically with fossil alternatives, while continuing to achieve a very high level of safety. It is generally agreed that the largest commercial barrier to the addition of new nuclear power capacity is the high capital cost of nuclear plants relative to other electricity generating alternatives. If nuclear plants are to form part of the future generating mix in competitive electricity markets, capital cost reduction through simplified designs must be an important focus. Reductions in operating, maintenance and fuel costs should also be pursued. The Department of Nuclear Energy of the IAEA is examining the competitiveness of nuclear power and the means for improving its economics. The objective of this TECDOC is to emphasize the need, and to identify approaches, for new nuclear plants with water cooled reactors to achieve competitiveness while maintaining high levels of safety. The cost reduction methods discussed herein can be implemented into plant designs that are currently under development as well as into designs that may be developed in the longer term. Many of the approaches discussed also generally apply to other reactor types (e.g. gas cooled and liquid metal cooled reactors). To achieve the largest possible cost reductions, proven means for reducing costs must be fully implemented, and new approaches described in this document should be developed and implemented. These new approaches include development of advanced technologies, increased use of risk-informed methods for evaluating the safety benefit of design features, and international consensus regarding commonly acceptable safety requirements that

  13. Improving economics and safety of water cooled reactors. Proven means and new approaches

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    Nuclear power plants (NPPs) with water cooled reactors [either light water reactors (LWRs) or heavy water reactors (HWRs)] constitute the large majority of the currently operating plants. Water cooled reactors can make a significant contribution to meeting future energy needs, to reducing greenhouse gas emissions, and to energy security if they can compete economically with fossil alternatives, while continuing to achieve a very high level of safety. It is generally agreed that the largest commercial barrier to the addition of new nuclear power capacity is the high capital cost of nuclear plants relative to other electricity generating alternatives. If nuclear plants are to form part of the future generating mix in competitive electricity markets, capital cost reduction through simplified designs must be an important focus. Reductions in operating, maintenance and fuel costs should also be pursued. The Department of Nuclear Energy of the IAEA is examining the competitiveness of nuclear power and the means for improving its economics. The objective of this TECDOC is to emphasize the need, and to identify approaches, for new nuclear plants with water cooled reactors to achieve competitiveness while maintaining high levels of safety. The cost reduction methods discussed herein can be implemented into plant designs that are currently under development as well as into designs that may be developed in the longer term. Many of the approaches discussed also generally apply to other reactor types (e.g. gas cooled and liquid metal cooled reactors). To achieve the largest possible cost reductions, proven means for reducing costs must be fully implemented, and new approaches described in this document should be developed and implemented. These new approaches include development of advanced technologies, increased use of risk-informed methods for evaluating the safety benefit of design features, and international consensus regarding commonly acceptable safety requirements that

  14. Enhanced CANDU 6 (EC6): a proven mid-sized reactor with fuel cycle capability

    International Nuclear Information System (INIS)

    Hopwood, J.; Soulard, M.; Hastings, I.J.

    2011-01-01

    Atomic Energy of Canada (AECL) is finalizing development of the Enhanced CANDU 6 (EC6), which incorporates the CANDU 6's well-proven features, and adds enhancements that make the reactor even more safe and easier to operate. The EC6 is the only mid-sized reactor (700 MWe class) with a proven pedigree that meets modern reactor expectations and regulatory standards. It is sized for smaller grids and also has outstanding fuel-cycle capability. Changes are incremental and consistent with the CANDU 6 project approach. The EC6 utilizes modern computers and a distributed control system housed in an advanced control room which, along with automated testing and on-line diagnostics, make the plant easier and safer to operate, with minimal operator intervention. Containment and seismic capability are upgraded to meet modern standards. The first deployment of the EC6 is anticipated in Canada; international markets are also being pursued. AECL is performing a comprehensive review of the EC6 design in the wake of the Fukushima accident, will review lessons learned, and incorporate any necessary improvements into new build design. (author)

  15. Enhanced CANDU 6 (EC6): a proven mid-sized reactor with fuel cycle capability

    International Nuclear Information System (INIS)

    Hopwood, J.; Soulard, M.; Hastings, I.J.

    2011-01-01

    Atomic Energy of Canada (AECL) is finalizing development of the Enhanced CANDU 6 (EC6), which incorporates the CANDU 6's well-proven features, and enhancements that make the reactor even more safe and easier to operate. The EC6 is the only mid-sized reactor (700 MWe class) with a proven pedigree that meets modern reactor expectations and regulatory standards. It is sized for smaller grids and also has outstanding fuel-cycle capability. Changes are incremental and consistent with the CANDU 6 project approach. The EC6 utilizes modern computers and a distributed control system housed in an advanced control room which, along with automated testing and on-line diagnostics, make the plant easier and safer to operate, with minimal operator intervention. Containment and seismic capability are upgraded to meet modern standards. The first deployment of the EC6 is anticipated in Canada; international markets are also being pursued. AECL is performing a comprehensive review of the EC6 design in the wake of the Fukushima accident, will review lessons learned, and incorporate any necessary improvements into new build design. (author)

  16. The Westinghouse AP1000 plant design: a generation III+ reactor with unique proven passive safety technology

    International Nuclear Information System (INIS)

    Demetri, K. J.; Leipner, C. I.; Marshall, M. L.

    2015-09-01

    The AP1000 plant is an 1100-M We pressurized water reactor with passive safety features and extensive plant simplifications and standardization that simplify construction, operation, maintenance, safety, and cost. The AP1000 plant is based on proven pressurized water reactor (PWR) technology, with an emphasis on safety features that rely solely on natural forces. These passive safety features are combined with simple, active, defense-in-depth systems used during normal plant operations which also provide the first level of defense against more probable events. This paper focuses on specific safety and licensing topics: the AP1000 plant robustness to be prepared for extreme events that may lead to catastrophic loss of infrastructure, such as the Fukushima Dai-ichi event, and the AP1000 plant compliance with the safety objectives for new plants. The first deployment of the AP1000 plant formally began in July 2007 when Westinghouse Electric Company and its consortium partner, the Shaw Group, signed contracts for four AP1000 units on coastal sites of Sanmen and Haiyang, China. Both sites have the planned ability to accommodate at least six AP1000 units; construction is largely concurrent for all four units. Additionally, the United States (U.S.) Nuclear Regulatory Commission (NRC) issued combined licenses (COLs) to allow Southern Nuclear Operating Company (SNC) and South Carolina Electric and Gas Company (SCE and G) to construct and operate AP1000 plants. Within this paper, the various factors that contribute to an unparalleled level of design, construction, delivery, and licensing certainty for any new AP1000 plant projects are described. These include: 1) How the AP1000 plant design development and reviews undertaken in the United States, China and Europe increase licensing certainty. 2) How the AP1000 passive plant robustness against extreme events that result in large loss of infrastructure further contributes to the licensing certainty in a post

  17. The Westinghouse AP1000 plant design: a generation III+ reactor with unique proven passive safety technology

    Energy Technology Data Exchange (ETDEWEB)

    Demetri, K. J.; Leipner, C. I.; Marshall, M. L., E-mail: demetrkj@westinghouse.com [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2015-09-15

    The AP1000 plant is an 1100-M We pressurized water reactor with passive safety features and extensive plant simplifications and standardization that simplify construction, operation, maintenance, safety, and cost. The AP1000 plant is based on proven pressurized water reactor (PWR) technology, with an emphasis on safety features that rely solely on natural forces. These passive safety features are combined with simple, active, defense-in-depth systems used during normal plant operations which also provide the first level of defense against more probable events. This paper focuses on specific safety and licensing topics: the AP1000 plant robustness to be prepared for extreme events that may lead to catastrophic loss of infrastructure, such as the Fukushima Dai-ichi event, and the AP1000 plant compliance with the safety objectives for new plants. The first deployment of the AP1000 plant formally began in July 2007 when Westinghouse Electric Company and its consortium partner, the Shaw Group, signed contracts for four AP1000 units on coastal sites of Sanmen and Haiyang, China. Both sites have the planned ability to accommodate at least six AP1000 units; construction is largely concurrent for all four units. Additionally, the United States (U.S.) Nuclear Regulatory Commission (NRC) issued combined licenses (COLs) to allow Southern Nuclear Operating Company (SNC) and South Carolina Electric and Gas Company (SCE and G) to construct and operate AP1000 plants. Within this paper, the various factors that contribute to an unparalleled level of design, construction, delivery, and licensing certainty for any new AP1000 plant projects are described. These include: 1) How the AP1000 plant design development and reviews undertaken in the United States, China and Europe increase licensing certainty. 2) How the AP1000 passive plant robustness against extreme events that result in large loss of infrastructure further contributes to the licensing certainty in a post

  18. Status and development potential of proven reactor types and fuel cycles, and their role in a medium-to-long range energy supply strategy

    International Nuclear Information System (INIS)

    Maerkl, H.

    1982-01-01

    After a general review of the present world-wide energy situation (with particular reference to those of the Federal Republic of Germany and of Argentina) the possible contribution of nuclear energy in general, and of proven light water and heavy water reactor types in particular, to meeting the energy demand is discussed. The technical and economic development potential of those reactors is evaluated, both regarding plant components technology as well as fuel and fuel cycle improvement, with special emphasis on the Pressure Vessel Heavy Water Reactor type. The last section presents some results of nuclear reactor strategy calculations made for a scenario similar to that of Argentina over the period from 1970 through 2040 and involving the use of: A) heavy water reactors (HWR's) only, with and without plutonium recycling, and B) the use of HWR's plus fast breeder reactors. (M.E.L.) [es

  19. Strategies of development of reactor types

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    The development of nuclear energy in the coming decades will depend on the goals followed, on the available technologies and on the strategies implemented in the world in agreement with public acceptation. This article is limited to the technical aspects of the strategies of development of reactor types: 1 - objectives; 2 - common constraints to all reactor types: safety and terrorism risks, wastes, non-proliferation, economics; 3 - different reactor types: general considerations, proven technologies (PWR, BWR, Candu), non-proven technologies but having an important experience, technologies at the design stage; 4 - energy systems and 'Generation IV forum': systems based on thermal neutron reactors and low enrichment, systems for the valorization of 238 U, systems for Pu burning, systems allowing the destruction of minor actinides, thorium-based systems, the Gen IV international forum; 5 - conclusion. (J.S.)

  20. The ENABLER—based on proven NERVA technology

    Science.gov (United States)

    Livingston, Julie M.; Pierce, Bill L.

    1991-01-01

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial Mass In Low Earth Orbit (IMLEO) and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tomorrow's space propulsion needs.

  1. The ENABLER---based on proven NERVA technology

    International Nuclear Information System (INIS)

    Livingston, J.M.; Pierce, B.L.

    1991-01-01

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial Mass In Low Earth Orbit (IMLEO) and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tomorrow's space propulsion needs

  2. The ENABLER - Based on proven NERVA technology

    International Nuclear Information System (INIS)

    Livingston, J.M.; Pierce, B.L.

    1991-01-01

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs

  3. The ENABLER - Based on proven NERVA technology

    Science.gov (United States)

    Livingston, Julie M.; Pierce, Bill L.

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs.

  4. Iris reactor conceptual design

    International Nuclear Information System (INIS)

    Carelli, M.D.; Conway, L.E.; Petrovic, B.; Paramonov, D.V.; Galvin, M.; Todreas, N.E.; Lombardi, C.V.; Maldari, F.; Ricotti, M.E.; Cinotti, L.

    2001-01-01

    IRIS (International Reactor Innovative and Secure) is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., proliferation resistance, enhanced safety, improved economics and fuel cycle sustainability. It relies on the proven technology of light water reactors and features innovative engineering, but it does not require new technology development. This paper discusses the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and five-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. (author)

  5. Ship propulsion reactors technology

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2002-01-01

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  6. Development of Safety Analysis Technology for Integral Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, S. K. [Korea Atomic Energy Research Institute, Taejeon (Korea); Seul, K. W.; Kim, W. S.; Kim, W. K.; Yun, Y. G.; Ahn, H. J.; Lee, J. S.; Sin, A. D. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2000-03-01

    The Nuclear Desalination Plant(NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in a present study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated based on the design of foreign and domestic integral reactors. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current and advanced reactor designs, and use requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified. They includes the use of proven technology for new safety systems, the systematic classification and selection of design basis accidents, and the safety assurance of desalination-related systems. These efforts to identify and resolve the safety concerns in the design stage will provide the early confidence of SMART safety to designers, and the technical basis to evaluate the safety to reviewers in the future. 8 refs., 20 figs., 4 tabs. (Author)

  7. Gas reactor international cooperative program interim report: German Pebble Bed Reactor design and technology review

    International Nuclear Information System (INIS)

    1978-09-01

    This report describes and evaluates several gas-cooled reactor plant concepts under development within the Federal Republic of Germany (FRG). The concepts, based upon the use of a proven Pebble Bed Reactor (PBR) fuel element design, include nuclear heat generation for chemical processes and electrical power generation. Processes under consideration for the nuclear process heat plant (PNP) include hydrogasification of coal, steam gasification of coal, combined process, and long-distance chemical heat transportation. The electric plant emphasized in the report is the steam turbine cycle (HTR-K), although the gas turbine cycle (HHT) is also discussed. The study is a detailed description and evaluation of the nuclear portion of the various plants. The general conclusions are that the PBR technology is sound and that the HTR-K and PNP plant concepts appear to be achievable through appropriate continuing development programs, most of which are either under way or planned

  8. Advanced Reactor Technologies - Regulatory Technology Development Plan (RTDP)

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-08-23

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  9. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne Leland [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  10. Department of reactor technology

    International Nuclear Information System (INIS)

    1980-01-01

    The activities of the Department of Reactor Technology at Risoe during 1979 are described. The work is presented in five chapters: Reactor Engineering, Reactor Physics and Dynamics, Heat Transfer and Hydraulics, The DR 1 Reactor, and Non-Nuclear Activities. A list of the staff and of publications is included. (author)

  11. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bahri, Che Nor Aniza Che Zainul, E-mail: anizazainul@gmail.com; Majid, Amran Ab.; Al-Areqi, Wadeeah M. [Nuclear Science Program, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-04-29

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  12. Reactors based on CANDU technology

    International Nuclear Information System (INIS)

    Bjegun, S.V.; Shirokov, S.V.

    2012-01-01

    The paper analyzes the use CANDU technology in world nuclear energy. Advantages and disadvantages in implementation of this technology are considered in terms of economic and technical aspects. Technological issues related to the use of CANDU reactors and nuclear safety issues are outlined. Risks from implementation of this reactor technology in nuclear energy of Ukraine are determined

  13. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    International Nuclear Information System (INIS)

    Moe, Wayne Leland

    2015-01-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a ''critical path'' for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain ''minimum'' levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial ''first step'' in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by

  14. Development of safety analysis technology for integral reactor; evaluation on safety concerns of integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Chul; Kim, Woong Sik; Lee, J. H. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2002-03-01

    The Nuclear Desalination Plant (NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in this study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current light water reactor and advanced reactor designs, and user requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified and discussed. They include the use of proven technology for new safety features, systematic event classification and selection, strengthening containment function, and the safety impacts on desalination-related systems. The study presents the general safety requirements applicable to licensing of an integral reactor and suggests additional regulatory requirements, which need to be developed, based on the direction to resolution of the safety concerns. The efforts to identify and technically resolve the safety concerns in the design stage will provide the early confidence of SMART safety and the technical basis to evaluate the safety to designers and reviewers in the future. Suggestion on the development of additional regulatory requirements will contribute for the regulator to taking actions for licensing of an integral reactor. 66 refs., 5 figs., 24 tabs. (Author)

  15. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  16. Department of Reactor Technology

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included.......The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included....

  17. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  18. Molten Salt Reactor in the Overview and Perspective of Technological Assessment

    International Nuclear Information System (INIS)

    Julia Abdul Karim; Khaironie Md Takip; Muhammad Khairul Arif Mustafa; Mohd Hairie Rabir; Lanyau, T.; Tom, P.P.

    2016-01-01

    Full text: A Molten Salt Reactor (MSR) is unique in its characteristics that offer safer operation, deliver efficient power output that can assure in the sustainable energy production without CO_2 emissions. Several concepts of this kind of reactor have been proposed by stake holder with different design and configuration and up to date they are exasperating to obtain an optimum workable solution to the fuel salt composition in the foresee of neutronic properties, operating temperature, actinide and fission products solubility, chemical control and processing, materials compatibility and handling of waste. Hence, these key issues are wide open as the potential Research and Development in the specific areas of studies. In addition to that, concern arise in the viewpoint of socioeconomic, politics, public acceptance, safety and security, proven technology, proliferation resistance and physical protection that also need to give special attention in problem solving. The worldwide collaboration through Gen IV International Forum has discussed the potential of MSR and addresses on the issues globally. Recently, Malaysia has taken an initiative aiming to participate in MSR studies due to its potential as an energy source using thorium. Therefore, this paper is focusing on the technology assessment for Thorium-breeding Molten Salt Reactor (TMSR) especially on the ability of utilizing thorium as fuel. This assessment also will help to enhance the understanding of thorium beneficiation to cater for the energy demand. (author)

  19. Status of advanced technology and design for water cooled reactors: Heavy water reactors

    International Nuclear Information System (INIS)

    1989-07-01

    In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of the IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors, has been undertaken to document the major current activities and trends of technological improvement and development for future water reactors. Part I of the report dealing with Light Water Reactors (LWRs) was published in 1988 (IAEA-TECDOC-479). Part II of the report covers Heavy Water Reactors (HWRs) and has now been prepared. This report is based largely upon submissions from Member States. It has been supplemented by material from the presentations at the IAEA Technical Committee and Workshop on Progress in Heavy Water Reactor Design and Technology held in Montreal, Canada, December 6-9, 1988. It is hoped that this part of the report, containing the status of advanced heavy water reactor technology up to 1988 and ongoing development programmes will aid in disseminating information to Member States and in stimulating international cooperation. Refs, figs and tabs

  20. Advanced nuclear reactor types and technologies

    International Nuclear Information System (INIS)

    Ignatiev, V.; Devell, L.

    1995-01-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary

  1. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V [ed.; Feinberg, O; Morozov, A [Russian Research Centre ` Kurchatov Institute` , Moscow (Russian Federation); Devell, L [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  2. Advances in light water reactor technologies

    CERN Document Server

    Saito, Takehiko; Ishiwatari, Yuki; Oka, Yoshiaki

    2010-01-01

    ""Advances in Light Water Reactor Technologies"" focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested

  3. Status of liquid metal cooled fast reactor technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants Refs, figs, tabs

  4. Status of liquid metal cooled fast reactor technology

    International Nuclear Information System (INIS)

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants

  5. Current Abstracts Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bales, J.D.; Hicks, S.C. [eds.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  6. Virtual maintenance technology for reactor system based on PPR technology

    International Nuclear Information System (INIS)

    Wu Yaxiang; Ma Baiyong

    2009-01-01

    Based on the Product, Process and Resources (PPR) technology, the establishing technology of virtual maintenance environment for the reactor system and the process structure tree for virtual maintenance is studied, and the flow for the maintainability design and simulation for reactor system is put forward. Based on the subsection simulation of maintenance process and layered design of maintenance actions, the leveled structure of the reactor system virtual maintenance task is studied. The relation for the data of product, process and resource is described by Plan Evaluation and Review Technology (PERT) diagram to define the maintenance operation. (authors)

  7. Reactor and process design in sustainable energy technology

    CERN Document Server

    Shi, Fan

    2014-01-01

    Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy techn...

  8. The experimental and technological developments reactor

    International Nuclear Information System (INIS)

    Carbonnier, J.L.

    2003-01-01

    THis presentation concerns the REDT, gas coolant reactor for experimental and technological developments. The specifications and the research programs concerning this reactor are detailed;: materials, safety aspects, core physic, the corresponding fuel cycle, the reactor cycle and the program management. (A.L.B.)

  9. Reactor science and technology: operation and control of reactors

    International Nuclear Information System (INIS)

    Qiu Junlong

    1994-01-01

    This article is a collection of short reports on reactor operation and research in China in 1991. The operation of and research activities linked with the Heavy Water Research Reactor, Swimming Pool Reactor and Miniature Neutron Source Reactor are briefly surveyed. A number of papers then follow on the developing strategies in Chinese fast breeder reactor technology including the conceptual design of an experimental fast reactor (FFR), theoretical studies of FFR thermo-hydraulics and a design for an immersed sodium flowmeter. Reactor physics studies cover a range of topics including several related to work on zero power reactors. The section on reactor safety analysis is concerned largely with the assessment of established, and the presentation of new, computer codes for use in PWR safety calculations. Experimental and theoretical studies of fuels and reactor materials for FBRs, PWRs, BWRs and fusion reactors are described. A final miscellaneous section covers Mo-Tc isotope production in the swimming pool reactor, convective heat transfer in tubes and diffusion of tritium through plastic/aluminium composite films and Li 2 SiO 3 . (UK)

  10. Development of mechanical design technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were setup, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  11. Development of mechanical design technology for integral reactor

    International Nuclear Information System (INIS)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were set up, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  12. Reactor technology assessment and selection utilizing systems engineering approach

    Science.gov (United States)

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-01

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  13. Systemization of Design and Analysis Technology for Advanced Reactor

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Lee, J.; Zee, S. K.

    2009-01-01

    The present study is performed to establish the base for the license application of the original technology by systemization and enhancement of the technology that is indispensable for the design and analysis of the advanced reactors including integral reactors. Technical reports and topical reports are prepared for this purpose on some important design/analysis methodology; design and analysis computer programs, structural integrity evaluation of main components and structures, digital I and C systems and man-machine interface design. PPS design concept is complemented reflecting typical safety analysis results. And test plans and requirements are developed for the verification of the advanced reactor technology. Moreover, studies are performed to draw up plans to apply to current or advanced power reactors the original technologies or base technologies such as patents, computer programs, test results, design concepts of the systems and components of the advanced reactors. Finally, pending issues are studied of the advanced reactors to improve the economics and technology realization

  14. Thermodynamic Simulation of Equilibrium Composition of Reaction Products at Dehydration of a Technological Channel in a Uranium-Graphite Reactor

    Science.gov (United States)

    Pavliuk, A. O.; Zagumennov, V. S.; Kotlyarevskiy, S. G.; Bespala, E. V.

    2018-01-01

    The problems of accumulation of nuclear fuel spills in the graphite stack in the course of operation of uranium-graphite nuclear reactors are considered. The results of thermodynamic analysis of the processes in the graphite stack at dehydration of a technological channel, fuel element shell unsealing and migration of fission products, and activation of stable nuclides in structural elements of the reactor and actinides inside the graphite moderator are given. The main chemical reactions and compounds that are produced in these modes in the reactor channel during its operation and that may be hazardous after its shutdown and decommissioning are presented. Thermodynamic simulation of the equilibrium composition is performed using the specialized code TERRA. The results of thermodynamic simulation of the equilibrium composition in different cases of technological channel dehydration in the course of the reactor operation show that, if the temperature inside the active core of the nuclear reactor increases to the melting temperature of the fuel element, oxides and carbides of nuclear fuel are produced. The mathematical model of the nonstationary heat transfer in a graphite stack of a uranium-graphite reactor in the case of the technological channel dehydration is presented. The results of calculated temperature evolution at the center of the fuel element, the replaceable graphite element, the air gap, and in the surface layer of the block graphite are given. The numerical results show that, in the case of dehydration of the technological channel in the uranium-graphite reactor with metallic uranium, the main reaction product is uranium dioxide UO2 in the condensed phase. Low probability of production of pyrophoric uranium compounds (UH3) in the graphite stack is proven, which allows one to disassemble the graphite stack without the risk of spontaneous graphite ignition in the course of decommissioning of the uranium-graphite nuclear reactor.

  15. Preliminary nuclear power reactor technology qualitative assessment for Malaysia

    International Nuclear Information System (INIS)

    Shamsul Amri Sulaiman

    2011-01-01

    Since the worlds first nuclear reactor major breakthrough in December 02, 1942, the nuclear power industry has undergone tremendous development and evolution for more than half a century. After surpassing moratorium of nuclear power plant construction caused by catastrophic accidents at Three-mile island (1979) and Chernobyl (1986), today, nuclear energy is back on the policy agendas of many countries, both developed and developing, signaling nuclear revival or nuclear renaissance. Selection of suitable nuclear power technology has thus been subjected to primary attention. This short paper attempts to draw preliminary technology assessment for the first nuclear power reactor technology for Malaysia. Methodology employed is qualitative analysis collating recent finding of tnb-kepco preliminary feasibility study for nuclear power program in peninsular malaysia and other published presentations and/or papers by multiple experts. The results suggested that pressurized water reactor (PWR) is the prevailing technology in terms of numbers and plant performances, and while the commercialization of generation IV reactors is remote (e.g. Not until 2030), generation III/ III+ NPP models are commercially available on the market today. Five (5) major steps involved in reactor technology selection were introduced with a focus on introducing important aspects of selection criteria. Three (3) categories for the of reactor technology selection were used for the cursory evaluation. The outcome of these analyses shall lead to deeper and full analyses of the recommended reactor technologies for a comprehensive feasibility study in the near future. Recommendations for reactor technology option were also provided for both strategic and technical recommendations. The paper shall also implore the best way to select systematically the first civilian nuclear power reactor. (Author)

  16. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    2012-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  17. Status of Fast Reactor Research and Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  18. Status of Fast Reactor Research and Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  19. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    2013-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  20. Nuclear power reactor technology

    International Nuclear Information System (INIS)

    1978-09-01

    Risoe National Laboratory was established more than twenty years ago with research and development of nuclear reactor technology as its main objective. The Laboratory has by now accumulated many years of experience in a number of areas vital to nuclear reactor technology. The work and experience of, and services offered by the Laboratory within the following fields are described: Health physics site supervision; Treatment of low and medium level radioactive waste; Core performance evaluation; Transient analysis; Accident analysis; Fuel management; Fuel element design, fabrication and performance evaluation; Non-destructive testing of nuclear fuel; Theoretical and experimental structural analysis; Reliability analysis; Site evaluation. Environmental risk and hazard calculation; Review and analysis of safety documentation. Risoe has already given much assistance to the authorities, utilities and industries in such fields, carrying out work on both light and heavy water reactors. The Laboratory now offers its services to others as a consultant, in education and training of staff, in planning, in qualitative and quantitative analysis, and for the development and specification of fabrication techniques. (author)

  1. CANDU technology for generation III + AND IV reactors

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    2005-01-01

    Atomic Energy of Canada Limited (AECL) is the original developer of the CANDU?reactor, one of the three major commercial power reactor designs now used throughout the world. For over 60 years, AECL has continued to evolve the CANDU design from the CANDU prototypes in the 1950s and 1960s through to the second generation reactors now in operation, including the Generation II+ CANDU 6. The next phase of this evolution, the Generation III+ Advanced CANDU ReactorTM (ACRTM), continues the strategy of basing next generation technology on existing CANDU reactors. Beyond the ACR, AECL is developing the Generation IV CANDU Super Critical Water Reactor. Owing to the evolutionary nature of these advanced reactors, advanced technology from the development programs is also being applied to operating CANDU plants, for both refurbishments and upgrading of existing systems and components. In addition, AECL is developing advanced technology that covers the entire life cycle of the CANDU plant, including waste management and decommissioning. Thus, AECL maintains state-of-the-art expertise and technology to support both operating and future CANDU plants. This paper outlines the scale of the current core knowledge base that is the foundation for advancement and support of CANDU technology. The knowledge base includes advancements in materials, fuel, safety, plant operations, components and systems, environmental technology, waste management, and construction. Our approach in each of these areas is to develop the underlying science, carry out integrated engineering scale tests, and perform large-scale demonstration testing. AECL has comprehensive R and D and engineering development programs to cover all of these elements. The paper will show how the ongoing expansion of the CANDU knowledge base has led to the development of the Advanced CANDU Reactor. The ACR is a Generation III+ reactor with substantially reduced costs, faster construction, and enhanced passive safety and operating

  2. What is the future for fast reactor technology?

    International Nuclear Information System (INIS)

    Kraev, Kamen

    2017-01-01

    NucNet spoke to Vladimir Kriventsev, team leader for fast reactor technology development at the International Atomic Energy Agency (IAEA), about the possibilities and challenges of technology development in the fast reactor sector. Today, the field of fast reactors is vibrant and full of fascinating developments, some which will have an impact in the nearer term and others in the longer term.

  3. What is the future for fast reactor technology?

    Energy Technology Data Exchange (ETDEWEB)

    Kraev, Kamen [NucNet, Brussels (Belgium). The Independent Global Nuclear News Agency

    2017-08-15

    NucNet spoke to Vladimir Kriventsev, team leader for fast reactor technology development at the International Atomic Energy Agency (IAEA), about the possibilities and challenges of technology development in the fast reactor sector. Today, the field of fast reactors is vibrant and full of fascinating developments, some which will have an impact in the nearer term and others in the longer term.

  4. Development of inherent core technologies for advanced reactor

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H.

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  5. Development of inherent core technologies for advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H. [and others

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  6. IRIS - Generation IV Advanced Light Water Reactor for Countries with Small and Medium Electricity Grids

    International Nuclear Information System (INIS)

    Carelli, M. D.

    2002-01-01

    An international consortium of industry, laboratory, university and utility establishments, led by Westinghouse, is developing a Generation IV Reactor, International Reactor Innovative and Secure (IRIS). IRIS is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., fuel cycle sustainability, enhanced reliability and safety, and improved economics. It features innovative, advanced engineering, but it does not require new technology development since it relies on the proven technology of light water reactors. This paper presents the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and four-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. The path forward for possible future extension to a eight-year cycle will be also discussed. IRIS has a large potential worldwide market because of its proven technology, modularity, low financing, compatibility with existing grids and very limited infrastructure requirements. It is especially appealing to developing countries because of ease of operation and because its medium power is more adaptable to smaller grids. (author)

  7. The Westinghouse Advanced Passive Pressurized Water Reactor, AP1000

    International Nuclear Information System (INIS)

    Schene, R.

    2009-01-01

    Featuring proven technology and innovative passive safety systems, the Westinghouse AP1000 pressurized water reactor can achieve competitive generation costs in the current electricity market without emitting harmful greenhouse gases and further harming the environment. Westinghouse Electric Company, the pioneer in nuclear energy once again sets a new industry standard with the AP1000. The AP1000 is a two-loop pressurized water reactor that uses simplified, innovative and effective approach to safety. With a gross power rating of 3415 megawatt thermal and a nominal net electrical output of 1117 megawatt electric, the AP1000 is ideal for new base load generation. The AP1000 is the safest and most economical nuclear power plant available in the worldwide commercial marketplace, and is the only Generation III+ reactor to receive a design certification from the U.S. Nuclear Regulatory Commission (NRC). Based on nearly 20 years of research and development, the AP1000 builds and improves upon the established technology of major components used in current Westinghouse designed plants. These components, including steam generators, digital instrumentation and controls, fuel, pressurizers, and reactor vessels, are currently in use around the world and have years of proven, reliable operating experience. Historically, Westinghouse plant designs and technology have forged the cutting edge technology of nuclear plant around the world. Today, nearly 50 percent of the world's 440 nuclear plants are based on Westinghouse technology. Westinghouse continues to be the nuclear industry's global leader. (author)

  8. Flow-Based Provenance

    Directory of Open Access Journals (Sweden)

    Sabah Al-Fedaghi

    2017-02-01

    Full Text Available Aim/Purpose: With information almost effortlessly created and spontaneously available, current progress in Information and Communication Technology (ICT has led to the complication that information must be scrutinized for trustworthiness and provenance. Information systems must become provenance-aware to be satisfactory in accountability, reproducibility, and trustworthiness of data. Background:\tMultiple models for abstract representation of provenance have been proposed to describe entities, people, and activities involved in producing a piece of data, including the Open Provenance Model (OPM and the World Wide Web Consortium. These models lack certain concepts necessary for specifying workflows and encoding the provenance of data products used and generated. Methodology: Without loss of generality, the focus of this paper is on OPM depiction of provenance in terms of a directed graph. We have redrawn several case studies in the framework of our proposed model in order to compare and evaluate it against OPM for representing these cases. Contribution: This paper offers an alternative flow-based diagrammatic language that can form a foundation for modeling of provenance. The model described here provides an (abstract machine-like representation of provenance. Findings: The results suggest a viable alternative in the area of diagrammatic representation for provenance applications. Future Research: Future work will seek to achieve more accurate comparisons with current models in the field.

  9. Overview of remote technologies applied to research reactor fuel

    International Nuclear Information System (INIS)

    Oerdoegh, M.; Takats, F.

    1999-01-01

    This paper gives a brief overview of the remote technologies applied to research reactor fuels. Due to many reasons, the remote technology utilization to research reactor fuel is not so widespread as it is for power reactor fuels, however, the advantages of the application of such techniques are obvious. (author)

  10. Maintenance technologies for reactor internals

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kenji [Nuclear Energy Systems and Services Div., Toshiba Corp., Tokyo (Japan); Kobayashi, Masahiro [Toshiba Corp., Yokohama (Japan). Keihin Product Operations; Sano, Yuji; Kimura, Seiichiro [Power and Industrial Systems Research and Development Center, Toshiba Corp., Tokyo(Japan)

    2000-10-01

    Toshiba places the highest priority on maintenance technologies for the reactor pressure vessel (RPV) and its internals in operating nuclear power plants. This paper summarizes the status of applied laser maintenance technologies, both preventive and repair. For laser peeing and laser desensitization treatment (LDT) technologies in particular, field applications are also described in detail. In the future, the area of field applications for preventive maintenance, repair, and inspection technologies will be further expanded. (author)

  11. Reactor surface contamination stabilization. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    Contaminated surfaces, such as the face of a nuclear reactor, need to be stabilized (fixed) to avoid airborne contamination during decontamination and decommissioning activities, and to prepare for interim safe storage. The traditional (baseline) method of fixing the contamination has been to spray a coating on the surfaces, but ensuring complete coverage over complex shapes, such as nozzles and hoses, is difficult. The Hanford Site C Reactor Technology Demonstration Group demonstrated innovative technologies to assess stabilization properties of various coatings and to achieve complete coverage of complex surfaces on the reactor face. This demonstration was conducted in two phases: the first phase consisted of a series of laboratory assessments of various stabilization coatings on metal coupons. For the second phase, coatings that passed the laboratory tests were applied to the front face of the C Reactor and evaluated. The baseline coating (Rust-Oleum No. 769) and one of the innovative technologies did not completely cover nozzle assemblies on the reactor face, the most critical of the second-phase evaluation criteria. However, one of the innovative coating systems, consisting of a base layer of foam covered by an outer layer of a polymeric film, was successful. The baseline technology would cost approximately 33% as much as the innovative technology cost of $64,000 to stabilize an entire reactor face (196 m 2 or 2116 ft 2 ) with 2,004 nozzle assemblies, but the baseline system failed to provide complete surface coverage

  12. Space-reactor electric systems: subsystem technology assessment

    International Nuclear Information System (INIS)

    Anderson, R.V.; Bost, D.; Determan, W.R.

    1983-01-01

    This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified

  13. Accumulation of operational history through emulation test to meet proven technology requirement for newly developed I and C technology

    International Nuclear Information System (INIS)

    Yeong Cheol, Shin; Sung Kon, Kang; Han Seong, Son

    2006-01-01

    As new advanced digital I and C technology with potential benefits of higher functionality and better cost effectiveness is available in the market, NPP (Nuclear Power Plant) operators are inclined to use the new technology for the construction of new plant and the upgrade of existing plants. However, this new technology poses risks to the NPP operators at the same time. These risks are mainly due to the poor reliability of newly developed technology. KHNP's past experiences with the new equipment shows many cases of reliability problems. And their consequences include unintended plant trips, lowered acceptance of the new digital technology by the plant I and C maintenance crew, and increased licensing burden in answering for questions from the nuclear regulatory body. Considering the fact that the risk of these failures in the nuclear plant operation is far greater than those in other industry, nuclear power plant operators want proven technology for I and C systems. This paper presents an approach for the emulation of operational history through which a newly developed technology becomes a proven technology. One of the essential elements of this approach is the feedback scheme of running the new equipment in emulated environment, gathering equipment failure, and correcting the design(and test bed). The emulation of environment includes normal and abnormal events of the new equipment such as reconfiguration of control system due to power failure, plant operation including full spectrum of credible scenarios in an NPP. Emulation of I and C equipment execution mode includes normal operation, initialization and termination, abnormal operation, hardware maintenance and maintenance of algorithm/software. Plant specific simulator is used to create complete profile of plant operational conditions that I and C equipment is to experience in the real plant. Virtual operating crew technology is developed to run the simulator scenarios without involvement of actual operators

  14. Fault detection in IRIS reactor secondary loop using inferential models

    International Nuclear Information System (INIS)

    Perillo, Sergio R.P.; Upadhyaya, Belle R.; Hines, J. Wesley

    2013-01-01

    The development of fault detection algorithms is well-suited for remote deployment of small and medium reactors, such as the IRIS, and the development of new small modular reactors (SMR). However, an extensive number of tests are still to be performed for new engineering aspects and components that are not yet proven technology in the current PWRs, and present some technological challenges for its deployment since many of its features cannot be proven until a prototype plant is built. In this work, an IRIS plant simulation platform was developed using a Simulink® model. The dynamic simulation was utilized in obtaining inferential models that were used to detect faults artificially added to the secondary system simulations. The implementation of data-driven models and the results are discussed. (author)

  15. Generation III+ Reactor Portfolio

    International Nuclear Information System (INIS)

    2010-03-01

    While the power generation needs of utilities are unique and diverse, they are all faced with the double challenge of meeting growing electricity needs while curbing CO 2 emissions. To answer these diverse needs and help tackle this challenge, AREVA has developed several reactor models which are briefly described in this document: The EPR TM Reactor: designed on the basis of the Konvoi (Germany) and N4 (France) reactors, the EPRTM reactor is an evolutionary model designed to achieve best-in-class safety and operational performance levels. The ATMEA1 TM reactor: jointly designed by Mitsubishi Heavy Industries and AREVA through ATMEA, their common company. This reactor design benefits from the competencies and expertise of the two mother companies, which have commissioned close to 130 reactor units. The KERENA TM reactor: Designed on the basis of the most recent German BWR reactors (Gundremmingen) the KERENA TM reactor relies on proven technology while also including innovative, yet thoroughly tested, features. The optimal combination of active and passive safety systems for a boiling water reactor achieves a very low probability of severe accident

  16. Development of technology for next generation reactor - Research of evaluation technology for nuclear power plant -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    For development of next generation reactor, a project for evaluation technology for nuclear power plant is performed. Evaluation technology is essential to next generation reactor for reactor safety and system analysis. For design concept, detailed evaluation technologies are studied as follows: evaluation of safety margin, evaluation of safety facilities, evaluation of measurement and control technology; man-machine interface. Especially for thermal efficiency, thermal properties and chemical composition of inconel 690 tube, instead of inconel 600 tube, are measured for steam generator. (Author).

  17. A global renewable mix with proven technologies and common materials

    International Nuclear Information System (INIS)

    García-Olivares, Antonio; Ballabrera-Poy, Joaquim; García-Ladona, Emili; Turiel, Antonio

    2012-01-01

    A global alternative mix to fossil fuels is proposed, based on proven renewable energy technologies that do not use scarce materials. The mix consists of a combination of onshore and offshore wind turbines, concentrating solar power stations, hydroelectricity and wave power devices attached to the offshore turbines. Solar photovoltaic power could contribute to the mix if its dependence on scarce materials is solved. The most adequate deployment areas for the power stations are studied, as well as the required space. Material requirements are studied for the generation, power transport and for some future transport systems. The order of magnitude of copper, aluminium, neodymium, lithium, nickel, zinc and platinum that may be required for the proposed solution is obtained and compared with available reserves. Overall, the proposed global alternative to fossil fuels seems technically feasible. However, lithium, nickel and platinum could become limiting materials for future vehicles fleet if no global recycling systems were implemented and rechargeable zinc–air batteries would not be developed; 60% of the current copper reserves would have to be employed in the implementation of the proposed solution. Altogether, they may become a long-term physical constraint, preventing the continuation of the usual exponential growth of energy consumption. - Highlights: ▶ A global renewable mix with proven energy technologies and common materials. ▶ Wind turbines, concentrating solar power, hydroelectricity and wave attenuators. ▶ Mix technically feasible. Lithium, nickel and platinum may limit vehicles fleet. ▶ Sixty per cent of copper reserves used in the mix and in societal electrification. ▶ Power cannot growth exponentially. Future “spaceship economy” scenario expected.

  18. Overview of U.S. Fast Reactor Technology Program

    International Nuclear Information System (INIS)

    Hill, Robert

    2013-01-01

    • Concept development studies guide R&D tasks by evaluating system impact for broad variety of technology options: – Small-scale facilities for R&D on key technology; – No near-term plan for demonstration reactor. • Fast reactor R&D is focused on key technologies innovations for performance improvement (cost reduction): – Advanced Structural Materials; – Advanced Energy Conversion; – Advanced Modeling and Simulation. • Other R&D is conducted to address known technology challenges: – Safety and Licensing; – Fuels Development; – Undersodium Viewing

  19. Projecting regulatory expectations for advanced reactor designs

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    This paper explores the overarching safety principles that will likely guide the safety design of advanced reactor technologies. As will be shown, the already established safety framework provides a solid foundation for the safety design of future nuclear power plants. As a specific example, the principle of 'proven technology' is presented in greater detail and its implications for a novel technology are discussed. Research, modeling and prototyping are shown to be components in satisfying this principle. While the fundamental safety principles are in place, their interpretation may depend both on the considered technology as well as the national context. Thus, the regulatory authority will need to be engaged, at an appropriate stage of the technology development, in specifying the regulatory requirements that will have to be met for a specific reactor design. (author)

  20. Assessment of Sensor Technologies for Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, Kofi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vlim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Britton, Jr, Charles L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wootan, D. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anheier, Jr, N. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diaz, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, E. H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chien, H. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Sheen, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States); Gopalsami, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Heifetz, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Tam, S. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Park, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Upadhyaya, B. R. [Univ. of Tennessee, Knoxville, TN (United States); Stanford, A. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-10-01

    Sensors and measurement technologies provide information on processes, support operations and provide indications of component health. They are therefore crucial to plant operations and to commercialization of advanced reactors (AdvRx). This report, developed by a three-laboratory team consisting of Argonne National Laboratory (ANL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL), provides an assessment of sensor technologies and a determination of measurement needs for AdvRx. It provides the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program and contributes to the design and implementation of AdvRx concepts.

  1. Chemistry and technology of Molten Salt Reactors - history and perspectives

    International Nuclear Information System (INIS)

    Uhlir, Jan

    2007-01-01

    Molten Salt Reactors represent one of promising future nuclear reactor concept included also in the Generation IV reactors family. This reactor type is distinguished by an extraordinarily close connection between the reactor physics and chemical technology, which is given by the specific features of the chemical form of fuel, representing by molten fluoride salt and circulating through the reactor core and also by the requirements of continuous 'on-line' reprocessing of the spent fuel. The history of Molten Salt Reactors reaches the period of fifties and sixties, when the first experimental Molten Salt Reactors were constructed and tested in ORNL (US). Several molten salt techniques dedicated to fresh molten salt fuel processing and spent fuel reprocessing were studied and developed in those days. Today, after nearly thirty years of discontinuance, a renewed interest in the Molten Salt Reactor technology is observed. Current experimental R and D activities in the area of Molten Salt Reactor technology are realized by a relatively small number of research institutions mainly in the EU, Russia and USA. The main effort is directed primarily to the development of separation processes suitable for the molten salt fuel processing and reprocessing technology. The techniques under development are molten salt/liquid metal extraction processes, electrochemical separation processes from the molten salt media, fused salt volatilization techniques and gas extraction from the molten salt medium

  2. Developments in gaseous core reactor technology

    International Nuclear Information System (INIS)

    Diaz, N.J.; Dugan, E.T.

    1979-01-01

    An effort to characterize the most promising concepts for large, central-station electrical generation was done under the auspices of the Nonproliferation Alternative Systems Assessment Program (NASAP). The two leading candidates were identified from this effort: The Mixed-Flow Gaseous Core Reactor (MFGCR) and the Heterogeneous Gas Core Reactor (HGCR). Key advantages over other nuclear concepts are weighed against the disadvantages of an unproven technology and the cost-time for deployment to make a sound decision on RandD support for these promising reactor alternatives. 38 refs

  3. Development of essential system technologies for advanced reactor

    International Nuclear Information System (INIS)

    Bae, Y. Y.; Hwang, Y. D.; Cho, B. H. and others

    1999-03-01

    Basic design of SMART adopts the new advanced technologies which were not applied in the existing 1000MWe PWR. However, the R and D experience on these advanced essential technologies is lacking in domestic nuclear industry. Recently, a research on these advanced technologies has been performed as a part of the mid-and-long term nuclear R and D program, but the research was limited only for the small scale fundamental study. The research on these essential technologies such as helically coiled tube steam generator, self pressurizer, core cooling by natural circulation required for the development of integral reactor SMART have not been conducted in full scale. This project, therefore, was performed for the development of analysis models and methodologies, system analysis and thermal hydraulic experiments on the essential technologies to be applied to the 300MWe capacity of integral reactor SMART and the advanced passive reactor expected to be developed in near future with the emphasis on experimental investigation. (author)

  4. Technology selection for offshore underwater small modular reactors

    International Nuclear Information System (INIS)

    Shivan, Koroush; Ballinger, Ronald; Buongiorno, Jacopo; Forsberg, Charles; Kazimi, Mujid; Todreas, Neil

    2016-01-01

    This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 time frame. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO 2 cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options

  5. Technology selection for offshore underwater small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shivan, Koroush; Ballinger, Ronald; Buongiorno, Jacopo; Forsberg, Charles; Kazimi, Mujid; Todreas, Neil [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge (United States)

    2016-12-15

    This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 time frame. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO{sub 2} cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

  6. Technology Selection for Offshore Underwater Small Modular Reactors

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-12-01

    Full Text Available This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030–2040 timeframe. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1 a lead–bismuth fast reactor based on the Russian SVBR-100; (2 a novel organic cooled reactor; (3 an innovative superheated water reactor; (4 a boiling water reactor based on Toshiba's LSBWR; and (5 an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO2 cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50–80% with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

  7. Development of design technology for advanced pressurized water reactor

    International Nuclear Information System (INIS)

    Kim, Si Hwan; Chang, Moon Hee; Lee, Jong Chul

    1991-08-01

    In order to investigate the feasibility of the domestic passive reactor development, the analysis and evaluation on the development status, technical characteristics, and the safety and economy for the overseas passive reactors were carried out based on the vendor's information. Also the domestic nuclear technology basis was surveyed. The analysis and evaluation of the development status and technical characteristics were performed mainly for the AP-600 developed by Westing house and the SIR of UKAEA. The new design concepts and system characteristics have been evaluated by utilizing EPRI Utility Requirement Documents and Lahmeyer evaluation criteria. Based on this evaluation the recommendable design concepts in each major system were selected. The feasibility for the domestic passive reactor development has focused on the safety, technology and economy aspects, and on the applicability of the existing domestic technology to the design of the passive reactor. And the development plan for the domestic passive reactor was recommended in a step by step way. (Author)

  8. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Kim, K. Y.

    2002-03-01

    In general, small and medium-sized integral reactors adopt new technology such as passive and inherent safety concepts to minimize the necessity of power source and operator actions, and to provide the automatic measures to cope with any accidents. Specifically, such reactors are often designed with a lower core power density and with soluble boron free concept for system simplification. Those reactors require ultra long cycle operation for higher economical efficiency. This cycle length requirement is one of the important factors in the design of burnable absorbers as well as assurance of shutdown margin. Hence, both computer code system and design methodology based on the today's design technology for the current commercial reactor cores require intensive improvement for the small and medium-sized soluble boron free reactors. New database is also required for the development of this type of reactor core. Under these technical requirements, conceptual design of small integral reactor SMART has been performed since July 1997, and recently completed under the long term nuclear R and D program. Thus, the final objectives of this work is design and development of an integral reactor core and development of necessary indigenous design technology. To reach the goal of the 2nd stage R and D program for basic design of SMART, design bases and requirements adequate for ultra long cycle and soluble boron free concept are established. These bases and requirements are satisfied by the core loading pattern. Based on the core loading pattern, nuclear, and thermal and hydraulic characteristics are analyzed. Also included are fuel performance analysis and development of a core protection and monitoring system that is adequate for the soluble boron free core of an integral reactor. Core shielding design analysis is accomplished, too. Moreover, full scope interface data are produced for reactor safety and performance analyses and other design activities. Nuclear, thermal and

  9. The United States Advanced Reactor Technologies Research and Development Program

    International Nuclear Information System (INIS)

    O’Connor, Thomas J.

    2014-01-01

    The following aspects are addressed: • Nuclear energy mission; • Reactor research development and deployment (RD&D) programs: - Light Water Reactor Sustainability Program; - Small Modular Reactor Licensing Technical Support; - Advanced Reactor Technologies (ART)

  10. Study on modeling technology in digital reactor system

    International Nuclear Information System (INIS)

    Liu Xiaoping; Luo Yuetong; Tong Lili

    2004-01-01

    Modeling is the kernel part of a digital reactor system. As an extensible platform for reactor conceptual design, it is very important to study modeling technology and develop some kind of tools to speed up preparation of all classical computing models. This paper introduces the background of the project and basic conception of digital reactor. MCAM is taken as an example for modeling and its related technologies used are given. It is an interface program for MCNP geometry model developed by FDS team (ASIPP and HUT), and designed to run on windows system. MCAM aims at utilizing CAD technology to facilitate creation of MCNP geometry model. There have been two ways for MCAM to utilize CAD technology: (1) Making use of user interface technology in aid of generation of MCNP geometry model; (2) Making use of existing 3D CAD model to accelerate creation of MCNP geometry model. This paper gives an overview of MCAM's major function. At last, several examples are given to demonstrate MCAM's various capabilities. (authors)

  11. Overview of Nuclear Reactor Technologies Portfolio

    International Nuclear Information System (INIS)

    O’Connor, Thomas J.

    2012-01-01

    Office of Nuclear Energy Roadmap R&D Objectives: • Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; • Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; • Develop sustainable nuclear fuel cycles; • Develop capabilities to reduce the risks of nuclear proliferation and terrorism

  12. U.S. Status of Fast Reactor Research and Technology

    International Nuclear Information System (INIS)

    Hill, Robert

    2012-01-01

    Summary: • Fast reactor R&D is focused on key technologies innovations for performance improvement (cost reduction) and safety: 1. System Integration and Concept Development; 2. Safety Technology; 3. Advanced Materials; 4. Ultrasonic Viewing; 5. Advanced Energy Conversion (Supercritical CO 2 Brayton cycle); 6. Reactor Simulation; 7. Nuclear Data; 8. Advanced Fuels. • Fast reactors have flexible capability for actinide management: – A wide variety of fuel cycle options are being considered; • International R&D collaboration pursued in Generation-IV and multilateral arrangements

  13. IGCC based on proven technology developing towards 50% efficiency mark

    Energy Technology Data Exchange (ETDEWEB)

    Goudappel, E.; Berkhout, M. [Jacobs Consultancy, Leiden (Netherlands)

    2006-07-01

    In this paper the achievements made over the last 10 years in terms of reliability, load following and efficiency improvement potential at the Buggenum IGCC plant, are presented. Also the air side heat integration and its pros and cons are discussed. Additionally future business opportunities adjacent to the power production itself and the view on coal gasification in the near future are provided. The results are discussed and it is shown that with 'proven' gasifier and gas treatment technology, overall efficiency exceeding 47% (LHV basis) can be reached. It puts this technical potential in perspective and describes the view on interesting business opportunities around IGCC projects. 5 figs., 3 tabs.

  14. Decommissioning of reactor facilities (2). Required technology

    International Nuclear Information System (INIS)

    Yanagihara, Satoshi

    2014-01-01

    Decommissioning of reactor facilities was planned to perform progressive dismantling, decontamination and radioactive waste disposal with combination of required technology in a safe and economic way. This article outlined required technology for decommissioning as follows: (1) evaluation of kinds and amounts of residual radioactivity of reactor facilities with calculation and measurement, (2) decontamination technology of metal components and concrete structures so as to reduce worker's exposure and production of radioactive wastes during dismantling, (3) dismantling technology of metal components and concrete structures such as plasma arc cutting, band saw cutting and controlled demolition with mostly remote control operation, (3) radioactive waste disposal for volume reduction and reuse, and (4) project management of decommissioning for safe and rational work to secure reduction of worker's exposure and prevent the spreading of contamination. (T. Tanaka)

  15. Nuclear data for advanced fast reactors

    International Nuclear Information System (INIS)

    Rabotnov, N.S.

    2001-01-01

    Interest revives to fast reactors as the only proven technology obviously able of satisfying human energy needs for the next millennium by using full energy content of both natural uranium resources and of vast stocks of depleted uranium. This interest stimulates revision and improvement of fast reactor ND. Progress in reactor calculations accuracy due to better codes and much faster computers also increases relative importance of the input data uncertainties, especially in case of small reactivity margin and fuels of equilibrium compositions. The main objects of corresponding R and D efforts should be minor actinides and heavy liquid metal coolant. Data error bands and covariance information also gain importance as necessary components of neutron physics calculations. (author)

  16. CANDU nuclear reactor technology

    International Nuclear Information System (INIS)

    Kakaria, B. K.

    1994-01-01

    AECL has over 40 years of experience in the nuclear field. Over the past 20 years, this unique Canadian nuclear technology has made a worldwide presence, In addition to 22 CANDU reactors in Canada, there are also two in India, one in Pakistan, one in Argentina, four in Korea and five in Romania. CANDU advancements are based on evolutionary plant improvements. They consist of system performance improvements, design technology improvements and research and development in support of advanced nuclear power. Given the good performance of CANOU plants, it is important that this CANDU operating experience be incorporated into new and repeat designs

  17. Data provenance assurance in the cloud using blockchain

    Science.gov (United States)

    Shetty, Sachin; Red, Val; Kamhoua, Charles; Kwiat, Kevin; Njilla, Laurent

    2017-05-01

    Ever increasing adoption of cloud technology scales up the activities like creation, exchange, and alteration of cloud data objects, which create challenges to track malicious activities and security violations. Addressing this issue requires implementation of data provenance framework so that each data object in the federated cloud environment can be tracked and recorded but cannot be modified. The blockchain technology gives a promising decentralized platform to build tamper-proof systems. Its incorruptible distributed ledger/blockchain complements the need of maintaining cloud data provenance. In this paper, we present a cloud based data provenance framework using block chain which traces data record operations and generates provenance data. We anchor provenance data records into block chain transactions, which provide validation on provenance data and preserve user privacy at the same time. Once the provenance data is uploaded to the global block chain network, it is extremely challenging to tamper the provenance data. Besides, the provenance data uses hashed user identifiers prior to uploading so the blockchain nodes cannot link the operations to a particular user. The framework ensures that the privacy is preserved. We implemented the architecture on ownCloud, uploaded records to blockchain network, stored records in a provenance database and developed a prototype in form of a web service.

  18. Proceedings of the Third Scientific Presentation on Reactor Safety Technology

    International Nuclear Information System (INIS)

    1998-01-01

    These proceedings contains the results of research and development on reactor safety technology which carried out by Reactor Safety Technology Centre, National Atomic Energy Agency, Serpong, Indonesia during 1997/1998 fiscal year. The presentation was held on 13-14 May 1998 at Serpong,Indonesia

  19. Light Water Reactor Sustainability Program: Digital Technology Business Case Methodology Guide

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lawrie, Sean [ScottMadden, Inc., Raleigh, NC (United States); Hart, Adam [ScottMadden, Inc., Raleigh, NC (United States); Vlahoplus, Chris [ScottMadden, Inc., Raleigh, NC (United States)

    2014-09-01

    The Department of Energy’s (DOE’s) Light Water Reactor Sustainability Program aims to develop and deploy technologies that will make the existing U.S. nuclear fleet more efficient and competitive. The program has developed a standard methodology for determining the impact of new technologies in order to assist nuclear power plant (NPP) operators in building sound business cases. The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway is part of the DOE’s Light Water Reactor Sustainability (LWRS) Program. It conducts targeted research and development (R&D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals: (1) to ensure that legacy analog II&C systems are not life-limiting issues for the LWR fleet and (2) to implement digital II&C technology in a manner that enables broad innovation and business improvement in the NPP operating model. Resolving long-term operational concerns with the II&C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation’s energy and environmental security. The II&C Pathway is conducting a series of pilot projects that enable the development and deployment of new II&C technologies in existing nuclear plants. Through the LWRS program, individual utilities and plants are able to participate in these projects or otherwise leverage the results of projects conducted at demonstration plants. Performance advantages of the new pilot project technologies are widely acknowledged, but it has proven difficult for utilities to derive business cases for justifying investment in these new capabilities. Lack of a business case is often cited by utilities as a barrier to pursuing wide-scale application of digital technologies to nuclear plant work activities. The decision to move forward with funding usually hinges on

  20. Power Nuclear Reactors: technology and innovation for development in future

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2009-01-01

    The conference is about some historicals task of the fission technology as well as many types of Nuclear Reactors. Enrichment of fuel, wastes, research reactors and power reactors, a brief advertisment about Uruguay electric siystem and power generation, energetic worldwide, proliferation, safety reactors, incidents, accidents, Three-Mile Island accident, Chernobil accident, damages, risks, classification and description of Power reactors steam generation, nuclear reactor cooling systems, future view

  1. Design considerations for economically competitive sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Zhang, Hongbin; Zhao, Haihua; Mousseau, Vincent; Szilard, Ronaldo

    2009-01-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phenix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design. (author)

  2. Simulator platform for fast reactor operation and safety technology demonstration

    International Nuclear Information System (INIS)

    Vilim, R.B.; Park, Y.S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J.

    2012-01-01

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  3. Simulator platform for fast reactor operation and safety technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J. (Nuclear Engineering Division)

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  4. Reliability test for reactor internals rejuvenation technology

    International Nuclear Information System (INIS)

    Uchiyama, Junichi

    1998-01-01

    41 transparencies were presented on the subject of 'Reliability test for reactor internals rejuvenation technology'. The items presented give an introduction on the management of plant life in Japan and introduce the Nuclear Power Engineering Corporation (NUPEC). The question of what reliability tests for rejuvenation of reactor internals are is discussed in some detail and an outline of each test is given. Altogether six methods to rejuvenate reactor internals are presented, two of which have already been applied to actual plants. The presentation was supported by many detailed drawings and images

  5. Substitution models for overlapping technologies - an application to fast reactor deployment

    International Nuclear Information System (INIS)

    Lehtinen, R.; Silvennoinen, P.; Vira, J.

    1982-01-01

    In this paper market penetration models are discussed in the context of interacting technologies. An increased confidence credit is proposed for a technology that can draw on other overlapping technologies. The model is also reduced to a numerically tractable form. As an application, scenarios of fast reactor deployment are derived under different assumptions on the uranium and fast reactor investment costs and by varying model parameters for the penetration of fusion and solar technologies. The market share of fast reactors in electricity generation is expected to lie between zero and 40 per cent in 2050 depending on the market parameters. (orig.) [de

  6. Decommissioning of Swedish nuclear power reactors. Technology and costs

    International Nuclear Information System (INIS)

    1994-06-01

    The main topics discussed are planning, technology and costs of decommissioning nuclear power reactors. Oskarshamn-3 (BWR) and Ringhals-4 (PWR) have been used as reference reactors. 29 refs, figs, tabs

  7. Reactor technology. Progress report, January--March 1978

    International Nuclear Information System (INIS)

    Warren, J.L.

    1978-07-01

    Progress is reported in eight program areas. The nuclear Space Electric Power Supply Program examined safety questions in the aftermath of the COSMOS 954 incident, examined the use of thermoelectric converters, examined the neutronic effectiveness of various reflecting materials, examined ways of connecting heat pipes to one another, studied the consequences of the failure of one heat pipe in the reactor core, and did conceptual design work on heat radiators for various power supplies. The Heat Pipe Program reported progress in the design of ceramic heat pipes, new application of heat pipes to solar collectors, and final performance tests of two pipes for HEDL applications. Under the Nuclear Process Heat Program, work continues on computer codes to model a pebble bed high-temperature gas-cooled reactor, adaptation of a set of German reactor calculation codes to use on U.S. computers, and a parametric study of a certain resonance integral required in reactor studies. Under the Nonproliferation Alternative Sources Assessment Program LASL has undertaken an evaluation of a study of gaseous core reactors by Southern Science Applications, Inc. Independently LASL has developed a proposal for a comprehensive study of gaseous uranium-fueled reactor technology. The Plasma Core Reactor Program has concentrated on restacking the beryllium reflector and redesigning the nuclear control system. The status of and experiments on four critical assemblies, SKUA, Godiva IV, Big Ten, and Flattop, are reported. The Nuclear Criticality Safety Program carried out several tasks including conducting a course, doing several annual safety reviews and evaluating the safety of two Nevada test devices. During the quarter one of the groups involved in reactor technology has acquired responsibility for the operation of a Cockroft-Walton accelerator. The present report contains information on the use of machine and improvements being made in its operation

  8. Opinion: Taking phytoremediation from proven technology to accepted practice.

    Science.gov (United States)

    Gerhardt, Karen E; Gerwing, Perry D; Greenberg, Bruce M

    2017-03-01

    Phytoremediation is the use of plants to extract, immobilize, contain and/or degrade contaminants from soil, water or air. It can be an effective strategy for on site and/or in situ removal of various contaminants from soils, including petroleum hydrocarbons (PHC), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), solvents (e.g., trichloroethylene [TCE]), munitions waste (e.g., 2,4,6-trinitrotoluene [TNT]), metal(loid)s, salt (NaCl) and radioisotopes. Commercial phytoremediation technologies appear to be underutilized globally. The primary objective of this opinion piece is to discuss how to take phytoremediation from a proven technology to an accepted practice. An overview of phytoremediation of soil is provided, with the focus on field applications, to provide a frame of reference for the subsequent discussion on better utilization of phytoremediation. We consider reasons why phytoremediation is underutilized, despite clear evidence that, under many conditions, it can be applied quite successfully in the field. We offer suggestions on how to gain greater acceptance for phytoremediation by industry and government. A new paradigm of phytomanagement, with a specific focus on using phytoremediation as a "gentle remediation option" (GRO) within a broader, long-term management strategy, is also discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Nuclear reactor fuel cycle technology with pyroelectrochemical processes

    International Nuclear Information System (INIS)

    Skiba, O.V.; Maershin, A.A.; Bychkov, A.V.; Zhdanov, A.N.; Kislyj, V.A.; Vavilov, S.K.; Babikov, L.G.

    1999-01-01

    A group of dry technologies and processes of vibro-packing granulated fuel in combination with unique properties of vibro-packed FEs make it possible to implement a new comprehensive approach to the fuel cycle with plutonium fuel. Testing of a big number of FEs with vibro-packed U-Pu oxide fuel in the BOR-60 reactor, successful testing of experimental FSAs in the BN-600 rector, reliable operation of the experimental and research complex facilities allow to make the conclusion about a real possibility to develop a safe, economically beneficial U-Pu fuel cycle based on the technologies enumerated above and to use both reactor-grade and weapon-grade plutonium in nuclear reactors with a reliable control and accounting system [ru

  10. Contributions of research Reactors in science and technology

    International Nuclear Information System (INIS)

    Butt, N.M.; Bashir, J.

    1992-12-01

    In the present paper, after defining a research reactor, its basic constituents, types of reactors, their distribution in the world, some typical examples of their uses are given. Particular emphasis in placed on the contribution of PARR-I (Pakistan Research Reactor-I), the 5 MW Swimming Pool Research reactor which first became critical at the Pakistan Institute of Nuclear Science and Technology (PINSTECH) in Dec. 1965 and attained its full power in June 1966. This is still the major research facility at PINSTECH for research and development. (author)

  11. International Conference on Physics and Technology of Reactors and Applications

    International Nuclear Information System (INIS)

    2011-01-01

    Full text : The international conference on physics and technology of reactors is organized by the Moroccan Association for Nuclear enggineering and Reactor Technology (GMTR) with the collaboration of the Centre for Energy and Nuclear Sciences and Techniques (CNESTEN) and under the auspices of the ministry of Energy, Mining, Water and Environment. The programme of the PHYTRA2 conference covers a wide variety of topics. The conference is organised in one plenary session, eight oral technical sessions and one poster session. The oral and poster technical sessions covers the usual topics of nuclear engineering including one session on research reactors utilisation and computational methods for research reactors

  12. Compact reactor/ORC power source

    International Nuclear Information System (INIS)

    Meier, K.L.; Kirchner, W.L.; Willcutt, G.J.

    1986-01-01

    A compact power source that combines an organic Rankine Cycle (ORC) electric generator with a nuclear reactor heat source is being designed and fabricated. Incorporating existing ORC technology with proven reactor technology, the compact reactor/ORC power source offers high reliability while minimizing the need for component development. Thermal power at 125 kWt is removed from the coated particle fueled, graphite moderated reactor by heat pipes operating at 500 0 C. Outside the reactor vessel and connected to the heat pipes are vaporizers in which the toluene ORC working fluid is heated to 370 0 C. In the turbine-alternator-pump (TAP) combined-rotating unit, the thermal energy of the toluene is converted to 25 kWe of electric power. Lumped parameter systems analyses combined with a finite element thermal analysis have aided in the power source design. The analyses have provided assurance of reliable multiyear normal operation as well as full power operation with upset conditions, such as failed heat pipes and inoperative ORC vaporizers. Because of inherent high reliability, long life, and insensitivity to upset conditions, this power source is especially suited for use in remote, inaccessible locations where fuel delivery and maintenance costs are high. 10 refs

  13. Is light water reactor technology sustainable?

    International Nuclear Information System (INIS)

    Rothwell, G.; Van der Zwaan, B.

    2001-01-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  14. ITER: a technology test bed for a fusion reactor

    International Nuclear Information System (INIS)

    Huguet, M.; Green, B.J.

    1996-01-01

    The ITER Project aims to establish nuclear fusion as an energy source that has potential safety and environmental advantages, and to develop the technologies required for a fusion reactor. ITER is a collaborative project between the European Union, Japan, the Russian Federation and the United States of America. During the current phase of the Project, an R and D programme of about 850 million dollars is underway to develop the technologies required for ITER. This technological effort should culminate in the construction of the components and systems of the ITER machine and its auxiliaries. The main areas of technological development include the first wall and divertor technology, the blanket technology and tritium breeding, superconducting magnet technology, pulsed power technology and remote handling. ITER is a test bed and an essential step to establish the technology of future fusion reactors. Many of the ITER technologies are of potential interest to other fields and their development is expected to benefit the industries involved. (author)

  15. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  16. Development of technology for next generation reactor - Development of next generation reactor in Korea -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); and others

    1993-09-01

    The project, development of next generation reactor, aims overall related technology development and obtainment of related license in 2001. The development direction is to determine the reactor type and to build up the design concept in 1994. For development trend analysis of foreign next generation reactor, level-1 PSA, fuel cycle analysis and computer code development are performed on System 80+ and AP 600. Especially for design characteristics analysis and volume upgrade of AP 600, nuclear fuel and reactor core design analysis, coolant circuit design analysis, mechanical structure design analysis and safety analysis etc. are performed. (Author).

  17. Modern technology applied in the advanced BWR (ABWR)

    International Nuclear Information System (INIS)

    Hucik, S.A.

    1988-01-01

    The advanced boiling water reactor (ABWR) represents the next generation of light water reactors (LWR) to be introduced into commercial operation in the 1990's. The ABWR is the result of the continuing evolution of the BWR, incorporating state-of-the-art technology and improvements based on worldwide experience, and extensive design and test and development programs. This paper discusses how the ABWR development objective focused on an optimized selection of advanced technologies and proven BWR technologies. A technical evaluation of the ABWR shows its superiority in terms of performance characteristics and economics relative to current LWR designs

  18. Advanced nuclear reactor safety design technology research in NPIC

    International Nuclear Information System (INIS)

    Yu, H.

    2014-01-01

    After the Fukushima accident happen, Nuclear Power Plants (NPPs) construction has been suspended in China for a time. Now the new regulatory rule has been proposed that the most advanced safety standard must be adopted for the new NPPs and practical elimination of large fission product release by design during the next five plans period. So the advanced reactor research is developing in China. NPIC is engaging on the ACP1000 and ACP100 (Small Module Reactor) design. The main design character will be introduced in this paper. The Passive Combined with Active (PCWA) design was adopted during the ACP1000 design to reduce the core damage frequency (CDF); the Cavity Injection System (CIS) is design to mitigation the consequence of the severe accident. Advance passive safety system was designed to ensure the long term residual heat removal during the Small Module Reactor (SMR). The SMR will be utilized to be the floating reactors, district heating reactor and so on. Besides, the Science and Technology on Reactor System Design Technology Laboratory (LRSDT) also engaged on the fundamental thermal-hydraulic characteristic research in support of the system validation. (author)

  19. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  20. Technology development of fast reactor fuel reprocessing technology in India

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2009-01-01

    India is committed to the large scale induction of fast breeder reactors beginning with the construction of 500 MWe Prototype Fast Breeder Reactor, PFBR. Closed fuel cycle is a prerequisite for the success of the fast reactors to reduce the external dependence of the fuel. In the Indian context, spent fuel reprocessing, with as low as possible out of pile fissile inventory, is another important requirement for increasing the share in power generation through nuclear route as early as possible. The development of this complex technology is being carried out in four phases, the first phase being the developmental phase, in which major R and D issues are addressed, while the second phase is the design, construction and operation of a pilot plant, called CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell. The third phase is the construction and operation of Demonstration of Fast Reactor Fuel Reprocessing Plant (DFRP) which will provide experience in fast reactor fuel reprocessing with high availability factors and plant throughput. The design, construction and operation of the commercial plant (FRP) for reprocessing of PFBR fuel is the fourth phase, which will provide the requisite confidence for the large scale induction of fast reactors

  1. Is light water reactor technology sustainable?

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, G. [Stanford Univ., Dept. of Economics, CA (United States); Van der Zwaan, B. [Vrije Univ., Amsterdam, Inst. for Environmental Studies (Netherlands)

    2001-07-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  2. Catalytic Filtration: A proven technology for Dioxin emission control from waste incinerators

    International Nuclear Information System (INIS)

    Wong, K.T.; Xu, Zhengtian

    2010-01-01

    Polychlorinated dibenzo-p-dioxins and di benzofurans (PCD/ Fs), in a family of dioxin derivatives with high toxicity, often associated with environmental pollution are the most toxic man made substances, emitted in gas and solid phases during incineration of waste. The threat of dioxin is drawing increasing attention around the world. Governments around the world are phasing in more stringent dioxin emission regulations, and reports about dioxin levels in food products have generated widespread concerns among the public. Issues related to dioxin emissions and disposals are moving up the environmental agenda demanding the most effective and environmentally sound technologies. With heightened public awareness, more stringent regulations, and potential penalties for non-compliance, its more important than ever to avoid the risks associated with inadequate dioxin control. The permissible dioxin emission in most industrial nations is less than 0.1 ng (TEQ)/ Nm 3 and permissible dust emission is from less than 10 to less than 50 mg/ Nm 3 . The common system to remove dioxin is installing an injection process for powdered activated carbon (PAC). This was seen as a proven and widely used technology to control dioxin. This sorbent based system moves dioxin and furan molecules from the gas stream to the solid residue. There are new concerns about existing or future landfill restrictions on the amount and toxicity of sorbent levels in fly ash. Other alternatives are non-flammable additives and catalytic technologies. The non-flammable additives are not proven to control dioxin at temperatures above 200 degree Celsius. Catalytic filter technology can be high initial investment but gaining popularity for operational benefits and reduction of solid residues for landfill. Several criteria are being considered to compare the initial cost of the catalytic filter system and the cost reduction of exhaust gas treatment that can pay for the return of the investment. Field experiences

  3. Space reactor system and subsystem investigations: assessment of technology issues for the reactor and shield subsystem. SP-100 Program

    International Nuclear Information System (INIS)

    Atkins, D.F.; Lillie, A.F.

    1983-01-01

    As part of Rockwell's effort on the SP-100 Program, preliminary assessment has been completed of current nuclear technology as it relates to candidate reactor/shield subsystems for the SP-100 Program. The scope of the assessment was confined to the nuclear package (to the reactor and shield subsystems). The nine generic reactor subsystems presented in Rockwell's Subsystem Technology Assessment Report, ESG-DOE-13398, were addressed for the assessment

  4. Survey of fusion reactor technology

    International Nuclear Information System (INIS)

    Chung, M.K.; Kang, H.D.; Oh, Y.K.; Lee, K.W.; In, S.Y.; Kim, Y.C.

    1983-01-01

    The present object of the fusion research is to accomplish the scientific break even by the year of 1986. In view of current progress in the field of Fusion reactor development, we decided to carry out the conceptual design of Tokamak-type fusion reactor during the year of 82-86 in order to acquire the principles of the fusion devices, find the engineering problems and establish the basic capabilities to develop the key techniques with originality. In this year the methods for calculating the locations of the poloidal coils and distribution of the magnetic field, which is one of the most essential and complicated task in the fusion reactor design works, were established. Study on the optimization of the design method of toroidal field coil was also done. Through this work, we established the logic for the design of the toroidal field coil in tokamak and utilize this technique to the design of small compact tokamak. Apart from the development work as to the design technology of tokamak, accelerating column and high voltage power supply (200 KVDC, 100 mA) for intense D-T neutron generator were constructed and now beam transport systems are under construction. This device will be used to develop the materials and the components for the tokamak fusion reactor. (Author)

  5. Underwater laser beam welding technology for reactor vessel nozzles of PWRs

    International Nuclear Information System (INIS)

    Yoda, Masaki; Tamura, Masataka; Tamura, Masataka

    2010-01-01

    Toshiba has developed an underwater laser beam welding technology for the maintenance of reactor vessel nozzles of pressurized water reactors (PWRs), which eliminates the need for the drainage of water from the reactor vessel. The new welding system makes it possible to both reduce the work period and minimize the radiation exposure of workers compared with conventional technologies for welding in ambient air. We have confirmed the effectiveness of this technology through experiments in which stress corrosion cracking (SCC) was mitigated on the inner surfaces of nozzles. We are promoting its practical application in Japan and overseas in cooperation with Westinghouse Electric Company, a group company of Toshiba. (author)

  6. A compact reactor/ORC power source

    International Nuclear Information System (INIS)

    Meier, K.L.; Kirchner, W.L.; Willcutt, G.J.

    1986-01-01

    A compact power source that combines an organic Rankine cycle (ORC) electric generator with a nuclear reactor heat source is being designed and fabricated. Incorporating existing ORC technology with proven reactor technology, the compact reactor/ORC power source offers high reliability while minimizing the need for componenet development. Thermal power at 125 kWt is removed from the coated particle fueled, graphite moderated reactor by heat pipes operating at 500 0 C. Outside the reactor vessel and connected to the heat pipes are vaporizers in which the toluene ORC working fluid is heated to 370 0 C. In the turbine-alternator-pump (TAP) combined-rotating unit, the thermal energy of the toluene is converted to 25 kWe of electric power. Lumped parameter systems analyses combined with a finite element thermal analyses combined with a finite element thermal analysis have aided in the power source design. The analysis have provided assurance of reliable multiyear normal operation as well as full power operation with upset conditions, such as failed heat pipes and inoperative ORC vaporizers. Because of inherent high reliability, long life, and insensitivity to upset conditions, this power source is especially suited for use in remote, inaccessible locations where fuel delivery and maintenance costs are high

  7. Nuclear reactors and technology in the next stage

    International Nuclear Information System (INIS)

    Orlov, V.

    2000-01-01

    Author deals with the perspectives of development of nuclear power. It is possible to create in a fairly short time reactors and fuel technology that would meet the main requirements for large-scale power production, i.e.: (a) to afford a 100-fold reduction in the specific consumption of uranium, by utilizing thousands of tonnes of Pu accumulated in the spent fuel from the reactors of the fl t stage; .to rule out nuclear disasters, by taking advantage of the intrinsic properties and behavior of reactor, coolant, fuel, etc., with the plants made simpler and cheaper; (b) to hit a balance between the radiotoxicity of waste and that of feed uranium, by providing neutron transmutation; (c) to create power reactors and fuel cycle technology that would not afford extraction of weapon-grade materials. To fulfil all these requirements, it is necessary to provide substantial neutron excess in a chain reaction for Pu breeding, to use fuel with an equilibrium composition, to bum actinides and LLFPs. All this can be done only in fast reactors. Fast reactors can also provide fuel for thermal reactors that might still be used for some applications, operating in a Th/U cycle, which is the best option for such facilities. Novel engineering solutions will be necessary: high-density heat-conductive fuel (UPuN), chemically inert high-boiling coolant (Pb), dry reprocessing. These issues have been studied well enough to allow embarking on the development of advanced fast reactors. Minatom institutions are finalizing a detailed design of a demonstration BREST-300 plant, complete with an on-site fuel cycle that will meet the requirements of large-scale nuclear power. Hopefully, construction of this plant at Beloyarsk site with its subsequent trial operation would open a door to the next stage in nuclear power development. (author)

  8. The role of the IAEA in advanced technologies for water-cooled reactors

    International Nuclear Information System (INIS)

    Cleveland, J.

    1996-01-01

    The role of the IAEA in advanced technologies for water-cooled reactors is described, including the following issues: international collaboration ways through international working group activities; IAEA coordinated research programmes; cooperative research in advanced water-cooled reactor technology

  9. Reactor Technology Options Study for Near-Term Deployment of GNEP Grid-Appropriate Reactors

    International Nuclear Information System (INIS)

    Ingersoll, Daniel T.; Poore, Willis P. III

    2007-01-01

    World energy demand is projected to significantly increase over the coming decades. The International Energy Agency projects that electricity demand will increase 50% by 2015 and double by 2030, with most of the increase coming in developing countries as they experience double-digit rates of economic growth and seek to improve their standards of living. Energy is the necessary driver for human development, and the demand for energy in these countries will be met using whatever production technologies are available. Recognizing this inevitable energy demand and its implications for the United States, the U.S. National Security Strategy has proposed the Global Nuclear Energy Partnership (GNEP) to work with other nations to develop and deploy advanced nuclear recycling and reactor technologies. This initiative will help provide reliable, emission-free energy with less of the waste burden of older technologies and without making available separated plutonium that could be used by rogue states or terrorists for nuclear weapons. These new technologies will make possible a dramatic expansion of safe, clean nuclear energy to help meet the growing global energy demand. In other words, GNEP seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy without increasing the risk of nuclear weapon proliferation. This global expansion of nuclear power is strategically important to the United States for several reasons, including the following: (1) National security, by reducing the competition and potential for conflict over increasingly scarce fossil energy resources; (2) Economic security, by helping maintain stable prices for nonrenewable resources such as oil, gas, and coal; (3) Environmental security, by replacing or off-setting large-scale burning of greenhouse gas-emitting fuels for electricity production; and (4) Regaining technical leadership, through deployment of innovative U.S. technology-based reactors. Fully meeting

  10. Reactor Technology Options Study for Near-Term Deployment of GNEP Grid-Appropriate Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, Daniel T [ORNL; Poore III, Willis P [ORNL

    2007-09-01

    World energy demand is projected to significantly increase over the coming decades. The International Energy Agency projects that electricity demand will increase 50% by 2015 and double by 2030, with most of the increase coming in developing countries as they experience double-digit rates of economic growth and seek to improve their standards of living. Energy is the necessary driver for human development, and the demand for energy in these countries will be met using whatever production technologies are available. Recognizing this inevitable energy demand and its implications for the United States, the U.S. National Security Strategy has proposed the Global Nuclear Energy Partnership (GNEP) to work with other nations to develop and deploy advanced nuclear recycling and reactor technologies. This initiative will help provide reliable, emission-free energy with less of the waste burden of older technologies and without making available separated plutonium that could be used by rogue states or terrorists for nuclear weapons. These new technologies will make possible a dramatic expansion of safe, clean nuclear energy to help meet the growing global energy demand. In other words, GNEP seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy without increasing the risk of nuclear weapon proliferation. This global expansion of nuclear power is strategically important to the United States for several reasons, including the following: (1) National security, by reducing the competition and potential for conflict over increasingly scarce fossil energy resources; (2) Economic security, by helping maintain stable prices for nonrenewable resources such as oil, gas, and coal; (3) Environmental security, by replacing or off-setting large-scale burning of greenhouse gas-emitting fuels for electricity production; and (4) Regaining technical leadership, through deployment of innovative U.S. technology-based reactors. Fully meeting

  11. Indigenous technology development : seismic switch for nuclear reactors

    International Nuclear Information System (INIS)

    Varghese, Shiju; Shah, Jay; Limaye, P.K.; Soni, N.L; Patel, R.J.

    2016-01-01

    After Fukushima incident it has become a regulatory requirement to have automatic reactor trip on detection of earthquake beyond OBE level. Seismic Switches that meets the technical specifications required for nuclear reactor use were not available in the market. Hence, on Nuclear Power Corporation of India Ltd (NPCIL's) request, Refuelling Technology Division, BARC has developed Seismic Switches (electronic earthquake detectors) required for this application. Functionality of the system was successfully tested using a Shake Table. Two different designs of seismic switches have been developed. One is a microcontroller based system (digital) and the other is fully analogue electronics (analog) based. These switches are designed to meet the technical requirements of Class IA systems of nuclear reactors. It is also designed to meet other qualification tests such as EMI/EMC, climatic, vibration, and reliability requirements. In addition to nuclear industry seismic switches are having potential use in oil and gas, power plants, buildings and other industrial installations. These technologies are currently available for technology transfer and details are published in BARC website. This paper describes the requirements, principle of operation, and features and testing of the developed systems. (author)

  12. SBWR technology and development

    International Nuclear Information System (INIS)

    Rao, A.S.; McCandless, R.J.; Sawyer, C.D.

    1991-01-01

    The simplified boiling water reactor (SBWR) is based on utilizing to the maximum extent possible proven light water reactor (LWR) technology developed through 30 years of operating plant experience plus the advanced boiling water reactor (ABWR) technology development program. For the unique features, developmental programs have been put in place to qualify the design. Thus, the focus of technology development has been on the passive safety features - the gravity-driven ECCS (GDCS) and the containment heat removal (PCCS). General Electric constructed a full-height, scaled, integral facility to demonstrate the GDCS concept and provide data for methods qualification. For the PCCS, a three-pronged program was implemented. Basic heat transfer data were obtained via testing at the Massachusetts Institute of Technology and the University of California at Berkeley. A full-height scaled integral facility to demonstrate the PCCS concept and provide data for methods qualification was constructed in Japan in 1989. Initial testing is now complete. Design of a full-scale heat exchanger unit is underway and testing is planned for completion in early 1993

  13. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  14. Gas-cooled reactor technology: a bibliography

    International Nuclear Information System (INIS)

    Raleigh, H.D.

    1981-09-01

    Included are 3358 citations on gas-cooled reactor technology contained in the DOE Energy Data Base for the period January 1978 through June 1981. The citations include reports, journal articles, books, conference papers, patents, and monographs. Corporate, Personal Author, Subject, Contract Number, and Report Number Indexes are provided

  15. Technology development and demonstration for TRIGA research reactor decontamination, decommissioning and site restoration

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Ki Jung; Lee, Byung Jik

    1997-01-01

    This paper describes the introduction to research reactor decommissioning plan at KAERI, the background of technology development and demonstration, and the current status of the system decontamination technology for TRIGA reactors, concrete decontamination and dust treatment technologies, wall ranging robot and graphic simulation of dismantling processes, soil decontamination and restoration technology, recycling or reuse technologies for radioactive metallic wastes, and incineration technology demonstration for combustible wastes. 9 figs

  16. 105-C Reactor interim safe storage project technology integration plan

    International Nuclear Information System (INIS)

    Pulsford, S.K.

    1997-01-01

    The 105-C Reactor Interim Safe Storage Project Technology Integration Plan involves the decontamination, dismantlement, and interim safe storage of a surplus production reactor. A major goal is to identify and demonstrate new and innovative D and D technologies that will reduce costs, shorten schedules, enhance safety, and have the potential for general use across the RL complex. Innovative technologies are to be demonstrated in the following areas: Characterization; Decontamination; Waste Disposition; Dismantlement, Segmentation, and Demolition; Facility Stabilization; and Health and Safety. The evaluation and ranking of innovative technologies has been completed. Demonstrations will be selected from the ranked technologies according to priority. The contractor team members will review and evaluate the demonstration performances and make final recommendations to DOE

  17. Development of technologies for nuclear reactors of small and medium sized

    International Nuclear Information System (INIS)

    2011-08-01

    This meeting include: countries presentations, themes and objectives of the training course, reactor types, design, EPR, APR1400, A P 1000, A PWR, ATMEA 1, VVER-1000, A PWR, ATMEA 1, VVER 1200, Boiling Water Reactor, A BWR, A BWR -II, ESBUR, Ke ren, AREVA, Heavy Water Reactor, Candu 6, Acr-1000, HWR, Bw, Iris, CAREM NuCcale, Smart, KLT-HOS, Westinghouse small modular Reactor, Gas Cooled Reactors, PBMR, React ores enfriados con metales liquidos, Hs, Prism,Terra Power, Hyper ion, appliance's no electric as de energia, Generation IV Reactors,VHTR, Gas Fast Reactor, Sodium Fast Reactor, Molten salt Reactor, Lfr, Water Cooled Reactor, Technology Assessment Process, Fukushima accident.

  18. R and D of On-line Reprocessing Technology for Molten-Salt Reactor Systems

    International Nuclear Information System (INIS)

    Uhlir, Jan; Tulackova, Radka; Chuchvalcova Bimova, Karolina

    2006-01-01

    The Molten Salt Reactor (MSR) represents one of promising future nuclear reactor concept included in the Generation IV reactors family. The reactor can be operated as the thorium breeder or as the actinide transmuter. However, the future deployment of Molten-Salt Reactors will be significantly dependent on the successful mastering of advanced reprocessing technologies dedicated to their fuel cycle. Here the on-line reprocessing technology connected with the fuel circuit of MSR is of special importance because the reactor cannot be operated for a long run without the fuel salt clean-up. Generally, main MSR reprocessing technologies are pyrochemical, majority of them are fluoride technologies. The proposed flow-sheets of MSR on-line reprocessing are based on a combination of molten-salt / liquid metal extraction and electro-separation processes, which can be added to the gas extraction process already verified during the MSRE project in ORNL. The crucial separation method proposed for partitioning of actinides from fission products is based on successive Anodic dissolution and Cathodic deposition processes in molten fluoride media. (authors)

  19. Particle Bed Reactor engine technology

    Science.gov (United States)

    Sandler, S.; Feddersen, R.

    1992-03-01

    This paper discusses the Particle Bed Reactor (PBR) based propulsion system being developed under the Space Nuclear Thermal Propulsion (SNTP) program. A PBR engine is a light weight, compact propulsion system which offers significant improvement over current technology systems. Current performance goals are a system thrust of 75,000 pounds at an Isp of 1000 sec. A target thrust to weight ratio (T/W) of 30 has been established for an unshielded engine. The functionality of the PBR, its pertinent technology issues and the systems required to make up a propulsion system are described herein. Accomplishments to date which include hardware development and tests for the PBR engine are also discussed. This paper is intended to provide information on and describe the current state-of-the-art of PBR technology.

  20. Particle Bed Reactor engine technology

    International Nuclear Information System (INIS)

    Sandler, S.; Feddersen, R.

    1992-01-01

    This paper discusses the Particle Bed Reactor (PBR) based propulsion system being developed under the Space Nuclear Thermal Propulsion (SNTP) program. A PBR engine is a light weight, compact propulsion system which offers significant improvement over current technology systems. Current performance goals are a system thrust of 75,000 pounds at an Isp of 1000 sec. A target thrust to weight ratio (T/W) of 30 has been established for an unshielded engine. The functionality of the PBR, its pertinent technology issues and the systems required to make up a propulsion system are described herein. Accomplishments to date which include hardware development and tests for the PBR engine are also discussed. This paper is intended to provide information on and describe the current state-of-the-art of PBR technology. 4 refs

  1. Department of Reactor Technology annual progress report 1 January -31 December 1977

    International Nuclear Information System (INIS)

    1978-04-01

    The work of the Department of Reactor Technology within the following fields is described: reactor engineering, reactor operation, structural reliability, system reliability, reactor physics, fuel management, reactor accident analysis for LOCA and ECC, containment analysis, experimental heat transfer, reactor core dynamics and power plant simulators, experimental activation measurements and neutron radiography at the DR 1 reactor, underground storage of gas, solar heating and underground heat storage, wind power. (author)

  2. Low power unattended defense reactor

    International Nuclear Information System (INIS)

    Kirchner, W.L.; Meier, K.L.

    1984-01-01

    A small, low power, passive, nuclear reactor electric power supply has been designed for unattended defense applications. Through innovative utilization of existing proven technologies and components, a highly reliable, ''walk-away safe'' design has been obtained. Operating at a thermal power level of 200 kWt, the reactor uses low enrichment uranium fuel in a graphite block core to generate heat that is transferred through heat pipes to a thermoelectric (TE) converter. Waste heat is removed from the TEs by circulation of ambient air. Because such a power supply offers the promise of minimal operation and maintenance (OandM) costs as well as no fuel logistics, it is particularly attractive for remote, unattended applications such as the North Warning System

  3. Low power unattended defense reactor

    International Nuclear Information System (INIS)

    Kirchner, W.L.; Meier, K.L.

    1984-01-01

    A small, low power, passive, nuclear reactor electric power supply has been designed for unattended defense applications. Through innovative utilization of existing proven technologies and components, a highly reliable, walk-away safe design has been obtained. Operating at a thermal power level of 200 kWt, the reactor uses low enrichment uranium fuel in a graphite block core to generate heat that is transferred through heat pipes to a thermoelectric (TE) converter. Waste heat is removed from the TEs by circulation of ambient air. Because such a power supply offers the promise of minimal operation and maintenance (O and M) costs as well as no fuel logistics, it is particularly attractive for remote, unattended applications such as the North Warning System

  4. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science in Radiation and Dynamics Extremes

    2016-09-26

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  5. EPR by Areva. EPR the 1600+ MWe reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This brochure presents the GEN III+ EPR reactor designed by the Areva and Siemens consortium. The EPR reactor is a direct descendent of the well-proven N4 and KONVOI reactors, the most modern reactors in France and Germany. The EPR was designed by teams from KWU/Siemens and Framatome, EDF in France and the major German utilities, working in collaboration with both French and German safety authorities. The EPR integrates the results of decades of R and D programs, in particular those performed by the CEA (French Atomic Energy Commission) and the Karlsruhe Research Center in Germany. The EPR benefits from the experience of several thousand reactor-years of operation of pressurized water reactor technology. This experience has put 87 AREVA PWRs online throughout the world. Innovative Features: - An outer shell covering the reactor building, the spent fuel building and two of the four safeguard buildings provides protection against large commercial or military aircraft crash. - A heavy neutron reflector that surrounds the reactor core lowers uranium consumption. - An axial economizer inside the steam generator allows a high level of steam pressure and therefore high plant efficiency. - A core catcher allows passive collection and retention of the molten core should the reactor vessel fail in the highly unlikely event of a core melt. - A digital technology and a fully computerized control room with an operator friendly man-machine interface improve the reactor protection system.

  6. EPR by Areva. EPR the 1600+ MWe reactor

    International Nuclear Information System (INIS)

    2008-01-01

    This brochure presents the GEN III+ EPR reactor designed by the Areva and Siemens consortium. The EPR reactor is a direct descendent of the well-proven N4 and KONVOI reactors, the most modern reactors in France and Germany. The EPR was designed by teams from KWU/Siemens and Framatome, EDF in France and the major German utilities, working in collaboration with both French and German safety authorities. The EPR integrates the results of decades of R and D programs, in particular those performed by the CEA (French Atomic Energy Commission) and the Karlsruhe Research Center in Germany. The EPR benefits from the experience of several thousand reactor-years of operation of pressurized water reactor technology. This experience has put 87 AREVA PWRs online throughout the world. Innovative Features: - An outer shell covering the reactor building, the spent fuel building and two of the four safeguard buildings provides protection against large commercial or military aircraft crash. - A heavy neutron reflector that surrounds the reactor core lowers uranium consumption. - An axial economizer inside the steam generator allows a high level of steam pressure and therefore high plant efficiency. - A core catcher allows passive collection and retention of the molten core should the reactor vessel fail in the highly unlikely event of a core melt. - A digital technology and a fully computerized control room with an operator friendly man-machine interface improve the reactor protection system

  7. Evaluating Russian space nuclear reactor technology for United States applications

    International Nuclear Information System (INIS)

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch

  8. Development of pressure boundaries leak detection technology for nuclear reactor

    International Nuclear Information System (INIS)

    Zhang Yao; Zhang Dafa; Chen Dengke; Zhang Liming

    2008-01-01

    The leak detection for the pressure boundaries is an important safeguard in nuclear reactor operation. In the paper, the status and the characters on the development of the pressure boundaries leak detection technology for the nuclear reactor were reviewed, especially, and the advance of the radiation leak detection technology and the acoustic emission leak detection technology were analyzed. The new advance trend of the leak detection technology was primarily explored. According to the analysis results, it is point out that the advancing target of the leak detection technology is to enhance its response speed, sensitivity, and reliability, and to provide effective information for operator and decision-maker. The realization of the global leak detection and the whole life cycle health monitoring for the nuclear boundaries is a significant advancing tendency of the leak detection technology. (authors)

  9. Mitsubishi nuclear technologies and construction of new Bohunice

    International Nuclear Information System (INIS)

    Yoshizu, T.

    2009-01-01

    Mitsubishi Heavy Industries (MHI) has setup Generation III+ category power plant technologies both in large and middle size reactors as a key player in the global market of nuclear plant suppliers. MHI has developed 1,700 MWe class Advanced Pressurized Water Reactor for European utilities, EU-APWR, utilizing the APWR technology in Japan. The plant configuration is based on the proven technologies from MHI's ample experiences, but various advanced technologies are adopted to achieve enhanced safety, reliability, and economy. For the regions without large grid capacity, middle-sized nuclear power plant will be an attractive option for the utilities. Joint Venture ATMEA with AREVA NP will serve ATMEA1. The ATMEA1 will offer 1,100 MWe output with superior operation performance based on reliable and proven technologies. Mitsubishi has experience of half century for all of 26 PWR plants in Japan. The latest plant is Tomari Unit 3 of 1,000 MWe, which has completed the construction work and now in the final commissioning test. Tomari Unit 3 applies some advanced technologies such as all digital I and C, which are to be implemented in the EU-APWR. Based on this construction experience, Mitsubishi can contribute any kind of demands for New Bohunice 5 th unit project with the total engineering capability. (author)

  10. Coupling of AST-500 heating reactors with desalination facilities

    International Nuclear Information System (INIS)

    Kourachenkov, A.V.

    1998-01-01

    The general issues regarding NHR and desalination facility joint operation for potable water production are briefly considered. AST-500 reactor plant and DOU GTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. Similarity of NHR operation for a heating grid and a desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author)

  11. Repair and preventive maintenance technology for BWR reactor internals and piping

    International Nuclear Information System (INIS)

    Ootsubo, Tooru; Itou, Takashi; Sakashita, Akihiro

    2009-01-01

    Stress corrosion cracking of welding portion has found in many domestic and foreign BWR reactor internals and Primary Loop Recirculation piping. Also, repair and preventive maintenance technologies for SCC has been developed and/or adopted to BWRs in recent years. This paper introduces the sample of these technologies, such as seal-welding for SCC on BWR reactor internals, preventive maintenance technology for PLR piping such as Corrosion Resistant Cladding, Internal Polishing and Induction Heating Stress Improvement. These technologies are introduced on 'E-Journal of Advanced Maintenance', which is an international journal on a exclusive website of Japan Society of Maintenology. (author)

  12. Department of Reactor Technology annual progress report 1 January - 31 December 1978

    International Nuclear Information System (INIS)

    1979-04-01

    The activities of the department of reactor technology at Risoe during 1978 are described. The work is presented in five chapters: Reactor Engineering, Reactor Physics and Dynamics, Heat Transfer and Hydraulics, The DR 1 Reactor, and Non-Nuclear Activities. A list of the staff and of publications is included. (author)

  13. Fusion reactor design and technology 1986. V. 1

    International Nuclear Information System (INIS)

    1987-01-01

    The first volume of the Proceedings of the Fourth Technical Committee Meeting and Workshop on Fusion Reactor Design and Technology organized by the IAEA (Yalta, 26 May - 6 June 1986) includes 36 papers devoted to the following topics: fusion programmes (3 papers), tokamaks (15 papers), non-tokamak reactors and open systems (9 papers), inertial confinement concepts (5 papers), fission-fusion hybrids (4 papers). Each of these papers has a separate abstract. Refs, figs and tabs

  14. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  15. Technological studies for obtaining lead oxide compacts used in generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Paraschiv, I.; Benga, D.

    2016-01-01

    One of the main concerns of the nuclear research at this moment is the development of the necessary technologies for Generation IV reactors. The main candidate as coolant agent in these reactors is molten lead but this material involves ensuring the oxygen control, due to potential contamination of coolant through the formation of solid oxides and the influence on the corrosion rate of structural parts and for this reason, the oxygen concentration must be kept in a well specified domain. One of the proposed methods for oxygen monitoring and control in the technology of Generation IV reactors, is the use of PbO compacts. For this paper technological tests were performed for developing and setting the optimal parameters in order to attain lead oxide compacts necessary for the oxygen control technology in Generation IV nuclear reactors. (authors)

  16. Status of fusion technology development in JAERI stressing steady-state operation for future reactors

    International Nuclear Information System (INIS)

    Matsuda, Shinzaburo

    2000-01-01

    This paper reports on the progress of the fusion reactor technologies developed at the Japan Atomic Energy Research Institute (JAERI) and expected to lead to a future steady state operation reactor. In particular, superconducting coil technology for plasma confinement, NBI and RF systems technology for plasma control and current drive, fueling and pumping systems technology for particle control, heat removal technology, and development of long life materials are highlighted as the important key elements for the future steady state operation. It will be discussed how these key technologies have already been developed by the ITER (International Thermonuclear Experimental Reactor) technology R and D as well as by the Japanese domestic program, and which technologies are planned for the near future

  17. A look at the fusion reactor technology

    International Nuclear Information System (INIS)

    Rohatgi, V.K.

    1985-01-01

    The prospects of fusion energy have been summarised in this paper. The rapid progress in the field in recent years can be attributed to the advances in various technologies. The commercial fusion energy depends more heavily on the evolution and improvement in these technologies. With better understanding of plasma physics, the fusion reactor designs have become more realistic and comprehensive. It is now possible to make intercomparison between various concepts within the frame work of the established technologies. Assuming certain growth rate of the technological development, it is estimated that fusion energy can become available during the early part of the next century. (author)

  18. Bridging the provenance gap: opportunities and challenges tracking in and ex silico provenance in sUAS workflows

    Science.gov (United States)

    Thomer, A.

    2017-12-01

    Data provenance - the record of the varied processes that went into the creation of a dataset, as well as the relationships between resulting data objects - is necessary to support the reusability, reproducibility and reliability of earth science data. In sUAS-based research, capturing provenance can be particularly challenging because of the breadth and distributed nature of the many platforms used to collect, process and analyze data. In any given project, multiple drones, controllers, computers, software systems, sensors, cameras, imaging processing algorithms and data processing workflows are used over sometimes long periods of time. These platforms and processing result in dozens - if not hundreds - of data products in varying stages of readiness-for-analysis and sharing. Provenance tracking mechanisms are needed to make the relationships between these many data products explicit, and therefore more reusable and shareable. In this talk, I discuss opportunities and challenges in tracking provenance in sUAS-based research, and identify gaps in current workflow-capture technologies. I draw on prior work conducted as part of the IMLS-funded Site-Based Data Curation project in which we developed methods of documenting in and ex silico (that is, computational and non-computation) workflows, and demonstrate this approaches applicability to research with sUASes. I conclude with a discussion of ontologies and other semantic technologies that have potential application in sUAS research.

  19. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  20. Current status and perspective of advanced loop type fast reactor in fast reactor cycle technology development project

    International Nuclear Information System (INIS)

    Niwa, Hajime; Aoto, Kazumi; Morishita, Masaki

    2007-01-01

    After selecting the combination of the sodium-cooled fast reactor (SFR) with oxide fuel, the advanced aqueous reprocessing and the simplified pelletizing fuel fabrication as the most promising concept of FR cycle system, 'Feasibility Study on Commercialized Fast Reactor Cycle Systems' was finalized in 2006. Instead, a new project, Fast Reactor Cycle Technology Development Project (FaCT Project) was launched in Japan focusing on development of the selected concepts. This paper describes the current status and perspective of the advanced loop type SFR system in the FaCT Project, especially on the design requirements, current design as well as the related innovative technologies together with the development road-map. Some considerations on advantages of the advanced loop type design are also described. (authors)

  1. Department of Reactor Technology: annual progress report 1 January - 31 December 1976

    International Nuclear Information System (INIS)

    1977-06-01

    The work of the Department of Reactor Technology within the following fields is described: reactor engineering, structural reliability, system reliability, radiation fiels in nuclear power plants, reactor physics, fuel management, fission product decay analysis, steady-state thermo-hydraulics, reactor accident analysis for LOCA and ECC, containment analysis, experimental heat transfer, reactor core dynamics and power plant simulators, control rod ejection accident analysis, economic studies for power plants, experimental activation measurements and neutron radiography at the DR 1 reactor. (author)

  2. Novel Technology for Phenol Wastewater Treatment Using Electrochemical Reactor

    Directory of Open Access Journals (Sweden)

    Yuncheng Xie

    2015-01-01

    Full Text Available There are various electrochemical approaches to save energy, mostly by means of equipment improvement coupled with other water treatment technologies. Replacement of DC power with pulse power, modified reactor coupled with photocatalysis can decrease cost. But more or less additional input is developed, or infrastructure has to be replaced. In this paper, an N-Step electrochemical reactor, based on stage reaction modeling, is put forward. On the basis of not changing equipment investment and by adjustment of the operating current density at different levels, power consumption decreases. This model develops a foundation of electrochemical water treatment technology for the engineering application.

  3. Low power reactor for remote applications

    International Nuclear Information System (INIS)

    Meier, K.L.; Palmer, R.G.; Kirchner, W.L.

    1985-01-01

    A compact, low power reactor is being designed to provide electric power for remote, unattended applications. Because of the high fuel and maintenance costs for conventional power sources such as diesel generators, a reactor power supply appears especially attractive for remote and inaccessible locations. Operating at a thermal power level of 135 kWt, the power supply achieves a gross electrical output of 25 kWe from an organic Rankine cycle (ORC) engine. By intentional selection of design features stressing inherent safety, operation in an unattended mode is possible with minimal risk to the environment. Reliability is achieved through the use of components representing existing, proven technology. Low enrichment uranium particle fuel, in graphite core blocks, cooled by heat pipes coupled to an ORC converter insures long-term, virtually maintenance free, operation of this reactor for remote applications. 10 refs., 7 figs., 3 tabs

  4. The slightly-enriched spectral shift control reactor

    International Nuclear Information System (INIS)

    Martin, W.R.; Lee, J.C.; Edlund, M.C.

    1990-06-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in larger neutron captures in fertile 238 U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 show that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies have been carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, effort will focus on performing the final design calculations and continuing the research to develop improved methods for tight lattice analysis

  5. Reliability tests for reactor internals rejuvenation technology

    International Nuclear Information System (INIS)

    Fujimaki, Katsumi; Hitoki, Yoichi; Otsubo, Toru; Uchiyama, Junichi

    1998-01-01

    Structural damage due to aging degradation of LWR reactor internals has been reported in several nuclear plants. NUPEC has started a project to test the reliability of the technology for rejuvenating reactor internals which has been funded by the Ministry of International Trade and Industry (MITI) of Japan since 1995. The project follows the policy of a report that the MITI has formally issued in April 1996 summarizing the countermeasures to be considered for aging nuclear plants and equipment. This paper gives an outline of the test plans and results which are directed at preventive maintenance before damage and repair after damage for reactor internals aging degradation. The test results for the replacement methods of ICM housing and BWR core shroud have shown that the methods were reliable and the structural integrity was appropriate based on the evaluation. (author)

  6. Advances in zirconium technology for nuclear reactor application

    International Nuclear Information System (INIS)

    Ganguly, C.

    2002-01-01

    Zirconium alloys are extensively used as a material for cladding nuclear fuels and for making core structurals of water-cooled nuclear power reactors all over the world for generation of nearly 16 percent of the worlds electricity. Only four countries in the world, namely France, USA, Russia and India, have large zirconium industry and capability to manufacture reactor grade zirconium sponge, a number of zirconium alloys and a wide variety of structural components for water cooled nuclear reactor. The present paper summarises the status of zirconium technology and highlights the achievement of Nuclear Fuel Complex during the last ten years in developing a wide variety of zirconium alloys and components for water-cooled nuclear power programme

  7. Inherent safe design of advanced high temperature reactors - concepts for future nuclear power plants

    International Nuclear Information System (INIS)

    Hodzic, A.; Kugeler, K.

    1997-01-01

    This paper discusses the applicable solutions for a commercial size High Temperature Reactor (HTR) with inherent safety features. It describes the possible realization using an advanced concept which combines newly proposed design characteristics with some well known and proven HTR inherent safety features. The use of the HTR technology offers the conceivably best solution to meet the legal criteria, recently stated in Germany, for the future reactor generation. Both systems, block and pebble bed ,reactor, could be under certain design conditions self regulating in terms of core nuclear heat, mechanical stability and the environmental transfer. 23 refs., 7 figs

  8. Research reactor instrumentation and control technology. Report of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-10-01

    The majority of research reactors operating today were put into operation 20 years ago, and some of them underwent modifications, upgrading and refurbishing since their construction to meet the requirements for higher neutron fluxes. However, a few of these ageing research reactors are still operating with their original instrumentation and control systems (I and C) which are important for reactor safety to guard against abnormal occurrences and reactor control involving startup, shutdown and power regulation. Worn and obsolete I and C systems cause operational problems as well as difficulties in obtaining replacement parts. In addition, satisfying the stringent safety conditions laid out by the nuclear regulatory bodies requires the modernization of research reactors I and C systems and integration of additional instrumentation units to the reactor. In order to clarify these issues and to provide some guidance to reactor operators on state-of-art technology and future trends for the I and C systems for research reactors, a Technical Committee Meeting on Technology and Trends for Research Reactor Instrumentation and Controls was held in Ljubljana, Slovenia, from 4 to 8 December 1995. This publication summarizes the discussions and recommendations resulting from that meeting. This is expected to benefit the research reactor operators planning I and C improvements. Refs, figs, tabs

  9. Contributions of fast breeder test reactor to the advanced technology in India

    International Nuclear Information System (INIS)

    Kapoor, R.P.

    2001-01-01

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13.2 MWe loop type, sodium cooled, plutonium rich mixed carbide fuelled reactor. Its operation at Indira Gandhi Centre for Atomic Research, since first criticality in 1985, has contributed immensely to the advancement of this multidisciplinary and complex fast breeder technology in the country. It has also given a valuable operational feedback for the design of 500 MWe Prototype Fast Breeder Reactor. This paper highlights FBTR's significant contributions to this important technology which has a potential to provide energy security to the country in future. (author)

  10. Pebble red modular reactor - South Africa

    International Nuclear Information System (INIS)

    Fox, M.; Mulder, E.

    1996-01-01

    In 1995 the South African Electricity Utility, ESKOM, was convinced of the economical advantages of high temperature gas-cooled reactors as viable supply side option. Subsequently planning of a techno/economic study for the year 1996 was initiated. Continuation to the construction phase of a prototype plant will depend entirely on the outcome of this study. A reactor plant of pebble bed design coupled with a direct helium cycle is perceived. The electrical output is limited to about 100 MW for reasons of safety, economics and flexibility. Design of the reactor will be based on internationally proven, available technology. An extended research and development program is not anticipated. New licensing rules and regulations will be required. Safety classification of components will be based on the merit of HTGR technology rather than attempting to adhere to traditional LWR rules. A medium term time schedule for the design and construction of a prototype plant, commissioning and performance testing is proposed during the years 2002 and 2003. Pending the performance outcome of this plant and the current power demand, series production of 100 MWe units is foreseen. (author)

  11. Development of fuel cycle technology for molten-salt reactor systems

    International Nuclear Information System (INIS)

    Uhlir, J.

    2006-01-01

    Full text: Full text: The Molten-Salt Reactor (MSR) represents one of promising advanced reactor type assigned to the GEN IV reactor systems. It can be operated either as thorium breeder within the Th -133U fuel cycle or as actinide transmuter incinerating transuranium fuel. Essentially the main advantage of MSR comes out from the prerequisite, that this reactor type should be directly connected with the 'on-line' reprocessing of circulating liquid (molten-salt) fuel. This principle should allow very effective extraction of freshly constituted fissile material (233U). Besides, the on-line fuel salt clean up is necessary within a long run to keep the reactor in operation. As a matter of principle, it permits to clear away typical reactor poisons like xenon, krypton, lanthanides etc. and possibly also other products of burned plutonium and transmuted minor actinides. The fuel salt clean up technology should be linked with the fresh MSR fuel processing to continuously refill the new fuel (thorium or transuranics) into the reactor system. On the other hand, the technologies of fresh transuranium molten-salt fuel processing from the current LWR spent fuel and of the on-line reprocessing of MSR fuel represent two killing points of the whole MSR technology, which have to be successfully solved before MSR deployment in the future. There are three main pyrochemical partitioning techniques proposed for processing and/or reprocessing of MSR fuel: Fluoride volatilization processes, Molten salt / liquid metal extraction processes and Electrochemical separation processes. Two of them - Fluoride Volatility Method and Electrochemical separation process from fluoride media are under development in the Nuclear Research Institute Rez pic. R and D in the field of Fluoride Volatility Method is concentrated to the development and verification of experimental semi-pilot technology for LWR spent fuel reprocessing, which may result in a product the form and composition of which might be

  12. Improving the proliferation resistance of research and test reactors

    International Nuclear Information System (INIS)

    Lewis, R.A.

    1978-01-01

    Elimination, or substantial reduction, of the trade in unirradiated highly-enriched fuel elements for research and test reactors would significantly reduce the proliferation risk associated with the current potential for diversion of these materials. To this end, it is the long-term goal of U.S. policy to fuel all new and existing research and test reactors with uranium of less-than-20% enrichment (but substantially greater than natural) excepting, perhaps, only a small number of high-power, high-performance, reactors. The U.S. development program for enrichment reduction in research and test reactor designs currently using 90-93% enriched uranium is based on the practical criterion that enrichment reduction should not cause significant flux performance (flux per unit power) or burnup performance degradation relative to the unmodified reactor design. To first order, this implies the requirement that the 235 U loading in the reduced-enrichment fuel elements be the same as the 235 U loading in the 90-93% enriched fuel elements. This can be accomplished by substitution of higher uranium density fuel technology for currently-used fuel technology in the fuel meat volume of the current fuel element design and/or by increasing the usable fuel meat volume. For research and test reactors of power greater than 5-10 megawatts, fuel technology does not currently exist that would permit enrichment reductions to below 20% utilizing this criterion. A program is now beginning in the U.S. to develop the necessary fuel technology. Currently-proven fuel technology is capable, however, of accommodating enrichment reductions to the 30-45% range (from 90-93%) for many reactors in the 5-50MW range. Accordingly the U.S. is proposing to convert existing reactors (and new designs) in the 5-50MW range from the use of highly-enriched fuel to the use of 30-45% enriched fuel, and reactors of less that about 5MW to less-than-20% enrichment, wherever this can be done without significant

  13. Using Blockchain and smart contracts for secure data provenance management

    OpenAIRE

    Ramachandran, Aravind; Kantarcioglu, Dr. Murat

    2017-01-01

    Blockchain technology has evolved from being an immutable ledger of transactions for cryptocurrencies to a programmable interactive the environment for building distributed reliable applications. Although, blockchain technology has been used to address various challenges, to our knowledge none of the previous work focused on using blockchain to develop a secure and immutable scientific data provenance management framework that automatically verifies the provenance records. In this work, we le...

  14. Coupling of AST-500 heating reactors with desalination facilities

    International Nuclear Information System (INIS)

    Gureyeva, L.V.; Egorov, V.V.; Podberezniy, V.L.

    1997-01-01

    The general issues regarding the joint operation of a NHR and a desalination facility for potable water production are briefly considered. The AST-500 reactor plant and the DOUGTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. The similarity of NHR operation for heating grid and desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author). 2 refs, 1 fig., 1 tab

  15. Coupling of AST-500 heating reactors with desalination facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gureyeva, L V; Egorov, V V [OKBM, Nizhny Novgorod (Russian Federation); Podberezniy, V L [Scientific Research Inst. of Machine Building, Ekaterinburg (Russian Federation)

    1997-09-01

    The general issues regarding the joint operation of a NHR and a desalination facility for potable water production are briefly considered. The AST-500 reactor plant and the DOUGTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. The similarity of NHR operation for heating grid and desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author). 2 refs, 1 fig., 1 tab.

  16. Nuclear reactor technology progress report, vol. 4

    International Nuclear Information System (INIS)

    1981-01-01

    The works of the Engineering Section, Fast Experimental Reactor Division, are roughly classified into the technologies concerning the reactor core, abnormality monitoring, the plant, purity control and operation planning. In this paper, the activities of the Engineering Section, the operational results of Joyo and the foreign informations on FBRs in this quarter are reported. The second regular inspection carried out successively from the previous quarter was completed, and the fourth cycle operation of Joyo at 75 MW was started. The measurement of CP around the primary system pipings and equipments, the preliminary test of a core flow meter for Monju, and the various characteristic tests were carried out during this period. 2 N reports, 1 SA report and 63 memos were drawn up in this quarter. The test plan to be carried out during the period of the fourth to sixth cycle operations in this last year using the MK-1 core was formed and decided. Various meetings within and outside the division are reported. The data obtained in the operational characteristic test and special test are shown. As the results concerning the reactor technologies, the development of dosimetry techniques, the measurement and analysis of the core characteristics, the measurement of the temperature and flow velocity of coolant at the fuel assembly exit, the system pressure loss in the primary cooling system and others are reported. (Kako, I.)

  17. Reliability tests for reactor internals replacement technology

    International Nuclear Information System (INIS)

    Fujimaki, K.; Uchiyama, J.; Ohtsubo, T.

    2000-01-01

    Structural damage due to aging degradation of LWR reactor internals has been reported in several nuclear plants. NUPEC has started a project to test the reliability of the technology for replacing reactor internals, which was directed at preventive maintenance before damage and repair after damage for the aging degradation. The project has been funded by the Ministry of International Trade and Industry (MITI) of Japan since 1995, and it follows the policy of a report that the MITI has formally issued in April 1996 summarizing the countermeasures to be considered for aging nuclear plants and equipment. This paper gives an outline of the whole test plans and the test results for the BWR reactor internals replacement methods; core shroud, ICM housing, and CRD Housing and stub tube. The test results have shown that the methods were reliable and the structural integrity was appropriate based on the evaluation. (author)

  18. Proceedings of 18th international conference on structural mechanics in reactor technology

    International Nuclear Information System (INIS)

    2005-07-01

    The 18th International Conference on Structural Mechanics in Reactor Technology was held on August 7-12, 2005 in Beijing, China, and Sponsored by International Association for Structural Mechanics in Reactor Technology, Chinese Nuclear Society, Chinese Society of Theoretical and Applied Mechanics, and Tsinghua University. 486 abstracts are Collected. The contents includes: opening, plenary and keynote presentations; computational mechanics; fuel and core structures; aging, life extension, and license renewal; design methods and rules for components; fracture mechanics; concrete material, containment and other structures; analysis and design for dynamic and extreme loads; seismic analysis, design and qualification; structural reliability and probabilistic safety assessment (PSA); operation, inspection and maintenance; severe accident management and structural evaluation; advanced reactors and generation IV reactors; decommissioning of nuclear facilities and waste management.

  19. Innovative features and fuel design approach in the iris reactor

    International Nuclear Information System (INIS)

    Petrovic, B.; Carelli, M.; Greenspan, E.; Matsumoto, H.; Padovani, E.; Ganda, F.

    2002-01-01

    The International Reactor Innovative and Secure (IRIS) is being developed by an international consortium of industry, laboratory, university and utility establishments, led by Westinghouse. The IRIS design addresses key requirements associated with advanced reactors, including improved safety, enhanced proliferation resistance, competitive electricity production cost, and improved waste management. IRIS is a modular, small/medium size (335 MWe) PWR with an integral vessel configuration. The objective has been to base its design on proven LWR technology, so that no new technology development is needed and near-term deployment is possible, yet at the same time to introduce innovative features making it attractive when compared to present PWRs. These opposing requirements resulted in an evolutionary approach to fuel and core design, balancing new features against the need to avoid extensive testing and demonstration programmes. (author)

  20. Technology which led to the westinghouse inherently safe liquid metal reactor

    International Nuclear Information System (INIS)

    Schmidt, J.E.; Coffield, R.D.; Doncals, R.A.; Kalinowski, J.E.; Markley, R.A.

    1985-01-01

    The Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor programs resulted in an understanding of liquid metal reactor behavior that is being used to design inherent safety capability into liquid metal reactors. Technological advances give the same beneficial operating characteristics of conventional liquid metal reactors, however, the addition of inherently safe design features precludes the initiation of hypothetical core disruptive accidents. These innovative features permit inherent safety capability to be demonstrated with more than adequate margins. Also, the variety of inherent safety features provides the designers with options in selecting inherent design features for a specific reactor application

  1. Medium-Power Lead-Alloy Reactors: Missions for This Reactor Technology

    International Nuclear Information System (INIS)

    Todreas, Neil E.; MacDonald, Philip E.; Hejzlar, Pavel; Buongiorno, Jacopo; Loewen, Eric P.

    2004-01-01

    A multiyear project at the Idaho National Engineering and Environmental Laboratory and the Massachusetts Institute of Technology investigated the potential of medium-power lead-alloy-cooled technology to perform two missions: (1) the production of low-cost electricity and (2) the burning of actinides from light water reactor (LWR) spent fuel. The goal of achieving a high power level to enhance economic performance simultaneously with adoption of passive decay heat removal and modularity capabilities resulted in designs in the range of 600-800 MW(thermal), which we classify as a medium power level compared to the lower [∼100 MW(thermal)] and higher [2800 MW(thermal)] power ratings of other lead-alloy-cooled designs. The plant design that was developed shows promise of achieving all the Generation-IV goals for future nuclear energy systems: sustainable energy generation, low overnight capital cost, a very low likelihood and degree of core damage during any conceivable accident, and a proliferation-resistant fuel cycle. The reactor and fuel cycle designs that evolved to achieve these missions and goals resulted from study of the following key trade-offs: waste reduction versus reactor safety, waste reduction versus cost, and cost versus proliferation resistance. Secondary trade-offs that were also considered were monolithic versus modular design, active versus passive safety systems, forced versus natural circulation, alternative power conversion cycles, and lead versus lead-bismuth coolant.These studies led to a selection of a common modular design with forced convection cooling, passive decay heat removal, and a supercritical CO 2 power cycle for all our reactor concepts. However, the concepts adopt different core designs to optimize the achievement of the two missions. For the low-cost electricity production mission, a design approach based on fueling with low enriched uranium operating without costly reprocessing in a once-through cycle was pursued to achieve a

  2. ULTRA SCWR+: Practical advanced water reactor concepts

    International Nuclear Information System (INIS)

    Duffey, Romney; Khartabil, Hussam; Kuran, Sermet; Zhou, Tracy; Pioro, Igor

    2008-01-01

    Modern thermal power plants now utilize supercritical steam cycles with thermal efficiencies of over 45%. Recent developments have lead to Ultra-SuperCritical (USC) systems, which adopt reheat turbines that can attain efficiencies of over 50%. Because these turbines are already developed, demonstrated and deployed worldwide, and use existing and traditional steam cycle technology, the simplest nuclear advance is to utilize these proven thermal cycle conditions by coupling this turbine type to a reactor. This development direction is fundamentally counter to the usual approach of adopting high-temperature gas-cooled (helium-cooled) reactor cycles, for which turbines have yet to be demonstrated on commercial scale unlike the supercritical steam turbines. The ULTRA (Ultra-supercritical Light water Thermal ReActor) SCWR+ concept adopts the fundamental design approach of matching a water and steam-cooled reactor to the ultra-supercritical steam cycle, adopting the existing and planned thermal power plant turbines. The HP and IP sections are fed with conditions of 25 MPa/625degC and 7 MPa/700degC, respectively, to achieve operating plant thermal efficiencies in excess of 50%, with a direct turbine cycle. By using such low-pressure reheated steam, this concept also adopts technology that was explored and used many years ago in existing water reactors, with the potential to produce large quantities of low cost heat, which can be used for other industrial and district processes. Pressure-Tube (PT) reactors are suitable for adoption of this design approach and, in addition, have other advantages that will significantly improve water-cooled reactor technology. These additional advantages include enhanced safety and improved resource utilization and proliferation resistance. This paper describes the PT-SCWR+ concept and its potential enhancements. (author)

  3. ASTRID, Generation IV advanced sodium technological reactor for industrial demonstration

    International Nuclear Information System (INIS)

    Gauche, F.

    2013-01-01

    ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) is an integrated technology demonstrator designed to demonstrate the operability of the innovative choices enabling fast neutron reactor technology to meet the Generation IV criteria. ASTRID is a sodium-cooled fast reactor with an electricity generating power of 600 MWe. In order to meet the generation IV goals, ASTRID will incorporate the following decisive innovations: -) an improved core with a very low, even negative void coefficient; -) the possible installation of additional safety devices in the core. For example, passive anti-reactivity insertion devices are explored; -) more core instrumentation; -) an energy conversion system with modular steam generators, to limit the effects of a possible sodium-water reaction, or sodium-nitrogen exchangers; -) considerable thermal inertia combined with natural convection to deal with decay heat; -)elimination of major sodium fires by bunkerization and/or inert atmosphere in the premises; -) to take into account off-site hazards (earthquake, airplane crash,...) right from the design stage; -) a complete rethink of the reactor architecture in order to limit the risk of proliferation. ASTRID will also include systems for reducing the length of refueling outages and increasing the burn-up and the duration of the cycle. In-service inspection, maintenance and repair are also taken into account right from the start of the project. The ASTRID prototype should be operational by about 2023. (A.C.)

  4. From Provenance Standards and Tools to Queries and Actionable Provenance

    Science.gov (United States)

    Ludaescher, B.

    2017-12-01

    The W3C PROV standard provides a minimal core for sharing retrospective provenance information for scientific workflows and scripts. PROV extensions such as DataONE's ProvONE model are necessary for linking runtime observables in retrospective provenance records with conceptual-level prospective provenance information, i.e., workflow (or dataflow) graphs. Runtime provenance recorders, such as DataONE's RunManager for R, or noWorkflow for Python capture retrospective provenance automatically. YesWorkflow (YW) is a toolkit that allows researchers to declare high-level prospective provenance models of scripts via simple inline comments (YW-annotations), revealing the computational modules and dataflow dependencies in the script. By combining and linking both forms of provenance, important queries and use cases can be supported that neither provenance model can afford on its own. We present existing and emerging provenance tools developed for the DataONE and SKOPE (Synthesizing Knowledge of Past Environments) projects. We show how the different tools can be used individually and in combination to model, capture, share, query, and visualize provenance information. We also present challenges and opportunities for making provenance information more immediately actionable for the researchers who create it in the first place. We argue that such a shift towards "provenance-for-self" is necessary to accelerate the creation, sharing, and use of provenance in support of transparent, reproducible computational and data science.

  5. Proceedings of the Seminar on Research Result of Research Reactor Technology Centre 2003

    International Nuclear Information System (INIS)

    Endiah Puji Hastuti; Setiyanto; Taswanda Taryo; Mohammad Dhandhang Purwadi; Pinem, Surian; Tarigan, Alim; Hasibuan, Djaruddin; Kadarusmanto; Amir Hamzah

    2004-05-01

    The Proceeding of the Seminar on Research Result of Research Reactor Technology Centre 2003 held by P2TRR has been reported researcher are expected to use the reports as references to research activities in Science and Technology, especially in field of Nuclear Reactor. There are 27 papers which have separated index. (PPIN)

  6. Extending eScience Provenance with User-Submitted Semantic Annotations

    Science.gov (United States)

    Michaelis, J.; Zednik, S.; West, P.; Fox, P. A.; McGuinness, D. L.

    2010-12-01

    eScience based systems generate provenance of their data products, related to such things as: data processing, data collection conditions, expert evaluation, and data product quality. Recent advances in web-based technology offer users the possibility of making annotations to both data products and steps in accompanying provenance traces, thereby expanding the utility of such provenance for others. These contributing users may have varying backgrounds, ranging from system experts to outside domain experts to citizen scientists. Furthermore, such users may wish to make varying types of annotations - ranging from documenting the purpose of a provenance step to raising concerns about the quality of data dependencies. Semantic Web technologies allow for such kinds of rich annotations to be made to provenance through the use of ontology vocabularies for (i) organizing provenance, and (ii) organizing user/annotation classifications. Furthermore, through Linked Data practices, Semantic linkages may be made from provenance steps to external data of interest. A desire for Semantically-annotated provenance has been motivated by data management issues in the Mauna Loa Solar Observatory’s (MLSO) Advanced Coronal Observing System (ACOS). In ACOS, photomoeter-based readings are taken of solar activity and subsequently processed into final data products consumable by end users. At intermediate stages of ACOS processing, factors such as evaluations by human experts and weather conditions are logged, which could impact data product quality. If such factors are linked via user-submitted annotations to provenance, it could be significantly beneficial for other users. Likewise, the background of a user could impact the credibility of their annotations. For example, an annotation made by a citizen scientist describing the purpose of a provenance step may not be as reliable as a similar annotation made by an ACOS project member. For this work, we have developed a software package that

  7. Fusion reactors: physics and technology. Annual progress report

    International Nuclear Information System (INIS)

    Conn, R.W.

    1983-08-01

    Fusion reactors are designed to operate at full power and generally at steady state. Yet experience shows the load variations, licensing constraints, and frequent sub-system failures often require a plant to operate at fractions of rated power. The aim of this study has been to assess the technology problems and design implications of startup and fractional power operation on fusion reactors. The focus of attention has been tandem mirror reactors (TMR) and we have concentrated on the plasma and blanket engineering for startup and fractional power operation. In this report, we first discuss overall problems of startup, shutdown and staged power operation and their influence on TMR design. We then present a detailed discussion of the plasma physics associated with TMR startup and various means of achieving staged power operation. We then turn to the issue of instrumentation and safety controls for fusion reactors. Finally we discuss the limits on transient power variations during startup and shutdown of Li 17 Pb 83 cooled blankets

  8. Reactor technology progress report on Joyo, vol. 6

    International Nuclear Information System (INIS)

    1982-01-01

    The works of the Technology Section, Fast Experimental Reactor Division, Power Reactor and Nuclear Fuel Development Corp., are roughly divided into core technology, anomaly monitoring techniques, plant technology, purity control techniques and operation planning and management. In this book, the state of activities in the Technology Section, the result of operation of Joyo and the foreign information related to FBRs in the quarter from July to September, 1981, are reported. The operation of Joyo of 75 MW rating No. 5 cycle was finished on August 9, and after fuel handling and FFDL test, the operation of special test cycle was carried out in September. In this quarter, main report papers were one N-report and 108 memos. The examination of the preliminary analysis and the plan for shifting to the MK-2 core and the performance test, and the planning of the core construction for the operation from No. 1 to No. 3 cycle with the MK-2 core and the analysis of its characteristics were carried out. The revision of the long term plan of the Technology Section was started in July, and the first draft was completed in September. The compilation of the general report on the MK-1 core was started in July. Three meetings for technical discussion within the Division were held. (Kako, I.)

  9. Seawater desalination plant using nuclear heating reactor coupled with MED process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. This seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. The intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10~200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m3/d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented.

  10. Seawater desalination plant using nuclear heating reactor coupled with MED process

    International Nuclear Information System (INIS)

    Wu Shaorong; Dong Duo; Zhang Dafang; Wang Xiuzhen

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. this seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. the intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10-200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m 3 /d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented

  11. Transient analysis of the IRIS reactor

    International Nuclear Information System (INIS)

    Bajs, T.; Oriani, L.; Ricotti, M.E.; Barroso, A.C.

    2002-01-01

    An international consortium of industry, laboratory, university and utility establishments, led by Westinghouse, is developing a modular, integral, light water cooled, small to medium power reactor, the International Reactor Innovative and Secure (IRIS). IRIS features innovative, advanced engineering, but it is firmly based on the proven technology of pressurized water reactors (PWR). Given the large number of organizations involved in the IRIS design, the RELAP5/MOD 3.3 code has been selected as the main system code. A nodalization of the reference IRIS design has been developed with a basic set of protective functions and controls. Engineered Safety Features of the concept are being also implemented, and in particular the Emergency Heat Removal System that is used for safety grade decay heat removal and in the small break LOCA response of IRIS (Large break LOCAs are eliminated in IRIS by the adoption of the Integral layout) This paper discusses developed model and transient behavior of the system for representative transient sequences.(author)

  12. The Preliminary Study of High Temperature Gas Cooled Reactors (HTGRs) Technology

    International Nuclear Information System (INIS)

    Nurfarhana Ayuni Joha; Izhar Abu Hussin; Ridzuan Abdul Mutalib

    2015-01-01

    High Temperature Gas Cooled Reactors (HTGRs) have attracted worldwide interest because of their high outlet temperatures, which allow them to be used for applications beyond electricity generation. HTGRs have been built and operated since as far back as the 1970s. Experimental and demonstration reactors of this type have operated in China, Great Britain, Germany, Japan, and the United States of America. This paper is written to share the valuable knowledge and information of HTGRs technology as a mean to enrich peoples understanding of the technology. This paper will present the technological features of HTGRs that allow for a modular design with inherently safe characteristics. (author)

  13. Nuclear data for fusion reactor technology

    International Nuclear Information System (INIS)

    1988-06-01

    The meeting was organized in four sessions and four working groups devoted to the following topics: Requirements of nuclear data for fusion reactor technology (6 papers); Status of experimental and theoretical investigations of microscopic nuclear data (10 papers); Status of existing libraries for fusion neutronic calculations (5 papers); and Status of integral experiments and benchmark tests (6 papers). A separate abstract was prepared for each of these papers

  14. Implementation Plan for Qualification of Sodium-Cooled Fast Reactor Technology Information

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Honma, George [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This document identifies and discusses implementation elements that can be used to facilitate consistent and systematic evaluation processes relating to quality attributes of technical information (with focus on SFR technology) that will be used to support licensing of advanced reactor designs. Information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The approach for determining acceptability of test data, analysis, and/or other technical information is based on guidance provided in INL/EXT-15-35805, “Guidance on Evaluating Historic Technology Information for Use in Advanced Reactor Licensing.” The implementation plan can be adopted into a working procedure at each of the national laboratories performing data qualification, or by applicants seeking future license application for advanced reactor technology.

  15. Provenance Usage in the OceanLink Project

    Science.gov (United States)

    Narock, T.; Arko, R. A.; Carbotte, S. M.; Chandler, C. L.; Cheatham, M.; Fils, D.; Finin, T.; Hitzler, P.; Janowicz, K.; Jones, M.; Krisnadhi, A.; Lehnert, K. A.; Mickle, A.; Raymond, L. M.; Schildhauer, M.; Shepherd, A.; Wiebe, P. H.

    2014-12-01

    A wide spectrum of maturing methods and tools, collectively characterized as the Semantic Web, is helping to vastly improve thedissemination of scientific research. The OceanLink project, an NSF EarthCube Building Block, is utilizing semantic technologies tointegrate geoscience data repositories, library holdings, conference abstracts, and funded research awards. Provenance is a vital componentin meeting both the scientific and engineering requirements of OceanLink. Provenance plays a key role in justification and understanding when presenting users with results aggregated from multiple sources. In the engineering sense, provenance enables the identification of new data and the ability to determine which data sources to query. Additionally, OceanLink will leverage human and machine computation for crowdsourcing, text mining, and co-reference resolution. The results of these computations, and their associated provenance, will be folded back into the constituent systems to continually enhance precision and utility. We will touch on the various roles provenance is playing in OceanLink as well as present our use of the PROV Ontology and associated Ontology Design Patterns.

  16. Nuclear vapor thermal reactor propulsion technology

    International Nuclear Information System (INIS)

    Maya, I.; Diaz, N.J.; Dugan, E.T.; Watanabe, Y.; McClanahan, J.A.; Wen-Hsiung Tu; Carman, R.L.

    1993-01-01

    The conceptual design of a nuclear rocket based on the vapor core reactor is presented. The Nuclear Vapor Thermal Rocket (NVTR) offers the potential for a specific impulse of 1000 to 1200 s at thrust-to-weight ratios of 1 to 2. The design is based on NERVA geometry and systems with the solid fuel replaced by uranium tetrafluoride (UF 4 ) vapor. The closed-loop core does not rely on hydrodynamic confinement of the fuel. The hydrogen propellant is separated from the UF 4 fuel gas by graphite structure. The hydrogen is maintained at high pressure (∼100 atm), and exits the core at 3,100 K to 3,500 K. Zirconium carbide and hafnium carbide coatings are used to protect the hot graphite from the hydrogen. The core is surrounded by beryllium oxide reflector. The nuclear reactor core has been integrated into a 75 klb engine design using an expander cycle and dual turbopumps. The NVTR offers the potential for an incremental technology development pathway to high performance gas core reactors. Since the fuel is readily available, it also offers advantages in the initial cost of development, as it will not require major expenditures for fuel development

  17. An assessment of space reactor technology needs and recommendations for development

    International Nuclear Information System (INIS)

    Marshall, A.C.; Wiley, R.L.

    1996-01-01

    In order to provide a strategy for space reactor technology development, the Defense Nuclear Agency (DNA) has authorized a brief review of potential national needs that may be addressed by space reactor systems. A systematic approach was used to explore needs at several levels that are increasingly specific. sm-bullet Level 0 emdash General Trends and Issues sm-bullet Level 1 emdash Generic Space Capabilities to Address Trends sm-bullet Level 2 emdash Requirements to Support Capabilities sm-bullet Level 3 emdash System Types Capable of Meeting Requirements sm-bullet Level 4 emdash Generic Reactor System Types sm-bullet Level 5 emdash Specific Baseline Systems Using these findings, a strategy was developed to support important space reactor technologies within a limited budget. A preliminary evaluation identified key technical issues and provide a prioritized set of candidate research projects. The evaluation of issues and the recommended research projects are presented in a companion paper. copyright 1996 American Institute of Physics

  18. The IAEA Activities in the Field of Fast Reactors Technology Development

    International Nuclear Information System (INIS)

    Monti, Stefano

    2011-01-01

    Main activities of the IAEA Programme on Fast Reactor: Carry out Collaborative Research Projects (CRPs) of common interest to the TWG-FR Member States in the field of FRs and ADS; Secure Training and Education in the field of fast neutron system physics, technology and applications; Support Fast Reactor data retrieval and knowledge preservation activities in MSs; Provide support to IAEA Nuclear Safety and Security Department for preparation of fast reactor Safety standards / requirements / guides. IAEA TWG-FR Functions: Provide advice and guidance, and marshal support in their countries for implementation of IAEA’s programmatic activities in the area of advanced technologies and R&D for fast reactors and sub-critical hybrid systems for energy production and for utilization/transmutation of long-lived nuclides; Provide a forum for information and knowledge sharing on national and international development programs; Act as a link between IAEA’s activities in the specific area of the TWG-FR and national scientific communities, delivering information from and to national communities

  19. Progress in space nuclear reactor power systems technology development - The SP-100 program

    Science.gov (United States)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  20. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  1. Reprocessing technology for present water reactor fuels

    International Nuclear Information System (INIS)

    McMurray, P.R.

    1977-01-01

    The basic Purex solvent extraction technology developed and applied in the U.S. in the 1950's provides a well-demonstrated and efficient process for recovering uranium and plutonium for fuel recycle and separating the wastes for further treatment and packaging. The technologies for confinement of radioactive effluents have been developed but have had limited utilization in the processing of commercial light water reactor fuels. Technologies for solidification and packaging of radioactive wastes have not yet been demonstrated but significant experience has been gained in laboratory and engineering scale experiments with simulated commercial reprocessing wastes and intermediate level wastes. Commercial scale experience with combined operations of all the required processes and equipment are needed to demonstrate reliable reprocessing centers

  2. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics.

  3. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    International Nuclear Information System (INIS)

    1988-01-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics

  4. Development of system integration technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kang, D. J.; Kim, K. K. and others

    1999-03-01

    The objective of this report is to integrate the conceptual design of an integral reactor, SMART producing thermal energy of 330 MW, which will be utilized to supply energy for seawater desalination and small-scale power generation. This project also aims to develop system integration technology for effective design of the reactor. For the conceptual design of SMART, preliminary design requirements including the top-tier requirements and design bases were evaluated and established. Furthermore, in the view of the application of codes and standards to the SMART design, existing laws, codes and standards were analyzed and evaluated with respect to its applicability. As a part of this evaluation, directions and guidelines were proposed for the development of new codes and standards which shall be applied to the SMART design. Regarding the integration of SMART conceptual designs, major design activities and interfaces between design departments were established and coordinated through the design process. For the effective management of all design schedules, a work performance evaluation system was developed and applied to the design process. As the results of this activity, an integrated output of SMART designs was produced. Two additional scopes performed in this project include the preliminary economic analysis on the SMART utilization for seawater desalination, and the planning of verification tests for technology implemented into SMART and establishing development plan of the computer codes to be used for SMART design in the next phase. The technical cooperation with foreign country and international organization for securing technologies for integral reactor design and its application was coordinated and managed through this project. (author)

  5. Tritium interactions of potential importance to fusion reactor systems: technology requirements

    International Nuclear Information System (INIS)

    Wilkes, W.R.

    1976-01-01

    The tritium technology requirements created by the controlled thermonuclear research program to develop a demonstration fusion power reactor by the year 2000 are reviewed. It is found that the majority of the technological advances which are needed to ensure adequate tritium containment in a tritium breeding power reactor need to be demonstrated on a pilot scale by approximately 1983, so that they may be incorporated into EPR-II, the second of two planned experimental power reactors. The most important advances include development of containment materials with permeabilities to tritium well below measured values for stainless steel; large scale, low inventory deuterium-tritium separation systems; and improved monitoring and assay systems. There are less critical requirements for information about the effects of tritium and helium on the mechanical properties of materials, the effects of tritium on biological systems, and data on physical and chemical properties of tritium. Substantial progress needs to be made on these problems early enough to permit possible solutions to be tested on EPR-I. In addition, major improvements in tritium handling equipment are required for EPR-I. Those technological problems for which solutions have not yet been demonstrated by EPR-II must be solved by 1989 if they are to be assured successful application in the demonstration reactor

  6. APPLICATION OF MEMBRANE SORPTION REACTOR TECHNOLOGY FOR LRW MANAGEMENT

    International Nuclear Information System (INIS)

    Glagolenko, Yuri; Dzekun, Evgeny; Myasoedovg, Boris; Gelis, Vladimir; Kozlitin, Evgeny; Milyutin, Vitaly; Trusov, Lev; Rengel, Mike; Mackay, Stewart M.; Johnson, Michael E.

    2003-01-01

    A new membrane-sorption technology has been recently developed and industrially implemented in Russia for the treatment of the Liquid (Low-Level) Radioactive Waste (LRW). The first step of the technology is a precipitation of the radionuclides and/or their adsorption onto sorbents of small particle size. The second step is filtration of the precipitate/sorbent through the metal-ceramic membrane, Trumem.. The unique feature of the technology is a Membrane-Sorption Reactor (MSR), in which the precipitation / sorption and the filtration of the radionuclides occur simultaneously, in one stage. This results in high efficiency, high productivity and compactness of the equipment, which are the obvious advantages of the developed technology. Two types of MSR based on Flat Membranes device and Centrifugal Membrane device were developed. The advantages and disadvantages of application of each type of the reactors are discussed. The MSR technology has been extensively tested and efficiently implemented at ''Mayak '' nuclear facility near Chelyabinsk, Russia as well as at other Russian sites. The results of this and other applications of the MSR technology at the different Russian nuclear facilities are discussed. The results of the first industrial applications of the MSR technology for radioactive waste treatment in Russia and analysis of the available information about LRW accumulated in other countries imply that this technology can be successfully used for the Low Level Radioactive Waste treatment in the USA and in other nuclear countries

  7. Recent IAEA activities to support advanced water cooled reactor technology development

    International Nuclear Information System (INIS)

    Choi, J.-H.; Bilbao y Leon, S.; Rao, A.S.

    2009-01-01

    The International Atomic Energy Agency (IAEA) is the world's center of cooperation in the nuclear field. The IAEA works with its Member States and multiple partners worldwide to promote safe, secure and peaceful nuclear technologies. To catalyse innovation in nuclear power technology in Member States, the IAEA coordinates cooperative research, promotes information exchange, and analyses technical data and results, with a focus on reducing capital costs and construction periods while further improving performance, safety and proliferation resistance. This paper summarizes the recent major IAEA activities to support technology development for water cooled reactors, which is the most common type of reactor design at present and will probably still be in the near future. (author)

  8. Status of innovative small and medium sized reactor designs 2005. Reactors with conventional refuelling schemes

    International Nuclear Information System (INIS)

    2006-03-01

    There is a renewed interest in Member States in the development and application of small and medium sized reactors (SMRs). In the near term, most new NPPs are likely to be evolutionary designs building on proven systems while incorporating technological advances and often the economics of scale, resulting from the reactor outputs of up to 1600 MW(e). For the longer term, the focus is on innovative designs aiming to provide increased benefits in the areas of safety and security, non-proliferation, waste management, resource utilization and economy, as well as to offer a variety of energy products and flexibility in design, siting and fuel cycle options. Many innovative designs are reactors within the small-to-medium size range, having an equivalent electric power less than 700 MW(e) or even less than 300 MW(e). The projected timelines of readiness for deployment are generally between 2010 and 2030. The objective of this report is to provide Member States, including those just considering the initiation of nuclear power programmes, and those already having practical experience in nuclear power, with a balanced and objective information on important development trends and objectives of innovative SMRs for a variety of uses, on the achieved state-of-the-art in design and technology development for such reactors and on their design and regulatory status. The report is intended for many categories of stakeholders, including regulators, electricity producers, designers, non-electrical producers and policy makers. The main chapters of this report, addressed to all abovementioned groups of stakeholders, provide a summary of major specifications, applications and user-related special features of innovative SMRs, outline the achieved design and regulatory status and its progress since previous IAEA publications, review targeted deployment dates, fuel cycle options, design approaches used to meet design objectives in specific subject areas, enabling technologies and current

  9. Active Provenance in Data-intensive Research

    Science.gov (United States)

    Spinuso, Alessandro; Mihajlovski, Andrej; Filgueira, Rosa; Atkinson, Malcolm

    2017-04-01

    management will be also discussed, enabling provenance-driven operations at runtime, regardless of the enactment technologies and connectivity impediments. We proposes a framework based on concepts such as provenance clusters and provenance sensors, envisaging new potential for exploiting large quantities of provenance traces at runtime. Finally the work will also introduce how the underlying provenance model can be explored with big-data visualization techniques, aiming at producing comprehensive and interactive views on top of large and heterogeneous provenance data. We will demonstrate the adoption of alternative visualisation methods, from detailed and localised interactive graphs to radial-views, serving different purposes and expertise. Combining provenance types, selective rules, extensible metadata with reactive clustering opens a new and more versatile role of the lineage information in the research life-cycle, thanks to its improved usability. The flexible profiling of the proposed framework offers aid to the human analysis of the process, with the support of advanced and intuitive interactive graphical tools. The Active provenance methods are discussed in the context of a real implementation for a data-intensive library (dispel4py) and its adoption within use cases for computational seismology, climate studies and generic correlation analysis.

  10. Sensitivity Analysis of Reactor Regulating System for SMART

    International Nuclear Information System (INIS)

    Jeon, Yu Lim; Kang, Han Ok; Lee, Seong Wook; Park, Cheon Tae

    2009-01-01

    The integral reactor technology is one of the Small and Medium sized Reactor (SMR) which has recently come into a spotlight due to its suitability for various fields. SMART (System integrated Modular Advanced ReacTor), a small sized integral type PWR with a rated thermal power of 330MWt is one of the advanced SMR. SMART developed by the Korea Atomic Energy Research Institute (KAERI), has a capacity to provide 40,000 m3 per day of potable water and 90 MW of electricity (Chang et al., 2000). Figure 1 shows the SMART which adopts a sensible mixture of new innovative design features and proven technologies aimed at achieving highly enhanced safety and improved economics. Design features contributing to a safety enhancement are basically inherent safety improving features and passive safety features. Fundamental thermal-hydraulic experiments were carried out during the design concepts development to assure the fundamental behavior of major concepts of the SMART systems. A TASS/SMR is a suitable code for accident and performance analyses of SMART. In this paper, we proposed a new power control logic for stable operating outputs of Reactor Regulating System (RRS) of SMART. We analyzed the sensitivity of operating parameter for various operating conditions

  11. Design technology development of the main coolant pump for an integral reactor

    International Nuclear Information System (INIS)

    Park, J. S.; Lee, J. S.; Kim, M. H.; Kim, D. W.; Kim, J. I.

    2004-01-01

    All of the reactor coolant pump currently used in commercial nuclear power plant were imported from foreign country. Now, the developing program of design technology for the reactor coolant pump will be started in a few future by domestic researchers. At this stage, the design technology of the main coolant pump for an integral reactor is developed based on the regulation of domestic nuclear power plant facilities. The main coolant pump is a canned motor axial pump, which accommodates all constraints required from the integral reactor system. The main coolant pump does not have mechanical seal device because the rotor of motor and the shaft of impeller are the same one. There is no flywheel on the rotating shaft of main coolant pump so that the coastdown duration time is short when the electricity supply is cut off

  12. Current status and technology development tendency of research reactors in china

    International Nuclear Information System (INIS)

    Ke Guotu; Shen Feng; Zhao Shouzhi; Zhang Weiguo; Yuan Luzheng

    2009-01-01

    The current status and development history of domestic and abroad research reactors (RRs) are mentioned. The representative RRs and their respective technology characteristics are introduced. The utilizations of China's RRs, mainly included as nuclear engineering technology, basic research applications of nuclear technology, teaching and personnel training, are explained. (authors)

  13. Indian fast reactor technology: Current status and future programme

    Indian Academy of Sciences (India)

    IGCAR is responsible for the design, R & D, manufacturing technology and regulatory clear- ances. ... material production that can be used to fuel another reactor. ..... The nuclear steam supply system components are being manufactured suc-.

  14. Laser-Based Maintenance and Repair Technologies for Reactor Components

    International Nuclear Information System (INIS)

    Masaki Yoda; Naruhiko Mukai; Makoto Ochiai; Masataka Tamura; Satoshi Okada; Katsuhiko Sato; Motohiko Kimura; Yuji Sano; Noboru Saito; Seishi Shima; Tetsuo Yamamoto

    2004-01-01

    Toshiba has developed various laser-based maintenance and repair technologies and applied them to existing nuclear power plants. Laser-based technology is considered to be the best tool for remote processing in nuclear power plants, and particularly so for the maintenance and repair of reactor core components. Accessibility could be drastically improved by a simple handling system owing to the absence of reactive force against laser irradiation and the flexible optical fiber. For the preventive maintenance, laser peening (LP) technology was developed and applied to reactor components in operating BWR plants. LP is a novel process to improve residual stress from tensile to compressive on material surface layer by irradiating focused high-power laser pulses in water. We have developed a fiber-delivered LP system as a preventive maintenance measure against stress corrosion cracking (SCC). Laser ultrasonic testing (LUT) has a great potential to be applied to the remote inspection of reactor components. Laser-induced surface acoustic wave (SAW) inspection system was developed using a compact probe with a multi-mode optical fiber and an interferometer. The developed system successfully detected a micro slit of 0.5 mm depth on weld metal and heat-affected zone (HAZ). An artificial SCC was also detected by the system. We are developing a new LP system combined with LUT to treat the inner surface of bottom-mounted instruments (BMI) of PWR plants. Underwater laser seal welding (LSW) technology was also developed to apply surface crack. LSW is expected to isolate the crack tip from corrosive water environment and to stop the propagation of the crack. Rapid heating and cooling of the process minimize the heat effect, which extends the applicability to neutron-irradiated material. This paper describes recent advances in the development and application of such laser-based technologies. (authors)

  15. Proceedings of the seminar on optimization technology of the use of G.A. Siwabessy Research Reactor

    International Nuclear Information System (INIS)

    1999-01-01

    Seminar on optimization technology of the use of G.A. Siwabessy research reactor was held on March 16, 1999 at the Multipurpose Reactor Center, Serpong, Indonesia. During the seminar, have presented 14 papers about activities or researches on reactor operation technology, use of G.A. Siwabessy research reactor, engineering and nuclear installation development, maintenance and quality assurances. The seminar was held as a tool for developing non-researcher functional workers

  16. Proceedings of the seminar on optimization technology of the use of G.A. Siwabessy Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Seminar on optimization technology of the use of G.A. Siwabessy research reactor was held on March 16, 1999 at the Multipurpose Reactor Center, Serpong, Indonesia. During the seminar, have presented 14 papers about activities or researches on reactor operation technology, use of G.A. Siwabessy research reactor, engineering and nuclear installation development, maintenance and quality assurances. The seminar was held as a tool for developing non-researcher functional workers.

  17. Reactor technology

    International Nuclear Information System (INIS)

    Erdoes, P.

    1977-01-01

    This is one of a series of articles discussing aspects of nuclear engineering ranging from a survey of various reactor types for static and mobile use to mention of atomic thermo-electric batteries of atomic thermo-electric batteries for cardiac pacemakers. Various statistics are presented on power generation in Europe and U.S.A. and economics are discussed in some detail. Molten salt reactors and research machines are also described. (G.M.E.)

  18. Development of technologies for nuclear reactors of small and medium sized; Desarrollo de Tecnologias para Reactores Nucleares de pequeno y medio tamano

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-15

    This meeting include: countries presentations, themes and objectives of the training course, reactor types, design, EPR, APR1400, A P 1000, A PWR, ATMEA 1, VVER-1000, A PWR, ATMEA 1, VVER 1200, Boiling Water Reactor, A BWR, A BWR -II, ESBUR, Ke ren, AREVA, Heavy Water Reactor, Candu 6, Acr-1000, HWR, Bw, Iris, CAREM NuCcale, Smart, KLT-HOS, Westinghouse small modular Reactor, Gas Cooled Reactors, PBMR, React ores enfriados con metales liquidos, Hs, Prism,Terra Power, Hyper ion, appliance's no electric as de energia, Generation IV Reactors,VHTR, Gas Fast Reactor, Sodium Fast Reactor, Molten salt Reactor, Lfr, Water Cooled Reactor, Technology Assessment Process, Fukushima accident.

  19. Aggregation by Provenance Types: A Technique for Summarising Provenance Graphs

    Directory of Open Access Journals (Sweden)

    Luc Moreau

    2015-04-01

    Full Text Available As users become confronted with a deluge of provenance data, dedicated techniques are required to make sense of this kind of information. We present Aggregation by Provenance Types, a provenance graph analysis that is capable of generating provenance graph summaries. It proceeds by converting provenance paths up to some length k to attributes, referred to as provenance types, and by grouping nodes that have the same provenance types. The summary also includes numeric values representing the frequency of nodes and edges in the original graph. A quantitative evaluation and a complexity analysis show that this technique is tractable; with small values of k, it can produce useful summaries and can help detect outliers. We illustrate how the generated summaries can further be used for conformance checking and visualization.

  20. Materials technologies of light water reactors

    International Nuclear Information System (INIS)

    Begley, R.

    1984-01-01

    Satisfactory materials performance is a key element in achieving reliable operation of light water reactors. Outstanding performance under rigorous operational conditions has been exhibited by pressure boundary components, core internals, fuel cladding, and other critical components of these systems. Corrosion and stress corrosion phenomena have, however, had an impact on plant availability, most notably relating to pipe cracking in BWR systems and steam generator corrosion in PWR systems. These experiences have stimulated extensive development activities by the nuclear industry in improved NDE techniques, investigation of corrosion phenomena, as well as improved materials and repair processes. This paper reviews key materials performance aspects of light water reactors with particular emphasis on the progress which has been made in modeling of corrosion phenomena, control of the plant operating environment, advanced material development, and application of sophisticated repair procedures. Implementation of this technology provides the basis for improved plant availability

  1. Communication and computer technologies for teaching physics in nuclear reactors

    International Nuclear Information System (INIS)

    Murua, C; Chautemps, A; Odetto, J; Keil, W; Trivino, S; Rossi, F; Perez Lucero, A

    2012-01-01

    In order to train personnel inn order to train personnel in Embalse Nuclear Power Plant, and provided that such training given primarily on the location of such a facility, we designed a pedagogical strategy that combined the use of conventional resources with new information technologies. Since the Nuclear Reactor RA-0 is an ideal tool for teaching Reactor Physics, priority was the use of it, both locally remotely. The teaching strategy is based on four pillar: -Lectures on the Power Plant (using a virtual classroom to support); -Remote monitoring of Ra-0 Nuclear Reactor parameters while operating (RA0REMOTO); -Use, through the Internet, of the Ra-0 Nuclear Reactor Simulator (RA0SIMUL); -Made in the Nuclear Reactor RA-0 of Reactor Physics practical. The work emphasizes RA0REMOTO and RA0SIMUL systems. The RA0REMOTO system is an appendix of the Electronic Data Acquisition System (SEAD) of the Nuclear Reactor RA-0. This system acquires signals from Reactor instrumentation and sends them to a server running the software that 'publish' the reactor parameters on the internet. Students may, during the lectures, monitor any parameter of the reactor while it operates, which allows teachers to compare theory with reality. RA0SIMUL is a simulator on the RA-0, which allows students to 'operate' a reactor analyzing the underlying physics concepts (author)

  2. Storage of plugs and experimental devices from reactors; Stockage des bouchons et dispositifs experimentaux en provenance des reacteurs (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Cerre, P; Mestre, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    - Within the general programme of storage and treatment of radioactive waste produced by the various operations carried out in an atomic center, it is useful to consider separately the problem of certain waste from reactors, which, because of its size and physical nature, has to be stored with a view to being later treated and finally evacuated. The solution which we propose for this storage problem is presented in this paper. (authors) [French] - Dans le cadre du stockage et du conditionnement des dechets radioactifs provenant des diverses manipulations effectuees dans un centre atomique, il y a lieu de considerer a part certains dechets des reacteurs qui, par leur dimension et leur nature physique doivent etre stockes en vue de leur reprise ulterieure pour un conditionnement et une evacuation definitifs. La solution que nous avons apportee a ce stockage fait l'objet de l'expose qui suit. (auteurs)

  3. New nuclear technologies will help to ensure the public trust and further development of research reactors

    International Nuclear Information System (INIS)

    Miasnikov, S.V.

    2001-01-01

    Decrease of public trust to research reactors causes the concern of experts working in this field. In the paper the reasons of public mistrust to research reactors are given. A new technology of 99 Mo production in the 'Argus' solution reactor developed in the Russian Research Centre 'Kurchatov Institute' is presented as an example assisting to eliminate these reasons. 99 Mo is the most widespread and important medical isotope. The product received employing a new technology completely meets the international specifications. Besides, the proposed technology raises the efficiency of 235 U consumption practically up to 100% and allows using a reactor with power 10 and more times lower than that in the target technology. The developed technology meets the requirements of the community to nuclear safety of manufacture, reduction of radioactive waste and non-proliferation of nuclear materials. (author)

  4. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor

    International Nuclear Information System (INIS)

    Bhattacharyya, S. K.; Boing, L. E.

    2000-01-01

    The aging of research reactors worldwide has resulted in a heightened awareness in the international technical decommissioning community of the timeliness to review and address the needs of these research institutes in planning for and eventually performing the decommissioning of these facilities. By using the reactors already undergoing decommissioning as test beds for evaluating enhanced or new/innovative technologies for decommissioning, it is possible that new techniques could be made available for those future research reactor decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the research institutes in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research reactor decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to use in the research reactors. The decommissioning of the CP-5 Research Reactor is currently in the final phase of dismantlement. In this paper the authors present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors

  5. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    The Federal Target Program (FTP) of Russian Federation 'Nuclear Energy Technologies of the New Generation for 2010-2015 and for Perspective up to 2020' is aimed at development of advanced nuclear energy technologies on the basis of closed fuel cycle with fast reactors. There are advanced fast reactor technologies of the 4. generation with liquid metal cooled reactors. Development stages of maturity of fast sodium cooled reactor technology in Russia includes experimental reactors BR-5/10 (1958-2002) and BOR-60 (since 1969), nuclear power plants (NPPs) with BN-350 (1972-1999), BN-600 (since 1980), BN-800 (under construction), BN-1200 (under development). Further stage of development of fast sodium cooled reactor technology in Russia is commercialization. Lead-bismuth eutectic fast reactor technology has been proven at industrial scale for nuclear submarines in former Soviet Union. Lead based technology is currently under development and need for experimental justification. Current status and prospects of State Corporation 'Rosatom' participation in GIF activities was clarified at the 31. Meeting of Policy Group of the International Forum 'Generation-IV', Moscow, May 12-13, 2011. In June, 2010, 'Rosatom' joined the Sodium Fast Reactor Arrangement as an authorized representative of the Russian Government. It was also announced the intention of 'Rosatom' to sign the Memorandum on Lead Fast Reactor based on Russia's experience with lead-bismuth and lead cooled fast reactors. In accordance with the above FTP some innovative liquid metal cooled reactors of different design are under development in Russia. Gidropress, well known as WER designer, develops innovative lead-bismuth eutectic cooled reactor SVBR-100. NIKIET develops innovative lead cooled reactor BRESTOD-300. Some other nuclear scientific centres are also involved in this activity, e.g. Research and Development Institute for Power Engineering (RDIPE). Optimum

  6. IAEA activities in gas-cooled reactor technology development

    International Nuclear Information System (INIS)

    Cleveland, J.; Kupitz, J.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has the charter to ''foster the exchange of scientific and technical information'', and ''encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world''. This paper describes the Agency's activities in Gas-cooled Reactor (GCR) technology development

  7. Fusion reactor design and technology program in China

    International Nuclear Information System (INIS)

    Huang, J.H.

    1994-01-01

    A fusion-fission hybrid reactor program was launched in 1987. The purpose of development of the hybrid reactor is twofold: to solve the problem of nuclear fuel supply for an expected large-scale development of fission reactor plants, and to maintain the momentum of fusion research. The program is described and the activities and progress of the program are presented. Two conceptual designs of an engineering test reactor with tokamak configuration were developed at the Southwestern Institute of Physics and the Institute of Plasma Physics. The results are a tokamak engineering test breeder (TETB) series design and a fusion-fission hybrid reactor design (SSEHR), characterized by a liquid-Li self-cooled blanket and an He-cooled solid tritium breeder blanket respectively. In parallel with the design studies, relevant technological experiments on a small or medium scale have been supported by this program. These include LHCD, ICRH and pellet injection in the area of plasma engineering; neutronics integral experiments with U, Pu, Fe and Be; various irradiation tests of austenitic and ferritic steels, magnetohydrodynamic (MHD) pressure drop experiments using a liquid metal loop; research into permeation barriers for tritium and hydrogen isotopes; solid tritium breeder tests using an in-situ loop in a fission reactor. All these experiments have proceeded successfully. The second step of this program is now starting. It seems reasonable that most of the research carried out in the first step will continue. ((orig.))

  8. EDF view on next generation reactor safety and operability issues

    International Nuclear Information System (INIS)

    Serviere, G.

    2002-01-01

    In the foreseeable future, EDF will have to compete in an economically de-regulated market. Nuclear currently accounts for more than 80% of the electricity generated by the company, and generation costs are quite competitive compared to that of other competing energies. It is so likely that nuclear units will remain the backbone of EDF generating fleet in the years to come. However, to remain a viable option for electricity generation in the longer term, nuclear will have to maintain both its cost-effectiveness and a very high safety level. This could seem quite straightforward considering the current situation where safety records are at an all time high and Operating and Maintenance costs are under tight control. In fact, it could be a real challenge. Competing fossil technologies progress and there is a concurrent trend to try and improve the performance of future nuclear units. However, in most cases, proposed designs depart from the well-known Light Water Reactor (LWR) technology. They are either new concepts or designs already tested in the past and modified to address some of their perceived drawbacks. Contrary to the prevailing situation where short-term alternatives like the EPR, the ABWR or the AP600 largely build upon experience gathered on operating units, most designs contemplated for implementation beyond 2020 or 2030 cannot be considered proven. Considering the above mentioned uncertainties, EDF have confirmed their preference for proven designs with higher outputs, such as the EPR. However, it would appear unreasonable to consider that new designs are doomed to fail: they could well turn out to be adequate for specific niches in a de-regulated market and provide reasonable alternatives for the utility. Nevertheless, for such an alternative to be considered, additional evidence is needed that utility preferences are reflected in the design, and that all potential technical issues have been identified, adequately addressed and resolved. Currently, EDF

  9. New research reactor for Australia

    International Nuclear Information System (INIS)

    Miller, R.

    1992-01-01

    and Technology Council on recommended priorities for government expenditure on major national research facilities over the next ten years. A new research reactor was one of seven proposals recommended by the Council for priority during that period. As basis for ANSTO's normal activities is nuclear science and technology rather than reactor development, it will be necessary to purchase much of the nuclear specific technology and hardware with the emphasis being on modern but proven technology. In January 1992 ANSTO commenced a two year preliminary engineering and financial study that will define the user requirements, assess the availability of reactor designs compatible with those requirements, complete preliminary design and provide a detailed costing and schedule for the provision of the facility. The report of this study will form the basis of a submission to Government for funding for detailed design and construction. Initial operation of the reactor is scheduled for 2003. The overall project schedule is shown

  10. Research reactor support

    International Nuclear Information System (INIS)

    2005-01-01

    spent research reactor fuel to the country of origin under the U.S. Spent Fuel Acceptance Program and the Russian Research Reactor Fuel Return program. This includes the provision of handbooks on technical and administrative preparations for shipping the fuel, as well as training courses. In addition the IAEA provides evaluation of the current status, progress and trends of research reactor spent fuel storage projects or national programmes in this field, present proven technologies and/or organizational/managerial practices that can serve as models to solve specific issues. It also assists in specific areas such as: assessment of infrastructure required to plan and implement research reactor spent fuel storage (wet or dry), improvement of management practices, implementation of water quality programmes, implementation of corrosion surveillance programmes and assessment of costs associated with research reactors spent fuel storage

  11. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Boing, L.E.; Henley, D.R.; Manion, W.J.; Gordon, J.W.

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs

  12. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

  13. The promises and challenges of future reactor system developments

    International Nuclear Information System (INIS)

    Kim, S. H.; Chang, M. H.; Kim, H. J.

    2007-01-01

    improved economy when compared to currently the existing plants. The APR 1400 has been developed since 1991 and it is expected that its first commercial operation will be in 2012. In the short term by 2011, the APR-1400 design will be improved from the viewpoints of safety, economics and performance. We are also developing a small integral reactor SMART, which is a promising advanced small and medium-size power category of nuclear reactors. It is an integral type reactor with a sensible mixture of new innovative design features and proven technologies aimed at achieving a highly enhanced safety and improved economics. SMART is purposed for dual applications such as for seawater desalination and electricity generation. Since the SMART technology is technically sound and has sufficient economics, the SMART desalination plant has good prospects of being deployed as a nuclear desalination plant. We are also actively participating in the GEN IV collaboration (GIF: GEN IV International Forum) for a VHTR and a SFR technology development. Through close collaboration with GIF, a proliferation-resistant SFR technology will be developed based on KALIMAER for an effective uranium utilization and waste minimization. Also a high temperature reactor is currently under development to demonstrate a nuclear based hydrogen production technology. Korea is really looking ahead by developing new generation of advanced nuclear reactor systems for a sustainable development, economical benefits, a clean environment and public confidence. In this paper, Korean nuclear reactor technology development program is described together with lessons learned from self-reliance in nuclear reactor technology. In addition, this paper presents the status of the next generation reactor system development program and the future reactor system development program for addressing these challenges

  14. Status of fast reactor technology in China

    International Nuclear Information System (INIS)

    Xu Mi

    1992-01-01

    The paper has introduced briefly the recent news about the Chinese nuclear programme on PWR and FBR. Concerning the FFR design, some issues under consideration have been presented, including the matches between thermo-parameters of primary sodium and of steam, the arrangement of control and safety rods which correspond to first and second shut-down systems, the structure of inner vessel and the axial length of subassembly. With regard to the R and D of FBR technology, some results on sodium technology and on the cladding materials have been given in the paper. Finally, some progress and troubles on site selection for this reactor have also been outlined. (author)

  15. Proposal for a technology-neutral safety approach for new reactor designs

    International Nuclear Information System (INIS)

    2007-09-01

    Many states are considering an expansion of their nuclear power generation programmes. Many of the technologies and concepts are new and innovative. The current design and licensing rules are applicable to mostly large water reactors and there are no accepted rules in place for design, safety assessment and licensing for new innovative nuclear power plants. This TECDOC proposes a (new) safety approach and a methodology to generate technology-neutral (i.e. independent of reactor technology) safety requirements and a 'safe design' for advanced and innovative reactors. The experience gained in decades of design and licensing, combined with the development of risk-based concepts, has provided insights that will form the basis for new safety rules and requirements. Many lessons learned acknowledge the importance of such concepts as safety goals and defence in depth and the benefits of integrating risk insights early in an iterative design process. A new safety approach will incorporate many of the new developments in these concepts. For example, the probabilistic elements of defence in depth will help define the cumulative provisions to compensate for uncertainty and incompleteness of our knowledge of accident initiation and progression. This TECDOC also identifies areas of work, which will require further definition, research and development and guidance on application. This publication is to be used as a guide to developing a new technology-neutral safety approach, and as a guide in the application of methodologies to define the safety requirements for an innovative reactor designs. The method proposes an integration of deterministic and probabilistic considerations with established principles and concepts such as safety goals and defence in depth. The TECDOC recommends that the structure of the new technology-neutral main pillars for the design and licensing of innovative nuclear reactors be developed following a top-down approach to reflect a newer risk-informed and

  16. Development of mechanical design technology for integral reactor

    International Nuclear Information System (INIS)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn; Kim, Jong Wook; Choi, Woo Seok

    2002-03-01

    This report is the final documentation of the 'Development of Mechanical Design Technology for Integral Reactor' which describes the design activities including reactor vessel assembly structural modelling, normal operation and transient analysis, preparation of design specification, major component stress analysis, evaluation of structural integrity, review of fabricability, maintenance and repair scheme, etc. To establish the design requirements and applicable codes and standards, each GDC criterion was reviewed regarding the SMART structural characteristics and design status, and then the applicability and point of issues were evaluated. To accomodate the result of the core optimization program, modification of pressure vessel and reactor internal components were carried out. SG nozzles were rearranged to penetrate the pressure vessel wall instead of the annular cover. Coolant flow path through the MCP impeller was revised and the adjacent structures were modified. Dynamic analysis model was developed reflecting all the structural changes to perform the seismic and BLPB analysis. Fracture mechanics evaluation on the structural integrity of the reactor pressure vessel was also conducted. Besides, equipment maintenance and replacement plan including the refueling scheme was discussed to confirm the embodiment of SMART through construction and operation

  17. Oak Ridge National Laboratory Support of Non-light Water Reactor Technologies: Capabilities Assessment for NRC Near-term Implementation Action Plans for Non-light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments using equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.

  18. Upgrade of reactor operation technology

    International Nuclear Information System (INIS)

    Itoh, Hideaki; Suzuki, Toshiaki; O-kawa, Toshikatsu

    2003-01-01

    To improve operational reliability and availability, the operation technology for a fast reactor was developed in the ''JOYO''. This report describes the upgrading of the simulator, plant operation management tools and fuel handling system for the MK-III core operation. The simulator was modified to the MK-III version to verify operation manuals, and to train operators in MK-III operation. The plant operation management tool was replaced on the operation experience to increase the reliability and efficiency of plant management works relating to plant operation and maintenance. To shorten the refueling period, the fuel handling system was upgraded to full automatic remote control. (author)

  19. Proven power reactor systems - novel features and developments in operation performance, safety and reliability

    International Nuclear Information System (INIS)

    Bugl, J.

    1975-01-01

    As the development of nuclear reactors for the generation of electric power started after the end of the Second World War, the prospective use of diverse materials as fuel, moderator and coolant resulted in a wide diversity of design possibilities. Of the 10 nuclear reactor types which were being considered most seriously in those days, only a few have achieved acceptance. This development is best illustrated by listing the nuclear power plants in service, under construction and on order at present, separately by reactor types (table). In the lead at present and for some years to come are the thermal reactors and especially the light water reactors (LWR). In the LWR group the lead is held by the pressurised water reactor (PWR) which accounts for 44% of the installed capacity of all the nuclear power plants in service at present. In the early 1980s this share will increase to 58%, whereas the share of the boiling water reactor (BWR) will increase to only 28% from 23% at present. (orig./TK) [de

  20. Technological improvements to high temperature thermocouples for nuclear reactor applications

    International Nuclear Information System (INIS)

    Schley, R.; Leveque, J.P.

    1980-07-01

    The specific operating conditions of thermocouples in nuclear reactors have provided an incentive for further advances in high temperature thermocouple applications and performance. This work covers the manufacture and improvement of existing alloys, the technology of clad thermocouples, calibration drift during heat treatment, resistance to thermal shock and the compatibility of insulating materials with thermo-electric alloys. The results lead to specifying improved operating conditions for thermocouples in nuclear reactor media (pressurized water, sodium, uranium oxide) [fr

  1. Development programs on decommissioning technology for reactors and fuel cycle facilities in Japan

    International Nuclear Information System (INIS)

    Fujiki, K.

    1992-01-01

    The Science and Technology Agency (STA) of Japan is promoting technology development for decommissioning of nuclear facilities by entrusting various research programs to concerned research organisations: JAERI, PNC and RANDEC, including first full scale reactor decommissioning of JPDR. According to the results of these programs, significant improvement on dismantling techniques, decontamination, measurement etc. has been achieved. Further development of advanced decommissioning technology has been started in order to achieve reduction of duration of decommissioning work and occupational exposures in consideration of the decommissioning of reactors and fuel cycle facilities. (author) 5 refs.; 7 figs.; 1 tab

  2. The Symbiotic Relationship between Scientific Workflow and Provenance (Invited)

    Science.gov (United States)

    Stephan, E.

    2010-12-01

    The purpose of this presentation is to describe the symbiotic nature of scientific workflows and provenance. We will also discuss the current trends and real world challenges facing these two distinct research areas. Although motivated differently, the needs of the international science communities are the glue that binds this relationship together. Understanding and articulating the science drivers to these communities is paramount as these technologies evolve and mature. Originally conceived for managing business processes, workflows are now becoming invaluable assets in both computational and experimental sciences. These reconfigurable, automated systems provide essential technology to perform complex analyses by coupling together geographically distributed disparate data sources and applications. As a result, workflows are capable of higher throughput in a shorter amount of time than performing the steps manually. Today many different workflow products exist; these could include Kepler and Taverna or similar products like MeDICI, developed at PNNL, that are standardized on the Business Process Execution Language (BPEL). Provenance, originating from the French term Provenir “to come from”, is used to describe the curation process of artwork as art is passed from owner to owner. The concept of provenance was adopted by digital libraries as a means to track the lineage of documents while standards such as the DublinCore began to emerge. In recent years the systems science community has increasingly expressed the need to expand the concept of provenance to formally articulate the history of scientific data. Communities such as the International Provenance and Annotation Workshop (IPAW) have formalized a provenance data model. The Open Provenance Model, and the W3C is hosting a provenance incubator group featuring the Proof Markup Language. Although both workflows and provenance have risen from different communities and operate independently, their mutual

  3. Results of research and development activities in 1989 of the Institute for Neutron Physics and Reactor Technology

    International Nuclear Information System (INIS)

    1990-03-01

    The Institute for Neutron Physics and Reactor Technology treats research problems of nuclear engineering, mainly those that are related to the development of sodium-cooled fast breeder reactors and fusion reactor technology. The activities are in approximately equal parts of an experimental and theoretical nature. A great part of the research activities is performed in co-operation with other institutes and industrial groups in the framework of projects. For the Fast Breeder Reactor Project the Institute works on reactor physical design and safety problems by the core of large-scale fast breeder reactors. Questions concerning the consequences of accidents in light water reactors upon the environment and the population are treated as part of the Nuclear Safety Project. The Institute contributes to the Reprocessing Project with theoretical investigations on the physics of the fuel cycle and by developing control devices for a reprocessing plant. In the framework of the Fusion Project the Institute is concerned with neutron physical and technological questions of the breeder blanket. (orig.) [de

  4. Preliminary Conceptual Design and Development of Core Technology of Very High Temperature Gas-Cooled Reactor Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jong Hwa; Kang, H. S.; Gil, C. S. and others

    2006-05-15

    For the nuclear hydrogen production system, the VHTR technology and the IS cycle technology are being developed. A comparative evaluation on the block type reactor and the pebble type reactor is performed to decide a proper nuclear hydrogen production reactor. 100MWt prismatic type reactor is tentatively decided and its safety characteristics are roughly investigated. Computation codes of nuclear design, thermo-fluid design, safety-performance analysis are developed and verified. Also, the development of a risk informed design technology is started. Experiments for metallic materials and graphites are carried out for the selection of materials of VHTR components. Diverse materials for process heat exchanger are studied in various corrosive environments. Pyrolytic carbon and SiC coating technology is developed and fuel manufacturing technology is basically established. Computer program is developed to evaluate the performance of coated particle fuels.

  5. Preliminary Conceptual Design and Development of Core Technology of Very High Temperature Gas-Cooled Reactor Hydrogen Production

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Kang, H. S.; Gil, C. S. and others

    2006-05-01

    For the nuclear hydrogen production system, the VHTR technology and the IS cycle technology are being developed. A comparative evaluation on the block type reactor and the pebble type reactor is performed to decide a proper nuclear hydrogen production reactor. 100MWt prismatic type reactor is tentatively decided and its safety characteristics are roughly investigated. Computation codes of nuclear design, thermo-fluid design, safety-performance analysis are developed and verified. Also, the development of a risk informed design technology is started. Experiments for metallic materials and graphites are carried out for the selection of materials of VHTR components. Diverse materials for process heat exchanger are studied in various corrosive environments. Pyrolytic carbon and SiC coating technology is developed and fuel manufacturing technology is basically established. Computer program is developed to evaluate the performance of coated particle fuels

  6. A view of technology maturity assessment to realize fusion reactor by Japanese young researchers

    International Nuclear Information System (INIS)

    Kasada, Ryuta; Goto, Takuya; Miyazawa, Junichi; Fujioka, Shinsuke; Hiwatari, Ryoji; Oyama, Naoyuki; Tanigawa, Hiroyasu

    2013-01-01

    Japanese young researchers who have interest in realizing fusion reactor have analyzed Technology Readiness Levels (TRL) in Young Scientists Special Interest Group on Fusion Reactor Realization. In this report, brief introduction to TRL assessment and a view of TRL assessment against fusion reactor projects conducting in Japan. (J.P.N.)

  7. Design of a multipurpose research reactor

    International Nuclear Information System (INIS)

    Sanchez Rios, A.A.

    1990-01-01

    The availability of a research reactor is essential in any endeavor to improve the execution of a nuclear programme, since it is a very versatile tool which can make a decisive contribution to a country's scientific and technological development. Because of their design, however, many existing research reactors are poorly adapted to certain uses. In some nuclear research centres, especially in the advanced countries, changes have been made in the original designs or new research prototypes have been designed for specific purposes. These modifications have proven very costly and therefore beyond the reach of developing countries. For this reason, what the research institutes in such countries need is a single sufficiently versatile nuclear plant capable of meeting the requirements of a nuclear research programme at a reasonable cost. This is precisely what a multipurpose reactor does. The Mexican National Nuclear Research Institute (ININ) plans to design and build a multipurpose research reactor capable at the same time of being used for the development of reactor design skills and for testing nuclear materials and fuels, for radioisotopes production, for nuclear power studies and basic scientific research, for specialized training, and so on. For this design work on the ININ Multipurpose Research Reactor, collaborative relations have been established with various international organizations possessing experience in nuclear reactor design: Atomehnergoeksport of the USSR: Atomic Energy of Canada Limited (AECL); General Atomics (GA) of the USA; and Japan Atomic Energy Research Institute

  8. Development of core design and analyses technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  9. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  10. International Conference on Physics and Technology of Reactors and Applications

    International Nuclear Information System (INIS)

    2007-01-01

    The first international conference on physics and technology of reactors and applications (PHYTRA 1) which took place in Marrakech (Morocco) from 14 to 16 March 2007, was designed to bring together scientists, teachers and students from universities, research centres and industry and other institutions to exchange knowledge and to discuss ideas and future issues. The programmes of the PHYTRA 1 conference covers a wide variety topics, the conference was organised in three plenary sessions, ten oral technical sessions and two poster sessions. The plenary sessions covers the following topics : The prospects of nuclear energy, The situation of nuclear sciences and energy in Morocco and Africa, and the new development in reactor physics and reactor design [fr

  11. Nuclear technology and reactor safety engineering. The situation ten years after the Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1996-01-01

    Ten years ago, on April 26, 1986 the most serious accident ever in the history of nuclear tgechnology worldwide happened in unit 4 of the nuclear power plant in Chernobyl in the Ukraine, this accident unveiling to the world at large that the Soviet reactor design lines are bearing unthought of safety engineering deficits. The dimensions of this reactor accident on site, and the radioactive fallout spreading far and wide to many countries in Europe, vividly nourished the concern of great parts of the population in the Western world about the safety of nuclear technology, and re-instigated debates about the risks involved and their justification. Now that ten years have elapsed since the accident, it is appropriate to strike a balance and analyse the situation today. The number of nuclear power plants operating worldwide has been growing in the last few years and this trend will continue, primarily due to developments in Asia. The Chernobyl reactor accident has pushed the international dimension of reactor safety to the foreground. Thus the Western world had reason enough to commit itself to enhancing the engineered safety of reactors in East Europe. The article analyses some of the major developments and activities to date and shows future perspectives. (orig.) [de

  12. Evolutionary water cooled reactors: Strategic issues, technologies and economic viability. Proceedings of a symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    Symposium on evolutionary water cooled reactors: Strategic issues, technologies and economic viability was intended for managers in utilities, reactor design organizations and hardware manufacturing companies and for government decision makers who need to understand technological advances and the potential of evolutionary water cooled reactors to contribute to near and medium term energy demands. The topics addressed include: strategic issues (global energy outlook, the role of nuclear power in sustainable energy strategies, power generation costs, financing of nuclear plant projects, socio-political factors and nuclear safety requirements); technological advances (instrumentation and control, means od improving prevention and mitigation of severe accidents, development of passive safety systems); keys to economic viability (simplification, standardization, advances in construction and project management, feedback of experience from utilities into new designs, and effective management of plant operation)

  13. Development of safety analysis technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Suk K.; Song, J. H.; Chung, Y. J. and others

    1999-03-01

    Inherent safety features and safety system characteristics of the SMART integral reactor are investigated in this study. Performance and safety of the SMART conceptual design have been evaluated and confirmed through the performance and safety analyses using safety analysis system codes as well as a preliminary performance and safety analysis methodology. SMART design base events and their acceptance criteria are identified to develop a preliminary PIRT for the SMART integral reactor. Using the preliminary PIRT, a set of experimental program for the thermal hydraulic separate effect tests and the integral effect tests was developed for the thermal hydraulic model development and the system code validation. Safety characteristics as well as the safety issues of the integral reactor has been identified during the study, which will be used to resolve the safety issues and guide the regulatory criteria for the integral reactor. The results of the performance and safety analyses performed during the study were used to feedback for the SMART conceptual design. The performance and safety analysis code systems as well as the preliminary safety analysis methodology developed in this study will be validated as the SMART design evolves. The performance and safety analysis technology developed during the study will be utilized for the SMART basic design development. (author)

  14. A Design of Alarm System in a Research Reactor Facility

    International Nuclear Information System (INIS)

    Park, Jaekwan; Jang, Gwisook; Seo, Sangmun; Suh, Yongsuk

    2013-01-01

    The digital alarm system has become an indispensable design to process a large amount of alarms of power plants. Korean research reactor operated for decades maintains a hybrid alarm system with both an analog annunciator and a digital alarm display. In this design, several alarms are indicated on an analog panel and digital display, respectively, and it requires more attention and effort of the operators. As proven in power plants, a centralized alarm system design is necessary for a new research reactor. However, the number of alarms and operators in a research reactor is significantly lesser than power plants. Thus, simplification should be considered as an important factor for the operation efficiency. This paper introduces a simplified alarm system. As advances in information technology, fully digitalized alarm systems have been applied to power plants. In a new research reactor, it will be more useful than an analog or hybrid configuration installed in research reactors decades ago. However, the simplification feature should be considered as an important factor because the number of alarms and number of operators in a research reactor is significantly lesser than in power plants

  15. Current status and future development of modular high temperature gas cooled reactor technology

    International Nuclear Information System (INIS)

    2001-02-01

    associated with these R and D programmes. Also, support of specific HTGR related research projects is included in the European Union's Fifth Framework Program beginning in 2000. Further opportunities and capabilities of the HTGR in the development of co-generation and non-electric applications are presented in Chapter 7. Spent fuel disposal and decommissioning are key issues that are significantly influencing the future of nuclear power. Chapter 8 addresses the anticipated manner of handling these areas within the PBMR and GT-MHR. Also addressed are the activities associated with spent fuel disposal and decommissioning of HTGRs previously shut down. The development and commissioning of any new nuclear plant concept is subject to risks and challenges to its commercialization. This is also evident in the closed cycle gas turbine, particularly with regard to the design and development of the power conversion system (PCS). The GT-MHR and the PBMR (as well as many other designs under consideration) incorporate state-of-the-art components in their PCS that must operate safely and efficiently for this concept to succeed. These components include magnetic bearings on the rotating machines, large compact plate-fin recuperator modules and seals between PCS components that have size, orientation or environmental operating characteristics yet to be fully demonstrated and proven. These challenges to the commercialization of the GT-MHR and PBMR are discussed in Chapter 9. The IAEA is advised on its activities in development and application of gas cooled reactors by the IWGGCR which is a committee of leaders in national programmes in this technology. The IWGGCR meets periodically to serve as a global forum for information exchange and progress reports on the national programmes, to identify areas of collaboration and to advise the IAEA on its programme. Countries with representation in the IWGGCR include Austria, China, France, Germany, Indonesia, Italy, Japan, the Netherlands, Poland, the

  16. The status of fast reactor technology development in China

    International Nuclear Information System (INIS)

    Xu Mi

    2000-01-01

    Considering the future clean energy supply in China, a rather consistent opinion is to develop nuclear power step by step with the contribution from a supplementary one up to an important one. The large scale utilization of nuclear energy obviously determines the interest in fast breeders; China right now already has about 300 GWe total electricity capacity using conventional energy resources. As the first step for fast reactor technology development in the country, the China Experimental Fast Reactor (CEFR) project is still under detail design stage, which is a sodium cooled pool type fast reactor with 65 MW thermal power matched with a turbine-generator of 25 MW. The ordering of the components is continuing. The site is ready and the steel works for the 3 m x 69 m x 82.5 m foundation base of reactor building are being arranged layer by layer. The review to the PSAR by the China National Nuclear Safety Administration (CNNSA) is going to the final stage, if everything goes smoothly. The first pouring of the concrete for the reactor building will be in the middle of the year 2000. The brief introduction of the CEFR design, safety characteristics, the main results of the safety analysis and design test demonstration are given in the paper. (author)

  17. Technological aspects of intrinsically safe and economical reactor (ISER)

    International Nuclear Information System (INIS)

    Yamada, Nobuyuki; Oda, Junro; Yamanaka, Kazuo; Sugawara, Ichiro.

    1987-01-01

    ISER is a modified version of process inherent ultimate safe reactor (PIUS) developed by ASEA-ATOM, Sweden, and follows the same inherent safety principle, that is, passive reactor shutdown through the introduction of borated pool water into a core via an interface, and passive decay heat removal by natural circulation. The most significant deviation from the PIUS is that the ISER employs a steel reactor pressure vessel enclosed in the reactor pit, instead of a prestressed concrete reactor pressure vessel of the PIUS. The merits of using steel pressure vessels are siting versatility including barge-mounted plants, low cost, the standardization and serial production of total NSSSs through the weight reduction and compaction of primary system, as well as the possibility of utilizing current LWR technology, which minimizes R and D effort. In this paper, the design features of the latest version of ISERs are shown, and the specific problems of the key components are discussed. The primary system consists of a primary coolant loop and a borated water pool, which are connected with upper and lower interfaces. The nuclear design and thermohydraulic design, the operation and maintenance, and the design features of a steam generator, a pressurizer, interfaces and so on are described. (Kako, I.)

  18. Guideline for Performing Systematic Approach to Evaluate and Qualify Legacy Documents that Support Advanced Reactor Technology Activity

    Energy Technology Data Exchange (ETDEWEB)

    Honma, George [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    The establishment of a systematic process for the evaluation of historic technology information for use in advanced reactor licensing is described. Efforts are underway to recover and preserve Experimental Breeder Reactor II and Fast Flux Test Facility historical data. These efforts have generally emphasized preserving information from data-acquisition systems and hard-copy reports and entering it into modern electronic formats suitable for data retrieval and examination. The guidance contained in this document has been developed to facilitate consistent and systematic evaluation processes relating to quality attributes of historic technical information (with focus on sodium-cooled fast reactor (SFR) technology) that will be used to eventually support licensing of advanced reactor designs. The historical information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The evaluation process is prescribed in terms of SFR technology, but the process can be used to evaluate historical information for any type of advanced reactor technology. An appendix provides a discussion of typical issues that should be considered when evaluating and qualifying historical information for advanced reactor technology fuel and source terms, based on current light water reactor (LWR) requirements and recent experience gained from Next Generation Nuclear Plant (NGNP).

  19. Guideline for Performing Systematic Approach to Evaluate and Qualify Legacy Documents that Support Advanced Reactor Technology Activity

    International Nuclear Information System (INIS)

    Honma, George

    2015-01-01

    The establishment of a systematic process for the evaluation of historic technology information for use in advanced reactor licensing is described. Efforts are underway to recover and preserve Experimental Breeder Reactor II and Fast Flux Test Facility historical data. These efforts have generally emphasized preserving information from data-acquisition systems and hard-copy reports and entering it into modern electronic formats suitable for data retrieval and examination. The guidance contained in this document has been developed to facilitate consistent and systematic evaluation processes relating to quality attributes of historic technical information (with focus on sodium-cooled fast reactor (SFR) technology) that will be used to eventually support licensing of advanced reactor designs. The historical information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The evaluation process is prescribed in terms of SFR technology, but the process can be used to evaluate historical information for any type of advanced reactor technology. An appendix provides a discussion of typical issues that should be considered when evaluating and qualifying historical information for advanced reactor technology fuel and source terms, based on current light water reactor (LWR) requirements and recent experience gained from Next Generation Nuclear Plant (NGNP).

  20. Ion sensors in reactor technology

    International Nuclear Information System (INIS)

    Strnad, M.; Kott, J.

    1977-01-01

    A new temperature measurement technique is shown based on the steep phase transformation of some substances accompanied with a marked change in their electric conductivity. A survey is given of the physicochemical properties of some ion crystals and the problems are discussed of interpreting the steep changes in the crystal electric conductivity for ion thermometers. Technological problems are also discussed of ion sensor production for reactor technology applications. The CdI 2 , KIO 3 , K 2 Cr 2 O 7 thermometric compounds were used sealed in the Supermax silicon-aluminium glass or in silica glass with platinum bushings. Changes are described in the hysteresis effects of ion thermometers with CdI 2 , KIO 3 and K 2 Cr 2 O 7 in dependence on neutron irradiation with doses of 1.5x10 18 n.cm -2 , 8.5x10 17 n.cm -2 and 4.5x10 22 n.cm -2 , respectively. The thermometric parameters were compared in the radiation experiments, of ion sensors, Chromel-Alumel thermocouples and platinum resistance thermometers. (B.S.)

  1. Proceedings (slides) of the OECD/NEA Workshop on Innovations in Water-cooled Reactor Technologies

    International Nuclear Information System (INIS)

    Spiler, Joze; Kim, Sang-Baik; ); Feron, Fabien; Jaervinen, Marja-Leena; Husse, Julien; ); Ferraro, Giovanni; Bertels, Frank; Denk, Wolfgang; Tuomisto, Harri; Golay, Michael; Buongiorno, J.; Todreas, N.; Adams, E.; Briccetti, A.; Jurewicz, J.; Kindfuller, V.; Srinivasan, G.; Strother, M.; Minelli, P.; Fasil, E.; Zhang, J.; Genzman, G.; Epinois, Bertrand de l'; Kim, Shin Whan; Laaksonen, Jukka; Maltsev, Mikhail; Yu, CHongxing; Powell, David; Gorgemans, Julie; Hopwood, Jerry; Bylov, Igor; Bakhmetyev, Alexander M.; Lepekhin, Andrey N.; Fadeev, Yuriy P.; Bruna, Giovanni; Gulliford, Jim; ); Ham-Su, Rosaura; Thevenot, Caroline; GAUTIER, Guy-Marie; MARSAULT, Philippe; PIGNATEL, Jean-Francois; White, Andrew; )

    2015-02-01

    New technologies and solutions have been developed over more than thirty years to improve the safety, performance and economics of nuclear power plants. Particular efforts were made in designing systems to prevent or mitigate nuclear accidents and, greatly limit or even avoid any offsite release of radioactivity. Reactor designs developed in the 1980's and later are often referred to as Generation III (Gen III) reactors. They offer enhanced safety compared to earlier Generation II (Gen II) designs, as well as improved performance and economics. Examples of Gen III safety design features include solutions for corium localisation, advanced containment structures, improved emergency core-cooling systems, filtered venting systems, hydrogen risk management solutions, etc. Some of these solutions have also been back-fitted or partially adapted to existing reactors, based on recommendations from regulators or modernisation efforts by the utilities operating these reactors, to bring their level of safety to levels approaching those of the more modern designs. Other innovations found in the latest water-cooled reactor designs include the use of passive safety systems, and often associated with those, a simplification in the design of the reactor. Gen III reactors also feature better economics, for example increased design lifetime up to 60 years, ability to use 100% MOX fuel and operate with higher flexibility, higher thermal efficiencies and reduced staff requirements. Modularity is often quoted as a feature of some Gen III designs as a way of reducing the construction times and simplifying the decommissioning of the plant. The scope of the Workshop includes, inter alia: - Evolution of regulatory and design requirements for commercial water-cooled reactors; - Innovations in water-cooled reactor technologies that allowed significant improvement in the level of safety, with a discussion on advantages and challenges of active vs. passive safety systems; - Innovations under

  2. Conceptual design of nuclear fusion power reactor DREAM. Reactor structures and remote maintenance

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Seki, Yasushi; Ueda, Shuzo; Kurihara, Ryoichi; Adachi, Junichi; Yamazaki, Seiichiro; Hashimoto, Toshiyuki.

    1997-01-01

    Nuclear fusion reactors are required to be able to compete another energy sources in economy, reliability, safety and environmental integrity for commercial use. In the DREAM (DRastically EAsy Maintenance) reactor, a very low activated material of SiC/SiC composite has been introduced for the structural material, a reactor configuration for very easy maintenance and the helium gas of a high temperature for the cooling system, and hence DREAM has been proven to be very attractively as the commercial power reactor due to the high availability and efficiency of the plant and minimization of radioactive wastes. (author)

  3. MHTGR [Modular High-Temperature Gas-Cooled Reactor] technology development plan

    International Nuclear Information System (INIS)

    Homan, F.J.; Neylan, A.J.

    1988-01-01

    This paper presents the approach used to define the technology program needed to support design and licensing of a Modular High-Temperature Gas-Cooled Reactor (MHTGR). The MHTGR design depends heavily on data and information developed during the past 25 years to support large HTGR (LHTGR) designs. The technology program focuses on MHTGR-specific operating and accident conditions, and on validation of models and assumptions developed using LHTGR data. The technology program is briefly outlined, and a schedule is presented for completion of technology work which is consistent with completion of a Final Safety Summary Analysis Report (FSSAR) by 1992

  4. The status of fast reactor technology development in China

    International Nuclear Information System (INIS)

    Xu Mi

    1998-01-01

    The paper describes recent status and trends on Chinese national economy, electrical power capacity and nuclear power development. The preliminary design of the CEFR has been approved by the State Science and Technology Commission. Now it is in the detail design stage. It is planned that the first pot of concrete will be in April of 1999, in the end of 2000 the reactor building construction will be finished and the first criticality of the reactor will be envisaged in July 2003. The brief of preliminary design, analysis results of some beyond design basic accidents and design basic accidents, CEFR research works, and international cooperation are presented in the paper. (author)

  5. Industrial Maturity of FR Fuel Cycle Processes and Technologies

    International Nuclear Information System (INIS)

    Bruezière, Jérôme

    2013-01-01

    FR fuel cycle processes and technologies have already been proven industrially for Oxide Fuel, and to a lesser extent for metal fuel. In addition, both used oxide fuel reprocessing and fresh oxide fuel manufacturing benefit from similar industrial experience currently deployed for LWR. Alternative fuel type will have to generate very significant benefit in reactor ( safety, cost, … ) to justify corresponding development and industrialization costs

  6. On the implementation of new technology modules for fusion reactor systems codes

    International Nuclear Information System (INIS)

    Franza, F.; Boccaccini, L.V.; Fisher, U.; Gade, P.V.; Heller, R.

    2015-01-01

    Highlights: • At KIT a new technology modules for systems code are under development. • A new algorithm for the definition of the main reactor's components is defined. • A new blanket model based on 1D neutronics analysis is described. • A new TF coil stress model based on 3D electromagnetic analysis is described. • The models were successfully benchmarked against more detailed models. - Abstract: In the frame of the pre-conceptual design of the next generation fusion power plant (DEMO), systems codes are being used from nearly 20 years. In such computational tools the main reactor components (e.g. plasma, blanket, magnets, etc.) are integrated in a unique computational algorithm and simulated by means of rather simplified mathematical models (e.g. steady state and zero dimensional models). The systems code tries to identify the main design parameters (e.g. major radius, net electrical power, toroidal field) and to make the reactor's requirements and constraints to be simultaneously accomplished. In fusion applications, requirements and constraints can be either of physics or technology kind. Concerning the latest category, at Karlsruhe Institute of Technology a new modelling activity has been recently launched aiming to develop improved models focusing on the main technology areas, such as neutronics, thermal-hydraulics, electromagnetics, structural mechanics, fuel cycle and vacuum systems. These activities started by developing: (1) a geometry model for the definition of poloidal profiles for the main reactors components, (2) a blanket model based on neutronics analyses and (3) a toroidal field coil model based on electromagnetic analysis, firstly focusing on the stresses calculations. The objective of this paper is therefore to give a short outline of these models.

  7. Strengthening the R and D on fast reactor technology, and promoting its industrialization

    International Nuclear Information System (INIS)

    Wan Gang

    2008-01-01

    Based on the strategic thoughts of energy development in China expounded by Jiang Zemin in the article entitled 'Reflections on Energy Issues in China', the author points out in this paper that R and Ds on fast reactor technology shall be carried out timely in China by taking full advantage of international scientific resources, and overall planning in this regard shall be made as well. The point of view of strengthening fast reactor technology R and D and promoting its industrialization is also put forward in the paper. (authors)

  8. Advanced Light Water Reactor Plants System 80+trademark Design Certification Program

    International Nuclear Information System (INIS)

    Davis, G.A.

    1992-01-01

    Since 1985, ABB Combustion Engineering Nuclear Power (CENP) and Duke Engineering ampersand Services, Inc. (DE ampersand S) have been developing the next generation of pressurized water reactor (PWR) plant for worldwide deployment. The goal is to make available a pre-licensed, standardized plant design that can satisfy the need for a reliable and economic supply of electricity for residential, commercial and industrial use. To ensure that such a design is available when needed, it must be based on proven technology and established licensing criteria. These requirements dictate development of nuclear technology that is advanced, yet evolutionary in nature. This has been achieved with the System 80+ Standard Plant Design

  9. Outline of the advanced boiling water reactor (ABWR)

    International Nuclear Information System (INIS)

    Hucik, S.A.; Imaoka, T.; Minematsu, A.; Takashima, Y.

    1986-01-01

    The fundamental design of the Advanced Boiling Water Reactor (ABWR) was completed in December 1985. This design represents the next generation of Boiling Water Reactors (BWR) to be introduced into commercial operation in the 1990s. The ABWR is the result of the continuing evolution of the BWR, incorporating state-of-the-art technologies and many new improvements based on an extensive accumulation of world-wide experience through design, construction and operation of BWRs. The ABWR development program was initiated in 1978, with subsequent design and test and development programs started in 1981. Most of the development and verification tests of the new features have been completed. The ABWR development objective focused on an optimized selection of advanced technologies and proven BWR technologies. The ABWR objectives were specific improvements such as operating and safety margins, enhanced availability and capacity factor, and reduced occupational exposure while at the same time achieving significant cost reduction in both capital and operating costs. The ABWR is characterized by an improved NSSS including ten internal recirculation pumps, fine motion electric-hydraulic control rod drives, optimized safety and auxiliary systems, advanced control and instrumentation systems, improved turbine-generator with moisture/separator reheater with plant output increased to 1350 MWe, and an integrated reinforced concrete containment vessel and compact Reactor and Turbine Building design. The turbine system also included improvements in the Turbine-Generator, feedwater/heater system, and condensate treatment systems. The radwaste system was also optimized taking advantage of the plant design improvements and advances in radwaste technology. The ABWR is a truly optimal design which utilizes advanced technologies, capabilities, performance improvements, and yet provides an economic advantage. (author)

  10. Irradiation techniques at BR2 reactor

    International Nuclear Information System (INIS)

    Hebel, W.

    1978-01-01

    Since 1963 the material testing reactor BR2 at Mol is operated for the realisation of numerous research programs and experiments on the behavior of materials under nuclear radiation and in particular under intensive neutron exposure. During this period special irradiation techniques and experimental devices were developed according to the desiderata of the different experiments and to the irradiation possibilities offered at BR2. The design and the operating characteristics of quite a number of those irradiation rigs of proven reliability may be used or can be made available for new irradiation experiments. A brief description is given of some typical irradiation devices designed and constructed by CEN/SCK, Technology and Energy Dpt. They are compiled according to their main use for the different research and development programs realized at BR2. Their eventual application however for different objectives could be possible. A final chapter summarizes the principal irradiation conditions offered by BR2 reactor. (author)

  11. Dual pressurized light water reactor producing 2000 M We

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    The dual unit optimizer 2000 M We (Duo2000) is proposed as a new design concept for large nuclear power plant. Duo is being designed to meet economic and safety challenges facing the 21 century green and sustainable energy industry. Duo2000 has two nuclear steam supply systems (NSSS) of the unit nuclear optimizer (Uno) pressurized water reactor (PWR) in a single containment so as to double the capacity of the plant. Uno is anchored to the optimized power reactor 1000 M We (OPR1000) of the Korea Hydro and Nuclear Power Co., Ltd. The concept of Duo can be extended to any number of PWRs or pressurized heavy water reactors (PHWR s), or even boiling water reactor (BWRs). Once proven in water reactors, the technology may even be expanded to gas cooled, liquid metal cooled, and molten salt cooled reactors. In particular, since it is required that the small and medium sized reactors (SMRs) be built as units, the concept of Duo2000 will apply to SMRs as well. With its in-vessel retention as severe accident management strategy, Duo can not only put the single most querulous PWR safety issue to end, but also pave ways to most promising large power capacity dispensing with huge redesigning cost for generation III + nuclear systems. The strengths of Duo2000 include reducing the cost of construction by decreasing the number of containment buildings from two to one, minimizing the cost of NSSS and control systems by sharing between the dual units, and lessening the maintenance cost by uniting NSSS. The technology can further be extended to coupling modular reactors as dual, triple, or quadruple units to increase their economics, thus accelerating the commercialization as well as the customization of SMRs. (Author)

  12. Hydraulic stud-tensioning machines in reactor technology

    International Nuclear Information System (INIS)

    Lachner, H.

    1978-01-01

    Hydraulic multiple stud tensioner (MST) for the simultaneous prestressing of all the stud bolts is make it possible to achieve highly accurate prestress levels in the highly stressed bolts holding down the top head of reactor pressure vessels. These machines can remove and replace the nuts and studs, and can rotate these components upwards and downwards, during the operation of opening and closing the reactor pressure vessel. In order to reduce the radiation exposure of the service personnel, and also to reduce the time required for this work which may lie in the critical path of the refuelling time schedule, it is desirable to achieve complete mechanisation of these machines, including remote control and remote monitoring. The devices and components required for this purpose are without precedent in machine construction with respect to their functions and to the load range involved. The reported operating experience therefore also covers some points of general interest while the data on maintenance reflect the known status of the technology. (orig.) [de

  13. A study on future nuclear reactor technology and development strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Y.; Kim, S. H.; Sohn, D. S.; Suk, S. D.; Zee, S. K.; Yang, M. H.; Kim, H. J.; Park, W. S

    2000-12-01

    Development of nuclear reactor and fuel cycle technology for future is essential to meet the current issues such as enhancement of nuclear power reactor safety, economically competitive with gas turbine power generation, less production of radioactive waste, proliferation resistant fuel cycle, and public acceptance in consideration of lack of energy resources in the nuclear countries worldwide as well as in Korea. This report deals with as follows, 1) Review the world energy demand and supply perspective and analyse nature of energy and sustainable development to set-up nuclear policy in Korea 2) Recaptitulate the current long term nuclear R and D activities 3) Review nuclear R and D activities and programs of USA, Japan, France, Russia, international organizations such as IAEA, OECD/NEA 4) Recommend development directions of nuclear reactors and fuels.

  14. A study on future nuclear reactor technology and development strategy

    International Nuclear Information System (INIS)

    Kim, S. Y.; Kim, S. H.; Sohn, D. S.; Suk, S. D.; Zee, S. K.; Yang, M. H.; Kim, H. J.; Park, W. S.

    2000-12-01

    Development of nuclear reactor and fuel cycle technology for future is essential to meet the current issues such as enhancement of nuclear power reactor safety, economically competitive with gas turbine power generation, less production of radioactive waste, proliferation resistant fuel cycle, and public acceptance in consideration of lack of energy resources in the nuclear countries worldwide as well as in Korea. This report deals with as follows, 1) Review the world energy demand and supply perspective and analyse nature of energy and sustainable development to set-up nuclear policy in Korea 2) Recaptitulate the current long term nuclear R and D activities 3) Review nuclear R and D activities and programs of USA, Japan, France, Russia, international organizations such as IAEA, OECD/NEA 4) Recommend development directions of nuclear reactors and fuels

  15. Gas-cooled reactor coolant circulator and blower technology

    International Nuclear Information System (INIS)

    1988-08-01

    In the previous 17 meetings held within the framework of the International Working Group on Gas-Cooled Reactors, a wide variety of topics and components have been addressed, but the San Diego meeting represented the first time that a group of specialists had been convened to discuss circulator and blower related technology. A total of 20 specialists from 6 countries attended the meeting in which 15 technical papers were presented in 5 sessions: circulator operating experience I and II (6 papers); circulator design considerations I and II (6 papers); bearing technology (3 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  16. Liquid metal reactor development. Development of LMR coolant technology

    Energy Technology Data Exchange (ETDEWEB)

    Nam, H. Y.; Choi, S. K.; Hwang, J. s.; Lee, Y. B.; Choi, B. H.; Kim, J. M.; Kim, Y. G.; Kim, M. J.; Lee, S. D.; Kang, Y. H.; Maeng, Y. Y.; Kim, T. R.; Park, J. H.; Park, S. J.; Cha, J. H.; Kim, D. H.; Oh, S. K.; Park, C. G.; Hong, S. H.; Lee, K. H.; Chun, M. H.; Moon, H. T.; Chang, S. H.; Lee, D. N.

    1997-07-15

    Following studies have been performed during last three years as the 1.2 phase study of the mid and long term nuclear technology development plan. First, the small scale experiments using the sodium have been performed such as the basic turbulent mixing experiment which is related to the design of a compact reactor, the flow reversal characteristics experiment by natural circulation which is necessary for the analysis of local flow reversal when the electromagnetic pump is installed, the feasibility test of the decay heat removal by wall cooling and the operation of electromagnetic pump. Second, the technology of operation mechanism of sodium facility is developed and the technical analysis and fundamental experiments of sodium measuring technology has been performed such as differential pressure measuring experiment, local flow rate measuring experimenter, sodium void fraction measuring experiment, under sodium facility, the free surface movement experiment and the side orifice pressure drop experiment. A new bounded convection scheme was introduced to the ELBO3D thermo-hydraulic computer code designed for analysis of experimental result. A three dimensional computer code was developed for the analysis of free surface movement and the analysis model of transmission of sodium void fraction was developed. Fourth, the small scale key components are developed. The submersible-in-pool type electromagnetic pump which can be used as primary pump in the liquid metal reactor is developed. The SASS which uses the Curie-point electromagnet and the mock-up of Pantograph type IVTM were manufactured and their feasibility was evaluated. Fifth, the high temperature characteristics experiment of stainless steel which is used as a major material for liquid metal reactor and the material characteristics experiment of magnet coil were performed. (author). 126 refs., 98 tabs., 296 figs.

  17. Evaluation of potential blanket concepts for a Demonstration Tokamak Hybrid Reactor

    International Nuclear Information System (INIS)

    Chapin, D.L.; Chi, J.W.H.; Kelly, J.L.

    1978-01-01

    An evaluation has been made of several different blanket concepts for use in a near-term Demonstration Tokamak Hybrid Reactor (DTHR), whose main objective would be to produce a significant amount of fissile fuel while demonstrating the feasibility of the tokamak hybrid reactor concept. The desirability of a simple design using proven technology plus a proliferation resistant fuel cycle led to the selection of a low temperature and pressure water-cooled, zircaloy clad ThO 2 blanket concept to breed 233 U. The nuclear performance and thermal-hydraulics characteristics of the blanket were evaluated to arrive at a consistent design. The blanket was found to be feasible for producing a significant amount of fissile fuel even with the limited operating conditions and blanket coverage in the DTHR

  18. Nuclear reactors' construction costs: The role of lead-time, standardization and technological progress

    International Nuclear Information System (INIS)

    Berthelemy, Michel; Escobar Rangel, Lina

    2013-01-01

    This paper provides the first comparative analysis of nuclear reactor construction costs in France and the United States. Studying the cost of nuclear power has often been a challenge, owing to the lack of reliable data sources and heterogeneity between countries, as well as the long time horizon which requires controlling for input prices and structural changes. We build a simultaneous system of equations for overnight costs and construction time (lead-time) to control for endogeneity, using expected demand variation as an instrument. We argue that benefits from nuclear reactor program standardization can arise through short term coordination gains, when the diversity of nuclear reactors' technologies under construction is low, or through long term benefits from learning spillovers from past reactor construction experience, if those spillovers are limited to similar reactors. We find that overnight construction costs benefit directly from learning spillovers but that these spillovers are only significant for nuclear models built by the same Architect-Engineer (A- E). In addition, we show that the standardization of nuclear reactors under construction has an indirect and positive effect on construction costs through a reduction in lead-time, the latter being one of the main drivers of construction costs. Conversely, we also explore the possibility of learning by searching and find that, contrary to other energy technologies, innovation leads to construction costs increases. (authors)

  19. The assessment of technological and safety aspects of small power reactor SMART

    International Nuclear Information System (INIS)

    Antariksawan, A.R.; Ekariansyah, Andi S.; Sony, D.T.; Suharno; Hastowo, Hudi

    2002-01-01

    This paper describes and discusses the technology and safety of small nuclear power plant SMART. The reactor SMART produces 300 MWth of power is cooled and moderated with light water and integral PWR type developed by KAERI. At present, the development activities had reached the end of basic design stage. The concept design of reactor SMART is based on safety enhancement, economic competitiveness and high performance. The fuel is uranium oxide with approximately 5% w/o enrichment. The safety characteristics of the core are shown with low power density around 62.6 W/cc, high negative reactivity coefficient, and high shutdown and thermal margin. Besides the inherent safety characteristics, SMART is equipped with engineered safety features and severe accident management system which are in compliance with the IAEA recommendations. The application of SMART for dual-purpose produces 90 Mwe and 40,000 to fresh water a day. Based on the technology and core characteristics of the reactor SMART, it is very interesting to be deeply assessed

  20. Towards an Ontology-Driven Blockchain Design for Supply Chain Provenance

    OpenAIRE

    Kim, Henry M.; Laskowski, Marek

    2016-01-01

    An interesting research problem in our age of Big Data is that of determining provenance. Granular evaluation of provenance of physical goods--e.g. tracking ingredients of a pharmaceutical or demonstrating authenticity of luxury goods--has often not been possible with today's items that are produced and transported in complex, inter-organizational, often internationally-spanning supply chains. Recent adoption of Internet of Things and Blockchain technologies give promise at better supply chai...

  1. Light Water Reactor Sustainability Program Reactor Safety Technologies Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L. [Univ. of Wisconsin, Madison, WI (United States); Peko, D. [US Dept. of Energy, Washington, DC (United States); Farmer, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Rempe, J. [Rempe and Associates LLC, Idaho Falls, ID (United States); Humrickhouse, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robb, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauntt, R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Osborn, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary

  2. Light Water Reactor Sustainability Program: Reactor Safety Technologies Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary

  3. Development of materials and manufacturing technologies for Indian fast reactor programme

    International Nuclear Information System (INIS)

    Raj, Baldev; Jayakumar, T.; Bhaduri, A.K.; Mandal, Sumantra

    2010-01-01

    Fast Breeder Reactors (FBRs) are vital towards meeting security and sustainability of energy for the growing economy of India. The development of FBRs necessitates extensive research and development in domains of materials and manufacturing technologies in association with a wide spectrum of disciplines and their inter-twining to meet the challenging technology. The paper highlight the work and the approaches adopted for the successful deployment of materials, manufacturing and inspection technologies for the in-core and structural components of current and future Indian Fast Breeder Reactor Programme. Indigenous development of in-core materials viz. Titanium modified austenitic stainless steel (Alloy D9) and its variants, ferritic/martensitic oxide-dispersion strengthened (ODS) steels as well as structural materials viz. 316L(N) stainless steel and modified 9Cr-1Mo have been achieved through synergistic interactions between Indira Gandhi Centre for Atomic Research (IGCAR), education and research institutes and industries. Robust manufacturing technology has been established for forming and joining of various components of 500 MWe Prototype Fast Breeder Reactor (PFBR) through 'science-based technology' approach. To achieve the strict quality standards of formed parts in terms of geometrical tolerances, residual stresses and microstructural defects, FEM-based modelling and experimental validation was carried out for estimation of spring-back during forming of multiple curvature thick plantes. Optimization of grain boundary character distribution in Alloy D9 was carried out by adopting the grain boundary engineering approach to reduce radiation induced segregation. Extensive welding is involved in the fabrication of reactor vessels, piping, steam generators, fuel sub-assemblies etc. Activated Tungsten Inert Gas Welding process along with activated flux developed at IGCAR has been successfully used in fabrication of dummy fuel subassemblies (DFSA) required for testing

  4. Development of materials and manufacturing technologies for Indian fast reactor programme

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Baldev; Jayakumar, T.; Bhaduri, A.K.; Mandal, Sumantra [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2010-07-01

    Fast Breeder Reactors (FBRs) are vital towards meeting security and sustainability of energy for the growing economy of India. The development of FBRs necessitates extensive research and development in domains of materials and manufacturing technologies in association with a wide spectrum of disciplines and their inter-twining to meet the challenging technology. The paper highlight the work and the approaches adopted for the successful deployment of materials, manufacturing and inspection technologies for the in-core and structural components of current and future Indian Fast Breeder Reactor Programme. Indigenous development of in-core materials viz. Titanium modified austenitic stainless steel (Alloy D9) and its variants, ferritic/martensitic oxide-dispersion strengthened (ODS) steels as well as structural materials viz. 316L(N) stainless steel and modified 9Cr-1Mo have been achieved through synergistic interactions between Indira Gandhi Centre for Atomic Research (IGCAR), education and research institutes and industries. Robust manufacturing technology has been established for forming and joining of various components of 500 MWe Prototype Fast Breeder Reactor (PFBR) through 'science-based technology' approach. To achieve the strict quality standards of formed parts in terms of geometrical tolerances, residual stresses and microstructural defects, FEM-based modelling and experimental validation was carried out for estimation of spring-back during forming of multiple curvature thick plantes. Optimization of grain boundary character distribution in Alloy D9 was carried out by adopting the grain boundary engineering approach to reduce radiation induced segregation. Extensive welding is involved in the fabrication of reactor vessels, piping, steam generators, fuel sub-assemblies etc. Activated Tungsten Inert Gas Welding process along with activated flux developed at IGCAR has been successfully used in fabrication of dummy fuel subassemblies (DFSA) required

  5. Process technology for the molten-salt reactor 233U--Th cycle

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1975-01-01

    After a brief description of the design features of the molten-salt breeder reactor, fuel processing for removal of 233 Pa and fission products is examined. Some recent developments in processing technology are discussed

  6. Life extension of the St. Lucie unit 1 reactor vessel

    International Nuclear Information System (INIS)

    Rowan, G.A.; Sun, J.B.; Mott, S.L.

    1991-01-01

    In late 1989, Florida Power and Light Company (FP and L) established the policy that St. Lucie unit 1 should not be prevented from achieving a 60-yr operating life by reactor vessel embrittlement. A 60-yr operating life means that the plant would be allowed to operate until the year 2036, which is 20 years beyond the current license expiration date of 2016. Since modifications to the reactor vessel and its components are projected to be expensive, the desire of FP and L management was to achieve this lifetime extension through the use of fuel management and proven technology. The following limitations were placed on any acceptable method for achieving this lifetime extension capability: low fuel cycle cost; low impact on safety parameters; very little or no operations impact; and use of normal reactor materials. A task team was formed along with the Advanced Nuclear Fuels Company (ANF) to develop a vessel-life extension program

  7. Education program at the Massachusetts Institute of Technology research reactor for pre-college science teachers

    International Nuclear Information System (INIS)

    Hopkins, G.R.; Fecych, W.; Harling, O.K.

    1989-01-01

    A Pre-College Science Teacher (PCST) Seminar program has been in place at the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory for 4 yr. The purpose of the PCST program is to educate teachers in nuclear technology and to show teachers, and through them the community, the types of activities performed at research reactors. This paper describes the background, content, and results of the MIT PCST program

  8. Seal analysis technology for reactor pressure vessel

    International Nuclear Information System (INIS)

    Zheng Liangang; Zhang Liping; Yang Yu; Zang Fenggang

    2009-01-01

    There is the coolant with radiation, high temperature and high pressure in the reactor pressure vessel (RPV). It is closely correlated to RPV sealing capability whether the whole nuclear system work well or not. The aim of this paper is to study the seal analysis method and technology, such as the pre-tensioning of the bolt, elastoplastic contact and coupled technology of thermal and structure. The 3 D elastoplastic seal analysis method really and generally consider the loads and model the contact problem with friction between the contact plates. This method is easier than the specialized seal program and used widely. And it is more really than the 2 D seal analysis method. This 3 D elastoplastic seal analysis method has been successfully used in the design and analysis of RPV. (authors)

  9. FFTF reactor assembly system technology

    International Nuclear Information System (INIS)

    Mangelsdorf, T.A.

    1975-01-01

    An overview is presented of the FFTF reactor and plant together with descriptions of core components, core internals, core system, primary and secondary control rod system, reactor instrumentation, reactor vessel and closure head, and supporting test programs

  10. On the implementation of new technology modules for fusion reactor systems codes

    Energy Technology Data Exchange (ETDEWEB)

    Franza, F., E-mail: fabrizio.franza@kit.edu [Institute of Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344 (Germany); Boccaccini, L.V.; Fisher, U. [Institute of Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344 (Germany); Gade, P.V.; Heller, R. [Institute for Technical Physics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344 (Germany)

    2015-10-15

    Highlights: • At KIT a new technology modules for systems code are under development. • A new algorithm for the definition of the main reactor's components is defined. • A new blanket model based on 1D neutronics analysis is described. • A new TF coil stress model based on 3D electromagnetic analysis is described. • The models were successfully benchmarked against more detailed models. - Abstract: In the frame of the pre-conceptual design of the next generation fusion power plant (DEMO), systems codes are being used from nearly 20 years. In such computational tools the main reactor components (e.g. plasma, blanket, magnets, etc.) are integrated in a unique computational algorithm and simulated by means of rather simplified mathematical models (e.g. steady state and zero dimensional models). The systems code tries to identify the main design parameters (e.g. major radius, net electrical power, toroidal field) and to make the reactor's requirements and constraints to be simultaneously accomplished. In fusion applications, requirements and constraints can be either of physics or technology kind. Concerning the latest category, at Karlsruhe Institute of Technology a new modelling activity has been recently launched aiming to develop improved models focusing on the main technology areas, such as neutronics, thermal-hydraulics, electromagnetics, structural mechanics, fuel cycle and vacuum systems. These activities started by developing: (1) a geometry model for the definition of poloidal profiles for the main reactors components, (2) a blanket model based on neutronics analyses and (3) a toroidal field coil model based on electromagnetic analysis, firstly focusing on the stresses calculations. The objective of this paper is therefore to give a short outline of these models.

  11. The Canadian R and D program targeted at CANDU reactors

    International Nuclear Information System (INIS)

    Moeck, E.O.

    1988-01-01

    CANDU reactors produce electricity cheaply and reliably, with miniscule risk to the population and minimal impact on the environment. About half of Ontario's electricity and a third of New Brunswick's are generated by CANDU power plants. Hydro Quebec and utilities in Argentina, India, Pakistan, and the Republic of Korea also successfully operate CANDU reactors. Romania will soon join their ranks. The proven record of excellent performance of CANDUs is due in part to the first objective of the vigorous R and D program: namely, to sustain and improve existing CANDU power-plant technology. The second objective is to develop improved nuclear power plants that will remain competitive compared with alternative energy supplies. The third objective is to continue to improve our understanding of the processes underlying reactor safety and develop improved technology to mitigate the consequences of upset conditions. These three objectives are addressed by individual R and D programs in the areas of CANDU fuel channels, reduced operating costs, reduced capital costs, reactor safety research, and IAEA safeguards. The work is carried out mainly at three centres of Atomic Energy of Canada Limited--the Chalk River Nuclear Laboratories, the Whiteshell Nuclear Research Establishment, and the Sheridan Park Engineering Laboratories--and at Ontario Hydro's Research Laboratories. Canadian universities, consultants, manufacturers, and suppliers also provide expertise in their areas of specialization

  12. The AECL reactor development programme

    International Nuclear Information System (INIS)

    Menelely, D.A.

    1997-01-01

    The modem CANDU-PHWR power reactor is the result of more than 50 years of evolutionary design development in Canada. It is one of only three commercially successful designs in the world to this date. The basis for future development is the CANDU 6 and CANDU 9 models. Four of the first type are operating and four more will go an line before the end of this decade. The CANDU 9 is a modernized single-unit version of the twelve large multi-unit plants operated by Ontario Hydro. All of these plants use proven technology which resulted from research, development, design construction, and operating experience over the past 25 years. Looking forward another 25 years, AECL plans to retain all of the essential features that distinguish today's CANDU reactors (heavy water moderation, on-power fuelling simple bundle design, horizontal fuel channels, etc.). The end product of the planned 25-year development program is more than a specific design - it is a concept which embodies advanced features expected from ongoing R and D programs. To carry out the evolutionary work we have selected seven main areas for development: Safety Technology, Fuel and Fuel Cycles, Fuel Channels, Systems and Components, Heavy Water and Tritium Information Technology, and Construction. There are three strategic measures of success for each of these work areas: improved economics, advanced fuel cycle utilization, and enhanced safety/plant robustness. The paper describes these work programs and the overall goals of each of them. (author)

  13. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  14. Molten salt reactor technology for long-range and wide-scale nuclear energy system

    International Nuclear Information System (INIS)

    Ignatiev, V.; Alexseev, P.; Menshikov, L.; Prusakov, V.; Subbotine, S.

    1997-01-01

    A possibility of creation of multi-component nuclear power system in which alongside with thermal and fast reactors, molten salt burner reactors, for incineration of weapon grade plutonium, some minor actinides and transmutation of some fission products will be presented. The purposes of this work are to review the present status of the molten salt reactor technology and innovative non-aqueous chemical processing methods, to indicate the importance of the uncertainties remaining, to identify the additional work needed, and to evaluate the probability of success in obtaining improved safety characteristics for new concept of molten salt - burner reactor with external neutron source. 8 refs., 3 figs., 2 tabs

  15. 8th International School of Fusion Reactor Technology "Ettore Majorana"

    CERN Document Server

    Leotta, G G; Muon-catalyzed fusion and fusion with polarized nuclei

    1988-01-01

    The International School of Fusion Reactor Technology started its courses 15 years ago and since then has mantained a biennial pace. Generally, each course has developed the subject which was announced in advance at the closing of the previous course. The subject to which the present proceedings refer was chosen in violation of that rule so as to satisfy the recent and diffuse interest in cold fusion among the main European laboratories involved in controlled thermonuclear research (CTR). In the second half of 1986 we started to prepare a workshop aimed at assessing the state of the art and possibly of the perspectives of muon- catalyzed fusion. Research in this field has recently produced exciting experimental results open to important practical applications. We thought it worthwhile to consider also the beneficial effects and problems of the polarization ofthe nuclei in both cold and thermonuclear fusion. In preparing the 8th Course on Fusion Reactor Technology, it was necessary to abandon the tradi...

  16. A review of boiling water reactor water chemistry: Science, technology, and performance

    International Nuclear Information System (INIS)

    Fox, M.J.

    1989-02-01

    Boiling water reactor (BWR) water chemistry (science, technology, and performance) has been reviewed with an emphasis on the relationships between BWR water quality and corrosion fuel performance, and radiation buildup. A comparison of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.56, the Boiling Water Reactor Owners Group (BWROG) Water Chemistry Guidelines, and Plant Technical Specifications showed that the BWROG Guidelines are more stringent than the NRC Regulatory Guide, which is almost identical to Plant Technical Specifications. Plant performance with respect to BWR water chemistry has shown dramatic improvements in recent years. Up until 1979 BWRs experienced an average of 3.0 water chemistry incidents per reactor-year. Since 1979 the water chemistry technical specifications have been violated an average of only 0.2 times per reactor-year, with the most recent data from 1986-1987 showing only 0.05 violations per reactor-year. The data clearly demonstrate the industry-wide commitment to improving water quality in BWRs. In addition to improving water quality, domestic BWRs are beginning to switch to hydrogen water chemistry (HWC), a remedy for intergranular stress corrosion cracking. Three domestic BWRs are presently operating on HWC, and fourteen more have either performed HWC mini tests or are in various stages of HWC implementation. This report includes a detailed review of HWC science and technology as well as areas in which further research on BWR chemistry may be needed. 43 refs., 30 figs., 8 tabs

  17. Results of a comparison study of advanced reactors

    International Nuclear Information System (INIS)

    Bueno de Mesquita, K.G.; Gout, W.; Heil, J.A.; Tanke, R.H.J.; Geevers, F.

    1991-06-01

    The PINK programme is a 4-year programme of five parties involved in nuclear energy in the Netherlands: GKN (operator of the Dodewaard plant), KEMA (Research institute of the Netherlands Utilities), ECN (Netherlands Energy Research Foundation), NUCON (Engineering and Contracting Company) and IRI Interfaculty Reactor Institute of the Delft University of Technology), to coordinate their efforts to intensify the nuclear competence of the industry, the utilities and the research and engineering companies. This programme is sponsored by the Ministry of Economic Affairs. The PINK programme consists of five parts. This report pertains to part 1 of the programme: comparison study of advanced reactors concerning the four so-called second-stage designs SBWR, AP600, SIR and CANDU, which, compared to the first-stage reactor designs, features increased use of passive safety systems and simplification. The objective of the current study is to compare these advanced reactor designs in order to provide comprehensive information for the PINK steering committee that is useful in the selection process of a design for further study and development work. In ch. 2 the main features of the four reactors are highlighted. In ch. 3 the most important safety features and the behaviour of the four reactors under accident situations are compared. Passive safety systems are identified and forgivingness is described and compared. Results of the preliminary probabilistic safety analysis are presented. Ch. 4 deals with the proven technology of the four concepts, ch. 5 with the Netherlands requirements, ch. 6 with commercial aspects, and ch. 7 with the fuel cycle and radioactive waste produced. In ch. 8 the costs are compared and finally in ch. 9 conclusions are drawn and recommendations are made. (author). 13 figs

  18. Examination of the bases for proposed innovations in reactor safety technology

    International Nuclear Information System (INIS)

    Moses, D.L.

    1986-01-01

    This paper employs the criteria for evaluations from the Nuclear Power Option Viability Study to examine the bases for proposed innovations in light water reactor safety technology. These bases for innovation fall into four broad categories as follows: (1) virtually exclusive reliance on passive safety features to preclude core damage in all situations, (2) design simplification using some passive safety features to reduce the frequency of core damage to less than about 10 -6 per reactor-year, (3) passive containment to preclude releases from any accident, and (4) designing to limit licensing attention to one or at least a few systems. Of these, only the first two, and perhaps only the second, hold significant promise for providing for the viability of advanced light water reactors

  19. Regulatory Risk Reduction for Advanced Reactor Technologies - FY2016 Status and Work Plan Summary

    International Nuclear Information System (INIS)

    Moe, Wayne Leland

    2016-01-01

    Millions of public and private sector dollars have been invested over recent decades to realize greater efficiency, reliability, and the inherent and passive safety offered by advanced nuclear reactor technologies. However, a major challenge in experiencing those benefits resides in the existing U.S. regulatory framework. This framework governs all commercial nuclear plant construction, operations, and safety issues and is highly large light water reactor (LWR) technology centric. The framework must be modernized to effectively deal with non-LWR advanced designs if those designs are to become part of the U.S energy supply. The U.S. Department of Energy's (DOE) Advanced Reactor Technologies (ART) Regulatory Risk Reduction (RRR) initiative, managed by the Regulatory Affairs Department at the Idaho National Laboratory (INL), is establishing a capability that can systematically retire extraneous licensing risks associated with regulatory framework incompatibilities. This capability proposes to rely heavily on the perspectives of the affected regulated community (i.e., commercial advanced reactor designers/vendors and prospective owner/operators) yet remain tuned to assuring public safety and acceptability by regulators responsible for license issuance. The extent to which broad industry perspectives are being incorporated into the proposed framework makes this initiative unique and of potential benefit to all future domestic non-LWR applicants

  20. The tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Kelly, J.L.; Rose, R.P.

    1981-01-01

    At a time when the potential benefits of various energy options are being seriously evaluated in many countries through-out the world, it is both timely and important to evaluate the practical application of fusion reactors for their economical production of nuclear fissile fuels from fertile fuels. The fusion hybrid reactor represents a concept that could assure the availability of adequate fuel supplies for a proven nuclear technology and have the potential of being an electrical energy source as opposed to an energy consumer as are the present fuel enrichment processes. Westinghouse Fusion Power Systems Department, under Contract No. EG-77-C-02-4544 with the Department of Energy, Office of Fusion Energy, has developed a preliminary conceptual design for an early twenty-first century fusion hybrid reactor called the commercial Tokamak Hybrid Reactor (CTHR). This design was developed as a first generation commercial plant producing fissile fuel to support a significant number of client Light Water Reactor (LWR) Plants. To the depth this study has been performed, no insurmountable technical problems have been identified. The study has provided a basis for reasonable cost estimates of the hybrid plants as well as the hybrid/LWR system busbar electricity costs. This energy system can be optimized to have a net cost of busbar electricity that is equivalent to the conventional LWR plant, yet is not dependent on uranium ore prices or standard enrichment costs, since the fusion hybrid can be fueled by numerous fertile fuel resources. A nearer-term concept is also defined using a beam driven fusion driver in lieu of the longer term ignited operating mode. (orig.)

  1. Groundwater Monitoring Plan for the Reactor Technology Complex Operable Unit 2-13

    International Nuclear Information System (INIS)

    Richard P. Wells

    2007-01-01

    This Groundwater Monitoring Plan describes the objectives, activities, and assessments that will be performed to support the on-going groundwater monitoring requirements at the Reactor Technology Complex, formerly the Test Reactor Area (TRA). The requirements for groundwater monitoring were stipulated in the Final Record of Decision for Test Reactor Area, Operable Unit 2-13, signed in December 1997. The monitoring requirements were modified by the First Five-Year Review Report for the Test Reactor Area, Operable Unit 2-13, at the Idaho National Engineering and Environmental Laboratory to focus on those contaminants of concern that warrant continued surveillance, including chromium, tritium, strontium-90, and cobalt-60. Based upon recommendations provided in the Annual Groundwater Monitoring Status Report for 2006, the groundwater monitoring frequency was reduced to annually from twice a year

  2. Reactor technology: power conversion systems and reactor operation and maintenance

    International Nuclear Information System (INIS)

    Powell, J.R.

    1977-01-01

    The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He 3 reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored

  3. Clinch River Breeder Reactor Plant: a building block in nuclear technology

    International Nuclear Information System (INIS)

    McCormack, M.

    1979-01-01

    Interest in breeder reactors dates from the Manhatten Project to the present effort to build the Clinch River Liquid Metal Fast Breeder Reactor (LMFBR) demonstration plant. Seven breeder-type reactors which were built during this time are described and their technological progress assessed. The Clinch River Breeder Reactor Project (CRBRP) has been designed to demonstrate that it can be licensed, can operate on a large power grid, and can provide industry with important experience. As the next logical step in LMFBR development, the project has suffered repeated cancellation efforts with only minor modifications to its schedule. Controversies have developed over the timing of a large-scale demonstration plant, the risks of proliferation, economics, and other problems. Among the innovative developments adopted for the CRBRP is a higher thermal efficiency potential, the type of development which Senator McCormack feels justifies continuing the project. He argues that the nuclear power program can and should be revitalized by continuing the CRBRP

  4. Clinch River Breeder Reactor Plant: a building block in nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    McCormack, M.

    1979-01-01

    Interest in breeder reactors dates from the Manhatten Project to the present effort to build the Clinch River Liquid Metal Fast Breeder Reactor (LMFBR) demonstration plant. Seven breeder-type reactors which were built during this time are described and their technological progress assessed. The Clinch River Breeder Reactor Project (CRBRP) has been designed to demonstrate that it can be licensed, can operate on a large power grid, and can provide industry with important experience. As the next logical step in LMFBR development, the project has suffered repeated cancellation efforts with only minor modifications to its schedule. Controversies have developed over the timing of a large-scale demonstration plant, the risks of proliferation, economics, and other problems. Among the innovative developments adopted for the CRBRP is a higher thermal efficiency potential, the type of development which Senator McCormack feels justifies continuing the project. He argues that the nuclear power program can and should be revitalized by continuing the CRBRP.

  5. Advanced Reactor Licensing: Experience with Digital I&C Technology in Evolutionary Plants

    Energy Technology Data Exchange (ETDEWEB)

    Wood, RT

    2004-09-27

    This report presents the findings from a study of experience with digital instrumentation and controls (I&C) technology in evolutionary nuclear power plants. In particular, this study evaluated regulatory approaches employed by the international nuclear power community for licensing advanced l&C systems and identified lessons learned. The report (1) gives an overview of the modern l&C technologies employed at numerous evolutionary nuclear power plants, (2) identifies performance experience derived from those applications, (3) discusses regulatory processes employed and issues that have arisen, (4) captures lessons learned from performance and regulatory experience, (5) suggests anticipated issues that may arise from international near-term deployment of reactor concepts, and (6) offers conclusions and recommendations for potential activities to support advanced reactor licensing in the United States.

  6. Development of remote decontamination technologies improving internal environment of reactor buildings at Fukushima Daiichi Nuclear Power Station

    International Nuclear Information System (INIS)

    Hotta, Koji; Hayashi, Hirotada; Sakai, Hitoshi

    2016-01-01

    The reactor buildings at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc., which was seriously damaged by the Great East Japan Earthquake of March 11, 2011, have been highly contaminated by radioactive materials. To safely and efficiently advance the processes related to the forthcoming decommissioning of the reactors, it is necessary to improve the hazardous environment inside the reactor buildings. During the more than four years that have elapsed since the Great East Japan Earthquake, Toshiba has been implementing various measures to reduce the ambient dose rates inside the reactor buildings through decontamination work and participation in a national project for the development of remote decontamination technologies for reactor buildings. A variety of vehicles and technologies to support decontamination work have been developed through these activities, and are significantly contributing to improvement of the environment inside the reactor buildings. (author)

  7. Development of fluid system design technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D. J.; Chang, M. H.; Kang, D. J. and others

    1999-03-01

    This study presents the technology development of the system design concepts of SMART, a multi-purposed integral reactor with enhanced safety and operability, for use in diverse usages and applications of the nuclear energy. This report contains the following; - Design characteristics - Performance and safety related design criteria - System description: Primary system, Secondary system, Residual heat removal system, Make-up system, Component cooling system, Safety system - Development of design computer code: Steam generator performance(ONCESG), Pressurizer performance(COLDPZR), Steam generator flow instability(SGINS) - Development of component module and modeling using MMS computer code - Design calculation: Steam generator thermal sizing, Analysis of feed-water temperature increase at a low flow rate, Evaluation of thermal efficiency in the secondary system, Inlet orifice throttling coefficient for the prevention of steam generator flow instability, Analysis of Nitrogen gas temperature in the pressurizer during heat-up process, evaluation of water chemistry and erosion etc. The results of this study can be utilized not only for the foundation technology of the next phase basic system design of the SMART but also for the basic model in optimizing the system concepts for future advanced reactors. (author)

  8. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    International Nuclear Information System (INIS)

    Baldwin, Thomas; Tawfik, Magdy; Bond, Leonard

    2010-01-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R and D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R and D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10-12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I and C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy's Light Water Reactor Sustainability Program. DOE

  9. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R&D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10–12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I&C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy’s Light Water Reactor Sustainability Program. DOE has

  10. LOCA analysis of the IRIS reactor

    International Nuclear Information System (INIS)

    Bajs, T.; Grgic, D.; Cavlina, N.

    2003-01-01

    The IRIS reactor (International Reactor Innovative and Secure) is an integral, light water cooled, medium power reactor. IRIS has been selected as an International Near Term Deployable (INTD) reactor, within the Generation IV International Forum activities. The IRIS concept addresses the key-requirements defined by the US DOE for next generation reactors, i.e. enhanced reliability and safety, and improved economics. It features innovative, advanced engineering, but it is firmly based on the proven technology of pressurized water reactors (PWR). An innovative safety approach has been developed to mitigate the IRIS response to small-to-medium Loss of Coolant Accident (LOCA). This strategy is based on the interaction of IRIS compact containment with the reactor vessel to limit initial blowdown, and on depressurization through the use of a passive Emergency Heat Removal System (EHRS). A small Automatic Depressurization System (ADS) provides supplementary depressurization capability. A pressure suppression system is provided to limit the pressure peak following the initial blowdown to well below the containment design limit. The ultimate result is that during a small-to-medium LOCA, the core remains covered for an extended period of time, without credit for emergency water injection or external core makeup. The IRIS LOCA response is based on 'maintaining water inventory' rather than on the principle of safety injection. This novel safety approach poses significant issues for computational and analysis methods since the IRIS vessel and containment are strongly coupled, and the system response is based on the interaction between the two. The small break LOCA was calculated using RELAP5/mod3.3 and GOTHIC codes. Break of the largest line connected to the IRIS Reactor Pressure Vessel (RPV) was analyzed. The results of the calculations confirmed good performance of the IRIS system during LOCA. (author)

  11. Advanced Reactor Technology Options for Utilization and Transmutation of Actinides in Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2009-09-01

    Renewed interest in the potential of nuclear energy to contribute to a sustainable worldwide energy mix is strengthening the IAEA's statutory role in fostering the peaceful uses of nuclear energy, in particular the need for effective exchanges of information and collaborative research and technology development among Member States on advanced nuclear power technologies (Articles III-A.1 and III-A.3). The major challenges facing the long term development of nuclear energy as a part of the world's energy mix are improvement of the economic competitiveness, meeting increasingly stringent safety requirements, adhering to the criteria of sustainable development, and public acceptability. The concern linked to the long life of many of the radioisotopes generated from fission has led to increased R and D efforts to develop a technology aimed at reducing the amount of long lived radioactive waste through transmutation in fission reactors or accelerator driven hybrids. In recent years, in various countries and at an international level, more and more studies have been carried out on advanced and innovative waste management strategies (i.e. actinide separation and elimination). Within the framework of the Project on Technology Advances in Fast Reactors and Accelerator Driven Systems (http://www.iaea.org/inisnkm/nkm/aws/fnss/index.html), the IAEA initiated a number of activities on utilization of plutonium and transmutation of long lived radioactive waste, accelerator driven systems, thorium fuel options, innovative nuclear reactors and fuel cycles, non-conventional nuclear energy systems, and fusion/fission hybrids. These activities are implemented under the guidance and with the support of the IAEA Nuclear Energy Department's Technical Working Group on Fast Reactors (TWG-FR). This publication compiles the analyses and findings of the Coordinated Research Project (CRP) on Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste (2002

  12. Decommissioning technology development for research reactors

    International Nuclear Information System (INIS)

    Lee, K. W.; Kim, S. K.; Kim, Y. K.

    2004-03-01

    Although it is expected that the decommissioning of a nuclear power plant will happen since 2020, the need of partial decommissioning and decontamination for periodic inspection and life extension has been on an increasing trend and domestic market has gradually been extended. Therefore, in this project the decommissioning DB system on the KRR-1 and 2 was developed as establishing the information classification system of the research reactor dismantling and the structural design and optimization of the decommissioning DB system. Also in order to secure the reliability and safety about the dismantling process, the main dismantling simulation technology that can verify the dismantling process before their real dismantling work was developed. And also the underwater cutting equipment was developed to remove these stainless steel parts highly activated from the RSR. First, the its key technologies were developed and then the design, making, and capability analysis were performed. Finally the actual proof was achieved for applying the dismantling site. an automatic surface contamination measuring equipment was developed in order to get the sample automatically and measure the radiation/radioactivity

  13. Fusion reactor physics and technology. Progress report, October 1, 1978-June 30, 1979

    International Nuclear Information System (INIS)

    Conn, R.W.; Kulcinski, G.L.; Maynard, C.W.

    1979-01-01

    During the present contract period, work has been carried out in the following areas: (a) The NUWMAK tokamak reactor design was completed and distributed throughout the community. In particular, specific work was completed on divertorless tokamak operation in NUWMAK, Ti alloy assessment, materials resource implications of NUWMAK style reactors, and an economic analysis; (b) Tandem mirror reactor technology studies were carried out on tandem mirror physics, the role of rf heating, power balance studies, the design of high field magnets, and blanket/shield design in TMR's; (c) work at Wisconsin is contributing to the evolving picture of an optimum TMR; (d) the WHIST tokamak reactor plasma transport code developed at Wisconsin has been extended in two directions; (e) Work on ICRF heating in tokamak reactors, both in terms of physics and launching structure design, has been completed and published

  14. The status of fast reactor technology development in China

    International Nuclear Information System (INIS)

    Xu Mi

    1998-01-01

    The paper will outline the main activities on fast reactor technology in China. In the year 1996, with the increasing of about 15 GWe installed electricity capacity, the total national electricity generation capacity has reached 225 GWe in the Country. Two nuclear power plants, Qinshan Phase 1 and Daya Bay have their rather good operation. The load factor of Qinshan Phase 1 was 84.7%. 76.1% and 64.1% for Daya Bay Unit 1 and Unit 2 respectively. During the Ninth 5-year (from 1996 to 2000) four NPPs Consisting of eight units of installed 6620MWe will be constructed. Under the framework of the High Technology Programme the Chinese Experimental Fast Reactor (CEFR) with the power 65MWth matched with 25MWe turbine-generator is still under preliminary design stage, which is sodium cooled pool type, (Pu,U)O 2 as fuel, in-core primary Went fuel storage, two mechanical pumps and four intermediate heat exchangers for primary circuit two loops for secondary circuits two independent immersed heat exchangers and air coolers with high stacks for passive residual heat removal system. Some design changes are presented in the paper. Concerning the R and D for the CEFR, besides the facilities already prepared, for demonstration of thermohydraulic characteristics of natural convection, a water simulation reactor pool facility in about one third scale is planned, in order to prepare the reactor physics experiments for its start-up, the zero power fast neutron facility with 50kg U-235 has been restored, for endurance testing of core subassemblies and getting some sodium loop operation experiences, Italian ESPRESSO and CEDI are under reconstruction in our lab. As for the engineering preparation of the project CEFR, the Feasibility Study Report was approved by Authorities on November last year. The site preparation and the design of incorporated to grid are just started. Finally, the activities of the international cooperation are presented in the paper. (author)

  15. Off reactor testings. Technological engineering applicative research

    International Nuclear Information System (INIS)

    Doca, Cezar

    2001-01-01

    By the end of year 2000 over 400 nuclear electro-power units were operating world wide, summing up a 350,000 MW total capacity, with a total production of 2,300 TWh, representing 16% of the world's electricity production. Other 36 units, totalizing 28,000 MW, were in construction, while a manifest orientation towards nuclear power development was observed in principal Asian countries like China, India, Japan and Korea. In the same world's trend one find also Romania, the Cernavoda NPP Unit 1 generating electrical energy into the national system beginning with 2 December 1996. Recently, the commercial contract was completed for finishing the Cernavoda NPP Unit 2 and launching it into operation by the end of year 2004. An important role in developing the activity of research and technological engineering, as technical support for manufacturing the CANDU type nuclear fuel and supplying with equipment the Cernavoda units, was played by the Division 7 TAR of the INR Pitesti. Qualification testings were conducted for: - off-reactor CANDU type nuclear fuel; - FARE tools, pressure regulators, explosion proof panels; channel shutting, as well as functional testing for spare pushing facility as a first step in the frame of the qualification tests for the charging/discharging machine (MID) 4 and 5 endings. Testing facilities are described, as well as high pressure hot/cool loops, measuring chains, all of them fulfilling the requirements of quality assurance. The nuclear fuel off-reactor tests were carried out to determine: strength; endurance; impact, pressure fall and wear resistance. For Cernavoda NPP equipment testings were carried out for: the explosion proof panels, pressure regulators, behaviour to vibration and wear of the steam generation tubings, effects of vibration upon different electronic component, channel shutting (for Cernavoda Unit 2), MID operating at 300 and 500 cycles. A number of R and D programs were conducted in the frame of division 7 TAR of INR

  16. The status of fast reactor technology development in China

    International Nuclear Information System (INIS)

    Xu, M.

    2002-01-01

    China, as a developing country with a great number of population and relatively less energy resources, reasonably emphasizes the nuclear energy utilization development. For the long term sustainable energy supply, as for nuclear application the basic strategy of PWR-FBR-Fusion has been settled and envisaged. Due to the economy and experience reasons the nuclear power and technology development with a moderate style are kept in China up to now. In China mainland apart from two NPPs with the total capacity of 2.1 GWe in operation, four NPPs are under construction and two NPPs are planned for the Tenth Five Year Plan (2001-2005). Also another one or two NPPs are still in discussion. It could be foreseen that the total nuclear power capacity will reach 8.5GWe before the year 2005 and 14-15 GWe before 2010 respectively. As the first step for the Chinese fast reactor engineering development the 65MWt China Experimental Fast Reactor (CEFR) is under construction. The main components of primary, secondary and tertiary circuits and of fuel handling system have been ordered. The reactor building under construction has reached 16.8m above the ground. Forty seven components and shielding doors have been installed. It is planned that the construction of reactor building with about 40,000m2 floor surface will be completed in the end of the year 2002 and envisaged that the first criticality of the CEFR will be in the end of 2005. The second step of the Chinese fast reactor engineering development is a 300MWe Prototype Fast Breeder Reactor which is only under consideration up to now. Some important technical selections have been settled, but its design has not yet started. (author)

  17. The Progress of Fast Reactor Technology Development in China

    International Nuclear Information System (INIS)

    Yang, Hongyi; Xu, Mi

    1994-01-01

    China, as a developing country with a great number of population and relatively less energy resources, reasonably emphasizes the nuclear energy utilization development. For the long term sustainable energy supply, as for nuclear application the basis strategy of PWR-FBR-Fusion has been settled and envisaged. Due to the economy and experience reasons the nuclear power and technology development with a moderate style are kept in China up to now. In China mainland apart from two NPPs with the total capacity of 2.1 GWe in operation, four NPPs are under construction and two NPPs are planned for the Tenth Five Year Plan(2001-2005). Also another one or two NPPs are still in discussion. It could be foreseen that the total nuclear power capacity will reach 8.5GWe before the year 2005 and 14-15 GWe before respectively. As the first step for the Chinese fast reactor engineering development the 65MWt China Experimental Fast Reactor(CEFR) is under construction. The main components of primary, secondary and tertiary circuits and of fuel handling system have been ordered. The reactor building under construction has reached the top namely 57m above the ground. More than one hundred components and shielding doors have been installed. It is planned that the construction of reactor building with about 40,000m 2 floor surface will be completed in the end of the year 2002 and envisaged that the first criticality of the CEFR will be in the end of 2005. The second step of the Chinese fast reactor engineering development is a 300MWe Prototype Fast Breeder Reactor which in only under consideration up to now. Some important technical selections have been settled, but its design has not yet started

  18. Advanced power reactors with improved safety characteristics

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1994-01-01

    The primary objective of nuclear safety is the protection of individuals, society and environment against radiological hazards from accidental releases of radioactive materials contained in nuclear reactors. Hereto, these materials are enclosed by several successive barriers and the barriers protected against mishaps and accidents by a multi-level system of safety precautions. The evolution of reactor technology continuously improves this concept and its implementation. At a world-wide scale, several advanced reactor concepts are currently being considered, some of them already at a design stage. Essential safety objectives include both further strengthening the prevention of accidents and improving the containment of fission products should an accident occur. The proposed solutions differ considerably with regard to technical principles, plant size and time scales considered for industrial application. Two typical approaches can be distinguished: The first approach basically aims at an evolution of power reactors currently in use, taking into account the findings from safety research and from operation of current plants. This approach makes maximum use of proven technology and operating experience but may nevertheless include new safety features. The corresponding designs are often termed 'large evolutionary'. The second approach consists in more fundamental changes compared to present designs, often with strong emphasis on specific passive features protecting the fuel and fuel cladding barriers. Owing to the nature and capability of those passive features such 'innovative designs' are mostly smaller in power output. The paper describes the basic objectives of such developments and illustrates important technical concepts focusing on next generation plants, i.e. designs to be available for industrial application until the end of this decade. 1 tab. (author)

  19. Development of Regulatory Technical Requirements for the Advanced Integral Type Research Reactor

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Yune, Young Gill; Kim, Woong Sik; Kim, Hho Jung

    2004-01-01

    This paper presents the current status of the study on the development of regulatory technical requirements for the licensing review of an advanced integral type research reactor of which the license application is expected in a few years. According to the Atomic Energy Act of Korea, both research and education reactors are subject to the technical requirements for power reactors in the licensing review. But, some of the requirements may not be applicable or insufficient for the licensing reviews of reactors with unique design features. Thus it is necessary to identify which review topics or areas can not be addressed by the existing requirements and to develop the required ones newly or supplement appropriately. Through the study performed so far, it has been identified that the following requirements need to be developed newly for the licensing review of SMART-P: the use of proven technology, the interfacial facility, the non-safety systems, and the metallic fuels. The approach and basis for the development of each of the requirements are discussed. (authors)

  20. Research program of the high temperature engineering test reactor for upgrading the HTGR technology

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Tachibana, Yukio; Takeda, Takeshi; Saikusa, Akio; Sawa, Kazuhiro

    1997-07-01

    The High Temperature Engineering Test Reactor (HTTR) is a graphite-moderated and helium-cooled reactor with an outlet power of 30 MW and outlet coolant temperature of 950degC, and its first criticality will be attained at the end of 1997. In the HTTR, researches establishing and upgrading the technology basis necessary for an HTGR and innovative basic researches for a high temperature engineering will be conducted. A research program of the HTTR for upgrading the technology basis for the HTGR was determined considering realization of future generation commercial HTGRs. This paper describes a research program of the HTTR. (author)

  1. A perspective on research and development in austenitic stainless steels for fast breeder reactor technology at Kalpakkam

    International Nuclear Information System (INIS)

    Baldev Raj; Jayakumar, T.; Shankar, P.

    2010-01-01

    A fast breeder reactor with closed fuel cycle is an inevitable technology option to provide energy security for India. Innovations in materials technology have enabled the realization of unique and advanced features in the Indian fast breeder reactors and their associated fuel cycles. Materials development and materials technologies, particularly the widely used austenitic stainless steels discussed in this paper, have a deterministic influence on the advancement, safety, reliability, cost effectiveness and thus success of the fast breeder programme. Rigorous research and development for alloy development complemented with detailed structure-property evaluation of relevant mechanical and corrosion behaviour data have been possible with the state of art facilities housed at IGCAR. These data provide useful inputs for design engineers to ensure reliable and safe operation of the components. Advanced concepts in alloy design and grain boundary engineering are utilized to enhance the corrosion resistance and mechanical properties of various structural materials. Advanced NDE techniques for the assessment of manufactured components and in-service inspection have been developed, enhancing the confidence in the performance of the plant components and systems. The technology demonstration of critical stainless steel components using advanced forming and welding technologies with support from modelling for optimization of the fabrication processes enhanced the confidence in the development of the complex fast breeder reactor and associated fuel cycle technologies, with active support from national academic and research institutes and industry. This chapter presents a comprehensive overview on the advances in stainless steel technology as well as the challenges ahead for aspiring young minds in the field of fast reactor technology. (author)

  2. Contemporary pressurized water reactor technology in the world

    International Nuclear Information System (INIS)

    Komarek, A.

    1991-01-01

    The recent political events enabled Czechoslovak industrial companies to come into direct contact with leading western companies involved in pressurized water ractor technology. A survey is presented of the present situation at the world market of PWR type nuclear power plant suppliers and suppliers of fuel cycle services. Information is given on the potential bids for the next Czechoslovak nuclear power plants with PWR reactors. Economic aspects of the potential bids are presented including some considerations about the participation of the Czechoslovak nuclear industry as a supplier of the reactor for the future power plants. Main technical parameters are listed of PWR units with an output about 1000 MW supplied by Westinghouse EC, ABB -Combustion Engineering and Siemens AG. At present, the bids for new Czechoslovak nuclear power plants are being evaluated. No information on terms of the bids actually coming from foreign companies is used in the article. (Z.S.). 9 figs., 5 tabs

  3. Directions in advanced reactor technology

    International Nuclear Information System (INIS)

    Golay, M.W.

    1990-01-01

    Successful nuclear power plant concepts must simultaneously performance in terms of both safety and economics. To be attractive to both electric utility companies and the public, such plants must produce economical electric energy consistent with a level of safety which is acceptable to both the public and the plant owner. Programs for reactor development worldwide can be classified according to whether the reactor concept pursues improved safety or improved economic performance as the primary objective. When improved safety is the primary goal, safety enters the solution of the design problem as a constraint which restricts the set of allowed solutions. Conversely, when improved economic performance is the primary goal, it is allowed to be pursued only to an extent which is compatible with stringent safety requirements. The three major reactor coolants under consideration for future advanced reactor use are water, helium and sodium. Reactor development programs focuses upon safety and upon economics using each coolant are being pursued worldwide. These programs are discussed

  4. Provenance for Runtime Workflow Steering and Validation in Computational Seismology

    Science.gov (United States)

    Spinuso, A.; Krischer, L.; Krause, A.; Filgueira, R.; Magnoni, F.; Muraleedharan, V.; David, M.

    2014-12-01

    Provenance systems may be offered by modern workflow engines to collect metadata about the data transformations at runtime. If combined with effective visualisation and monitoring interfaces, these provenance recordings can speed up the validation process of an experiment, suggesting interactive or automated interventions with immediate effects on the lifecycle of a workflow run. For instance, in the field of computational seismology, if we consider research applications performing long lasting cross correlation analysis and high resolution simulations, the immediate notification of logical errors and the rapid access to intermediate results, can produce reactions which foster a more efficient progress of the research. These applications are often executed in secured and sophisticated HPC and HTC infrastructures, highlighting the need for a comprehensive framework that facilitates the extraction of fine grained provenance and the development of provenance aware components, leveraging the scalability characteristics of the adopted workflow engines, whose enactment can be mapped to different technologies (MPI, Storm clusters, etc). This work looks at the adoption of W3C-PROV concepts and data model within a user driven processing and validation framework for seismic data, supporting also computational and data management steering. Validation needs to balance automation with user intervention, considering the scientist as part of the archiving process. Therefore, the provenance data is enriched with community-specific metadata vocabularies and control messages, making an experiment reproducible and its description consistent with the community understandings. Moreover, it can contain user defined terms and annotations. The current implementation of the system is supported by the EU-Funded VERCE (http://verce.eu). It provides, as well as the provenance generation mechanisms, a prototypal browser-based user interface and a web API built on top of a NoSQL storage

  5. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor, United States of America

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L E; Bhattacharyya, S K [Technology Development Division, Decommissioning Program, Argonne National Laboratory, Argonne, IL (United States)

    2002-02-01

    The aging of research reactors worldwide has resulted in a heightened awareness in the international decommissioning community of the timeliness to review and address the needs of research reactor operators in planning for and eventually performing the decommissioning of these types of facilities. Many reactors already undergoing decommissioning can be used as test beds for evaluating enhanced or new/innovative technologies for decommissioning; it is possible that new techniques could be made available for future research reactor-decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the decommissioners in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to their use in actual research reactor decommissioning. The decommissioning of the CP-5 Research Reactor located at the ANL-East Site has been completed. In this paper we present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors. In addition, details are provided on other related U.S. D and D activities, which may be useful to the international research reactor D and D community. (author)

  6. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor, United States of America

    International Nuclear Information System (INIS)

    Boing, L.E.; Bhattacharyya, S.K.

    2002-01-01

    The aging of research reactors worldwide has resulted in a heightened awareness in the international decommissioning community of the timeliness to review and address the needs of research reactor operators in planning for and eventually performing the decommissioning of these types of facilities. Many reactors already undergoing decommissioning can be used as test beds for evaluating enhanced or new/innovative technologies for decommissioning; it is possible that new techniques could be made available for future research reactor-decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the decommissioners in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to their use in actual research reactor decommissioning. The decommissioning of the CP-5 Research Reactor located at the ANL-East Site has been completed. In this paper we present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors. In addition, details are provided on other related U.S. D and D activities, which may be useful to the international research reactor D and D community. (author)

  7. Advanced technologies for water cooled reactors 1990. Pt. 1

    International Nuclear Information System (INIS)

    1991-05-01

    The meeting was attended by 20 participants from 12 countries who reviewed and discussed the status and progress of national programmes on advanced water-cooled reactors and recommended to the Scientific Secretary a comprehensive programme for 1991/1992 which would support technology development programmes in IWGATWR Member States. This summary report outlines the activities of IWGATWR since its Second Meeting in June 1988 and main results of the Third Meeting

  8. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-based description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.

  9. The CITEQ transformer: a proven technology

    International Nuclear Information System (INIS)

    Cordeau, P.

    1997-01-01

    The technology of the new transformer created by CITEQ (Centre d''innovation sur le transport d''energie du Quebec) was reviewed. The new transformer is a combination of four components: (1) a solid insulation system, (2) an exterior shell composed of composite material, (3) an internal cooling system using heat-pipe technology, and (4) a resistant material for the protection of the magnetic core. The CITEQ transformer differs from conventional transformers by virtue of its low risk of pollution and explosion. Maintenance for the new transformer has also been drastically reduced. The new transformer is immune to explosions because it is entirely composed of solid material. 2 figs

  10. Alternative breeder reactor technologies

    International Nuclear Information System (INIS)

    Spinrad, B.I.

    1978-01-01

    The significance of employing breeder reactors to stretch the world resources of nuclear fuels is briefly discussed, and the various types of breeder concepts are described. General descriptions, advantages, and disadvantages of the liquid metal cooled fast breeder, gas cooled fast breeder, molten salt breeder, thermal breeders, and spectral-shift control reactors are presented. Aspects of safeguarding fissile material connected with breeder operation are examined. 31 references

  11. A small floating seawater desalination plant using a nuclear heating reactor coupled with the MED process

    International Nuclear Information System (INIS)

    Dong Duo; Wu Shaorong; Zhang Dafang; Wu Zongxin

    1997-01-01

    A small floating seawater desalination plant using a nuclear heating reactor coupled with a multi-effect distillation (MED) process was designed by the Institute of Nuclear Energy Technology, Tsinghua University of China. It was intended to supply potable water to remove coastal areas or islands where both fresh water and energy are severely lacking, and also to serve as a demonstration and training facility. The design of a small floating plant coupled two proven technologies in the cogeneration mode: a nuclear heating reactor (NHR-10), with inherent, passive safety features based on NHR-5 experience, and a low temperature MED process. The secondary loop was designed as a safety barrier between the primary loop and the steam loop. With a 10 MW(th) heating reactor, the floating plant could provide 4,000 m 3 /d of potable water and 750 kW of electricity. The design concept and parameters, safety features, coupling scheme and floating plant layout are presented in the paper. (author). 3 refs, 4 figs, 3 tabs

  12. Regulatory Risk Reduction for Advanced Reactor Technologies – FY2016 Status and Work Plan Summary

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne Leland [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    Millions of public and private sector dollars have been invested over recent decades to realize greater efficiency, reliability, and the inherent and passive safety offered by advanced nuclear reactor technologies. However, a major challenge in experiencing those benefits resides in the existing U.S. regulatory framework. This framework governs all commercial nuclear plant construction, operations, and safety issues and is highly large light water reactor (LWR) technology centric. The framework must be modernized to effectively deal with non-LWR advanced designs if those designs are to become part of the U.S energy supply. The U.S. Department of Energy’s (DOE) Advanced Reactor Technologies (ART) Regulatory Risk Reduction (RRR) initiative, managed by the Regulatory Affairs Department at the Idaho National Laboratory (INL), is establishing a capability that can systematically retire extraneous licensing risks associated with regulatory framework incompatibilities. This capability proposes to rely heavily on the perspectives of the affected regulated community (i.e., commercial advanced reactor designers/vendors and prospective owner/operators) yet remain tuned to assuring public safety and acceptability by regulators responsible for license issuance. The extent to which broad industry perspectives are being incorporated into the proposed framework makes this initiative unique and of potential benefit to all future domestic non-LWR applicants

  13. Progress of the decommissioning process of Musashi Institute of Technology reactor (4)

    International Nuclear Information System (INIS)

    Uchiyama, Takafumi; Tanzawa, Tomio; Mitsuhashi, Ishi; Morishima, Kayoko; Matsumoto, Tetsuo

    2012-01-01

    The research reactor of Tokyo City University Atomic Energy Research Laboratory (Musashi Institute of Technology reactor) is zirconium-moderated water-cooled solid homogeneous type (TRIGA-II type), and its maximum heat output is 100 kW. It got into the first critical state in January 1963, and since then, it has mainly contributed to education and training for upgrading nuclear engineers, radioactivation analysis and reactor physics, and medical researches, as the joint usage research facilities across Japan. Then, after a long-term suspension, the university submitted the file in 2004 to the Ministry of Education, Culture, Sports, Science and Technology on the dismantling for the purpose of facility abolishment. Through the procedure of submitting a decommissioning plan, it was approved. Furthermore, in order to perform the function stop of the disposal facilities of liquid waste, application for change authorization for the decommissioning plan was submitted and approved. Regarding the progress of the decommissioning plan, the dismantling and removal of waste facilities for liquid waste and solid waste was carried out in FY2011 without any trouble. This paper explains this progress and future work plans. (A.O.)

  14. Some applications of capacitance technology in nuclear reactor components inspections

    International Nuclear Information System (INIS)

    Walton, H.

    1985-01-01

    The paper considers application of a capacitance measuring system that has overcome many of the original contraints, such as sensitivity to cable length, induced electric field and high acoustic noise, and illustrates the ease of use with examples of proven capability in severe environments of high temperature or high radiation. The Capacitance Displacement Transducer (CDT) measuring principle was originally developed as a working technique during the early years of full-scale, on-load refuelling trials performed in the Windscale Civil Advanced Gas-Cooled Reactor (CAGR) test rig where it was necessary to measure the vibrational behaviour of fuel components in simulated reactor conditions. At that time, 1968-1969, no instrumentation existed that would measure displacement in the range 0 to 100 mms to an accuracy of 25x10 -3 mms, without physical contact, at temperatures of 600 0 C in high velocity gas, in high acoustic noise fields of 150 db's over cable lengths approaching 100 metres. The principles incorporated in the CDT overcome all these problems. The advantages inherent in this system have been extended to metrology applications in more recent years by the further development of the electronics to enable linear displacement measurement to be obtained between two capacitance plates whose separation varies, either by plate movement or by surface irregularity. This principle has been used to good effect in novel applications associated with the inspection of nominally inaccessible internal tube surfaces

  15. Technology development program for safe shipment of spent fuel from liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Freedman, J.M.; Humphreys, J.R.

    1975-10-01

    A comprehensive plan to develop shipping cask technology is described. Technical programs in the disciplines of heat transfer, structures and containment, spent fuel characterization, hot laboratory verification, shielding, and hazards analysis are discussed. Both short- and long-term goals in each discipline are delineated and how the disciplines interrelate is shown. The technologies developed will be used in the design, fabrication, and testing of truck-mounted and rail-car casks. These casks will be used for safely transporting short-cooled, high-burnup Liquid Metal Fast Breeder Reactor (LMFBR) spent fuel from reactors to reprocessing plants

  16. Preliminary conceptual design for electrical and I and C system of a new research reactor

    International Nuclear Information System (INIS)

    Jung, Hoan Sung; Kim, Y. K.; Kim, M. J.; Kim, H. K.; Ryu, J. S.

    2004-01-01

    The core type and the process system design will be varied according to the reactor's application and capacity. A New research reactor is being designed by KAERI since 2002 and the process systems are not fixed yet. But control and instrument systems are similar to each other even though the application and the size are not same. So the C and I system that encompasses reactor protection system, reactor control system, and computer system was designed conceptually according to the requirements based on new digital technology and HANARO's proven design. The plant electrical system consists of off-site system that delivers bulk electrical power to the reactor site and on-site system that distributes and controls electrical power at the facility. The electrical system includes building service system that consist of lighting, communication, fire detection, grounding, cathodic protection, etc. also. This report describes the design requirements of on-site and off-site electric power system that set up from the codes and standards and the conceptual design based on the design requirements

  17. Automatic start-up system of nuclear reactor based on sequence control technology

    International Nuclear Information System (INIS)

    Zhang Yao; Zhang Dafa; Peng Huaqing

    2009-01-01

    A conceptive design of an automatic start-up system based on the sequence control for the nuclear reactors is given in this paper, so as to solve the problems during the start-up process, such as the long operation time, low automatic control level and high accident rate. The start-up process and its requirements are analyzed in detail at first. Then,the principle, the architecture, the key technologies of the automatic start-up system of nuclear reactors are designed and discussed. With the designed system, the automatic start-up of the nuclear reactor can be realized,the work load of the operator can be reduced,and the safety and efficiency of the nuclear power plant during its start-up can be improved. (authors)

  18. Advanced technologies for water cooled reactors 1990. Pt. 2

    International Nuclear Information System (INIS)

    1991-05-01

    The main purpose of the meeting was to review and discuss the status of national programmes, the progress achieved since the last meeting held in June 1988 in the field of advanced technologies and design trends for existing and future water cooled reactors. 24 specialists from 14 countries and the IAEA took part in the meeting and 12 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  19. Challenges and Considerations for Innovative Small and Medium Sized Reactors

    International Nuclear Information System (INIS)

    Kuznetsov, V.

    2008-01-01

    There is an ongoing interest in Member States in the development and application of small and medium sized reactors (SMRs). In the near term, most new NPPs are likely to be evolutionary water cooled reactor designs building on proven systems while incorporating technological advances and often the economics of scale, resulting from the reactor outputs of up to 1600 MW(e). For a longer term, the focus is on innovative designs aiming to provide increased benefits in the areas of safety and security, non-proliferation, waste management, resource utilization and economy, as well as to offer a variety of energy products and flexibility in design, siting and fuel cycle options. Many innovative designs are reactors within the SMR range, having an equivalent electric power less than 700 MW(e) or even less than 300 MW(e). It is important that small or medium sized reactor does not necessarily mean small or medium sized nuclear power plant. The majority of innovative SMR concepts and designs provide for power station configurations with several units at a site or for NPP configurations with 2 or more reactor modules. In most cases, the units or modules could be added incrementally. Innovative SMRs are in many cases intended for markets different from those in which large nuclear power plants operate, i.e., markets that value more distributed electrical supplies, a better match between supply increments and investment capability or demand growth, more flexible siting or greater product variety. SMRs cannot compete with larger capacity plants on an economy of scale basis. However, they could be competitive via employing alternative design strategies, taking advantage of smaller reactor size resulting in a less complex design and operation and maintenance or in an increased overall energy conversion efficiency, and by relying on alternative deployment strategies, taking advantage of multiple unit factors and learning curve, and shorter construction schedule and 'exact' unit

  20. An analysis of CDTN performance in the reactors technology area

    International Nuclear Information System (INIS)

    Pinheiro, R.B.

    1985-01-01

    The author makes an analysis of CDTN (Centro de Desenvolvimento da Tecnologia Nuclear) performance in the reactors technology area, showing difficulties and failures, but emphasizing the particular competence and capacity acquired in this area, as for example: the capacity in codes and methods are of neutronic calculations and nuclear projects, experimental thermohydraulic program, tests services in components and the others. (C.M.) [pt

  1. Present state of inspection robot technology in nuclear power facilities. Case of fast breeder reactors

    International Nuclear Information System (INIS)

    Ara, Kuniaki

    1995-01-01

    In the maintenance works in nuclear power facilities such as checkup, inspection and repair, for the main purpose of radiation protection, remote operation technology was introduced since relatively early stage, and at present, the robots that carry out the inspection works for confirming the soundness of main equipment have been developed and put to practical use. At the time of introducing these technologies, in addition to the research and development of robots proper, the coordination with the design of plant machinery and equipment facilities as the premise of introducing robots is an important requirement. In this report, the present state of the development of remote inspection technology for fast breeder reactors is introduced, and the matters to which attention is paid in the plant design for introducing robots are explained. First, fast breeder reactors are described. The needs of robotizing and adopting remote operation in nuclear power facilities are explained, using the examples of the inspection system for a reactor vessel and the inspection system for steam generator heat transfer tubes. (K.I.)

  2. Analysis concerning the perspective of Romania-USA technological cooperation with a view to performing TRIGA reactor project

    International Nuclear Information System (INIS)

    Ciocanescu, M.; Ionescu, M.; Constantin, L.

    1998-01-01

    The co-operation between Romania and the USA in the field of technologic transfer of nuclear research reactor technology began with the steady state 14 MW, TRIGA reactor, installed at INR Pitesti, Romania. It is the first in the range of TRIGA reactors proposed as a materials testing reactor. The first criticality was reached in November 19, 1979 and first operation at 14 MW, level was in February 1980. The paper will present the short history of this co-operation and the perspective for a new co-operation for building a Nuclear Heating Plant using the TRIGA reactor concept for demonstration purpose. The energy crisis is a world-wide problem which affects each country in different ways because the resources and the consumption are unfairly distributed. World-wide research points out that the fossil fuel sources are not to be considered the main energy sources for the long term as they are limited. (author)

  3. Alternatives to L startup: new production reactor

    International Nuclear Information System (INIS)

    Hostetler, D.E.

    1983-01-01

    An alternative to renewed operation of L Reactor for increased production of nuclear materials would be the construction and operation of a New Production Reactor (NPR). This report describes a conceptual design for a low temperature heavy water reactor with no electricity generation (LTHWR-NE) to be built as a new production reactor at the Savannah River Plant (SRP). The reactor design is based on the proven SRP reactor design with enhancements and state-of-the-art equipment. Aluminum cladding temperatures would be the same as with current operations. The power and productivity of the new reactor would be greater than L Reactor by about 30%. However, the estimated time from authorization to startup is 10 years. Thus an NPR could not contribute to material production until late 1993 at the earliest

  4. Thorium-Based Fuels Preliminary Lattice Cell Studies for Candu Reactors

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Rizoiu, A.C.

    2009-01-01

    The choice of nuclear power as a major contributor to the future global energy needs must take into account acceptable risks of nuclear weapon proliferation, in addition to economic competitiveness, acceptable safety standards, and acceptable waste disposal options. Candu reactors offer a proven technology, safe and reliable reactor technology, with an interesting evolutionary potential for proliferation resistance, their versatility for various fuel cycles creating premises for a better utilization of global fuel resources. Candu reactors impressive degree of fuel cycle flexibility is a consequence of its channel design, excellent neutron economy, on-power refueling, and simple fuel bundle. These features facilitate the introduction and exploitation of various fuel cycles in Candu reactors in an evolutionary fashion. The main reasons for our interest in Thorium-based fuel cycles have been, globally, to extend the energy obtainable from natural Uranium and, locally, to provide a greater degree of energy self-reliance. Applying the once through Thorium (OTT) cycle in existing and advanced Candu reactors might be seen as an evaluative concept for the sustainable development both from the economic and waste management points of view. Two Candu fuel bundles project will be used for the proposed analysis, namely the Candu standard fuel bundle with 37 fuel elements and the CANFLEX fuel bundle with 43 fuel elements. Using the Canadian proposed scheme - loading mixed ThO 2 -SEU CANFLEX bundles in Candu 6 reactors - simulated at lattice cell level led to promising conclusions on operation at higher fuel burnups, reduction of the fissile content to the end of the cycle, minor actinide content reduction in the spent fuel, reduction of the spent fuel radiotoxicity, presence of radionuclides emitting strong gamma radiation for proliferation resistance benefit. The calculations were performed using the lattice codes WIMS and Dragon (together with the corresponding nuclear data

  5. Small and Medium Sized Reactors: Driving Forces and Technology Development

    International Nuclear Information System (INIS)

    Gowin, P.J.; Kupitz, J.

    2002-01-01

    There will be growing demands for energy in the coming decades. One aspect of particular importance is that prospects for nuclear energy will to a considerable extent be influenced by developing countries. Since population growth will occur primarily in developing countries nuclear energy cannot play a significant global role without being a viable option in these countries. Since new power plants to be built will have to be compatible with regional electricity grids, this may result in a greater focus on plants in the small and medium range, defined by the International Atomic Energy Agency (IAEA) to produce up to 700 Megawatt of electrical power. This paper first examines the driving forces that could influence the development of nuclear energy in general and of Small and Medium Sized Reactors (SMRs) in particular in the next decades and identifies key factors in that process. Concerns over climate change may to a certain extent influence the discussion on future energy options. Other factors of equal importance for the future of nuclear are a continued emphasis on maintaining high safety standards, the implementation of acceptable solutions for spent fuel and radioactive waste disposal and a globally accepted non-proliferation regime, factors that may in turn have an impact on public acceptance. Economic competitiveness of nuclear energy is an additional important factor, and without being commercially viable, no energy source can in the long run represent a major and stable component in a competitive energy sector. The introduction of SMRs in developing countries poses additional challenges, such as investment limitations. Technology development plays an important role in keeping the nuclear option open for countries wishing to use nuclear reactors to meet their energy needs, and advances in reactor design will be important to enable a significant nuclear component in developing countries. This paper considers the contribution that nuclear science and

  6. Experimental Design for Evaluating Selected Nondestructive Measurement Technologies - Advanced Reactor Technology Milestone: M3AT-16PN2301043

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pitman, Stan G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roy, Surajit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Good, Morris S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walker, Cody M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-16

    The harsh environments in advanced reactors (AdvRx) increase the possibility of degradation of safety-critical passive components, and therefore pose a particular challenge for deployment and extended operation of these concepts. Nondestructive evaluation technologies are an essential element for obtaining information on passive component condition in AdvRx, with the development of sensor technologies for nondestructively inspecting AdvRx passive components identified as a key need. Given the challenges posed by AdvRx environments and the potential needs for reducing the burden posed by periodic in-service inspection of hard-to-access and hard-to-replace components, a viable solution may be provided by online condition monitoring of components. This report identifies the key challenges that will need to be overcome for sensor development in this context, and documents an experimental plan for sensor development, test, and evaluation. The focus of initial research and development is on sodium fast reactors, with the eventual goal of the research being developing the necessary sensor technology, quantifying sensor survivability and long-term measurement reliability for nondestructively inspecting critical components. Materials for sensor development that are likely to withstand the harsh environments are described, along with a status on the fabrication of reference specimens, and the planned approach for design and evaluation of the sensor and measurement technology.

  7. Technology of nuclear reactors

    International Nuclear Information System (INIS)

    Ravelet, F.

    2016-01-01

    This academic report for graduation in engineering first presents operation principles of a nuclear reactor core. It presents core components, atomic nuclei, the notions of transmutation and radioactivity, quantities used to characterize ionizing radiations, the nuclear fission, statistical aspects of fission and differences between fast and slow neutrons, a comparison between various heat transfer fluids, the uranium enrichment process, and different types of reactor (boiling water, natural uranium and heavy water, pressurized water, and fourth generation). Then, after having recalled the French installed power, the author proposes an analysis of a typical 900 MWe nuclear power plant: primary circuit, reactor, fuel, spent fuel, pressurizer and primary pump, secondary circuit, aspects related to control-command, regulation, safety and exploitation. The last part proposes a modelling of the thermodynamic cycle of a pressurized water plant by using an equivalent Carnot cycle, a Rankine cycle, and a two-phase expansion cycle with drying-overheating

  8. Empowering Provenance in Data Integration

    Science.gov (United States)

    Kondylakis, Haridimos; Doerr, Martin; Plexousakis, Dimitris

    The provenance of data has recently been recognized as central to the trust one places in data. This paper presents a novel framework in order to empower provenance in a mediator based data integration system. We use a simple mapping language for mapping schema constructs, between an ontology and relational sources, capable to carry provenance information. This language extends the traditional data exchange setting by translating our mapping specifications into source-to-target tuple generating dependencies (s-t tgds). Then we define formally the provenance information we want to retrieve i.e. annotation, source and tuple provenance. We provide three algorithms to retrieve provenance information using information stored on the mappings and the sources. We show the feasibility of our solution and the advantages of our framework.

  9. Nuclear reactors' construction costs: The role of lead-time, standardization and technological progress

    International Nuclear Information System (INIS)

    Berthélemy, Michel; Escobar Rangel, Lina

    2015-01-01

    This paper provides an econometric analysis of nuclear reactor construction costs in France and the United States based on overnight costs data. We build a simultaneous system of equations for overnight costs and construction time (lead-time) to control for endogeneity, using change in expected electricity demand as instrument. We argue that the construction of nuclear reactors can benefit from standardization gains through two channels. First, short term coordination benefits can arise when the diversity of nuclear reactors' designs under construction is low. Second, long term benefits can occur due to learning spillovers from past constructions of similar reactors. We find that construction costs benefit directly from learning spillovers but that these spillovers are only significant for nuclear models built by the same Architect–Engineer. In addition, we show that the standardization of nuclear reactors under construction has an indirect and positive effect on construction costs through a reduction in lead-time, the latter being one of the main drivers of construction costs. Conversely, we also explore the possibility of learning by searching and find that, contrary to other energy technologies, innovation leads to construction costs increases. -- Highlights: •This paper analyses the determinants of nuclear reactors construction costs and lead-time. •We study short term (coordination gains) and long term (learning by doing) benefits of standardization in France and the US. •Results show that standardization of nuclear programs is a key factor for reducing construction costs. •We also suggest that technological progress has contributed to construction costs escalation

  10. Methods and technologies for cost reduction in the design of water cooled reactor power plants

    International Nuclear Information System (INIS)

    1991-05-01

    The Specialists Meeting was organized in the framework of the IAEA International Working Group on Advanced Technologies for Water-Cooled Reactors. Its purpose was to provide an international forum for review and discussion on recent results in research and development on different methods and technologies of current and advanced water-cooled reactor power plants, which can lead to reduced investment and operation, maintenance and fuel-cycle costs of the plants. 27 specialists representing 10 countries and the IAEA took part in the meeting. 10 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  11. 75 FR 61139 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee

    Science.gov (United States)

    2010-10-04

    ... the evaluation of advantages and disadvantages of adopting new fuel cycle technologies and the... Technology Subcommittee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces an open meeting of the Reactor and Fuel Cycle Technology (RFCT...

  12. Logical provenance in data-oriented workflows?

    KAUST Repository

    Ikeda, R.

    2013-04-01

    We consider the problem of defining, generating, and tracing provenance in data-oriented workflows, in which input data sets are processed by a graph of transformations to produce output results. We first give a new general definition of provenance for general transformations, introducing the notions of correctness, precision, and minimality. We then determine when properties such as correctness and minimality carry over from the individual transformations\\' provenance to the workflow provenance. We describe a simple logical-provenance specification language consisting of attribute mappings and filters. We provide an algorithm for provenance tracing in workflows where logical provenance for each transformation is specified using our language. We consider logical provenance in the relational setting, observing that for a class of Select-Project-Join (SPJ) transformations, logical provenance specifications encode minimal provenance. We have built a prototype system supporting the features and algorithms presented in the paper, and we report a few preliminary experimental results. © 2013 IEEE.

  13. Special Section: The third provenance challenge on using the open provenance model for interoperability

    NARCIS (Netherlands)

    Simmhan, Y; Groth, P.T.; Moreau, L

    2011-01-01

    The third provenance challenge was organized to evaluate the efficacy of the Open Provenance Model (OPM) in representing and sharing provenance with the goal of improving the specification. A data loading scientific workflow that ingests data files into a relational database for the Pan-STARRS sky

  14. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    International Nuclear Information System (INIS)

    Hallbert, Bruce P.; Persensky, J.J.; Smidts, Carol; Aldemir, Tunc; Naser, Joseph

    2009-01-01

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R and D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R and D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I and C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I and C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R and D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R and D to develop scientific knowledge in the areas of: (1) Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs); (2) Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information; (3) New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available

  15. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: • Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) • Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information • New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation

  16. Towards intrinsically safe light-water reactors

    International Nuclear Information System (INIS)

    Hannerz, K.

    1983-02-01

    The reactor-safety issue is one of the principal problems threatening the future of the nuclear option, at least in participatory democracies. It has contributed to widespread public distrust and is the direct cause of the escalation in design complexity and quality assurance requirements that are rapidly eroding the competitive advantage of nuclear power. Redesign of the light-water reactor can eliminate those features that leave it open to public distrust and obstructive intervention. This redesign appears feasible within the realm of proven technology in those fields (fuels, materials, water chemistry, waste technology, etc.) in which extended operating experience is essential for confidence in system performance. A pressurized water reactor outline design developed to achieve the above goal is presented. The key feature is the design of the primary system extracting heat from the core so that the latter is protected from damage caused by any credible system failure or any destructive intervention from the outside by either violent means (up to and including nonnuclear warfare) or by mistaken or malicious use of the plant control systems. Such a design objective can be achieved by placing the entire primary circulation system in a large pressurized pool of cold water with a high boric acid content. Enough water is provided in the pool to allow core-decay-heat removal by evaporation for at least one week following any incident with no cooling systems operating. Subsequently it is assumed that a supply of further water (a few cubic meters per hour) from the outside can be arranged, even without the presence of the plant operating personnel

  17. Advanced Reactor Licensing: Experience with Digital I and C Technology in Evolutionary Plants

    International Nuclear Information System (INIS)

    Wood, RT

    2004-01-01

    This report presents the findings from a study of experience with digital instrumentation and controls (I and C) technology in evolutionary nuclear power plants. In particular, this study evaluated regulatory approaches employed by the international nuclear power community for licensing advanced l and C systems and identified lessons learned. The report (1) gives an overview of the modern l and C technologies employed at numerous evolutionary nuclear power plants, (2) identifies performance experience derived from those applications, (3) discusses regulatory processes employed and issues that have arisen, (4) captures lessons learned from performance and regulatory experience, (5) suggests anticipated issues that may arise from international near-term deployment of reactor concepts, and (6) offers conclusions and recommendations for potential activities to support advanced reactor licensing in the United States

  18. Transactions of the 10th international conference on structural mechanics in reactor technology

    International Nuclear Information System (INIS)

    Hadjian, A.H.

    1989-01-01

    This book covers all aspects of engineering mechanics pertaining to mechanical and structural components and the relevant systems in nuclear reactors. Subjects covered include: theoretical developments in structural mechanics, loading conditions, behavior of materials, fluid mechanics, operating experience, accident sequences, and calculational procedures. Problems of structural mechanics analysis are focused within the general context of the design, reliability, and safety of nuclear reactors. Operating plant performance and life extension, waste repository technology and regulatory research have been formalized as distinct Divisions

  19. Project planning of Gen-IV sodium cooled fast reactor technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaewoon; Joo, H. K.; Cho, C. H.; Kim, Y. G.; Lee, D. U.; Jin, M. W.

    2013-05-15

    The project program will be established to shorten the design schedule by sharing the design man power and experimental facility, and by introducing the proven technology through international collaboration and the project plan including preliminary specific design, technology validation and fuel design validation plan will be more detail by reviewing the plan at the International Technical Review Meeting (ITRM). Periodic project progress review meeting will be held to find the technical issues and to resolve them. The results of the progress review meeting will be reflected into the final assessment of research project. The project progress review meeting will be held every quarter and external expert will also participate in the meeting. In parallel with the PGSFR development, innovative small modular SFR will be developed aiming to the international nuclear market. The system and component technologies of both system can be shared but innovative concept will be implemented into the design. Ultra long life core design concept and supercritical CO{sub 2} Brayton cycle will be considered as the innovative concept for enhancing the plant economy and safety.

  20. Project planning of Gen-IV sodium cooled fast reactor technology

    International Nuclear Information System (INIS)

    Yoo, Jaewoon; Joo, H. K.; Cho, C. H.; Kim, Y. G.; Lee, D. U.; Jin, M. W.

    2013-05-01

    The project program will be established to shorten the design schedule by sharing the design man power and experimental facility, and by introducing the proven technology through international collaboration and the project plan including preliminary specific design, technology validation and fuel design validation plan will be more detail by reviewing the plan at the International Technical Review Meeting (ITRM). Periodic project progress review meeting will be held to find the technical issues and to resolve them. The results of the progress review meeting will be reflected into the final assessment of research project. The project progress review meeting will be held every quarter and external expert will also participate in the meeting. In parallel with the PGSFR development, innovative small modular SFR will be developed aiming to the international nuclear market. The system and component technologies of both system can be shared but innovative concept will be implemented into the design. Ultra long life core design concept and supercritical CO 2 Brayton cycle will be considered as the innovative concept for enhancing the plant economy and safety

  1. Putting the pinch on reactors

    International Nuclear Information System (INIS)

    Glavic, P.; Kravanja, Z.; Homsak, M.

    1990-01-01

    Pinch technology has proven to be a powerful tool for designing new processes and retrofitting old ones. But, until recently, it was thought to pertain only to heat exchanger networks, separators and power devices (such as heat engines and heat pumps). Regarded as process background, reactors have been left out of heat integrations. Their structure, however, can be changed and, within limits, their parameters modified to better exploit energy. In a pinch-designed plant, heat is transferred between the hot and cold process streams so efficiently that the plant's utility requirements (heat sources and sinks) are minimal. The design procedure is discussed. It involves two steps: finding a nearly optimal process structure by means of an analysis of process-temperature-vs.- enthalpy diagrams, and then optimizing the structure by means of grid diagrams or a computerized procedure

  2. Fuel technology and performance of non-water cooled reactors. Proceedings of an advisory group meeting held in Vienna, 5-8 December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The IAEA Division of Nuclear Fuel Cycle and Waste Management has been closely involved for many years in the collection, analysis and exchange of information relating to the global development of advanced reactor fuel technology and performance. Meetings of experts in this field have been held in 1984 and 1989 and more recently in December 1994 as part of the IAEA`s programme. This publication reviews progress in advanced reactor fuel technology and performance over the past five years, principally related to non-water cooled reactors, namely high temperature gas reactors (HTGRs) and fast reactors (FRs), as well as developments pertaining to thorium fuels and the fuel fabrication technologies. It includes papers from the participants and provides recommendations in key areas where further global co-operation in this field might be usefully initiated or strengthened. The previous two Advisory Group Meetings on Advanced Fuel Technology and Performance, on which separate reports have been published (IAEA-TECDOC-352 (1985) and IAEA-TECDOC-577 (1990)), focused on all types of commercial nuclear reactors. Refs, figs and tabs.

  3. Gen-III/III+ reactors. Solving the future energy supply shortfall. The SWR-1000 option

    International Nuclear Information System (INIS)

    Stosic, Z.V.

    2006-01-01

    Deficiency of non-renewable energy sources, growing demand for electricity and primary energy, increase in population, raised concentration of greenhouse gases in the atmosphere and global warming are the facts which make nuclear energy currently the most realistic option to replace fossil fuels and satisfy global demand. The nuclear power industry has been developing and improving reactor technology for almost five decades and is now ready for the next generation of reactors which should solve the future energy supply shortfall. The advanced Gen-III/III+ (Generation III and/or III+) reactor designs incorporate passive or inherent safety features which require no active controls or operational intervention to manage accidents in the event of system malfunction. The passive safety equipment functions according to basic laws of physics such as gravity and natural convection and is automatically initiated. By combining these passive systems with proven active safety systems, the advanced reactors can be considered to be amongst the safest equipment ever made. Since the beginning of the 90's AREVA NP has been intensively engaged in the design of two advanced Gen-III+ reactors: (i) PWR (Pressurized Water Reactor) EPR (Evolutionary Power Reactor) and (ii) BWR (Boiling Water Reactor) SWR-1000. The SWR-1000 reactor design marks a new era in the successful tradition of BWR technology. It meets the highest safety standards, including control of a core melt accident. This is achieved by supplementing active safety systems with passive safety equipment of diverse design for accident detection and control and by simplifying systems needed for normal plant operation. A short construction period, flexible fuel cycle lengths and a high fuel discharge burn-up contribute towards meeting economic goals. The SWR-1000 completely fulfils international nuclear regulatory requirements. (author)

  4. Diagnostic Technology Development for Core Internal Structure in CANDU reactor

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Cheong, Y. M.; Lee, Y. S. and others

    2005-04-01

    Degradation of critical components of nuclear power plants has become important as the operating years of plants increase. The necessity of degradation study including measurement and monitoring technology has increased continuously. Because the fuel channels and the neighboring sensing tubes and control rods are particularly one of the critical components in CANDU nuclear plant, they are treated as a major research target in order to counteract the possible problems and establish the counterplan for the CANDU reactor safety improvement. To ensure the core structure integrity in CANDU nuclear plant, the following 2 research tasks were performed: Development of NDE technologies for the gap measurement between the fuel channels and LIN tubes. Development of vibration monitoring technology of the fuel channels and sensing tubes. The technologies developed in this study could contribute to the nuclear safety and estimation of the remaining life of operating CANDU nuclear power plants

  5. Pressurized water reactor and its development for nuclear power plants A survey the beginning, development, transfer, industrial application and; the future of a technology

    International Nuclear Information System (INIS)

    Khazaneh, Reza.

    1996-01-01

    Discussion about PWR type reactors is forwarded to production and technology developments in various countries. Technology transfer to different countries is reviewed in chapter two. The third chapter is about specifications and main components of the reactors. The fourth chapter outlooks to safety in nuclear technology which has a crucial importance in nuclear technology. The first PWR type reactor built in Russia has had some deficiencies; after that, i.e. in the eighties its quality improved and its criteria was met with international criteria. The sixth chapter describe reactor operation and some problems due to its operation. The use of advanced reactors which has had better quality in respect to its safety in the eighties is presented in seventh chapter. The final chapter is devoted to the new generation of reactor design for twenty first century

  6. Consultancy on 'Knowledge preservation in the area of fast reactor technology'. Working material

    International Nuclear Information System (INIS)

    2002-01-01

    The fast reactor, which can generate electricity and breed additional fissile material for future fuel stocks is a resource that will be needed when economic uranium supplies for the advanced light water reactors or other thermal-spectrum options diminish. Further, the fast-fission fuel cycle in which material is recycled offers the flexibility needed to contribute decisively towards solving the problem of growing spent fuel inventories by greatly reducing the volume of high-level waste that must be disposed of in long-term repositories. This is a waste management option that also should be retained for future generations. The fast reactor has been the subject of research and development programs in a number of countries for upwards of 40 years. Now, despite early sharing and innovative worldwide research and development, ongoing work is confined to China, India, Japan, the Republic of Korea, and Russia. Information generated worldwide will be needed in the future. Presently, it is in danger of being lost even in those countries continuing the work. Some countries have already taken the issue of knowledge preservation seriously: Japan, France, Britain, and Russia, in particular. At worst, valuable contributory information elsewhere will be lost and would have to be regenerated when needed. The IAEA initiative seeks to establish a comprehensive, international inventory of fast reactor data and knowledge, which would be sufficient to form the basis for fast reactor development in 20 to 40 years from now. The Agency is in a good position to provide the framework for knowledge preservation efforts. Under Article III of its Statute, the IAEA is mandated to encourage and assist research on, and development and practical application of atomic energy for peaceful uses throughout the world. Obviously, an important aspect of this mandate is maintaining and increasing the knowledge that is necessary for the technological development. The main objectives of the consultancy

  7. Application of advanced technology to LMR control

    International Nuclear Information System (INIS)

    Lindsay, R.W.

    1989-01-01

    This paper reports that key issues must be resolved to preserve the nuclear option; including new considerations for safety, economics, waste, transportation, diversion, etc. The programs at the Experimental Breeder Reactor II (EBR-II) are now carefully focused to provide answers to the above concerns in connection with the Integral Fast Reactor program at Argonne. Safety features that are inherent in plant design, coupled with automating plant control to help achieve the above objectives are more than just an issue of installing controllers and exotic algorithms, they include the complete integration of plant design, control strategy, and information presentation. Current technology development, both at Argonne and elsewhere includes efforts relating to the use of Artificial Intelligence, sensor/signal validation in many forms, pattern recognition, optimal control technologies, etc. The eBR-II effort is to identify needs, develop and/or adopt promising technologies, and integrate them into an operating power plant for proof of value. After they have proven useful at EBR-II, it is expected that they can be incorporated into advanced designs such as PRISM and/or included in backfit activities as well

  8. An evaluation of alternative reactor vessel cutting technologies for the decommissioning of the experimental boiling water reactor at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Boing, L.E.; Henley, D.R.; Manion, W.J.; Gordon, J.W.

    1991-01-01

    This paper will detail (1) a brief overview of the current status of the EBWR D ampersand D Project, and (2) the results of a study performed to evaluate the metal cutting technologies available to size reduce the EBWR reactor vessel. The techniques evaluated were: Plasma arc, Arc saw, Oxyacetylene, Electric arc gouging, Mechanical cladding removal/flame cutting, Exothermic reaction, Diamond wire, Water jet, Laser, Mechanical milling, Controlled explosives, and Electrical discharge. After a detailed review of these 12 techniques, the decision was made by ANL that the most appropriate method for segmenting the EBWR reactor vessel would be to rift the vessel from the vessel cavity and use an abrasive water jet positioned on the main floor to perform the cutting of the reactor vessel

  9. Status of international cooperation in nuclear technology on testing/research reactors between JAEA and INP-NNC

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi; Tsuchiya, Kunihiko; Takemoto, Noriyuki; Kimura, Akihiro; Tanimoto, Masataka; Izumo, Hironobu; Chakrov, Petr; Gizatulin, Shamil; Chakrova, Yelena; Ludmila, Chkushuina; Asset, Shaimerdenov; Nataliya, Romanova

    2012-02-01

    Based on the implementing arrangement between National Nuclear Center of the Republic of Kazakhstan (NNC) and the Japan Atomic Energy Agency (JAEA) for 'Nuclear Technology on Testing/Research Reactors' in cooperation in Research and Development in Nuclear Energy and Technology, four specific topics of cooperation (STC) have been carried out from June, 2009. Four STCs are as follows; (1) STC No.II-1 : International Standard of Instrumentation. (2) STC No.II-2 : Irradiation Technology of RI Production. (3) STC No.II-3 : Lifetime Expansion of Beryllium Reflector. (4) STC No.II-4 : Irradiation Technology for NTD-Si. The information exchange, personal exchange and cooperation experiments are carried out under these STCs. The status in the field of nuclear technology on testing/research reactors in the implementing arrangement is summarized, and future plans of these specific topics of cooperation are described in this report. (author)

  10. Technology requirements for fusion--fission reactors based on magnetic-mirror confinement

    International Nuclear Information System (INIS)

    Moir, R.W.

    1978-01-01

    Technology requirements for mirror hybrid reactors are discussed. The required 120-keV neutral beams can use positive ions. The magnetic fields are 8 T or under and can use NbTi superconductors. The value of Q (where Q is the ratio of fusion power to injection power) should be in the range of 1 to 2 for economic reasons relating to the cost of recirculating power. The wall loading of 14-MeV neutrons should be in the range of 1 to 2 MW/m 2 for economic reasons. Five-times higher wall loading will likely be needed if fusion reactors are to be economical. The magnetic mirror experiments 2XIIB, TMX, and MFTF are described

  11. Assessment of the impacts of transferring certain nuclear reactor technologies to the Soviet Union and Eastern Europe

    International Nuclear Information System (INIS)

    Upton, J.W. Jr.

    1987-06-01

    The Office of International Security Affairs of the US Department of Energy (DOE) has asked Pacific Northwest Laboratory (PNL) researchers to assist in evaluating the impact that transfer of specific nuclear reactor technologies may have on US national security interests. The evaluation is intended to be used as a technical basis and guideline to approve or disapprove requests from government and industry to transfer a specific technology to Soviet countries. The US Government has a responsibility to review such requests. For the post-Chernobyl information-gathering and dissemination process, the DOE is serving as the US Government's point of contact with private industry. It is DOE's policy to encourage and assist the Eastern Bloc countries to enhance the safety, reliability, and safe operation of civil nuclear reactor power plant facilities worldwide consistent with US national security and nonproliferation interests. Any requests from industry for the supply of nuclear reactor technology, equipment, and services will be considered in accordance with existing nuclear export policy, law, and regulations. All requests and proposals, whether discussed in this document or not, will be reviewed on a case-by-case basis. It should be noted that this is the initial version of the report. Subsequent, updated versions are expected to follow. Design and operation of nuclear reactor power plants involves an extensive array of technologies, not all of which have been addressed here

  12. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, Bernhard; Bross, Stephan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2016-05-15

    KSB has been developing and producing pumps for thermal power plants for nearly 90 years. Consequently, KSB also started to develop and manufacture pumps for all kinds of nuclear power plants from the very beginning of the civil use of nuclear energy. This is especially true for reactor coolant pumps for pressurized water reactors. For the generation of advanced evolutionary reactors (Generation III+ reactors), KSB developed an advanced shaft seal system which is also able to fulfill the requirements of station blackout conditions. The tests in the KSB test rigs, which were successfully completed in December 2015, proved the full functionality of the new design. For generation III+ passive plant reactors KSB developed a new reactor coolant pump type called RUV, which is based on the experience of classic reactor coolant pumps and reactor internal pumps. It is a very compact, hermetically sealed vertical pump-motor unit with a wet winding motor. A full scale prototype successfully passed the 1st stage qualification test program in October 2015.

  13. Development and Field Application Experience of the Reactor Internal Preventive Maintenance Technology

    International Nuclear Information System (INIS)

    Kanno, A.; Yoshikubo, F.; Morinaka, R.; Tanaka, M.; Hasegawa, K.; Hatou, H.

    2012-01-01

    A reactor internal preventive maintenance technology, Water Jet Peening (WJP), has been developed as a stress corrosion cracking (SCC) mitigation technology that has been successfully implemented during refuelling outages at 15 Boiling Water Reactors (BWR) and three (3) Advanced BWRs (during the site construction and in the shop fabrication) in Japan. WJP is one of the most successful underwater peening methods, which utilizes the energy generated from the collapsing of bubbles produced by the cavitating water jet nozzle. The energy produced from the cavitations introduces compressive residual stress on the metal surface and subsurface up to a depth of several hundred micrometers. Most recently, we have successfully applied WJP to the bottom head components and to some cracked areas on the shroud support in the Tokai-2 plant. In the case of the bottom head components, we produced inspection and repair tooling as a contingency in the event SCC was identified and would be required to be repaired prior to the implementation of WJP. (author)

  14. The history and perspective of Romania-USA cooperation in the field of technologic transfer of TRIGA reactor concept

    International Nuclear Information System (INIS)

    Ciocaanescu, M.; Ionescu, M.

    1996-01-01

    The cooperation between Romania and the USA in the field of technologic transfer of nuclear research reactor technology began with the steady state 14 MW t TRIGA reactor, installed at INR Pitesti, Romania. It is the first in the range of TRIGA reactors proposed as a materials testing reactor. The first criticality was reached in November 19, 1979 and first operation at 14 MW t level was in February 1980. The paper will present the short history of this cooperation and the perspective for a new cooperation for building a Nuclear Heating Plant using the TRIGA reactor concept for demonstration purpose. The energy crisis is a world-wide problem which affects each country in different ways because the resources and the consumption are unfairly distributed. World-wide research points out that the fossil fuel sources are not to be considered the main energy sources for the long term as they are limited

  15. Predictive maintenance technology development at G.A. Siwabessy multipurpose reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jupiter Sitorus Pane; Imron, M.; Sapto Hartoko; Sentot Alibasya Harahap [Multipurpose Research Reactor G.A. Siwabessy, National Nuclear Energy Agency (Indonesia)

    1999-10-01

    Safe operation of reactor is certainly influenced by condition of system and component equipped to the reactor's system. In order to maintain the condition of that systems and components, RSG-GAS has arranged maintenance program with time-basis. All 6 (six) groups of reactor systems are maintained within interval of weekly, monthly, three monthly, six-monthly, yearly, five-yearly appropriately. The experience showed that event though the maintenance was performed persistently, the condition of system and component are still not able to determine exactly. The possibility of accidental failure is open since the failure factor are varied and complicated. In order to limit an uncertainty of the component condition a based maintenance shall be introduced. An infrared investigation and manual vibration analysis had been used to diagnose the condition of some RSG-GAS' components. In addition, other alternative technology for predictive maintenance was developed. It is started by computerizing the database maintenance and doing historical review for its aging management, and developing data acquisition and processing equipment using Lab View computer program for collecting and processing signal data from dynamics system. This paper describes briefly the status of those development results. (author)

  16. Predictive maintenance technology development at G.A. Siwabessy multipurpose reactor

    International Nuclear Information System (INIS)

    Jupiter Sitorus Pane; Imron, M.; Sapto Hartoko; Sentot Alibasya Harahap

    1999-01-01

    Safe operation of reactor is certainly influenced by condition of system and component equipped to the reactor's system. In order to maintain the condition of that systems and components, RSG-GAS has arranged maintenance program with time-basis. All 6 (six) groups of reactor systems are maintained within interval of weekly, monthly, three monthly, six-monthly, yearly, five-yearly appropriately. The experience showed that event though the maintenance was performed persistently, the condition of system and component are still not able to determine exactly. The possibility of accidental failure is open since the failure factor are varied and complicated. In order to limit an uncertainty of the component condition a based maintenance shall be introduced. An infrared investigation and manual vibration analysis had been used to diagnose the condition of some RSG-GAS' components. In addition, other alternative technology for predictive maintenance was developed. It is started by computerizing the database maintenance and doing historical review for its aging management, and developing data acquisition and processing equipment using Lab View computer program for collecting and processing signal data from dynamics system. This paper describes briefly the status of those development results. (author)

  17. Provenance and composition study on Terengganu inscribed stone using in-situ nuclear technology

    International Nuclear Information System (INIS)

    Jaafar Abdullah; Roslan Yahya; Hearie Hassan; Engku Mohd Fahmi Engku Chik; Mohamad Rabaie Shari; Airwan Affendi Mahmood; Abdul Quddoss Abu Bakar; Ainul Mardhiah Terry

    2012-01-01

    This paper focused on the analysis of trace elements and provenance study of the Inscribed Stone of Terengganu (BBPT) using Neutron-induced Prompt Gamma-Ray Techniques (NIPGAT). In this study, portable NIPGAT system was designed and developed by using volume-based measurement. It is a nondestructive testing technique for the samples. This system uses low activity of isotopic neutron radioactive source from californium-252 (Cf-252) as an irradiation source. Gamma ray spectroscopy as well as specialized computer software has been utilized to conduct the research. The study has determined that the stone was a dolerite stone based on the composition of the stone elements. Although most of the scientific data for this study have been collected, this project is still running to complete the scope of provenance study. (author)

  18. Nuclear power technology system with molten salt reactor for transuranium nuclides burning in closed fuel cycle

    International Nuclear Information System (INIS)

    Alekseev, P.N.; Dudnikov, A.A.; Ignatiev, V.V.; Prusakov, V.N.; Ponomarev-Stepnoy, N.N.; Subbotin, S.A.

    2000-01-01

    A concept of nuclear power technology system with homogeneous molten salt reactors for burning and transmutation of long-lived radioactive toxic nuclides is considered in the paper. Disposition of such reactors in enterprises of fuel cycle allows to provide them with power and facilitate solution of problems with rad waste with minimal losses. (Authors)

  19. Application of advanced technology to LMR control

    International Nuclear Information System (INIS)

    Lindsay, R.W.

    1989-01-01

    Key issues must be resolved to preserve the nuclear option; including new considerations for safety, economics, waste, transportation, diversion, etc. The programs at the Experimental Breeder Reactor II (EBR-II) are now carefully focused to provide answers to the above concerns in connection with the Integral Fast Reactor program at Argonne. Safety features that are inherent in plant design, coupled with automating plant control to help achieve the above objectives are more than just an issue of installing controllers and exotic algorithms, they include the complete integration of plant design, control strategy, and information presentation. Current technology development, both at Argonne and elsewhere includes efforts relating to the use of Artificial Intelligence, sensor/signal validation in many forms, pattern recognition, optimal develop and/or adopt promising technologies, and integrate them into an operating power plant for proof of value. After they have proven useful at EBR-II, it is expected that they can be incorporated into advanced designs such as PRISM and/or included in backfit activities as well. 6 refs

  20. File Level Provenance Tracking in CMS

    CERN Document Server

    Jones, C D; Paterno, M; Sexton-Kennedy, L; Tanenbaum, W; Riley, D S

    2009-01-01

    The CMS off-line framework stores provenance information within CMS's standard ROOT event data files. The provenance information is used to track how each data product was constructed, including what other data products were read to do the construction. We will present how the framework gathers the provenance information, the efforts necessary to minimise the space used to store the provenance in the file and the tools that will be available to use the provenance.

  1. Safety and regulatory researches on the SMART reactor

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Kim, Wee Kyong; Chang, Moo Hee

    2000-01-01

    The 330 MW thermal power of integral pressurized water reactor, named SMART (System integrated Modular Advanced ReacTor), is under development at the Korea Atomic Energy Research Institute (KAERI) for seawater desalination application and electricity generation. The plant is expected to install near the population zone. Thus, the public around the plant should be in depth protected from the possible release of radioactive materials, and also the fresh water should be prevented from radioactivity contamination. Currently, in parallel with the design development, the regulatory research is being conducted to identify and resolve the safety concerns of the nuclear desalination plant. Until now, some general items to be considered in the safety aspects have been identified for the conceptual design of SMART. They include the use of proven technology, application of strengthening defense-in-depth, event categorization and selection, effects of desalination plant, and maintainability of major components. These cooperative researches with regulatory body in the design stage are expected to provide an opportunity to early resolve the safety concerns and eventually the licensing stability of the SMART design. (author)

  2. Power Nuclear Reactors: technology and innovation for development in future; Centrales Nucleares de Potencia: tecnologias actuales e innovaciones para el futuro

    Energy Technology Data Exchange (ETDEWEB)

    Suarez Antola, R [Universidad Catolica del Uruguay, Montevideo(Uruguay); Ministerio de Industria Energia y Minerria, Montevideo(Uruguay)

    2009-07-01

    The conference is about some historicals task of the fission technology as well as many types of Nuclear Reactors. Enrichment of fuel, wastes, research reactors and power reactors, a brief advertisment about Uruguay electric siystem and power generation, energetic worldwide, proliferation, safety reactors, incidents, accidents, Three-Mile Island accident, Chernobil accident, damages, risks, classification and description of Power reactors steam generation, nuclear reactor cooling systems, future view.

  3. Development status on hydrogen production technology using high-temperature gas-cooled reactor at JAEA, Japan

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Hino, Ryutaro

    2006-01-01

    The high-temperature gas-cooled reactor (HTGR), which is graphite-moderated and helium-cooled, is attractive due to its unique capability of producing high temperature helium gas and its fully inherent reactor safety. In particular, hydrogen production using the nuclear heat from HTGR (up to 900 deg. C) offers one of the most promising technological solutions to curb the rising level of CO 2 emission and resulting risk of climate change. The interests in HTGR as an advanced nuclear power source for the next generation reactor, therefore, continue to rise. This is represented by the Japanese HTTR (High-Temperature Engineering Test Reactor) Project and the Chinese HTR-10 Project, followed by the international Generation IV development program, US nuclear hydrogen initiative program, EU innovative HTR technology development program, etc. To enhance nuclear energy application to heat process industries, the Japan Atomic Energy Agency (JAEA) has continued extensive efforts for development of hydrogen production system using the nuclear heat from HTGR in the framework of the HTTR Project. The HTTR Project has the objectives of establishing both HTGR technology and heat utilization technology. Using the HTTR constructed at the Oarai Research and Development Center of JAEA, reactor performance and safety demonstration tests have been conducted as planned. The reactor outlet temperature of 950 deg. C was successfully achieved in April 2004. For hydrogen production as heat utilization technology, R and D on thermo-chemical water splitting by the 'Iodine-Sulfur process' (IS process) has been conducted step by step. Proof of the basic IS process was made in 1997 on a lab-scale of hydrogen production of 1 L/h. In 2004, one-week continuous operation of the IS process was successfully demonstrated using a bench-scale apparatus with hydrogen production rate of 31 L/h. Further test using a pilot scale facility with greater hydrogen production rate of 10 - 30 m 3 /h is planned as

  4. Applications of Research Reactors Towards Research on Materials for Nuclear Fusion Technology. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-11-01

    Controlled nuclear fusion is widely considered to represent a nearly unlimited source of energy. Recent progress in the quest for fusion energy includes the design and current construction of the International Thermonuclear Experimental Reactor (ITER), for which a licence has recently been obtained as a first of its kind fusion nuclear installation. ITER is designed to demonstrate the scientific and technological feasibility of fusion energy production in excess of 500 MW for several consecutive minutes. ITER, however, will not be able to address all the nuclear fusion technology issues associated with the design, construction and operation of a commercial fusion power plant. The demonstration of an adequate tritium or fuel breeding ratio, as well as the development, characterization and testing of structural and functional materials in an integrated nuclear fusion environment, are examples of issues for which ITER is unable to deliver complete answers. To fill this knowledge gap, several facilities are being discussed, such as the International Fusion Materials Irradiation Facility and, eventually, a fusion demonstration power plant (DEMO). However, for these facilities, a vast body of preliminary research remains to be performed, for instance, concerning the preselection and testing of suitable materials able to withstand the high temperature and pressure, and intense radiation environment of a fusion reactor. Given their capacity for material testing in terms of available intense neutron fluxes, dedicated irradiation facilities and post-irradiation examination laboratories, high flux research reactors or material test reactors (MTRs) will play an indispensable role in the development of fusion technology. Moreover, research reactors have already achieved an esteemed legacy in the understanding of material properties and behaviour, and the knowledge gained from experiments in fission materials in certain cases can be applied to fusion systems, particularly those

  5. Provenance management in Swift with implementation details.

    Energy Technology Data Exchange (ETDEWEB)

    Gadelha, L. M. R; Clifford, B.; Mattoso, M.; Wilde, M.; Foster, I. (Mathematics and Computer Science); ( CLS-CI); (Federal Univ. of Rio de Janeiro); (National Lab. for Scientific Computing, Brazil); (Univ. of Chicago)

    2011-04-01

    The Swift parallel scripting language allows for the specification, execution and analysis of large-scale computations in parallel and distributed environments. It incorporates a data model for recording and querying provenance information. In this article we describe these capabilities and evaluate interoperability with other systems through the use of the Open Provenance Model. We describe Swift's provenance data model and compare it to the Open Provenance Model. We also describe and evaluate activities performed within the Third Provenance Challenge, which consisted of implementing a specific scientific workflow, capturing and recording provenance information of its execution, performing provenance queries, and exchanging provenance information with other systems. Finally, we propose improvements to both the Open Provenance Model and Swift's provenance system.

  6. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive ''box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs

  7. Design of a thorium fuelled Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Krishnani, P.D.

    2009-01-01

    Full text: The main objective for development of Advanced Heavy Water Reactor (AHWR) is to demonstrate thorium fuel cycle technologies, along with several other advanced technologies required for next generation reactors, so that these are readily available in time for launching the third stage. The AHWR under design is a 300 MWe vertical pressure tube type thorium-based reactor cooled by boiling light water and moderated by heavy water. The fuel consists of (Th-Pu)O 2 and ( 233 ThU)O 2 pins. The fuel cluster is designed to generate maximum energy out of 233 U, which is bred in-situ from thorium and has a slightly negative void coefficient of reactivity, negative fuel temperature coefficient and negative power coefficient. For the AHWR, the well -proven pressure tube technology and online fuelling have been adopted. Core heat removal is by natural circulation of coolant during normal operation and shutdown conditions. Thus, it combines the advantages of light water reactors and PHWRs and removes the disadvantages of PHWRs. It has several passive safety systems for reactor normal operation, decay heat removal, emergency core cooling, confinement of radioactivity etc. The fuel cycle is based on the in-situ conversion of naturally available thorium into fissile 233 U in self sustaining mode. The uranium in the spent fuel will be reprocessed and recycled back into the reactor. The plutonium inventory will be kept a minimum and will come from fuel irradiated in Indian PHWRs. The 233 U required initially can come from the fast reactor programme or it can be produced by specially designing the initial core of AHWR using (Th,Pu)MOX fuel. There will be gradual transition from the initial core which will not contain any 233 U to an equilibrium core, which will have ( 233 U, Th) MOX fuel pins also in a composite cluster. The self sustenance is being achieved by a differential fuel loading of low and a relatively higher Pu in the composite clusters. The AHWR burns the

  8. Conceptual core design of Advanced Recycling Reactor based on mature technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazumi, E-mail: kazumi_ikeda@mfbr.mhi.co.jp [Mitsubishi FBR systems, Tokyo 150-0001 (Japan); Stein, Kim O., E-mail: Kim.Stein@areva.com [AREVA Federal Services, Bethesda, MD 20814 (United States); Nakazato, Wataru, E-mail: wataru_nakazato@mhi.co.jp [Mitsubishi Heavy Industries, Kobe 652-8585 (Japan); Mito, Makoto, E-mail: makoto_mito@mfbr.mhi.co.jp [Mitsubishi FBR systems, Tokyo 150-0001 (Japan)

    2011-06-15

    Research highlights: > ARR is an oxide fueled sodium cooled reactor based on mature technologies to destruct TRU. > Flat core with thick wall cladding tubes are effective for ARR to reduce TRU CR and the void reactivity. > The ARR has TRU burning capability from 19 to 21 kg/TW{sub th}h and is sustainable in recycling. > The ARR can also accept TRU from LWR-MOX fuel and recycled TRU fuel, etc. > The ARR can transform from TRU conversion ratio of 0.56 to breeding ratio of 1.03 smoothly and safely. - Abstract: This paper presents about comprehensive investigations into Advanced Recycling Reactor (ARR) based on existing and/or mature technologies (called 'Early ARR'), aiming transuranics (TRU) burning and considering harmonization of TRU burning capability, technology readiness, economy and safety. The ARR is a 500 MW{sub e} (1180 MW{sub th}) oxide fueled sodium cooled fast reactor, which the low core height of 70 cm and the large structure volume fraction with 1.0 mm of cladding thickness to tube wall have been chosen among 14 candidate concepts to reduce the TRU conversion ratio (CR) and the void reactivity, taking technology readiness into account. As a result of nuclear calculation, the ARR has TRU burning capability from 19 to 21 kg/TW{sub th}h and is sustainable in recycling. And the ARR can accept several kinds of TRU; the LWR uranium oxide fuels, LWR-MOX used nuclear fuel, and TRU recycled in this fuel cycle and the ARR is also flexible in TRU management in ways that it can transform from TRU CR of 0.56 to breeding ratio (BR) of 1.03. In addition, it has been confirmed that the ARR core conforms to the set design requirements; the void reactivity, the maximum linear heat rate, and the shutdown margin of reactivity control system. It has been confirmed that the closed fuel cycle with the ARR plants of 180 GW{sub th} will not release TRU outside and generate more electricity by 65% compared with the present nuclear power system in the US, curbing the

  9. Proven Weight Loss Methods

    Science.gov (United States)

    Fact Sheet Proven Weight Loss Methods What can weight loss do for you? Losing weight can improve your health in a number of ways. It can lower ... at www.hormone.org/Spanish . Proven Weight Loss Methods Fact Sheet www.hormone.org

  10. Development of safety analysis technology for integral reactor

    International Nuclear Information System (INIS)

    Kim, Hee Cheol; Kim, K. K.; Kim, S. H.

    2002-04-01

    The state-of-the-arts for the integral reactor was performed to investigate the safety features. The safety and performance of SMART were assessed using the technologies developed during the study. For this purpose, the computer code system and the analysis methodology were developed and the safety and performance analyses on SMART basic design were carried out for the design basis event and accident. The experimental facilities were designed for the core flow distribution test and the self-pressurizing pressurizer performance test. The tests on the 2-phase critical flow with non-condensable gas were completed and the results were used to assess the critical flow model. Probabilistic Safety Assessment(PSA) was carried out to evaluate the safety level and to optimize the design by identifying and remedying any weakness in the design. A joint study with KINS was carried out to promote licensing environment. The generic safety issues of integral reactors were identified and the solutions were formulated. The economic evaluation of the SMART desalination plant and the activities related to the process control were carried out in the scope of the study

  11. Development of Very High Temperature Reactor Design Technology

    International Nuclear Information System (INIS)

    Lee, Won Jae; Noh, J. M.; Kim, K. S.

    2007-05-01

    To develop design technologies for the VHTR (Very High Temperature Gas-cooled Reactor) of 950 .deg. C outlet temperature for an efficient hydrogen production, key studies were performed, which include evaluation technology for the performance and safety of VHTR, and development of design and analysis codes. First, to evaluate the performance of VHTR, a series of analyses has been carried out for core characteristics at 950 .deg. C, cooled-vessel adopting internal flow path through the graphite structure, compact heat exchanger with periodic channel configuration, intermediate loop system, risk/performance-informed method, and high temperature structural integrity. Through the analyses of major accidents such as HPCC and LPCC, safety evaluation of both VHTR and RCCS has been also performed. In addition, prototype codes have been developed for a nuclear design, system loop design, system performance analysis, air-ingress accident analysis, fission product/tritium transport analysis, graphite structure seismic analysis and hydrogen explosion analysis, and they are being verified and validated through a lot of international collaborations

  12. Biological treatment of petroleum sludges in liquid/solids contact reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stroo, H F [Remediation Technologies, Inc., Kent, WA (USA)

    1989-10-01

    Biological treatment of hazardous wastes (bioremediation) is now recognized as an effective and cost-efficient approach for on-site cleanup of petroleum-contaminated soils and sludges. These strategies may require pretreatment of oily sludges produced as refinery wastes. Recent work has shown that liquid/solids contact (LSC) bioreactors are capable of adequate pretreatment at lower cost than competing technologies. Since LSC operations aim to maximize microbial numbers and activity, inexpensive microbiological monitoring can provide rapid feedback on performance. LSC technology represents a method for rapid biological treatment of petroleum sludges in a contained reactor. The technology has proven highly effective for a variety of oil refinery sludges, with degradation rates up to ten times faster than those observed during land treatment. The most promising use of LSC is a pretreatment. Because biological treatment in LSC can degrade and detoxify contaminants rapidly and relatively inexpensively, with little risk of off-site contamination, this technology should be considered by refiners having to close sites or treat current waste-streams. 7 refs., 1 figs., 1 tab.

  13. Enhanced CANDU 6 Reactor

    International Nuclear Information System (INIS)

    Azeez, S.; Alizadeh, A.; Girouard, P.

    2005-01-01

    Full text: The CANDU 6 power reactor is visionary in its approach, remarkable for its on-power refuelling capability and proven over years of safe, economical and reliable power production. Developed by Atomic Energy of Canada Ltd, the CANDU 6 design offers excellent performance utilizing state-of-the-art technology. The first CANDU 6 plants went into service in the early 1980's as leading edge technology and the design has been continuously advanced to maintain superior performance with an outstanding safety record. The first CANDU 6 plants- Gentilly 2 and Point Lepreau in Canada, Embalse in Argentina and Wolsong- Unit 1 in Korea have been in service for more than 21 years and are still producing electricity at peak performance and to the end of 2004, their average lifetime Capacity Factor was 83.2%. The newer CANDU 6 units in Romania (Cernavoda 1), Korea (Wolsong-Units 2, 3 and 4) and Qinshan (Phase III- Units 1 and 2) have also been performing at outstanding levels. The average lifetime Capacity Factor of the 10 CANDU 6 operating units around the world has been 87% to the end of 2004. Building on these successes, AECL is committed to the further development of this highly successful design, now focussing on meeting customer's needs for reduced costs, further improvements to plant operation and performance, enhanced safety and incorporating up-to-date technology as warranted. This has resulted in AECL embarking on improving the CANDU 6 design through an upgraded product termed as the 'Enhanced CANDU 6' (EC6)- which incorporates several attractive but proven features that will make the CANDU 6 reactor even more economical, safer and easier to operate. Some of the key features that will be incorporated in the EC6 include increasing the plant's power output, shortening the overall project schedule, decreasing the capital cost, dealing with obsolescence issues, optimizing maintenance outages and incorporating lessons learnt through feedback obtained from the

  14. Technology, safety and costs of decommissioning nuclear reactors at multiple-reactor stations

    International Nuclear Information System (INIS)

    Wittenbrock, N.G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWR) and large (1155-MWe) boiling water reactors (BWR) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services

  15. Development of advanced nuclear reactors in Russia

    International Nuclear Information System (INIS)

    Sotoudeh, M.; Silakhori, K.; Sepanloo, K.; Jahanfarnia, G.; Moattar, F.

    2008-01-01

    Several advanced reactor designs have been so far developed in Russia. The AES-91 and AES-92 plants with the VVER-1000 reactors have been developed at the beginning of 1990. However, the former design has been built in China and the latest which is certified meeting European Utility Requirements is being built in India. Moreover, the model VVER-1500 reactor with 50-60 MWd/t burn-up and an enhanced safety was being developed by Gidropress about 2005, excepting to be completed in 2007. But, this schedule has slipped in favor of development of the AES-2006 power plant incorporating a third-generation standardized VVER-1200 reactor of 1170 MWe. This is an evolutionary development of the well-proven VVER-1000 reactor in the AES-92 plant, with longer life, greater power and efficiency and its lead units are being built at Novovoronezh II, to start operation in 2012-13. Based on Atomenergoproekt declaration, the AES-2006 conforms to both Russian standards and European Utility Requirements. The most important features of the AES-2006 design are mentioned as: a design based on the passive safety systems, double containment, longer plant service life of 50 years with a capacity factor of 92%, longer irreplaceable components service life of 60 years, a 28.6% lower amount of concrete and metal, shorter construction time of 54 months, a Core Damage Frequency of 1x10 -7 / year and lower liquid and solid wastes by 70% and 80% respectively. The presented paper includes a comparative analysis of technological and safety features, economic parameters and environmental impact of the AES-2006 design versus the other western advanced reactors. Since the Bushehr phase II NPP and several other NPPs are planning in Iran, such analysis would be of a great importance

  16. Generation IV reactors: reactor concepts

    International Nuclear Information System (INIS)

    Cardonnier, J.L.; Dumaz, P.; Antoni, O.; Arnoux, P.; Bergeron, A.; Renault, C.; Rimpault, G.; Delpech, M.; Garnier, J.C.; Anzieu, P.; Francois, G.; Lecomte, M.

    2003-01-01

    Liquid metal reactor concept looks promising because of its hard neutron spectrum. Sodium reactors benefit a large feedback experience in Japan and in France. Lead reactors have serious assets concerning safety but they require a great effort in technological research to overcome the corrosion issue and they lack a leader country to develop this innovative technology. In molten salt reactor concept, salt is both the nuclear fuel and the coolant fluid. The high exit temperature of the primary salt (700 Celsius degrees) allows a high energy efficiency (44%). Furthermore molten salts have interesting specificities concerning the transmutation of actinides: they are almost insensitive to irradiation damage, some salts can dissolve large quantities of actinides and they are compatible with most reprocessing processes based on pyro-chemistry. Supercritical water reactor concept is based on operating temperature and pressure conditions that infers water to be beyond its critical point. In this range water gets some useful characteristics: - boiling crisis is no more possible because liquid and vapour phase can not coexist, - a high heat transfer coefficient due to the low thermal conductivity of supercritical water, and - a high global energy efficiency due to the high temperature of water. Gas-cooled fast reactors combining hard neutron spectrum and closed fuel cycle open the way to a high valorization of natural uranium while minimizing ultimate radioactive wastes and proliferation risks. Very high temperature gas-cooled reactor concept is developed in the prospect of producing hydrogen from no-fossil fuels in large scale. This use implies a reactor producing helium over 1000 Celsius degrees. (A.C.)

  17. An overview of the U.S. Department of Energy's program for liquid metal reactor seismic technology

    International Nuclear Information System (INIS)

    Jetter, R.I.; Seidensticker, R.W.

    1988-01-01

    During the past decade, the U.S. Department of Energy (DOE) has sponsored the development of seismic design technology in support of Liquid Metal Reactors (LMR's). This has been accomplished through 1) major projects such as the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR), 2) base technology programs and 3) support to the design development of innovative LMR's, SAFR and PRISM. These developments have come in the areas of ground motion definition, soil-structure interaction, seismic isolation, fluid-structure interaction and structural analysis methods and criteria for equipment and components such as piping, reactor core and vessels. The initial developments in seismic design technology by DOE and others were directed toward ensuring that the plant, equipment and components had sufficient seismic resistance to ensure availability after an Operations Basis Earthquake (OBE) and to survive a Safe Shutdown Earthquake (SSE). During this period, the emphasis on conservative design had significant cost impacts. The current focus is directed toward a better understanding of seismic design margins and the development of methods to reduce seismic loads on plant and equipment and to enhance siting flexibility. From this perspective, the DOE is currently reassessing the needs and priorities for future seismic technology development. Coordination with University research programs and ongoing seismic technology development sponsored by other governmental agencies and institutions is an integral part of this planning process. The purpose of this paper is to highlight the current status of DOE's seismic technology program for LMR's and to provide an overview of future areas of interest. (author). 7 refs

  18. Gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki

    1982-07-01

    Almost all the R D works of gas-cooled fast breeder reactor in the world were terminated at the end of the year 1980. In order to show that the R D termination was not due to technical difficulties of the reactor itself, the present paper describes the reactor plant concept, reactor performances, safety, economics and fuel cycle characteristics of the reactor, and also describes the reactor technologies developed so far, technological problems remained to be solved and planned development schedules of the reactor. (author)

  19. The next generation of CANDU technologies: profiling the potential for hydrogen fuel

    International Nuclear Information System (INIS)

    Hopwood, J.M.

    2001-01-01

    This report discusses the Next-generation CANDU Power Reactor technologies currently under development at AECL. The innovations introduced into proven CANDU technologies include a compact reactor core design, which reduces the size by a factor of one third for the same power output; improved thermal efficiency through higher-pressure steam turbines; reduced use of heavy water (one quarter of the heavy water required for existing plants), thus reducing the cost and eliminating many material handling concerns; use of slightly enriched uranium to extend fuel life to three times that of existing natural uranium fuel and additions to CANDU's inherent passive safety. With these advanced features, the capital cost of constructing the plant can be reduced by up to 40 per cent compared to existing designs. The clean, affordable CANDU-generated electricity can be used to produce hydrogen for fuel cells for the transportation sector, thereby reducing emissions from the transportation sector

  20. Reactor pressure boundary materials

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Chi, S. H.; Lee, B. S.

    2002-04-01

    With a long-term operation of nuclear power plants, the component materials are degraded under severe reactor conditions such as neutron irradiation, high temperature, high pressure and corrosive environment. It is necessary to establish the reliable and practical technologies for improving and developing the component materials and for evaluating the mechanical properties. Especially, it is very important to investigate the technologies for reactor pressure boundary materials such as reactor vessel and pipings in accordance with their critical roles. Therefore, this study was focused on developing and advancing the microstructural/micro-mechanical evaluation technologies, and on evaluating the neutron irradiation characteristics and radiation effects analysis technology of the reactor pressure boundary materials, and also on establishing a basis of nuclear material property database

  1. Activities of research-reactor-technology project in FNCA from FY2005 to FY2007. Sharing neutronics calculation technique for core management and utilization of research reactors

    International Nuclear Information System (INIS)

    2010-07-01

    RRT project (Research-Reactor-Technology Project) was carried out with the theme of 'sharing neutronics calculation technique for core management and utilization of research reactors' in the framework of FNCA (Forum for Nuclear Cooperation in Asia) from FY2005 to FY2007. The objective of the project was to improve and equalize the level of neutronics calculation technique for the reactor core management among participating countries to assure the safe and stable operation of research reactors and the promotion of the effective utilization. Neutronics calculation codes, namely SRAC code system and MVP code, were adopted as common codes. Participating countries succeeded in applying the common codes to analyzing the core of each domestic research reactor. Some participating countries succeeded in applying the common codes to analyzing for utilization of own research reactors. Activities of RRT project have improved and equalized the level of neutronics calculation technique among participating countries. (author)

  2. 04 - Sodium cooled fast breeder fourth-generation reactors - The experimental reactor ALLEGRO, the other ways for fast breeder fourth-generation reactors

    International Nuclear Information System (INIS)

    2012-12-01

    The authors first present the technology of gas-cooled fast breeder reactors (basic principles, specific innovations, feasibility studies, fuel element, safety) and notably the ALLEGRO project (design options and expected performances, preliminary safety demonstration). Then, they present the lead-cooled fast-breeder reactor technology: interests and obstacles, return on experience, the issue of lead density, neutron assessment, transmutation potential, dosimetry, safety chemical properties and compatibility with the fuel, water, air and steels. The next part addresses the technology of molten-salt fast-breeder reactors: choice of the liquid fuel and geometry, reactor concept (difficulties, lack of past R and D), demonstration and demonstrators, international context

  3. Proposal for Dual Pressurized Light Water Reactor Unit Producing 2000 MWe

    International Nuclear Information System (INIS)

    Kang, Kyoung Min; Noh, Sang Woo; Suh, Kune Yull

    2009-01-01

    The Dual Unit Optimizer 2000 MWe (DUO2000) is put forward as a new design concept for large power nuclear plants to cope with economic and safety challenges facing the 21 st century green and sustainable energy industry. DUO2000 is home to two nuclear steam supply systems (NSSSs) of the Optimized Power Reactor 1000 MWe (OPR1000)-like pressurized water reactor (PWR) in single containment so as to double the capacity of the plant. The idea behind DUO may as well be extended to combining any number of NSSSs of PWRs or pressurized heavy water reactors (PHWRs), or even boiling water reactors (BWRs). Once proven in water reactors, the technology may even be expanded to gas cooled, liquid metal cooled, and molten salt cooled reactors. With its in-vessel retention external reactor vessel cooling (IVR-ERVC) as severe accident management strategy, DUO can not only put the single most querulous PWR safety issue to an end, but also pave the way to very promising large power capacity while dispensing with the huge redesigning cost for Generation III+ nuclear systems. Five prototypes are presented for the DUO2000, and their respective advantages and drawbacks are considered. The strengths include, but are not necessarily limited to, reducing the cost of construction by decreasing the number of containment buildings from two to one, minimizing the cost of NSSS and control systems by sharing between the dual units, and lessening the maintenance cost by uniting the NSSS, just to name the few. The latent threats are discussed as well

  4. Quality assurance in technology development for The Clinch River Breeder Reactor Plant Project

    International Nuclear Information System (INIS)

    Anderson, J.W.

    1980-01-01

    The Clinch River Breeder Reactor Plant Project is the nation's first large-scale demonstration of the Liquid Metal Fast Breeder Reactor (LMFBR) concept. The Project has established an overall program of plans and actions to assure that the plant will perform as required. The program has been established and is being implemented in accordance with Department of Energy Standard RDT F 2-2. It is being applied to all parts of the plant, including the development of technology supporting its design and licensing activity. A discussion of the program as it is applied to development is presented

  5. The combined hybrid system: A symbiotic thermal reactor/fast reactor system for power generation and radioactive waste toxicity reduction

    International Nuclear Information System (INIS)

    Hollaway, W.R.

    1991-08-01

    If there is to be a next generation of nuclear power in the United States, then the four fundamental obstacles confronting nuclear power technology must be overcome: safety, cost, waste management, and proliferation resistance. The Combined Hybrid System (CHS) is proposed as a possible solution to the problems preventing a vigorous resurgence of nuclear power. The CHS combines Thermal Reactors (for operability, safety, and cost) and Integral Fast Reactors (for waste treatment and actinide burning) in a symbiotic large scale system. The CHS addresses the safety and cost issues through the use of advanced reactor designs, the waste management issue through the use of actinide burning, and the proliferation resistance issue through the use of an integral fuel cycle with co-located components. There are nine major components in the Combined Hybrid System linked by nineteen nuclear material mass flow streams. A computer code, CHASM, is used to analyze the mass flow rates CHS, and the reactor support ratio (the ratio of thermal/fast reactors), IFR of the system. The primary advantages of the CHS are its essentially actinide-free high-level radioactive waste, plus improved reactor safety, uranium utilization, and widening of the option base. The primary disadvantages of the CHS are the large capacity of IFRs required (approximately one MW e IFR capacity for every three MW e Thermal Reactor) and the novel radioactive waste streams produced by the CHS. The capability of the IFR to burn pure transuranic fuel, a primary assumption of this study, has yet to be proven. The Combined Hybrid System represents an attractive option for future nuclear power development; that disposal of the essentially actinide-free radioactive waste produced by the CHS provides an excellent alternative to the disposal of intact actinide-bearing Light Water Reactor spent fuel (reducing the toxicity based lifetime of the waste from roughly 360,000 years to about 510 years)

  6. Old and new ways in reactor technology. Reactor concepts and reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Schulten, R

    1989-01-01

    Compared to developments of other technical-scale systems, the period between the recognition of the underlying physics of nuclear fission and the development of a functioning nuclear reactor and its further development to the present level of maturity has been relatively short. The whole development is based on the chain reaction and is rendered safe by the possible auto-stabilization of this reaction. Consequently, the safety of nuclear reactors properly designed is based on automatic mechanisms, which prevent spreads of radioactivity even in major accidents. Controversial opinions about nuclear power uses are mostly based on wrong perceptions both of reactor safety and of radioactive waste, unless they are characterized by sheer ideology. The use of nuclear power worldwide has assumed an important, growing role in the combined uses of a variety energy sources in a surprisingly short period of time and will continue to make a safe, economic, and thus responsible contribution in the long run.

  7. The search for advanced remote technology in fast reactor reprocessing

    International Nuclear Information System (INIS)

    Burch, W.D.; Herndon, J.N.; Stradley, J.G.

    1990-01-01

    Research and development in fast reactor reprocessing has been under way about 20 years in several countries throughout the world. During the past decade in France and the United Kingdom, active development programs have been carried out in breeder reprocessing. Actual fuels from their demonstration reactors have been reprocessed in small-scale facilities. Early US work in breeder reprocessing was carried out at the EBR-II facilities with the early metal fuels, and interest has renewed recently in metal fuels. A major, comprehensive program, focused on oxide fuels, has been carried out in the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) since 1974. Germany and Japan have also carried out development programs in breeder reprocessing, and Japan appears committed to major demonstration of breeder reactors and their fuel cycles. While much of the effort in all of these programs addressed process chemistry and process hardware, a significant element of many of these programs, particularly the CFRP, has been on advancements in facility concepts and remote maintenance features. This paper will focus principally on the search for improved facility concepts and better maintenance systems in the CFRP and, in turn, on how developments at ORNL have influenced the technology elsewhere

  8. Status of advanced technologies for CANDU reactors

    International Nuclear Information System (INIS)

    Lipsett, J.J.

    1989-01-01

    The future development of the CANDU reactor is a continuation of a successful series of reactors, the most recent of which are nine CANDU 6 Mk 1* units and four Darlington units. There are three projects underway that continue the development of the CANDU reactor. These new design projects flow from the original reactor designs and are a natural progression of the CANDU 6 Mk 1, two units of which are operating successfully in Canada, one each in Argentina and Korea, with five more being built in Rumania. These new design projects are known as: CANDU 6 Mk 2, an improved version of CANDU 6 Mk 1; CANDU 3, a small, advanced version of the CANDU 6 Mk 1; CANDU 6 Mk 3, a series of advanced CANDU reactors. A short description of modified versions of CANDU reactors is given in this paper. 5 figs

  9. Experimental research subject and renovation of chemical processing facility (CPF) for advanced fast reactor fuel reprocessing technology development

    International Nuclear Information System (INIS)

    Koyama, Tomozo; Shinozaki, Tadahiro; Nomura, Kazunori; Koma, Yoshikazu; Miyachi, Shigehiko; Ichige, Yoshiaki; Kobayashi, Tsuguyuki; Nemoto, Shin-ichi

    2002-01-01

    In order to enhance economical efficiency, environmental impact and nuclear nonproliferation resistance, the Advanced Reprocessing Technology, such as simplification and optimization of process, and applicability evaluation of the innovative technology that was not adopted up to now, has been developed for the reprocessing of the irradiated fuel taken out from a fast reactor. Renovation of the hot cell interior equipments, establishment and updating of glove boxes, installation of various analytical equipments, etc. in the Chemical Processing Facility (CPF) was done to utilize the CPF more positivity which is the center of the experimental field, where actual fuel can be used, for research and development towards establishment of the Advanced Reprocessing Technology development. The hot trials using the irradiated fuel pins of the experimental fast reactor 'JOYO' for studies on improved aqueous reprocessing technology, MA separation technology, dry process technology, etc. are scheduled to be carried out with these new equipments. (author)

  10. CANDU reactor - supporting the nuclear renaissance

    International Nuclear Information System (INIS)

    Oberth, R.

    2010-01-01

    'Full text:' The CANDU reactor has proven to be a strong performer in both the Canada, with 22 units constructed in Ontario, New Brunswick and Quebec, as well as in Argentina, Korea, Romania and China where a further nine units are operating and two in the planning stage. The average lifetime capacity factor of the CANDU reactor fleet is 89%. The last seven CANDU projects in Korea, China, and Romania have been completed on budget and on schedule. CANDU reactors have the highest uranium utilization efficiency measures as electricity output per ton of uranium mined. The CANDU fuel channel design using on-power fuelling and a heavy water moderator enables flexible fueling options - from the current natural uranium option to burning uranium recovered from used LWR reactor fuel and even a thorium-based fuel. AECL and the CANDU reactor are poised to participate in the worldwide construction at least 250 new reactors over the next 20 years. (author)

  11. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  12. International academic program in technologies of light-water nuclear reactors. Phases of development and implementation

    International Nuclear Information System (INIS)

    Geraskin, N I; Glebov, V B

    2017-01-01

    The results of implementation of European educational projects CORONA and CORONA II dedicated to preserving and further developing nuclear knowledge and competencies in the area of technologies of light-water nuclear reactors are analyzed. Present article addresses issues of design and implementation of the program for specialized training in the branch of technologies of light-water nuclear reactors. The systematic approach has been used to construct the program for students of nuclear specialties, which corresponding to IAEA standards and commonly accepted nuclear principles recognized in the European Union. Possibilities of further development of the international cooperation between countries and educational institutions are analyzed. Special attention is paid to e-learning/distance training, nuclear knowledge preservation and interaction with European Nuclear Education Network. (paper)

  13. Evolution of the technical concept of fast reactors. The concept of BREST

    International Nuclear Information System (INIS)

    Orlov, V.V.

    2001-01-01

    Having understood that conventional power was limited by available fuel resources, as well as the environmental concern, and willing to use the advantages of defense nuclear power achievements, the development of civil nuclear power was initiated. Scarce supply of uranium has been a matter of concern from the very beginning of nuclear power development, but plutonium produced in the thermal reactors was supposed to be used as fuel for the fast reactors which would not be limited by fuel resources. In order to attain high breeding ratio and high power density, the first generation of fast reactors were designed with sodium coolant, uranium blanket to make up for a decrease in breeding ratio if uranium oxides were used as fuel. Development of nuclear power in the sixties and seventies was followed by stagnation. Lessons learned from a 50-year experience and new conditions set for power industry demand a new concept of fast reactor which would meet a variety of cost-efficiency and safety requirements in their present understanding. Development of fast breeders in Russia began after commissioning of BN-350 and completion of BN-600 design. According to present demands BREST reactors should be designed so as to implement consistently the principles of natural safety without deviation from materials and technology which was proven in defense and civil nuclear power facilities

  14. International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13). Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The conference, which was held from 4 to 7 of March 2013 in Paris, provided a forum to exchange information on national and international programmes, and more generally new developments and experience, in the field of fast reactors and related fuel cycle technologies. A first goal was to identify and discuss strategic and technical options that have been proposed by individual countries or companies. Another goal was to promote the development of fast reactors and related fuel cycle technologies in a safe, proliferation resistant and economic way. A third goal was to identify gaps and key issues that need to be addressed in relation to the industrial deployment of fast reactors with a closed fuel cycle. A fourth goal was to engage young scientists and engineers in this field, in particular with sustainability, innovation, simulation, safety, economics and public acceptance

  15. Development of fluoride reprocessing technology for molten salt transmutation reactor systems in the Czech Republic

    International Nuclear Information System (INIS)

    Uhlir, J.; Hosnedl, P.; Matal, O.

    2000-01-01

    At present, the transmutation of spent nuclear fuel is considered a prospective alternative conception with respect to the current conception based on the non-reprocessed spent fuel disposal into a deep geological repository. The Czech research and development programme in the area of partitioning is directed primarily on the development of the fuel cycle technology for the accelerator - driven subcritical reactor with a liquid fuel based on fluoride melts. The final objective of the research programme is the development of pyrochemical technologies suitable for a continuous or semi-continuous separation process which would allow practically perfect utilization of the transmutation potentialities of the reactor system. The present research is directed particularly on the development of suitable fluoride separation methods the target of which is the removal of the uranium component from spent nuclear fuel and on the research of the electro-separation procedures and further on the development of appropriate construction materials and equipment for the technology of fluoride salt melts. (authors)

  16. Status of small reactor designs without on-site refuelling

    International Nuclear Information System (INIS)

    2007-01-01

    There is an ongoing interest in member states in the development and application of small and medium sized reactors (SMRs). In the near term, most new NPPs are likely to be evolutionary designs building on proven systems while incorporating technological advances and often the economics of scale, resulting from the reactor outputs of up to 1600 MW(e). For the longer term, the focus is on innovative designs aiming to provide increased benefits in the areas of safety and security, non-proliferation, waste management, resource utilization and economy, as well as to offer a variety of energy products and flexibility in design, siting and fuel cycle options. Many innovative designs are reactors within the small-to-medium size range, having an equivalent electric power less than 700 MW(e) or even less than 300 MW(e). A distinct trend in design and technology development, accounting for about half of the SMR concepts developed worldwide, is represented by small reactors without on-site refuelling. Such reactors, also known as battery-type reactors, could operate without reloading and shuffling of fuel in the core over long periods, from 5 to 25 years and beyond. Upon the advice and with the support of IAEA member states, within its Programme 1 'Nuclear Power, Fuel Cycle, and Nuclear Science', the IAEA provides a forum for the exchange of information by experts and policy makers from industrialized and developing countries on the technical, economic, environmental, and social aspects of SMRs development and implementation in the 21st century, and makes this information available to all interested Member States by producing status reports and other publications dedicated to advances in SMR technology. The objective of this report is to provide Member States, including those just considering the initiation of nuclear power programmes and those already having practical experience in nuclear power, with a balanced and objective information on important development trends and

  17. Mirror hybrid (fusion--fission) reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Lee, J.D.; Neef, W.S.; Devoto, R.S.; Galloway, T.R.; Fink, J.H.; Schultz, K.R.; Culver, D.; Rao, S.

    1977-10-01

    The reference mirror hybrid reactor design performed by LLL and General Atomic is summarized. The reactor parameters have been chosen to minimize the cost of producing fissile fuel for consumption in fission power reactors. As in the past, we have emphasized the use of existing technology where possible and a minimum extrapolation of technology otherwise. The resulting reactor may thus be viewed as a comparatively near-term goal of the fusion program, and we project improved performance for the hybrid in the future as more advanced technology becomes available

  18. Innovation, adaptability, and collaboration: Keys to success for small and medium sized reactors. Cairo, 27 May 2001

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2001-01-01

    Small and medium sized reactors, within a power output of less than 700 MW(e), are receiving increased consideration in the effort to meet changing market requirements. Smaller plants allow a more incremental investment, which can be used to hedge against demand uncertainty. They are more suitable for standardization and prefabrication, which in turn encourages enhanced quality control and stimulates rapid development of expertise and shorter construction schedules. They provide a better match to grid capacity in developing countries. And they are more easily adapted to a broad range of industrial settings and applications, such as district heating, heavy oil recovery, or the production of hydrogen and other chemical fuels. Sea water desalination is an application for which smaller reactors hold a particular advantage. Nuclear powered desalination is a proven technology. Clearly, we live in an era in which our society faces many difficult economic, environmental and social issues associated with sustainable development and energy demand. Against that backdrop, nuclear power is a mature technology that deserves careful consideration as a contributor to solving some of these issues. The development of innovative small and medium sized reactors will play a key role in helping to match state-of-the-art technology to user needs. An exchange of information and ideas is a step towards further progress

  19. Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

    2009-03-27

    This current report is a summary of information obtained in the "Information Capture" task of the U.S. DOE-funded "Under Sodium Viewing (USV) Project." The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

  20. Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors

    International Nuclear Information System (INIS)

    Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

    2009-01-01

    This current report is a summary of information obtained in the 'Information Capture' task of the U.S. DOE-funded 'Under Sodium Viewing (USV) Project.' The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

  1. Proceeding on the scientific meeting and presentation on accelerator technology and its applications: physics, nuclear reactor

    International Nuclear Information System (INIS)

    Pramudita Anggraita; Sudjatmoko; Darsono; Tri Marji Atmono; Tjipto Sujitno; Wahini Nurhayati

    2012-01-01

    The scientific meeting and presentation on accelerator technology and its applications was held by PTAPB BATAN on 13 December 2011. This meeting aims to promote the technology and its applications to accelerator scientists, academics, researchers and technology users as well as accelerator-based accelerator research that have been conducted by researchers in and outside BATAN. This proceeding contains 23 papers about physics and nuclear reactor. (PPIKSN)

  2. The development of mobile melt-dilute technology for the treatment of former Soviet Union research reactor fuel

    International Nuclear Information System (INIS)

    Sell, D.A.; Howden, E.A.; Allen, K.J.; Marsden, K.; Westphal, B.R.; Peacock, H.B.; Iyer, N.C.; Fisher, D.L.; Adams, T.M.; Sindelar, R.L.

    2004-01-01

    United States Government funded national security nuclear non-proliferation projects have historically focused on power reactor spent fuel assemblies that contain weapons usable materials. More recently concern and emphasis have been focused on the spent fuel located at the many research reactor facilities spread throughout the Former Soviet Union. The need exists for a mobile system that can be deployed at these research reactors for the purpose of ensuring that the nuclear materials cannot be used for weapons development. On-site application of the Mobile Melt-Dilute (MMD) process offers an economical method for converting weapons usable Former Soviet Union high enriched uranium research reactor fuel to a safe and secure low enriched uranium ingot. The process will generate little waste and will be performed in a sealed canister that will contain all off-gas products generated during the melting process, eliminating the need for an off-gas treatment system. The process is modular, reusable, and readily portable to a desired reactor site or storage location. The storage canisters containing the melted ingot can be configured for compatibility with the fuel storage technologies currently available or returned to Russia for reprocessing under the Russian Research Reactor Fuel Return Program. The objective of the MMD Project is to develop the mobile melt and dilute technology in preparation for active deployment at Russian built and fueled research reactors. The project has just completed conceptual design and is beginning proof of principle experiments and integrated prototype design of the furnace and canister. (authors)

  3. Providing Global Change Information for Decision-Making: Capturing and Presenting Provenance

    Science.gov (United States)

    Ma, Xiaogang; Fox, Peter; Tilmes, Curt; Jacobs, Katherine; Waple, Anne

    2014-01-01

    Global change information demands access to data sources and well-documented provenance to provide evidence needed to build confidence in scientific conclusions and, in specific applications, to ensure the information's suitability for use in decision-making. A new generation of Web technology, the Semantic Web, provides tools for that purpose. The topic of global change covers changes in the global environment (including alterations in climate, land productivity, oceans or other water resources, atmospheric composition and or chemistry, and ecological systems) that may alter the capacity of the Earth to sustain life and support human systems. Data and findings associated with global change research are of great public, government, and academic concern and are used in policy and decision-making, which makes the provenance of global change information especially important. In addition, since different types of decisions benefit from different types of information, understanding how to capture and present the provenance of global change information is becoming more of an imperative in adaptive planning.

  4. Radioactive material transport in sodium-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Brehm, W.F.; McGuire, J.C.; Colburn, R.P.; Maffei, H.P.; Olson, W.H.

    1980-03-01

    Trapping devices which remove nuclides from the sodium stream in pre-selected locations away from maintenance areas have been developed and proven successful in in-reactor testing. The release of corrosion product radionuclides as a function of system temperature and oxygen content has been quantitatively evaluated. Ongoing work concentrates on further in-reactor testing of radionuclide removal devices, and characterization of fission product release and deposition from fuel pins with breached-cladding

  5. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    International Nuclear Information System (INIS)

    Allen, T.R.; Benson, J.B.; Foster, J.A.; Marshall, F.M.; Meyer, M.K.; Thelen, M.C.

    2009-01-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  6. Status of NDE research in the US-contributions of NDE to reactor safety and implementation of NDE technology

    Energy Technology Data Exchange (ETDEWEB)

    Ammirato, F. [EPRI, Charlotte, NC (United States)

    1999-08-01

    Power plant designers, plant owners, and regulators have developed inservice inspection (ISI) programs as part of their comprehensive approach to ensuring nuclear safety. This paper examines the role of ISI in reactor safety through several examples drawn from recent industry initiatives to address implementation of effective examination technology for nuclear power plant piping, and BWR and PWR reactor pressure vessels. These examples also illustrate the importance of well designed performance demonstration activities to support application of effective ISI. Finally, the efforts required to implement effective ISI technology for field inspection is addressed. (orig./DGE)

  7. Needs of nuclear data for advanced light water reactor

    International Nuclear Information System (INIS)

    Chaki, Masao

    2008-01-01

    Hitachi has been developing medium sized ABWRs as a power source that features flexibility to meet various market needs, such as minimizing capital risks, providing a timely return on capital investments, etc. Basic design concepts of the medium sized ABWRs are 1) using the current ABWR design which has accumulated favorable construction and operation histories as a starting point; 2) utilizing standard BWR fuels which have been fabricated by proven technology; 3) achieving a rationalized design by suitably utilizing key components developed for large sized reactors. Development of the medium sized ABWRs has proceeded in a systematic, stepwise manner. The first step was to design an output scale for the 600MWe class reactor (ABWR-600), and the next step was to develop an uprating concept to extend this output scale to the 900MWe class reactor (ABWR-900) based on the rationalized technology of the ABWR-600 for further cost savings. In addition, Hitachi and MHI developed an ultra small reactor, 'Package-Reactor'. About the nuclear data, for the purpose of verification of the nuclear analysis method of BWR for mixed oxide (MOX) cores, UO 2 and MOX fuel critical experiments EPICURE and MISTRAL were analyzed using nuclear design codes HINES and CERES with ENDF/B nuclear data file. The critical keffs of the absorber worth experiments, the water hole worth experiments and the 2D void worth experiments agreed with those of the reference experiments within about 0.1%Δk. The root mean square differences of radial power distributions between calculation and measurement were almost less than 2.0%. The calculated reactivity worth values of the absorbers, the water hole and the 2D void agreed with the measured values within nearly experimental uncertainties. These results indicate that the nuclear analysis method of BWR in the present paper give the same accuracy for the UO 2 cores and the MOX cores. (author)

  8. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    International Nuclear Information System (INIS)

    White, J.D.; Monson, L.R.; Carrol, D.G.; Dayal, Y.

    1989-01-01

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs

  9. Technological readiness of evolutionary water cooled reactors

    International Nuclear Information System (INIS)

    Juhn, P.E.

    1999-01-01

    Nuclear energy has evolved to a mature industry that supplies over 16% of the world's electricity, and it represents an important option for meeting the global energy demands of the coming century in an environmentally acceptable manner. New, evolutionary water cooled reactor designs that build on successful performance of predecessors have been developed; these designs have generally been guided by wishes to reduce cost, to improve availability and reliability, and to meet increasingly stringent safety objectives. These three aspects are important factors in what has been called technological readiness for an expanded deployment of nuclear power; a major increase in utilization of nuclear power will only occur if it is economically competitive, and meets safety expectations. To this end, the industry will also have to maintain or improve the public perception of nuclear power as a benign, economical and reliable energy source. (author)

  10. Tritium processing and containment technology for fusion reactors. Annual report, July 1975--June 1976

    International Nuclear Information System (INIS)

    Maroni, V.A.; Calaway, W.F.; Misra, B.; Van Deventer, E.H.; Weston, J.R.; Yonco, R.M.; Cafasso, F.A.; Burris, L.

    1976-01-01

    The hydrogen permeabilities of selected metals, alloys, and multiplex preparations that are of interest to fusion reactor technology are being characterized. A high-vacuum hydrogen-permeation apparatus has been constructed for this purpose. A program of studies has been initiated to develop design details for the tritium-handling systems of near-term fusion reactors. This program has resulted in a better definition of reactor-fuel-cycle and enrichment requirements and has helped to identify major research and development problems in the tritium-handling area. The design and construction of a 50-gallon lithium-processing test loop (LPTL) is well under way. Studies in support of this project are providing important guidance in the selection of hardware for the LPTL and in the design of a molten-salt processing test section

  11. Supply of appropriate nuclear technology for the developing world: small power reactors for electricity generation

    International Nuclear Information System (INIS)

    Heising-Goodman, C.D.

    1981-01-01

    This paper reviews the supply of small nuclear power plants (200 to 500 MWe electrical generating capacity) available on today's market, including the pre-fabricated designs of the United Kingdom's Rolls Royce Ltd and the French Alsthom-Atlantique Company. Also, the Russian VVER-440 conventionally built light-water reactor design is reviewed, including information on the Soviet Union's plans for expansion of its reactor-building capacity. A section of the paper also explores the characteristics of LDC electricity grids, reviewing methods available for incorporating larger plants into smaller grids as the Israelis are planning. Future trends in reactor supply and effects on proliferation rates are also discussed, reviewing the potential of the Indian 220 MWe pressurised heavy-water reactor, South Korean and Jananese potential for reactor exports in the Far East, and the Argentine-Brazilian nuclear programme in Latin America. This study suggests that small reactor designs for electrical power production and other applications, such as seawater desalination, can be made economical relative to diesel technology if traditional scaling laws can be altered by adopting and standardising a pre-fabricated nuclear power plant design. Also, economy can be gained if sufficient attention is concentrated on the design, construction and operating experience of suitably sized conventionally built reactor systems. (author)

  12. Enhanced candu 6 reactor: status

    International Nuclear Information System (INIS)

    Azeez, S.; Girouard, P.

    2006-01-01

    The CANDU 6 power reactor is visionary in its approach, renowned for its on-power refuelling capability and proven over years of safe, economical and reliable power production. Developed by Atomic Energy of Canada Limited (AECL), the CANDU 6 design offers excellent performance utilizing state-of-the-art technology. The first CANDU 6 plants went into service in the early 1980s as leading edge technology and the design has been continuously advanced to maintain superior performance with an outstanding safety record. The first set of CANDU 6 plants - Gentilly 2 and Point Lepreau in Canada, Embalse in Argentina and Wolsong- Unit 1 in Korea - have been in service for more than 22 years and are still producing electricity at peak performance; to the end of 2004, their average Lifetime Capacity Factor was 83.2%. The newer CANDU 6 units in Romania (Cernavoda 1), Korea (Wolsong-Units 2, 3 and 4) and Qinshan (Phase III- Units 1 and 2) have also been performing at outstanding levels. The average lifetime Capacity Factor of the 10 CANDU 6 operating units around the world has been 87% to the end of 2004. Building on these successes, AECL is committed to the further development of this highly successful design, now focussing on meeting customers' needs for reduced costs, further improvements to plant operation and performance, enhanced safety and incorporating up-to-date technology, as warranted. This has resulted in AECL embarking on improving the CANDU 6 design through an upgraded product termed the ''Enhanced CANDU 6'' (EC6), which incorporates several attractive but proven features that make the CANDU 6 reactor even more economical, safer and easier to operate. Some of the key features that are being incorporated into the EC6 include increasing the plant's power output, shortening the overall project schedule, decreasing the capital cost, dealing with obsolescence issues, optimizing maintenance outages and incorporating lessons learnt through feedback obtained from the

  13. The state of art report on advanced reactor development

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Noh, J. M.; Hwang, D. H. and others

    1999-07-01

    Recently, researches on the advanced power reactors are being performed actively, that maximize the economics and enhance the reactor safety by introducing the inherent safety characteristics and passive safety features. In the development of advanced reactor technology, we developed the inherent core design technologies which can form a foundation of indigenous technologies to provide the basic technology for the core design of the domestic advanced reactor. In this report, we examined the neutronics design technologies and core thermal hydraulics design technologies for advanced reactors performed all over the world. Major efforts are focussed on the soluble boron free core design technology and high conversion core design technology. In addition to these, new conceptual core, such as a supercritical core, design technology development was also reviewed. The characteristics of critical heat flux have been investigated for non-square lattice rod bundles, such as triangular lattice and wire wrap lattice. Based on the status of advanced reactor development, the soluble boron free and hexagonal lattice core design technologies are elementary technology for the domestic advanced reactor core. These elementary core technologies would enhance the reactor safety and improve the economics. (author). 71 refs., 31 tabs., 74 figs

  14. Second meeting of the International Working Group on Advanced Technologies for Water Cooled Reactors, Helsinki, 6-9 June 1988

    International Nuclear Information System (INIS)

    1989-05-01

    The Second Meeting of the IAEA International Working Group on Advanced Technologies for Water Cooled Reactors (IWGATWR) was held in Helsinki, Finland, from 6-9 June 1988. The Summary Report (Part II) contains the papers which review the national programmes since the first meeting of IWGATWR in May 1987 in the field of Advanced Technologies for Water Cooled Reactors and other presentations at the Meeting. A separate abstract was prepared for each of these 12 papers presented at the meeting. Figs and tabs

  15. The slightly-enriched spectral shift control reactor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.R.; Lee, J.C.; Larsen, E.W. (Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering); Edlund, M.C. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical and Nuclear Engineering)

    1991-11-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile {sup 238}U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC.

  16. The slightly-enriched spectral shift control reactor

    International Nuclear Information System (INIS)

    Martin, W.R.; Lee, J.C.; Larsen, E.W.; Edlund, M.C.

    1991-11-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile 238 U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC

  17. New technologies for acceleration and vibration measurements inside operating nuclear power reactors

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Fiedler, J.; Heidemann, P.; Blaser, R.; Schmid, F.; Trobitz, M.; Hirsch, L.; Thoma, K.

    2000-01-01

    A miniature bi-axial in-core accelerometer has been inserted temporarily inside the travelling in-core probe (TIP) systems of operating 1300 MW el boiling water reactors (BWR) during full power operation. In-core acceleration measurements can be performed in any position of the TIP system. This provides new features of control technologies to preserve the integrity of reactor internals. The radial and axial position where fretting or impacting of instrumentation string tubes or other structures might occur can be localised inside the reactor pressure vessel. The efficiency and long-term performance of subsequent improvements of the mechanical or operating conditions can be controlled with high local resolution and sensitivity. Low frequency vibrations of the instrumentation tubes were measured inside the core. Neutron-mechanical scale factors were determined from neutron noise, measured by the standard in-core neutron instrumentation and from displacements of the TIP tubes, calculated by integration of the measured in-core acceleration signals. The scale factors contribute to qualitative and quantitative monitoring of BWR internals' vibrations only by the use of neutron signals. (authors)

  18. Safe new reactor for radionuclide production

    International Nuclear Information System (INIS)

    Gray, P.L.

    1995-01-01

    In late 1995, DOE is schedule to announce a new tritium production unit. Near the end of the last NPR (New Production Reactors) program, work was directed towards eliminating risks in current designs and reducing effects of accidents. In the Heavy Water Reactor Program at Savannah River, the coolant was changed from heavy to light water. An alternative, passively safe concept uses a heavy-water-filled, zircaloy reactor calandria near the bottom of a swimming pool; the calandria is supported on a light-water-coolant inlet plenum and has upflow through assemblies in the calandria tubes. The reactor concept eliminates or reduces significantly most design basis and severe accidents that plague other deigns. The proven, current SRS tritium cycle remains intact; production within the US of medical isotopes such as Mo-99 would also be possible

  19. Recent developments in engineering and technology concepts for prospective tokamak fusion reactors

    International Nuclear Information System (INIS)

    Ford, G.W.K.

    1987-01-01

    The tokamak has become the most developed magnetic fusion system and it appears likely that break-even and possibly ignition will first be demonstrated in existing machines of this type. Yet larger tokamaks could also demonstrate the essential technologies for the production of useful power. World-wide, well over a hundred tritium-breeder/heat-removal blanket concepts have been devised and preliminary engineering design studies undertaken, but the effort deployed on breeding and power recovery systems has been very small compared with that assigned to plasma research and development. The European Communities' NET (Next European Torus) project may offer an opportunity to redress this imbalance. The NET pre-design stage now in progress for some three years has selected many of the best features of plasma and nuclear design from the world's total efforts in these fields, and the NET concept is described in this paper as exemplifying where magnetic fusion power reactor technology stands today. It is concluded that although there are numerous more advanced types of magnetic confinement fusion reactor at early stages of their physics development, the tokamak offers the best opportunity for the early demonstration of fusion power

  20. SEQUENCING BATCH REACTOR: A PROMISING TECHNOLOGY IN WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A. H. Mahvi

    2008-04-01

    Full Text Available Discharge of domestic and industrial wastewater to surface or groundwater is very dangerous to the environment. Therefore treatment of any kind of wastewater to produce effluent with good quality is necessary. In this regard choosing an effective treatment system is important. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat municipal and industrial wastewater. The process could be applied for nutrients removal, high biochemical oxygen demand containing industrial wastewater, wastewater containing toxic materials such as cyanide, copper, chromium, lead and nickel, food industries effluents, landfill leachates and tannery wastewater. Of the process advantages are single-tank configuration, small foot print, easily expandable, simple operation and low capital costs. Many researches have been conducted on this treatment technology. The authors had been conducted some investigations on a modification of sequencing batch reactor. Their studies resulted in very high percentage removal of biochemical oxygen demand, chemical oxygen demand, total kjeldahl nitrogen, total nitrogen, total phosphorus and total suspended solids respectively. This paper reviews some of the published works in addition to experiences of the authors.

  1. Installation technology of reactor internals on shroud replacement work

    International Nuclear Information System (INIS)

    Miyano, Hiroshi

    1999-01-01

    Since the replacement of large welded reactor internals much as a core shroud did not have a precedent in the world, quite a few technologies had to be developed. Especially for the installation of new core shroud, jet pumps, core plate and top guide, the accurate weld and fit-up techniques for large structures was required to secure their integrity. The vessel shielding system was utilized to reduce general area dose rate such that all replacement work. For jet pump installation, automatic remote welding machines were used for high radiation area. As for the core shroud, shroud support weld prep machining tool with high accuracy, jacking system to support fit-up, new weld machine for small work space and low heat input weld joint were developed. Shroud replacement work in Fukushima Dai-ichi NPS Unit 3 (1F-3) with application of these development techniques, was successfully accomplished. The technology is applied for 1F-2 replacement work also. (author)

  2. Status of fast reactor design technology development in Korea

    International Nuclear Information System (INIS)

    Dohee Hahn

    2000-01-01

    The LMR Design Technology Development Project was approved as a national long-term R and D program in 1992 by the Korea Atomic Energy Commission (KAEC) which decided to develop and construct a LMR with the goal of developing a LMR which can serve as a long term power supplier with competitive economics and enhanced safety. Based upon the KAEC decision, the Korea Atomic Energy Research Institute (KAERI) has been developing KALIMER (Korea Advanced Liquid Metal Reactor). According to the revised National Nuclear Energy Promotion Plan of June 1997, the basic design of KALIMER will be completed by 2006 and the possibility of construction will be considered sometime during the mid 2010s. Three year Phase 1 of the LMR Design Technology Development Project was completed in March 2000 and a preliminary conceptual design report has been issued. Conceptual design of KALIMER will be developed during the Phase 2 of the Project, which will last for two years. (author)

  3. Status on potential of advanced fission reactors

    International Nuclear Information System (INIS)

    L-Zaleski, C.P.

    1978-01-01

    In this short lecture, only two types of reactors will be discussed: the liquid metal fast breeder reactors (LMFBR) and the high temperature reactors (HTR). This does not mean that other very interesting concepts do not exist, but there are or proven light water reactors and heavy water reactors or has not reached the state of industrial development like molten-salt or gas breeder reactors. In discussing any types of industrial development, it seems to me useful, first to indicate the reasons or motivations for this development. Then I will give a short historical review and analysis of what has been done up to now. For HTR's a very brief status report will be presented. For LMFBR's, I will give indications of experience gained with demonstration plants and more specifically with Phenix, before listing the most important technical problems which still need more work to be fully solved. Finally, I will briefly discuss the economic status and perspectives of LMFBR's and will mention the public acceptance problem

  4. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    Matsuura, S.; Nakahara, Y.; Takano, H.

    1983-09-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1982 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Since fiscal 1982, Systematic research and development work on safeguards technology has been added to the activities of the Department. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  5. Fast breeder reactor fuel reprocessing R and D: technological development for a commercial plant

    International Nuclear Information System (INIS)

    Colas, J.; Saudray, D.; Coste, J.A.; Roux, J.P.; Jouan, A.

    1987-01-01

    The technological developments undertaken by the CEA are applied to a plant project of a 50 t/y capacity, having to reprocess in particular the SUPERPHENIX 1 reactor fuel. French experience on fast breeder reactor fuel reprocessing is presented, then the 50 t/y capacity plant project and the research and development installations. The R and D programs are described, concerning: head-end operations, solvent extractions, Pu02 conversion and storage, out-of-specification Pu02 redissolution, fission products solution vitrification, conditioning of stainless steel hulls by melting, development of remote operation equipments, study of corrosion and analytical problems

  6. Transactions of the 10th international conference on structual mechanics in reactor technology

    International Nuclear Information System (INIS)

    Hadjian, A.H.

    1989-01-01

    In this book, a wide spectrum of subjects is covered, including theoretical developments in structural mechanics, loading conditions, behavior of materials, fluid mechanics, operating experience, accident sequences, and calculational procedures. As a result, problems of structural mechanics analysis are focused within the general context of the design, reliability, and safety of nuclear reactors. Operating plant performance and life extension, waste repository technology and regulatory research have been formalized as distinct Divisions. The papers are theoretical or applied, or they address both of these aspects to demonstrate application of developed methods to solve specific design problems and show how well actual behavior correlates with theory. These paper explore in detail the mechanical design and system integration of fusion power reactors; thermohydraulics, structural mechanics and life-time evaluations of reactor components as first wall diverter/limiter, plasma heating devices, breeding blanket and shielding, magnet coils and supports, and vacuum containment systems, and structural analysis and comparison with measured data

  7. Reactor Shutdown Mechanism by Top-mounted Hydraulic System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Haun; Cho, Yeong Garp; Choi, Myoung Hwan; Lee, Jin Haeng; Huh, Hyung; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    There are two types of reactor shutdown mechanisms in HANARO. One is the mechanism driven by a hydraulic system, and the other is driven by a stepping motor. In HANARO, there are four Control Rod Drive Mechanisms (CRDMs) with an individual step motor and four Shutoff (SO) Units with an individual hydraulic system located at the top of reactor pool. The absorber rods in SO units are poised at the top of the core by the hydraulic force during normal operation. The rods of SO units drop by gravity as the first reactor showdown mechanism when a trip is commended by the reactor protection system (RPS). The rods in CRDMs also drop by gravity together as a redundant shutdown mechanism. When a trip is commended by the reactor regulating system (RRS), the absorber rods of CRDM only drop; while the absorber rods of SO units stay at the top of the core by the hydraulic system. The reactivity control mechanisms of in JRTR, one of the new research reactor with plate type fuels, consist of four CRDMs driven by an individual step motor and two second shutdown drive mechanisms (SSDMs) driven by an individual hydraulic system as shown in Fig. 1. The CRDMs act as the first reactor shutdown mechanism and reactor regulating as well. The top-mounted SSDM driven by the hydraulic system for the JRTR is under design in KAERI. The SSDM provides an alternate and independent means of reactor shutdown. The second shutdown rods (SSRs) of the SSDM are poised at the top of the core by the hydraulic system during the normal operation and drop by gravity for the reactor trip. Based on the proven technology of the design, operation and maintenance for HANARO, the SSDM for the JRTR has been optimized by the design improvement from the experience and test. This paper aims for the introduction of the SSDM in the process of the basic design. The major differences of the shutdown mechanisms by the hydraulic system are compared between HANARO and JRTR, and the design features, system, structure and

  8. Development of a tool for comparing different nuclear power reactor technologies: the Mexican choice

    International Nuclear Information System (INIS)

    Martin-del-Campo, C.; Francois, J.L.; Reyes, R.

    2007-01-01

    This paper describes a methodology which has allowed us to make a comparative assessment of nuclear power reactor options. The methodology was divided in 3 steps. The first step consists in searching of common indicators to be compared. A total of twenty indicators were considered and grouped in 3 main criteria. The second step is to obtain the values of all the indicators for each of the reactor technologies being compared. The third step is to utilize an aggregation method to integrate all the indicators in an overall qualification. Fuzzy Logic was selected as multi criteria aggregation method because it copes with imprecisely defined data; it can model non-linear functions of arbitrary complexity; and it is able to build on top of the experience of experts. The Fuzzy Logic inference system was built using the MATLAB toolbox; 3 fuzzy sets were described for each entry variable (Indicator) and 5 fuzzy sets for the output variable (Qualification). Both, the set of membership function and the set of rules were defined in combination. The methodology is simple but at the same time is powerful; it allows the use of all the indicators with their own magnitudes and units. Five reactors were compared: the Advanced Boiling Water Reactor (ABWR), the Economic Simplified Boiling Water Reactor (ESBWR), the Evolutionary Pressurized water Reactor (EPR), the Advanced Pressurized water reactor 1000 (AP1000) and the Pebbled Bed Modular Reactor (PBMR). Preliminary results were obtained using non official data obtained from public information. The qualifications of the reactors appear to be quite near. This work should be improved by taking into account which indicator is important and grading the indicators according to the situation in Mexico. (authors)

  9. Reactor FaceMap Tool: A modern graphics tool for displaying reactor data

    International Nuclear Information System (INIS)

    Roberts, J.C.

    1991-01-01

    A prominent graphical user interface in reactor physics applications at the Savannah River Site is the reactor facemap display. This is a two dimensional view of a cross section of a reactor. In the past each application which needed a facemap implemented its own version. Thus, none of the code was reused, the facemap implementation was hardware dependent and the user interface was different for each facemap. The Reactor FaceMap Tool was built to solve these problems. Through the use of modern computing technologies such as X Windows, object-oriented programming and client/server technology the Reactor FaceMap Tool has the flexibility to work in many diverse applications and the portability to run on numerous types of hardware

  10. Cutting Technology for Decommissioning of the Reactor Pressure Vessels in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jeong, Kwan Seong; Kim, Geun Ho; Moon, Jei Kwon; Choi, Byung Seon

    2012-01-01

    Lots of nuclear power plants have been decommissioned during the last 2 decades. An essential part of this work is the dismantling of the Reactor Pressure Vessel and its Internals. For this purpose a wide variety of different cutting technologies have been developed, adapted and applied. A detailed introduction to Plasma Arc cutting, Contact Arc Metal cutting and Abrasive Water Suspension Jet cutting is given, as it turned out that these cutting technologies are particularly suitable for these type of segmentation work. A comparison of these technologies including gaseous emissions, cutting power, manipulator requirements as well as selected design approaches are given. Process limits as well as actual limits of application are presented

  11. Technical issues in fusion reactors

    International Nuclear Information System (INIS)

    Rohatgi, V.K.; Vijayan, T.

    1989-01-01

    In this paper the issues in fusion reactor technology are examined. Rapid progress in fusion technology research in recent years can be attributed to the advances in various technologies. The commercial generation of fusion power greatly depends on the evolution and improvements in these technologies. With better understanding of plasma physics, fusion reactor designs are becoming more and more realistic and comprehensive. It is now possible to compare various concepts within the framework of established technologies. The technological issues needing better understanding and solutions to problem areas are identified. Various instabilities and energy losses are major problem areas. Extensive developments in reactor-relevant advanced materials, compact and powerful superconducting magnets, high-power systems, and plasma heating drivers need to be undertaken and emphasized

  12. Reactor engineering department annual report

    International Nuclear Information System (INIS)

    1990-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1989 (April 1, 1989 - March 31, 1990). One of major Department's programs is the assessment of the high conversion light water reactor and the design activities of advanced reactor system. Development of a high energy proton linear accelerator for the nuclear engineering including is also TRU incineration promoted. Other major tasks of the Department are various basic researches on nuclear data and group constants, theoretical methods and code development, on reactor physics experiments and analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  13. The impact of oil price on additions to US proven reserves

    International Nuclear Information System (INIS)

    Farzin, Y.H.

    2001-01-01

    Departing from Hotelling's assumption of fixed and known reserves, this paper develops an economic model of additions to proven reserves that explicitly incorporates the effects of expected resource price, cumulative reserves development, and technological progress on reserve additions. The model treats additions to proven oil reserves as output of a production process in which drilling wells is a primary input to transform some of oil-in-place into the economic category of proven reserves. Application of the model to US data for the 1950-1995 period provides strong statistical support for the existence of all the three salient effects. We obtain an estimate of the price elasticity of reserve additions (absent from previous studies) which, although statistically highly significant, is rather small. Using this price elasticity estimate, it is shown that if in the face of steady economic growth, and hence, oil consumption, US oil import dependence is to be kept from rising in the future, ceteris paribus, a steady oil price increase in the range of 1.5-4.5% a year is essential

  14. Nuclear reactors: physics and materials

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G

    2005-07-01

    In the form of a tutorial addressed to non-specialists, the article provides an introduction to nuclear reactor technology and more specifically to Light Water Reactors (LWR); it also shows where materials and chemistry problems are encountered in reactor technology. The basics of reactor physics are reviewed, as well as the various strategies in reactor design and the corresponding choices of materials (fuel, coolant, structural materials, etc.). A brief description of the various types of commercial power reactors follows. The design of LWRs is discussed in greater detail; the properties of light water as coolant and moderator are put in perspective. The physicochemical and metallurgical properties of the materials impose thermal limits that determine the performance and the maximum power a reactor can deliver. (author)

  15. A Basic LEGO Reactor Design for the Provision of Lunar Surface Power

    International Nuclear Information System (INIS)

    John Darrell Bess

    2008-01-01

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for

  16. Fusion reactor development: A review

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This paper is a review of the current prospects for fusion reactor development based upon the present status in plasma physics research, fusion technology development and reactor conceptual design for the tokamak magnetic confinement concept. Recent advances in tokamak plasma research and fusion technology development are summarized. The direction and conclusions of tokamak reactor conceptual design are discussed. The status of alternate magnetic confinement concept research is reviewed briefly. A feasible timetable for the development of fusion reactors is presented

  17. Dynamic modeling of the advanced neutron source reactor

    International Nuclear Information System (INIS)

    March-Leuba, J.; Ibn-Khayat, M.

    1990-01-01

    The purpose of this paper is to provide a summary description and some applications of a computer model that has been developed to simulate the dynamic behavior of the advanced neutron source (ANS) reactor. The ANS dynamic model is coded in the advanced continuous simulation language (ACSL), and it represents the reactor core, vessel, primary cooling system, and secondary cooling systems. The use of a simple dynamic model in the early stages of the reactor design has proven very valuable not only in the development of the control and plant protection system but also of components such as pumps and heat exchangers that are usually sized based on steady-state calculations

  18. Recording Process Documentation for Provenance

    NARCIS (Netherlands)

    Groth, P.T.; Moreau, L

    2009-01-01

    Scientific and business communities are adopting large-scale distributed systems as a means to solve a wide range of resource-intensive tasks. These communities also have requirements in terms of provenance. We define the provenance of a result produced by a distributed system as the process that

  19. Completion of the experimental equipment systems and preparation of practical tutorials on the Dalat Nuclear Research Reactor for nuclear science and technology education

    International Nuclear Information System (INIS)

    Le Vinh Vinh; Huynh Ton Nghiem; Luong Ba Vien; Nguyen Minh Tuan; Nguyen Kien Cuong; Pham Quang Huy; Tran Tri Vien

    2015-01-01

    The project Completion of the experimental equipment systems and preparation of practical tutorials on the Dalat Nuclear Research Reactor for nuclear science and technology education performed by Dalat Nuclear Research Institute and financed by Ministry of Science and Technology aimed at strengthening the training capability of nuclear human resources. The content of this work includes: i) Improvement of experimental equipment; ii) Compilation of training material for experiments with the improved equipment systems on the reactor; iii) Compilation of training material for reactor calculations includes the following areas: neutronics, hydrothermal, safety analysis and accident consequence analysis. Results of the project provide important conditions to support practical educational and training curriculums in nuclear science and technology. (author)

  20. Reactor Coolant Temperature Measurement using Ultrasonic Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, JaeCheon [KEPCO International Nuclear graduate School, Ulsan (Korea, Republic of); Seo, YongSun; Bechue, Nicholas [Krohne Messtechnik GmbH, Duisburg (Germany)

    2016-10-15

    In NPP, the primary piping temperature is detected by four redundant RTDs (Resistance Temperature Detectors) installed 90 degrees apart on the RCS (Reactor Coolant System) piping circumferentially. Such outputs however, if applied to I and C systems would not give balanced results. The discrepancy can be explained by either thermal stratification or improper arrangement of thermo-wells and RTDs. This phenomenon has become more pronounced in the hot-leg piping than in the cold-leg. Normally, the temperature difference among channels is in the range of 1°F in Korean nuclear power Plants. Consequently, a more accurate pipe average temperate measurement technique is required. Ultrasonic methods can be used to measure average temperatures with relatively higher accuracy than RTDs because the sound wave propagation in the RCS pipe is proportional to the average temperature around pipe area. The inaccuracy of RCS temperature measurement worsens the safety margin for both DNBR and LPD. The possibility of this discrepancy has been reported with thermal stratification effect. Proposed RCS temperature measurement system based on ultrasonic technology offers a countermeasure to cope with thermal stratification effect on hot-leg piping that has been an unresolved issue in NPPs. By introducing ultrasonic technology, the average internal piping temperature can be measured with high accuracy. The inaccuracy can be decreased less than ±1℉ by this method.

  1. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  2. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  3. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  4. Project Luna Succendo: The Lunar Evolutionary Growth-Optimized (LEGO) Reactor

    Science.gov (United States)

    Bess, John Darrell

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched within lunar shipments from the Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides 5 kWe using a free-piston Stirling space converter. The overall envelope for a single unit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. The subunits can be placed with centerline distances of approximately 0.6 m in a hexagonal-lattice pattern to provide sufficient neutronic coupling while allowing room for heat rejection and interstitial control. A lattice of six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network Future improvements include advances in reactor control

  5. First meeting of the International Working Group on Advanced Technologies for Water Cooled Reactors, Vienna, 18-21 May 1987. (Pt. 2)

    International Nuclear Information System (INIS)

    1987-12-01

    The First Meeting of the IAEA International Working Group on Advanced Technologies for Water Cooled Reactors was held in Vienna, Austria from 18-21 May 1987. The Summary Report (Pt. 2) contains the papers which review the national programmes in the field of Advanced Technologies for Water Cooled Reactors and other presentations at the Meeting. A separate abstract was prepared for each of the 10 papers presented at this meeting. Refs, figs

  6. Liquid metal reactor development. Development of LMR design technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Cheol; Kim, Y I; Kim, Y G; Kim, E K; Song, H; Chung, H T; Sim, Y S; Min, B T; Kim, Y S; Wi, M H; Yoo, B; Lee, J H; Lee, H Y; Kim, J B; Koo, G H; Hahn, D H; Na, B C; Hwang, W; Nam, C; Ryu, W S; Lim, G S; Kim, D H; Kim, J D; Gil, C S

    1997-07-01

    This project was performed in five parts, the scope and contents of which are as follows: The nuclear data processing system was established and the KFS group constant library was improved and verified. Basic computation system was constructed by either developing or adding its function. Input/output (I/O) interface processing was developed to establish an integrated calculation system for LMR core nuclear rand thermal-hydraulic design and analysis. An experimental data analysis was performed to validate the constructed core neutronic calculation system. Using the established core calculation system and design technology, preliminary core design and performance analysis on the domestic LMR core design concept were carried out. To develop the basic technology of the LMR system analysis, LMR system behavior characteristics evaluation, thermal -fluid system analysis in the reactor pool, preliminary overall plant analysis and computer codes development have been performed. A porous model and simple one-dimensional model have been evaluated for the reactor pool analysis. The evaluation of the residual heat removal system on different design concepts has been also conducted. For the development of high temperature structural analysis, the heat transfer and thermal stress analyses were performed using finite element program with user subroutine that has been developed with an implementation of the Chaboche constitutive model for inelastic analysis capability, and the evaluation of creep-fatigue and ratcheting behavior of high temperature structure was carried out using this program. for development of the seismic isolation system and to predict the shear behavior for the laminated rubber bearing were established. And the behavior tests of isolation bearing and rubber specimens were carried out, and the seismic response tests for the isolation model structure were performed using the 30 ton shaking table. (author). 369 refs., 119 tabs., 320 figs.

  7. Liquid metal reactor development. Development of LMR design technology

    International Nuclear Information System (INIS)

    Kim, Young Cheol; Kim, Y. I.; Kim, Y. G.; Kim, E. K.; Song, H.; Chung, H. T.; Sim, Y. S.; Min, B. T.; Kim, Y. S.; Wi, M. H.; Yoo, B.; Lee, J. H.; Lee, H. Y.; Kim, J. B.; Koo, G. H.; Hahn, D. H.; Na, B. C.; Hwang, W.; Nam, C.; Ryu, W. S.; Lim, G. S.; Kim, D. H.; Kim, J. D.; Gil, C. S.

    1997-07-01

    This project was performed in five parts, the scope and contents of which are as follows: The nuclear data processing system was established and the KFS group constant library was improved and verified. Basic computation system was constructed by either developing or adding its function. Input/output (I/O) interface processing was developed to establish an integrated calculation system for LMR core nuclear rand thermal-hydraulic design and analysis. An experimental data analysis was performed to validate the constructed core neutronic calculation system. Using the established core calculation system and design technology, preliminary core design and performance analysis on the domestic LMR core design concept were carried out. To develop the basic technology of the LMR system analysis, LMR system behavior characteristics evaluation, thermal -fluid system analysis in the reactor pool, preliminary overall plant analysis and computer codes development have been performed. A porous model and simple one-dimensional model have been evaluated for the reactor pool analysis. The evaluation of the residual heat removal system on different design concepts has been also conducted. For the development of high temperature structural analysis, the heat transfer and thermal stress analyses were performed using finite element program with user subroutine that has been developed with an implementation of the Chaboche constitutive model for inelastic analysis capability, and the evaluation of creep-fatigue and ratcheting behavior of high temperature structure was carried out using this program. for development of the seismic isolation system and to predict the shear behavior for the laminated rubber bearing were established. And the behavior tests of isolation bearing and rubber specimens were carried out, and the seismic response tests for the isolation model structure were performed using the 30 ton shaking table. (author). 369 refs., 119 tabs., 320 figs

  8. High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology

    Science.gov (United States)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITs of 950 and 1200 K are presented. Power plant performance data were obtained for TITs ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo-generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  9. Future directions in boiling water reactor design

    International Nuclear Information System (INIS)

    Wilkins, D.R.; Hucik, S.A.; Duncan, J.D.; Sweeney, J.I.

    1987-01-01

    The Advanced Boiling Water Reactor (ABWR) is being developed by an international team of BWR manufacturers to respond to worldwide utility needs in the 1990's. Major objectives of the ABWR program are design simplification; improved safety and reliability; reduced construction, fuel and operating costs; improved maneuver-ability; and reduced occupational exposure and radwaste. The ABWR incorporates the best proven features from BWR designs in Europe, Japan and the United States and application of leading edge technology. Key features of the ABWR are internal recirculation pumps; fine-motion, electrohydraulic control rod drives; digital control and instrumentation; multiplexed, fiber optic cabling netwoek; pressure suppression containment with horizontal vents; cylindrical reinforced concrete containment; structural integration of the containment and reactor building; severe accident capability; state-of-the-art fuel; advanced trubine/generator with 52'' last stage buckets; and advanced radwaste technology. The ABWR is ready for lead plant application in Japan, where it is being developed as the next generation Japan standard BWR under the guidance and leadership of The Tokyo Electric Power Company, Inc. and a group of Japanese BWR utilities. In the United States it is being adapted to the needs of US utilities through the Electric Power Research Institute's Advanced LWR Requirements Program, and is being reviewed by the US Nuclear Regulatory Commission for certification as a preapproved US standard BWR under the US Department of Energy's ALWR Design Verification Program. These cooperative Japanese and US programs are expected to establish the ABWR as a world class BWR for the 1990's...... (author)

  10. Research reactors

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  11. Development of Very High Temperature Reactor Technology

    International Nuclear Information System (INIS)

    Lee, Won Jae; Noh, J. M.; Kim, Y. H.

    2009-04-01

    For an efficient production of nuclear hydrogen, the VHTR (Very High Temperature Gas-cooled Reactor) of 950 .deg. C outlet temperature and the interfacing system for the hydrogen production are required. We have developed various evaluation technologies for the performance and safety of VHTR through the accomplishment of this project. First, to evaluate the performance of VHTR, a series of analyses has been performed such as core characteristics at 950 .deg. C, applicability of cooled-vessel, intermediate loop system and high temperature structural integrity. Through the analyses of major accidents such as HPCC and LPCC and the analysis of the risk/performance-informed method, VHTR safety evaluation has been also performed. In addition, various design analysis codes have been developed for a nuclear design, system loop design, system performance analysis, air-ingress accident analysis, fission product/tritium transport analysis, graphite structure seismic analysis and hydrogen explosion analysis, and they are being verified and validated through a lot of international collaborations

  12. Integrated gasification gas combined cycle plant with membrane reactors: Technological and economical analysis

    International Nuclear Information System (INIS)

    Amelio, Mario; Morrone, Pietropaolo; Gallucci, Fausto; Basile, Angelo

    2007-01-01

    In the present work, the capture and storage of carbon dioxide from the fossil fuel power plant have been considered. The main objective was to analyze the thermodynamic performances and the technological aspects of two integrated gasification gas combined cycle plants (IGCC), as well as to give a forecast of the investment costs for the plants and the resulting energy consumptions. The first plant considered is an IGCC* plant (integrated gasification gas combined cycle plant with traditional shift reactors) characterized by the traditional water gas shift reactors and a CO 2 physical adsorption system followed by the power section. The second one is an IGCC M plant (integrated gasification gas combined cycle plant with membrane reactor) where the coal thermal input is the same as the first one, but the traditional shift reactors and the physical adsorption unit are replaced by catalytic palladium membrane reactors (CMR). In the present work, a mono-dimensional computational model of the membrane reactor was proposed to simulate and evaluate the capability of the IGCC M plant to capture carbon dioxide. The energetic performances, efficiency and net power of the IGCC* and IGCC M plants were, thus, compared, assuming as standard a traditional IGCC plant without carbon dioxide capture. The economical aspects of the three plants were compared through an economical analysis. Since the IGCC* and IGCC M plants have additional costs related to the capture and disposal of the carbon dioxide, a Carbon Tax (adopted in some countries like Sweden) proportional to the number of kilograms of carbon dioxide released in the environment was assumed. According to the economical analysis, the IGCC M plant proved to be more convenient than the IGCC* one

  13. Recent advances in the utilization and the irradiation technology of the refurbished BR2 reactor

    International Nuclear Information System (INIS)

    Dekeyser, J.; Benoit, P.; Decloedt, C.; Pouleur, Y.; Verwimp, A.; Weber, M.; Vankeerberghen, M.; Ponsard, B.

    1999-01-01

    Operation and utilization of the materials testing reactor BR2 at the Belgian Nuclear Research Centre (SCK·CEN) has since its start in 1963 always followed closely the needs and developments of nuclear technology. In particular, a multitude of irradiation experiments have been carried out for most types of nuclear power reactors, existing or under design. Since the early 1990s and increased focus was directed towards more specific irradiation testing needs for light water reactor fuels and materials, although other areas of utilization continued as well (e.g. fusion reactor materials, safety research, ...), including also the growing activities of radioisotope production and silicon doping. An important milestone was the decision in 1994 to implement a comprehensive refurbishment programme for the BR2 reactor and plant installations. The scope of this programme comprised very substantial studies and hardware interventions, which have been completed in early 1997 within planning and budget. Directly connected to this strategic decision for reactor refurbishment was the reinforcement of our efforts to requalify and upgrade the existing irradiation facilities and to develop advanced devices in BR2 to support emerging programs in the following fields: - LWR pressure vessel steel, - LWR irradiation assisted stress corrosion cracking (IASCC), - reliability and safety of high-burnup LWR fuel, - fusion reactor materials and blanket components, - fast neutron reactor fuels and actinide burning, - extension and diversification of radioisotope production. The paper highlights these advances in the areas of BR2 utilisation and the ongoing development activities for the required new generation of irradiations devices. (author)

  14. Development of welding and hardfacing technology for the fast reactor programme in India

    International Nuclear Information System (INIS)

    Bhaduri, Arun Kumar

    2013-01-01

    Prior to the start of construction of the 500 MWe Prototype Fast Breeder Reactor (PFBR), extensive research backed technology development was planned and implemented for materials, welding consumables, fabrication of stringent-specification components and finalisation of quality assurance procedures of fabricated components. With close interaction amongst design, materials and non-destructive evaluation engineers, materials and welding consumable manufactures, and the fabrication industries, it has been possible to overcome the challenges during fabrication of all the structural welds and pipes. This paper presents a comprehensive experience of the development of welding and hardfacing technology for PFBR. (author)

  15. Future fuel cycle development for CANDU reactors

    International Nuclear Information System (INIS)

    Hatcher, S.R.; McDonnell, F.N.; Griffiths, J.; Boczar, P.G.

    1987-01-01

    The CANDU reactor has proven to be safe and economical and has demonstrated outstanding performance with natural uranium fuel. The use of on-power fuelling, coupled with excellent neutron economy, leads to a very flexible reactor system with can utilize a wide variety of fuels. The spectrum of fuel cycles ranges from natural uranium, through slightly enriched uranium, to plutonium and ultimately thorium fuels which offer many of the advantages of the fast breeder reactor system. CANDU can also burn the recycled uranium and/or the plutonium from fuel discharged from light water reactors. This synergistic relationship could obviate the need to re-enrich the reprocessed uranium and allow a simpler reprocessing scheme. Fule management strategies that will permit future fuel cycles to be used in existing CANDU reactors have been identified. Evolutionary design changes will lead to an even greater flexibility, which will guarantee the continued success of the CANDU system. (author)

  16. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  17. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  18. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing

  19. Pellet bed reactor for nuclear propelled vehicles: Part 1: Reactor technology

    Science.gov (United States)

    El-Genk, Mohamed S.

    1991-01-01

    The pellet bed reactor (PBR) for nuclear propelled vehicles is briefly discussed. Much of the information is given in viewgraph form. Viewgraphs include information on the layout for a Mars mission using a PBR nuclear thermal rocket, the rocket reactor layout, the fuel pellet design, materials compatibility, fuel microspheres, microsphere coating, melting points in quasibinary systems, stress analysis of microspheres, safety features, and advantages of the PBR concept.

  20. Pellet bed reactor for nuclear propelled vehicles: Part 1: Reactor technology

    International Nuclear Information System (INIS)

    El-genk, M.S.

    1991-01-01

    The pellet bed reactor (PBR) for nuclear propelled vehicles is briefly discussed. Much of the information is given in viewgraph form. Viewgraphs include information on the layout for a Mars mission using a PBR nuclear thermal rocket, the rocket reactor layout, the fuel pellet design, materials compatibility, fuel microspheres, microsphere coating, melting points in quasibinary systems, stress analysis of microspheres, safety features, and advantages of the PBR concept

  1. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  2. 75 FR 62892 - Massachusetts Institute of Technology Research Reactor Environmental Assessment and Finding of No...

    Science.gov (United States)

    2010-10-13

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-020; NRC-2010-0313] Massachusetts Institute of Technology Research Reactor Environmental Assessment and Finding of No Significant Impact Correction In notice document 2010-24809 beginning on page 61220 in the issue of Monday, October 4, 2010, make the...

  3. The advanced test reactor national scientific user facility advancing nuclear technology

    International Nuclear Information System (INIS)

    Allen, T.R.; Thelen, M.C.; Meyer, M.K.; Marshall, F.M.; Foster, J.; Benson, J.B.

    2009-01-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  4. Conceptual design of a quasi-homogeneous pressurized heavy water reactor to be operated in the closed Th-U233 fuel cycle

    International Nuclear Information System (INIS)

    1979-06-01

    This paper deals with the heavy water reactor, which, from the neutron economy point of view, offers advantages over the light water reactor. Its capability to be fuelled with natural uranium has also been considered a desirable nuclear option by various countries with sufficient domestic uranium resources not wishing to be dependent on the import of enrichment and other fuel cycle services which, in addition, would draw on the foreign exchange reserves. Pressurized heavy water reactors have been designed and built according to two somewhat different versions. While the Canadian CANDU-PHWR concept uses pressure tubes in a nearly unpressurized moderator tank (calandria), the German development line takes advantage of the established and well proven LWR technology, and, thus, uses a pressure vessel design where coolant channels and the surrounding moderator are held at equal pressure. This pressure vessel type heavy water reactor which has been built on a commercial demonstration plant level at ATUCHA in Argentina is described in a companion paper where also a conceptual design for a 685 MWsub(e) PHWR is discussed

  5. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, Bruce [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Thomas, Ken [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2014-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  6. The Results of Feasibility Study of Co-generation NPP With Innovative VK-300 Simplified Boiling Water Reactor

    International Nuclear Information System (INIS)

    Kuznetsov, Yury N.

    2006-01-01

    The co-generation nuclear power plant (CNPP) producing electricity and district heating heat is planned to be constructed in Archangelsk Region of Russia. Following the 'Letter of Intent' signed by Governor of Archangelsk region and by Minister of the Russian Federation for atomic energy the feasibility study of the Project has been done. The NPP will be based on the four co-generation nuclear power units with the Russian VK-300 SBWR. The innovative passive VK-300 reactor facility has been designed on the basis of well-established nuclear technologies, proven major components, the operating experience of the prototype VK-50 reactor in RIAR, Dimitrovgrad, and the experience in designing such reactors as SBWR (GE) and SWR-1000 (Siemens). The CNPP's total power is planned to be 1000 MW(e) and district-heating heat production capacity 1600 Gcal/h. A detailed description of the results of the feasibility study is presented in the report. The results of the feasibility study have shown that the Archangelsk CGNP is feasible in terms of engineering, economics and production. (authors)

  7. The results of feasibility study of co-generation NPP with innovative VK-300 simplified boiling water reactor

    International Nuclear Information System (INIS)

    Kuznetsov, Yu. N.; Gabaraev, B. A.

    2004-01-01

    The co-generation nuclear power plant (CNPP) producing electricity and district-heating heat is planned to be constructed in Archangelsk Region of Russia. Following the Letter of Intent signed by Governor of Archangelsk region and by Minister of the Russian Federation for atomic energy the feasibility study of the Project has been done. The NPP will be based on the four co-generation nuclear power units with the Russian VK-300 SBWR. The innovative passive VK-300 reactor facility has been designed on the basis of well-established nuclear technologies, proven major components, the operating experience of the prototype VK-50 reactor in RIAR, Dimitrovgrad, and the experience in designing such reactors as SBWR (GE) and SWR-1000 (Siemens). The CNPP's total power is planned to be 1000 MW(e) and district-heating heat production capacity 1600 Gcal /h. A detailed description of the results of the feasibility study is presented in the report. The results of the feasibility study have shown that the Archangelsk CGNP is feasible in terms of engineering, economics and production.(author)

  8. Opening Address [International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13), Paris, France, March 4-7, 2013

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2013-01-01

    Public confidence in nuclear power was greatly shaken by the Fukushima Daiichi accident. It will take time to rebuild that confidence. This will only be possible if everyone involved in nuclear power has a total commitment to safety and if the sector is open and transparent. The public need to be reassured that nuclear energy is efficient and safe, can mitigate the effects of climate change and can play a key role in meeting the growing global demand for energy. Fast reactors and related fuel cycles will be important for the long-term sustainability of nuclear power. This innovative technology has the potential to ensure that energy resources which would run out in a few hundred years, using today’s technology, will actually last several thousand years. Fast reactors also reduce the volume and toxicity of the final waste. China’s Experimental Fast Reactor has been connected to the grid. Work is at an advanced stage on construction of India’s 500 MW(e) Prototype Fast Breeder Reactor and of the large BN-800 reactor in the Russian Federation. Interest in fast reactors with closed fuel cycles is increasing steadily. A number of emerging economies are joining the existing fast reactor technology-holders. Considerable R & D work is being done on advanced designs with enhanced safety characteristics. It is important to gather the operational experience of countries with operating fast reactors and related fuel cycle facilities. This can help to achieve higher levels of safety. Events such as the Joint GIF-IAEA Workshop on the safety of sodium-cooled fast reactors last week are a useful way of doing this. They also help to ensure that relevant lessons from the Fukushima Daiichi accident are learned. The IAEA remains the unique collaboration forum for ensuring continued progress in fast reactor technology. We provide an umbrella for knowledge preservation, information exchange and collaborative R&D in which resources and expertise are pooled

  9. Strategic need for a multi-purpose thermal hydraulic loop for support of advanced reactor technologies

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yoon, Su -Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Housley, Gregory K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  10. Determination of Cl-36 in Irradiated Reactor Graphite

    International Nuclear Information System (INIS)

    Beer, H.-F.; Schumann, D.; Stowasser, T.; Hartmann, E.; Kramer, A.

    2016-01-01

    Two of the three research reactors at the Paul Scherrer Institute (PSI), the reactors DIORIT and PROTEUS, contained reactor graphite. Whereas the former research reactor DIORIT has been dismantled completely the PROTEUS is subject to a future decommissioning. In case of the DIORIT the reactor graphite was conditioned applying a procedure developed at PSI. In this case the 36 Cl content had to be determined after the conditioning. The result is reported in this paper. The radionuclide inventory including 36 Cl of the graphite used in PROTEUS was measured and the results are reported in here. It has been proven that the graphite from PROTEUS has a radionuclide inventory near the detection limits. All determined radionuclide activities are far below the Swiss exemptions limits. The graphite from PROTEUS therefore poses no radioactive waste. In contrast, the 36 Cl content of graphite from DIORIT is well above the exemption limits. (author)

  11. The US Liquid Metal Reactor Development Program

    International Nuclear Information System (INIS)

    Till, C.E.; Arnold, W.H.; Griffith, J.D.

    1988-01-01

    The US Liquid Metal Reactor Development Program has been restructured to take advantage of the opportunity today to carry out R and D on truly advanced reactor technology. The program gives particular emphasis to improvements to reactor safety. The new directions are based on the technology of the Integral Fast Reactor (IFR). Much of the basis for superior safety performance using IFR technology has been experimentally verified and aggressive programs continue in EBR-II and TREAT. Progress has been made in demonstrating both the metallic fuel and the new electrochemical processes of the IFR. The FFTF facility is converting to metallic fuel; however, FFTF also maintains a considerable US program in oxide fuels. In addition, generic programs are continuing in steam generator testing, materials development, and, with international cooperation, aqueous reprocessing. Design studies are carried out in conjunction with the IFR technology development program. In summary, the US maintains an active development program in Liquid Metal Reactor technology, and new directions in reactor safety are central to the program

  12. An engineering design of reactor with NPP spent fuels

    International Nuclear Information System (INIS)

    Yuan Luzheng; Shen Feng; Yang Changjiang; Dai Changnian; Jin Huajin; Li Yulun

    2005-01-01

    Study has proven that it is of practical significance to design a reactor in suitable low parameters using the spent fuels of nuclear power plant. This kind of reactor will supply, safely and economically, a clean energy for desalination of sea- water and heating supply for city residents. Based on listing main problems required to be solved when designing a reactor in suitable low parameters directly using NPP spent fuels, a preliminary design scheme with engineering feasibility is given. Some significant efforts and attempts have been made for this scheme on its core structure and main processing systems design, adopting inherent safety characteristics to the full, making the reactor as a 'foolish type' one with easy operation, safe and reliable merit to the best. (authors)

  13. 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors.

    Science.gov (United States)

    Parra-Cabrera, Cesar; Achille, Clement; Kuhn, Simon; Ameloot, Rob

    2018-01-02

    Computer-aided fabrication technologies combined with simulation and data processing approaches are changing our way of manufacturing and designing functional objects. Also in the field of catalytic technology and chemical engineering the impact of additive manufacturing, also referred to as 3D printing, is steadily increasing thanks to a rapidly decreasing equipment threshold. Although still in an early stage, the rapid and seamless transition between digital data and physical objects enabled by these fabrication tools will benefit both research and manufacture of reactors and structured catalysts. Additive manufacturing closes the gap between theory and experiment, by enabling accurate fabrication of geometries optimized through computational fluid dynamics and the experimental evaluation of their properties. This review highlights the research using 3D printing and computational modeling as digital tools for the design and fabrication of reactors and structured catalysts. The goal of this contribution is to stimulate interactions at the crossroads of chemistry and materials science on the one hand and digital fabrication and computational modeling on the other.

  14. Logical provenance in data-oriented workflows?

    KAUST Repository

    Ikeda, R.; Das Sarma, Akash; Widom, J.

    2013-01-01

    for general transformations, introducing the notions of correctness, precision, and minimality. We then determine when properties such as correctness and minimality carry over from the individual transformations' provenance to the workflow provenance. We

  15. Nuclear reactors. Introduction

    International Nuclear Information System (INIS)

    Boiron, P.

    1997-01-01

    This paper is an introduction to the 'nuclear reactors' volume of the Engineers Techniques collection. It gives a general presentation of the different articles of the volume which deal with: the physical basis (neutron physics and ionizing radiations-matter interactions, neutron moderation and diffusion), the basic concepts and functioning of nuclear reactors (possible fuel-moderator-coolant-structure combinations, research and materials testing reactors, reactors theory and neutron characteristics, neutron calculations for reactor cores, thermo-hydraulics, fluid-structure interactions and thermomechanical behaviour of fuels in PWRs and fast breeder reactors, thermal and mechanical effects on reactors structure), the industrial reactors (light water, pressurized water, boiling water, graphite moderated, fast breeder, high temperature and heavy water reactors), and the technology of PWRs (conceiving and building rules, nuclear parks and safety, reactor components and site selection). (J.S.)

  16. Test reactor: basic to U.S. breeder reactor development

    International Nuclear Information System (INIS)

    Miller, B.J.; Harness, A.J.

    1975-01-01

    Long-range energy planning in the U. S. includes development of a national commercial breeder reactor program. U. S. development of the LMFBR is following a conservative sequence of extensive technology development through use of test reactors and demonstration plants prior to construction of commercial plants. Because materials and fuel technology development is considered the first vital step in this sequence, initial U. S. efforts have been directed to the design and construction of a unique test reactor. The Fast Flux Test Facility, FFTF, is a 400 MW(t) reactor with driver fuel locations, open test locations, and closed loops for higher risk experiments. The FFTF will provide a prototypic LMFBR core environment with sufficient instrumentation for detailed core environmental characterization and a testing capability substituted for breeder capability. The unique comprehensive fuel and materials testing capability of the FFTF will be key to achieving long-range objectives of increased power density, improved breeding gain and shorter doubling times. (auth)

  17. Comparison of Ontario Hydro's performance with world power reactors - 1981

    International Nuclear Information System (INIS)

    Dumka, B.R.

    1982-04-01

    The performance of Ontario Hydro's CANDU reactors in 1981 is compared with that of 123 world nuclear power reactors rated at 500 MW(e) or greater. The report is based on data extracted from publications, as well as correspondence with a number of utilities. The basis used is the gross capacity factor, which is defined as gross unit generation divided by the perfect gross output for the period of interest. The lowest of the published turbine and generator design ratings is used to determine the perfect gross output, unless the unit has been proven capable of consistently exceeding this value. The first six reactors in the rankings were CANDU reactors operated by Ontario Hydro

  18. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of

  19. Reports on the projects in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1977-06-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS-projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear energy plants and their systems and the further development of safety technology. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of these investigations within the series 'GRS-F-Forschrittsberichte' (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the different projects of the search program. The individual reports are prepared by the contractors themselves as a documentation of their progress in work and published by the GRS-FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of the progress in reactor safety research. Each report describes the work performed, the results and the next steps of the work. The individual reports are attached to the classification system established by the CEC (Commission of the European Communities). The GRS-F-Progress Reports also include a list of the current investigations arranged according to the projects of the BMFT-Research Program Reactor Safety. This compilation, in addition to the LWR-investigations, also contains first contributions on the safety of advanced reactors. (orig.) [de

  20. Reports on the projects in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1977-11-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS-projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear energy plants and their systems and the further development of safety technology. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of BMFT, informs continuously of the status of these investigations within the series 'GRS-F-Fortschrittsberichte' (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the different projects of the search program. The individual reports are prepared by the contractors themselves as a documentation of their progress in work and published by the GRS-FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of the progress in reactor safety research. Each report describes the work performed, the results and the next steps of the work. The individual reports are attached to the classification system established by the CEC (Commission of the European Communities). The GRS-F-Progress Reports also include a list of the current investigations arranged according to the projects of the BMFT-Research Program Reactor Safety. This compilation, in addition to the LWR-investigations, also contains first contributions on the safety of advanced reactors. (orig.) [de