WorldWideScience

Sample records for prototype surface mode

  1. Surface modes in physics

    CERN Document Server

    Sernelius, Bo E

    2011-01-01

    Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids.This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The

  2. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  3. Surface tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Takizuka, Tomonori; Kurita, Gen-ichi; Azumi, Masafumi; Takeda, Tatsuoki

    1985-10-01

    Surface tearing modes in tokamaks are studied numerically and analytically. The eigenvalue problem is solved to obtain the growth rate and the mode structure. We investigate in detail dependences of the growth rate of the m/n = 2/1 resistive MHD modes on the safety factor at the plasma surface, current profile, wall position, and resistivity. The surface tearing mode moves the plasma surface even when the wall is close to the surface. The stability diagram for these modes is presented. (author)

  4. Prototype Hanford Surface Barrier: Design basis document

    International Nuclear Information System (INIS)

    Myers, D.R.; Duranceau, D.A.

    1994-11-01

    The Hanford Site Surface Barrier Development Program (BDP) was organized in 1985 to develop the technology needed to provide a long-term surface barrier capability for the Hanford Site and other arid sites. This document provides the basis of the prototype barrier. Engineers and scientists have momentarily frozen evolving barrier designs and incorporated the latest findings from BDP tasks. The design and construction of the prototype barrier has required that all of the various components of the barrier be brought together into an integrated system. This integration is particularly important because some of the components of the protective barreir have been developed independently of other barreir components. This document serves as the baseline by which future modifications or other barrier designs can be compared. Also, this document contains the minutes of meeting convened during the definitive design process in which critical decisions affecting the prototype barrier's design were made and the construction drawings

  5. Surface quality in rapid prototype MMD process

    Directory of Open Access Journals (Sweden)

    Lisandro Vargas Henríquez

    2004-09-01

    Full Text Available This article summarises a Manufacturing Materials and Processes MSc thesis written for the Mechanical and Electrical Engineering Department. The paper shows the interaction of process, gap (deposition distance and extursion terminal velocity modelled process parameters for CEIF's (Centro de Equipos Interfacultades rapid prototype molten material deposit (MMD Titan SH-1 machine by analysing prototupes improved surface quality and resistence to tension and characterising material. The project applies experimental design criteria for orientating the selection of experimental process parameters. Acrylonitrile-buttadin-styrene (ABS had alredy been mechanically and physicochemically characterised (i.e the material used in the MMD process.

  6. New developments in surface technology and prototyping

    Science.gov (United States)

    Himmer, Thomas; Beyer, Eckhard

    2003-03-01

    Novel lightweight applications in the automotive and aircraft industries require advanced materials and techniques for surface protection as well as direct and rapid manufacturing of the related components and tools. The manufacturing processes presented in this paper are based on multiple additive and subtractive technologies such as laser cutting, laser welding, direct laser metal deposition, laser/plasma hybrid spraying technique or CNC milling. The process chain is similar to layer-based Rapid Prototyping Techniques. In the first step, the 3D CAD geometry is sliced into layers by a specially developed software. These slices are cut by high speed laser cutting and then joined together. In this way laminated tools or parts are built. To improve surface quality and to increase wear resistance a CNC machining center is used. The system consists of a CNC milling machine, in which a 3 kW Nd:YAG laser, a coaxial powder nozzle and a digitizing system are integrated. Using a new laser/plasma hybrid spraying technique, coatings can be deposited onto parts for surface protection. The layers show a low porosity and high adhesion strength, the thickness is up to 0.3 mm, and the lower effort for preliminary surface preparation reduces time and costs of the whole process.

  7. Surface Loving and Surface Avoiding modes

    OpenAIRE

    Combe, Nicolas; Huntzinger, Jean Roch; Morillo, Joseph

    2008-01-01

    International audience; We theoretically study the propagation of sound waves in GaAs/AlAs superlattices focussing on periodic modes in the vicinity of the band gaps. Based on analytical and numerical calculations, we show that these modes are the product of a quickly oscillating function times a slowly varying envelope function. We carefully study the phase of the envelope function compared to the surface of a semi-infinite superlattice. Especially, the dephasing of the superlattice compared...

  8. Reliability and Failure Modes of a Hybrid Ceramic Abutment Prototype.

    Science.gov (United States)

    Silva, Nelson Rfa; Teixeira, Hellen S; Silveira, Lucas M; Bonfante, Estevam A; Coelho, Paulo G; Thompson, Van P

    2018-01-01

    A ceramic and metal abutment prototype was fatigue tested to determine the probability of survival at various loads. Lithium disilicate CAD-milled abutments (n = 24) were cemented to titanium sleeve inserts and then screw attached to titanium fixtures. The assembly was then embedded at a 30° angle in polymethylmethacrylate. Each (n = 24) was restored with a resin-cemented machined lithium disilicate all-ceramic central incisor crown. Single load (lingual-incisal contact) to failure was determined for three specimens. Fatigue testing (n = 21) was conducted employing the step-stress method with lingual mouth motion loading. Failures were recorded, and reliability calculations were performed using proprietary software. Probability Weibull curves were calculated with 90% confidence bounds. Fracture modes were classified with a stereomicroscope, and representative samples imaged with scanning electron microscopy. Fatigue results indicated that the limiting factor in the current design is the fatigue strength of the abutment screw, where screw fracture often leads to failure of the abutment metal sleeve and/or cracking in the implant fixture. Reliability for completion of a mission at 200 N load for 50K cycles was 0.38 (0.52% to 0.25 90% CI) and for 100K cycles was only 0.12 (0.26 to 0.05)-only 12% predicted to survive. These results are similar to those from previous studies on metal to metal abutment/fixture systems where screw failure is a limitation. No ceramic crown or ceramic abutment initiated fractures occurred, supporting the research hypothesis. The limiting factor in performance was the screw failure in the metal-to-metal connection between the prototyped abutment and the fixture, indicating that this configuration should function clinically with no abutment ceramic complications. The combined ceramic with titanium sleeve abutment prototype performance was limited by the fatigue degradation of the abutment screw. In fatigue, no ceramic crown or ceramic

  9. Nonlinear surface elastic modes in crystals

    Science.gov (United States)

    Gorentsveig, V. I.; Kivshar, Yu. S.; Kosevich, A. M.; Syrkin, E. S.

    1990-03-01

    The influence of nonlinearity on shear horizontal surface elastic waves in crystals is described on the basis of the effective nonlinear Schrödinger equation. It is shown that the corresponding solutions form a set of surface modes and the simplest mode coincides with the solution proposed by Mozhaev. The higher order modes have internal frequencies caused by the nonlinearity. All these modes decay in the crystal as uoexp(- z/ zo) atz≫ zo- u o-1 ( z is the distance from the crystal surface, uo the wave amplitude at the surface). The creation of the modes from a localized surface excitation has a threshold. The stability of the modes is discussed.

  10. Biointrusion test plan for the Permanent Isolation Surface Barrier Prototype

    International Nuclear Information System (INIS)

    Link, S.O.; Cadwell, L.L.; Brandt, C.A.; Downs, J.L.; Rossi, R.E.; Gee, G.W.

    1994-04-01

    This document provides a testing and monitoring plan for the biological component of the prototype barrier slated for construction at the Hanford Site. The prototype barrier is an aboveground structure engineered to demonstrate the basic features of an earthen cover system. It is designed to permanently isolate waste from the biosphere. The features of the barrier include multiple layers of soil and rock materials and a low-permeability asphalt sublayer. The surface of the barrier consists of silt loam soil, covered with plants. The barrier sides are reinforced with rock or coarse earthen-fill to protect against wind and water erosion. The sublayers inhibit plant and animal intrusion and percolation of water. A series of tests will be conducted on the prototype barrier over the next several years to evaluate barrier performance under extreme climatic conditions. Plants and animals will play a significant role in the hydrologic and water and wind erosion characteristics of the prototype barrier. Studies on the biological component of the prototype barrier will include work on the initial revegetation of the surface, continued monitoring of the developing plant community, rooting depth and dispersion in the context of biointrusion potential, the role of plants in the hydrology of the surface and toe regions of the barrier, the role of plants in stabilizing the surface against water and wind erosion, and the role of burrowing animals in the hydrology and water and wind erosion of the barrier

  11. Few-mode vertical-cavity surface-emitting laser: Optional emission of transverse modes with different polarizations

    Science.gov (United States)

    Zhong, Chuyu; Zhang, Xing; Hofmann, Werner; Yu, Lijuan; Liu, Jianguo; Ning, Yongqiang; Wang, Lijun

    2018-05-01

    Few-mode vertical-cavity surface-emitting lasers that can be controlled to emit certain modes and polarization states simply by changing the biased contacts are proposed and fabricated. By directly etching trenches in the p-doped distributed Bragg reflector, the upper mesa is separated into several submesas above the oxide layer. Individual contacts are then deposited. Each contact is used to control certain transverse modes with different polarization directions emitted from the corresponding submesa. These new devices can be seen as a prototype of compact laser sources in mode division multiplexing communications systems.

  12. The breathing mode and the nuclear surface

    International Nuclear Information System (INIS)

    Blaizot, J.P.; Grammaticos, B.

    1981-01-01

    The role of nuclear surface in the breathing mode of nuclei is analyzed. We discuss a simple model in which the density varies according to a scaling of the coordinates. We show that this model reproduces accurately the results of microscopic calculations in heavy nuclei, and we use it to estimate the contribution of the surface to the effective compression modulus of semi-infinite nuclear matter. The calculation is performed in the framework of an extended Thomas-Fermi approximation and using several effective interactions. It is shown that the surface energy is maximum with respect to variations of the density around saturation density. The reduction of the effective compression modulus due to the surface turns to be proportional to the bulk compression modulus. The magnitude of the effect is compared with results of RPA calculations. Other contributions to the effective compressions modulus of finite nuclei are also discussed. (orig.)

  13. MRPC prototypes for NeuLAND tested using the single electron mode of ELBE/Dresden

    Energy Technology Data Exchange (ETDEWEB)

    Yakorev, Dmitry; Bemmerer, Daniel; Elekes, Zoltan; Kempe, Mathias; Stach, Daniel; Wagner, Andreas [Forschungszentrum Dresden-Rossendorf (FZD), Dresden (Germany); Aumann, Tom; Boretzky, Konstanze; Caesar, Christoph; Ciobanu, Mircea; Hehner, Joerg; Heil, Michael; Nusair, Omar; Reifarth, Rene; Simon, Haik [GSI, Darmstadt (Germany); Elvers, Michael; Maroussov, Vassili; Zilges, Andreas [Universitaet Koeln (Germany); Zuber, Kai [TU Dresden (Germany)

    2010-07-01

    The NeuLAND detector at the R{sup 3}B experiment at the future FAIR facility in Darmstadt aims to detect fast neutrons (0.2-1.0 GeV) with high time and spatial resolutions ({sigma}{sub t}<100 ps, {sigma}{sub x,y,z}<1 cm). Prototypes for the NeuLAND detector have been built at FZD and GSI and then studied using the 32 MeV pulsed electron beam at the superconducting electron accelerator ELBE in Dresden, Germany. Owing to the new, single-electron per bunch mode of operation, a rapid validation of the design criteria ({>=}90% efficiency for minimum ionizing particles, {sigma} {<=} 100 ps time resolution) was possible. Tested properties of the prototypes include glass thickness, spacing of the central anode, and a comparison of single-ended and differential readout. Tested frontend electronics schemes include FOPI (single-ended), PADI-based (both single-ended and differential mode tested), and ALICE (differential).

  14. Suppression of the dayside magnetopause surface modes

    Directory of Open Access Journals (Sweden)

    Pilipenko V.A.

    2017-12-01

    Full Text Available Magnetopause surface eigenmodes were suggested as a potential source of dayside high-latitude broadband pulsations in the Pc5-6 band (frequency about 1–2 mHz. However, the search for a ground signature of these modes has not provided encouraging results. The comparison of multi-instrument data from Svalbard with the latitudinal structure of Pc5-6 pulsations, recorded by magnetometers covering near-cusp latitudes, has shown that often the latitudinal maximum of pulsation power occurs about 2–3° deeper in the magnetosphere than the dayside open-closed field line boundary (OCB. The OCB proxy was determined from SuperDARN radar data as the equatorward boundary of enhanced width of a return radio signal. The OCB-ULF correspondence is further examined by comparing the latitudinal profile of the near-noon pulsation power with the equatorward edge of the auroral red emission from the meridian scanning photometer. In most analyzed events, the “epicenter” of Pc5-6 power is at 1–2° lower latitude than the optical OCB proxy. Therefore, the dayside Pc5-6 pulsations cannot be associated with the ground image of the magnetopause surface modes or with oscillations of the last field line. A lack of ground response to these modes beneath the ionospheric projection of OCB seems puzzling. As a possible explanation, we suggest that a high variability of the outer magnetosphere near the magnetopause region may suppress the excitation efficiency. To quantify this hypothesis, we consider a driven field line resonator terminated by conjugate ionospheres with stochastic fluctuations of its eigenfrequency. A solution of this problem predicts a substantial deterioration of resonant properties of MHD resonator even under a relatively low level of background fluctuations. This effect may explain why there is no ground response to magnetopause surface modes or oscillations of the last field line at the OCB latitude, but it can be seen at somewhat lower latitudes

  15. Design and commissioning of a multi-mode prototype for thermochemical conversion of human faeces.

    Science.gov (United States)

    Jurado, Nelia; Somorin, Tosin; Kolios, Athanasios J; Wagland, Stuart; Patchigolla, Kumar; Fidalgo, Beatriz; Parker, Alison; McAdam, Ewan; Williams, Leon; Tyrrel, Sean

    2018-05-01

    This article describes the design and commissioning of a micro-combustor for energy recovery from human faeces, which can operate both in updraft and downdraft modes. Energy recovery from faecal matter via thermochemical conversion has recently been identified as a feasible solution for sanitation problems in low income countries and locations of high income countries where access to sewage infrastructures is difficult or not possible. This technology can be applied to waterless toilets with the additional outcome of generating heat and power that can be used to pre-treat the faeces before their combustion and to ensure that the entire system is self-sustaining. The work presented here is framed within the Nano Membrane Toilet (NMT) project that is being carried out at Cranfield University, as part of the Reinvent the Toilet Challenge of the Bill and Melinda Gates Foundation. For this study, preliminary trials using simulant faeces pellets were first carried out to find out the optimum values for the main operating variables at the scale required by the process, i.e. a fuel flowrate between 0.4 and 1.2 g/min of dry faeces. Parameters such as ignition temperature, residence time, and maximum temperature reached, were determined and used for the final design of the bench-scale combustor prototype. The prototype was successfully commissioned and the first experimental results, using real human faeces, are discussed in the paper.

  16. Entanglement generation between two atoms via surface modes

    International Nuclear Information System (INIS)

    Xu Jingping; Yang Yaping; Al-Amri, M.; Zhu Shiyao; Zubairy, M. Suhail

    2011-01-01

    We discuss the coupling of two identical atoms, separated by a metal or metamaterial slab, through surface modes. We show that the coupling through the surface modes can induce entanglement. We discuss how to control the coupling for the metal or metamaterial slab by adjusting the symmetrical and antisymmetrical property of the surface modes. We analyze the dispersion relation of the surface modes and study the parameter ranges that support the surface modes with the same properties. Our results have potential applications in quantum communication and quantum computation.

  17. Design and prototyping of self-centering optical single-mode fiber alignment structures

    International Nuclear Information System (INIS)

    Ebraert, Evert; Gao, Fei; Thienpont, Hugo; Van Erps, Jürgen; Beri, Stefano; Watté, Jan

    2016-01-01

    The European Commission’s goal of providing each European household with at least a 30 Mb s −1 Internet connection by 2020 would be facilitated by a widespread deployment of fibre-to-the-home, which would in turn be sped up by the development of connector essential components, such as high-precision alignment features. Currently, the performance of state-of-the-art physical contact optical fiber connectors is limited by the tolerance on the cladding of standard telecom-grade single-mode fiber (SMF), which is typically smaller than  ±1 μ m. We propose to overcome this limit by developing micro-spring-based self-centering alignment structures (SCAS) for SMF-connectors. We design these alignment structures with robustness and low-cost replication in mind, allowing for large-scale deployment. Both theoretical and finite element analysis (FEA) models are used to determine the optimal dimensions of the beams of which the micro-springs of the SCAS are comprised. Two topologies of the SCAS, consisting of three and four micro-springs respectively, are investigated for two materials: polysulfone (PSU) and polyetherimide (PEI). These materials hold great potential for high-performance fiber connectors while being compatible with low-cost production and with the harsh environmental operation conditions of those connectors. The theory and FEA agree well (<3% difference) for a simple micro-spring. When including a pedestal on the micro-spring (to bring it further away from the fiber) and for shorter spring lengths the agreement worsens. This is due to spring compression effects not being taken into account in our theoretical model. Prototypes are successfully fabricated using deep proton writing and subsequently characterized. The controlled insertion of an SMF in the SCAS is investigated and we determine that a force of 0.11 N is required. The fiber insertion also causes an out-of-plane deformation of the micro-springs in the SCAS of about 7 μ m, which is no

  18. Results from prototypes of environmental and health alarm devices based on gaseous detectors operating in air in counting mode

    CERN Document Server

    Martinengo, P; Peskov, V; Benaben, P; Charpak, G; Breuil, P

    2011-01-01

    We have developed and successfully tested two prototypes of detectors of dangerous gases based on wire-type counters operating in air in avalanche mode: one is for radon (Rn) detection whereas the other one is for the detection of gases with an ionization potential less than the air components. Due to the operation in pulse counting mode these prototypes have sensitivities comparable to (in the case of the Rn detector) or much higher than (in the case of the detector for low ionization gases) the best commercial devices currently available on the market. We believe that due to their high sensitivity, simplicity and low cost such new detectors will find massive applications. One of them, discussed in this paper, could be the on-line monitoring of Rn for the prediction of earthquakes. (C) 2010 Elsevier B.V. All rights reserved.

  19. A new surface treatment for the prototype Rcs of the BESIII spectrometer

    International Nuclear Information System (INIS)

    Zhang Jiawen; Du Zizhen; Han Jifeng; Li Jiancheng; Li Rubai; Liu Qian; Qian, Sen; Wang Yifang; Xie Yigang; Xie Yuguang; Zhao Jianbin; Min Fasu; Zhao Haiquan; Zhao, T.

    2005-01-01

    The prototype resistive plate chambers (RPCs) for the BESIII spectrometer were constructed by using resistive electrodes made from a special type of phenolic paper laminates developed by us. The surface quality of these laminates is superior to other bakelite plates that have been used to construct RPCs elsewhere. A method for adjusting the resistivety of these laminates was also developed. Extensive studies were conducted by using a number of prototype RPCs in the last several years. Tests have shown prototype RPCs made by using our resistive plates without the linseed oil treatment can achieve the level of performance comparable to RPCs with linseed oil treated bakelite or resistive glass electrodes. In this paper, we will discuss the construction of these prototype RPCs. The test results of a prototype RPC that have been monitored for a year will be reported. Based on favorable test results of prototypes, the RPC production for the muon identifier of the BESIII spectrometer has started at the Beijing Gaonengkedi Science and Technology Co. Ltd. in early 2004 using the technology that we developed

  20. Mode conversion and its utilization of degenerating surface wave modes on a plasma column

    International Nuclear Information System (INIS)

    Nonaka, S.; Akao, Y.

    1983-01-01

    Both mode conversion at degenerating points of dispersion relations for surface wave modes on a discharge plasma column and the methods for their detection and utilization are presented. Mode conversions at three degenerating points become observable by using a surface wave resonator when an azimuthal inhomogeneity of plasma is produced by a static magnetic field of about 1 G applied perpendicular to the column axis. Two of the three detected degenerating points can be utilized for an easy and exact determination of the electron density and its distribution in the discharge tube

  1. X-ray fractography of fatigue fracture surface under mode I and mode III loading

    International Nuclear Information System (INIS)

    Akiniwa, Yoshiaki; Tanaka, Keisuke; Tsumura, Tsuyoshi

    2001-01-01

    The propagation behavior of a circumferential fatigue crack in cylindrical bars of a carbon steel (JIS SGV410) and a stainless steel (JIS SUS316NG) was investigated under cyclic axial and torsional loadings. The J-integral range was used as a fracture mechanics parameter. When compared at the same J-integral range, the crack propagation rate under mode III was smaller than that under mode I. Parallel markings perpendicular to the crack propagation direction were observed on the fatigue fracture surface obtained under mode III loading. The residual stresses in the radial direction, σ r , and in the tangential direction, σ θ , were measured for both mode I and mode III fatigue fracture surfaces. For mode I fracture surface, σ r was tension, and was almost constant irrespective of the applied J-integral range. σ θ was close to zero for both materials. On the other hand, for mode III, σ r and σ θ were compression. For SUS316NG steel, the compressive stress of σ θ increased with the J-integral range. For SGV410 steel, the change of σ θ with the J-integral range was small. The breadth of diffraction profiles increased with J-integral range for both mode I and III. The breadth was found to be a good parameter to evaluate the applied J-integral range. (author)

  2. Surface vibrational modes in disk-shaped resonators.

    Science.gov (United States)

    Dmitriev, A V; Gritsenko, D S; Mitrofanov, V P

    2014-03-01

    The natural frequencies and distributions of displacement components for the surface vibrational modes in thin isotropic elastic disks are calculated. In particular, the research is focused on even solutions for low-lying resonant vibrations with large angular wave numbers. Several families of modes are found which are interpreted as modified surface modes of an infinitely long cylinder and Lamb modes of a plate. The results of calculation are compared with the results of the experimental measurements of vibrational modes generated by means of resonant excitation in duraluminum disk with radius of ≈90 mm and thickness of 16 mm in the frequency range of 130-200 kHz. An excellent agreement between the calculated and measured frequencies is found. Measurements of the structure of the resonant peaks show splitting of some modes. About a half of the measured modes has splitting Δfsplit/fmode at the level of the order of 10(-5). The Q-factors of all modes measured in vacuum lie in the interval (2…3)×10(5). This value is typical for duraluminum mechanical resonators in the ultrasonic frequency range. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Effect of surface parameter of interband surface mode frequencies of finite diatomic chain

    International Nuclear Information System (INIS)

    Puszkarski, H.

    1982-07-01

    The surface modes of a finite diatomic chain of alternating atoms (M 1 not= M 2 ) are investigated. The surface force constants are assumed to differ from the bulk ones, with the resulting surface parameter a-tilde identical on both ends of the chain. Criteria, governing the existence of interband surface (IBS) modes with frequencies lying in the forbidden gap between acoustical and optical bulk bands for natural (a = 1) as well as non-natural (a not= 1) surface defect, are analysed by the difference equation method. It is found that the IBS modes localize, depending on the value of the surface parameter a, either at the surface of lighter atoms (if a-tilde is positive), or at that of heavier atoms (if a-tilde is negative). Two, one of no IBS modes are found to exist in the chain depending on the relation between the mass ratio and surface parameter - quantities on which the surface localization increment t-tilde depends. If two modes are present (one acoustical and the other optical), their frequencies are disposed symmetrically with respect to the middle of the forbidden gap, provided the surface defect is natural, or asymmetrically - if it is other than natural. If the localization of the IBS mode exceeds a well defined critical value tsub(c), the mode frequency becomes complex, indicating that the mode undergoes a damping. A comparison of the present results and those obtained by Wallis for the diatomic chain with natural surface defect is also given. (author)

  4. Search for electron decay mode e- → γ + νe with prototype of Borexino detector

    International Nuclear Information System (INIS)

    Back, H.O.; Balata, M.; Bari, A. de.

    2002-01-01

    The prototype of the Borexino detector Counting Test Facility, located in the Gran Sasso laboratory, has been used to obtain a bound on the stability of the electron. The new lower limit on the mean lifetime defined on 32.1 days of data set is τ(e - → γ + ν e ) ≥ 4.6 · 10 26 years (90 % C.L.)

  5. A Surface Formulation for Characteristic Modes of Material Bodies

    Science.gov (United States)

    1974-10-01

    42 CHAPTER 3 4: CHARACTERISTIC MODES - A SURFACE FORMULATION 3.1 Theoretical Development The treatment of characteristic modes for perfectly...cgs* i + y mp ein•£ (A6 V; 1 TP At • CA6 I --- 4 1 o#i ajk(X MPcoeo* + umpsin# ) Iim n p-l1 Tp -Ax sin#i + Ay co* ] i (A-7) A4 APPWOIX II fill I vIal

  6. Performance test and analysis to the prototype of fiber-based portable large area surface contamination monitor

    International Nuclear Information System (INIS)

    Qu Yantao; Liu Yang; Wang Wei; Wang Ying; Hou Jie

    2013-01-01

    The feasibility was studied of using large area plastic scintillation (sensitive area up to 1200 cm 2 ) and wavelength-shifting fiber (WLS) to measure β surface contamination that led to a tentative adoption of direct coupling method of wavelength-shifting fiber array and plastic scintillator. Based on above, a calculation program was established, by which the optical transmission was simulated enabling optimizations to the design of the system such as the size of the plastic scintillator, the quantity of the wavelength-shifting fiber and the configuration mode of the wavelength-shifting fiber. As a result, a special experimental prototype was developed and tested. Results prove that the sensitive detection area is up to 1200 cm 2 , the detection efficiency is about 15.4%, the inconsistency of the different sensitive area is about 9.7%, and the minimum detectable limit is about 0.05 Bq/cm 2 , all of which indicate that the experimental prototype could satisfy requirements of surface pollution monitoring for both normal and accident conditions. (authors)

  7. Single-mode surface plasmon distributed feedback lasers.

    Science.gov (United States)

    Karami Keshmarzi, Elham; Tait, R Niall; Berini, Pierre

    2018-03-29

    Single-mode surface plasmon distributed feedback (DFB) lasers are realized in the near infrared using a two-dimensional non-uniform long-range surface plasmon polariton structure. The surface plasmon mode is excited onto a 20 nm-thick, 1 μm-wide metal stripe (Ag or Au) on a silica substrate, where the stripe is stepped in width periodically, forming a 1st order Bragg grating. Optical gain is provided by optically pumping a 450 nm-thick IR-140 doped PMMA layer as the top cladding, which covers the entire length of the Bragg grating, thus creating a DFB laser. Single-mode lasing peaks of very narrow linewidth were observed for Ag and Au DFBs near 882 nm at room temperature. The narrow linewidths are explained by the low spontaneous emission rate into the surface plasmon lasing mode as well as the high quality factor of the DFB structure. The lasing emission is exclusively TM polarized. Kinks in light-light curves accompanied by spectrum narrowing were observed, from which threshold pump power densities can be clearly identified (0.78 MW cm-2 and 1.04 MW cm-2 for Ag and Au DFB lasers, respectively). The Schawlow-Townes linewidth for our Ag and Au DFB lasers is estimated and very narrow linewidths are predicted for the lasers. The lasers are suitable as inexpensive, recyclable and highly coherent sources of surface plasmons, or for integration with other surface plasmon elements of similar structure.

  8. Surface modes of two spheres embedded into a third medium

    International Nuclear Information System (INIS)

    Nkoma, J.S.

    1990-07-01

    Surface modes of two spheres embedded into a third medium are studied. We obtain a result which relates the dependence of frequency on the distance between the two spheres. The derived expression reproduces previous results in the limit where the separation between the spheres is very large. Two surface mode branches are shown to exist for each order n. We apply the theory to three cases of practical interest: first, two similar metallic spheres in vacuum; secondly, two similar metallic spheres embedded into a different metal; thirdly, two spherical voids embedded into a metal. (author). 19 refs, 6 figs

  9. Design and rapid prototyping of DLC coated fractal surfaces for tissue engineering applications

    International Nuclear Information System (INIS)

    Diaz-Lantada, A; Mosquera, A; Endrino, J L; Lafont, P

    2010-01-01

    Several medical devices (both implantable and for in vitro diagnosis) benefit greatly from having microtextured surfaces that help to improve and promote phenomena such as osteointegracion and cell / tissue growth on the surface of a device. Normally, the use of abrasives or chemical attacks are employed for obtaining such surface microtextures, however, it is sometimes difficult to precisely control the final surface characteristics (porosity, roughness, among others) and consequently the related biological aspects. In this work, we propose an alternative process based on the use of fractal surface models for designing special surfaces, which helps controlling the desired contact properties (from the design stage) in multiple applications within biomedical engineering, especially regarding tissue engineering tasks. Manufacturing can be directly accomplished by means of rapid prototyping technologies. This method supposes a focus change from a conventional 'top-down' to a more versatile 'bottom-up' approach. Finally, in order to improve the possible biological response, the surfaces of the designed devices were coated with hydrogen-free amorphous carbon (a-C) thin films, known to be highly biocompatible materials. The films were deposited at room temperature using the vacuum filter cathodic arc technique. Our first prototypes have helped verify the viability of the approach and to validate the design, manufacturing and coating processes.

  10. Design and rapid prototyping of DLC coated fractal surfaces for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Lantada, A; Mosquera, A; Endrino, J L; Lafont, P, E-mail: adiaz@etsii.upm.es

    2010-11-01

    Several medical devices (both implantable and for in vitro diagnosis) benefit greatly from having microtextured surfaces that help to improve and promote phenomena such as osteointegracion and cell / tissue growth on the surface of a device. Normally, the use of abrasives or chemical attacks are employed for obtaining such surface microtextures, however, it is sometimes difficult to precisely control the final surface characteristics (porosity, roughness, among others) and consequently the related biological aspects. In this work, we propose an alternative process based on the use of fractal surface models for designing special surfaces, which helps controlling the desired contact properties (from the design stage) in multiple applications within biomedical engineering, especially regarding tissue engineering tasks. Manufacturing can be directly accomplished by means of rapid prototyping technologies. This method supposes a focus change from a conventional 'top-down' to a more versatile 'bottom-up' approach. Finally, in order to improve the possible biological response, the surfaces of the designed devices were coated with hydrogen-free amorphous carbon (a-C) thin films, known to be highly biocompatible materials. The films were deposited at room temperature using the vacuum filter cathodic arc technique. Our first prototypes have helped verify the viability of the approach and to validate the design, manufacturing and coating processes.

  11. Surface modes at metallic an photonic crystal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weitao [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    A surface mode is an electromagnetic field distribution bounded at a surface. It decays exponentially with the distance from the surface on both sides of the surface and propagates at the surface. The surface mode exists at a metal-dielectric interface as surface plasmon (1) or at a photonic crystal surface terminated properly (34; 35; 36). Besides its prominent near-filed properties, it can connect structures at its propagation surface and results in far-field effects. Extraordinary transmission (EOT) and beaming are two examples and they are the subjects I am studying in this thesis. EOT means the transmission through holes in an opaque screen can be much larger than the geometrical optics limitation. Based on our everyday experience about shadows, the transmission equals the filling ratio of the holes in geometrical optics. The conventional diffraction theory also proved that the transmission through a subwavelength circular hole in an infinitely thin perfect electric conductor (PEC) film converges to zero when the hole's dimension is much smaller than the wavelength (40). Recently it is discovered that the transmission can be much larger than the the filling ratio of the holes at some special wavelengths (41). This cannot be explained by conventional theories, so it is called extraordinary transmission. It is generally believed that surface plasmons play an important role (43; 44) in the EOT through a periodic subwavelength hole array in a metallic film. The common theories in literatures are based on these arguments. The surface plasmons cannot be excited by incident plane waves directly because of momentum mismatch. The periodicity of the hole arrays will provide addition momentum. When the momentum-matching condition of surface plasmons is satisfied, the surface plasmons will be excited. Then these surface plasmons will collect the energy along the input surface and carry them to the holes. So the transmission can be bigger than the filling ratio. Based

  12. Extremely confined gap surface-plasmon modes excited by electrons

    DEFF Research Database (Denmark)

    Raza, Søren; Stenger, Nicolas; Pors, Anders Lambertus

    2014-01-01

    High-spatial and energy resolution electron energy-loss spectroscopy (EELS) can be used for detailed characterization of localized and propagating surface-plasmon excitations in metal nanostructures, giving insight into fundamental physical phenomena and various plasmonic effects. Here, applying...... EELS to ultra-sharp convex grooves in gold, we directly probe extremely confined gap surface-plasmon (GSP) modes excited by swift electrons in nanometre-wide gaps. We reveal the resonance behaviour associated with the excitation of the antisymmetric GSP mode for extremely small gap widths, down to ~5...... mode exploited in plasmonic waveguides with extreme light confinement is a very important factor that should be taken into account in the design of nanoplasmonic circuits and devices....

  13. Surface- and interface-plasmon modes on small semiconducting spheres

    International Nuclear Information System (INIS)

    Ugarte, D.; Colliex, C.; Trebbia, P.

    1992-01-01

    The study of the electronic properties of small particles is of major interest because of their intriguing physicochemical properties. The very small electron probes available in scanning transmission electron microscopes offer unique capabilities for investigating small particles with subnanometer spatial resolution. The correlation between electron-energy-loss spectra and energy-filtered images is of great help in pinpointing the excitations under study. This paper presents a theoretical and experimental study of collective excitation modes in the bulk and at the interfaces and surfaces of small spherical silicon particles covered with a thin oxide coating. Among other results, our experimental measurements have shown that there exists a surface-mode excitation at 3--4 eV, precisely localized on the external surface of the oxide layer. Classical dielectric theory is used in interpreting these results, by invoking the presence of an ultrathin conductive layer

  14. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Zhang, Baile, E-mail: blzhang@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore 637371 (Singapore)

    2016-01-25

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk.

  15. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    International Nuclear Information System (INIS)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-01-01

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk

  16. Development of a low-cost, 11 µm spectral domain optical coherence tomography surface profilometry prototype

    Science.gov (United States)

    Suliali, Nyasha J.; Baricholo, Peter; Neethling, Pieter H.; Rohwer, Erich G.

    2017-06-01

    A spectral-domain Optical Coherence Tomography (OCT) surface profilometry prototype has been developed for the purpose of surface metrology of optical elements. The prototype consists of a light source, spectral interferometer, sample fixture and software currently running on Microsoft® Windows platforms. In this system, a broadband light emitting diode beam is focused into a Michelson interferometer with a plane mirror as its sample fixture. At the interferometer output, spectral interferograms of broadband sources were measured using a Czerny-Turner mount monochromator with a 2048-element complementary metal oxide semiconductor linear array as the detector. The software performs importation and interpolation of interferometer spectra to pre-condition the data for image computation. One dimensional axial OCT images were computed by Fourier transformation of the measured spectra. A first reflection surface profilometry (FRSP) algorithm was then formulated to perform imaging of step-function-surfaced samples. The algorithm re-constructs two dimensional colour-scaled slice images by concatenation of 21 and 13 axial scans to form a 10 mm and 3.0 mm slice respectively. Measured spectral interferograms, computed interference fringe signals and depth reflectivity profiles were comparable to simulations and correlated to displacements of a single reflector linearly translated about the arm null-mismatch point. Surface profile images of a double-step-function-surfaced sample, embedded with inclination and crack detail were plotted with an axial resolution of 11 μm. The surface shape, defects and misalignment relative to the incident beam were detected to the order of a micron, confirming high resolution of the developed system as compared to electro-mechanical surface profilometry techniques.

  17. Analysis of Pressure Fluctuations in a Prototype Pump-Turbine with Different Numbers of Runner Blades in Turbine Mode

    Directory of Open Access Journals (Sweden)

    Deyou Li

    2018-06-01

    Full Text Available In pump-turbines, high pressure fluctuation is one of the crucial instabilities, which is harmful to the stable and effective operation of the entire unit. Extensive studies have been carried out to investigate pressure fluctuations (amplitude and frequency at specific locations. However, limited research was conducted on the distribution of pressure fluctuations in turbine mode in a pump-turbine, as well as the influence of the number of runner blades on pressure fluctuations. Hence, in this study, three dimensional numerical simulations were performed to predict the distribution of pressure fluctuations with different numbers of runner blades in a prototype pump-turbine in turbine mode using the shear stress transport (SST k-ω turbulence model. Three operating points with the same hydraulic head and different mass flow rates were simulated. The distribution of pressure fluctuation components of blade passing frequency and its harmonics in the direction along the whole flow path, as well as along the circumferential direction, was presented. The mass flow rate and number of runner blades have great influence on the distribution of pressure fluctuations, especially at blade passing frequency along circumferential direction. The mass flow rate mainly affects the position of peak pressure fluctuations, while the number of runner blades mainly changes the number of peak pressure fluctuations. Additionally, the number of runner blades influences the dominant frequencies of pressure fluctuations especially in the spiral casing and draft tube.

  18. A reconfigurable frequency-selective surface for dual-mode multi-band filtering applications

    Science.gov (United States)

    Majidzadeh, Maryam; Ghobadi, Changiz; Nourinia, Javad

    2017-03-01

    A reconfigurable single-layer frequency-selective surface (FSS) with dual-mode multi-band modes of operation is presented. The proposed structure is printed on a compact 10 × 10 mm2 FR4 substrate with the thickness of 1.6 mm. A simple square loop is printed on the front side while another one along with two defected vertical arms is deployed on the backside. To realise the reconfiguration, two pin diodes are embedded on the backside square loop. Suitable insertion of conductive elements along with pin diodes yields in dual-mode multi-band rejection of applicable in service frequency ranges. The first operating mode due to diodes' 'ON' state provides rejection of 2.4 GHz WLAN in 2-3 GHz, 5.2/5.8 GHz WLAN and X band in 5-12 GHz, and a part of Ku band in 13.9-16 GHz. In diodes 'OFF' state, the FSS blocks WLAN in 4-7.3 GHz, X band in 8-12.7 GHz as well as part of Ku band in 13.7-16.7 GHz. As well, high attenuation of incident waves is observed by a high shielding effectiveness (SE) in the blocked frequency bands. Also, a stable behaviour against different polarisations and angles of incidence is obtained. Comprehensive studies are conducted on a fabricated prototype to assess its performance from which encouraging results are obtained.

  19. Kink modes and surface currents associated with vertical displacement events

    Science.gov (United States)

    Manickam, Janardhan; Boozer, Allen; Gerhardt, Stefan

    2012-08-01

    The fast termination phase of a vertical displacement event (VDE) in a tokamak is modeled as a sequence of shrinking equilibria, where the core current profile remains constant so that the safety-factor at the axis, qaxis, remains fixed and the qedge systematically decreases. At some point, the n = 1 kink mode is destabilized. Kink modes distort the magnetic field lines outside the plasma, and surface currents are required to nullify the normal component of the B-field at the plasma boundary and maintain equilibrium at finite pressure. If the plasma touches a conductor, the current can be transferred to the conductor, and may be measurable by the halo current monitors. This report describes a practical method to model the plasma as it evolves during a VDE, and determine the surface currents, needed to maintain equilibrium. The main results are that the onset conditions for the disruption are that the growth-rate of the n = 1 kink exceeds half the Alfven time and the associated surface current needed to maintain equilibrium exceeds one half of the core plasma current. This occurs when qedge drops below a low integer, usually 2. Application to NSTX provides favorable comparison with non-axisymmetric halo-current measurements. The model is also applied to ITER and shows that the 2/1 mode is projected to be the most likely cause of the final disruption.

  20. A prototype for automation of land-cover products from Landsat Surface Reflectance Data Records

    Science.gov (United States)

    Rover, J.; Goldhaber, M. B.; Steinwand, D.; Nelson, K.; Coan, M.; Wylie, B. K.; Dahal, D.; Wika, S.; Quenzer, R.

    2014-12-01

    Landsat data records of surface reflectance provide a three-decade history of land surface processes. Due to the vast number of these archived records, development of innovative approaches for automated data mining and information retrieval were necessary. Recently, we created a prototype utilizing open source software libraries for automatically generating annual Anderson Level 1 land cover maps and information products from data acquired by the Landsat Mission for the years 1984 to 2013. The automated prototype was applied to two target areas in northwestern and east-central North Dakota, USA. The approach required the National Land Cover Database (NLCD) and two user-input target acquisition year-days. The Landsat archive was mined for scenes acquired within a 100-day window surrounding these target dates, and then cloud-free pixels where chosen closest to the specified target acquisition dates. The selected pixels were then composited before completing an unsupervised classification using the NLCD. Pixels unchanged in pairs of the NLCD were used for training decision tree models in an iterative process refined with model confidence measures. The decision tree models were applied to the Landsat composites to generate a yearly land cover map and related information products. Results for the target areas captured changes associated with the recent expansion of oil shale production and agriculture driven by economics and policy, such as the increase in biofuel production and reduction in Conservation Reserve Program. Changes in agriculture, grasslands, and surface water reflect the local hydrological conditions that occurred during the 29-year span. Future enhancements considered for this prototype include a web-based client, ancillary spatial datasets, trends and clustering algorithms, and the forecasting of future land cover.

  1. Electronic collective modes and instabilities on semiconductor surfaces. I

    International Nuclear Information System (INIS)

    Muramatsu, A.; Hanke, W.

    1984-01-01

    A Green's-function theory of electronic collective modes is presented which leads to a practical scheme for a microscopic determination of surface elementary excitations in conducting as well as nonconducting solids. Particular emphasis is placed on semiconductor surfaces where the jellium approximation is not valid, due to the importance of density fluctuations on a microscopic scale (reflected in the local-field effects). Starting from the Bethe-Salpeter equation for the two-particle Green's function of the surface system, an equation of motion for the electron-hole pair is obtained. Its solutions determine the energy spectra, lifetimes, and amplitudes of the surface elementary excitations, i.e., surface plasmons, excitons, polaritons, and magnons. Exchange and correlation effects are taken into account through the random-phase and time-dependent Hartree-Fock (screened electron-hole attraction) approximations. The formalism is applied to the study of electronic (charge- and spin-density) instabilities at covalent semiconductor surfaces. Quantitative calculations for an eight-layer Si(111) slab display an instability of the ideal paramagnetic surface with respect to spin-density waves with wavelength nearly corresponding to (2 x 1) and (7 x 7) superstructures

  2. Localized surface plate modes via flexural Mie resonances

    KAUST Repository

    Farhat, M.; Chen, P. -Y.; Guenneau, S.; Salama, Khaled N.; Bagci, Hakan

    2017-01-01

    Surface-plasmon polaritons are naturally generated upon excitation of metals with high-frequency electromagnetic waves. However, the concept of spoof plasmons has made it possible to generate plasmoniclike effects in microwave electrodynamics, magnetics, and even acoustics. Similarly, in this paper, the concept of localized surface plate modes (SPMs) is introduced. It is demonstrated that SPMs can be generated on a two-dimensional (clamped or stress-free) cylindrical surface with subwavelength corrugations, which resides on a thin elastic plate, under excitation by an incident flexural plane wave. Numerical characterization of this corrugated rigid structure shows that it is elastically equivalent to a cylindrical scatterer with dispersive but uniformly negative flexural rigidity. This, indeed, suggests that plasmoniclike elastic materials can be engineered with potential applications in various areas including earthquake sensing and elastic imaging and cloaking.

  3. Localized surface plate modes via flexural Mie resonances

    KAUST Repository

    Farhat, M.

    2017-05-11

    Surface-plasmon polaritons are naturally generated upon excitation of metals with high-frequency electromagnetic waves. However, the concept of spoof plasmons has made it possible to generate plasmoniclike effects in microwave electrodynamics, magnetics, and even acoustics. Similarly, in this paper, the concept of localized surface plate modes (SPMs) is introduced. It is demonstrated that SPMs can be generated on a two-dimensional (clamped or stress-free) cylindrical surface with subwavelength corrugations, which resides on a thin elastic plate, under excitation by an incident flexural plane wave. Numerical characterization of this corrugated rigid structure shows that it is elastically equivalent to a cylindrical scatterer with dispersive but uniformly negative flexural rigidity. This, indeed, suggests that plasmoniclike elastic materials can be engineered with potential applications in various areas including earthquake sensing and elastic imaging and cloaking.

  4. Spoof surface plasmon modes on doubly corrugated metal surfaces at terahertz frequencies

    International Nuclear Information System (INIS)

    Liu, Yong-Qiang; Kong, Ling-Bao; Du, Chao-Hai; Liu, Pu-Kun

    2016-01-01

    Spoof surface plasmons (SSPs) have many potential applications such as imaging and sensing, communications, innovative leaky wave antenna and many other passive devices in the microwave and terahertz (THz) spectrum. The extraordinary properties of SSPs (e.g. extremely strong near field, enhanced beam–wave interaction) make them especially attractive for developing novel THz electronic sources. SSP modes on doubly corrugated metal surfaces are investigated and analyzed both theoretically and numerically in this paper. The analytical SSP dispersion expressions of symmetric and anti-symmetric modes are obtained with a simplified modal field expansion method; the results are also verified by the finite integration method. Additionally, the propagation losses are also considered for real copper surfaces with a limited constant conductivity in a THz regime. It is shown that the asymptotical frequency of the symmetric mode at the Brillouin boundary decreases along with the decreased gap size between these two corrugated metal surfaces while the asymptotical frequency increases for the anti-symmetric mode. The anti-symmetric mode demonstrates larger propagation losses than the symmetric mode. Further, the losses for both symmetric and anti-symmetric modes decrease when this gap size enlarges. By decreasing groove depth, the asymptotical frequency increases for both the symmetric and the anti-symmetric mode, but the variation of propagation losses is more complicated. Propagation losses increase along with the increased period. Our studies on the dispersion characteristics and propagation losses of SSP modes on this doubly corrugated metallic structure with various parameters is instructive for numerous applications such as waveguides, circuitry systems with high integration, filters and powerful electronic sources in the THz regime. (paper)

  5. A Prototype Flux-Plate Heat-Flow Sensor for Venus Surface Heat-Flow Determinations

    Science.gov (United States)

    Morgan, Paul; Reyes, Celso; Smrekar, Suzanne E.

    2005-01-01

    Venus is the most Earth-like planet in the Solar System in terms of size, and the densities of the two planets are almost identical when selfcompression of the two planets is taken into account. Venus is the closest planet to Earth, and the simplest interpretation of their similar densities is that their bulk compositions are almost identical. Models of the thermal evolution of Venus predict interior temperatures very similar to those indicated for the regions of Earth subject to solid-state convection, but even global analyses of the coarse Pioneer Venus elevation data suggest Venus does not lose heat by the same primary heat loss mechanism as Earth, i.e., seafloor spreading. The comparative paucity of impact craters on Venus has been interpreted as evidence for relatively recent resurfacing of the planet associated with widespread volcanic and tectonic activity. The difference in the gross tectonic styles of Venus and Earth, and the origins of some of the enigmatic volcano-tectonic features on Venus, such as the coronae, appear to be intrinsically related to Venus heat loss mechanism(s). An important parameter in understanding Venus geological evolution, therefore, is its present surface heat flow. Before the complications of survival in the hostile Venus surface environment were tackled, a prototype fluxplate heat-flow sensor was built and tested for use under synthetic stable terrestrial surface conditions. The design parameters for this prototype were that it should operate on a conforming (sand) surface, with a small, self-contained power and recording system, capable of operating without servicing for at least several days. The precision and accuracy of the system should be < 5 mW/sq m. Additional information is included in the original extended abstract.

  6. Electromagnetic controllable surfaces based on trapped-mode effect

    Directory of Open Access Journals (Sweden)

    V. Dmitriev

    2012-10-01

    Full Text Available In this paper we present some recent results of our theoretical investigations of electromagnetically controllable surfaces. These surfaces are designed on the basis of periodic arrays made of metallic inclusions of special form which are placed on a thin substrate of active material (magnetized ferrite or optically active semiconductor. The main peculiarity of the studied structures is their capability to support the trapped-mode resonance which is a result of the antiphase current oscillations in the elements of a periodic cell. Several effects, namely: tuning the position of passband and the linear and nonlinear (bistable transmission switching are considered when an external static magnetic field or optical excitation are applied. Our numerical calculations are fulfilled in both microwave and optical regions.

  7. Surface phonon modes of the NaI(001) crystal surface by inelastic He atom scattering

    International Nuclear Information System (INIS)

    Brug, W.P.; Chern, G.; Duan, J.; Safron, S.A.; Skofronick, J.G.; Benedek, G.

    1990-01-01

    The present theoretical treatment of the surface dynamics of ionic insulators employs the shell model with parameters obtained from bulk materials. The approach has been generally very successful in comparisons with experiment. However, most of the experimental surface dynamics work has been on the low-mass alkali halides with very little effort on higher energy modes or on the heavier alkali halides, where effects from relaxation might be important. The work of this paper explores these latter two conditions. Inelastic scattering of He atoms from the left-angle 110 right-angle NaI(001) surface has been used to obtain the acoustic S 1 Rayleigh mode, the S 6 longitudinal mode, and the S 8 crossing mode, however, no gap S 4 optical mode was seen. The results compare favorably with reported theoretical models employing both slab calculations and the Green's function method thus indicating that bulk parameters and the shell model go a long way in explaining most of the observations

  8. Fermi Surface Manipulation by External Magnetic Field Demonstrated for a Prototypical Ferromagnet

    Directory of Open Access Journals (Sweden)

    E. Młyńczak

    2016-12-01

    Full Text Available We consider the details of the near-surface electronic band structure of a prototypical ferromagnet, Fe(001. Using high-resolution angle-resolved photoemission spectroscopy, we demonstrate openings of the spin-orbit-induced electronic band gaps near the Fermi level. The band gaps, and thus the Fermi surface, can be manipulated by changing the remanent magnetization direction. The effect is of the order of ΔE=100  meV and Δk=0.1  Å^{−1}. We show that the observed dispersions are dominated by the bulk band structure. First-principles calculations and one-step photoemission calculations suggest that the effect is related to changes in the electronic ground state and not caused by the photoemission process itself. The symmetry of the effect indicates that the observed electronic bulk states are influenced by the presence of the surface, which might be understood as related to a Rashba-type effect. By pinpointing the regions in the electronic band structure where the switchable band gaps occur, we demonstrate the significance of spin-orbit interaction even for elements as light as 3d ferromagnets. These results set a new paradigm for the investigations of spin-orbit effects in the spintronic materials. The same methodology could be used in the bottom-up design of the devices based on the switching of spin-orbit gaps such as electric-field control of magnetic anisotropy or tunneling anisotropic magnetoresistance.

  9. Surface flute modes in the bumpy magnetic field

    International Nuclear Information System (INIS)

    Girka, I.O.; Girka, V.O.; Lapshin, V.I.

    2005-01-01

    Surface electromagnetic waves are often determined as the most possible cause of undesirable heating of edge plasma that leads, in turn, to strengthening of plasma - wall interaction in stellarators and increased plasma contamination. The propagation of surface flute modes near the interface of plasma column separated by a vacuum layer from the ring cylindrical ideally conductive metallic chamber is studied. The external steady bumpy magnetic field B-vector 0 = B 0z e-vector z + B 0r e-vector r was considered, B 0z =B 00 [1+ε m (r)cos(k m z)], here ε m '≡dε m /dr, k m =2π/L, L is the period of nonuniformity. non-uniformity of B-vector 0 is planned to be dominant in the confining magnetic field of the modular stellarator Helias, ε m ∼ 0.13. In the bumpy magnetic field the electromagnetic disturbance propagates in the form of the wave envelope, in which one alongside with the fundamental harmonic, proportional to exp[i(mθ±-ωt)], infinite set of satellite spatial harmonics, proportional to exp[i(mθ ± jk m z - ωt)], j=1,2,3..., is present. It is shown, that in the first approximation in the respect to ε m , amplitudes of the fundamental harmonics of the E-wave with the field components E r , E θ , B z do not vary, small satellite harmonics of these fields arise, proportional to exp[i(mθ ± k m z - ωt)]. At the same time due to weak coupling of - and - modes, caused by B-vector 0 nonuniformity and nonzero axial wave number of satellite harmonics, small satellite harmonics of H-wave with the field components E z , B r , B θ also arise. The amplitudes of satellite harmonics of E-wave are shown to be symmetric: E r (+) =E r (-) , E θ (+) =E θ (-) , B z (+) =B z (-) , and the amplitudes of H-wave are antisymmetric: B r (+) =-B r (-) , B θ (+) =- B θ (-) , E z (+) =-E z (-) . In the second approximation in the respect to ε m corrections to the amplitudes of the fundamental harmonic of E-wave arise. The correction to the eigen frequency of the wave

  10. An Analysis of Fundamental Mode Surface Wave Amplitude Measurements

    Science.gov (United States)

    Schardong, L.; Ferreira, A. M.; van Heijst, H. J.; Ritsema, J.

    2014-12-01

    Seismic tomography is a powerful tool to decipher the Earth's interior structure at various scales. Traveltimes of seismic waves are widely used to build velocity models, whereas amplitudes are still only seldomly accounted for. This mainly results from our limited ability to separate the various physical effects responsible for observed amplitude variations, such as focussing/defocussing, scattering and source effects. We present new measurements from 50 global earthquakes of fundamental-mode Rayleigh and Love wave amplitude anomalies measured in the period range 35-275 seconds using two different schemes: (i) a standard time-domain amplitude power ratio technique; and (ii) a mode-branch stripping scheme. For minor-arc data, we observe amplitude anomalies with respect to PREM in the range of 0-4, for which the two measurement techniques show a very good overall agreement. We present here a statistical analysis and comparison of these datasets, as well as comparisons with theoretical calculations for a variety of 3-D Earth models. We assess the geographical coherency of the measurements, and investigate the impact of source, path and receiver effects on surface wave amplitudes, as well as their variations with frequency in a wider range than previously studied.

  11. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.

    2016-02-19

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  12. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.; Xu, Q.; Li, Q.; Xu, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Liu, Y.; Zhang, S.; Zhang, Xixiang; Han, J.; Zhang, W.

    2016-01-01

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  13. ASSESSMENT OF SURFACE FINISH AND DIMENSIONAL ACCURACY OF TOOLS MANUFACTURED BY METAL CASTING IN RAPID PROTOTYPING SAND MOULDS

    OpenAIRE

    Nyembwe, K.; De Beer, D. J.; Van der Walt, J. G.; Bhero, S.

    2012-01-01

    In this paper, an initial assessment of the quality parameters of the surface finish and dimensional accuracy of tools made by metal casting in rapid prototyping (RP) sand moulds is undertaken. A case study from a local tool room, dealing with the manufacturing of an aluminium die for the lost wax process, is employed. Modern techniques, including surface roughness analysis and three dimensional scanning, are used to determine and understand how each manufacturing step influences the final qu...

  14. Photospheric Observations of Surface and Body Modes in Solar Magnetic Pores

    Science.gov (United States)

    Keys, Peter H.; Morton, Richard J.; Jess, David B.; Verth, Gary; Grant, Samuel D. T.; Mathioudakis, Mihalis; Mackay, Duncan H.; Doyle, John G.; Christian, Damian J.; Keenan, Francis P.; Erdélyi, Robertus

    2018-04-01

    Over the past number of years, great strides have been made in identifying the various low-order magnetohydrodynamic wave modes observable in a number of magnetic structures found within the solar atmosphere. However, one aspect of these modes that has remained elusive, until now, is their designation as either surface or body modes. This property has significant implications for how these modes transfer energy from the waveguide to the surrounding plasma. Here, for the first time to our knowledge, we present conclusive, direct evidence of these wave characteristics in numerous pores that were observed to support sausage modes. As well as outlining methods to detect these modes in observations, we make estimates of the energies associated with each mode. We find surface modes more frequently in the data, as well as that surface modes appear to carry more energy than those displaying signatures of body modes. We find frequencies in the range of ∼2–12 mHz, with body modes as high as 11 mHz, but we do not find surface modes above 10 mHz. It is expected that the techniques we have applied will help researchers search for surface and body signatures in other modes and in differing structures from those presented here.

  15. Evaluation of the Ca ion release, pH and surface apatite formation of a prototype tricalcium silicate cement.

    Science.gov (United States)

    Yamamoto, S; Han, L; Noiri, Y; Okiji, T

    2017-12-01

    To evaluate the Ca 2+ -releasing, alkalizing and apatite-like surface precipitate-forming abilities of a prototype tricalcium silicate cement, which was mainly composed of synthetically prepared tricalcium silicate and zirconium oxide radiopacifier. The prototype tricalcium silicate cement, white ProRoot MTA (WMTA) and TheraCal LC (a light-cured resin-modified calcium silicate-filled material) were examined. The chemical compositions were analysed with a wavelength-dispersive X-ray spectroscopy electron probe microanalyser with an image observation function (SEM-EPMA). The pH and Ca 2+ concentrations of water in which the set materials had been immersed were measured, and the latter was assessed with the EDTA titration method. The surface precipitates formed on the materials immersed in phosphate-buffered saline (PBS) were analysed with SEM-EPMA and X-ray diffraction (XRD). Kruskal-Wallis tests followed by Mann-Whitney U-test with Bonferroni correction were used for statistical analysis (α = 0.05). The prototype cement contained Ca, Si and Zr as major elemental constituents, whereas it did not contain some metal elements that were detected in the other materials. The Ca 2+ concentrations and pH of the immersion water samples exhibited the following order: WMTA = prototype cement > TheraCal LC (P prototype cement and WMTA. The prototype tricalcium silicate cement exhibited similar Ca 2+ -releasing, alkalizing and apatite-like precipitate-forming abilities to WMTA. The Ca 2+ -releasing, alkalizing and apatite-like precipitate-forming abilities of TheraCal LC were lower than those of the other materials. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  16. Three modes of interdecadal trends in sea surface temperature and sea surface height

    Science.gov (United States)

    Gnanadesikan, A.; Pradal, M.

    2013-12-01

    It might be thought that sea surface height and sea surface temperature would be tightly related. We show that this is not necessarily the case on a global scale. We analysed this relationship in a suite of coupled climate models run under 1860 forcing conditions. The models are low-resolution variants of the GFDL Earth System Model, reported in Galbraith et al. (J. Clim. 2011). 1. Correlated changes in global sea surface height and global sea surface temperature. This mode corresponds to opening and closing of convective chimneys in the Southern Ocean. As the Southern Ocean destratifies, sea ice formation is suppressed during the winter and more heat is taken up during the summer. This mode of variability is highly correlated with changes in the top of the atmosphere radiative budget and weakly correlated with changes in the deep ocean circulation. 2. Uncorrelated changes in global sea surface height and global sea surface temperature. This mode of variability is associated with interdecadal variabliity in tropical winds. Changes in the advective flux of heat to the surface ocean play a critical role in driving these changes, which also result in significant local changes in sea level. Changes sea ice over the Southern Ocean still result in changes in solar absorption, but these are now largely cancelled by changes in outgoing longwave radiation. 3. Anticorrelated changes in global sea surface height and global sea surface temperatures. By varying the lateral diffusion coefficient in the ocean model, we are able to enhance and suppress convection in the Southern and Northern Pacific Oceans. Increasing the lateral diffusion coefficients shifts the balance sources of deep water away from the warm salty deep water of the North Atlantic and towards cold fresh deep water from the other two regions. As a result, even though the planet as a whole warms, the deep ocean cools and sea level falls, with changes of order 30 cm over 500 years. The increase in solar absorption

  17. Virtual prototype simulation of hydraulic shovel kinematics for spatial characterization in surface mining operations

    Energy Technology Data Exchange (ETDEWEB)

    S. Frimpong; Y. Li [University of Missouri-Rolla, Rolla, MO (United States). Department of Mining and Nuclear Engineering

    2005-12-15

    Hydraulic shovels are large-capacity equipment for excavating and loading dump trucks in constrained surface mining environments. Kinematics simulation of such equipment allows mine planning engineers to plan, design and control their spatial environments to achieve operating safety and efficiency. In this study, a hydraulic shovel was modelled as a mechanical manipulator with five degrees of freedom comprising the crawler, upper, boom, stick, bucket and bucket door components. The model was captured in a schematic diagram consisting of a six-bar linkage using the symbolic notation of Denavit and Hartenberg (Ho and Sriwattanathmma 1989). Homogeneous transformation matrices were used to capture the spatial configuration between adjacent links. The forward kinematics method was used to formulate the kinematics equations by attaching Cartesian coordinates to the schematic shovel diagram. Based on the kinematics model, a 3D virtual prototype of the hydraulic shovel was built in the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) environment to simulate the motions of the hydraulic shovel with selected time steps. The simulator was validated using real-world data with animation and numerical analysis of the digging, swinging and dumping motions of the shovel machinery. The superimposed display of the deployment of the hydraulic shovel in three phases allows a detailed motion examination of the system. The numerical results of linear and angular displacements of the bucket tip and bucket door can be used to analyse the kinematics motion of the hydraulic shovel for its optimization. This simulator provides a solid foundation for further dynamics modelling and dynamic hydraulic shovel performance studies.

  18. Design and Testing of a Prototype Lunar or Planetary Surface Landing Research Vehicle (LPSLRV)

    Science.gov (United States)

    Murphy, Gloria A.

    2010-01-01

    This handbook describes a two-semester senior design course sponsored by the NASA Office of Education, the Exploration Systems Mission Directorate (ESMD), and the NASA Space Grant Consortium. The course was developed and implemented by the Mechanical and Aerospace Engineering Department (MAE) at Utah State University. The course final outcome is a packaged senior design course that can be readily incorporated into the instructional curriculum at universities across the country. The course materials adhere to the standards of the Accreditation Board for Engineering and Technology (ABET), and is constructed to be relevant to key research areas identified by ESMD. The design project challenged students to apply systems engineering concepts to define research and training requirements for a terrestrial-based lunar landing simulator. This project developed a flying prototype for a Lunar or Planetary Surface Landing Research Vehicle (LPSRV). Per NASA specifications the concept accounts for reduced lunar gravity, and allows the terminal stage of lunar descent to be flown either by remote pilot or autonomously. This free-flying platform was designed to be sufficiently-flexible to allow both sensor evaluation and pilot training. This handbook outlines the course materials, describes the systems engineering processes developed to facilitate design fabrication, integration, and testing. This handbook presents sufficient details of the final design configuration to allow an independent group to reproduce the design. The design evolution and details regarding the verification testing used to characterize the system are presented in a separate project final design report. Details of the experimental apparatus used for system characterization may be found in Appendix F, G, and I of that report. A brief summary of the ground testing and systems verification is also included in Appendix A of this report. Details of the flight tests will be documented in a separate flight test

  19. Surface plasmon polariton nanocavity with ultrasmall mode volume

    Science.gov (United States)

    Yue, Wencheng; Yao, Peijun; Luo, Huiwen; Liu, Wen

    2017-08-01

    We present a plasmonic nanocavity structure, consisting of a gallium phosphide (GaP) cylinder penetrating into a rectangular silver plate, and study its properties using a finite element method (FEM). An ultrasmall mode volume of 1.5×10-5[λ_0/(2n)]3 is achieved, which is more than 200 times smaller than the previous ultrasmall mode volume plasmonic nanodisk resonators. Meanwhile, the quality factor of the plasmonic nanocavity is about 38.2 and is over two times greater than the ultrasmall mode volume plasmonic nanodisk resonators. Compared to the aforementioned plasmonic nanodisk resonators, a more than one-order of magnitude larger Purcell factor of 1.2×104 is achieved. We determined the resonant modes of our plasmonic nanocavity are dipolar plasmon modes by analyzing the electric field properties. In addition, we investigate the dependence of the optical properties on the refractive index of the cavity material and discuss the effect of including the silica (SiO2) substrate. Our work provides an alternative approach to achieve ultrasmall plasmonic nanocavity of interest in applications to many areas of research, including device physics, nonlinear optics and quantum optics.

  20. Evaluation of the Fish Passage Effectiveness of the Bonneville I Prototype Surface Collector using Three-Dimensional Ultrasonic Fish Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Derrek M.; Weiland, Mark A.; Moursund, Robert; Carlson, Thomas J.; Adams, Noah; Rhondorf, D.

    2001-05-01

    This report describes tests conducted at Bonneville Dam on the Columbia River in the spring of 2000 using three-dimensional acoustic telemetry and computational fluid dynamics hydraulic modeling to observe the response of outmigrating juvenile steelhead and yearling chinook to a prototype surface collector installed at the Powerhouse. The study described in this report was one of several conducted for the U.S. Army Corps of Engineers to prepare a decision document on which of two bypass methods: surface flow bypass or extended-length submersible bar screens to use to help smolts pass around Bonneville dams without going through the turbines.

  1. Adaptive Fuzzy Integral Sliding-Mode Regulator for Induction Motor Using Nonlinear Sliding Surface

    OpenAIRE

    Yong-Kun Lu

    2015-01-01

    An adaptive fuzzy integral sliding-mode controller using nonlinear sliding surface is designed for the speed regulator of a field-oriented induction motor drive in this paper. Combining the conventional integral sliding surface with fractional-order integral, a nonlinear sliding surface is proposed for the integral sliding-mode speed control, which can overcome the windup problem and the convergence speed problem. An adaptive fuzzy control term is utilized to approximate the uncertainty. The ...

  2. Hybrid Surface Plasmon Polariton Modes of Subwavelength Nanowire Resonators

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Duggen, Lars; Willatzen, Morten

    2015-01-01

    -localized gap plasmon mode are studied depending on the vacuum wavelength. In order to directly compare resonators, where metal and semiconductor nanowires are employed, we consider the two resonators, both including silver slab and magnesium fluoride gap region, as is shown in figure. The two compared......We perform Comsol simulations of two types of hybrid plasmonic resonator configurations, similar to those proposed for nanowire plasmonic laser in [1] and [2]. In both references the nanowire - based plasmonic resonators are studied, which overall sizes are larger than the wavelength in vacuum....... However, it is advantageous for the nanolaser to have subwavelength sizes at least in two dimensions. Therefore, we study the two configurations and the hybrid mode behavior in the case, where resonator sizes are smaller than the half of the wavelength in vacuum. First, we assume finite dimensions...

  3. Analysis of the Cause of High External Q Modes in the JLab High Gradient Prototype Cryomodule Renascence

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.; Akcelik, V.; Xiao, L.; Lee, L.; Ng, C.; Ko, K.; /SLAC; Wang, H.; Marhauser, F.; Sekutowicz, J.; Reece, C.; Rimmer, R.; /Jefferson Lab

    2008-06-27

    The Renascence cryomodule [1] installed in CEBAF in 2007 consists of 8 cavities as shown in Figure 1. The first three cavities (No.1-No.3) in the upstream end are of the Low Loss (LL) shape design, and the remaining 5 cavities (No.4-No.8) on the beam downstream end are the High Gradient (HG) shape design. The fundamental power couplers (FPCs) are the rectangular waveguides, and the little cylindrical structures are the HOM couplers. The locations of the FPC in the last four cavities are mirrored about the beam z axis. Cavities No.4 and No.5 form a back-to-back cavity pair. Among the HG cavities installed in the Renascence cryomodule, the only identifiable difference from their fabrication documentation is that cavity No.5 received an extra EBW pass on one equator weld, specifically cell 5. The non-uniform mechanical tuning required to compensate the fundamental mode tune and flatness for the extra shrinkage of this cell is believed to contribute the most significant differences from the other HG cavities. Beam based instability studies on this cryomodule in CEBAF have shown a significant beam breakup (BBU) threshold current reduction, well below design value. Frequency spectrum peaked by the off-sided beam power indicated the cause is due to abnormal high Q modes in the cavity No.5. Measured beam off-axis position at the cavity No.5 does not correspond to the shunt impedances calculated for an ideal cavity. Low power RF measurements have identified that the problematic modes are in the second dipole band (TM110 like). Three of the modes have external Qs two orders magnitude higher than the others, while the rest of modes in the first two dipole bands are normal in terms of the design values. The cause of this abnormality and the future impact on the BBU was not able to be resolved due to the limitations of information that can be obtained from the measurements. It is important to understand the cause of this abnormality so that effective QA/QC measures can be

  4. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Directory of Open Access Journals (Sweden)

    Hugo Lourenço-Martins

    2017-12-01

    Full Text Available Recently, two reports [Krivanek et al. Nature (London 514, 209 (2014NATUAS0028-083610.1038/nature13870, Lagos et al. Nature (London 543, 529 (2017NATUAS0028-083610.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS. While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014SCIEAS0036-807510.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989PMABDJ1364-281210.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997PRBMDO0163-182910.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008PRLTAO0031-900710.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012PRBMDO1098-012110.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015APCHD52330-402210.1021/acsphotonics.5b00421].

  5. Engineering, design and prototype tests of a 3.9 GHz transverse-mode superconducting cavity for a radiofrequency-separated kaon beam

    International Nuclear Information System (INIS)

    Mark S. Champion et al.

    2001-01-01

    A research and development program is underway to construct superconducting cavities to be used for radiofrequency separation of a Kaon beam at Fermilab. The design calls for installation of twelve 13-cell cavities operating in the 3.9 GHz transverse mode with a deflection gradient of 5 MV/m. They present the mechanical, cryogenic and vacuum design of the cavity, cryomodule, rf power coupler, cold tuner and supporting hardware. The electromagnetic design of the cavity is presented in a companion paper by Wanzenberg and McAshan. The warm tuning system (for field flatness) and the vertical test system is presented along with test results of bench measurements and cold tests on single-cell and five-cell prototypes

  6. Transverse-mode-selectable microlens vertical-cavity surface-emitting laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Debernardi, Pierluigi; Lee, Yong Tak

    2010-01-01

    A new vertical-cavity surface-emitting laser structure employing a thin microlens is suggested and numerically investigated. The laser can be made to emit in either a high-power Gaussian-shaped single-fundamental mode or a high-power doughnut-shaped higher-order mode. The physical origin...

  7. A quantum-classical simulation of a multi-surface multi-mode ...

    Indian Academy of Sciences (India)

    Multi surface multi mode quantum dynamics; parallelized quantum classical approach; TDDVR method. 1. ... cal simulation on molecular system is a great cha- llenge for ..... on a multiple core cluster with shared memory using. OpenMP based ...

  8. Influence of bounce mode on surface roughness of CH coating on microshells

    International Nuclear Information System (INIS)

    Zhang Baoling; China Academy of Engineering Physics, Mianyang; He Zhibing; Wu Weidong; Liu Xinghua; Ma Xiaojun; Yang Mengsheng; Lin Huaping; Yang Xiangdong

    2008-01-01

    The CH coating on microshells was fabricated by low-pressure plasma chemical vapor deposition (LPPCVD) with a bounce pan system. The influence of bounce modes on the surface topography of the CH coating was discussed. The surface topography was probed by optical microscopy and scanning electron microscopy(SEM). Roughness and sphericity were measured with an atomic force microscopy(AFM). X-radiography was used to obtain the concentricity. The results show that the surface topography of the coating is improved significantly by the intermittent bounce mode, and the roughness of medium high mode is reduced. The surface finish is improved ulteriorly by the intermittent bounce mode as the duty ratio is reduced. The RMS roughness of 30 μm CH coating is less than 30 nm. The spericity and concentricity of hydrocarbon-polystyrene (CH-PS) microshell are all better than 99% when the duty ratio is 1/4. (authors)

  9. Terahertz plasmon and surface-plasmon modes in cylindrical metallic nanowires

    International Nuclear Information System (INIS)

    Wu Ping; Xu Wen; Li Long-Long; Lu Tie-Cheng; Wu Wei-Dong

    2014-01-01

    We present a theoretical study on collective excitation modes associated with plasmon and surface-plasmon oscillations in cylindrical metallic nanowires. Based on a two-subband model, the dynamical dielectric function matrix is derived under the random-phase approximation. An optic-like branch and an acoustic-like branch, which are free of Landau damping, are observed for both plasmon and surface-plasmon modes. Interestingly, for surface-plasmon modes, we find that two branches of the dispersion relation curves converge at a wavevector q z = q max beyond which no surface-plasmon mode exists. Moreover, we examine the dependence of these excitation modes on sample parameters such as the radius of the nanowires. It is found that in metallic nanowires realized by state-of-the-art nanotechnology the intra- and inter-subband plasmon and surface-plasmon frequencies are in the terahertz bandwidth. The frequency of the optic-like modes decreases with increasing radius of the nanowires, whereas that of the acoustic-like modes is not sensitive to the variation of the radius. This study is pertinent to the application of metallic nanowires as frequency-tunable terahertz plasmonic devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Commercial mode-locked vertical external cavity surface emitting lasers

    Science.gov (United States)

    Head, C. Robin; Paboeuf, David; Ortega, Tiago; Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2018-02-01

    This paper presents the latest efforts in the development of commercial optically-pumped semiconductor disk lasers (SDLs) at M Squared Lasers. Two types of SDLs are currently being developed: an ultrafast system and a continuous wave single frequency system under the names of Dragonfly and Infinite, respectively. Both offer a compact, low-cost, easy-to-use and maintenance-free tool for a range of growing markets including nonlinear microscopy and quantum technology. To facilitate consumer uptake of the SDL technology, the performance specifications aim to closely match the currently employed systems. An extended Dragonfly system is being developed targeting the nonlinear microscopy market, which typically requires 1-W average power pulse trains with pulse durations below 200 fs. The pulse repetition frequency (PRF) of the commonly used laser systems, typically Titanium-sapphire lasers, is 80 MHz. This property is particularly challenging for mode-locked SDLs which tend to operate at GHz repetition rates, due to their short upper state carrier lifetime. Dragonfly has found a compromise at 200 MHz to balance mode-locking instabilities with a low PRF. In the ongoing development of Dragonfly, additional pulse compression and nonlinear spectral broadening stages are used to obtain pulse durations as short as 130 fs with an average power of 0.85 W, approaching the required performance. A variant of the Infinite system was adapted to provide a laser source suitable for the first stage of Sr atom cooling at 461 nm. Such a source requires average powers of approximately 1 W with a sub-MHz linewidth. As direct emission in the blue is not a viable approach at this stage, an SDL emitting at 922 nm followed by an M Squared Lasers SolTiS ECD-X doubler is currently under development. The SDL oscillator delivered >1 W of single frequency (RMS frequency noise <150kHz) light at 922 nm.

  11. Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface.

    Science.gov (United States)

    Kim, Hun; Lim, Hee-Chang

    2015-06-04

    The objective of this study is to understand the mode pattern of the internal flow in a water droplet placed on a hydrophobic surface that periodically and vertically vibrates. As a result, a water droplet on a vibrating hydrophobic surface has a typical shape that depends on each resonance mode, and, additionally, we observed a diversified lobe size and internal flows in the water droplet. The size of each lobe at the resonance frequency was relatively greater than that at the neighboring frequencies, and the internal flow of the nth order mode was also observed in the flow visualization. In general, large symmetrical flow streams were generated along the vertical axis in each mode, with a large circulating movement from the bottom to the top, and then to the triple contact line along the droplet surface. In contrast, modes 2 and 4 generated a Y-shaped flow pattern, in which the flow moved to the node point in the lower part of the droplet, but modes 6 and 8 had similar patterns, with only a little difference. In addition, as a result of the PIV measurement, while the flow velocity of mode 4 was faster than that of model 2, those of modes 6 and 8 were almost similar.

  12. Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers.

    Science.gov (United States)

    Alber, Ina; Sigle, Wilfried; Müller, Sven; Neumann, Reinhard; Picht, Oliver; Rauber, Markus; van Aken, Peter A; Toimil-Molares, Maria Eugenia

    2011-12-27

    We study the transversal and longitudinal localized surface plasmon resonances in single nanowires and nanowire dimers excited by the fast traveling electron beam in a transmission electron microscope equipped with high-resolution electron energy-loss spectroscopy. Bright and dark longitudinal modes up to the fifth order are resolved on individual metallic nanowires. On nanowire dimers, mode splitting into bonding and antibonding is measured up to the third order for several dimers with various aspect ratio and controlled gap size. We observe that the electric field maxima of the bonding modes are shifted toward the gap, while the electric field maxima of the antibonding modes are shifted toward the dimer ends. Finally, we observe that the transversal mode is not detected in the region of the dimer gap and decays away from the rod more rapidly than the longitudinal modes.

  13. Strong asymmetry for surface modes in nonlinear lattices with long-range coupling

    International Nuclear Information System (INIS)

    Martinez, Alejandro J.; Vicencio, Rodrigo A.; Molina, Mario I.

    2010-01-01

    We analyze the formation of localized surface modes on a nonlinear cubic waveguide array in the presence of exponentially decreasing long-range interactions. We find that the long-range coupling induces a strong asymmetry between the focusing and defocusing cases for the topology of the surface modes and also for the minimum power needed to generate them. In particular, for the defocusing case, there is an upper power threshold for exciting staggered modes, which depends strongly on the long-range coupling strength. The power threshold for dynamical excitation of surface modes increases (decreases) with the strength of long-range coupling for the focusing (defocusing) cases. These effects seem to be generic for discrete lattices with long-range interactions.

  14. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    Science.gov (United States)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem

    2014-05-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin-Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  15. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    International Nuclear Information System (INIS)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem

    2014-01-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  16. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    Energy Technology Data Exchange (ETDEWEB)

    Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Fazelzadeh, S. Ahmad [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Rafii-Tabar, Hashem [Department of Medical Physics and Biomedical Engineering, Research Center for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of)

    2014-05-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  17. Numerical study of pressure fluctuations transfer law in different flow rate of turbine mode in a prototype pump turbine

    International Nuclear Information System (INIS)

    Sun, Y K; Zuo, Z G; Liu, S H; Wu, Y L; Liu, J T; Qin, D Q; Wei, X Z

    2013-01-01

    Numerical simulation using SST k-w turbulence model was carried out, to predict pressure fluctuation transfer law in turbine mode. Three operating points with different mass flow rates are simulated. The results of numerical simulation show that, the amplitude and frequency of pressure fluctuations in different positions are very different. The transfer law of amplitude and frequency of pressure fluctuations change with different position and different mass flow rate. Blade passing frequency (BPF) is the first dominant frequency in vaneless space, while component in this frequency got smaller in the upstream and downstream of vaneless space when the mass flow is set. Furthermore triple blade passing frequency (3BPF) component obtained a different transfer law through the whole flow passage. The amplitude and frequency of pressure fluctuations is also different in different circumference position of vaneless space. When the mass flow is different, the distribution of pressure fluctuations in circumference is different. The frequency component of pressure fluctuations in all the positions is different too

  18. Surface dependent behaviour of CdS LO-phonon mode

    International Nuclear Information System (INIS)

    Molina-Contreras, J R; Medina-Gutierrez, C; Frausto-Reyes, C; Trejo-Vazquez, R; Villalobos-Pina, F J; Romo-Luevano, G; Calixto, S

    2007-01-01

    In this paper, we develop a sensitive optical method to monitor the surface roughness in the investigation of surfaces. By applying this method to measure the RMS surface roughness of various surfaces, we found RMS values which are comparable to those obtained by atomic force microscopy measurements. In addition, we present a simple empirical model to calculate the RMS surface roughness which shows very good agreement with the surface roughness measurements taken by the method reported in this paper. Finally, the application of our method to the study of the LO-phonon mode of CdS suggests that its intensity is dominated by the surface roughness. This roughness dependent behaviour of the CdS LO-phonon mode is experimentally confirmed by using an excitation wavelength near its E 0 transition

  19. ASSESSMENT OF SURFACE FINISH AND DIMENSIONAL ACCURACY OF TOOLS MANUFACTURED BY METAL CASTING IN RAPID PROTOTYPING SAND MOULDS

    Directory of Open Access Journals (Sweden)

    Nyembwe, K.

    2012-11-01

    Full Text Available In this paper, an initial assessment of the quality parameters of the surface finish and dimensional accuracy of tools made by metal casting in rapid prototyping (RP sand moulds is undertaken. A case study from a local tool room, dealing with the manufacturing of an aluminium die for the lost wax process, is employed. Modern techniques, including surface roughness analysis and three dimensional scanning, are used to determine and understand how each manufacturing step influences the final quality of the cast tool. The best surface finish obtained for the cast die had arithmetic average roughness (Ra and mean average roughness (Rz respectively equal to 3.23m and 11.38m. In terms of dimensional accuracy, 82% of cast-die points coincided with the Computer Aided Design (CAD data, which is within the typical tolerances of sand cast products. The investigation shows that mould coating contributes slightly to the improvement of the cast tool surface finish. The study also found that the additive manufacturing of the sand mould was the chief factor responsible for the loss of dimensional accuracy. These findings indicate that machining will always be required to improve the surface finish and the dimensional accuracy of cast tools in RP sand moulds.

  20. Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery.

    Science.gov (United States)

    Manger, Ryan P; Paxton, Adam B; Pawlicki, Todd; Kim, Gwe-Ya

    2015-05-01

    Surface image guided, Linac-based radiosurgery (SIG-RS) is a modern approach for delivering radiosurgery that utilizes optical stereoscopic imaging to monitor the surface of the patient during treatment in lieu of using a head frame for patient immobilization. Considering the novelty of the SIG-RS approach and the severity of errors associated with delivery of large doses per fraction, a risk assessment should be conducted to identify potential hazards, determine their causes, and formulate mitigation strategies. The purpose of this work is to investigate SIG-RS using the combined application of failure modes and effects analysis (FMEA) and fault tree analysis (FTA), report on the effort required to complete the analysis, and evaluate the use of FTA in conjunction with FMEA. A multidisciplinary team was assembled to conduct the FMEA on the SIG-RS process. A process map detailing the steps of the SIG-RS was created to guide the FMEA. Failure modes were determined for each step in the SIG-RS process, and risk priority numbers (RPNs) were estimated for each failure mode to facilitate risk stratification. The failure modes were ranked by RPN, and FTA was used to determine the root factors contributing to the riskiest failure modes. Using the FTA, mitigation strategies were formulated to address the root factors and reduce the risk of the process. The RPNs were re-estimated based on the mitigation strategies to determine the margin of risk reduction. The FMEA and FTAs for the top two failure modes required an effort of 36 person-hours (30 person-hours for the FMEA and 6 person-hours for two FTAs). The SIG-RS process consisted of 13 major subprocesses and 91 steps, which amounted to 167 failure modes. Of the 91 steps, 16 were directly related to surface imaging. Twenty-five failure modes resulted in a RPN of 100 or greater. Only one of these top 25 failure modes was specific to surface imaging. The riskiest surface imaging failure mode had an overall RPN-rank of eighth

  1. Non-linear self-reinforced growth of tearing modes with multiple rational surfaces

    International Nuclear Information System (INIS)

    Maschke, E.K.; Persson, M.; Dewar, R.L.; Australian National Univ., Canberra, ACT

    1993-06-01

    The non-linear evolution of tearing modes with multiple rational surfaces is discussed. It is demonstrated that, in the presence of small differential rotation, the non-linear growth might be faster than exponential. This growth occurs as the rotation frequencies of the plasma at the different rational surfaces go into equilibrium

  2. Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.

    Science.gov (United States)

    Das, Ritwick; Srivastava, Triranjita; Jha, Rajan

    2014-02-15

    The transverse magnetic (TM) polarized hybrid modes formed as a consequence of coupling between Tamm plasmon polariton (TM-TPP) mode and surface plasmon polariton (SPP) mode exhibit interesting dispersive features for realizing a highly sensitive and accurate surface plasmon resonance (SPR) sensor. We found that the TM-TPP modes, formed at the interface of distributed Bragg reflector and metal, are strongly dispersive as compared to SPP modes at optical frequencies. This causes an appreciably narrow interaction bandwidth between TM-TPP and SPP modes, which leads to highly accurate sensing. In addition, appropriate tailoring of dispersion characteristics of TM-TPP as well as SPP modes could ensure high sensitivity of a novel SPR platform. By suitably designing the Au/TiO₂/SiO₂-based geometry, we propose a TM-TPP/SPP hybrid-mode sensor and achieve a sensitivity ≥900  nm/RIU with high detection accuracy (≥30  μm⁻¹) for analyte refractive indices varying between 1.330 and 1.345 in 600-700 nm wavelength range. The possibility to achieve desired dispersive behavior in any spectral band makes the sensing configuration an extremely attractive candidate to design sensors depending on the availability of optical sources.

  3. Architectural prototyping

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2004-01-01

    A major part of software architecture design is learning how specific architectural designs balance the concerns of stakeholders. We explore the notion of "architectural prototypes", correspondingly architectural prototyping, as a means of using executable prototypes to investigate stakeholders...

  4. A study on changes in body surface temperature and thermal effect according to ultrasound mode

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sung Hee [Dept. of Radiology, Ilsin Christian Hospital, Busan (Korea, Republic of); Lee, Jin Soo [Dept. of Radiology, University Haeundae Paik Hospital, Busan (Korea, Republic of)

    2017-06-15

    Recently, as the number of high-risk pregnancies increases, the use of new techniques such as Doppler, which have higher acoustic power than in the past, has been increasingly used in prenatal diagnosis and guidelines have been set up by various organizations to prevent excessive exposure. Therefore, in this study, we tried to investigate the temperature change of the body surface for each test mode according to the long time ultrasound examination and to examine the exposure time which is not influenced by the thermal effect. B mode, C mode, and PD mode according to time, and the temperature difference between exposed and unexposed sites were compared. As a result, the B mode showed a significant difference in the temperature change from 10 minutes, 50 minutes after exposed, 20 minutes from the C mode, and 30 minutes from the PD mode (p<0.01). In all three modes, the temperature difference was different(p<0.000), and PD mode was the most sensitive to temperature change. Also, it was found that the temperature rise time was shortened with the increase of the ultrasonic exposure time. Therefore, it is recommended that ultrasonography to observe the embryo or fetus should be used only for diagnostic purposes, avoiding excessive test time.

  5. System upgradation for surface mode negative ion beam extraction experiments in ROBIN

    International Nuclear Information System (INIS)

    Pandya, Kaushal; Bansal, Gourab; Gahlaut, Agrajit; Soni, Jignesh; Yadav, Ratnakar K.; Mahesh, Vuppugalla; Tyagi, Himanshu; Parmar, KanuG.; Mistri, Hiren; Bhagora, Jighesh; Prajapati, Bhavesh; Patel, Kartik; Bhuyan, Manas; Gouswami, Mehul; Bandyopadhyay, Mainak; Chakraborty, Arun K.

    2017-01-01

    Operational commissioning of ROBIN forms an important milestone in the Indian programme on the R&D on negative ion beams. The commissioning activity has been effected in sequence, in synchronisation with the availability of High voltage Power Supply (HVPS) systems and routine operation has now been established in the cesiated, surface mode. Significant efforts have been placed in upgrading the system to initiate the surface mode operation. These include incorporation of a temperature controlled Cesium (Cs) delivery system, spectroscopic diagnostics for detection of Cs lines, installation of plasma grid heating and closed loop warm water circuit for source components heating and Doppler Shift Spectroscopy (DSS) system. The specific design and integration features for these upgrades are discussed and preliminary results obtained from the operation of ROBIN in the surface mode are presented.

  6. Terminal Sliding Mode Control with Unidirectional Auxiliary Surfaces for Hypersonic Vehicles Based on Adaptive Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Naibao He

    2015-01-01

    Full Text Available A novel flight control scheme is proposed using the terminal sliding mode technique, unidirectional auxiliary surfaces and the disturbance observer model. These proposed dynamic attitude control systems can improve control performance of hypersonic vehicles despite uncertainties and external disturbances. The terminal attractor is employed to improve the convergence rate associated with the critical damping characteristics problem noted in short-period motions of hypersonic vehicles. The proposed robust attitude control scheme uses a dynamic terminal sliding mode with unidirectional auxiliary surfaces. The nonlinear disturbance observer is designed to estimate system uncertainties and external disturbances. The output of the disturbance observer aids the robust adaptive control scheme and improves robust attitude control performance. Finally, simulation results are presented to illustrate the effectiveness of the proposed terminal sliding mode with unidirectional auxiliary surfaces.

  7. Cladding defects in hollow core fibers for surface mode suppression and improved birefringence

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngso, J. K.; Lægsgaard, Jesper

    2014-01-01

    We demonstrate a novel polarization maintaining hollow-core photonic bandgap fiber geometry that reduces the impact of surface modes on fiber transmission. The cladding structure is modified with a row of partially collapsed holes to strip away unwanted surface modes. A theoretical investigation...... of the surface mode stripping is presented and compared to the measured performance of four 7-cells core fibers that were drawn with different collapse ratio of the defects. The varying pressure along the defect row in the cladding during drawing introduces an ellipticity of the core. This, combined...... with the presence of antiresonant features on the core wall, makes the fibers birefringent, with excellent polarization maintaining properties. (C) 2014 Optical Society of America...

  8. System upgradation for surface mode negative ion beam extraction experiments in ROBIN

    Energy Technology Data Exchange (ETDEWEB)

    Pandya, Kaushal, E-mail: kpandya@ipr.res.in [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar, 382428, Gujarat (India); Bansal, Gourab; Gahlaut, Agrajit; Soni, Jignesh [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar, 382428, Gujarat (India); Yadav, Ratnakar K. [ITER-India, Institute for Plasma Research, Gandhinagar, Gujarat (India); Mahesh, Vuppugalla [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar, 382428, Gujarat (India); Tyagi, Himanshu [ITER-India, Institute for Plasma Research, Gandhinagar, Gujarat (India); Parmar, KanuG.; Mistri, Hiren [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar, 382428, Gujarat (India); Bhagora, Jighesh [ITER-India, Institute for Plasma Research, Gandhinagar, Gujarat (India); Prajapati, Bhavesh; Patel, Kartik [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar, 382428, Gujarat (India); Bhuyan, Manas [ITER-India, Institute for Plasma Research, Gandhinagar, Gujarat (India); Gouswami, Mehul [Bhakti Management Services, Gandhinagar, 382007, Gujarat (India); Bandyopadhyay, Mainak [ITER-India, Institute for Plasma Research, Gandhinagar, Gujarat (India); Chakraborty, Arun K. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar, 382428, Gujarat (India)

    2017-01-15

    Operational commissioning of ROBIN forms an important milestone in the Indian programme on the R&D on negative ion beams. The commissioning activity has been effected in sequence, in synchronisation with the availability of High voltage Power Supply (HVPS) systems and routine operation has now been established in the cesiated, surface mode. Significant efforts have been placed in upgrading the system to initiate the surface mode operation. These include incorporation of a temperature controlled Cesium (Cs) delivery system, spectroscopic diagnostics for detection of Cs lines, installation of plasma grid heating and closed loop warm water circuit for source components heating and Doppler Shift Spectroscopy (DSS) system. The specific design and integration features for these upgrades are discussed and preliminary results obtained from the operation of ROBIN in the surface mode are presented.

  9. Observation of a new surface mode on a fluid-saturated permeable solid

    International Nuclear Information System (INIS)

    Nagy, P.B.

    1992-01-01

    Almost ten years ago, S. Feng and D. L. Johnson predicted the presence of a new surface mode on a fluid/fluid-saturated porous solid interface with closed surface pores [J. Acoust. Soc. Am. 74, 906 (1983)]. We found that, due to surface tension, practically closed-pore boundary conditions can prevail at an interface between a nonwetting fluid (e.g., air) and a porous solid saturated with a wetting fluid (e.g., water or alcohol). Surface wave velocity and attenuation measurements were made on alcohol-saturated porous sintered glass at 100 kHz. The experimental results show clear evidence of the new ''slow'' surface mode predicted by Feng and Johnson

  10. Design of tunable surface mode waveguide based on photonic crystal composite structure using organic liquid*

    International Nuclear Information System (INIS)

    Zhang Lan-Lan; Liu Wei; Li Ping; Yang Xi; Cao Xu

    2017-01-01

    With the method of replacing the surface layer of photonic crystal with tubes, a novel photonic crystal composite structure used as a tunable surface mode waveguide is designed. The tubes support tunable surface states. The tunable propagation capabilities of the structure are investigated by using the finite-difference time-domain. Simulation results show that the beam transmission distributions of the composite structure are sensitive to the frequency range of incident light and the surface morphology which can be modified by filling the tubes with different organic liquids. By adjusting the filler in tubes, the T-shaped, Y-shaped, and L-shaped propagations can be realized. The property can be applied to the tunable surface mode waveguide. Compared with a traditional single function photonic crystal waveguide, our designed structure not only has a small size, but also is a tunable device. (paper)

  11. Source signature estimation from multimode surface waves via mode-separated virtual real source method

    Science.gov (United States)

    Gao, Lingli; Pan, Yudi

    2018-05-01

    The correct estimation of the seismic source signature is crucial to exploration geophysics. Based on seismic interferometry, the virtual real source (VRS) method provides a model-independent way for source signature estimation. However, when encountering multimode surface waves, which are commonly seen in the shallow seismic survey, strong spurious events appear in seismic interferometric results. These spurious events introduce errors in the virtual-source recordings and reduce the accuracy of the source signature estimated by the VRS method. In order to estimate a correct source signature from multimode surface waves, we propose a mode-separated VRS method. In this method, multimode surface waves are mode separated before seismic interferometry. Virtual-source recordings are then obtained by applying seismic interferometry to each mode individually. Therefore, artefacts caused by cross-mode correlation are excluded in the virtual-source recordings and the estimated source signatures. A synthetic example showed that a correct source signature can be estimated with the proposed method, while strong spurious oscillation occurs in the estimated source signature if we do not apply mode separation first. We also applied the proposed method to a field example, which verified its validity and effectiveness in estimating seismic source signature from shallow seismic shot gathers containing multimode surface waves.

  12. Identification of surface species by vibrational normal mode analysis. A DFT study

    Science.gov (United States)

    Zhao, Zhi-Jian; Genest, Alexander; Rösch, Notker

    2017-10-01

    Infrared spectroscopy is an important experimental tool for identifying molecular species adsorbed on a metal surface that can be used in situ. Often vibrational modes in such IR spectra of surface species are assigned and identified by comparison with vibrational spectra of related (molecular) compounds of known structure, e. g., an organometallic cluster analogue. To check the validity of this strategy, we carried out a computational study where we compared the normal modes of three C2Hx species (x = 3, 4) in two types of systems, as adsorbates on the Pt(111) surface and as ligands in an organometallic cluster compound. The results of our DFT calculations reproduce the experimental observed frequencies with deviations of at most 50 cm-1. However, the frequencies of the C2Hx species in both types of systems have to be interpreted with due caution if the coordination mode is unknown. The comparative identification strategy works satisfactorily when the coordination mode of the molecular species (ethylidyne) is similar on the surface and in the metal cluster. However, large shifts are encountered when the molecular species (vinyl) exhibits different coordination modes on both types of substrates.

  13. Imaging surface nanobubbles at graphite–water interfaces with different atomic force microscopy modes

    International Nuclear Information System (INIS)

    Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2013-01-01

    We have imaged nanobubbles on highly ordered pyrolytic graphite (HOPG) surfaces in pure water with different atomic force microscopy (AFM) modes, including the frequency-modulation, the tapping, and the PeakForce techniques. We have compared the performance of these modes in obtaining the surface profiles of nanobubbles. The frequency-modulation mode yields a larger height value than the other two modes and can provide more accurate measurement of the surface profiles of nanobubbles. Imaging with PeakForce mode shows that a nanobubble appears smaller and shorter with increasing peak force and disappears above a certain peak force, but the size returns to the original value when the peak force is reduced. This indicates that imaging with high peak forces does not cause gas removal from the nanobubbles. Based on the presented findings and previous AFM observations, the existing models for nanobubbles are reviewed and discussed. The model of gas aggregate inside nanobubbles provides a better explanation for the puzzles of the high stability and the contact angle of surface nanobubbles. (paper)

  14. A prototype of radar-drone system for measuring the surface flow velocity at river sites and discharge estimation

    Science.gov (United States)

    Moramarco, Tommaso; Alimenti, Federico; Zucco, Graziano; Barbetta, Silvia; Tarpanelli, Angelica; Brocca, Luca; Mezzanotte, Paolo; Rosselli, Luca; Orecchini, Giulia; Virili, Marco; Valigi, Paolo; Ciarfuglia, Thomas; Pagnottelli, Stefano

    2015-04-01

    , altimeter, camera) and artificial intelligence. Finally it has more than 0.3 kg payload that can be used for further instruments. With respect to the conventional approach, that uses radar sensors on fixed locations, the system prototype composed of drone and Doppler radar is more flexible and would allow carrying out velocity measurements obtaining the whole transverse surface velocity profile during high flow and for inaccessible river sites as well. This information represents the boundary condition of the entropy model (Moramarco et al. 2004) able to turn the surface velocity in discharge, known the geometry of the river site. Nowadays the prototype is being implemented and the Doppler radar sensor is tested in a static way, i.e. the flow velocity accuracy is determined in real-case situations by comparing the sensor output with that of conventional instruments. The first flying test is planned shortly in some river sites of Tiber River in central Italy and based on the surface velocity survey the capability of the radar-drone prototype will be tested and the benefit in discharge assessment by using the entropy model will be verified. Alimenti, F., Placentino, F., Battistini, A., Tasselli, G., Bernardini, W., Mezzanotte, P., Rascio, D., Palazzari, V., Leone, S., Scarponi, A., Porzi, N., Comez, M. and Roselli, L. (2007). "A Low-Cost 24GHz Doppler Radar Sensor for Traffic Monitoring Implemented in Standard Discrete-Component Technology". Proceedings of the 2007 European Radar Conference (EuRAD 2007), pp. 162-165, Munich, Germany, 10-12 October 2007 Chiu, C. L. (1987). "Entropy and probability concepts in hydraulics". J. Hydr. Engrg., ASCE, 113(5), 583-600. Moramarco, T., Saltalippi, C., Singh, V.P.(2004). "Estimation of mean velocity in natural channels based on Chiu's velocity distribution equation", Journal of Hydrologic Engineering, 9 (1), pp. 42-50

  15. Asymptotic theory of dissipative trapped electron mode overlapping many rational surfaces

    International Nuclear Information System (INIS)

    Rogister, A.; Hasselberg, G.

    1978-01-01

    The two dimensional eigenvalue equation describing the dissipative trapped electron mode is solved exactly in the limit of the mode overlapping many rational surfaces using the Pogutse model for the magnetic field and the pitch angle collision operator. The trapped electron contribution to the growth rate decreases, with respect to the standard theory, by a factor of order Δ/chi sub(T) << 1 where chi sub(T) is the position of the turning point and Δ the distance between rational surfaces

  16. Stabilization of an Underactuated Surface Vessel Based on Adaptive Sliding Mode and Backstepping Control

    Directory of Open Access Journals (Sweden)

    Fuguang Ding

    2013-01-01

    Full Text Available The paper studied controlling problem of an underactuated surface vessel with unknown interferences. It proved that the control problem of underactuated surface vessel can be transformed into the stabilization analysis of two small subsystems. This controller was designed by backstepping method and adaptive sliding mode, was suitable for solving the problem of the control of higher systems, can keep the system global asymptotic stability, and can inhibit unknown interference, and boundary layer can weaken the buffeting generated by sliding mode. The unknown interference was estimated by adaptive function. Finally, the simulation results are given to demonstrate the effectiveness of the proposed control laws.

  17. Effect of surface modes on coupling to fast waves in the LHRF

    International Nuclear Information System (INIS)

    Pinsker, R.I.; Colestock, P.L.

    1990-01-01

    The effect of surface modes of propagation on coupling to fast waves in the LHRF is studied theoretically and experimentally. The previously reported 'up-down' poloidal phasing asymmetry for coupling to a uniform plasma is shown to be due to the properties of a mode which carries energy along the plasma-conducting wall interface. Comparison of the theory with coupling experiments performed on the PLT tokamak with a phased array of twelve dielectric-loaded waveguides at 800 MHz shows that the observed dependence of the net reflection coefficient on toroidal phase angle can be explained only if the surface wave is taken into account. 43 refs., 10 figs

  18. Semi-automatic surface sediment sampling system - A prototype to be implemented in bivalve fishing surveys

    Science.gov (United States)

    Rufino, Marta M.; Baptista, Paulo; Pereira, Fábio; Gaspar, Miguel B.

    2018-01-01

    In the current work we propose a new method to sample surface sediment during bivalve fishing surveys. Fishing institutes all around the word carry out regular surveys with the aim of monitoring the stocks of commercial species. These surveys comprise often more than one hundred of sampling stations and cover large geographical areas. Although superficial sediment grain sizes are among the main drivers of benthic communities and provide crucial information for studies on coastal dynamics, overall there is a strong lack of this type of data, possibly, because traditional surface sediment sampling methods use grabs, that require considerable time and effort to be carried out on regular basis or on large areas. In face of these aspects, we developed an easy and un-expensive method to sample superficial sediments, during bivalve fisheries monitoring surveys, without increasing survey time or human resources. The method was successfully evaluated and validated during a typical bivalve survey carried out on the Northwest coast of Portugal, confirming that it had any interference with the survey objectives. Furthermore, the method was validated by collecting samples using a traditional Van Veen grabs (traditional method), which showed a similar grain size composition to the ones collected by the new method, on the same localities. We recommend that the procedure is implemented on regular bivalve fishing surveys, together with an image analysis system to analyse the collected samples. The new method will provide substantial quantity of data on surface sediment in coastal areas, using a non-expensive and efficient manner, with a high potential application in different fields of research.

  19. Surface modes of ultra-cold atomic clouds with very large number of vortices

    Energy Technology Data Exchange (ETDEWEB)

    Cazalilla, M A [Donostia International Physics Center, Donostia (Spain); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2003-04-01

    We study the surface modes of some of the vortex liquids recently found by means of exact diagonalizations in systems of rapidly rotating bosons. In contrast to the surface modes of Bose condensates, we find that the surface waves have a frequency linear in the excitation angular momentum, h-bar l > 0. Furthermore, in analogy with the edge waves of electronic quantum Hall states, these excitations are chiral, that is, they can be excited only for values of l that increase the total angular momentum of the vortex liquid. However, differently from the quantum Hall phenomena for electrons, we also find other excitations that are approximately degenerate in the laboratory frame with the surface modes, and which decrease the total angular momentum by l quanta. The surface modes of the Laughlin, as well as other scalar and vector boson states are analyzed, and their observable properties characterized. We argue that measurement of the response of a vortex liquid to a weak time-dependent potential that imparts angular momentum to the system should provide valuable information to characterize the vortex liquid. In particular, the intensity of the signal of the surface waves in the dynamic structure factor has been studied and found to depend on the type of vortex liquid. We point out that the existence of surface modes has observable consequences on the density profile of the Laughlin state. These features are due to the strongly correlated behavior of atoms in the vortex liquids. We point out that these correlations should be responsible for a remarkable stability of some vortex liquids with respect to three-body losses. (author)

  20. MAARGHA: A Prototype System for Road Condition and Surface Type Estimation by Fusing Multi-Sensor Data

    Directory of Open Access Journals (Sweden)

    Deepak Rajamohan

    2015-07-01

    Full Text Available Road infrastructure in countries like India is expanding at a rapid pace and is becoming increasingly difficult for authorities to identify and fix the bad roads in time. Current Geographical Information Systems (GIS lack information about on-road features like road surface type, speed breakers and dynamic attribute data like the road quality. Hence there is a need to build road monitoring systems capable of collecting such information periodically. Limitations of satellite imagery with respect to the resolution and availability, makes road monitoring primarily an on-field activity. Monitoring is currently performed using special vehicles that are fitted with expensive laser scanners and need skilled resource besides providing only very low coverage. Hence such systems are not suitable for continuous road monitoring. Cheaper alternative systems using sensors like accelerometer and GPS (Global Positioning System exists but they are not equipped to achieve higher information levels. This paper presents a prototype system MAARGHA (MAARGHA in Sanskrit language means an eternal path to solution, which demonstrates that it can overcome the disadvantages of the existing systems by fusing multi-sensory data like camera image, accelerometer data and GPS trajectory at an information level, apart from providing additional road information like road surface type. MAARGHA has been tested across different road conditions and sensor data characteristics to assess its potential applications in real world scenarios. The developed system achieves higher information levels when compared to state of the art road condition estimation systems like Roadroid. The system performance in road surface type classification is dependent on the local environmental conditions at the time of imaging. In our study, the road surface type classification accuracy reached 100% for datasets with near ideal environmental conditions and dropped down to 60% for datasets with shadows and

  1. Mode Specific Electronic Friction in Dissociative Chemisorption on Metal Surfaces: H2 on Ag(111)

    Science.gov (United States)

    Maurer, Reinhard J.; Jiang, Bin; Guo, Hua; Tully, John C.

    2017-06-01

    Electronic friction and the ensuing nonadiabatic energy loss play an important role in chemical reaction dynamics at metal surfaces. Using molecular dynamics with electronic friction evaluated on the fly from density functional theory, we find strong mode dependence and a dominance of nonadiabatic energy loss along the bond stretch coordinate for scattering and dissociative chemisorption of H2 on the Ag(111) surface. Exemplary trajectories with varying initial conditions indicate that this mode specificity translates into modulated energy loss during a dissociative chemisorption event. Despite minor nonadiabatic energy loss of about 5%, the directionality of friction forces induces dynamical steering that affects individual reaction outcomes, specifically for low-incidence energies and vibrationally excited molecules. Mode-specific friction induces enhanced loss of rovibrational rather than translational energy and will be most visible in its effect on final energy distributions in molecular scattering experiments.

  2. Surface plasmon modes of a single silver nanorod: An electron energy loss study

    DEFF Research Database (Denmark)

    Nicoletti, Olivia; Wubs, Martijn; Mortensen, N. Asger

    2011-01-01

    We present an electron energy loss study using energy filtered TEM of spatially resolved surface plasmon excitations on a silver nanorod of aspect ratio 14.2 resting on a 30 nm thick silicon nitride membrane. Our results show that the excitation is quantized as resonant modes whose intensity maxima...

  3. Flexible long-range surface plasmon polariton single-mode waveguide for optical interconnects

    DEFF Research Database (Denmark)

    Vernoux, Christian; Chen, Yiting; Markey, Laurent

    2018-01-01

    We present the design, fabrication and characterization of long-range surface plasmon polariton waveguide arrays with materials, mainly silicones, carefully selected with the aim to be used as mechanically flexible single-mode optical interconnections, the socalled "plasmonic arc" working at 1.55μm...

  4. Non-equipotential magnetic surfaces and mode-transition in tokamaks

    International Nuclear Information System (INIS)

    Li Xingzhong

    1988-01-01

    The solution of the Fokker-Planck equation is used to describe a phase transition in velocity space. This transition is related to the mode-transition in tokamaks. After the transition the electrostatic potential on a magnetic surface cannot be considered as a constant. (orig.)

  5. Failure modes observed on worn surfaces of W-C-Co sputtered coatings

    International Nuclear Information System (INIS)

    Ramalho, A.; Cavaleiro, A.; Miranda, A.S.; Vieira, M.T.

    1993-01-01

    During scratch testing, the indenter gives rise to a distribution of stresses similar to that observed in tribocontacts. In this work, r.f.-sputtered W-C-Co coatings deposited from sintered WC + Co (6, 10 and 15 wt.% Co) at various substrate biases were scratched and tested tribologically and the morphology of the damaged surfaces was analysed. The cobalt content of the coatings is the main factor determining their tribological characteristics. The failure modes observed on the worn pin-on-disc tested surfaces are explained and compared with those obtained by scratch testing. In spite of it not being possible to establish quantitative results for the wear resistance of W-C-Co coatings from scratch testing, an estimation can be performed based on the observation of the failure modes in the scratch track. Thus scratch testing can be used to predict the tribological behaviour of coated surfaces. This possibility can reduce the number and cost of tribological tests. (orig.)

  6. Frequency splitter based on the directional emission from surface modes in dielectric photonic crystal structures.

    Science.gov (United States)

    Tasolamprou, Anna C; Zhang, Lei; Kafesaki, Maria; Koschny, Thomas; Soukoulis, Costas M

    2015-06-01

    We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. The angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.

  7. Surface boiling - an obvious but like no other decay mode of highly excited atomic nuclei

    International Nuclear Information System (INIS)

    Toke, J.

    2012-01-01

    Essentials of a generalized compound nucleus model are introduced based on a concept of an open microcanonical ensemble which considers explicitly the role of the diffuse surface domain and of the thermal expansion of nuclear systems in the quest for maximum entropy. This obvious generalization offers a unique and universal thermodynamic framework for understanding the changes in the gross behavior of excited nuclear systems with increasing excitation energy and, specifically, the competition between different statistical decay modes, including classical evaporation and binary fission, but also the Coulomb fragmentation of excited systems into multiple fragments - the famed multifragmentation. Importantly, the formalism offers a natural explanation, in terms of boiling or spinodal vaporization, for the experimentally observed appearance of limiting excitation energy that can be thermalized by an exited nuclear system and the associated limiting temperature. It is shown that it is the thermal expansion that leads to volume boiling in an infinite matter and surface boiling in finite nuclei. The latter constitutes an important and universal, but hitherto unappreciated decay mode of highly excited nuclei, a mode here named surface spinodal vaporization. It is also shown that in iso-asymmetric systems, thermal expansion leads to what constitutes distillation - a decay mode here named distillative spinodal vaporization

  8. Collaborative Prototyping

    DEFF Research Database (Denmark)

    Bogers, Marcel; Horst, Willem

    2014-01-01

    of the prototyping process, the actual prototype was used as a tool for communication or development, thus serving as a platform for the cross-fertilization of knowledge. In this way, collaborative prototyping leads to a better balance between functionality and usability; it translates usability problems into design......This paper presents an inductive study that shows how collaborative prototyping across functional, hierarchical, and organizational boundaries can improve the overall prototyping process. Our combined action research and case study approach provides new insights into how collaborative prototyping...... can provide a platform for prototype-driven problem solving in early new product development (NPD). Our findings have important implications for how to facilitate multistakeholder collaboration in prototyping and problem solving, and more generally for how to organize collaborative and open innovation...

  9. Road-Mapping the Way Forward for Sentinel-3 STM SAR-Mode Waveform Retracking over Water Surfaces

    Science.gov (United States)

    Benveniste, Jérôme; Cotton, David; Dinardo, Salvatore; Lucas, Bruno Manuel; Martin-Puig, Cristina; Ray, Chris; Clarizia, Maria Paola; Gommenginger, Christine

    2013-04-01

    In the framework of the preparation activities for the Sentinel-3 Topography Mission, ESA launched an R&D project on SAR Altimetry and Applications over Ocean, Coastal zones and Inland waters. The main objective was to design a novel processing algorithm over ocean surface that would run in the Sentinel-3 ground segment to provide unprecedented quality altimeter measurements over ocean surfaces when in SAR mode. Also coastal zones and inland waters were the targets of research to derive new models and re-trackers for these difficult measurements. Innovative physically based models have been developed for near-nadir ocean altimetric waveforms in SAR-Mode and subsequently implemented in prototype ocean SAR re-trackers to perform the validation. A Detailed Processing Model Document was delivered for implementation in the Sentinel-3 Topography Mission Ground Segment. In this paper, we present the approach used to date within SAMOSA and the heritage behind the latest SAMOSA2 model. The SAMOSA2 model offers a complete description of SAR altimeter echoes from ocean surfaces, expressed in the form of maps of reflected power in delay and Doppler space. SAMOSA2 is able to account for an elliptical antenna pattern, mispointing errors in roll and yaw, errors in range cell migration correction, surface scattering pattern, non-linear ocean wave statistics and spherical Earth surface effects. SAMOSA2 addresses some of the known limitations of the earlier SAMOSA1 model, in particular with regards to sensitivity to mispointing. Due to its truly comprehensive character, the full SAMOSA2 model is a complicated semi-analytical formulation that still relies on some numerical integrations. The need for numerical integrations significantly impacts the computation time and raises problems of numerical stability once implemented operationally in a re-tracker scheme. This has potentially serious implications that could prevent the implementation of SAMOSA2 in operational re-tracker schemes

  10. Overmoded subterahertz surface wave oscillator with pure TM01 mode output

    International Nuclear Information System (INIS)

    Wang, Guangqiang; Zeng, Peng; Wang, Dongyang; Wang, Jianguo; Li, Shuang

    2016-01-01

    Overmoded O-type Cerenkov generators using annular electron beams are facing the problem of multi-modes output due to the inevitable structural discontinuities. A simple but effective method to achieve the pure TM 01 mode output is applied on the 0.14 THz overmoded surface wave oscillator (SWO) in this paper. In spite of still using an overmoded slow wave structure to ensure the easy fabrication, the followed smooth circular waveguide is shrinkingly tapered to the output waveguide with appropriate radius that it cuts off other higher modes except TM 01 mode. Moreover, the modified device here has the same power capacity as the previous one according to the numerical analysis. By optimized lengths of the transition waveguide and tapered waveguide, particle-in-cell simulation results indicate that the subterahertz wave with output power increased 14.2% at the same frequency is obtained from the proposed SWO under the previous input conditions, and importantly, the output power is all carried by TM 01 mode as expected. Further simulation results in the pulse regime confirm the feasibility of the optimized structure in the actual experiments. This simple and viable design is also applicable to overmoded devices in the lower frequency band of subterahertz wave

  11. Spatial potential ripples of azimuthal surface modes in topological insulator Bi2Te3 nanowires.

    Science.gov (United States)

    Muñoz Rojo, Miguel; Zhang, Yingjie; Manzano, Cristina V; Alvaro, Raquel; Gooth, Johannes; Salmeron, Miquel; Martin-Gonzalez, Marisol

    2016-01-11

    Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi2Te3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density of states, due to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices.

  12. Polarity control and growth mode of InN on yttria-stabilized zirconia (111) surfaces

    International Nuclear Information System (INIS)

    Kobayashi, Atsushi; Okubo, Kana; Ohta, Jitsuo; Oshima, Masaharu; Fujioka, Hiroshi

    2012-01-01

    We have found that polarity of epitaxial InN layers has been controlled by choice of a capping material during high-temperature annealing of yttria-stabilized zirconia (YSZ) (111) substrates in air. Angle-resolved X-ray photoelectron spectroscopy has revealed that the amount of segregation of Y atoms to the YSZ surface depended on the capping material of the substrates. In-polar and N-polar InN have been reproducibly grown on Y-segregated and Y-segregation-free YSZ surfaces, respectively. We have also found that the growth of the first monolayer (ML) of N-polar InN proceeds in a step-flow mode which then switches to layer-by-layer mode after the coverage by 1-ML-thick InN. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Influence of the mode of preparation of the UO3 trioxide on its specific surface

    International Nuclear Information System (INIS)

    Sauteron, J.

    1960-01-01

    As the specific surface of uranium trioxide UO 3 closely depends on the preparation mode and conditions, the authors report and discuss several results obtained on uranium trioxides produced either by precipitation of uranyl nitrate (with oxygenated water, liquid or gaseous ammoniac, and ammonium carbonate), then by calcination at 350 C, or by thermal decomposition of the uranyl nitrate. The authors also studied the influence of calcination temperature of ammonium uranate on the specific surface of the obtained oxide (between 200 and 900 deg.) [fr

  14. Plasma-implantation-based surface modification of metals with single-implantation mode

    Science.gov (United States)

    Tian, X. B.; Cui, J. T.; Yang, S. Q.; Fu, Ricky K. Y.; Chu, Paul K.

    2004-12-01

    Plasma ion implantation has proven to be an effective surface modification technique. Its biggest advantage is the capability to treat the objects with irregular shapes without complex manipulation of target holder. Many metal materials such as aluminum, stainless steel, tool steel, titanium, magnesium etc, has been treated using this technique to improve their wear-resistance, corrosion-resistance, fatigue-resistance, oxidation-resistance, bio-compatiblity etc. However in order to achieve thicker modified layers, hybrid processes combining plasma ion implantation with other techniques have been frequently employed. In this paper plasma implantation based surface modification of metals using single-implantation mode is reviewed.

  15. Upper Mantle Shear Wave Structure Beneath North America From Multi-mode Surface Wave Tomography

    Science.gov (United States)

    Yoshizawa, K.; Ekström, G.

    2008-12-01

    The upper mantle structure beneath the North American continent has been investigated from measurements of multi-mode phase speeds of Love and Rayleigh waves. To estimate fundamental-mode and higher-mode phase speeds of surface waves from a single seismogram at regional distances, we have employed a method of nonlinear waveform fitting based on a direct model-parameter search using the neighbourhood algorithm (Yoshizawa & Kennett, 2002). The method of the waveform analysis has been fully automated by employing empirical quantitative measures for evaluating the accuracy/reliability of estimated multi-mode phase dispersion curves, and thus it is helpful in processing the dramatically increasing numbers of seismic data from the latest regional networks such as USArray. As a first step toward modeling the regional anisotropic shear-wave velocity structure of the North American upper mantle with extended vertical resolution, we have applied the method to long-period three-component records of seismic stations in North America, which mostly comprise the GSN and US regional networks as well as the permanent and transportable USArray stations distributed by the IRIS DMC. Preliminary multi-mode phase-speed models show large-scale patterns of isotropic heterogeneity, such as a strong velocity contrast between the western and central/eastern United States, which are consistent with the recent global and regional models (e.g., Marone, et al. 2007; Nettles & Dziewonski, 2008). We will also discuss radial anisotropy of shear wave speed beneath North America from multi-mode dispersion measurements of Love and Rayleigh waves.

  16. Corneal surface temperature change as the mode of stimulation of the non-contact corneal aesthesiometer.

    Science.gov (United States)

    Murphy, P J; Morgan, P B; Patel, S; Marshall, J

    1999-05-01

    The non-contact corneal aesthesiometer (NCCA) assesses corneal sensitivity by using a controlled pulse of air, directed at the corneal surface. The purpose of this paper was to investigate whether corneal surface temperature change was a component in the mode of stimulation. Thermocouple experiment: A simple model corneal surface was developed that was composed of a moistened circle of filter paper placed on a thermocouple and mounted on a glass slide. The temperature change produced by different stimulus pressures was measured for five different ambient temperatures. Thermal camera experiment: Using a thermal camera, the corneal surface temperature change was measured in nine young, healthy subjects after exposure to different stimulus air pulses. Pulse duration was set at 0.9 s but was varied in pressure from 0.5 to 3.5 millibars. Thermocouple experiment: An immediate drop in temperature was detected by the thermocouple as soon as the air flow was incident on the filter paper. A greater temperature change was produced by increasing the pressure of the incident air flow. A relationship was found and a calibration curve plotted. Thermal camera experiment: For each subject, a drop in surface temperature was detected at each stimulus pressure. Furthermore, as the stimulus pressure increased, the induced reduction in temperature also increased. A relationship was found and a calibration curve plotted. The NCCA air-pulse stimulus was capable of producing a localized temperature change on the corneal surface. The principal mode of corneal nerve stimulation, by the NCCA air pulse, was the rate of temperature change of the corneal surface.

  17. Giant enhancement of reflectance due to the interplay between surface confined wave modes and nonlinear gain in dielectric media.

    Science.gov (United States)

    Kim, Sangbum; Kim, Kihong

    2017-12-11

    We study theoretically the interplay between the surface confined wave modes and the linear and nonlinear gain of the dielectric layer in the Otto configuration. The surface confined wave modes, such as surface plasmons or waveguide modes, are excited in the dielectric-metal bilayer by obliquely incident p waves. In the purely linear case, we find that the interplay between linear gain and surface confined wave modes can generate a large reflectance peak with its value much greater than 1. As the linear gain parameter increases, the peak appears at smaller incident angles, and the associated modes also change from surface plasmons to waveguide modes. When the nonlinear gain is turned on, the reflectance shows very strong multistability near the incident angles associated with surface confined wave modes. As the nonlinear gain parameter is varied, the reflectance curve undergoes complicated topological changes and sometimes displays separated closed curves. When the nonlinear gain parameter takes an optimally small value, a giant amplification of the reflectance by three orders of magnitude occurs near the incident angle associated with a waveguide mode. We also find that there exists a range of the incident angle where the wave is dissipated rather than amplified even in the presence of gain. We suggest that this can provide the basis for a possible new technology for thermal control in the subwavelength scale.

  18. Prototyping Practice

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin

    2015-01-01

    This paper examines the role of the prototyping in digital architecture. During the past decade, a new research field has emerged exploring the digital technology’s impact on the way we think, design and build our environment. In this practice the prototype, the pavilion, installation or demonstr......This paper examines the role of the prototyping in digital architecture. During the past decade, a new research field has emerged exploring the digital technology’s impact on the way we think, design and build our environment. In this practice the prototype, the pavilion, installation...

  19. Propagation of a TE surface mode in a relativistic electron beam–quantum plasma system

    International Nuclear Information System (INIS)

    Abdel Aziz, M.

    2012-01-01

    The dispersion properties of a transverse electric (TE) surface waves propagating along the interface between a magneto-quantum plasma–relativistic beam system and vacuum are studied by using the quantum hydrodynamic model. The general dispersion relations are derived and analyzed in some special cases of interest. Moreover, the effects of density gradients for the beam and plasma on the dispersion properties of surface waves are investigated. The kind of dispersion relations depends strongly on the ambient magnetic field B o via the gyro-frequency ω c , the quantum parameters, and the width of the plasma layer as well as the relativistic factor for the electron beam. It is found that the quantum effects play a crucial role to facilitate the propagation of TE surface waves. -- Highlights: ► Propagation of TE surface waves on bounded magneto-quantum plasma by relativistic beam is studied. ► The quantum plasma consists of transitional layer adjacent to uniform layer. ► Influence of quantum effects on the propagation of TE surface waves are taken into account. ► Effects of homogeneity and inhomogeneity for beam on TE surface waves are considered. ► It is found that quantum effects facilitate the propagation of TE surface modes.

  20. Solar wind: A possible factor driving the interannual sea surface temperature tripolar mode over North Atlantic

    Science.gov (United States)

    Xiao, Ziniu; Li, Delin

    2016-06-01

    The effect of solar wind (SW) on the North Atlantic sea surface temperature (SST) in boreal winter is examined through an analysis of observational data during 1964-2013. The North Atlantic SSTs show a pronounced meridional tripolar pattern in response to solar wind speed (SWS) variations. This pattern is broadly similar to the leading empirical orthogonal function (EOF) mode of interannual variations in the wintertime SSTs over North Atlantic. The time series of this leading EOF mode of SST shows a significant interannual period, which is the same as that of wintertime SWS. This response also appears as a compact north-south seesaw of sea level pressure and a vertical tripolar structure of zonal wind, which simultaneously resembles the North Atlantic Oscillation (NAO) in the overlying atmosphere. As compared with the typical low SWS winters, during the typical high SWS winters, the stratospheric polar night jet (PNJ) is evidently enhanced and extends from the stratosphere to the troposphere, even down to the North Atlantic Ocean surface. Notably, the North Atlantic Ocean is an exclusive region in which the SW signal spreads downward from the stratosphere to the troposphere. Thus, it seems that the SW is a possible factor for this North Atlantic SST tripolar mode. The dynamical process of stratosphere-troposphere coupling, together with the global atmospheric electric circuit-cloud microphysical process, probably accounts for the particular downward propagation of the SW signal.

  1. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    International Nuclear Information System (INIS)

    Kumar, Shailesh; Lausen, Jens L; Andersen, Sebastian K H; Roberts, Alexander S; Radko, Ilya P; Bozhevolnyi, Sergey I; Garcia-Ortiz, Cesar E; Smith, Cameron L C; Kristensen, Anders

    2016-01-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes. (paper)

  2. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    Science.gov (United States)

    Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.; Andersen, Sebastian K. H.; Roberts, Alexander S.; Radko, Ilya P.; Smith, Cameron L. C.; Kristensen, Anders; Bozhevolnyi, Sergey I.

    2016-02-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes.

  3. Adaptive Sliding Mode Control Method Based on Nonlinear Integral Sliding Surface for Agricultural Vehicle Steering Control

    Directory of Open Access Journals (Sweden)

    Taochang Li

    2014-01-01

    Full Text Available Automatic steering control is the key factor and essential condition in the realization of the automatic navigation control of agricultural vehicles. In order to get satisfactory steering control performance, an adaptive sliding mode control method based on a nonlinear integral sliding surface is proposed in this paper for agricultural vehicle steering control. First, the vehicle steering system is modeled as a second-order mathematic model; the system uncertainties and unmodeled dynamics as well as the external disturbances are regarded as the equivalent disturbances satisfying a certain boundary. Second, a transient process of the desired system response is constructed in each navigation control period. Based on the transient process, a nonlinear integral sliding surface is designed. Then the corresponding sliding mode control law is proposed to guarantee the fast response characteristics with no overshoot in the closed-loop steering control system. Meanwhile, the switching gain of sliding mode control is adaptively adjusted to alleviate the control input chattering by using the fuzzy control method. Finally, the effectiveness and the superiority of the proposed method are verified by a series of simulation and actual steering control experiments.

  4. Ultracompact 1×4 TM-polarized beam splitter based on photonic crystal surface mode.

    Science.gov (United States)

    Jiang, Bin; Zhang, Yejin; Wang, Yufei; Liu, Anjin; Zheng, Wanhua

    2012-05-01

    We provide an improved surface-mode photonic crystal (PhC) T-junction waveguide, combine it with an improved PhC bandgap T-junction waveguide, and then provide an ultracompact 1×4 TM-polarized beam splitter. The energy is split equally into the four output waveguides. The maximal transmission ratio of each output waveguide branch equals 24.7%, and the corresponding total transmission ratio of the ultracompact 1×4 beam splitter equals 98.8%. The normalized frequency of maximal transmission ratio is 0.397(2πc/a), and the bandwidth of the ultracompact 1×4 TM-polarized beam splitter is 0.0106(2πc/a). To the best of our knowledge, this is the first time such a high-efficiency 1×4 beam splitter exploiting the nonradiative surface mode as a guided mode has been proposed. Although we only employed a 1×4 beam splitter, our design can easily be extended to other 1×n beam splitters.

  5. Linear theory period ratios for surface helium enhanced double-mode Cepheids

    International Nuclear Information System (INIS)

    Cox, A.N.; Hodson, S.W.; King, D.S.

    1979-01-01

    Linear nonadiabatic theory period ratios for models of double-mode Cepheids with their two periods between 1 and 7 days have been computed, assuming differing amounts and depths of surface helium enhancement. Evolution theory masses and luminosities are found to be consistent with the observed periods. All models give Pi 1 /Pi 0 approx. =0.70 as observed for the 11 known variables, contrary to previous theoretical conclusions. The composition structure that best fits the period ratios has the helium mass fraction in the outer 10 -3 of the stellar mass (T< or =250,000 K) as 0.65, similar to a previous model for the triple-mode pulsator AC And. This enrichment can be established by a Cepheid wind and downward inverted μ gradient instability mixing in the lifetime of these low-mass classical Cepheids

  6. System upgradation for surface mode negative ion beam extraction experiments in ROBIN

    International Nuclear Information System (INIS)

    Pandya, Kaushal; Bansal, Gourab; Soni, Jignesh

    2015-01-01

    ROBIN (Replica Of BATMAN source in India) is a replica of BATMAN source of IPP, Garching. Plasma production (inductively coupled, RF produced plasma), plasma diagnostic (langmuir probe, optical emission spectroscopy), negative ion beam extraction in volume mode with reduced extraction area of 2 cm 2 (4 apertures) using small bench top type power supply (10kV, 400mA), with increase extraction area of 73 cm 2 (146 apertures) and using actual power supplies (Extraction Power Supply System, EPSS (11kV, 35A), and Accelerator Power Supply System, APSS (35kV, 15A)) and beam diagnostic etc have been performed successfully in ROBIN. This paper will describe the details of the system upgradation for surface mode negative ion experiments and its performance in ROBIN

  7. The effect of holes in the dispersion relation of propagative surface plasmon modes of nanoperforated semitransparent metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Kekesi, R., E-mail: renata.kekesi@csic.es; Meneses-Rodríguez, D.; García-Pérez, F.; González, M. U.; García-Martín, A.; Cebollada, A.; Armelles, G., E-mail: gaspar@imm.cnm.csic.es [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain)

    2014-10-07

    We have analysed the effect that holes have on the properties of propagative surface plasmon modes in semitransparent nanoperforated Au films. The modes have been excited in Kretschmann configuration. Contrary to continuous films, where only one mode is excited, two modes are observed in Au nanohole array. The origin of this different behavior is discussed using effective optical properties for the nanoperforated films. The presence of the holes affects the effective optical constants of the membranes in two ways: it changes the contribution of the free electrons, and it gives rise to a localized transition due to a hole induced plasmon resonance. This localized transition interacts with the propagative surface plasmon modes, originating the two detected modes.

  8. The effect of holes in the dispersion relation of propagative surface plasmon modes of nanoperforated semitransparent metallic films

    International Nuclear Information System (INIS)

    Kekesi, R.; Meneses-Rodríguez, D.; García-Pérez, F.; González, M. U.; García-Martín, A.; Cebollada, A.; Armelles, G.

    2014-01-01

    We have analysed the effect that holes have on the properties of propagative surface plasmon modes in semitransparent nanoperforated Au films. The modes have been excited in Kretschmann configuration. Contrary to continuous films, where only one mode is excited, two modes are observed in Au nanohole array. The origin of this different behavior is discussed using effective optical properties for the nanoperforated films. The presence of the holes affects the effective optical constants of the membranes in two ways: it changes the contribution of the free electrons, and it gives rise to a localized transition due to a hole induced plasmon resonance. This localized transition interacts with the propagative surface plasmon modes, originating the two detected modes.

  9. The role of integer-mode rational surface on peaked profile formation in toroidal rotation velocity and ion temperature

    International Nuclear Information System (INIS)

    Koide, Yoshihiko; Ishida, Shin-ichi; Sakasai, Akira

    1991-03-01

    A particular role of integer-mode rational surfaces on the formation of peaked T i (r) and V t (r) is observed. In the case of JT-60 hot-ion regime, the plasma spontaneously changes its peaking region from the inside of q=2 surface to that of broader q=3 surface. (author)

  10. First results from negative ion beam extraction in ROBIN in surface mode

    Science.gov (United States)

    Pandya, Kaushal; Gahlaut, Agrajit; Yadav, Ratnakar K.; Bhuyan, Manas; Bandyopadhyay, Mainak; Das, B. K.; Bharathi, P.; Vupugalla, Mahesh; Parmar, K. G.; Tyagi, Himanshu; Patel, Kartik; Bhagora, Jignesh; Mistri, Hiren; Prajapati, Bhavesh; Pandey, Ravi; Chakraborty, Arun. K.

    2017-08-01

    ROBIN, the first step in the Indian R&D program on negative ion beams has reached an important milestone, with the production of negative ions in the surface conversion mode through Cesium (Cs) vapor injection into the source. In the present set-up, negative hydrogen ion beam extraction is effected through an extraction area of ˜73.38 cm2 (146 apertures of 8mm diameter). The three grid electrostatic accelerator system of ROBIN is fed by high voltage DC power supplies (Extraction Power Supply System: 11kV, 35A and Acceleration Power Supply System: 35kV, 15A). Though, a considerable reduction of co-extracted electron current is usually observed during surface mode operation, in order to increase the negative ion current, various other parameters such as plasma grid temperature, plasma grid bias, extraction to acceleration voltage ratio, impurity control and Cs recycling need to be optimized. In the present experiments, to control and to understand the impurity behavior, a Cryopump (14,000 l/s for Hydrogen) is installed along with a Residual Gas Analyzer (RGA). To characterize the source plasma, two sets of Langmuir probes are inserted through the diagnostic flange ports available at the extraction plane. To characterize the beam properties, thermal differential calorimeter, Doppler Shift Spectroscopy and electrical current measurements are implemented in ROBIN. In the present set up, all the negative ion beam extraction experiments have been performed by varying different experimental parameters e.g. RF power (30-70 kW), source operational pressure (0.3 - 0.6Pa), plasma grid bias voltage, extraction & acceleration voltage combination etc. The experiments in surface mode operation is resulted a reduction of co-extracted electron current having electron to ion ratio (e/i) ˜2 whereas the extracted negative ion current density was increased. However, further increase in negative ion current density is expected to be improved after a systematic optimization of the

  11. Resonant and kinematical enhancement of He scattering from LiF(001) surface and pseudosurface vibrational normal modes

    International Nuclear Information System (INIS)

    Nichols, W.L.; Weare, J.H.

    1986-01-01

    One-phonon cross sections calculated from sagittally polarized vibrational normal modes account for most salient inelastic-scattering intensities seen in He-LiF(001) and measurements published by Brusdeylins, Doak, and Toennies. We have found that most inelastic intensities which cannot be attributed to potential resonances can be explained as kinematically enhanced scattering from both surface and pseudosurface bulk modes

  12. Impurity deposition on surface probes during different operation modes at EXTRAP T1

    International Nuclear Information System (INIS)

    Gudowska, I.; Bergsaker, H.; Hellblom, G.

    1991-01-01

    Surface probes were used in the impurity control program during initial operation of the EXTRAP T1 device. The EXTRAP concept, design and operation characteristics are given elsewhere. The dimensions of the device are R/a=0.5m/0.06m. Four different modes of operation were studied: pure EXTRAP, mixed EXTRAP, RFP and ULQ. Briefly, all four are toroidal plasma discharges, with poloidal magnetic field due to the toroidal plasma current. In the ULQ case, a relatively strong external toroidal magnetic field is applied. In the RFP, and in the mixed mode, an external toroidal field is applied early in the discharge, and the plasma subsequently relaxes into a state with self-generated toroidal field. In the EXTRAP and mixed EXTRAP modes, an additional strong external octupole field is applied, breaking the poloidal symmetry. Throughout the initial period of operation of the device, the plasma performance was largely dominated by impurities, in particular fluorine, which was present due to an accidental contamination of the vessel. Probes have been exposed in wall/liner position, and the objective has been to measure erosion and deposition and try to identify which mechanisms are mainly responsible for impurity production. (author) 5 refs., 2 figs., 1 tab

  13. Analysis of Leaky Modes in Photonic Crystal Fibers Using the Surface Integral Equation Method

    Directory of Open Access Journals (Sweden)

    Jung-Sheng Chiang

    2018-04-01

    Full Text Available A fully vectorial algorithm based on the surface integral equation method for the modelling of leaky modes in photonic crystal fibers (PCFs by solely solving the complex propagation constants of characteristic equations is presented. It can be used for calculations of the complex effective index and confinement losses of photonic crystal fibers. As complex root examination is the key technique in the solution, the new algorithm which possesses this technique can be used to solve the leaky modes of photonic crystal fibers. The leaky modes of solid-core PCFs with a hexagonal lattice of circular air-holes are reported and discussed. The simulation results indicate how the confinement loss by the imaginary part of the effective index changes with air-hole size, the number of rings of air-holes, and wavelength. Confinement loss reductions can be realized by increasing the air-hole size and the number of air-holes. The results show that the confinement loss rises with wavelength, implying that the light leaks more easily for longer wavelengths; meanwhile, the losses are decreased significantly as the air-hole size d/Λ is increased.

  14. Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The motivation of this work was to have robust spectroscopic sensors for sensitive detection and chemical analysis of organic and molecular compounds. The solution is to use silica sphere optical resonators to provide surface-enhanced spectroscopic signal. Whispering-gallery mode (WGM) resonators made from silica microspheres were used for surface-enhanced Raman scattering (SERS) without coupling to a plasmonic mechanism. Large Raman signal enhancement is observed by exclusively using 5.08-micron silica spheres with 785-nm laser excitation. The advantage of this non-plasmonic approach is that the active substrate is chemically inert silica, thermally stable, and relatively simple to fabricate. The Raman signal enhancement is broadly applicable to a wide range of molecular functional groups including aliphatic hydrocarbons, siloxanes, and esters. Applications include trace organic analysis, particularly for in situ planetary instruments that require robust sensors with consistent response.

  15. Unikabeton Prototype

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Dombernowsky, Per

    2011-01-01

    The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project was elabor......The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project...... of Architecture was to develop a series of optimisation experiments, concluding in the design and optimisation of a full scale prototype concrete structure....

  16. Frequency shifts of resonant modes of the Sun due to near-surface convective scattering

    Science.gov (United States)

    Bhattacharya, J.; Hanasoge, S. M.; Antia, H. M.

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the ``surface term.'' The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary 3D flows, can be reduced to an effective ``quiet-Sun'' wave equation with altered sound speed, Brünt-Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  17. FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING

    International Nuclear Information System (INIS)

    Bhattacharya, J.; Hanasoge, S.; Antia, H. M.

    2015-01-01

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the “surface term.” The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt–Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection

  18. Dipolar interaction induced band gaps and flat modes in surface-modulated magnonic crystals

    Science.gov (United States)

    Gallardo, R. A.; Schneider, T.; Roldán-Molina, A.; Langer, M.; Fassbender, J.; Lenz, K.; Lindner, J.; Landeros, P.

    2018-04-01

    Theoretical results for the magnetization dynamics of a magnonic crystal formed by grooves on the surface of a ferromagnetic film, called a surface-modulated magnonic crystal, are presented. For such a system, the role of the periodic dipolar field induced by the geometrical modulation is addressed by using the plane-wave method. The results reveal that, under the increasing of the depth of the grooves, zones with magnetizing and demagnetizing fields act on the system in such a way that magnonic band gaps are observed in both Damon-Eshbach and backward volume geometries. Particularly, in the backward volume configuration, high-frequency band gaps and low-frequency flat modes are obtained. By taking into account the properties of the internal field induced by the grooves, the flattening of the modes and their shift towards low frequencies are discussed and explained. To test the validity of the model, the theoretical results of this work are confirmed by micromagnetic simulations, and good agreement between both methods is achieved. The theoretical model allows for a detailed understanding of the physics underlying these kinds of systems, thereby providing an outlook for potential applications on magnonic devices.

  19. Solution Prototype

    DEFF Research Database (Denmark)

    Efeoglu, Arkin; Møller, Charles; Serie, Michel

    2013-01-01

    This paper outlines an artifact building and evaluation proposal. Design Science Research (DSR) studies usually consider encapsulated artifact that have relationships with other artifacts. The solution prototype as a composed artifact demands for a more comprehensive consideration in its systematic...... environment. The solution prototype that is composed from blending product and service prototype has particular impacts on the dualism of DSR’s “Build” and “Evaluate”. Since the mix between product and service prototyping can be varied, there is a demand for a more agile and iterative framework. Van de Ven......’s research framework seems to fit this purpose. Van de Ven allows for an iterative research approach to problem solving with flexible starting point. The research activity is the result between the iteration of two dimensions. This framework focuses on the natural evaluation, particularly on ex...

  20. Software Prototyping

    Science.gov (United States)

    Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R.

    2016-01-01

    Summary Background Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. Objective To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Methods Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Results Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system. PMID:27081404

  1. Surface plasmon-enhanced two-photon excited whispering-gallery modes ultraviolet laser from Zno microwire

    Directory of Open Access Journals (Sweden)

    Yunpeng Wang

    2017-11-01

    Full Text Available The two-photon excited UV laser with narrow line width and high Q value was obtained. The total internal reflection from the four side surfaces of the quadrilateral-ZnO microwire offered the whispering gallery mode (WGM resonant cavity. The UV emission, resonant mechanism, and laser mode characteristics were discussed in detail for this special type of micro-cavity. In addition, in order to enhance the power of the two-photon excited UV laser, the surface plasmon enhancement by the Au nanoparticles was also performed and explained well by the theory of the localized surface plasmon.

  2. Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet

    International Nuclear Information System (INIS)

    Tedesco, Marco; Alexander, Patrick; Willis, Ian C; Banwell, Alison F; Arnold, Neil S; Hoffman, Matthew J

    2013-01-01

    Supraglacial lake drainage on the Greenland ice sheet opens surface-to-bed connections, reduces basal friction, and temporarily increases ice flow velocities by up to an order of magnitude. Existing field-based observations of lake drainages and their impact on ice dynamics are limited, and focus on one specific draining mechanism. Here, we report and analyse global positioning system measurements of ice velocity and elevation made at five locations surrounding two lakes that drained by different mechanisms and produced different dynamic responses. For the lake that drained slowly (>24 h) by overtopping its basin, delivering water via a channel to a pre-existing moulin, speedup and uplift were less than half those associated with a lake that drained rapidly (∼2 h) through hydrofracturing and the creation of new moulins in the lake bottom. Our results suggest that the mode and associated rate of lake drainage govern the impact on ice dynamics. (letter)

  3. Anharmonic vibrational modes of chemisorbed H on the Rh(001) surface

    International Nuclear Information System (INIS)

    Hamann, D.R.; Feibelman, P.J.

    1988-01-01

    The potential for H atoms in the vicinity of the fourfold hollow chemisorption site on the Rh(001) surface at monolayer coverage is calculated using local-density-functional theory, and the linear-augmented-plane-wave method. The potential is found to contain important anharmonic components, one that couples parallel and perpendicular motion, and another producing azimuthal anisotropy. Variational solutions are found for the ground and low-lying excited states of H and D in this potential. The fundamental asymmetric- and symmetric-stretch H vibrational excitations are found to have energies of 67 and 92 meV. The latter agrees with recent experimental results, and higher-lying experimental modes are interpreted as mixed excitations. Comparisons are made with spring-constant models, calculated potentials for H on Ni and Pd(001), and theories of Bloch states for H on Ni

  4. Binding modes and functional surface of anti-mammalian scorpion α-toxins to sodium channels.

    Science.gov (United States)

    Chen, Rong; Chung, Shin-Ho

    2012-10-02

    Scorpion α-toxins bind to the voltage-sensing domains of voltage-gated sodium (Na(V)) channels and interfere with the inactivation mechanisms. The functional surface of α-toxins has been shown to contain an NC-domain consisting of the five-residue turn (positions 8-12) and the C-terminus (positions 56-64) and a core-domain centered on the residue 18. The NC- and core-domains are interconnected by the linker-domain (positions 8-18). Here with atomistic molecular dynamics simulations, we examine the binding modes between two α-toxins, the anti-mammalian AahII and the anti-insect LqhαIT, and the voltage-sensing domain of rat Na(V)1.2, a subtype of Na(V) channels expressed in nerve cells. Both toxins are docked to the extracellular side of the voltage-sensing domain of Na(V)1.2 using molecular dynamics simulations, with the linker-domain assumed to wedge into the binding pocket. Several salt bridges and hydrophobic clusters are observed to form between the NC- and core-domains of the toxins and Na(V)1.2 and stabilize the toxin-channel complexes. The binding modes predicted are consistent with available mutagenesis data and can readily explain the relative affinities of AahII and LqhαIT for Na(V)1.2. The dissociation constants for the two toxin-channel complexes are derived, which compare favorably with experiment. Our models demonstrate that the functional surface of anti-mammalian scorpion α-toxins is centered on the linker-domain, similar to that of β-toxins.

  5. Modeling guided wave excitation in plates with surface mounted piezoelectric elements: coupled physics and normal mode expansion

    Science.gov (United States)

    Ren, Baiyang; Lissenden, Cliff J.

    2018-04-01

    Guided waves have been extensively studied and widely used for structural health monitoring because of their large volumetric coverage and good sensitivity to defects. Effectively and preferentially exciting a desired wave mode having good sensitivity to a certain defect is of great practical importance. Piezoelectric discs and plates are the most common types of surface-mounted transducers for guided wave excitation and reception. Their geometry strongly influences the proportioning between excited modes as well as the total power of the excited modes. It is highly desirable to predominantly excite the selected mode while the total transduction power is maximized. In this work, a fully coupled multi-physics finite element analysis, which incorporates the driving circuit, the piezoelectric element and the wave guide, is combined with the normal mode expansion method to study both the mode tuning and total wave power. The excitation of circular crested waves in an aluminum plate with circular piezoelectric discs is numerically studied for different disc and adhesive thicknesses. Additionally, the excitation of plane waves in an aluminum plate, using a stripe piezoelectric element is studied both numerically and experimentally. It is difficult to achieve predominant single mode excitation as well as maximum power transmission simultaneously, especially for higher order modes. However, guidelines for designing the geometry of piezoelectric elements for optimal mode excitation are recommended.

  6. Circular mode: a new scanning probe microscopy method for investigating surface properties at constant and continuous scanning velocities.

    Science.gov (United States)

    Nasrallah, Hussein; Mazeran, Pierre-Emmanuel; Noël, Olivier

    2011-11-01

    In this paper, we introduce a novel scanning probe microscopy mode, called the circular mode, which offers expanded capabilities for surface investigations especially for measuring physical properties that require high scanning velocities and/or continuous displacement with no rest periods. To achieve these specific conditions, we have implemented a circular horizontal displacement of the probe relative to the sample plane. Thus the relative probe displacement follows a circular path rather than the conventional back and forth linear one. The circular mode offers advantages such as high and constant scanning velocities, the possibility to be combined with other classical operating modes, and a simpler calibration method of the actuators generating the relative displacement. As application examples of this mode, we report its ability to (1) investigate the influence of scanning velocity on adhesion forces, (2) measure easily and instantly the friction coefficient, and (3) generate wear tracks very rapidly for tribological investigations. © 2011 American Institute of Physics

  7. Three distinct modes in a surface micro-discharge in atmospheric pressure He + N{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dong; Liu, Dingxin, E-mail: liudingxin@mail.xjtu.edu.cn; He, Tongtong; Li, Qiaosong; Wang, Xiaohua [State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi' an Jiaotong University, Xi' an 710049 (China); Kong, Michael G. [State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi' an Jiaotong University, Xi' an 710049 (China); Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2015-12-15

    A surface micro-discharge in atmospheric pressure He + N{sub 2} mixtures is studied in this paper with an emphasis on the discharge modes. With the N{sub 2} admixture increasing from 0.1% to 20%, the discharge evolves from a spatially diffuse mode to a filamentary mode during positive half-cycles of the applied voltage. However during the negative half-cycles, an additional patterned mode emerges between the diffuse and the filamentary modes, which has not been reported before to exist in surface micro-discharges. In the diffuse and patterned modes, the plasmas cover almost the entirety of the mesh area during one cycle after plasma ignition in all mesh elements, and the discharge power increases linearly with the applied voltage. In contrast, plasma coverage of the mesh area is only partial in the filamentary mode and the plasma is more unstable with the discharge power increasing exponentially with the applied voltage. As the surface micro-discharge evolves through the three modes, the density of excited species changes significantly, for instance, the density of N{sub 2}{sup +}(B) drops by ∼20-fold from [N{sub 2}] = 0.2% to 20%. The N{sub 2}{sup +}(B) is predicted to be generated mainly through successive processes of Penning ionization by helium metastables and electron-impact excitation of N{sub 2}{sup +}(X), the latter is most responsible for the density decrease of N{sub 2}{sup +}(B) because much more N{sub 2}{sup +}(X) is converted to N{sub 4}{sup +}(X) as the increase of N{sub 2} fraction. Also, the electron density and electron temperature decrease with the discharge mode transition.

  8. Ground tests with prototype of CeBr{sub 3} active gamma ray spectrometer proposed for future venus surface missions

    Energy Technology Data Exchange (ETDEWEB)

    Litvak, M.L., E-mail: litvak@mx.iki.rssi.ru [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Sanin, A.B.; Golovin, D.V. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Jun, I. [Jet Propulsion Laboratory, Pasadena, CA (United States); Mitrofanov, I.G. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Shvetsov, V.N.; Timoshenko, G.N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Vostrukhin, A.A. [Space Research Institute, RAS, Moscow 117997 (Russian Federation)

    2017-03-11

    The results of a series of ground tests with a prototype of an active gamma-ray spectrometer based on a new generation of scintillation crystal (CeBr{sub 3}) are presented together with a consideration to its applicability to future Venus landing missions. We evaluated the instrument's capability to distinguish the subsurface elemental composition of primary rock forming elements such as O, Na, Mg, Al, Si, K and Fe. Our study uses heritage from previous ground and field tests and applies to the analysis of gamma lines from activation reaction products generated by a pulsed neutron generator. We have estimated that the expected accuracies achieved in this approach could be as high as 1–10% for the particular chemical element being studied.

  9. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...... is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing.......Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...

  10. Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach

    International Nuclear Information System (INIS)

    Kurihara, Kazuyoshi; Otomo, Akira; Syouji, Atsushi; Takahara, Junichi; Suzuki, Koji; Yokoyama, Shiyoshi

    2007-01-01

    Analytic solutions to the superfocusing modes of surface plasmon polaritons in a conical geometry are theoretically studied using an ingenious method called the quasi-separation of variables. This method can be used to look for fundamental solutions to the wave equation for a field that must satisfy boundary conditions at all points on the continuous surface of tapered geometries. The set of differential equations exclusively separated from the wave equation can be consistently solved in combination with perturbation methods. This paper presents the zeroth-order perturbation solution of conical superfocusing modes with azimuthal symmetry and graphically represents them in electric field-line patterns

  11. Luminescence of Quantum Dots by Coupling with Nonradiative Surface Plasmon Modes in a Scanning Tunneling Microscope

    International Nuclear Information System (INIS)

    Romero, M.J.; van de Lagemaat, J.

    2009-01-01

    The electronic coupling between quantum dots (QDs) and surface plasmons (SPs) is investigated by a luminescence spectroscopy based on scanning tunneling microscopy (STM). We show that tunneling luminescence from the dot is excited by coupling with the nonradiative plasmon mode oscillating at the metallic tunneling gap formed during the STM operation. This approach to the SP excitation reveals aspects of the SP-QD coupling not accessible to the more conventional optical excitation of SPs. In the STM, luminescence from the dot is observed when and only when the SP is in resonance with the fundamental transition of the dot. The tunneling luminescence spectrum also suggests that excited SP-QD hybrid states can participate in the excitation of QD luminescence. Not only the SP excitation regulates the QD luminescence but the presence of the dot at the tunneling gap imposes restrictions to the SP that can be excited in the STM, in which the SP cannot exceed the energy of the fundamental transition of the dot. The superior SP-QD coupling observed in the STM is due to the tunneling gap acting as a tunable plasmonic resonator in which the dot is fully immersed.

  12. Optimization of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology.

    Science.gov (United States)

    Karichappan, Thirugnanasambandham; Venkatachalam, Sivakumar; Jeganathan, Prakash Maran

    2014-01-10

    Discharge of grey wastewater into the ecological system causes the negative impact effect on receiving water bodies. In this present study, electrocoagulation process (EC) was investigated to treat grey wastewater under different operating conditions such as initial pH (4-8), current density (10-30 mA/cm2), electrode distance (4-6 cm) and electrolysis time (5-25 min) by using stainless steel (SS) anode in batch mode. Four factors with five levels Box-Behnken response surface design (BBD) was employed to optimize and investigate the effect of process variables on the responses such as total solids (TS), chemical oxygen demand (COD) and fecal coliform (FC) removal. The process variables showed significant effect on the electrocoagulation treatment process. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to study the electrocoagulation process statistically. The optimal operating conditions were found to be: initial pH of 7, current density of 20 mA/cm2, electrode distance of 5 cm and electrolysis time of 20 min. These results indicated that EC process can be scale up in large scale level to treat grey wastewater with high removal efficiency of TS, COD and FC.

  13. Optimization of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology

    Science.gov (United States)

    2014-01-01

    Background Discharge of grey wastewater into the ecological system causes the negative impact effect on receiving water bodies. Methods In this present study, electrocoagulation process (EC) was investigated to treat grey wastewater under different operating conditions such as initial pH (4–8), current density (10–30 mA/cm2), electrode distance (4–6 cm) and electrolysis time (5–25 min) by using stainless steel (SS) anode in batch mode. Four factors with five levels Box-Behnken response surface design (BBD) was employed to optimize and investigate the effect of process variables on the responses such as total solids (TS), chemical oxygen demand (COD) and fecal coliform (FC) removal. Results The process variables showed significant effect on the electrocoagulation treatment process. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to study the electrocoagulation process statistically. The optimal operating conditions were found to be: initial pH of 7, current density of 20 mA/cm2, electrode distance of 5 cm and electrolysis time of 20 min. Conclusion These results indicated that EC process can be scale up in large scale level to treat grey wastewater with high removal efficiency of TS, COD and FC. PMID:24410752

  14. Effect of localized surface-plasmon mode on exciton transport and radiation emission in carbon nanotubes.

    Science.gov (United States)

    Roslyak, Oleksiy; Cherqui, Charles; Dunlap, David H; Piryatinski, Andrei

    2014-07-17

    We report on a general theoretical approach to study exciton transport and emission in a single-walled carbon nanotube (SWNT) in the presence of a localized surface-plasmon (SP) mode within a metal nanoparticle interacting via near-field coupling. We derive a set of quantum mechanical equations of motion and approximate rate equations that account for the exciton, SP, and the environmental degrees of freedom. The material equations are complemented by an expression for the radiated power that depends on the exciton and SP populations and coherences, allowing for an examination of the angular distribution of the emitted radiation that would be measured in experiment. Numerical simulations for a (6,5) SWNT and cone-shaped Ag metal tip (MT) have been performed using this methodology. Comparison with physical parameters shows that the near-field interaction between the exciton-SP occurs in a weak coupling regime, with the diffusion processes being much faster than the exciton-SP population exchange. In such a case, the effect of the exciton population transfer to the MT with its subsequent dissipation (i.e., the Förster energy transfer) is to modify the exciton steady state distribution while reducing the equilibration time for excitons to reach a steady sate distribution. We find that the radiation distribution is dominated by SP emission for a SWNT-MT separation of a few tens of nanometers due to the fast SP emission rate, whereas the exciton-SP coherences can cause its rotation.

  15. Exercise muscle fatigue detection system implementation via wireless surface electromyography and empirical mode decomposition.

    Science.gov (United States)

    Chang, Kang-Ming; Liu, Shing-Hong; Wang, Jia-Jung; Cheng, Da-Chuan

    2013-01-01

    Surface electromyography (sEMG) is an important measurement for monitoring exercise and fitness. A wireless Bluetooth transmission sEMG measurement system with a sampling frequency of 2 KHz is developed. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. As fatigue increases, the power spectrum of the sEMG shifts toward lower frequencies. The goal of this study is to evaluate the sensitivity of empirical mode decomposition (EMD) quantifying the electrical manifestations of the local muscle fatigue during exercising in health people. We also compared this method with the raw data and discrete wavelet transform (DWT). Five male and five female volunteers participated. Each subject was asked to run on a multifunctional pedaled elliptical trainer for about 30 minutes, twice a week, and there were a total of six recording times for each subject with a wireless EMG recording system. The results show that sensitivity of the highest frequency component of EMD is better than the highest frequency component of DWT, and raw data.

  16. Empirical Mode Decomposition on the sphere: application to the spatial scales of surface temperature variations

    Directory of Open Access Journals (Sweden)

    N. Fauchereau

    2008-06-01

    Full Text Available Empirical Mode Decomposition (EMD is applied here in two dimensions over the sphere to demonstrate its potential as a data-adaptive method of separating the different scales of spatial variability in a geophysical (climatological/meteorological field. After a brief description of the basics of the EMD in 1 then 2 dimensions, the principles of its application on the sphere are explained, in particular via the use of a zonal equal area partitioning. EMD is first applied to an artificial dataset, demonstrating its capability in extracting the different (known scales embedded in the field. The decomposition is then applied to a global mean surface temperature dataset, and we show qualitatively that it extracts successively larger scales of temperature variations related, for example, to topographic and large-scale, solar radiation forcing. We propose that EMD can be used as a global data-adaptive filter, which will be useful in analysing geophysical phenomena that arise as the result of forcings at multiple spatial scales.

  17. Comprehensive three-dimensional analysis of surface plasmon polariton modes at uniaxial liquid crystal-metal interface.

    Science.gov (United States)

    Yen, Yin-Ray; Lee, Tsun-Hsiun; Wu, Zheng-Yu; Lin, Tsung-Hsien; Hung, Yu-Ju

    2015-12-14

    This paper describes the derivation of surface plasmon polariton modes associated with the generalized three-dimensional rotation of liquid crystal molecules on a metal film. The calculated dispersion relation was verified by coupling laser light into surface plasmon polariton waves in a one-dimensional grating device. The grating-assisted plasmon coupling condition was consistent with the formulated k(spp) value. This provides a general rule for the design of liquid-crystal tunable plasmonic devices.

  18. H-mode-like discharge under the presence of 1/1 rational surface at ergodic layer in LHD

    International Nuclear Information System (INIS)

    Morita, Shigeru; Morisaki, Tomohiro; Tanaka, Kenji

    2004-01-01

    H-mode-like discharge was found in LHD with a full B t field of 2.5T at an outwardly shifted configuration of R ax = 4.00 m where the m/n = 1/1 rational surface is located at the ergodic layer. The H-mode-like discharge was triggered by changing the P NBI from 9MW to 5 MW in a density range of 4-8 x 10 13 cm -3 , followed by a clear density rise, ELM-like H α bursts, and a reduction of magnetic fluctuation. These H-mode-like features vanished with a small radial movement of the 1/1 surface. (author)

  19. Progress toward NLC / GLC prototype accelerator structures

    CERN Document Server

    Wang, J W; Arkan, T; Baboi, N; Boffo, C; Bowden, G B; Burke, D L; Carter, H; Chan, J; Cornuelle, J; Döbert, Steffen; Dolgashev, Valery A; Finley, D; Gonin, I; Higashi, Y; Higo, T; Jones, R M; Khabiboulline, T; Kume, T; Lewandowski, J; Li, Z; Miller, R H; Mishra, S; Morozumi, Y; Nantista, C; Pearson, C; Romanov, G; Ruth, Ronald D; Solyak, N; Tantawi, S; Toge, N; Ueno, K; Wilson, P B; Xiao, L

    2004-01-01

    The accelerator structure groups for NLC (Next Linear Collider) and GLC (Global Linear Colliders) have successfully collaborated on the research and development of a major series of advanced accelerator structures based on room-temperature technology at X-band frequency. The progress in design, simulation, microwave measurement and high gradient tests are summarized in this paper. The recent effort in design and fabrication of the accelerator structure prototype for the main linac is presented in detail including HOM (High Order Mode) suppression and couplers, fundamental mode couplers, optimized accelerator cavities as well as plans for future structures. We emphasize techniques to reduce the field on the surface of the copper structures (in order to achieve high accelerating gradients), limit the dipole wakefields (to relax alignment tolerance and prevent a beam break up instability) and improve shunt impedance (to reduce the RF power required).

  20. Mass effect of redox reactions: A novel mode for surface plasmon resonance-based bioanalysis.

    Science.gov (United States)

    Yuan, Pei-Xin; Deng, Sheng-Yuan; Xin, Peng; Ji, Xu-Bo; Shan, Dan; Cosnier, Serge

    2015-12-15

    The pursuit of more specific and sensitive response is a perpetual goal for modern bioassays. This work proposed a novel label-free strategy about redox-related mass effect based on the surface plasmon resonance (SPR) technique for ultrasensitive determination of DNA. The protocol starts with the modification of SPR gilded disk with the capture DNA (cDNA). After the conjugation of immobilized cDNA with the target DNA (tDNA), the hybridization chain reaction was triggered by the introduction of mutual partial complementary primers to elongate the terminal into a nanoscale duplex. As it is reported that porphyrin could intercalate into the grooves of the double-stranded DNA (dsDNA) scaffold, multiple positive-charged Fe(III)meso-tetra(N-methyl-4-pyridyl) porphine (FeTMPyP) with symmetric structure were uptaken for in situ formation of porphyrin-dsDNA complex. Given FeTMPyP a highly efficient catalysis for the peroxide reduction, its presence as a biomimetic cofactor was validated via circular dichroism and UV-vis spectroscopy, demonstrating a tight binding as well as high catalytic activity and stability. Using 4-chloro-1-naphthol as a proton donor, the catalytic reduction of H2O2 would oxidize it into insoluble benzo-4-chloro-hexadienone, which simultaneously deposited on the heterogeneous interface, leading to a significant amplification in both SPR response and topological height profile. The signal increment was proportional to the concentration of tDNA, thus an ultrasensitive SPR-based DNA assay was developed with a linear range over four orders of magnitudes and a sub-femtomolar detection limit of 0.73 fM. The developed methodology exemplifies a different way of thinking about mass-sensing modes, extending conventional SPR-based DNA analysis to relevant biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Oscillation mode transformation of edge magnetoplasmons in two-dimensional electron system on liquid-helium surface

    International Nuclear Information System (INIS)

    Yamanaka, Shuji; Yayama, Hideki; Arai, Toshikazau; Anju Sawada, Anju; Fukuda, Akira

    2013-01-01

    We measured the resonance spectra of edge magnetoplasmon (EMP) oscillations in a two-dimensional (2D) electron system located on a liquid-helium surface below 1.1 K. Systematic measurements of the resonance frequency and the damping rate as a function of the lateral confinement electric field strength shows clear evidence of the oscillation mode transformation. A pronounced change corresponding to the mode transformation was observed in the damping rate. When 2D electrons are confined in a strong lateral electric field, the damping is weak. As the lateral confinement electric field is reduced below a certain threshold value, an abrupt enhancement of the damping rate is observed. We hypothesize that the weak damping mode in the strong lateral confinement electric field is the compressive density oscillation of the electrons near the edge (conventional EMP) and the strong damping mode in the weak confinement field is the coupled mode of conventional EMP and the boundary displacement wave (BDW). The observation of the strong damping in the BDW-EMP coupled mode is a manifestation of the nearly incompressible feature of strongly interacting classical electrons, which agrees with earlier theoretical predictions.

  2. Multiple surface plasmon polaritons modes on thin silver film controlled by a two-dimensional lattice of silver nanodimers

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ying; Jiang, Yongyuan, E-mail: jiangyy@hit.edu.cn [Harbin Institute of Technology, Department of Physics (China)

    2015-01-15

    We study the optical resonant spectrum of a two-dimensional periodic array of silver nanodimers on a thin silver film using multiple scattering formalism. The excited multiple plasmonic modes on two interfaces of the silver film reveal that the dispersion relationships of surface plasmon polaritons on metallic film are modified by doubly periodic lattice due to the fact that wave vectors matching conditions are satisfied. Moreover, we demonstrate that the plasmonic modes are directly controlled by the thickness of silver film, as well as the gap between nanodimer array and silver film. These effects provide novel high-efficient and steady way for excitation in future plasmonic nanodevices.

  3. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  4. Theory and Modeling of Lasing Modes in Vertical Cavity Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Benjamin Klein

    1998-01-01

    modes that the VCSEL can support are then determined by matching the gain necessary for the optical system in both magnitude and phase to the gain available from the laser's electronic system. Examples are provided.

  5. Model-Based Resource and Mode Management for Lunar Surface Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is aimed at developing a model based resource and mode management system for space robotics systems that will allow real time assessment of...

  6. Topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface

    Directory of Open Access Journals (Sweden)

    Jiu-Jiu Chen

    2017-11-01

    Full Text Available The study for exotic topological effects of sound has attracted uprising interests in fundamental physics and practical applications. Based on the concept of valley pseudospin, we demonstrate the topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface, where a deterministic two-fold Dirac degeneracy is form by two plate modes. We show that the topological property can be controlled by the height of stubs deposited on the plate. By adjusting the relative heights of adjacent stubs, the valley vortex chirality and band inversion are induced, giving rise to a phononic analog of valley Hall phase transition. We further numerically demonstrate the valley states of plate-mode waves with robust topological protection. Our results provide a new route to design unconventional elastic topological insulators and will significantly broaden its practical application in the engineering field.

  7. Individual and collective modes of surface magnetoplasmon in thiolate-protected silver nanoparticles studied by MCD spectroscopy

    Science.gov (United States)

    Yao, Hiroshi; Shiratsu, Taisuke

    2016-05-01

    Large magneto-optical (MO) responses at the energy of localized surface plasmon resonance (LSPR), namely, surface magnetoplasmons, are demonstrated for the first time in thiolate-protected silver nanoparticles with magnetic circular dichroism (MCD) spectroscopy. The samples examined are decanethiol (DT)-, azobenzenethiol (ABT)-, and ABT/DT mixed-monolayer-protected Ag nanoparticles. ABT-protected Ag nanoparticles are somewhat aggregated and thus exhibit a broad, collective mode of plasmonic absorption, whereas other samples with highly-dispersed nanoparticles show an individual mode of LSPR absorption. In all Ag nanoparticles, a derivative-like MCD signal is observed under an applied magnetic field of 1.6 T, which can be explained in terms of two circular modes of magnetoplasmon caused by the increase (or decrease) in the Lorentz force imparted on the free electrons that oscillate in the left (or right) circular orbits in the nanosphere. For the Ag nanoparticles exhibiting an individual LSPR mode, in particular, simultaneous deconvolution analysis of UV-vis absorption and MCD spectra reveal that (i) the amplitude of the magnetoplasmonic component with lower frequency (ω-), resulting from the reduction in the confinement strength of collective electrons by the Lorentz force, is stronger than that with a higher frequency (ω+) (ii) the accurate shift or cyclotron frequency between two magnetoplasmonic modes (ωc = ω+ - ω-) is size-dependent, and presents a very large value with implications for the apparent enhancement of the local magnetic-field in the Ag nanoparticles. These results strongly suggest that the Ag-thiolate layer or Ag-S bonding on the nanoparticle surface plays a significant role in the MO enhancement.Large magneto-optical (MO) responses at the energy of localized surface plasmon resonance (LSPR), namely, surface magnetoplasmons, are demonstrated for the first time in thiolate-protected silver nanoparticles with magnetic circular dichroism (MCD

  8. Transverse mode selection in vertical-cavity surface-emitting lasers via deep impurity-induced disordering

    Science.gov (United States)

    O'Brien, Thomas R.; Kesler, Benjamin; Dallesasse, John M.

    2017-02-01

    Top emission 850-nm vertical-cavity surface-emitting lasers (VCSELs) demonstrating transverse mode selection via impurity-induced disordering (IID) are presented. The IID apertures are fabricated via closed ampoule zinc diffusion. A simple 1-D plane wave model based on the intermixing of Group III atoms during IID is presented to optimize the mirror loss of higher-order modes as a function of IID strength and depth. In addition, the impact of impurity diffusion into the cap layer of the lasers is shown to improve contact resistance. Further investigation of the mode-dependent characteristics of the device imply an increase in the thermal impedance associated with the fraction of IID contained within the oxide aperture. The optimization of the ratio of the IID aperture to oxide aperture is experimentally determined. Single fundamental mode output of 1.6 mW with 30 dBm side mode suppression ratio is achieved by a 3.0 μm oxide-confined device with an IID aperture of 1.3 μm indicating an optimal IID aperture size of 43% of the oxide aperture.

  9. Single-mode temperature and polarisation-stable high-speed 850nm vertical cavity surface emitting lasers

    International Nuclear Information System (INIS)

    Nazaruk, D E; Blokhin, S A; Maleev, N A; Bobrov, M A; Pavlov, M M; Kulagina, M M; Vashanova, K A; Zadiranov, Yu M; Ustinov, V M; Kuzmenkov, A G; Vasil'ev, A P; Gladyshev, A G; Blokhin, A A; Salut, 7 Larina Str, N Novgorod, 603950 (Russian Federation))" data-affiliation=" (JSV Salut, 7 Larina Str, N Novgorod, 603950 (Russian Federation))" >Fefelov, A G

    2014-01-01

    A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range

  10. Probing the rate-determining region of the potential energy surface for a prototypical ion-molecule reaction.

    Science.gov (United States)

    Xie, Changjian; Liu, Xinguo; Sweeny, Brendan C; Miller, Thomas M; Ard, Shaun G; Shuman, Nicholas S; Viggiano, Albert A; Guo, Hua

    2018-03-13

    We report a joint experimental-theoretical study of the F -  + HCl → HF + Cl - reaction kinetics. The experimental measurement of the rate coefficient at several temperatures was made using the selected ion flow tube method. Theoretical rate coefficients are calculated using the quasi-classical trajectory method on a newly developed global potential energy surface, obtained by fitting a large number of high-level ab initio points with augmentation of long-range electrostatic terms. In addition to good agreement between experiment and theory, analyses suggest that the ion-molecule reaction rate is significantly affected by shorter-range interactions, in addition to the traditionally recognized ion-dipole and ion-induced dipole terms. Furthermore, the statistical nature of the reaction is assessed by comparing the measured and calculated HF product vibrational state distributions to that predicted by the phase space theory.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  11. Variable Structure Disturbance Rejection Control for Nonlinear Uncertain Systems with State and Control Delays via Optimal Sliding Mode Surface Approach

    Directory of Open Access Journals (Sweden)

    Jing Lei

    2013-01-01

    Full Text Available The paper considers the problem of variable structure control for nonlinear systems with uncertainty and time delays under persistent disturbance by using the optimal sliding mode surface approach. Through functional transformation, the original time-delay system is transformed into a delay-free one. The approximating sequence method is applied to solve the nonlinear optimal sliding mode surface problem which is reduced to a linear two-point boundary value problem of approximating sequences. The optimal sliding mode surface is obtained from the convergent solutions by solving a Riccati equation, a Sylvester equation, and the state and adjoint vector differential equations of approximating sequences. Then, the variable structure disturbance rejection control is presented by adopting an exponential trending law, where the state and control memory terms are designed to compensate the state and control delays, a feedforward control term is designed to reject the disturbance, and an adjoint compensator is designed to compensate the effects generated by the nonlinearity and the uncertainty. Furthermore, an observer is constructed to make the feedforward term physically realizable, and thus the dynamical observer-based dynamical variable structure disturbance rejection control law is produced. Finally, simulations are demonstrated to verify the effectiveness of the presented controller and the simplicity of the proposed approach.

  12. Rayleigh waves ellipticity and mode mis-identification in multi-channel analysis of surface waves

    DEFF Research Database (Denmark)

    Boaga, Jacopo; Cassiani, Giorgio; Strobbia, Claudio

    dispersion curve which is then inverted. Typically, single component vertical and multi channel receivers are used. In most cases the inversion of the dispersion properties is carried out assuming that the experimental dispersion curve corresponds to a single mode, mostly the fundamental Rayleigh mode...... to each other reaching similar Rayleigh velocity. It is known ‘osculation’ happens generally in presence of strong velocity contrasts, typically with a fast bedrock underlying loose sediments. The practical limitations of the acquired data affect the spectral and modal resolution, making it often...

  13. Multi-Mode Cavity Accelerator Structure

    International Nuclear Information System (INIS)

    Jiang, Yong; Hirshfield, Jay Leonard

    2016-01-01

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10"-"7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise Δ T. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E_s_u_r"m"a"x< 260 MV/m and pulsed surface heating Δ T"m"a"x< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power - as compared with operation at the same acceleration gradient using only the fundamental mode.

  14. Multi-Mode Cavity Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong [Yale Univ., New Haven, CT (United States); Hirshfield, Jay Leonard [Omega-P R& D, Inc., New Haven, CT (United States)

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10-7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field Esurmax< 260 MV/m and pulsed surface heating ΔTmax< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.

  15. Loading Mode and Environment Effects on Surface Profile Characteristics of Martensite Plates in Cu-Based SMAs

    Science.gov (United States)

    Suru, Marius-Gabriel; Paraschiv, Adrian-Liviu; Lohan, Nicoleta Monica; Pricop, Bogdan; Ozkal, Burak; Bujoreanu, Leandru-Gheorghe

    2014-07-01

    The present work reports the influence of the loading mode provided during training under constant stress, in bending, applied to lamellar specimens of Cu-Zn-Al shape memory alloys (SMAs). During training, the specimens were bent by a load fastened at their free end, while being martensitic at room temperature and they lifted the load by one-way effect (1WE), during heating up to austenitic field. On cooling to martensite field, the lower concave surface of bent specimens was compressed, and during heating it was elongated, being subjected to a series of tension-compression cycles, during heating-cooling, respectively. Conversely, the upper convex surface of bent specimens was elongated during cooling and compressed during heating, being subjected to compression-tension cycles. Furthermore, 2WE-trained actuators were tested by means of a hydraulic installation where, this time heating-cooling cycles were performed in oil conditions. Considering that the lower concave surface of the specimens was kept in compressed state, while the upper convex surface was kept in elongated state, the study reveals the influence of the two loading modes and environments on the width of martensite plates of the specimens trained under various numbers of cycles. In this purpose, Cu-Zn-Al specimens, trained under 100-300-500 cycles, were prepared and analyzed by atomic force microscopy (AFM) as well as optical and scanning electron microscopy (OM and SEM, respectively). The analysis also included AFM micrographs corroborated with statistical evaluations in order to reveal the effects of loading mode (tension or compression) in different environmental conditions of the specimens, on the surface profile characteristics of martensite plates, revealed by electropolishing.

  16. Correlation between surface phonon mode and luminescence in nanocrystalline CdS thin films: An effect of ion beam irradiation

    International Nuclear Information System (INIS)

    Kumar, Pragati; Agarwal, Avinash; Saxena, Nupur; Singh, Fouran; Gupta, Vinay

    2014-01-01

    The influence of swift heavy ion irradiation (SHII) on surface phonon mode (SPM) and green emission in nanocrystalline CdS thin films grown by chemical bath deposition is studied. The SHII of nanocrystalline CdS thin films is carried out using 70 MeV Ni ions. The micro Raman analysis shows that asymmetry and broadening in fundamental longitudinal optical (LO) phonon mode increases systematically with increasing ion fluence. To analyze the role of phonon confinement, spatial correlation model (SCM) is fitted to the experimental data. The observed deviation of SCM to the experimental data is further investigated by fitting the micro Raman spectra using two Lorentzian line shapes. It is found that two Lorentzian functions (LFs) provide better fitting than SCM fitting and facilitate to identify the contribution of SPM in the observed distortion of LO mode. The behavior of SPM as a function of ion fluence is studied to correlate the observed asymmetry (Γ a /Γ b ) and full width at half maximum of LO phonon mode and to understand the SHII induced enhancement of SPM. The ion beam induced interstitial and surface state defects in thin films, as observed by photoluminescence (PL) spectroscopy studies, may be the underlying reason for enhancement in SPM. PL studies also show enhancement in green luminescence with increase in ion fluence. PL analysis reveals that the variation in population density of surface state defects after SHII is similar to that of SPM. The correlation between SPM and luminescence and their dependence on ion irradiation fluence is explained with the help of thermal spike model.

  17. Correlation between surface phonon mode and luminescence in nanocrystalline CdS thin films: An effect of ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pragati, E-mail: pkumar.phy@gmail.com; Agarwal, Avinash [Department of Physics, Bareilly College, Bareilly 243 005, Uttar Pradesh (India); Saxena, Nupur; Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)

    2014-07-28

    The influence of swift heavy ion irradiation (SHII) on surface phonon mode (SPM) and green emission in nanocrystalline CdS thin films grown by chemical bath deposition is studied. The SHII of nanocrystalline CdS thin films is carried out using 70 MeV Ni ions. The micro Raman analysis shows that asymmetry and broadening in fundamental longitudinal optical (LO) phonon mode increases systematically with increasing ion fluence. To analyze the role of phonon confinement, spatial correlation model (SCM) is fitted to the experimental data. The observed deviation of SCM to the experimental data is further investigated by fitting the micro Raman spectra using two Lorentzian line shapes. It is found that two Lorentzian functions (LFs) provide better fitting than SCM fitting and facilitate to identify the contribution of SPM in the observed distortion of LO mode. The behavior of SPM as a function of ion fluence is studied to correlate the observed asymmetry (Γ{sub a}/Γ{sub b}) and full width at half maximum of LO phonon mode and to understand the SHII induced enhancement of SPM. The ion beam induced interstitial and surface state defects in thin films, as observed by photoluminescence (PL) spectroscopy studies, may be the underlying reason for enhancement in SPM. PL studies also show enhancement in green luminescence with increase in ion fluence. PL analysis reveals that the variation in population density of surface state defects after SHII is similar to that of SPM. The correlation between SPM and luminescence and their dependence on ion irradiation fluence is explained with the help of thermal spike model.

  18. Batch versus column modes for the adsorption of radioactive metal onto rice husk waste: conditions optimization through response surface methodology.

    Science.gov (United States)

    Kausar, Abida; Bhatti, Haq Nawaz; Iqbal, Munawar; Ashraf, Aisha

    2017-09-01

    Batch and column adsorption modes were compared for the adsorption of U(VI) ions using rice husk waste biomass (RHWB). Response surface methodology was employed for the optimization of process variables, i.e., (pH (A), adsorbent dose (B), initial ion concentration (C)) in batch mode. The B, C and C 2 affected the U(VI) adsorption significantly in batch mode. The developed quadratic model was found to be validated on the basis of regression coefficient as well as analysis of variance. The predicted and actual values were found to be correlated well, with negligible residual value, and B, C and C 2 were significant terms. The column study was performed considering bed height, flow rate and initial metal ion concentration, and adsorption efficiency was evaluated through breakthrough curves and bed depth service time and Thomas models. Adsorption was found to be dependent on bed height and initial U(VI) ion concentration, and flow rate decreased the adsorption capacity. Thomas models fitted well to the U(VI) adsorption onto RHWB. Results revealed that RHWB has potential to remove U(VI) ions and batch adsorption was found to be efficient versus column mode.

  19. Composition Dependence of Surface Phonon Polariton Mode in Wurtzite InxGa1−xN (0 ≤ x ≤ 1) Ternary Alloy

    International Nuclear Information System (INIS)

    Ng, S. S.; Hassan, Z.; Hassan, H. Abu

    2008-01-01

    We present a theoretical study on the composition dependence of the surface phonon polariton (SPP) mode in wurtzite structure α-In x Ga 1-x N ternary alloy over the whole composition range. The SPP modes are obtained by the theoretical simulations by means of an anisotropy model. The results reveal that the SPP mode of α-In x Ga 1-x N semiconductors exhibits one-mode behaviour. From these data, composition dependence of the SPP mode with bowing parameter of −28.9 cm −1 is theoretically obtained

  20. Surface independent underwater energy supply system - Diesel engine with closed gas cycle. Final report; Dieselmotor mit geschlossenem Argon-Kreislauf - Prototyp. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Gehringer, H.; Seifert, K.

    1989-08-01

    MOTARK (MOTOR IM ARGON-KREISLAUF/engine in argon cycle) is an alternative drive and power-supply system integrated in the offshore-working submarine `Seahorse II`, which belongs to Messrs. Bruker Meerestechnik. The heart of the plant is a naturally aspirated diesel engine, MAN model D 2566 ME (100 kW, 1500 rpm), which can operate in a closed argon cycle independent of the outside air while the submarine is under water, and in the conventional manner after the vessel has surfaced. After it has been cooled down to room temperature, the final product carbon dioxide CO{sub 2}, which forms as a result of the combustion of fuel and oxygen, is removed from the circulating process gas with potassium hydroxide in a chemical process in a dual-stage rotary disintegrator. After dissipation of the heat thus generated, and subsequent to a cyclonic condensate cleaning cycle oxygen is supplied to the argon carrier gas in measured quantities. Governing of the MOTARK system and acquisition of the test data are performed by a custom-developed micro-processor unit. The functional tests in the submarine as well as the subsequent underwater tests at shallow sea gave convincing evidence for the fact that this prototype unit is now ready for regular operation. (orig.) With 16 figs. [Deutsch] Mit MOTARK - MOTOR IM ARGON-KREISLAUF wurde ein alternatives Antriebs- und Energiesystem entwickelt und in dem Offshore-Arbeits-U-Boot `Searhorse II` der Firma Bruker Meerestechnik integriert. Der Kern der Anlage ist ein selbstansaugender Dieselmotor des Typs MAN D 2566 ME (100 kW, 1500 l/min) der unter Wasser aussenluftunabhaengig im geschlossenen Argonkreislauf sowie ueber Wasser konventionell betrieben werden kann. Das Endprodukt Kohlendioxid CO{sub 2}, entstanden aus der Verbrennung von Kraftstoff und Sauerstoff, wird nach der Abkuehlung auf RT in einem zweistufigen Rotationswaescher mit Kalilauge chemisch aus dem zirkulierenden Prozessgas entfernt. Nach Abfuehrung der bei diesem Prozess

  1. Instability of surface electron cyclotron TM-modes influenced by non-monochromatic alternating electric field

    International Nuclear Information System (INIS)

    Girka, I. O.; Girka, V. O.; Sydora, R. D.; Thumm, M.

    2016-01-01

    The influence of non-monochromaticity of an external alternating electric field on excitation of TM eigenmodes at harmonics of the electron cyclotron frequency is considered here. These TM-modes propagate along the plasma interface in a metal waveguide. An external static constant magnetic field is oriented perpendicularly to the plasma interface. The problem is solved theoretically using the kinetic Vlasov-Boltzmann equation for description of plasma particles motion and the Maxwell equations for description of the electromagnetic mode fields. The external alternating electric field is supposed to be a superposition of two waves, whose amplitudes are different and their frequencies correlate as 2:1. An infinite set of equations for electric field harmonics of these modes is derived with the aid of nonlinear boundary conditions. This set is solved using the wave packet approach consisting of the main harmonic frequency and two nearest satellite temporal harmonics. Analytical studies of the obtained set of equations allow one to find two different regimes of parametric instability, namely, enhancement and suppression of the instability. Numerical analysis of the instability is carried out for the three first electron cyclotron harmonics.

  2. On the sloshing free surface in the draft tube cone of a Francis turbine operating in synchronous condenser mode

    Science.gov (United States)

    Vagnoni, E.; Andolfatto, L.; Avellan, F.

    2017-04-01

    Hydropower plants may be required to operate in synchronous condenser mode in order to supply reactive power to the grid for compensating the fluctuations introduced by the intermittent renewable energies such wind and solar. When operating in this mode, the tail water in the Francis turbine or pump-turbine is depressed below the runner by injecting pressurized air in order to spin in air to reduce the power consumption. Many air-water interaction phenomena occur in the machine causing air losses and a consequent power consumption to recover the air lost. In this paper, the experimental investigation of the sloshing motion in the cone of a dewatered Francis turbine performed by image visualization and pressure measurements is presented. The developed image post processing method for identifying the amplitude and frequency of the oscillation of the free surface is described and the results obtained are illustrated and discussed.

  3. A new surface fractal dimension for displacement mode shape-based damage identification of plate-type structures

    Science.gov (United States)

    Shi, Binkai; Qiao, Pizhong

    2018-03-01

    Vibration-based nondestructive testing is an area of growing interest and worthy of exploring new and innovative approaches. The displacement mode shape is often chosen to identify damage due to its local detailed characteristic and less sensitivity to surrounding noise. Requirement for baseline mode shape in most vibration-based damage identification limits application of such a strategy. In this study, a new surface fractal dimension called edge perimeter dimension (EPD) is formulated, from which an EPD-based window dimension locus (EPD-WDL) algorithm for irregularity or damage identification of plate-type structures is established. An analytical notch-type damage model of simply-supported plates is proposed to evaluate notch effect on plate vibration performance; while a sub-domain of notch cases with less effect is selected to investigate robustness of the proposed damage identification algorithm. Then, fundamental aspects of EPD-WDL algorithm in term of notch localization, notch quantification, and noise immunity are assessed. A mathematical solution called isomorphism is implemented to remove false peaks caused by inflexions of mode shapes when applying the EPD-WDL algorithm to higher mode shapes. The effectiveness and practicability of the EPD-WDL algorithm are demonstrated by an experimental procedure on damage identification of an artificially-induced notched aluminum cantilever plate using a measurement system of piezoelectric lead-zirconate (PZT) actuator and scanning laser Doppler vibrometer (SLDV). As demonstrated in both the analytical and experimental evaluations, the new surface fractal dimension technique developed is capable of effectively identifying damage in plate-type structures.

  4. High quality-factor quartz tuning fork glass probe used in tapping mode atomic force microscopy for surface profile measurement

    Science.gov (United States)

    Chen, Yuan-Liu; Xu, Yanhao; Shimizu, Yuki; Matsukuma, Hiraku; Gao, Wei

    2018-06-01

    This paper presents a high quality-factor (Q-factor) quartz tuning fork (QTF) with a glass probe attached, used in frequency modulation tapping mode atomic force microscopy (AFM) for the surface profile metrology of micro and nanostructures. Unlike conventionally used QTFs, which have tungsten or platinum probes for tapping mode AFM, and suffer from a low Q-factor influenced by the relatively large mass of the probe, the glass probe, which has a lower density, increases the Q-factor of the QTF probe unit allowing it to obtain better measurement sensitivity. In addition, the process of attaching the probe to the QTF with epoxy resin, which is necessary for tapping mode AFM, is also optimized to further improve the Q-factor of the QTF glass probe. The Q-factor of the optimized QTF glass probe unit is demonstrated to be very close to that of a bare QTF without a probe attached. To verify the effectiveness and the advantages of the optimized QTF glass probe unit, the probe unit is integrated into a home-built tapping mode AFM for conducting surface profile measurements of micro and nanostructures. A blazed grating with fine tool marks of 100 nm, a microprism sheet with a vertical amplitude of 25 µm and a Fresnel lens with a steep slope of 90 degrees are used as measurement specimens. From the measurement results, it is demonstrated that the optimized QTF glass probe unit can achieve higher sensitivity as well as better stability than conventional probes in the measurement of micro and nanostructures.

  5. Physical-mechanical image of the cell surface on the base of AFM data in contact mode

    Science.gov (United States)

    Starodubtseva, M. N.; Starodubtsev, I. E.; Yegorenkov, N. I.; Kuzhel, N. S.; Konstantinova, E. E.; Chizhik, S. A.

    2017-10-01

    Physical and mechanical properties of the cell surface are well-known markers of a cell state. The complex of the parameters characterizing the cell surface properties, such as the elastic modulus (E), the parameters of adhesive (Fa), and friction (Ff) forces can be measured using atomic force microscope (AFM) in a contact mode and form namely the physical-mechanical image of the cell surface that is a fundamental element of the cell mechanical phenotype. The paper aims at forming the physical-mechanical images of the surface of two types of glutaraldehyde-fixed cancerous cells (human epithelial cells of larynx carcinoma, HEp-2c cells, and breast adenocarcinoma, MCF-7 cells) based on the data obtained by AFM in air and revealing the basic difference between them. The average values of friction, elastic and adhesive forces, and the roughness of lateral force maps, as well as dependence of the fractal dimension of lateral force maps on Z-scale factor have been studied. We have revealed that the response of microscale areas of the HEp-2c cell surface having numerous microvilli to external mechanical forces is less expressed and more homogeneous in comparison with the response of MCF-7 cell surface.

  6. Nightshade Prototype Experiments (Silverleaf)

    Energy Technology Data Exchange (ETDEWEB)

    Danielson, Jeremy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bauer, Amy L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-23

    The Red Sage campaign is a series of subcritical dynamic plutonium experiments designed to measure ejecta. Nightshade, the first experiments in Red Sage scheduled for fiscal year 2019, will measure the amount of ejecta emission into vacuum from a double-­shocked plutonium surface. To address the major technical risks in Nightshade, a Level 2 milestone was developed for fiscal year 2016. Silverleaf, a series of four experiments, was executed at the Los Alamos National Laboratory in July and August 2016 to demonstrate a prototype of the Nightshade package and to satisfy this Level 2 milestone. This report is documentation that Red Sage Level 2 milestone requirements were successfully met.

  7. A novel growth mode of alkane films on a SiO2 surface

    DEFF Research Database (Denmark)

    Mo, H.; Taub, H.; Volkmann, U.G.

    2003-01-01

    on the SiO2 surface with the long-axis of the C32 molecules oriented parallel to the interface followed by a C32 monolayer with the long-axis perpendicular to it. Finally, preferentially oriented bulk particles nucleate having two different crystal structures. This growth model differs from that found...... previously for shorter alkanes deposited from the vapor phase onto solid surfaces....

  8. Contributions of greenhouse gas forcing and the Southern Annular Mode to historical Southern Ocean surface temperature trends

    OpenAIRE

    Kostov, Yavor; Ferreira, David; Marshall, John; Armour, Kyle

    2018-01-01

    We examine the 1979-2014 Southern Ocean (SO) sea surface temperature (SST) trends simulated in an ensemble of coupled general circulation models and evaluate possible causes of the models’ inability to reproduce the observed 1979-2014 SO cooling. For each model we estimate the response of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these step-response functions, we skillfully reconstruct the models’ 1979-2014 SO ...

  9. SWRT: A package for semi-analytical solutions of surface wave propagation, including mode conversion, across transversely aligned vertical discontinuities

    Science.gov (United States)

    Datta, Arjun

    2018-03-01

    We present a suite of programs that implement decades-old algorithms for computation of seismic surface wave reflection and transmission coefficients at a welded contact between two laterally homogeneous quarter-spaces. For Love as well as Rayleigh waves, the algorithms are shown to be capable of modelling multiple mode conversions at a lateral discontinuity, which was not shown in the original publications or in the subsequent literature. Only normal incidence at a lateral boundary is considered so there is no Love-Rayleigh coupling, but incidence of any mode and coupling to any (other) mode can be handled. The code is written in Python and makes use of SciPy's Simpson's rule integrator and NumPy's linear algebra solver for its core functionality. Transmission-side results from this code are found to be in good agreement with those from finite-difference simulations. In today's research environment of extensive computing power, the coded algorithms are arguably redundant but SWRT can be used as a valuable testing tool for the ever evolving numerical solvers of seismic wave propagation. SWRT is available via GitHub (https://github.com/arjundatta23/SWRT.git).

  10. SWRT: A package for semi-analytical solutions of surface wave propagation, including mode conversion, across transversely aligned vertical discontinuities

    Directory of Open Access Journals (Sweden)

    A. Datta

    2018-03-01

    Full Text Available We present a suite of programs that implement decades-old algorithms for computation of seismic surface wave reflection and transmission coefficients at a welded contact between two laterally homogeneous quarter-spaces. For Love as well as Rayleigh waves, the algorithms are shown to be capable of modelling multiple mode conversions at a lateral discontinuity, which was not shown in the original publications or in the subsequent literature. Only normal incidence at a lateral boundary is considered so there is no Love–Rayleigh coupling, but incidence of any mode and coupling to any (other mode can be handled. The code is written in Python and makes use of SciPy's Simpson's rule integrator and NumPy's linear algebra solver for its core functionality. Transmission-side results from this code are found to be in good agreement with those from finite-difference simulations. In today's research environment of extensive computing power, the coded algorithms are arguably redundant but SWRT can be used as a valuable testing tool for the ever evolving numerical solvers of seismic wave propagation. SWRT is available via GitHub (https://github.com/arjundatta23/SWRT.git.

  11. Surface texture change on-demand and microfluidic devices based on thickness mode actuation of dielectric elastomer actuators (DEAs)

    Science.gov (United States)

    Ankit, Ankit; Nguyen, Anh Chien; Mathews, Nripan

    2017-04-01

    Tactile feedback devices and microfluidic devices have huge significance in strengthening the area of robotics, human machine interaction and low cost healthcare. Dielectric Elastomer Actuators (DEAs) are an attractive alternative for both the areas; offering the advantage of low cost and simplistic fabrication in addition to the high actuation strains. The inplane deformations produced by the DEAs can be used to produce out-of-plane deformations by what is known as the thickness mode actuation of DEAs. The thickness mode actuation is achieved by adhering a soft passive layer to the DEA. This enables a wide area of applications in tactile applications without the need of complex systems and multiple actuators. But the thickness mode actuation has not been explored enough to understand how the deformations can be improved without altering the material properties; which is often accompanied with increased cost and a trade off with other closely associated material properties. We have shown the effect of dimensions of active region and non-active region in manipulating the out-of-plane deformation. Making use of this, we have been able to demonstrate large area devices and complex patterns on the passive top layer for the surface texture change on-demand applications. We have also been able to demonstrate on-demand microfluidic channels and micro-chambers without the need of actually fabricating the channels; which is a cost incurring and cumbersome process.

  12. The Main Principles of Formation of the Transverse Modes in the Multilayered Waveguides of Surface Acoustic Waves

    Science.gov (United States)

    Sveshnikov, B. V.; Bagdasaryan, A. S.

    2016-07-01

    We develop a self-consistent model allowing one to analyze the properties of the interdigital transducer of the surface acoustic waves as a symmetric five-layered waveguide on a piezoelectric substrate with three possible values of the phase velocity of the acoustic-wave propagation along the longitudinal axis of the system. The transcendental dispersion relation for describing the waves in such a system is derived and the method for its instructive graphic analysis is proposed. The condition under which only the fundamental transverse mode is excited in the waveguide is formulated. The method for calculating the normalized power and the transverse distribution of the field of the continuous-spectrum waves radiated from the considered waveguide is described. It is shown that the characteristic spatial scale of the longitudinal damping of the amplitude of this field at the waveguide center can be a qualitative estimate of the transverse-mode formation length. The efficiency of a new method for suppressing the higher-order transverse waveguide modes is demonstrated.

  13. Spatial Patterns of Variability in Antarctic Surface Temperature: Connections to the Southern Hemisphere Annular Mode and the Southern Oscillation

    Science.gov (United States)

    Kwok, Ron; Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    The 17-year (1982-1998) trend in surface temperature shows a general cooling over the Antarctic continent, warming of the sea ice zone, with moderate changes over the oceans. Warming of the peripheral seas is associated with negative trends in the regional sea ice extent. Effects of the Southern Hemisphere Annular Mode (SAM) and the extrapolar Southern Oscillation (SO) on surface temperature are quantified through regression analysis. Positive polarities of the SAM are associated with cold anomalies over most of Antarctica, with the most notable exception of the Antarctic Peninsula. Positive temperature anomalies and ice edge retreat in the Pacific sector are associated with El Nino episodes. Over the past two decades, the drift towards high polarity in the SAM and negative polarity in the SO indices couple to produce a spatial pattern with warmer temperatures in the Antarctic Peninsula and peripheral seas, and cooler temperatures over much of East Antarctica.

  14. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.

    2016-01-01

    ) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon...

  15. Expanding surfaces: The viewer immersed in multiple modes of representation Following the drawing on the ground

    DEFF Research Database (Denmark)

    Carbone, Claudia

    2015-01-01

    The experience of the exhibition On the Surface – a retrospective of the work of Metis, the Edinburgh-based atelier of Mark Dorrian and Adrian Hawker, presented in the exhibition space of The Aarhus School of Architecture – is choreographed as a walk over superimposed fragments of architectural...

  16. Molecular dimensions of dried glucose oxidase on a Au(1 1 1) surface studied by dynamic mode scanning force microscopy

    International Nuclear Information System (INIS)

    Otsuka, Ichiro; Yaoita, Masashi; Nagashima, Seiichi; Higano, Michi

    2005-01-01

    We have investigated the molecular dimensions of a dried single glucose oxidase (GO) molecule adsorbed on a Au(1 1 1) surface with the UHV non-contact atomic force microscopy (NC-AFM) and tapping mode atomic force microcopy (TMAFM). The smallest air-dried GO particles in a TMAFM-measured size distribution are found to be 10-11 nm wide and 0.3-0.4 nm high. We find each collapsed ellipsoidal feature with a groove in a NC-AFM image, which measured 12 nm x 10 nm x 0.5 nm. The lateral dimensions (12 nm x 10 nm) of the observed feature is close to those of a GO monomer measured by scanning tunneling microscopy (STM) [Quijin et al., 12.2 nm x 8.9 nm as the size of one wing of an opening butterfly (dimer) appeared in a STM image] and by contact mode AFM [Quinto et al., 14 nm x 8 nm]. Our value of the vertical dimension (0.5 nm) is consistent with AFM results and molecular dynamics simulations that suggest a surface-induced complete unfolding, showing the average diameter of amino acid residues

  17. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators

    Science.gov (United States)

    Bernardi, Michael P.; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-01-01

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses. PMID:26112658

  18. Interactions of Mineral Dust with Clouds, Sea Surface Temperature, and Climate Modes of Variability

    Science.gov (United States)

    DeFlorio, Michael J.

    Global climate models (GCMs) are a vital tool for ensuring the prosperity and security of modern society. They allow scientists to understand complex interactions between the air, ocean, and land, and are used by policymakers to project future changes in climate on regional and global scales. The previous generation of GCMs, represented by CMIP3 models, are shown to be deficient in their representation of precipitation over the western United States, a region that depends critically on wintertime orographically enhanced precipitation for drinking water. In addition, aerosol-cloud interactions were prescribed in CMIP3 models, which decreased the value of their representation of global aerosol, cloud, and precipitation features. This has potentially large impacts on global radiation budgets, since aerosol-cloud interactions affect the spatial extent and magnitude of clouds and precipitation. The newest suite of GCMs, the Coupled Model Intercomparison Project Phase 5 (CMIP5) models, includes state-of-the-art parameterizations of small-scale features such as aerosols, clouds, and precipitation, and is widely used by the scientific community to learn more about the climate system. The Community Earth System Model (CESM), in conjunction with observations, provides several simulations to investigate the role of aerosols, clouds, and precipitation in the climate system and how they interact with larger modes of climate variability. We show that CESM produces a realistic spatial distribution of precipitation extremes over the western U.S., and that teleconnected signals of ENSO and the Pacific Decadal Oscillation to large-scale circulation patterns and precipitation over the western U.S. are improved when compared to CCSM3. We also discover a new semi-direct effect between dust and stratocumulus clouds over the subtropical North Atlantic, whereby boundary layer inversion strength increases during the most dusty summers due to shortwave absorption of dust above the planetary

  19. Vibrational Mode-Specific Reaction of Methane on a Nickel Surface

    Science.gov (United States)

    Beck, Rainer D.; Maroni, Plinio; Papageorgopoulos, Dimitrios C.; Dang, Tung T.; Schmid, Mathieu P.; Rizzo, Thomas R.

    2003-10-01

    The dissociation of methane on a nickel catalyst is a key step in steam reforming of natural gas for hydrogen production. Despite substantial effort in both experiment and theory, there is still no atomic-scale description of this important gas-surface reaction. We report quantum state-resolved studies, using pulsed laser and molecular beam techniques, of vibrationally excited methane reacting on the nickel (100) surface. For doubly deuterated methane (CD2H2), we observed that the reaction probability with two quanta of excitation in one C-H bond was greater (by as much as a factor of 5) than with one quantum in each of two C-H bonds. These results clearly exclude the possibility of statistical models correctly describing the mechanism of this process and attest to the importance of full-dimensional calculations of the reaction dynamics.

  20. Localized surface plasmon modes in a system of two interacting metallic cylinders

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Vergeles, Sergey S.; Vorobev, Petr E.

    2012-01-01

    We study an optical response of a system of two parallel close metallic cylinders having nanoscale dimensions. Surface plasmon excitation in the gap between the cylinders are specifically analyzed. In particular, resonance frequencies and field enhancement were investigated as functions of geomet......We study an optical response of a system of two parallel close metallic cylinders having nanoscale dimensions. Surface plasmon excitation in the gap between the cylinders are specifically analyzed. In particular, resonance frequencies and field enhancement were investigated as functions...... of geometrical characteristics of the system and Ohmic losses in the metal. The results of numerical simulations were systematically compared with the analytical theory, obtained in the quasi-static limit. The analytical method was generalized in order to take into account the retardation effects. We also...

  1. Surface currents associated with external kink modes in tokamak plasmas during a major disruption

    Science.gov (United States)

    Ng, C. S.; Bhattacharjee, A.

    2017-10-01

    The surface current on the plasma-vacuum interface during a disruption event involving kink instability can play an important role in driving current into the vacuum vessel. However, there have been disagreements over the nature or even the sign of the surface current in recent theoretical calculations based on idealized step-function background plasma profiles. We revisit such calculations by replacing step-function profiles with more realistic profiles characterized by a strong but finite gradient along the radial direction. It is shown that the resulting surface current is no longer a delta-function current density, but a finite and smooth current density profile with an internal structure, concentrated within the region with a strong plasma pressure gradient. Moreover, this current density profile has peaks of both signs, unlike the delta-function case with a sign opposite to, or the same as the plasma current. We show analytically and numerically that such current density can be separated into two parts, with one of them, called the convective current density, describing the transport of the background plasma density by the displacement, and the other part that remains, called the residual current density. It is argued that consideration of both types of current density is important and can resolve past controversies.

  2. The Yucca Mountain Project Prototype Testing Program

    International Nuclear Information System (INIS)

    1989-10-01

    The Yucca Mountain Project is conducting a Prototype Testing Program to ensure that the Exploratory Shaft Facility (ESF) tests can be completed in the time available and to develop instruments, equipment, and procedures so the ESF tests can collect reliable and representative site characterization data. This report summarizes the prototype tests and their status and location and emphasizes prototype ESF and surface tests, which are required in the early stages of the ESF site characterization tests. 14 figs

  3. Extracting surface waves, hum and normal modes: time-scale phase-weighted stack and beyond

    Science.gov (United States)

    Ventosa, Sergi; Schimmel, Martin; Stutzmann, Eleonore

    2017-10-01

    Stacks of ambient noise correlations are routinely used to extract empirical Green's functions (EGFs) between station pairs. The time-frequency phase-weighted stack (tf-PWS) is a physically intuitive nonlinear denoising method that uses the phase coherence to improve EGF convergence when the performance of conventional linear averaging methods is not sufficient. The high computational cost of a continuous approach to the time-frequency transformation is currently a main limitation in ambient noise studies. We introduce the time-scale phase-weighted stack (ts-PWS) as an alternative extension of the phase-weighted stack that uses complex frames of wavelets to build a time-frequency representation that is much more efficient and fast to compute and that preserve the performance and flexibility of the tf-PWS. In addition, we propose two strategies: the unbiased phase coherence and the two-stage ts-PWS methods to further improve noise attenuation, quality of the extracted signals and convergence speed. We demonstrate that these approaches enable to extract minor- and major-arc Rayleigh waves (up to the sixth Rayleigh wave train) from many years of data from the GEOSCOPE global network. Finally we also show that fundamental spheroidal modes can be extracted from these EGF.

  4. Ultrafast pulse amplification in mode-locked vertical external-cavity surface-emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Böttge, C. N., E-mail: boettge@optics.arizona.edu; Hader, J.; Kilen, I.; Moloney, J. V. [College of Optical Sciences, The University of Arizona, 1630 E. University Blvd., Tucson, Arizona 85721 (United States); Koch, S. W. [College of Optical Sciences, The University of Arizona, 1630 E. University Blvd., Tucson, Arizona 85721 (United States); Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2014-12-29

    A fully microscopic many-body Maxwell–semiconductor Bloch model is used to investigate the influence of the non-equilibrium carrier dynamics on the short-pulse amplification in mode-locked semiconductor microlaser systems. The numerical solution of the coupled equations allows for a self-consistent investigation of the light–matter coupling dynamics, the carrier kinetics in the saturable absorber and the multiple-quantum-well gain medium, as well as the modification of the light field through the pulse-induced optical polarization. The influence of the pulse-induced non-equilibrium modifications of the carrier distributions in the gain medium and the saturable absorber on the single-pulse amplification in the laser cavity is identified. It is shown that for the same structure, quantum wells, and gain bandwidth the non-equilibrium carrier dynamics lead to two preferred operation regimes: one with pulses in the (sub-)100 fs-regime and one with multi-picosecond pulses. The recovery time of the saturable absorber determines in which regime the device operates.

  5. The experimental results and analysis of a borehole radar prototype

    International Nuclear Information System (INIS)

    Liu, Sixin; Wu, Junjun; Dong, Hang; Fu, Lei; Wang, Fei

    2012-01-01

    A prototype of borehole radar has been successfully tested in three sites for different purposes under a field condition. The objective of the prototype is providing an effective down-hole tool for detecting targets in deep boreholes situated in a relatively high conductivity area such as the metal ores. The first testing site is at a geothermal field. The fractures extending more than 20 m from the borehole are delineated by the borehole radar in the single-hole reflection mode. The second testing site is located in a jade mine for basement evaluation. The cross-hole measurement mode was used to detect the cavities made by previous unorganized mining activities. Several high-velocity anomalies were found in the velocity profile and presumably the targets of the mine shafts and tunnels. The third test site is located in a mineralized belt characterized by low resistivity less than 1000 Ohm m, the surface-borehole measurement was carried out and the data were processed with velocity tomography. The low-velocity zone corresponds to a mineralized zone from geological records. The three testing results proved the readiness of this borehole radar prototype for further deployment in more complicated and realistic field situations. (paper)

  6. Surface coating influence on elastic properties of spruce wood by means of holographic vibration mode visualization

    Science.gov (United States)

    Bongova, M.; Urgela, Stanislav

    1999-07-01

    Physicoacoustical properties of wood influenced by surface coating are studied by modal analysis. Resonant spruce plates were coated by stain, nitrocellulose varnish, special violin paint and shellac. The modal testing was performed by electronic speckle pattern interferometry. For this purpose, equipment called VIBROVIZER was used. The collected values of physicoacoustical characteristics (density, Young's modulus, acoustic constant) were compared using the graphic plots of data. The 3D plots help to evaluate wooden plates from a viewpoint of the quality control. This fact offers new opportunity for musical instrument manufacturers.

  7. Vibrational Mode-Specific Reaction of Methane with a Nickel Surface

    Science.gov (United States)

    Beck, Rainer

    2004-03-01

    The dissociation of methane on a nickel catalyst is a key step in steam reforming of natural gas for hydrogen production. Despite substantial effort in both experiment and theory, there is still no atomic scale description of this important gas-surface reaction. To elucidate its dynamics, we have performed quantum state resolved studies of vibrationally excited methane reacting on the Ni(100) surface using pulsed laser and molecular beam techniques. We observed up to a factor of 5 greater reaction probability for methane-d2 with two quanta of excitation in one C-H bond versus a nearly isoenergetic state with one quanta in each of two C-H bonds. The observed reactivities point to a transition state structure which has one of the C-H bonds significantly elongated. Our results also clearly exclude the possibility of statistical models correctly describing the mechanism of this process and emphasize the importance of full-dimensional calculations of the reaction dynamics.

  8. Majorana surface modes of nodal topological pairings in spin-3/2 semimetals

    Science.gov (United States)

    Yang, Wang; Xiang, Tao; Wu, Congjun

    2017-10-01

    When solid state systems possess active orbital-band structures subject to spin-orbit coupling, their multicomponent electronic structures are often described in terms of effective large-spin fermion models. Their topological structures of superconductivity are beyond the framework of spin singlet and triplet Cooper pairings for spin-1/2 systems. Examples include the half-Heusler compound series of RPtBi, where R stands for a rare-earth element. Their spin-orbit coupled electronic structures are described by the Luttinger-Kohn model with effective spin-3/2 fermions and are characterized by band inversion. Recent experiments provide evidence to unconventional superconductivity in the YPtBi material with nodal spin-septet pairing. We systematically study topological pairing structures in spin-3/2 systems with the cubic group symmetries and calculate the surface Majorana spectra, which exhibit zero energy flat bands, or, cubic dispersion depending on the specific symmetry of the superconducting gap functions. The signatures of these surface states in the quasiparticle interference patterns of tunneling spectroscopy are studied, which can be tested in future experiments.

  9. Rethink! prototyping transdisciplinary concepts of prototyping

    CERN Document Server

    Nagy, Emilia; Stark, Rainer

    2016-01-01

    In this book, the authors describe the findings derived from interaction and cooperation between scientific actors employing diverse practices. They reflect on distinct prototyping concepts and examine the transformation of development culture in their fusion to hybrid approaches and solutions. The products of tomorrow are going to be multifunctional, interactive systems – and already are to some degree today. Collaboration across multiple disciplines is the only way to grasp their complexity in design concepts. This underscores the importance of reconsidering the prototyping process for the development of these systems, particularly in transdisciplinary research teams. “Rethinking Prototyping – new hybrid concepts for prototyping” was a transdisciplinary project that took up this challenge. The aim of this programmatic rethinking was to come up with a general concept of prototyping by combining innovative prototyping concepts, which had been researched and developed in three sub-projects: “Hybrid P...

  10. Architectures of prototypes and architectural prototyping

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Christensen, Michael; Sandvad, Elmer

    1998-01-01

    together as a team, but developed a prototype that more than fulfilled the expectations of the shipping company. The prototype should: - complete the first major phase within 10 weeks, - be highly vertical illustrating future work practice, - continuously live up to new requirements from prototyping......This paper reports from experience obtained through development of a prototype of a global customer service system in a project involving a large shipping company and a university research group. The research group had no previous knowledge of the complex business of shipping and had never worked...... sessions with users, - evolve over a long period of time to contain more functionality - allow for 6-7 developers working intensively in parallel. Explicit focus on the software architecture and letting the architecture evolve with the prototype played a major role in resolving these conflicting...

  11. Evaluation of the Sentinel-3 Hydrologic Altimetry Processor prototypE (SHAPE) methods.

    Science.gov (United States)

    Benveniste, J.; Garcia-Mondéjar, A.; Bercher, N.; Fabry, P. L.; Roca, M.; Varona, E.; Fernandes, J.; Lazaro, C.; Vieira, T.; David, G.; Restano, M.; Ambrózio, A.

    2017-12-01

    Inland water scenes are highly variable, both in space and time, which leads to a much broader range of radar signatures than ocean surfaces. This applies to both LRM and "SAR" mode (SARM) altimetry. Nevertheless the enhanced along-track resolution of SARM altimeters should help improve the accuracy and precision of inland water height measurements from satellite. The SHAPE project - Sentinel-3 Hydrologic Altimetry Processor prototypE - which is funded by ESA through the Scientific Exploitation of Operational Missions Programme Element (contract number 4000115205/15/I-BG) aims at preparing for the exploitation of Sentinel-3 data over the inland water domain. The SHAPE Processor implements all of the steps necessary to derive rivers and lakes water levels and discharge from Delay-Doppler Altimetry and perform their validation against in situ data. The processor uses FBR CryoSat-2 and L1A Sentinel-3A data as input and also various ancillary data (proc. param., water masks, L2 corrections, etc.), to produce surface water levels. At a later stage, water level data are assimilated into hydrological models to derive river discharge. This poster presents the improvements obtained with the new methods and algorithms over the regions of interest (Amazon and Danube rivers, Vanern and Titicaca lakes).

  12. Imaging the Earth's anisotropic structure with Bayesian Inversion of fundamental and higher mode surface-wave dispersion data

    Science.gov (United States)

    Ravenna, Matteo; Lebedev, Sergei; Celli, Nicolas

    2017-04-01

    We develop a Markov Chain Monte Carlo inversion of fundamental and higher mode phase-velocity curves for radially and azimuthally anisotropic structure of the crust and upper mantle. In the inversions of Rayleigh- and Love-wave dispersion curves for radially anisotropic structure, we obtain probabilistic 1D radially anisotropic shear-velocity profiles of the isotropic average Vs and anisotropy (or Vsv and Vsh) as functions of depth. In the inversions for azimuthal anisotropy, Rayleigh-wave dispersion curves at different azimuths are inverted for the vertically polarized shear-velocity structure (Vsv) and the 2-phi component of azimuthal anisotropy. The strength and originality of the method is in its fully non-linear approach. Each model realization is computed using exact forward calculations. The uncertainty of the models is a part of the output. In the inversions for azimuthal anisotropy, in particular, the computation of the forward problem is performed separately at different azimuths, with no linear approximations on the relation of the Earth's elastic parameters to surface wave phase velocities. The computations are performed in parallel in order reduce the computing time. We compare inversions of the fundamental mode phase-velocity curves alone with inversions that also include overtones. The addition of higher modes enhances the resolving power of the anisotropic structure of the deep upper mantle. We apply the inversion method to phase-velocity curves in a few regions, including the Hangai dome region in Mongolia. Our models provide constraints on the Moho depth, the Lithosphere-Asthenosphere Boundary, and the alignment of the anisotropic fabric and the direction of current and past flow, from the crust down to the deep asthenosphere.

  13. Reaction of Br2 with adsorbed CO on Pt, studied by the surface interrogation mode of scanning electrochemical microscopy.

    Science.gov (United States)

    Wang, Qian; Rodríguez-López, Joaquín; Bard, Allen J

    2009-12-02

    Scanning electrochemical microscopy surface interrogation (SI-SECM) in the cyclic voltammetry mode was successfully used to detect and quantify adsorbed CO on a Pt electrode by reaction with electrogenerated Br(2). The two-electrode setup used in this new technique allowed the production of Br(2) on an interrogator tip, which reported a transient positive feedback above a Pt substrate at open circuit as an indication of the reactivity of this halogen with CO((ads)). Br(-) and CO(2) are shown to be the main products of the reaction (in the absence of O(2)), which may involve the formation of bromophosgene as a hydrolyzable intermediate. Under saturation conditions, CO((ads)) was reproducibly quantified at the polycrystalline Pt surface with theta(CO) approximately = 0.5. The reaction is shown to be blocked by the action of pre-adsorbed cyanide, which demonstrates the surface character of the process. The formation of CO(2) as an end product was further tested in a bulk experiment: addition of Pt black to a mixture of Br(2) in 0.5 M H(2)SO(4) through which CO was bubbled gave a precipitate of BaCO(3) in a saturated solution of Ba(OH)(2). The use of SI-SECM allowed access to a reaction that would otherwise be difficult to prove through conventional electrochemistry on a single electrode.

  14. Microtubule array reorientation in response to hormones does not involve changes in microtubule nucleation modes at the periclinal cell surface

    Science.gov (United States)

    Atkinson, Samantha; Kirik, Angela; Kirik, Viktor

    2014-01-01

    Aligned microtubule arrays spatially organize cell division, trafficking, and determine the direction of cell expansion in plant cells. In response to changes in environmental and developmental signals, cells reorganize their microtubule arrays into new configurations. Here, we tested the role of microtubule nucleation during hormone-induced microtubule array reorientation. We have found that in the process of microtubule array reorientation the ratios between branching, parallel, and de-novo nucleations remained constant, suggesting that the microtubule reorientation mechanism does not involve changes in nucleation modes. In the ton2/fass mutant, which has reduced microtubule branching nucleation frequency and decreased nucleation activity of the γ-tubulin complexes, microtubule arrays were able to reorient. Presented data suggest that reorientation of microtubules into transverse arrays in response to hormones does not involve changes in microtubule nucleation at the periclinal cell surface PMID:25135522

  15. Contributions of Greenhouse Gas Forcing and the Southern Annular Mode to Historical Southern Ocean Surface Temperature Trends

    Science.gov (United States)

    Kostov, Yavor; Ferreira, David; Armour, Kyle C.; Marshall, John

    2018-01-01

    We examine the 1979-2014 Southern Ocean (SO) sea surface temperature (SST) trends simulated in an ensemble of coupled general circulation models and evaluate possible causes of the models' inability to reproduce the observed 1979-2014 SO cooling. For each model we estimate the response of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these step-response functions, we skillfully reconstruct the models' 1979-2014 SO SST trends. Consistent with the seasonal signature of the Antarctic ozone hole and the seasonality of SO stratification, the summer and fall SAM exert a large impact on the simulated SO SST trends. We further identify conditions that favor multidecadal SO cooling: (1) a weak SO warming response to GHG forcing, (2) a strong multidecadal SO cooling response to a positive SAM trend, and (3) a historical SAM trend as strong as in observations.

  16. Plasma Modes

    Science.gov (United States)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  17. Direct visualization of the in-plane leakage of high-order transverse modes in vertical-cavity surface-emitting lasers mediated by oxide-aperture engineering

    Science.gov (United States)

    Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Burger, S.; Schmidt, F.; Ledentsov, N. N.

    2016-03-01

    Oxide-confined apertures in vertical cavity surface emitting laser (VCSEL) can be engineered such that they promote leakage of the transverse optical modes from the non- oxidized core region to the selectively oxidized periphery of the device. The reason of the leakage is that the VCSEL modes in the core can be coupled to tilted modes in the periphery if the orthogonality between the core mode and the modes at the periphery is broken by the oxidation-induced optical field redistribution. Three-dimensional modeling of a practical VCSEL design reveals i) significantly stronger leakage losses for high-order transverse modes than that of the fundamental one as high-order modes have a higher field intensity close to the oxide layers and ii) narrow peaks in the far-field profile generated by the leaky component of the optical modes. Experimental 850-nm GaAlAs leaky VCSELs produced in the modeled design demonstrate i) single-mode lasing with the aperture diameters up to 5μm with side mode suppression ratio >20dB at the current density of 10kA/cm2; and ii) narrow peaks tilted at 37 degrees with respect to the vertical axis in excellent agreement with the modeling data and confirming the leaky nature of the modes and the proposed mechanism of mode selection. The results indicate that in- plane coupling of VCSELs, VCSELs and p-i-n photodiodes, VCSEL and delay lines is possible allowing novel photonic integrated circuits. We show that the approach enables design of oxide apertures, air-gap apertures, devices created by impurity-induced intermixing or any combinations of such designs through quantitative evaluation of the leaky emission.

  18. A Numerical Study of 2-D Surface Roughness Effects on the Growth of Wave Modes in Hypersonic Boundary Layers

    Science.gov (United States)

    Fong, Kahei Danny

    The current understanding and research efforts on surface roughness effects in hypersonic boundary-layer flows focus, almost exclusively, on how roughness elements trip a hypersonic boundary layer to turbulence. However, there were a few reports in the literature suggesting that roughness elements in hypersonic boundary-layer flows could sometimes suppress the transition process and delay the formation of turbulent flow. These reports were not common and had not attracted much attention from the research community. Furthermore, the mechanisms of how the delay and stabilization happened were unknown. A recent study by Duan et al. showed that when 2-D roughness elements were placed downstream of the so-called synchronization point, the unstable second-mode wave in a hypersonic boundary layer was damped. Since the second-mode wave is typically the most dangerous and dominant unstable mode in a hypersonic boundary layer for sharp geometries at a zero angle of attack, this result has pointed to an explanation on how roughness elements delay transition in a hypersonic boundary layer. Such an understanding can potentially have significant practical applications for the development of passive flow control techniques to suppress hypersonic boundary-layer transition, for the purpose of aero-heating reduction. Nevertheless, the previous study was preliminary because only one particular flow condition with one fixed roughness parameter was considered. The study also lacked an examination on the mechanism of the damping effect of the second mode by roughness. Hence, the objective of the current research is to conduct an extensive investigation of the effects of 2-D roughness elements on the growth of instability waves in a hypersonic boundary layer. The goal is to provide a full physical picture of how and when 2-D roughness elements stabilize a hypersonic boundary layer. Rigorous parametric studies using numerical simulation, linear stability theory (LST), and parabolized

  19. Tapping mode AFM study on the surface dynamics of a single glucose oxidase molecule on a Au(1 1 1) surface in water with implication for a surface-induced unfolding pathway

    International Nuclear Information System (INIS)

    Otsuka, Ichiro; Yaoita, Masashi; Higano, Michi; Nagashima, Seiiichi; Kataoka, Ryoichi

    2004-01-01

    We have investigated a surface-induced unfolding dynamics of a single glucose oxidase (GO) molecule on Au(1 1 1) in air-saturated water, using tapping mode atomic force microscopy (TMAFM). We followed the unfolding process by measuring the maximum height of a well-isolated GO molecule on a terrace near a step-edge of the surface as a function of contact time. We find three linear portions with two intersections in a power-law fit to the selected values of the observed heights. The kinetic TMAFM result implies that there exist at least two distinct dynamic regimes in the unfolding

  20. Non-leaky modes and bandgaps of surface acoustic waves in wrinkled stiff-film/compliant-substrate bilayers

    Science.gov (United States)

    Li, Guo-Yang; Xu, Guoqiang; Zheng, Yang; Cao, Yanping

    2018-03-01

    Surface acoustic wave (SAW) devices have found a wide variety of technical applications, including SAW filters, SAW resonators, microfluidic actuators, biosensors, flow measurement devices, and seismic wave shields. Stretchable/flexible electronic devices, such as sensory skins for robotics, structural health monitors, and wearable communication devices, have received considerable attention across different disciplines. Flexible SAW devices are essential building blocks for these applications, wherein piezoelectric films may need to be integrated with the compliant substrates. When piezoelectric films are much stiffer than soft substrates, SAWs are usually leaky and the devices incorporating them suffer from acoustic losses. In this study, the propagation of SAWs in a wrinkled bilayer system is investigated, and our analysis shows that non-leaky modes can be achieved by engineering stress patterns through surface wrinkles in the system. Our analysis also uncovers intriguing bandgaps (BGs) related to the SAWs in a wrinkled bilayer system; these are caused by periodic deformation patterns, which indicate that diverse wrinkling patterns could be used as metasurfaces for controlling the propagation of SAWs.

  1. Recent Results from Analysis of Flow Structures and Energy Modes Induced by Viscous Wave around a Surface-Piercing Cylinder

    Directory of Open Access Journals (Sweden)

    Giancarlo Alfonsi

    2017-01-01

    Full Text Available Due to its relevance in ocean engineering, the subject of the flow field generated by water waves around a vertical circular cylinder piercing the free surface has recently started to be considered by several research groups. In particular, we studied this problem starting from the velocity-potential framework, then the implementation of the numerical solution of the Euler equations in their velocity-pressure formulation, and finally the performance of the integration of the Navier-Stokes equations in primitive variables. We also developed and applied methods of extraction of the flow coherent structures and most energetic modes. In this work, we present some new results of our research directed, in particular, toward the clarification of the main nonintuitive character of the phenomenon of interaction between a wave and a surface-piercing cylinder, namely, the fact that the wave exerts its maximum force and exhibits its maximum run-up on the cylindrical obstacle at different instants. The understanding of this phenomenon becomes of crucial importance in the perspective of governing the entity of the wave run-up on the obstacle by means of wave-flow-control techniques.

  2. Prototype and proposed ISABELLE dipoles

    International Nuclear Information System (INIS)

    McInturff, A.D.; Sampson, W.B.; Robins, K.E.; Dahl, P.F.; Damm, R.

    1977-01-01

    Data are presented on the latest dipole prototypes to update the operational parameters possible for ISABELLE. This data base will constantly expand until the start of construction of the storage rings. The data will include field quality, stray field magnitudes, quench temperature and propagation times, protection capabilities singly and in multiple units, maximum central fields obtained and training behavior. Performance of the dipoles versus temperature and mode of refrigeration will be discussed. The single layer cosine theta turns distribution coils' parameters are better than those required for the operation of the 200 x 200 GeV version of ISABELLE. The double layer prototype has exceeded the magnetic field performance and two dimensional quality of field needed for the 400 x 400 GeV version of ISABELLE

  3. Effect of an external alternating electric field non-monochromaticity on parametric excitation of surface ion cyclotron X-modes

    International Nuclear Information System (INIS)

    Girka, V O; Puzyrkov, S Yu; Shpagina, V O; Shpagina, L O

    2012-01-01

    The application of an external alternating electric field in the range of ion cyclotron frequencies is a well-known method for the excitation of surface electromagnetic waves. The present paper is devoted to the development of a kinetic theory of parametric excitation of these eigenwaves propagating across an external steady magnetic field along the plasma boundary at the second harmonic of the ion cyclotron frequency. Unlike previous papers on this subject, parametric excitation of surface ion cyclotron X-modes is studied here under the condition of non-monochromaticity of an external alternating electric field. Non-monochromaticity of the external alternating electric field is modeled by the superposition of two uniform and monochromatic electric fields with different amplitudes and frequencies. The nonlinear boundary condition is formulated for a tangential magnetic field of the studied surface waves. An infinite set of equations for the harmonics of a tangential electric field is solved using the approximation of the wave packet consisting of the main harmonic and two nearest satellite harmonics. Two different regimes of instability have been considered. If one of the applied generators has an operation frequency that is close to the ion cyclotron frequency, then changing the amplitude of the second generator allows one to enhance the growth rate of the parametric instability or to diminish it. But if the operation frequencies of the both generators are not close to the ion cyclotron frequency, then changing the amplitudes of their fields allows one to decrease the growth rate of the instability and even to suppress its development. The problem is studied both analytically and numerically.

  4. Diagnosing the leading mode of interdecadal covariability between the Indian Ocean sea surface temperature and summer precipitation in southern China

    Science.gov (United States)

    Liu, Jingpeng; Ren, Hong-Li; Li, Weijing; Zuo, Jinqing

    2018-03-01

    Precipitation in southern China during boreal summer (June to August) shows a substantial interdecadal variability on the timescale longer than 8 years. In this study, based on the analysis of singular value decomposition, we diagnose the leading mode of interdecadal covariability between the observational precipitation in southern China and the sea surface temperature (SST) in the Indian Ocean. Results indicate that there exist a remarkable southern China zonal dipole (SCZD) pattern of interdecadal variability of summer precipitation and an interdecadal Indian Ocean basin mode (ID-IOBM) of SST. It is found that the SCZD is evidently covaried with the ID-IOBM, which may induce anomalous inter-hemispheric vertical circulation and atmospheric Kelvin waves. During the warm phase of the ID-IOBM, an enhanced lower-level convergence and upper-level divergence exist over the tropical Indian Ocean, which is a typical Gill-Matsuno-type response to the SST warming. Meanwhile, the accompanied upper-level outflow anomalies further converge over the Indo-China peninsula, resulting in a lower-level anticyclone that contributes to reduction of the eastward moisture transport from the Bay of Bengal to the west part of southern China. In addition, the Kelvin wave-like pattern, as a response of the warm ID-IOBM phase, further induces the lower-level anticyclonic anomaly over the South China Sea-Philippines. Such an anticyclonic circulation is favorable for more water vapor transport from the East China Sea into the east part of southern China. Therefore, the joint effects of the anomalous inter-hemispheric vertical circulation and the Kelvin wave-like pattern associated with the ID-IOBM may eventually play a key role in generating the SCZD pattern.

  5. Evaluation of genotoxic effects of surface waters using a battery of bioassays indicating different mode of action.

    Science.gov (United States)

    Han, Yingnan; Li, Na; Oda, Yoshimitsu; Ma, Mei; Rao, Kaifeng; Wang, Zijian; Jin, Wei; Hong, Gang; Li, Zhiguo; Luo, Yi

    2016-11-01

    With the burgeoning contamination of surface waters threatening human health, the genotoxic effects of surface waters have received much attention. Because mutagenic and carcinogenic compounds in water cause tumors by different mechanisms, a battery of bioassays that each indicate a different mode of action (MOA) is required to evaluate the genotoxic effects of contaminants in water samples. In this study, 15 water samples from two source water reservoirs and surrounding rivers in Shijiazhuang city of China were evaluated for genotoxic effects. Target chemical analyses of 14 genotoxic pollutants were performed according to the Environmental quality standards for surface water of China. Then, the in vitro cytokinesis-block micronucleus (CBMN) assay, based on a high-content screening technique, was used to detect the effect of chromosome damage. The SOS/umu test using strain TA1535/pSK1002 was used to detect effects on SOS repair of gene expression. Additionally, two other strains, NM2009 and NM3009, which are highly sensitive to aromatic amines and nitroarenes, respectively, were used in the SOS/umu test to avoid false negative results. In the water samples, only two of the genotoxic chemicals listed in the water standards were detected in a few samples, with concentrations that were below water quality standards. However, positive results for the CBMN assay were observed in two river samples, and positive results for the induction of umuC gene expression in TA1535/pSK1002 were observed in seven river samples. Moreover, positive results were observed for NM2009 with S9 and NM3009 without S9 in some samples that had negative results using the strain TA1535/pSK1002. Based on the results with NM2009 and NM3009, some unknown or undetected aromatic amines and nitroarenes were likely in the source water reservoirs and the surrounding rivers. Furthermore, these compounds were most likely the causative pollutants for the genotoxic effect of these water samples. Therefore

  6. 3D spectrum imaging of multi-wall carbon nanotube coupled π-surface modes utilising electron energy-loss spectra acquired using a STEM/Enfina system

    International Nuclear Information System (INIS)

    Seepujak, A.; Bangert, U.; Gutierrez-Sosa, A.; Harvey, A.J.; Blank, V.D.; Kulnitskiy, B.A.; Batov, D.V.

    2005-01-01

    Numerous studies have utilised electron energy-loss (EEL) spectra acquired in the plasmon (2-10 eV) regime in order to probe delocalised π-electronic states of multi-wall carbon nanotubes (MWCNTs). Interpretation of electron energy loss (EEL) spectra of MWCNTs in the 2-10 eV regime. Carbon (accepted for publication); Blank et al. J. Appl. Phys. 91 (2002) 1657). In the present contribution, EEL spectra were acquired from a 2D raster defined on a bottle-shaped MWCNT, using a Gatan UHV Enfina system attached to a dedicated scanning transmission electron microscope (STEM). The technique utilised to isolate and sequentially filter each of the volume and surface resonances is described in detail. Utilising a scale for the intensity of a filtered mode enables one to 'see' the distribution of each resonance in the raster. This enables striking 3D resonance-filtered spectrum images (SIs) of π-collective modes to be observed. Red-shift of the lower energy split π-surface resonance provides explicit evidence of π-surface mode coupling predicted for thin graphitic films (Lucas et al. Phys. Rev. B 49 (1994) 2888). Resonance-filtered SIs are also compared to non-filtered SIs with suppressed surface contributions, acquired utilising a displaced collector aperture. The present filtering technique is seen to isolate surface contributions more effectively, and without the significant loss of statistics, associated with the displaced collector aperture mode. Isolation of collective modes utilising 3D resonance-filtered spectrum imaging, demonstrates a valuable method for 'pinpointing' the location of discrete modes in irregularly shaped nanostructures

  7. Excitation of higher radial modes of azimuthal surface waves in the electron cyclotron frequency range by rotating relativistic flow of electrons in cylindrical waveguides partially filled by plasmas

    Science.gov (United States)

    Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred

    2018-05-01

    Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-dielectric waveguides which propagate azimuthally nearby the plasma-dielectric interface across an axial external stationary magnetic field. Their eigenfrequency in particular can belong to the electron cyclotron frequency range. Excitation of azimuthal surface waves by rotating relativistic electron flows was studied in detail recently in the case of the zeroth radial mode for which the waves' radial phase change within the layer where the electrons gyrate is small. In this case, just the plasma parameters cause the main influence on the waves' dispersion properties. In the case of the first and higher radial modes, the wave eigenfrequency is higher and the wavelength is shorter than in the case of the zeroth radial mode. This gain being of interest for practical applications can be achieved without any change in the device design. The possibility of effective excitation of the higher order radial modes of azimuthal surface waves is demonstrated here. Getting shorter wavelengths of the excited waves in the case of higher radial modes is shown to be accompanied by decreasing growth rates of the waves. The results obtained here are of interest for developing new sources of electromagnetic radiation, in nano-physics and in medical physics.

  8. Indium tin oxide refractometer in the visible and near infrared via lossy mode and surface plasmon resonances with Kretschmann configuration

    International Nuclear Information System (INIS)

    Torres, V.; Beruete, M.; Sánchez, P.; Del Villar, I.

    2016-01-01

    An indium tin oxide (ITO) refractometer based on the generation of lossy mode resonances (LMRs) and surface plasmon resonances (SPRs) is presented. Both LMRs and SPRs are excited, in a single setup, under grazing angle incidence with Kretschmann configuration in an ITO thin-film deposited on a glass slide. The sensing capabilities of the device are demonstrated using several solutions of glycerin and water with refractive indices ranging from 1.33 to 1.47. LMRs are excited in the visible range, from 617 nm to 682 nm under TE polarization and from 533 nm to 637 nm under TM polarization, with a maximum sensitivity of 700 nm/RIU and 1200 nm/RIU, respectively. For the SPRs, a sensing range between 1375 nm and 2494 nm with a maximum sensitivity of 8300 nm/RIU is measured under TM polarization. Experimental results are supported with numerical simulations based on a modification of the plane-wave method for a one-dimensional multilayer waveguide

  9. A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters.

    Science.gov (United States)

    Zhang, Qian; Zhang, Hao Chi; Wu, Han; Cui, Tie Jun

    2015-11-10

    We propose a hybrid circuit for spoof surface plasmon polaritons (SPPs) and spatial waveguide modes to develop new microwave devices. The hybrid circuit includes a spoof SPP waveguide made of two anti-symmetric corrugated metallic strips and a traditional substrate integrated waveguide (SIW). From dispersion relations, we show that the electromagnetic waves only can propagate through the hybrid circuit when the operating frequency is less than the cut-off frequency of the SPP waveguide and greater than the cut-off frequency of SIW, generating efficient band-pass filters. We demonstrate that the pass band is controllable in a large range by designing the geometrical parameters of SPP waveguide and SIW. Full-wave simulations are provided to show the large adjustability of filters, including ultra wideband and narrowband filters. We fabricate a sample of the new hybrid device in the microwave frequencies, and measurement results have excellent agreements to numerical simulations, demonstrating excellent filtering characteristics such as low loss, high efficiency, and good square ratio. The proposed hybrid circuit gives important potential to accelerate the development of plasmonic integrated functional devices and circuits in both microwave and terahertz frequencies.

  10. Indium tin oxide refractometer in the visible and near infrared via lossy mode and surface plasmon resonances with Kretschmann configuration

    Energy Technology Data Exchange (ETDEWEB)

    Torres, V. [Antenna Group–TERALAB, Public University of Navarra, 31006 Pamplona (Spain); Beruete, M. [Antenna Group–TERALAB, Public University of Navarra, 31006 Pamplona (Spain); Institute of Smart Cities, Public University of Navarra, 31006 Pamplona (Spain); Sánchez, P. [Department of Electric and Electronic Engineering, Public University of Navarra, Pamplona 31006 (Spain); Del Villar, I. [Institute of Smart Cities, Public University of Navarra, 31006 Pamplona (Spain); Department of Electric and Electronic Engineering, Public University of Navarra, Pamplona 31006 (Spain)

    2016-01-25

    An indium tin oxide (ITO) refractometer based on the generation of lossy mode resonances (LMRs) and surface plasmon resonances (SPRs) is presented. Both LMRs and SPRs are excited, in a single setup, under grazing angle incidence with Kretschmann configuration in an ITO thin-film deposited on a glass slide. The sensing capabilities of the device are demonstrated using several solutions of glycerin and water with refractive indices ranging from 1.33 to 1.47. LMRs are excited in the visible range, from 617 nm to 682 nm under TE polarization and from 533 nm to 637 nm under TM polarization, with a maximum sensitivity of 700 nm/RIU and 1200 nm/RIU, respectively. For the SPRs, a sensing range between 1375 nm and 2494 nm with a maximum sensitivity of 8300 nm/RIU is measured under TM polarization. Experimental results are supported with numerical simulations based on a modification of the plane-wave method for a one-dimensional multilayer waveguide.

  11. The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Shimizu, Tetsuji; Zimmermann, Julia L; Morfill, Gregor E; Sakiyama, Yukinori; Graves, David B

    2012-01-01

    We present the transient, dynamic behavior of ozone production in surface micro-discharge (SMD) plasma in ambient air. Ultraviolet absorption spectroscopy at 254 nm was used to measure the time development of ozone density in a confined volume. We observed that ozone density increases monotonically over 1000 ppm for at least a few minutes when the input power is lower than ∼0.1 W/cm 2 . Interestingly, when input power is higher than ∼0.1 W/cm 2 , ozone density starts to decrease in a few tens of seconds at a constant power density, showing a peak ozone density. A model calculation suggests that the ozone depletion at higher power density is caused by quenching reactions with nitrogen oxides that are in turn created by vibrationally excited nitrogen molecules reacting with O atoms. The observed mode transition is significantly different from classical ozone reactors in that the transition takes place over time at a constant power. In addition, we observed a positive correlation between time-averaged ozone density and the inactivation rate of Escherichia coli on adjacent agar plates, suggesting that ozone plays a key role in inactivating bacteria under the conditions considered here. (paper)

  12. Modes of occurrence of fluorine in the Late Paleozoic No. 6 coal from the Haerwusu Surface Mine, Inner Mongolia, China

    Energy Technology Data Exchange (ETDEWEB)

    Xibo Wang; Shifeng Dai; Yingying Sun; Dan Li; Weiguo Zhang; Yong Zhang; Yangbing Luo [China University of Mining and Technology, Beijing (China). State Key Laboratory of Coal Resources and Safe Mining

    2011-01-15

    The No. 6 coal from the Haerwusu Surface Mine, Inner Mongolia, China, is enriched in Al and Ga, which are valuable metal resources that could be extracted from fly ash. However, fluorine in the coal is unusually high (mean 286 {mu}g/g) and potentially toxic to the environment in the extraction process. In this paper, a sequential extraction/density separation procedure (SE/DS) was designed to examine the modes of occurrence of fluorine in the coal. The results show that fluorine extracted in distilled water, NH{sub 4}Ac (1 mol/l), and HCl (0.5%) leachates is low, and that in sulfide fraction is below the detection limit. The organic and silicate associations are inferred to account for more than 90% of the total fluorine in the coal. Boehmite and kaolinite are prime carriers of fluorine (the fluorine content in silicate fraction of the boehmite-enriched sample H-14 is up to 1906 {mu}g/g, and that of the kaolinite-enriched sample H-29 is 384 {mu}g/g). In bench samples H-2 and H-3, a minor amount of fluorine is related to goyazite. The relationship between fluorine and boehmite indicates that they were probably derived from the sediment source region, the weathered bauxite of the uplifted Benxi formation. 29 refs., 7 figs., 3 tabs.

  13. Imagining the prototype

    OpenAIRE

    Brouwer, C. E.; Bhomer, ten, M.; Melkas, H.; Buur, J.

    2013-01-01

    This article reports on the analysis of a design session, employing conversation analysis. In the design session three experts and a designer discuss a prototype of a shirt, which has been developed with the input from these experts. The analysis focuses on the type of involvement of the participants with the prototype and how they explicate the points they make in the discussion with or without making use of the prototype. Three techniques for explicating design issues that exploit the proto...

  14. Rapid Prototyping Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  15. Fabrication and Prototyping Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Fabrication and Prototyping Lab for composite structures provides a wide variety of fabrication capabilities critical to enabling hands-on research and...

  16. Yucca Mountain project prototype testing

    International Nuclear Information System (INIS)

    Hughes, W.T.; Girdley, W.A.

    1990-01-01

    The U.S. DOE is responsible for characterizing the Yucca Mountain site in Nevada to determine its suitability for development as a geologic repository to isolate high-level nuclear waste for at least 10,000 years. This unprecedented task relies in part on measurements made with relatively new methods or applications, such as dry coring and overcoring for studies to be conducted from the land surface and in an underground facility. The Yucca Mountain Project has, since 1988, implemented a program of equipment development and methods development for a broad spectrum of hydrologic, geologic, rock mechanics, and thermomechanical tests planned for use in an Exploratory Shaft during site characterization at the Yucca Mountain site. A second major program was fielded beginning in April 1989 to develop and test methods and equipment for surface drilling to obtain core samples from depth using only air as a circulating medium. The third major area of prototype testing has been during the ongoing development of the Instrumentation/ Data Acquisition System (IDAS), designed to collect and monitor data from down-hole instrumentation in the unsaturated zone, and store and transmit the data to a central archiving computer. Future prototype work is planned for several programs including the application of vertical seismic profiling methods and flume design to characterizing the geology at Yucca Mountain. The major objectives of this prototype testing are to assure that planned Site Characterization testing can be carried out effectively at Yucca Mountain, both in the Exploratory Shaft Facility (ESF), and from the surface, and to avoid potential major failures or delays that could result from the need to re-design testing concepts or equipment. This paper will describe the scope of the Yucca Mountain Project prototype testing programs and summarize results to date. 3 figs

  17. Designing and testing prototypes

    NARCIS (Netherlands)

    Vereijken, P.; Wijnands, F.; Stol, W.

    1995-01-01

    This second progress report focuses on designing a theoretical prototype by linking parameters to methods and designing the methods in this context until they are ready for initial testing. The report focuses also on testing and improving the prototype in general and the methods in particular until

  18. EUCLID ARCHIVE SYSTEM PROTOTYPE

    NARCIS (Netherlands)

    Belikov, Andrey; Williams, Owen; Droge, Bob; Tsyganov, Andrey; Boxhoorn, Danny; McFarland, John; Verdoes Kleijn, Gijs; Valentijn, E; Altieri, Bruno; Dabin, Christophe; Pasian, F.; Osuna, Pedro; Soille, P.; Marchetti, P.G.

    2014-01-01

    The Euclid Archive System prototype is a functional information system which is used to address the numerous challenges in the development of fully functional data processing system for Euclid. The prototype must support the highly distributed nature of the Euclid Science Ground System, with Science

  19. Specifications in software prototyping

    OpenAIRE

    Luqi; Chang, Carl K.; Zhu, Hong

    1998-01-01

    We explore the use of software speci®cations for software prototyping. This paper describes a process model for software prototyping, and shows how specifications can be used to support such a process via a cellular mobile phone switch example.

  20. EPCiR prototype

    DEFF Research Database (Denmark)

    2003-01-01

    A prototype of a residential pervasive computing platform based on OSGi involving among other a mock-up of an health care bandage.......A prototype of a residential pervasive computing platform based on OSGi involving among other a mock-up of an health care bandage....

  1. Cooperative Prototyping Experiments

    DEFF Research Database (Denmark)

    Bødker, Susanne; Grønbæk, Kaj

    1989-01-01

    This paper describes experiments with a design technique that we denote cooperative prototyping. The experiments consider design of a patient case record system for municipal dental clinics in which we used HyperCard, an off the shelf programming environment for the Macintosh. In the ecperiments we...... tried to achieve a fluent work-like evaluation of prototypes where users envisioned future work with a computer tool, at the same time as we made on-line modifications of prototypes in cooperation with the users when breakdown occur in their work-like evaluation. The experiments showed...... that it was possible to make a number of direct manipulation changes of prototypes in cooperation with the users, in interplay with their fluent work-like evaluation of these. However, breakdown occurred in the prototyping process when we reached the limits of the direct manipulation support for modification. From...

  2. Virtual Prototyping at CERN

    Science.gov (United States)

    Gennaro, Silvano De

    The VENUS (Virtual Environment Navigation in the Underground Sites) project is probably the largest Virtual Reality application to Engineering design in the world. VENUS is just over one year old and offers a fully immersive and stereoscopic "flythru" of the LHC pits for the proposed experiments, including the experimental area equipment and the surface models that are being prepared for a territorial impact study. VENUS' Virtual Prototypes are an ideal replacement for the wooden models traditionally build for the past CERN machines, as they are generated directly from the EUCLID CAD files, therefore they are totally reliable, they can be updated in a matter of minutes, and they allow designers to explore them from inside, in a one-to-one scale. Navigation can be performed on the computer screen, on a stereoscopic large projection screen, or in immersive conditions, with an helmet and 3D mouse. By using specialised collision detection software, the computer can find optimal paths to lower each detector part into the pits and position it to destination, letting us visualize the whole assembly probess. During construction, these paths can be fed to a robot controller, which can operate the bridge cranes and build LHC almost without human intervention. VENUS is currently developing a multiplatform VR browser that will let the whole HEP community access LHC's Virtual Protoypes over the web. Many interesting things took place during the conference on Virtual Reality. For more information please refer to the Virtual Reality section.

  3. Experimental investigation of the sloshing motion of the water free surface in the draft tube of a Francis turbine operating in synchronous condenser mode

    Science.gov (United States)

    Vagnoni, Elena; Favrel, Arthur; Andolfatto, Loïc; Avellan, François

    2018-06-01

    Hydropower units may be required to operate in condenser mode to supply reactive power. In this operating mode, the water level in the turbine or pump-turbine is decreased below the runner by closing the guide vanes and injecting pressurized air. While operating in condenser mode the machine experiences power losses due to several air-water interaction phenomena which cause air losses. One of such phenomena is the sloshing motion of the water free surface below the runner in the draft tube cone of a Francis turbine. The objective of the present work is to experimentally investigate the sloshing motion of the water free surface in the draft tube cone of a reduced scale physical model of a Francis turbine operating in condenser mode. Images acquisition and simultaneous pressure fluctuation measurements are performed and an image processing method is developed to investigate amplitude and frequency of the sloshing motion of the free surface. It is found that this motion is excited at the natural frequency of the water volume and corresponds to the azimuthal wavenumber m = 1 of a rotating gravity wave. The amplitude of the motion is perturbed by wave breaking and it decreases by increasing the densimetric Froude number. The sloshing frequency slightly increases with respect to the natural frequency of the water volume by increasing the densimetric Froude number. Moreover, it results that this resonant phenomenon is not related to the torque perturbation.

  4. Surface-enhanced Raman Scattering Study of the Binding Modes of a Dibenzotetraaza[14]annulene Derivative with DNA/RNA Polynucleotides

    OpenAIRE

    Miljanić, Snežana; Dijanošić, Adriana; Kalac, Matea; Radić Stojković, Marijana; Piantanida, Ivo; Pawlica, Dariusz; Eilmes, Julita

    2012-01-01

    Binding modes of a dibenzotetraaza14annulene (DBTAA) derivative with synthetic nucleic acids were studied using surface-enhanced Raman spectroscopy (SERS). Changes in SERS intensity and appearance of new bands in spectra were attributed to different complexes formed between the DBTAA molecules and DNA/RNA polynucleotides. A decrease in intensity pointed to intercalation as the dominant binding mode of the annulene derivative with poly dGdC-poly dGdC and poly rA-poly rU, whereas new bands in...

  5. PRMS Data Warehousing Prototype

    Science.gov (United States)

    Guruvadoo, Eranna K.

    2002-01-01

    Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis, design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.

  6. Sound radiation modes of cylindrical surfaces and their application to vibro-acoustics analysis of cylindrical shells

    Science.gov (United States)

    Sun, Yao; Yang, Tiejun; Chen, Yuehua

    2018-06-01

    In this paper, sound radiation modes of baffled cylinders have been derived by constructing the radiation resistance matrix analytically. By examining the characteristics of sound radiation modes, it is found that radiation coefficient of each radiation mode increases gradually with the increase of frequency while modal shapes of sound radiation modes of cylindrical shells show a weak dependence upon frequency. Based on understandings on sound radiation modes, vibro-acoustics behaviors of cylindrical shells have been analyzed. The vibration responses of cylindrical shells are described by modified Fourier series expansions and solved by Rayleigh-Ritz method involving Flügge shell theory. Then radiation efficiency of a resonance has been determined by examining whether the vibration pattern is in correspondence with a sound radiation mode possessing great radiation efficiency. Furthermore, effects of thickness and boundary conditions on sound radiation of cylindrical shells have been investigated. It is found that radiation efficiency of thicker shells is greater than thinner shells while shells with a clamped boundary constraint radiate sound more efficiently than simply supported shells under thin shell assumption.

  7. Diverse rupture modes for surface-deforming upper plate earthquakes in the southern Puget Lowland of Washington State

    Science.gov (United States)

    Nelson, Alan R.; Personius, Stephen F.; Sherrod, Brian L.; Kelsey, Harvey M.; Johnson, Samuel Y.; Bradley, Lee-Ann; Wells, Ray E.

    2014-01-01

    Earthquake prehistory of the southern Puget Lowland, in the north-south compressive regime of the migrating Cascadia forearc, reflects diverse earthquake rupture modes with variable recurrence. Stratigraphy and Bayesian analyses of previously reported and new 14C ages in trenches and cores along backthrust scarps in the Seattle fault zone restrict a large earthquake to 1040–910 cal yr B.P. (2σ), an interval that includes the time of the M 7–7.5 Restoration Point earthquake. A newly identified surface-rupturing earthquake along the Waterman Point backthrust dates to 940–380 cal yr B.P., bringing the number of earthquakes in the Seattle fault zone in the past 3500 yr to 4 or 5. Whether scarps record earthquakes of moderate (M 5.5–6.0) or large (M 6.5–7.0) magnitude, backthrusts of the Seattle fault zone may slip during moderate to large earthquakes every few hundred years for periods of 1000–2000 yr, and then not slip for periods of at least several thousands of years. Four new fault scarp trenches in the Tacoma fault zone show evidence of late Holocene folding and faulting about the time of a large earthquake or earthquakes inferred from widespread coseismic subsidence ca. 1000 cal yr B.P.; 12 ages from 8 sites in the Tacoma fault zone limit the earthquakes to 1050–980 cal yr B.P. Evidence is too sparse to determine whether a large earthquake was closely predated or postdated by other earthquakes in the Tacoma basin, but the scarp of the Tacoma fault was formed by multiple earthquakes. In the northeast-striking Saddle Mountain deformation zone, along the western limit of the Seattle and Tacoma fault zones, analysis of previous ages limits earthquakes to 1200–310 cal yr B.P. The prehistory clarifies earthquake clustering in the central Puget Lowland, but cannot resolve potential structural links among the three Holocene fault zones.

  8. H-mode physics

    International Nuclear Information System (INIS)

    Itoh, Sanae.

    1991-06-01

    After the discovery of the H-mode in ASDEX ( a tokamak in Germany ) the transition between the L-mode ( Low confinement mode ) and H-mode ( High confinement mode ) has been observed in many tokamaks in the world. The H-mode has made a breakthrough in improving the plasma parameters and has been recognized to be a universal phenomena. Since its discovery, the extensive studies both in experiments and in theory have been made. The research on H-mode has been casting new problems of an anomalous transport across the magnetic surface. This series of lectures will provide a brief review of experiments for explaining H-mode and a model theory of H-mode transition based on the electric field bifurcation. If the time is available, a new theoretical model of the temporal evolution of the H-mode will be given. (author)

  9. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam with Emphasis on the Prototype Surface Flow Outlet, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Deng, Zhiqun; Fu, Tao; Monter, Tyrell J.; Johnson, Gary E.; Khan, Fenton; Wilberding, Matthew C.; Cushing, Aaron W.; Zimmerman, Shon A.; Faber, Derrek M.; Durham, Robin E.; Townsend, Richard L.; Skalski, John R.; Kim, Jina; Fischer, Eric S.; Meyer, Matthew M.

    2009-12-01

    The main purpose of the study was to evaluate the performance of Top Spill Weirs installed at two spillbays at John Day Dam and evaluate the effectiveness of these surface flow outlets at attracting juvenile salmon away from the powerhouse and reducing turbine passage. The Juvenile Salmonid Acoustic Telemetry System (JSATS) was used to estimate survival of juvenile salmonids passing the dam and also for calculating performance metrics used to evaluate the efficiency and effectiveness of the dam at passing juvenile salmonids.

  10. Prototype development of radio frequency cavity and quadrupole for ADSS - initial efforts by mechanical design and prototype development section

    International Nuclear Information System (INIS)

    Kumar, Manish; Kamble, Sunil; Choughule, L.S.; Kumar, Sunil; Patankar, S.R.; Phalke, V.M.; Dharmik, D.A.; Singh, Tejinder; Ram, Y.; Chaudhari, A.T.; Pathak, Kavindra; Prasad, N.K.; Marathe, V.V.; Matkar, A.W.

    2007-01-01

    Mechanical Design and Prototype Development Section has participated in the efforts for development of RF cavity and Quadrupole for ADSS. Recently prototype Super conducting RF cavity, Radio Frequency Quadrupole (RFQ), Radio Frequency Quadrupole (RFQ) Simulation Chamber and related experimental setups were developed, fabricated and delivered for the characterisation of various relevant parameters. Under the program for development of Super conducting RF Cavity for high-energy section of LINAC of ADS first prototype RF Cavity of ETP copper was developed by machining and brazing process. The prototype cavity having elliptical and circular profile is the heart of this setup. The cavity is made up of two symmetrical cups joined together by welding or brazing. Various methods are being tried out by MD and PDS for the fabrication of cups and joining them together. Manufacturing of cup by machining and joining them by conventional brazing technique to make the cavity was the first step in this direction. Another method of manufacturing and joining viz forming of cup by deep drawing and joining them by EB welding is in progress. RFQ is a versatile and efficient system for accelerating ion beams especially at low energy. It works in quadrupole mode, which is at 350M Hz. RFQ Focuses, Bunches and Accelerates the beam simultaneously. The bunching is done in this RFQ, which results in more than 95% transmission where as in the normal buncher the transmission is less than 40%. The actual RFQ, which is designed for the PURNIMA facility, will be fabricated from OFHC copper that will accelerate a deuteron (D+) ion beam from 50keV to 400keV over its 1.37meter length. For the validation of manufacturing process and characterisation of various parameters at low frequency a 500mm long prototype RFQ in Aluminium with an accuracy of ± 25microns and surface finish of 1.6 micron has been fabricated by MD and PDS. A simplified simulation chamber to facilitate the development of RFQ for

  11. FY97 ICCS prototype specification

    International Nuclear Information System (INIS)

    Woodruff, J.

    1997-01-01

    The ICCS software team will implement and test two iterations of their software product during FY97. This document specifies the products to be delivered in that first prototype and projects the direction that the second prototype will take. Detailed specification of the later iteration will be written when the results of the first iteration are complete. The selection of frameworks to be implemented early is made on a basis of risk analysis from the point of view of future development in the ICCS project. The prototype will address risks in integration of object- oriented components, in refining our development process, and in emulation testing for FEP devices. This document is a specification that identifies products and processes to undertake for resolving these risks. The goals of this activity are to exercise our development process at a modest scale and to probe our architecture plan for fundamental limits and failure modes. The product of the iterations will be the framework software which will be useful in future ICCS code. Thus the FY97 products are intended for internal usage by the ICCS team and for demonstration to the FEP software developers of the strategy for integrating supervisory software with FEP computers. This will be the first of several expected iterations of the software development process and the performance measurements that ICCS will demonstrate, intended to support confidence in our ability to meet project RAM goals. The design of the application software is being carried out in a separate WBS 1.5.2 activity. The design activity has as its FY97 product a series of Software Design Documents that will specify the functionality of the controls software of ICCS. During the testing of this year''s prototypes, the application functionality needed for test will be provided by sample maintenance controls. These are early precursors of controls that can be used for low level device control. Since the devices under test will be represented by

  12. From prototype to product

    DEFF Research Database (Denmark)

    Andersen, Tariq Osman; Bansler, Jørgen P.; Kensing, Finn

    2017-01-01

    This paper delves into the challenges of engaging patients, clinicians and industry stakeholders in the participatory design of an mHealth platform for patient-clinician collaboration. It follows the process from the development of a research prototype to a commercial software product. In particu......This paper delves into the challenges of engaging patients, clinicians and industry stakeholders in the participatory design of an mHealth platform for patient-clinician collaboration. It follows the process from the development of a research prototype to a commercial software product....... In particular, we draw attention to four major challenges of (a) aligning the different concerns of patients and clinicians, (b) designing according to clinical accountability, (c) ensuring commercial interest, and (d) dealing with regulatory constraints when prototyping safety critical health Information...... Technology. Using four illustrative cases, we discuss what these challenges entail and the implications they pose to Participatory Design. We conclude the paper by presenting lessons learned....

  13. Surface sensitive mode XAFS measurement of local structure of ordered Ge nanoclusters (quantum dots) on Si(0 0 1)

    CERN Document Server

    Erenburg, S B; Mazalov, L N; Nikiforov, A I; Stepina, N P; Nenashev, A V

    2001-01-01

    Pseudomorphous Ge films have been deposited on Si(0 0 1) substrate using molecular beam epitaxy at 300 deg. C up to the critical thickness of four monolayers. As a result of the following deposition pyramid-like Ge islands have been grown in Stranski-Krastanov mode. The islands revealing quantum dots (QD) properties are self-organized during the growth in uniform Ge nanostructures with lateral sizes approx 15 nm and height approx 1.5 nm. Ge K XAFS measurements have been performed using total electron yield detection mode. It was established that pseudomorphous 4-monolayer Ge films contain about 50% Si atoms. It has been found that the Ge QD are characterized by interatomic Ge-Ge distances of 2.41 A which is 0.04 A less than in bulk Ge.

  14. PANDA Muon System Prototype

    Science.gov (United States)

    Abazov, Victor; Alexeev, Gennady; Alexeev, Maxim; Frolov, Vladimir; Golovanov, Georgy; Kutuzov, Sergey; Piskun, Alexei; Samartsev, Alexander; Tokmenin, Valeri; Verkheev, Alexander; Vertogradov, Leonid; Zhuravlev, Nikolai

    2018-04-01

    The PANDA Experiment will be one of the key experiments at the Facility for Antiproton and Ion Research (FAIR) which is under construction now in the territory of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. PANDA is aimed to study hadron spectroscopy and various topics of the weak and strong forces. Muon System is chosen as the most suitable technology for detecting the muons. The Prototype of the PANDA Muon System is installed on the test beam line T9 at the Proton Synchrotron (PS) at CERN. Status of the PANDA Muon System prototype is presented with few preliminary results.

  15. Prototyping a Smart City

    DEFF Research Database (Denmark)

    Korsgaard, Henrik; Brynskov, Martin

    In this paper, we argue that by approaching the so-called Smart City as a design challenge, and an interaction design perspective, it is possible to both uncover existing challenges in the interplay between people, technology and society, as well as prototype possible futures. We present a case...... in which we exposed data about the online communication between the citizens and the municipality on a highly visible media facade, while at the same time prototyped a tool that enabled citizens to report ‘bugs’ within the city....

  16. PANDA Muon System Prototype

    Directory of Open Access Journals (Sweden)

    Abazov Victor

    2018-01-01

    Full Text Available The PANDA Experiment will be one of the key experiments at the Facility for Antiproton and Ion Research (FAIR which is under construction now in the territory of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. PANDA is aimed to study hadron spectroscopy and various topics of the weak and strong forces. Muon System is chosen as the most suitable technology for detecting the muons. The Prototype of the PANDA Muon System is installed on the test beam line T9 at the Proton Synchrotron (PS at CERN. Status of the PANDA Muon System prototype is presented with few preliminary results.

  17. Calculation of Thermal Mode of Flat Irradiated Ceramic Mass Sample’ while Evaporating Moisture from Heated-up Surface

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2004-01-01

    Full Text Available The solution of a differential heat conduction equation is given in view of cooling effect of moisture evaporation from a heated surface. In this case heating heat flow is diminishing in time exponentially. The most typical nomographic temperature and temperature gradient charts of heated surface and mean temperature of a plate are presented in the paper.

  18. Study of the modes of adsorption and electronic structure of hydrogen peroxide and ethanol over TiO2 rutile (110) surface within the context of water splitting

    Science.gov (United States)

    Alghamdi, H.; Idriss, H.

    2018-03-01

    While photocatalytic water splitting over many materials is favourable thermodynamically the kinetic of the reaction is very slow. One of the proposed reasons linked to the slow oxidation reaction rate is H2O2 formation as a reaction intermediate. Using Density Functional Theory (DFT) H2O2 is investigated on TiO2 rutile (110) surface to determine its most stable adsorption modes: molecular, (H)O(H)O - (a), partially dissociated, (H)OO - (a), and fully dissociated (a) - OO - (a). We then compare H2O2 interaction to that of a fast hole scavenger molecule, ethanol. Geometry, electronic structure, charge density difference and work function determination of both adsorbates are presented and compared using DFT with different functionals (PBE, PBE-D, PBE-U, and HSE + D). H2O2 is found to be strongly adsorbed on TiO2 rutile (110) surface with adsorption energies reaching 0.95 eV, comparable to that of ethanol (0.89 eV); using GGA PBE. The negative changes in the work function upon adsorption were found to be highest for molecular adsorption ( - 1.23 eV) and lowest for the fully dissociated mode ( - 0.54 eV) of H2O2. This may indicate that electrons flow from the surface to the adsorbate in order to make O(s)-H partially offset the overall magnitude of the oxygen lone pair interaction (of H2O2) with Ti4+ cations. Examination of the electronic structure through density of states (DOS) at the PBE level of computation, indicates that the H2O2 highest occupied molecular orbital (HOMO) level is not overlapping with oxygen atoms of TiO2 surface at any of its adsorption modes and at any of the computation methods. Some overlap is seen using the HSE + D computational method. On the other hand the dissociated mode of ethanol (ethoxides) does overlap with all computational methods used. The high adsorption energy and the absence of overlapping of the HOMO level of H2O2 with TiO2 rutile (110) surface may explain why water splitting is slow.

  19. A fast and low-cost spray method for prototyping and depositing surface-enhanced Raman scattering arrays on microfluidic paper based device.

    Science.gov (United States)

    Li, Bowei; Zhang, Wei; Chen, Lingxin; Lin, Bingcheng

    2013-08-01

    In this study, a fast, low-cost, and facile spray method was proposed. This method deposits highly sensitive surface-enhanced Raman scattering (SERS) silver nanoparticles (AgNPs) on the paper-microfluidic scheme. The procedures for substrate preparation were studied including different strategies to synthesize AgNPs and the optimization of spray cycles. In addition, the morphologies of the different kinds of paper substrates were characterized by SEM and investigated by their SERS signals. The established method was found to be favorable for obtaining good sensitivity and reproducible results. The RSDs of Raman intensity of randomly analyzing 20 spots on the same paper or different filter papers depositing AgNPs are both below 15%. The SERS enhancement factor is approximately 2 × 10(7) . The whole fabrication is very rapid, robust, and does not require specific instruments. Furthermore, the total cost for 1000 pieces of chip is less than $20. These advantages demonstrated the potential for growing SERS applications in the area of environmental monitoring, food safety, and bioanalysis in the future. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  1. Imagining the prototype

    NARCIS (Netherlands)

    Brouwer, C. E.; Bhomer, ten M.; Melkas, H.; Buur, J.

    2013-01-01

    This article reports on the analysis of a design session, employing conversation analysis. In the design session three experts and a designer discuss a prototype of a shirt, which has been developed with the input from these experts. The analysis focuses on the type of involvement of the

  2. MIND performance and prototyping

    International Nuclear Information System (INIS)

    Cervera-Villanueva, A.

    2008-01-01

    The performance of MIND (Magnetised Iron Neutrino Detector) at a neutrino factory has been revisited in a new analysis. In particular, the low neutrino energy region is studied, obtaining an efficiency plateau around 5 GeV for a background level below 10 -3 . A first look has been given into the detector optimisation and prototyping

  3. The prototype fast reactor

    International Nuclear Information System (INIS)

    Broomfield, A.M.

    1985-01-01

    The paper concerns the Prototype Fast Reactor (PFR), which is a liquid metal cooled fast reactor power station, situated at Dounreay, Scotland. The principal design features of a Fast Reactor and the PFR are given, along with key points of operating history, and health and safety features. The role of the PFR in the development programme for commercial reactors is discussed. (U.K.)

  4. AGS Booster prototype magnets

    Energy Technology Data Exchange (ETDEWEB)

    Danby, G.; Jackson, J.; Lee, Y.Y.; Phillips, R.; Brodowski, J.; Jablonski, E.; Keohane, G.; McDowell, B.; Rodger, E.

    1987-03-19

    Prototype magnets have been designed and constructed for two half cells of the AGS Booster. The lattice requires 2.4m long dipoles, each curved by 10/sup 0/. The multi-use Booster injector requires several very different standard magnet cycles, capable of instantaneous interchange using computer control from dc up to 10 Hz.

  5. AGS booster prototype magnets

    International Nuclear Information System (INIS)

    Danby, G.; Jackson, J.; Lee, Y.Y.; Phillips, R.; Brodowski, J.; Jablonski, E.; Keohane, G.; McDowell, B.; Rodger, E.

    1987-01-01

    Prototype magnets have been designed and constructed for two half cells of the AGS Booster. The lattice requires 2.4m long dipoles, each curved by 10 0 . The multi-use Booster injector requires several very different standard magnet cycles, capable of instantaneous interchange using computer control from dc up to 10 Hz

  6. Cockroft Walton accelerator prototype

    International Nuclear Information System (INIS)

    Hutapea, Sumihar.

    1976-01-01

    Prototype of a Cockroft Walton generator using ceramic and plastic capacitors is discussed. Compared to the previous generator, the construction and components are much more improved. Pralon is used for the high voltage insulation column and plastic is used as a dielectric material for the high voltage capacitor. Cockroft Walton generator is used as a high tension supply for an accelerator. (author)

  7. Prompt and Precise Prototyping

    Science.gov (United States)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  8. Surrogates-based prototyping

    NARCIS (Netherlands)

    Du Bois, E.; Horvath, I.

    2014-01-01

    The research is situated in the system development phase of interactive software products. In this detailed design phase, we found a need for fast testable prototyping to achieve qualitative change proposals on the system design. In this paper, we discuss a literature study on current software

  9. Z Andromedae: the prototype

    International Nuclear Information System (INIS)

    Viotti, R.; Giangrande, A.; Ricciardi, O.; Cassatella, A.

    1982-01-01

    Z And is considered as the ''prototype'' of the symbiotic stars. Besides its symbiotic spectrum, the star is also known for its characteristic light curve (and for the related spectral variations). Since many theoretical speculations on Z And and similar objects have been based on the luminosity and spectral variations of this star, the authors critically analyse the observational data concerning it. (Auth.)

  10. Prototype ATLAS straw tracker

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This is an early prototype of the straw tracking device for the ATLAS detector at CERN. This detector will be part of the LHC project, scheduled to start operation in 2008. The straw tracker will consist of thousands of gas-filled straws, each containing a wire, allowing the tracks of particles to be followed.

  11. Courthouse Prototype Building

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Mini [ORNL; New, Joshua Ryan [ORNL; Im, Piljae [ORNL

    2018-02-01

    As part of DOE's support of ANSI/ASHRAE/IES Standard 90.1 and IECC, researchers at Pacific Northwest National Laboratory (PNNL) apply a suite of prototype buildings covering 80% of the commercial building floor area in the U.S. for new construction. Efforts have started on expanding the prototype building suite to cover 90% of the commercial building floor area in the U.S., by developing prototype models for additional building types including place of worship, public order and safety, public assembly. Courthouse is courthouse is a sub-category under the “Public Order and Safety" building type category; other sub-categories include police station, fire station, and jail, reformatory or penitentiary.ORNL used building design guides, databases, and documented courthouse projects, supplemented by personal communication with courthouse facility planning and design experts, to systematically conduct research on the courthouse building and system characteristics. This report documents the research conducted for the courthouse building type and proposes building and system characteristics for developing a prototype building energy model to be included in the Commercial Building Prototype Model suite. According to the 2012 CBECS, courthouses occupy a total of 436 million sqft of floor space or 0.5% of the total floor space in all commercial buildings in the US, next to fast food (0.35%), grocery store or food market (0.88%), and restaurant or cafeteria (1.2%) building types currently included in the Commercial Prototype Building Model suite. Considering aggregated average, courthouse falls among the larger with a mean floor area of 69,400 sqft smaller fuel consumption intensity building types and an average of 94.7 kBtu/sqft compared to 77.8 kBtu/sqft for office and 80 kBtu/sqft for all commercial buildings.Courthouses range in size from 1000 sqft to over a million square foot building gross square feet and 1 courtroom to over 100 courtrooms. Small courthouses

  12. Mode-selective chemistry on metal surfaces: The dissociative chemisorption of CH{sub 4} on Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Han; Jackson, Bret, E-mail: jackson@chem.umass.edu [Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003 (United States)

    2016-05-14

    A quantum approach based on an expansion in vibrationally adiabatic eigenstates is used to explore CH{sub 4} dissociation on Pt(111). Computed sticking probabilities for molecules in the ground, 1v{sub 3} and 2v{sub 3}, states are in very good agreement with the available experimental data, reproducing the variation in reactivity with collision energy and vibrational state. As was found in similar studies on Ni(100) and Ni(111), exciting the 1v{sub 1} symmetric stretch of CH{sub 4} is more effective at promoting the dissociative chemisorption of CH{sub 4} than exciting the 1v{sub 3} antisymmetric stretch. This behavior is explained in terms of symmetry, mode-softening, and nonadiabatic transitions between vibrationally adiabatic states. We find that the efficacies of the bending modes for promoting reaction are reasonably large, and similar to the 1v{sub 3} state. The vibrational efficacies for promoting reaction on Ni(111) are larger than for reaction on Pt(111), due to the larger nonadiabatic couplings. Our computed sticking probabilities are in good agreement with results from recent ab initio molecular dynamics and reactive force field studies.

  13. A non-destructive surface burn detection method for ferrous metals based on acoustic emission and ensemble empirical mode decomposition: from laser simulation to grinding process

    International Nuclear Information System (INIS)

    Yang, Zhensheng; Wu, Haixi; Yu, Zhonghua; Huang, Youfang

    2014-01-01

    Grinding is usually done in the final finishing of a component. As a result, the surface quality of finished products, e.g., surface roughness, hardness and residual stress, are affected by the grinding procedure. However, the lack of methods for monitoring of grinding makes it difficult to control the quality of the process. This paper focuses on the monitoring approaches for the surface burn phenomenon in grinding. A non-destructive burn detection method based on acoustic emission (AE) and ensemble empirical mode decomposition (EEMD) was proposed for this purpose. To precisely extract the AE features caused by phase transformation during burn formation, artificial burn was produced to mimic grinding burn by means of laser irradiation, since laser-induced burn involves less mechanical and electrical noise. The burn formation process was monitored by an AE sensor. The frequency band ranging from 150 to 400 kHz was believed to be related to surface burn formation in the laser irradiation process. The burn-sensitive frequency band was further used to instruct feature extraction during the grinding process based on EEMD. Linear classification results evidenced a distinct margin between samples with and without surface burn. This work provides a practical means for grinding burn detection. (paper)

  14. Development of 3000 m Subsea Blowout Preventer Experimental Prototype

    Science.gov (United States)

    Cai, Baoping; Liu, Yonghong; Huang, Zhiqian; Ma, Yunpeng; Zhao, Yubin

    2017-12-01

    A subsea blowout preventer experimental prototype is developed to meet the requirement of training operators, and the prototype consists of hydraulic control system, electronic control system and small-sized blowout preventer stack. Both the hydraulic control system and the electronic system are dual-mode redundant systems. Each system works independently and is switchable when there are any malfunctions. And it significantly improves the operation reliability of the equipment.

  15. Mode specificity in the OH + CHD3 reaction: Reduced-dimensional quantum and quasi-classical studies on an ab initio based full-dimensional potential energy surface

    International Nuclear Information System (INIS)

    Song, Hongwei; Yang, Minghui; Lu, Yunpeng; Li, Jun; Guo, Hua

    2016-01-01

    An initial state selected time-dependent wave packet method is applied to study the dynamics of the OH + CHD 3 reaction with a six-dimensional model on a newly developed full-dimensional ab initio potential energy surface (PES). This quantum dynamical (QD) study is complemented by full-dimensional quasi-classical trajectory (QCT) calculations on the same PES. The QD results indicate that both translational energy and the excitation of the CH stretching mode significantly promote the reaction while the excitation of the umbrella mode has a negligible effect on the reactivity. For this early barrier reaction, interestingly, the CH stretching mode is more effective than translational energy in promoting the reaction except at very low collision energies. These QD observations are supported by QCT results. The higher efficacy of the CH stretching model in promoting this early barrier reaction is inconsistent with the prediction of the naively extended Polanyi’s rules, but can be rationalized by the recently proposed sudden vector projection model.

  16. Sloshing motion dynamics of a free surface in the draft tube cone of a Francis turbine operating in synchronous condenser mode

    Science.gov (United States)

    Vagnoni, Elena; Andolfatto, Loïc; Favrel, Arthur; Avellan, François

    2016-11-01

    The penetration of the electrical grid by intermittent renewable energy sources induces grid fluctuations which must be compensated in order to guarantee the stability of the grid. Hydropower plants can supply reactive power to ensure the grid stabilization by operating in condenser mode. In this operating mode, the turbine operates with the tail water depressed to let the runner spin in air to reduce the power consumption. Pressurized air is injected in the draft tube cone to maintain the water level below the runner and this induces air-water interaction phenomena which cause important power losses. Flow visualization and pressure fluctuation measurements are performed in a reduced scale physical model of a Francis turbine operating in condenser mode to investigate the dynamics of the air-water interaction in the draft tube cone which causes the sloshing motion of the free surface. An image post-processing method is developed, enabling a quantitative description of the sloshing motion. The latter depends on the Froude number. By increasing the value of the Froude number, the amplitude of the sloshing motion decreases, as well as the amplitude of the pressure fluctuations. The frequency of the sloshing motion corresponds to the first natural frequency of the water volume.

  17. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    International Nuclear Information System (INIS)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-01-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time. (paper)

  18. Ag-protein plasmonic architectures for surface plasmon-coupled emission enhancements and Fabry-Perot mode-coupled directional fluorescence emission

    Science.gov (United States)

    Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish

    2017-10-01

    We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.

  19. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    Science.gov (United States)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-08-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.

  20. Low-friction nanojoint prototype

    Science.gov (United States)

    Vlassov, Sergei; Oras, Sven; Antsov, Mikk; Butikova, Jelena; Lõhmus, Rünno; Polyakov, Boris

    2018-05-01

    High surface energy of individual nanostructures leads to high adhesion and static friction that can completely hinder the operation of nanoscale systems with movable parts. For instance, silver or gold nanowires cannot be moved on silicon substrate without plastic deformation. In this paper, we experimentally demonstrate an operational prototype of a low-friction nanojoint. The movable part of the prototype is made either from a gold or silver nano-pin produced by laser-induced partial melting of silver and gold nanowires resulting in the formation of rounded bulbs on their ends. The nano-pin is then manipulated into the inverted pyramid (i-pyramids) specially etched in a Si wafer. Due to the small contact area, the nano-pin can be repeatedly tilted inside an i-pyramid as a rigid object without noticeable deformation. At the same time in the absence of external force the nanojoint is stable and preserves its position and tilt angle. Experiments are performed inside a scanning electron microscope and are supported by finite element method simulations.

  1. First results of the CALICE SDHCAL technological prototype

    CERN Document Server

    Buridon, V.; Caponetto, L.; Ete, R.; Garillot, G.; Grenier, G.; Han, R.; Ianigro, J.C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Antequera, J.Berenguer; Alamillo, E.Calvo; Fouz, M.C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Cortina Gil, E.; Mannai, S.; Cauwenbergh, S.; Tytgat, M.; Pingault, A.; Zaganidis, N.; Anduze, M.; Balagura, V.; Belkadhi, K.; Boudry, V.; Brient, J-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Haddad, Y.; Ruan, M.; Shpak, K.; Videau, H.; Yu, D.; Callier, S.; Conforti di Lorenzo, S.; Dulucq, F.; Martin-Chassard, G.; de la Taille, Ch.; Raux, L.; Seguin-Moreau, N.; Boumediene, D.; Carloganu, C.; Francais, V.; Bonis, J.; Bouquet, B.; Cornebise, P.; Doublet, Ph.; Faucci-Giannelli, M.; Frisson, T.; Guilhem, G.; Li, H.; Richard, F.; Poschl, R.; Rouene, J.; Wicek, F.; Zhang, Z.; Deng, Z.; Li, Y.; Wang, Y.; Yue, Q.; Yang, Z.; Cho, G.; Kim, D-W.; Lee, S.C.; Park, W.; Vallecorsa, S.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Gottlicher, P.; Gunter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Kruger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H.L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Chadeeva, M.; Danilov, M.; Gabriel, M.; Goecke, P.; Kiesling, C.; van der Kolk, N.; Simon, F.; Soldner, C.; Szalay, M.; Weuste, L.; Jeans, D.; Komamiya, S.; Nakanishi, H.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.

    2016-04-01

    The CALICE Semi-Digital Hadronic Calorimeter (SDHCAL) prototype, built in 2011, was exposed to beams of hadrons, electrons and muons in two short periods in 2012 on two different beam lines of the CERN SPS. The prototype with its 48 active layers, made of Glass Resistive Plate Chambers and their embedded readout electronics, was run in triggerless and power-pulsing mode. The performance of the SDHCAL during the test beam was found to be very satisfactory with an efficiency exceeding 90% for almost all of the 48 active layers. A linear response (within 5%) and a good energy resolution are obtained for a large range of hadronic energies (5-80GeV) by applying appropriate calibration coefficients to the collected data for both the Digital (Binary) and the Semi-Digital (Multi-threshold) modes of the SDHCAL prototype. The Semi-Digital mode shows better performance at energies exceeding 30GeV

  2. First results of the CALICE SDHCAL technological prototype

    International Nuclear Information System (INIS)

    2016-01-01

    The CALICE Semi-Digital Hadronic Calorimeter (SDHCAL) prototype, built in 2011, was exposed to beams of hadrons, electrons and muons in two short periods in 2012 on two different beam lines of the CERN SPS. The prototype with its 48 active layers, made of Glass Resistive Plate Chambers and their embedded readout electronics, was run in triggerless and power-pulsing mode. The performance of the SDHCAL during the test beam was found to be very satisfactory with an efficiency exceeding 90% for almost all of the 48 active layers. A linear response (within ± 5%) and a good energy resolution are obtained for a large range of hadronic energies (5–80 GeV) by applying appropriate calibration coefficients to the collected data for both the Digital (Binary) and the Semi-Digital (Multi-threshold) modes of the SDHCAL prototype. The Semi-Digital mode shows better performance at energies exceeding 30 GeV

  3. Er:YAG laser in defocused mode for scaling of periodontally involved root surfaces: an in vitro pilot study.

    NARCIS (Netherlands)

    Crespi, R.; Romanos, G.E.; Barone, A.; Sculean, A.; Covani, U.

    2005-01-01

    BACKGROUND: The Er:YAG laser may be used on periodontally involved teeth in combination with conventional periodontal therapy in order to improve the efficacy of root instrumentation. The aim of this study was to compare the effect of hand instrumentation on root surfaces of periodontally involved

  4. Database Replication Prototype

    OpenAIRE

    Vandewall, R.

    2000-01-01

    This report describes the design of a Replication Framework that facilitates the implementation and com-parison of database replication techniques. Furthermore, it discusses the implementation of a Database Replication Prototype and compares the performance measurements of two replication techniques based on the Atomic Broadcast communication primitive: pessimistic active replication and optimistic active replication. The main contributions of this report can be split into four parts....

  5. Brachial Plexus Blocker Prototype

    OpenAIRE

    Stéphanie Coelho Monteiro

    2017-01-01

    Although the area of surgical simulation has been the subject of study in recent years, it is still necessary to develop artificial experimental models with a perspective to dismiss the use of biological models. Since this makes the simulators more real, transferring the environment of the health professional to a physical or virtual reality, an anesthetic prototype has been developed, where the motor response is replicated when the brachial plexus is subjected to a proximal nervous stimulus....

  6. Real-time sensing of surface-bound fibrinogen and fibrin interactions using spectroscopy of guided modes in optical waveguide structures, surface plasmon resonance, and monoclonal antibodies

    Czech Academy of Sciences Publication Activity Database

    Dyr, J. E.; Tichý, Ivo; Jiroušková, M.; Tobiška, Petr; Slavík, Radan; Homola, Jiří; Suttnar, J.

    1998-01-01

    Roč. 9, č. 7 (1998), s. 675 ISSN 0957-5235 R&D Projects: GA ČR GA303/96/1358 Institutional research plan: CEZ:AV0Z2067918 Keywords : surface plasmons * biosensors * biomedical engineering Subject RIV: CE - Biochemistry

  7. Ares I-X Ground Diagnostic Prototype

    Science.gov (United States)

    Schwabacher, Mark A.; Martin, Rodney Alexander; Waterman, Robert D.; Oostdyk, Rebecca Lynn; Ossenfort, John P.; Matthews, Bryan

    2010-01-01

    The automation of pre-launch diagnostics for launch vehicles offers three potential benefits: improving safety, reducing cost, and reducing launch delays. The Ares I-X Ground Diagnostic Prototype demonstrated anomaly detection, fault detection, fault isolation, and diagnostics for the Ares I-X first-stage Thrust Vector Control and for the associated ground hydraulics while the vehicle was in the Vehicle Assembly Building at Kennedy Space Center (KSC) and while it was on the launch pad. The prototype combines three existing tools. The first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool from Qualtech Systems Inc. for fault isolation and diagnostics. The second tool, SHINE (Spacecraft Health Inference Engine), is a rule-based expert system that was developed at the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and mode identification, and used the outputs of SHINE as inputs to TEAMS. The third tool, IMS (Inductive Monitoring System), is an anomaly detection tool that was developed at NASA Ames Research Center. The three tools were integrated and deployed to KSC, where they were interfaced with live data. This paper describes how the prototype performed during the period of time before the launch, including accuracy and computer resource usage. The paper concludes with some of the lessons that we learned from the experience of developing and deploying the prototype.

  8. Prototyping real-time systems

    OpenAIRE

    Clynch, Gary

    1994-01-01

    The traditional software development paradigm, the waterfall life cycle model, is defective when used for developing real-time systems. This thesis puts forward an executable prototyping approach for the development of real-time systems. A prototyping system is proposed which uses ESML (Extended Systems Modelling Language) as a prototype specification language. The prototyping system advocates the translation of non-executable ESML specifications into executable LOOPN (Language of Object ...

  9. MITRE sensor layer prototype

    Science.gov (United States)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  10. Possibility of 1-nm level localization of a single molecule with gap-mode surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Choi, Han Kyu; Kim, Zee Hwan

    2015-01-01

    The electromagnetic (EM) enhancement mechanism of surface-enhanced Raman scattering (SERS) has been well established through 30 years of extensive investigation: molecules adsorbed on resonantly driven silver or gold nanoparticles (NPs) experience strongly enhanced field and thus show enhanced Raman scattering. Even stronger SERS enhancement is possible with a gap structure in which two or more NPs form assemblies with gap sizes of 1 nm or less. We have theoretically shown that the measurement of SERS angular distribution can reveal the position of a single molecule near the gap with 1-nm accuracy, even though the spatial extent of the enhanced field is ~10 nm. Real implementation of such experiment requires extremely well-defined (preferably a single crystal) dimeric junctions. Nevertheless, the experiment will provide spatial as well as frequency domain information on single-molecule dynamics at metallic surfaces

  11. The Influence of Prior Modes of Growth, Temperature, Medium, and Substrate Surface on Biofilm Formation by Antibiotic-Resistant Campylobacter jejuni.

    Science.gov (United States)

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2016-12-01

    Campylobacter jejuni is one of the most common causes of bacterial gastrointestinal food-borne infection worldwide. It has been suggested that biofilm formation may play a role in survival of these bacteria in the environment. In this study, the influence of prior modes of growth (planktonic or sessile), temperatures (37 and 42 °C), and nutrient conditions (nutrient broth and Mueller-Hinton broth) on biofilm formation by eight C. jejuni strains with different antibiotic resistance profiles was examined. The ability of these strains to form biofilm on different abiotic surfaces (stainless steel, glass, and polystyrene) as well as factors potentially associated with biofilm formation (bacterial surface hydrophobicity, auto-aggregation, and initial attachment) was also determined. The results showed that cells grown as sessile culture generally have a greater ability to form biofilm (P Biofilm was also greater (P biofilm formation in a strain-dependent manner. The strains were able to attach and form biofilms on different abiotic surfaces, but none of them demonstrated strong, complex, or structured biofilm formation. There were no clear trends between the bacterial surface hydrophobicity, auto-aggregation, attachment, and biofilm formation by the strains. This finding suggests that environmental factors did affect biofilm formation by C. jejuni, and they are more likely to persist in the environment in the form of mixed-species rather than monospecies biofilms.

  12. A prototype analysis of vengeance

    NARCIS (Netherlands)

    Elshout, Maartje; Nelissen, Rob; van Beest, Ilja

    2015-01-01

    The authors examined the concept of vengeance from a prototype perspective. In 6 studies, the prototype structure of vengeance was mapped. Sixty-nine features of vengeance were identified (Study 1), and rated on centrality (Study 2). Further studies confirmed the prototype structure. Compared to

  13. Measurement of the surface-enhanced coherent anti-Stokes Raman scattering (SECARS) due to the 1574 cm(-1) surface-enhanced Raman scattering (SERS) mode of benzenethiol using low-power (CW diode lasers.

    Science.gov (United States)

    Aggarwal, Roshan L; Farrar, Lewis W; Greeneltch, Nathan G; Van Duyne, Richard P; Polla, Dennis L

    2013-02-01

    The surface-enhanced coherent anti-Stokes Raman scattering (SECARS) from a self-assembled monolayer (SAM) of benzenethiol on a silver-coated surface-enhanced Raman scattering (SERS) substrate has been measured for the 1574 cm(-1) SERS mode. A value of 9.6 ± 1.7×10(-14) W was determined for the resonant component of the SECARS signal using 17.8 mW of 784.9 nm pump laser power and 7.1 mW of 895.5 nm Stokes laser power; the pump and Stokes lasers were polarized parallel to each other but perpendicular to the grooves of the diffraction grating in the spectrometer. The measured value of resonant component of the SECARS signal is in agreement with the calculated value of 9.3×10(-14) W using the measured value of 8.7 ± 0.5 cm(-1) for the SERS linewidth Γ (full width at half-maximum) and the value of 5.7 ± 1.4×10(-7) for the product of the Raman cross section σSERS and the surface concentration Ns of the benzenethiol SAM. The xxxx component of the resonant part of the third-order nonlinear optical susceptibility |3 χxxxx((3)R)| for the 1574 cm(-1) SERS mode has been determined to be 4.3 ± 1.1×10(-5) cm·g(-1)·s(2). The SERS enhancement factor for the 1574 cm(-1) mode was determined to be 3.6 ± 0.9×10(7) using the value of 1.8×10(15) molecules/cm(2) for Ns.

  14. Transition to ELM-free Improved H-mode by Lithium Deposition on NSTX Graphite Divertor Surfaces

    International Nuclear Information System (INIS)

    Mansfield, D.K.; Kugel, H.W.; Maingi, R.; Bell, M.G.; Bell, R.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.; Mueller, D.; Paul, S.; Raman, R.; Roquemore, L.; Sabbagh, S.; Schneider, H.; Skinner, C.H.; Soukhanovskii, V.; Timberlake, J.; Wilgen, J.; Zakharov, L.

    2009-01-01

    Lithium evaporated onto plasma facing components in the NSTX lower divertor has made dramatic improvements in discharge performance. As lithium accumulated, plasmas previously exhibiting robust Type 1 ELMs gradually transformed into discharges with intermittent ELMs and finally into continuously evolving ELM-free discharges. During this sequence, other discharge parameters changed in a complicated manner. As the ELMs disappeared, energy confinement improved and remarkable changes in edge and scrape-off layer plasma properties were observed. These results demonstrate that active modification of plasma surface interactions can preempt large ELMs.

  15. Surface plasmon resonance imaging reveals multiple binding modes of Agrobacterium transformation mediator VirE2 to ssDNA.

    Science.gov (United States)

    Kim, Sanghyun; Zbaida, David; Elbaum, Michael; Leh, Hervé; Nogues, Claude; Buckle, Malcolm

    2015-07-27

    VirE2 is the major secreted protein of Agrobacterium tumefaciens in its genetic transformation of plant hosts. It is co-expressed with a small acidic chaperone VirE1, which prevents VirE2 oligomerization. After secretion into the host cell, VirE2 serves functions similar to a viral capsid in protecting the single-stranded transferred DNA en route to the nucleus. Binding of VirE2 to ssDNA is strongly cooperative and depends moreover on protein-protein interactions. In order to isolate the protein-DNA interactions, imaging surface plasmon resonance (SPRi) studies were conducted using surface-immobilized DNA substrates of length comparable to the protein-binding footprint. Binding curves revealed an important influence of substrate rigidity with a notable preference for poly-T sequences and absence of binding to both poly-A and double-stranded DNA fragments. Dissociation at high salt concentration confirmed the electrostatic nature of the interaction. VirE1-VirE2 heterodimers also bound to ssDNA, though by a different mechanism that was insensitive to high salt. Neither VirE2 nor VirE1-VirE2 followed the Langmuir isotherm expected for reversible monomeric binding. The differences reflect the cooperative self-interactions of VirE2 that are suppressed by VirE1. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. The experiment progress of bracket brazing to SSMIC for the ITER ELM prototype coil

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yi, E-mail: shiyi@ipp.ac.cn; Wu, Yu; Jin, Huan; Ren, Zhibin; Han, Houxiang; Qian, Jing; Qian, Li; Liu, Bo

    2014-11-15

    Highlights: • In this study, the experimental research of brackets brazing to stainless steel jacketed, Mineral Insulated Conductor (SSMIC) of the first Edge Localized Modes (ELMs) prototype coil for ITER has been made. • The technology for controlling the fluidity of silver-based brazing alloy is developed to meet the bracket brazing. • Brazing experiments to find the reason for cracks are carried out and the improved brazing technologies to restrain the cracks in the Inconel 625 jacket with silver-based alloy are developed. - Abstract: The first Edge Localized Modes (ELMs) prototype coil for International Thermonuclear Experimental Reactor (ITER) has been manufactured in the Institute of Plasma Physics, CAS (ASIPP) at 2014. The all 19 brackets need to braze to the stainless steel jacketed, Mineral Insulated Conductor (SSMIC) for transporting the nuclear heating in the brackets to the water-cooled SSMIC. Silver-based alloy is the only candidate brazing filler for the bracket brazing due to the limitation from melting point temperature and strength. In this paper, firstly, the experimental study for controlling the fluidity of silver-based brazing alloy is developed. And then, the brazing experiment of prototype bracket is introduced to develop the brazing process and some cracks in the Inconel 625 jackets surface appeared unexpectedly. The microstructures and tensile performance study of the cracked Inconel 625 jacket were made to explore the reason for cracks and the improved brazing technologies to suppress the cracks are developed. Finally, the bracket brazing experiment for the first ELM prototype coil is carried out, In spite of this, some cracks also appear in the Inconel 625 jackets.

  17. The experiment progress of bracket brazing to SSMIC for the ITER ELM prototype coil

    International Nuclear Information System (INIS)

    Shi, Yi; Wu, Yu; Jin, Huan; Ren, Zhibin; Han, Houxiang; Qian, Jing; Qian, Li; Liu, Bo

    2014-01-01

    Highlights: • In this study, the experimental research of brackets brazing to stainless steel jacketed, Mineral Insulated Conductor (SSMIC) of the first Edge Localized Modes (ELMs) prototype coil for ITER has been made. • The technology for controlling the fluidity of silver-based brazing alloy is developed to meet the bracket brazing. • Brazing experiments to find the reason for cracks are carried out and the improved brazing technologies to restrain the cracks in the Inconel 625 jacket with silver-based alloy are developed. - Abstract: The first Edge Localized Modes (ELMs) prototype coil for International Thermonuclear Experimental Reactor (ITER) has been manufactured in the Institute of Plasma Physics, CAS (ASIPP) at 2014. The all 19 brackets need to braze to the stainless steel jacketed, Mineral Insulated Conductor (SSMIC) for transporting the nuclear heating in the brackets to the water-cooled SSMIC. Silver-based alloy is the only candidate brazing filler for the bracket brazing due to the limitation from melting point temperature and strength. In this paper, firstly, the experimental study for controlling the fluidity of silver-based brazing alloy is developed. And then, the brazing experiment of prototype bracket is introduced to develop the brazing process and some cracks in the Inconel 625 jackets surface appeared unexpectedly. The microstructures and tensile performance study of the cracked Inconel 625 jacket were made to explore the reason for cracks and the improved brazing technologies to suppress the cracks are developed. Finally, the bracket brazing experiment for the first ELM prototype coil is carried out, In spite of this, some cracks also appear in the Inconel 625 jackets

  18. OPAL Jet Chamber Prototype

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the dirfferent parts of the tracking system. This piece is a prototype of the jet chambers

  19. Prototyping Augmented Reality

    CERN Document Server

    Mullen, Tony

    2011-01-01

    Learn to create augmented reality apps using Processing open-source programming language Augmented reality (AR) is used all over, and you may not even realize it. Smartphones overlay data onto live camera views to show homes for sale, restaurants, or historical sites. American football broadcasts use AR to show the invisible first-down line on the field to TV viewers. Nike and Budweiser, among others, have used AR in ads. Now, you can learn to create AR prototypes using 3D data, Processing open-source programming language, and other languages. This unique book is an easy-to-follow guide on how

  20. Prototype learning and dissociable categorization systems in Alzheimer's disease.

    Science.gov (United States)

    Heindel, William C; Festa, Elena K; Ott, Brian R; Landy, Kelly M; Salmon, David P

    2013-08-01

    Recent neuroimaging studies suggest that prototype learning may be mediated by at least two dissociable memory systems depending on the mode of acquisition, with A/Not-A prototype learning dependent upon a perceptual representation system located within posterior visual cortex and A/B prototype learning dependent upon a declarative memory system associated with medial temporal and frontal regions. The degree to which patients with Alzheimer's disease (AD) can acquire new categorical information may therefore critically depend upon the mode of acquisition. The present study examined A/Not-A and A/B prototype learning in AD patients using procedures that allowed direct comparison of learning across tasks. Despite impaired explicit recall of category features in all tasks, patients showed differential patterns of category acquisition across tasks. First, AD patients demonstrated impaired prototype induction along with intact exemplar classification under incidental A/Not-A conditions, suggesting that the loss of functional connectivity within visual cortical areas disrupted the integration processes supporting prototype induction within the perceptual representation system. Second, AD patients demonstrated intact prototype induction but impaired exemplar classification during A/B learning under observational conditions, suggesting that this form of prototype learning is dependent on a declarative memory system that is disrupted in AD. Third, the surprisingly intact classification of both prototypes and exemplars during A/B learning under trial-and-error feedback conditions suggests that AD patients shifted control from their deficient declarative memory system to a feedback-dependent procedural memory system when training conditions allowed. Taken together, these findings serve to not only increase our understanding of category learning in AD, but to also provide new insights into the ways in which different memory systems interact to support the acquisition of

  1. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    International Nuclear Information System (INIS)

    Chou Chau, Yuan-Fong; Lim, Chee Ming; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-01-01

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.

  2. Improved Re-Configurable Sliding Mode Controller for Reusable Launch Vehicle of Second Generation Addressing Aerodynamic Surface Failures and Thrust Deficiencies

    Science.gov (United States)

    Shtessel, Yuri B.

    2002-01-01

    In this report we present a time-varying sliding mode control (TV-SMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC is developed and tuned up for the X-33 sub-orbital technology demonstration vehicle in launch and re-entry modes. A variety of nominal, dispersion and failure scenarios have tested via high fidelity 6DOF simulations using MAVERIC/SLIM simulation software.

  3. DataCollection Prototyping

    CERN Multimedia

    Beck, H.P.

    DataCollection is a subsystem of the Trigger, DAQ & DCS project responsible for the movement of event data from the ROS to the High Level Triggers. This includes data from Regions of Interest (RoIs) for Level 2, building complete events for the Event Filter and finally transferring accepted events to Mass Storage. It also handles passing the LVL1 RoI pointers and the allocation of Level 2 processors and load balancing of Event Building. During the last 18 months DataCollection has developed a common architecture for the hardware and software required. This involved a radical redesign integrating ideas from separate parts of earlier TDAQ work. An important milestone for this work, now achieved, has been to demonstrate this subsystem in the so-called Phase 2A Integrated Prototype. This prototype comprises the various TDAQ hardware and software components (ROSs, LVL2, etc.) under the control of the TDAQ Online software. The basic functionality has been demonstrated on small testbeds (~8-10 processing nodes)...

  4. OMS FDIR: Initial prototyping

    Science.gov (United States)

    Taylor, Eric W.; Hanson, Matthew A.

    1990-01-01

    The Space Station Freedom Program (SSFP) Operations Management System (OMS) will automate major management functions which coordinate the operations of onboard systems, elements and payloads. The objectives of OMS are to improve safety, reliability and productivity while reducing maintenance and operations cost. This will be accomplished by using advanced automation techniques to automate much of the activity currently performed by the flight crew and ground personnel. OMS requirements have been organized into five task groups: (1) Planning, Execution and Replanning; (2) Data Gathering, Preprocessing and Storage; (3) Testing and Training; (4) Resource Management; and (5) Caution and Warning and Fault Management for onboard subsystems. The scope of this prototyping effort falls within the Fault Management requirements group. The prototyping will be performed in two phases. Phase 1 is the development of an onboard communications network fault detection, isolation, and reconfiguration (FDIR) system. Phase 2 will incorporate global FDIR for onboard systems. Research into the applicability of expert systems, object-oriented programming, fuzzy sets, neural networks and other advanced techniques will be conducted. The goals and technical approach for this new SSFP research project are discussed here.

  5. Live Piloting and Prototyping

    Directory of Open Access Journals (Sweden)

    Francesca Rizzo

    2013-07-01

    Full Text Available This paper presents current trends in service design research concerning large scale projects aimed at generating changes at a local scale. The strategy adopted to achieve this, is to co-design solutions including future users in the development process, prototyping and testing system of products and services before their actual implementation. On the basis of experience achieved in the European Project Life 2.0, this paper discusses which methods and competencies are applied in the development of these projects, eliciting the lessons learnt especially from the piloting phase in which the participatory design (PD approach plays a major role. In the first part, the topic is introduced jointly with the theoretical background where the user center design and participatory design methods are presented; then the Life 2.0 project development is described; finally the experience is discussed from a service design perspective, eliciting guidelines for piloting and prototyping services in a real context of use. The paper concludes reflecting on the designers’ role and competencies needed in this process.

  6. Effect of Surface Plasmon Coupling to Optical Cavity Modes on the Field Enhancement and Spectral Response of Dimer-Based sensors

    KAUST Repository

    Alrasheed, Salma

    2017-09-05

    We present a theoretical approach to narrow the plasmon linewidth and enhance the near-field intensity at a plasmonic dimer gap (hot spot) through coupling the electric localized surface plasmon (LSP) resonance of a silver hemispherical dimer with the resonant modes of a Fabry-Perot (FP) cavity. The strong coupling is demonstrated by the large anticrossing in the reflection spectra and a Rabi splitting of 76 meV. Up to 2-fold enhancement increase can be achieved compared to that without using the cavity. Such high field enhancement has potential applications in optics, including sensors and high resolution imaging devices. In addition, the resonance splitting allows for greater flexibility in using the same array at different wavelengths. We then further propose a practical design to realize such a device and include dimers of different shapes and materials.

  7. Accounting for the Complex Surface Structure in Ellipsometric Studies of the Effects of Magnetron Sputtering Modes on the Growth and Optical Properties of In2O3 Films

    Science.gov (United States)

    Tikhii, A. A.; Nikolaenko, Yu. M.; Gritskih, V. A.; Svyrydova, K. A.; Murga, V. V.; Zhikhareva, Yu. I.; Zhikharev, I. V.

    2018-03-01

    The efficiency of invoking additional information on optical transmission in solving the inverse problem of ellipsometry by a minimization method is demonstrated in practice for In2O3 fi doped and nondoped with Sn on Al2O3 (012) substrates. This approach allows the thickness and refractive index of thin films with rough surfaces to be uniquely determined. Solutions of the inverse problem in the framework of one-, two-, and multilayer models are compared. The last provides the best description of the experimental data and the correct parameters of the samples. The dependences of the investigated properties of films produced with different magnetron sputtering modes are found using the above methods and models and do not contradict general concepts about the film formation by this material.

  8. Forward volume and surface magnetostatic modes in an yttrium iron garnet film for out-of-plane magnetic fields: Theory and experiment

    Science.gov (United States)

    Lim, Jinho; Bang, Wonbae; Trossman, Jonathan; Amanov, Dovran; Ketterson, John B.

    2018-05-01

    We present experimental and theoretical results on the propagation of magnetostatic spin waves in a film of yttrium iron garnet (YIG) for out-of-plane magnetic fields for which propagation in opposite directions is nonreciprocal in the presence of a metal layer. The plane studied is defined by the film normal n and n × k where k is the wave vector of the mode. Spin waves in this setting are classified as forward volume waves or surface waves and display non-reciprocity in the presence of an adjacent metal layer except for when H//n. The measurements are carried out in a transmission geometry, and a microwave mixer is used to measure the change of phase, and with it the evolution of wavevector, of the arriving spin wave with external magnetic field.

  9. Evaluation of Mixed-Mode Data-Link Communications for NextGen 4DT and Equivalent Visual Surface Operations

    Science.gov (United States)

    Prinzel, Lawrence J., III; Shelton, Kevin J.; Jones, Denise R.; Allamandola, Angela S.; Arthur, Jarvis, J., III; Bailey, Randall E.

    2010-01-01

    By 2025, U.S. air traffic is predicted to increase 3-fold and may strain the current air traffic management system, which may not be able to accommodate this growth. In response to this challenge, a revolutionary new concept has been proposed for U.S. aviation operations, termed the Next Generation Air Transportation System or NextGen. Many key capabilities are being identified to enable NextGen, including the use of data-link communications. Because NextGen represents a radically different approach to air traffic management and requires a dramatic shift in the tasks, roles, and responsibilities for the flight deck, there are numerous research issues and challenges that must be overcome to ensure a safe, sustainable air transportation system. Flight deck display and crew-vehicle interaction concepts are being developed that proactively investigate and overcome potential technology and safety barriers that might otherwise constrain the full realization of NextGen. The paper describes simulation research examining data-link communications during 4DT and equivalent visual surface operations.

  10. An anisotropic shear velocity model of the Earth's mantle using normal modes, body waves, surface waves and long-period waveforms

    Science.gov (United States)

    Moulik, P.; Ekström, G.

    2014-12-01

    We use normal-mode splitting functions in addition to surface wave phase anomalies, body wave traveltimes and long-period waveforms to construct a 3-D model of anisotropic shear wave velocity in the Earth's mantle. Our modelling approach inverts for mantle velocity and anisotropy as well as transition-zone discontinuity topographies, and incorporates new crustal corrections for the splitting functions that are consistent with the non-linear corrections we employ for the waveforms. Our preferred anisotropic model, S362ANI+M, is an update to the earlier model S362ANI, which did not include normal-mode splitting functions in its derivation. The new model has stronger isotropic velocity anomalies in the transition zone and slightly smaller anomalies in the lowermost mantle, as compared with S362ANI. The differences in the mid- to lowermost mantle are primarily restricted to features in the Southern Hemisphere. We compare the isotropic part of S362ANI+M with other recent global tomographic models and show that the level of agreement is higher now than in the earlier generation of models, especially in the transition zone and the lower mantle. The anisotropic part of S362ANI+M is restricted to the upper 300 km in the mantle and is similar to S362ANI. When radial anisotropy is allowed throughout the mantle, large-scale anisotropic patterns are observed in the lowermost mantle with vSV > vSH beneath Africa and South Pacific and vSH > vSV beneath several circum-Pacific regions. The transition zone exhibits localized anisotropic anomalies of ˜3 per cent vSH > vSV beneath North America and the Northwest Pacific and ˜2 per cent vSV > vSH beneath South America. However, small improvements in fits to the data on adding anisotropy at depth leave the question open on whether large-scale radial anisotropy is required in the transition zone and in the lower mantle. We demonstrate the potential of mode-splitting data in reducing the trade-offs between isotropic velocity and

  11. Mixing and remineralization in waters detrained from the surface into Subantarctic Mode Water and Antarctic Intermediate Water in the southeastern Pacific

    Science.gov (United States)

    Carter, B. R.; Talley, L. D.; Dickson, A. G.

    2014-06-01

    A hydrographic data set collected in the region and season of Subantarctic Mode Water and Antarctic Intermediate Water (SAMW and AAIW) formation in the southeastern Pacific allows us to estimate the preformed properties of surface water detrained into these water masses from deep mixed layers north of the Subantarctic Front and Antarctic Surface Water south of the front. Using 10 measured seawater properties, we estimate: the fractions of SAMW/AAIW that originate as surface source waters, as well as fractions that mix into these water masses from subtropical thermocline water above and Upper Circumpolar Deep Water below the subducted SAMW/AAIW; ages associated with the detrained surface water; and remineralization and dissolution rates and ratios. The mixing patterns imply that cabbeling can account for ˜0.005-0.03 kg m-3 of additional density in AAIW, and ˜0-0.02 kg m-3 in SAMW. We estimate a shallow depth (˜300-700 m, above the aragonite saturation horizon) calcium carbonate dissolution rate of 0.4 ± 0.2 µmol CaCO3 kg-1 yr-1, a phosphate remineralization rate of 0.031 ± 0.009 µmol P kg-1 yr-1, and remineralization ratios of P:N:-O2:Corg of 1:(15.5 ± 0.6):(143 ± 10):(104 ± 22) for SAMW/AAIW. Our shallow depth calcium carbonate dissolution rate is comparable to previous estimates for our region. Our -O2:P ratio is smaller than many global averages. Our model suggests neglecting diapycnal mixing of preformed phosphate has likely biased previous estimates of -O2:P and Corg:P high, but that the Corg:P ratio bias may have been counteracted by a second bias in previous studies from neglecting anthropogenic carbon gradients.

  12. Prototypes as Platforms for Participation

    DEFF Research Database (Denmark)

    Horst, Willem

    developers, and design it accordingly. Designing a flexible prototype in combination with supportive tools to be used by both interaction designers and non-designers during development is introduced as a way to open up the prototyping process to these users. Furthermore I demonstrate how such a flexible...... on prototyping, by bringing to attention that the prototype itself is an object of design, with its users and use context, which deserves further attention. Moreover, in this work I present concrete tools and methods that can be used by interaction designers in practice. As such this work addresses both......The development of interactive products in industry is an activity involving different disciplines – such as different kinds of designers, engineers, marketers and managers – in which prototypes play an important role. On the one hand, prototypes can be powerful boundary objects and an effective...

  13. Brachial Plexus Blocker Prototype

    Directory of Open Access Journals (Sweden)

    Stéphanie Coelho Monteiro

    2017-08-01

    Full Text Available Although the area of surgical simulation has been the subject of study in recent years, it is still necessary to develop artificial experimental models with a perspective to dismiss the use of biological models. Since this makes the simulators more real, transferring the environment of the health professional to a physical or virtual reality, an anesthetic prototype has been developed, where the motor response is replicated when the brachial plexus is subjected to a proximal nervous stimulus. Using action-research techniques, with this simulator it was possible to validate that the human nerve response can be replicated, which will aid the training of health professionals, reducing possible risks in a surgical environment.

  14. The SONG prototype: Efficiency of a robotic telescope

    DEFF Research Database (Denmark)

    Andersen, M. F.; Grundahl, F.; Beck, A. H.

    2016-01-01

    The Stellar Observations Network Group prototype telescope at the Teide Observatory has been operating in scientific mode since March 2014. The first year of observations has entirely been carried out using the high resolution echelle spectrograph. Several asteroseismic targets were selected for ...

  15. Modification of adhered dust on plasma-facing surfaces due to exposure to ELMy H-mode plasma in DIII-D

    Directory of Open Access Journals (Sweden)

    I. Bykov

    2017-08-01

    Full Text Available Transient heat load tests have been conducted in the lower divertor of DIII-D using DiMES manipulator in order to study the behavior of dust on tungsten Plasma Facing Components (PFCs during ELMy H-mode discharges. Samples with pre-adhered, pre-characterized dust have been exposed at the outer strike point (OSP in a series of discharges with varied intra-(inter- ELM heat fluxes. We used C dust because of its high sublimation temperature and non-metal properties. Al dust as a surrogate for Be and W dust were employed as relevant to that in the ITER divertor. The poor initial thermal contact between the substrate and the particles led to overheating, sublimation and shrinking of the carbon dust, and wetting induced coagulation of Al dust. Little modification of the W dust was observed. An enhanced surface adhesion and improvement of the thermal contact of C and Al dust were the result of exposure. A post mortem “adhesive tape” sampling showed that 70% of Al, <5% of W and C particles could not be removed from the surface owing to the improved adhesion. Al and C but not W particles that could be lifted had W inclusions indicating damage to the substrate. This suggests that non destructive methods may be inefficient for removal of dust in ITER.

  16. Naval Prototype Optical Interferometer (NPOI)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Used for astrometry and astronomical imaging, the Naval Prototype Optical Interferometer (NPOI) is a distributed aperture optical telescope. It is operated...

  17. Mobile prototyping with Axure 7

    CERN Document Server

    Hacker, Will

    2013-01-01

    This book is a step-by-step tutorial which includes hands-on examples and downloadable Axure files to get you started with mobile prototyping immediately. You will learn how to develop an application from scratch, and will be guided through each and every step.If you are a mobile-centric developer/designer, or someone who would like to take their Axure prototyping skills to the next level and start designing and testing mobile prototypes, this book is ideal for you. You should be familiar with prototyping and Axure specifically, before you read this book.

  18. Prototyping the social

    DEFF Research Database (Denmark)

    Lindhardt Weiss, Kristoffer

    2017-01-01

    Adventures in Conceptualism explores the method of concept-based architecture through a series of conversations with some of the world's leading architects and urbanists. From offices such as Snøhetta, BIG, NL Architects and Danish HLA, the production of formal diversity shows an apparent devotio...... to a free and experimental practice, cutting across regional differences and stylistic modes. Every new project seems to conceptually reinvent the architectural language, responding to specific programmatic and contextual conditions....

  19. Temperature Development on the External Root Surface During Laser-Assisted Endodontic Treatment Applying a Microchopped Mode of a 980 nm Diode Laser.

    Science.gov (United States)

    Beer, Franziska; Farmakis, Eleftherios Terry R; Kopic, Josip; Kurzmann, Christoph; Moritz, Andreas

    2017-04-01

    The aim of this article was to investigate the temperature increase of the external root surface during laser-assisted endodontic treatment using a diode laser (980 nm) in a microchopped mode. Ten freshly extracted, human maxillary incisors with mature apices were collected, prepared to size F4 at working length (ProTaper; Dentsply Maillefer, Ballaigues, Switzerland), mounted to a holder, and irradiated (using spiral movements in coronal direction) with a diode laser (GENTLEray 980 Classic Plus; KaVo, Biberach, Germany) with a 200 μm fiber in four different treatment groups: Group 1 (control group) was irradiated in six cycles of 5-sec irradiation/20-sec pause with 2.5 W in the pulse mode. Groups 2 to 4 were irradiated at six cycles of 5-sec irradiation/20-sec pause in the microchopped mode (Group 2-1.6 W; Group 3-2.0 W; Group 4-2.5 W). The applied mode was 25 ms on/25 ms off. Within the on period, the laser delivered an intermittent sequence of energy complexes and the maximum output was equal to the nominated output of the device (12 W). Canals were kept moist by sterile saline irrigation in between irradiations, and temperature changes were continuously measured using a thermal imaging camera. Recordings were analyzed by a mixed model (analysis of variance [ANOVA] for repeated measurements). The highest mean of temperature rise, 1.94°C ± 1.07°C, was measured in Group 4, followed by Group 3 (1.74°C ± 1.22°C) and Group 2 (1.58°C ± 1.18°C). The lowest increase occurred in Group 1 (1.06°C ± 1.20°C). There was a significant difference (p = 0.041) between the groups. Significant differences were found between Groups 1 and 4 (p = 0.007) and 1 and 2 (p = 0.035). In addition, a marginally significant difference between Groups 1 and 2 (p = 0.052) was noted. There was no significant difference between Groups 2, 3, and 4. Despite the low mean values reported, the highest temperature increase (+5.7°C) was

  20. SU-C-BRD-02: A Team Focused Clinical Implementation and Failure Mode and Effects Analysis of HDR Skin Brachytherapy Using Valencia and Leipzig Surface Applicators

    International Nuclear Information System (INIS)

    Sayler, E; Harrison, A; Eldredge-Hindy, H; Dinome, J; Munro, S; Anne, R; Comber, E; Lockamy, V

    2014-01-01

    Purpose: and Leipzig applicators (VLAs) are single-channel brachytherapy surface applicators used to treat skin lesions up to 2cm diameter. Source dwell times can be calculated and entered manually after clinical set-up or ultrasound. This procedure differs dramatically from CT-based planning; the novelty and unfamiliarity could lead to severe errors. To build layers of safety and ensure quality, a multidisciplinary team created a protocol and applied Failure Modes and Effects Analysis (FMEA) to the clinical procedure for HDR VLA skin treatments. Methods: team including physicists, physicians, nurses, therapists, residents, and administration developed a clinical procedure for VLA treatment. The procedure was evaluated using FMEA. Failure modes were identified and scored by severity, occurrence, and detection. The clinical procedure was revised to address high-scoring process nodes. Results: Several key components were added to the clinical procedure to minimize risk probability numbers (RPN): -Treatments are reviewed at weekly QA rounds, where physicians discuss diagnosis, prescription, applicator selection, and set-up. Peer review reduces the likelihood of an inappropriate treatment regime. -A template for HDR skin treatments was established in the clinical EMR system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planning physicist, and increases the detectability of an error during the physics second check. -A screen check was implemented during the second check to increase detectability of an error. -To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display. This facilitates data entry and verification. -VLAs are color-coded and labeled to match the EMR prescriptions, which simplifies in-room selection and verification. Conclusion: Multidisciplinary planning and FMEA increased delectability and

  1. A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Xike Zhang

    2018-05-01

    Full Text Available Daily land surface temperature (LST forecasting is of great significance for application in climate-related, agricultural, eco-environmental, or industrial studies. Hybrid data-driven prediction models using Ensemble Empirical Mode Composition (EEMD coupled with Machine Learning (ML algorithms are useful for achieving these purposes because they can reduce the difficulty of modeling, require less history data, are easy to develop, and are less complex than physical models. In this article, a computationally simple, less data-intensive, fast and efficient novel hybrid data-driven model called the EEMD Long Short-Term Memory (LSTM neural network, namely EEMD-LSTM, is proposed to reduce the difficulty of modeling and to improve prediction accuracy. The daily LST data series from the Mapoling and Zhijaing stations in the Dongting Lake basin, central south China, from 1 January 2014 to 31 December 2016 is used as a case study. The EEMD is firstly employed to decompose the original daily LST data series into many Intrinsic Mode Functions (IMFs and a single residue item. Then, the Partial Autocorrelation Function (PACF is used to obtain the number of input data sample points for LSTM models. Next, the LSTM models are constructed to predict the decompositions. All the predicted results of the decompositions are aggregated as the final daily LST. Finally, the prediction performance of the hybrid EEMD-LSTM model is assessed in terms of the Mean Square Error (MSE, Mean Absolute Error (MAE, Mean Absolute Percentage Error (MAPE, Root Mean Square Error (RMSE, Pearson Correlation Coefficient (CC and Nash-Sutcliffe Coefficient of Efficiency (NSCE. To validate the hybrid data-driven model, the hybrid EEMD-LSTM model is compared with the Recurrent Neural Network (RNN, LSTM and Empirical Mode Decomposition (EMD coupled with RNN, EMD-LSTM and EEMD-RNN models, and their comparison results demonstrate that the hybrid EEMD-LSTM model performs better than the other

  2. A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition.

    Science.gov (United States)

    Zhang, Xike; Zhang, Qiuwen; Zhang, Gui; Nie, Zhiping; Gui, Zifan; Que, Huafei

    2018-05-21

    Daily land surface temperature (LST) forecasting is of great significance for application in climate-related, agricultural, eco-environmental, or industrial studies. Hybrid data-driven prediction models using Ensemble Empirical Mode Composition (EEMD) coupled with Machine Learning (ML) algorithms are useful for achieving these purposes because they can reduce the difficulty of modeling, require less history data, are easy to develop, and are less complex than physical models. In this article, a computationally simple, less data-intensive, fast and efficient novel hybrid data-driven model called the EEMD Long Short-Term Memory (LSTM) neural network, namely EEMD-LSTM, is proposed to reduce the difficulty of modeling and to improve prediction accuracy. The daily LST data series from the Mapoling and Zhijaing stations in the Dongting Lake basin, central south China, from 1 January 2014 to 31 December 2016 is used as a case study. The EEMD is firstly employed to decompose the original daily LST data series into many Intrinsic Mode Functions (IMFs) and a single residue item. Then, the Partial Autocorrelation Function (PACF) is used to obtain the number of input data sample points for LSTM models. Next, the LSTM models are constructed to predict the decompositions. All the predicted results of the decompositions are aggregated as the final daily LST. Finally, the prediction performance of the hybrid EEMD-LSTM model is assessed in terms of the Mean Square Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), Pearson Correlation Coefficient (CC) and Nash-Sutcliffe Coefficient of Efficiency (NSCE). To validate the hybrid data-driven model, the hybrid EEMD-LSTM model is compared with the Recurrent Neural Network (RNN), LSTM and Empirical Mode Decomposition (EMD) coupled with RNN, EMD-LSTM and EEMD-RNN models, and their comparison results demonstrate that the hybrid EEMD-LSTM model performs better than the other five

  3. Window prototypes during the project

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    1996-01-01

    The conditions for the PASSYS test and the results of the measurements on one of the aerogel window prototypes are described.......The conditions for the PASSYS test and the results of the measurements on one of the aerogel window prototypes are described....

  4. Rapid prototyping: een veelbelovende methode

    NARCIS (Netherlands)

    Haverman, T.M.; Karagozoglu, K.H.; Prins, H.; Schulten, E.A.J.M.; Forouzanfar, T.

    2013-01-01

    Rapid prototyping is a method which makes it possible to produce a three-dimensional model based on two-dimensional imaging. Various rapid prototyping methods are available for modelling, such as stereolithography, selective laser sintering, direct laser metal sintering, two-photon polymerization,

  5. Role model and prototype matching

    DEFF Research Database (Denmark)

    Lykkegaard, Eva; Ulriksen, Lars

    2016-01-01

    ’ meetings with the role models affected their thoughts concerning STEM students and attending university. The regular self-to-prototype matching process was shown in real-life role-models meetings to be extended to a more complex three-way matching process between students’ self-perceptions, prototype...

  6. UA1 prototype detector

    CERN Multimedia

    1980-01-01

    Prototype of UA1 central detector inside a plexi tube. The UA1 experiment ran at CERN's Super Proton Synchrotron and made the Nobel Prize winning discovery of W and Z particles in 1983. The UA1 central detector was crucial to understanding the complex topology of proton-antiproton events. It played a most important role in identifying a handful of Ws and Zs among billions of collisions. The detector was essentially a wire chamber - a 6-chamber cylindrical assembly 5.8 m long and 2.3 m in diameter, the largest imaging drift chamber of its day. It recorded the tracks of charged particles curving in a 0.7 Tesla magnetic field, measuring their momentum, the sign of their electric charge and their rate of energy loss (dE/dx). Atoms in the argon-ethane gas mixture filling the chambers were ionised by the passage of charged particles. The electrons which were released drifted along an electric field shaped by field wires and were collected on sense wires. The geometrical arrangement of the 17000 field wires and 6...

  7. Numerical modelling of laser rapid prototyping by fusion wire deposit

    OpenAIRE

    Arbaoui , Larbi; Masse , J.E.; Barrallier , Laurent; Mocellin , Katia

    2010-01-01

    International audience; A finite element model has been developed to simulate an innovative laser rapid prototyping process. Several numerical developments have been implemented in order to simulate the main steps of the rapid prototyping process: injection, heating, phase change and deposit. The numerical model also takes into account different phenomena: surface tension in the liquid state, asborptivity and plasma effects during materiallaser interaction. The threedimensional model is based...

  8. SIMS prototype system 4: Design data brochure

    Science.gov (United States)

    1978-01-01

    A pre-package prototype unit having domestic hot water and room solar heating capability that uses air as the collector fluid is described. This system is designed to be used with a small single-family dwelling where a roof mounted collector array is not feasible. The prototype unit is an assemble containing 203 square feet of effective collector surface with 113 cubic feet of rock storage. The design of structure and storage is modular, which permits expansion and reduction of the collector array and storage bed in 68 square feet and 37 cubic feet increments respectively. The system is designed to be transportable. This permitted assemble and certification testing in one area and installation in another area without tear down and reassemble. Design, installation, operation, performance and maintenance of this system are described.

  9. Robust Synchronization of Fractional-Order Chaotic Systems at a Pre-Specified Time Using Sliding Mode Controller with Time-Varying Switching Surfaces

    International Nuclear Information System (INIS)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-01-01

    A main problem associated with the synchronization of two chaotic systems is that the time in which complete synchronization will occur is not specified. Synchronization time is either infinitely large or is finite but only its upper bound is known and this bound depends on the systems' initial conditions. In this paper we propose a method for synchronizing of two chaotic systems precisely at a time which we want. To this end, time-varying switching surfaces sliding mode control is used and the control law based on Lyapunov stability theorem is derived which is able to synchronize two fractional-order chaotic systems precisely at a pre specified time without concerning about their initial conditions. Moreover, by eliminating the reaching phase in the proposed synchronization scheme, robustness against existence of uncertainties and exogenous disturbances is obtained. Because of the existence of fractional integral of the sign function instead of the sign function in the control equation, the necessity for infinitely fast switching be obviated in this method. To show the effectiveness of the proposed method the illustrative examples under different situations are provided and the simulation results are reported.

  10. Testing of the prototype FMIT target with liquid lithium

    International Nuclear Information System (INIS)

    Miller, W.C.; Annese, C.E.; Berg, J.D.; Miles, R.R.

    1984-01-01

    Testing of a molten lithium target was performed to evaluate hydraulic stability, determine surface evaporation rates, and map the detailed contour of the high speed, free surface wall jet. The results confirmed predictions by demonstrating acceptable performance of a prototype target

  11. BNL 56 MHz HOM Damper Prototype Fabrication at JLab

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Naeem A. [Jefferson Lab., Newport News, VA (United States); Daly, Edward F. [Jefferson Lab., Newport News, VA (United States); Clemens, William A. [Jefferson Lab., Newport News, VA (United States); McIntyre, Gary T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Qiong [Brookhaven National Lab. (BNL), Upton, NY (United States); Seberg, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Bellavia, Steve [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-01

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider's (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  12. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1981-01-01

    The objective of this work was to design a prototype fusion reactor based on fusion plasmas confined as ''Compact Toruses.' Six major criteria guided the prototype design. The prototype must: (1) produce net electricity decisively (P/sub net/ >70% of P/sub gross/), with P/sub net/ approximately 100 MW(e); (2) have small physical size (low project cost) but commercial plant; (3) have all features required of commerical plants; (4) avoid unreasonable extrapolation of technology; (5) minimize nuclear issues substantially, i.e. accident and waste issues of public concern, and (6) be modular (to permit repetitive fabrication of parts) and be maintainable with low occupational radiological exposures

  13. Learning Axure RP interactive prototypes

    CERN Document Server

    Krahenbuhl, John Henry

    2015-01-01

    If you are a user experience professional, designer, information architect, or business analyst who wants to gain interactive prototyping skills with Axure, then this book is ideal for you. Some familiarity with Axure is preferred but not essential.

  14. Architectural Prototyping in Industrial Practice

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2008-01-01

    Architectural prototyping is the process of using executable code to investigate stakeholders’ software architecture concerns with respect to a system under development. Previous work has established this as a useful and cost-effective way of exploration and learning of the design space of a system......, in addressing issues regarding quality attributes, in addressing architectural risks, and in addressing the problem of knowledge transfer and conformance. Little work has been reported so far on the actual industrial use of architectural prototyping. In this paper, we report from an ethnographical study...... and focus group involving architects from four companies in which we have focused on architectural prototypes. Our findings conclude that architectural prototypes play an important role in resolving problems experimentally, but less so in exploring alternative solutions. Furthermore, architectural...

  15. Experimentation with PEC channel prototype

    International Nuclear Information System (INIS)

    Caponetti, R.; Iacovelli, M.

    1984-01-01

    Experimentation on prototypes of PEC components is presently being carried out at Casaccia CRE. This report shows the results of the first cycle of experimentation of the central channel, concerning the aspects of sodium removal after experimentation

  16. Tangiplay: prototyping tangible electronic games

    OpenAIRE

    Boileau, Jason

    2010-01-01

    Tangible electronic games currently exist in research laboratories around the world but have yet to transition to the commercial sector. The development process of a tangible electronic game is one of the factors preventing progression, as it requires much time and money. Prototyping tools for tangible hardware and software development are becoming more available but are targeted to programmers and technically trained developers. Paper prototyping board and video games is a proven and rapid m...

  17. Fast-prototyping of VLSI

    International Nuclear Information System (INIS)

    Saucier, G.; Read, E.

    1987-01-01

    Fast-prototyping will be a reality in the very near future if both straightforward design methods and fast manufacturing facilities are available. This book focuses, first, on the motivation for fast-prototyping. Economic aspects and market considerations are analysed by European and Japanese companies. In the second chapter, new design methods are identified, mainly for full custom circuits. Of course, silicon compilers play a key role and the introduction of artificial intelligence techniques sheds a new light on the subject. At present, fast-prototyping on gate arrays or on standard cells is the most conventional technique and the third chapter updates the state-of-the art in this area. The fourth chapter concentrates specifically on the e-beam direct-writing for submicron IC technologies. In the fifth chapter, a strategic point in fast-prototyping, namely the test problem is addressed. The design for testability and the interface to the test equipment are mandatory to fulfill the test requirement for fast-prototyping. Finally, the last chapter deals with the subject of education when many people complain about the lack of use of fast-prototyping in higher education for VLSI

  18. Solid modeling and applications rapid prototyping, CAD and CAE theory

    CERN Document Server

    Um, Dugan

    2016-01-01

    The lessons in this fundamental text equip students with the theory of Computer Assisted Design (CAD), Computer Assisted Engineering (CAE), the essentials of Rapid Prototyping, as well as practical skills needed to apply this understanding in real world design and manufacturing settings. The book includes three main areas: CAD, CAE, and Rapid Prototyping, each enriched with numerous examples and exercises. In the CAD section, Professor Um outlines the basic concept of geometric modeling, Hermite and Bezier Spline curves theory, and 3-dimensional surface theories as well as rendering theory. The CAE section explores mesh generation theory, matrix notion for FEM, the stiffness method, and truss Equations. And in Rapid Prototyping, the author illustrates stereo lithographic theory and introduces popular modern RP technologies. Solid Modeling and Applications: Rapid Prototyping, CAD and CAE Theory is ideal for university students in various engineering disciplines as well as design engineers involved in product...

  19. The Integrated Mode Management Interface

    Science.gov (United States)

    Hutchins, Edwin

    1996-01-01

    Mode management is the processes of understanding the character and consequences of autoflight modes, planning and selecting the engagement, disengagement and transitions between modes, and anticipating automatic mode transitions made by the autoflight system itself. The state of the art is represented by the latest designs produced by each of the major airframe manufacturers, the Boeing 747-400, the Boeing 777, the McDonnell Douglas MD-11, and the Airbus A320/A340 family of airplanes. In these airplanes autoflight modes are selected by manipulating switches on the control panel. The state of the autoflight system is displayed on the flight mode annunciators. The integrated mode management interface (IMMI) is a graphical interface to autoflight mode management systems for aircraft equipped with flight management computer systems (FMCS). The interface consists of a vertical mode manager and a lateral mode manager. Autoflight modes are depicted by icons on a graphical display. Mode selection is accomplished by touching (or mousing) the appropriate icon. The IMMI provides flight crews with an integrated interface to autoflight systems for aircraft equipped with flight management computer systems (FMCS). The current version is modeled on the Boeing glass-cockpit airplanes (747-400, 757/767). It runs on the SGI Indigo workstation. A working prototype of this graphics-based crew interface to the autoflight mode management tasks of glass cockpit airplanes has been installed in the Advanced Concepts Flight Simulator of the CSSRF of NASA Ames Research Center. This IMMI replaces the devices in FMCS equipped airplanes currently known as mode control panel (Boeing), flight guidance control panel (McDonnell Douglas), and flight control unit (Airbus). It also augments the functions of the flight mode annunciators. All glass cockpit airplanes are sufficiently similar that the IMMI could be tailored to the mode management system of any modern cockpit. The IMMI does not replace the

  20. Ballooning modes or Fourier modes in a toroidal plasma?

    International Nuclear Information System (INIS)

    Connor, J.W.; Taylor, J.B.

    1987-01-01

    The relationship between two different descriptions of eigenmodes in a torus is investigated. In one the eigenmodes are similar to Fourier modes in a cylinder and are highly localized near a particular rational surface. In the other they are the so-called ballooning modes that extend over many rational surfaces. Using a model that represents both drift waves and resistive interchanges the transition from one of these structures to the other is investigated. In this simplified model the transition depends on a single parameter which embodies the competition between toroidal coupling of Fourier modes (which enhances ballooning) and variation in frequency of Fourier modes from one rational surface to another (which diminishes ballooning). As the coupling is increased each Fourier mode acquires a sideband on an adjacent rational surface and these sidebands then expand across the radius to form the extended mode described by the conventional ballooning mode approximation. This analysis shows that the ballooning approximation is appropriate for drift waves in a tokamak but not for resistive interchanges in a pinch. In the latter the conventional ballooning effect is negligible but they may nevertheless show a ballooning feature. This is localized near the same rational surface as the primary Fourier mode and so does not lead to a radially extended structure

  1. The role of ion irradiation in activating silent Raman modes via tuning in plasmonic behaviour and surface disorder of Au/ZnO/Pt NFG system

    Science.gov (United States)

    Singh, Udai B.; Gautam, Subodh K.; Kumar, Sunil; Ojha, Sunil; Ghosh, Santanu; Singh, Fouran

    2017-09-01

    The perceptible progression of Raman modes of zinc oxide (ZnO) is studied in nanostructures film gap (Au (10 nm)/ZnO (70 nm)/Pt (50 nm)) system with 1.2 MeV Xe ion irradiation. Unattainable silent Raman modes of ZnO turn out to be strongly visible after ion irradiation. The creation of ion-beam-induced lattice disorder, defects, and impurities in a ZnO layer leads to breakdown the translational crystal symmetry that results in the origin of silent modes. The formation of hot-spots in the ZnO layer of the NFG system also supports the enhancement of the intensity of Raman modes. Overall results are attributed to combined effects of lattice disorder, defects, and impurities along with plasmonic effect and explained in the framework of elastic-thermal-spike formation.

  2. Prototypes in engineering design: Definitions and strategies

    DEFF Research Database (Denmark)

    Jensen, Lasse Skovgaard; Özkil, Ali Gürcan; Mortensen, Niels Henrik

    2016-01-01

    By reviewing literature, we investigate types, purposes and definitions of prototypes. There is no overarching definition of a prototype, but we identify five categories of prototypes in litterature. We further synthesize and reference previous work to create an overview of aspects in prototyping...

  3. Prototyping in theory and in practice

    DEFF Research Database (Denmark)

    Yu, Fei; Brem, Alexander; Pasinell, Michele

    2018-01-01

    and functions of a prototype and needed to meet specific goals in order to push the process forward. Designers, on the other hand, used prototypes to investigate the design space for new possibilities, and were more open to a variety of prototyping materials and tools, especially for low-fidelity prototypes...

  4. Rapid Prototyping of Formally Modelled Distributed Systems

    OpenAIRE

    Buchs, Didier; Buffo, Mathieu; Titsworth, Frances M.

    1999-01-01

    This paper presents various kinds of prototypes, used in the prototyping of formally modelled distributed systems. It presents the notions of prototyping techniques and prototype evolution, and shows how to relate them to the software life-cycle. It is illustrated through the use of the formal modelling language for distributed systems CO-OPN/2.

  5. Towards an Operational Framework for Architectural Prototyping

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2005-01-01

    We use a case study in architectural prototyping as input for presenting a first, tentative, framework describing key concepts and their relationships in architectural prototyping processes.......We use a case study in architectural prototyping as input for presenting a first, tentative, framework describing key concepts and their relationships in architectural prototyping processes....

  6. Progress Toward NLC/GLC Prototype Accelerator Structures

    International Nuclear Information System (INIS)

    Wang, J

    2004-01-01

    The accelerator structure groups for NLC (Next Linear Collider) and GLC (Global Linear Colliders) have successfully collaborated on the research and development of a major series of advanced accelerator structures based on room-temperature technology at X-band frequency. The progress in design, simulation, microwave measurement and high gradient tests are summarized in this paper. The recent effort in design and fabrication of the accelerator structure prototype for the main linac is presented in detail including HOM (High Order Mode) suppression and design of HOM couplers and fundamental mode couplers, optimized accelerator cavities as well as plans for future structures

  7. Engineering prototypes for theta-pinch devices

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Hammer, C.F.; Hanks, K.W.; McDonald, T.E.; Nunnally, W.C.

    1975-01-01

    Past, present, and future engineering prototypes for theta-pinch plasma-physics devices at Los Alamos Scientific Laboratory are discussed. Engineering prototypes are designed to test and evaluate all components under system conditions expected on actual plasma-physics experimental devices. The importance of engineering prototype development increases as the size and complexity of the plasma-physics device increases. Past experiences with the Scyllac prototype and the Staged Theta-Pinch prototype are discussed and evaluated. The design of the proposed Staged Scyllac prototype and the Large Staged Scyllac implosion prototype assembly are discussed

  8. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase III of the Prototypical Rod Consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod Consolidation System as described in the NUS Phase II Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase III effort the system was tested on a component, subsystem, and system level. Volume IV provides the Operating and Maintenance Manual for the Prototypical Rod Consolidation System that was installed at the Cold Test Facility. This document, Book 1 of Volume IV, discusses: Process overview functional descriptions; Control system descriptions; Support system descriptions; Maintenance system descriptions; and Process equipment descriptions

  9. Science with the ASTRI prototype

    International Nuclear Information System (INIS)

    Sartore, Nicola

    2013-01-01

    ASTRI (Astrofisica a Specchi con Tecnologia Replicante Italiana) is a “Flagship Project” financed by the Italian Ministry of Instruction, University and Research and led by the Italian National Institute of Astrophysics. It represents the Italian proposal for the development of the Small Size Telescope system of the Cherenkov Telescope Array, the next generation observatory for Very High Energy gamma-rays (20 GeV - 100 TeV). The ASTRI end-to-end prototype will be installed at Serra La Nave (Catania, Italy) and it will see the first light at the beginning of 2014. We describe the expected performance of the prototype on few selected test cases of the northern emisphere. The aim of the prototype is to probe the technological solutions and the nominal performance of the various telescope's subsystems

  10. Flight Telerobotic Servicer prototype simulator

    Science.gov (United States)

    Schein, Rob; Krauze, Linda; Hartley, Craig; Dickenson, Alan; Lavecchia, Tom; Working, Bob

    A prototype simulator for the Flight Telerobotic Servicer (FTS) system is described for use in the design development of the FTS, emphasizing the hand controller and user interface. The simulator utilizes a graphics workstation based on rapid prototyping tools for systems analyses of the use of the user interface and the hand controller. Kinematic modeling, manipulator-control algorithms, and communications programs are contained in the software for the simulator. The hardwired FTS panels and operator interface for use on the STS Orbiter are represented graphically, and the simulated controls function as the final FTS system configuration does. The robotic arm moves based on the user hand-controller interface, and the joint angles and other data are given on the prototype of the user interface. This graphics simulation tool provides the means for familiarizing crewmembers with the FTS system operation, displays, and controls.

  11. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase III of the Prototypical Rod Consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod Consolidation System as described in the NUS Phase II Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase III effort the system was tested on a component, subsystem, and system level. Volume IV provides the Operating and Maintenance Manual for the Prototypical Rod Consolidation System that was installed at the Cold Test Facility. This document, Book 4 of Volume IV, discusses: Off-normal operating and recovery procedures; Emergency response procedures; Troubleshooting procedures; and Preventive maintenance procedures

  12. Constant-frequency, clamped-mode resonant converters

    Science.gov (United States)

    Tsai, Fu-Sheng; Materu, Peter; Lee, Fred C.

    1987-01-01

    Two novel clamped-mode resonant converters are proposed which operate at a constant frequency while retaining many desired features of conventional series- and parallel-resonant converters. State-plane analysis techniques are used to identify all possible operating modes and define their mode boundaries. Control-to-output characteristics are derived that specify the regions for natural and forced commutation. The predicted operating modes are verified using a prototype circuit.

  13. Axure RP 6 Prototyping Essentials

    CERN Document Server

    Schwartz, Ezra

    2012-01-01

    Axure RP 6 Prototyping Essentials is a detailed, practical primer on the leading rapid prototyping tool. Short on jargon and high on concepts, real-life scenarios and step-by-step guidance through hands-on examples, this book will show you how to integrate Axure into your UX workflow. This book is written for UX practitioners, business analysts, product managers, and anyone else who is involved in UX projects. The book assumes that you have no or very little familiarity with Axure. It will help you if you are evaluating the tool for an upcoming project or are required to quickly get up to spee

  14. Stable confinement of toroidal electron plasma in an internal conductor device Prototype-Ring Trap

    International Nuclear Information System (INIS)

    Saitoh, H.; Yoshida, Z.; Watanabe, S.

    2005-01-01

    A pure electron plasma has been produced in an internal conductor device Prototype-Ring Trap (Proto-RT). The temporal evolution of the electron plasma was investigated by the measurement of electrostatic fluctuations. Stable confinement was realized when the potential profile adjusted to match the magnetic surfaces. The confinement time varies as a function of the magnetic field strength and the neutral gas pressure, and is comparable to the diffusion time of electrons determined by the classical collisions with neutral gas. Although the addition of a toroidal magnetic field stabilized the electrostatic fluctuation of the plasma, the effects of the magnetic shear shortened the stable confinement time, possibly because of the obstacles of coil support structures

  15. Deep drawing experiences of niobium disk for PEFP SRF cavity prototype

    International Nuclear Information System (INIS)

    Kim, Han Sung; An, Sun; Zhang, Liping; Tang, Yazhe; Li, Ying Min; Kwon, Hyeok Jung; Cho, Yong Sub

    2009-01-01

    A superconducting radio frequency (SRF) cavity with a geometrical beta of 0.42 has been designed to accelerate a proton beam after 100 MeV for an extension of Proton Engineering Frontier Project (PEFP). The designed cavity shape is an elliptical and the resonant frequency is 700 MHz. In order to confirm the RF and mechanical properties of the cavity, two prototypes of copper cavities have been fabricated and tested. Based on the experiences gained with the copper prototypes, two niobium prototypes have been designed. One is two-cell cavity and the other is five cell cavity. The two-cell cavity is for finalizing the niobium cavity production procedure and testing the cavity RF properties at a low temperature and moderate power level. The five-cell cavity is for checking the production quality and testing vertical test system in the future. Both of them are under fabrication. Through the fabrication of the niobium prototype, several issues such as deep drawing, electron beam welding and surface treatment will be addressed. The drawing of the PEPF SRF low beta cavity is shown in Fig. 1. Major parameters for the cavity are like following. - Frequency: 700 MHz - Operating mode: TM010 pi mode - Cavity type: Elliptical - Geometrical beta: 0.42 - Number of cells: 5 per cavity - Accelerating gradient: 8 MV/m - Epeak/Eacc: 3.71 - Bpeak/Eacc: 7.47 mT/(MV/m) - R/Q: 102.3 ohm - Epeak: 29.68 MV/m - Field flatness: 1.56 % - Cell to cell coupling: 1.41 % - Geometrical factor: 121.68 ohm - Cavity wall thickness: 4.3 mm - Lorentz force detuning: 0.4 Hz/(MV/m)2 - Stiffening structure: Double ring - Effective length: 0.45 m - External Q of FPC: 8.0E5 ±20 % - HOM load: less than 2 W - HOM Qext requirement: less than 3.0E5 At present, all the niobium disk and plates for cavity and NbTi flanges for beam pipe flange are prepared

  16. Tacoma mode

    International Nuclear Information System (INIS)

    Courant, E.D.; Ruth, R.D.; Wang, J.M.

    1979-01-01

    The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a ω is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, Q/sub xy/, whenever a coherent dipole oscillation exists

  17. Tacoma mode

    International Nuclear Information System (INIS)

    Courant, E.D.; Ruth, R.D.; Wang, J.M.

    1979-01-01

    The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a(ω) is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, whenever a coherent dipole oscillation exists

  18. NMS Prototype development final report

    International Nuclear Information System (INIS)

    Lepetich, J.E.

    1993-01-01

    Program for development of NMS prototype for LAMPF consisted of 5 tasks: crystal procurement specification, inspection/evaluation of CsI crystals, design/fabrication of crystal housing, design/fabrication of PMT shields, and packaging of crystals in the housing

  19. EUSO-TA prototype telescope

    Energy Technology Data Exchange (ETDEWEB)

    Bisconti, Francesca, E-mail: francesca.bisconti@kit.edu

    2016-07-11

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  20. The OPAL vertex detector prototype

    International Nuclear Information System (INIS)

    Roney, J.M.; Armitage, J.C.; Carnegie, R.K.; Giles, G.L.; Hemingway, R.J.; McPherson, A.C.; Pinfold, J.L.; Waterhouse, J.; Godfrey, L.; Hargrove, C.K.

    1989-01-01

    The prototype test results of a high resolution charged particle tracking detector are reported. The detector is designed to measure vertex topologies of particles produced in the e + e - collisions of the OPAL experiment at LEP. The OPAL vertex detector is a 1 m long, 0.46 m diameter cylindrical drift chamber consisting of an axial and stereo layer each of which is divided into 36 jet cells. A prototype chamber containing four axial and two stereo cells was studied using a pion test beam at CERN. The studies examined the prototype under a variety of operating conditions. An r-Φ resolution of 60 μm was obtained when the chamber was operated with argon (50%)-ethane (50%) at 3.75 bar, and when CO 2 (80%)-isobutane (20%) at 2.5 bar was used a 25 μm resolution was achieved. A z measurement using end-to-end time difference has a resolution of 3.5 cm. The details of these prototype studies are discussed in this paper. (orig.)

  1. Rapid Prototyping Enters Mainstream Manufacturing.

    Science.gov (United States)

    Winek, Gary

    1996-01-01

    Explains rapid prototyping, a process that uses computer-assisted design files to create a three-dimensional object automatically, speeding the industrial design process. Five commercially available systems and two emerging types--the 3-D printing process and repetitive masking and depositing--are described. (SK)

  2. Encapsulation of polymer photovoltaic prototypes

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2006-01-01

    A simple and efficient method for the encapsulation of polymer and organic photovoltaic prototypes is presented. The method employs device preparation on glass substrates with subsequent sealing using glass fiber reinforced thermosetting epoxy (prepreg) against a back plate. The method allows...

  3. EUSO-TA prototype telescope

    Science.gov (United States)

    Bisconti, Francesca; JEM-EUSO Collaboration

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  4. Facial Prototype Formation in Children.

    Science.gov (United States)

    Inn, Donald; And Others

    This study examined memory representation as it is exhibited in young children's formation of facial prototypes. In the first part of the study, researchers constructed images of faces using an Identikit that provided the features of hair, eyes, mouth, nose, and chin. Images were varied systematically. A series of these images, called exemplar…

  5. Rapid Prototyping of Tangibles with a Capacitive Mouse

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Esbensen, Morten; Kogutowska, Magdalena

    2011-01-01

    lays the capacitive surface and communication capa- bilities of a Microsoft TouchMouse, both of which are ap- propriated to fulfill the mentined requirements. Unlike ex- isting approaches for rapid prototyping of tangibles like the Arduino boards, using the Toki toolkit does not require de- velopers...

  6. Prototype diagnosis of psychiatric syndromes

    Science.gov (United States)

    WESTEN, DREW

    2012-01-01

    The method of diagnosing patients used since the early 1980s in psychiatry, which involves evaluating each of several hundred symptoms for their presence or absence and then applying idiosyncratic rules for combining them for each of several hundred disorders, has led to great advances in research over the last 30 years. However, its problems have become increasingly apparent, particularly for clinical practice. An alternative approach, designed to maximize clinical utility, is prototype matching. Instead of counting symptoms of a disorder and determining whether they cross an arbitrary cutoff, the task of the diagnostician is to gauge the extent to which a patient’s clinical presentation matches a paragraph-length description of the disorder using a simple 5-point scale, from 1 (“little or no match”) to 5 (“very good match”). The result is both a dimensional diagnosis that captures the extent to which the patient “has” the disorder and a categorical diagnosis, with ratings of 4 and 5 corresponding to presence of the disorder and a rating of 3 indicating “subthreshold” or “clinically significant features”. The disorders and criteria woven into the prototypes can be identified empirically, so that the prototypes are both scientifically grounded and clinically useful. Prototype diagnosis has a number of advantages: it better captures the way humans naturally classify novel and complex stimuli; is clinically helpful, reliable, and easy to use in everyday practice; facilitates both dimensional and categorical diagnosis and dramatically reduces the number of categories required for classification; allows for clinically richer, empirically derived, and culturally relevant classification; reduces the gap between research criteria and clinical knowledge, by allowing clinicians in training to learn a small set of standardized prototypes and to develop richer mental representations of the disorders over time through clinical experience; and can help

  7. Failure Modes

    DEFF Research Database (Denmark)

    Jakobsen, K. P.; Burcharth, H. F.; Ibsen, Lars Bo

    1999-01-01

    The present appendix contains the derivation of ten different limit state equations divided on three different failure modes. Five of the limit state equations can be used independently of the characteristics of the subsoil, whereas the remaining five can be used for either drained or undrained s...

  8. Prototype Effect and the Persuasiveness of Generalizations.

    Science.gov (United States)

    Dahlman, Christian; Sarwar, Farhan; Bååth, Rasmus; Wahlberg, Lena; Sikström, Sverker

    An argument that makes use of a generalization activates the prototype for the category used in the generalization. We conducted two experiments that investigated how the activation of the prototype affects the persuasiveness of the argument. The results of the experiments suggest that the features of the prototype overshadow and partly overwrite the actual facts of the case. The case is, to some extent, judged as if it had the features of the prototype instead of the features it actually has. This prototype effect increases the persuasiveness of the argument in situations where the audience finds the judgment more warranted for the prototype than for the actual case (positive prototype effect), but decreases persuasiveness in situations where the audience finds the judgment less warranted for the prototype than for the actual case (negative prototype effect).

  9. Supporting Active User Involvment in Prototyping

    DEFF Research Database (Denmark)

    Grønbæk, Kaj

    1990-01-01

    The term prototyping has in recent years become a buzzword in both research and practice of system design due to a number of claimed advantages of prototyping techniques over traditional specification techniques. In particular it is often stated that prototyping facilitates the users' involvement...... in the development process. But prototyping does not automatically imply active user involvement! Thus a cooperative prototyping approach aiming at involving users actively and creatively in system design is proposed in this paper. The key point of the approach is to involve users in activities that closely couple...... development of prototypes to early evaluation of prototypes in envisioned use situations. Having users involved in such activities creates new requirements for tool support. Tools that support direct manipulation of prototypes and simulation of behaviour have shown promise for cooperative prototyping...

  10. Prototyping of user interfaces for mobile applications

    CERN Document Server

    Bähr, Benjamin

    2017-01-01

    This book investigates processes for the prototyping of user interfaces for mobile apps, and describes the development of new concepts and tools that can improve the prototype driven app development in the early stages. It presents the development and evaluation of a new requirements catalogue for prototyping mobile app tools that identifies the most important criteria such tools should meet at different prototype-development stages. This catalogue is not just a good point of orientation for designing new prototyping approaches, but also provides a set of metrics for a comparing the performance of alternative prototyping tools. In addition, the book discusses the development of Blended Prototyping, a new approach for prototyping user interfaces for mobile applications in the early and middle development stages, and presents the results of an evaluation of its performance, showing that it provides a tool for teamwork-oriented, creative prototyping of mobile apps in the early design stages.

  11. Effect of Surface Plasmon Coupling to Optical Cavity Modes on the Field Enhancement and Spectral Response of Dimer-Based sensors

    KAUST Repository

    Alrasheed, Salma; Di Fabrizio, Enzo M.

    2017-01-01

    with the resonant modes of a Fabry-Perot (FP) cavity. The strong coupling is demonstrated by the large anticrossing in the reflection spectra and a Rabi splitting of 76 meV. Up to 2-fold enhancement increase can be achieved compared to that without using the cavity

  12. Design in action: From prototyping by demonstration to cooperative prototyping

    DEFF Research Database (Denmark)

    Bødker, Susanne; Grønbæk, Kaj

    1991-01-01

    ... the development of any computer-based system will have to proceed in a cycle from design to experience and back again. It is impossible to anticipate all of the relevant breakdown and their domains. They emerge gradually in practice. Winograd and Flores, 1986. p.171 Some time ago we worked wi...... with a group of dental assistants, designing a prototype case record system to explore the possibility of using computer support in public dental clinics. ...

  13. Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel

    International Nuclear Information System (INIS)

    Iwami, K; Noda, T; Ishida, K; Umeda, N; Morishima, K; Nakamura, M

    2010-01-01

    This paper reports a method for rapid prototyping of cell tissues, which is based on a system that extrudes, aspirates and refills a mixture of cells and thermoreversible hydrogel as a scaffold. In the extruding mode, a cell-mixed scaffold solution in the sol state is extruded from a cooled micronozzle into a temperature-controlled substrate, which keeps the scaffold in the gel state. In the aspiration mode, the opposite process is performed by Bernoulli suction. In the refilling mode, the solution is extruded into a groove created in the aspiration mode. The minimum width of extruded hydrogel pattern is 114 ± 15 μm by employing a nozzle of diameter 100 μm, and that of aspirated groove was 355 ± 10 μm using a 500 μm-diameter nozzle. Gum arabic is mixed with the scaffold solution to avoid peeling-off of the gel pattern from the substrate. Patterning of Sf-9 cell tissue is demonstrated, and the stability of the patterned cell is investigated. This system offers a procedure for rapid prototyping and local modification of cell scaffolds for tissue engineering.

  14. Design and Prototyping of a High Granularity Scintillator Calorimeter

    International Nuclear Information System (INIS)

    Zutshi, Vishnu

    2016-01-01

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  15. Design and Prototyping of a High Granularity Scintillator Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Zutshi, Vishnu [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Physics

    2016-03-27

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  16. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 2 discusses the following topics: Fuel Rod Extraction System Test Results and Analysis Reports and Clamping Table Test Results and Analysis Reports

  17. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 1 discusses the following topics: the background of the project; test program description; summary of tests and test results; problem evaluation; functional requirements confirmation; recommendations; and completed test documentation for tests performed in Phase 3

  18. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 9 discusses the following topics: Integrated System Normal Operations Test Results and Analysis Report; Integrated System Off-Normal Operations Test Results and Analysis Report; and Integrated System Maintenance Operations Test Results and Analysis Report

  19. Prototype of sun projector device

    Science.gov (United States)

    Ihsan; Dermawan, B.

    2016-11-01

    One way to introduce astronomy to public, including students, can be handled by solar observation. The widely held device for this purpose is coelostat and heliostat. Besides using filter attached to a device such as telescope, it is safest to use indirect way for observing the Sun. The main principle of the indirect way is deflecting the sun light and projecting image of the sun on a screen. We design and build a simple and low-cost astronomical device, serving as a supplement to increase public service, especially for solar observation. Without using any digital and intricate supporting equipment, people can watch and relish image of the Sun in comfortable condition, i.e. in a sheltered or shady place. Here we describe a design and features of our prototype of the device, which still, of course, has some limitations. In the future, this prototype can be improved for more efficient and useful applications.

  20. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 8 discusses Control System SOT Tests Results and Analysis Report. This is a continuation of Book 7

  1. Prototypical Rod Construction Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 3 discusses the following topics: Downender Test Results and Analysis Report; NFBC Canister Upender Test Results and Analysis Report; Fuel Assembly Handling Fixture Test Results and Analysis Report; and Fuel Canister Upender Test Results and Analysis Report

  2. Rapid mask prototyping for microfluidics.

    Science.gov (United States)

    Maisonneuve, B G C; Honegger, T; Cordeiro, J; Lecarme, O; Thiry, T; Fuard, D; Berton, K; Picard, E; Zelsmann, M; Peyrade, D

    2016-03-01

    With the rise of microfluidics for the past decade, there has come an ever more pressing need for a low-cost and rapid prototyping technology, especially for research and education purposes. In this article, we report a rapid prototyping process of chromed masks for various microfluidic applications. The process takes place out of a clean room, uses a commercially available video-projector, and can be completed in less than half an hour. We quantify the ranges of fields of view and of resolutions accessible through this video-projection system and report the fabrication of critical microfluidic components (junctions, straight channels, and curved channels). To exemplify the process, three common devices are produced using this method: a droplet generation device, a gradient generation device, and a neuro-engineering oriented device. The neuro-engineering oriented device is a compartmentalized microfluidic chip, and therefore, required the production and the precise alignment of two different masks.

  3. Prototyping the PANDA Barrel DIRC

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, C., E-mail: C.Schwarz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Kalicy, G.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Dodokhov, V.Kh. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Britting, A.; Eyrich, W.; Lehmann, A. [Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); and others

    2014-12-01

    The design of the Barrel DIRC detector for the future PANDA experiment at FAIR contains several important improvements compared to the successful BABAR DIRC, such as focusing and fast timing. To test those improvements as well as other design options a prototype was build and successfully tested in 2012 with particle beams at CERN. The prototype comprises a radiator bar, focusing lens, mirror, and a prism shaped expansion volume made of synthetic fused silica. An array of micro-channel plate photomultiplier tubes measures the location and arrival time of the Cherenkov photons with sub-nanosecond resolution. The development of a fast reconstruction algorithm allowed to tune construction details of the detector setup with test beam data and Monte-Carlo simulations.

  4. Customer-experienced rapid prototyping

    Science.gov (United States)

    Zhang, Lijuan; Zhang, Fu; Li, Anbo

    2008-12-01

    In order to describe accurately and comprehend quickly the perfect GIS requirements, this article will integrate the ideas of QFD (Quality Function Deployment) and UML (Unified Modeling Language), and analyze the deficiency of prototype development model, and will propose the idea of the Customer-Experienced Rapid Prototyping (CE-RP) and describe in detail the process and framework of the CE-RP, from the angle of the characteristics of Modern-GIS. The CE-RP is mainly composed of Customer Tool-Sets (CTS), Developer Tool-Sets (DTS) and Barrier-Free Semantic Interpreter (BF-SI) and performed by two roles of customer and developer. The main purpose of the CE-RP is to produce the unified and authorized requirements data models between customer and software developer.

  5. DOE's annealing prototype demonstration projects

    International Nuclear Information System (INIS)

    Warren, J.; Nakos, J.; Rochau, G.

    1997-01-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy's Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana's Marble Hill nuclear power plant. The MPR team's annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company's nuclear power plant at Midland, Michigan. This paper describes the Department's annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges

  6. Encapsulation of polymer photovoltaic prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Frederik C. [The Danish Polymer Centre, RISOE National Laboratory, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2006-12-15

    A simple and efficient method for the encapsulation of polymer and organic photovoltaic prototypes is presented. The method employs device preparation on glass substrates with subsequent sealing using glass fiber reinforced thermosetting epoxy (prepreg) against a back plate. The method allows for transporting oxygen and water sensitive devices outside a glove box environment after sealing and enables sharing of devices between research groups such that efficiency and stability can be evaluated in different laboratories. (author)

  7. Prototype Morphing Fan Nozzle Demonstrated

    Science.gov (United States)

    Lee, Ho-Jun; Song, Gang-Bing

    2004-01-01

    Ongoing research in NASA Glenn Research Center's Structural Mechanics and Dynamics Branch to develop smart materials technologies for aeropropulsion structural components has resulted in the design of the prototype morphing fan nozzle shown in the photograph. This prototype exploits the potential of smart materials to significantly improve the performance of existing aircraft engines by introducing new inherent capabilities for shape control, vibration damping, noise reduction, health monitoring, and flow manipulation. The novel design employs two different smart materials, a shape-memory alloy and magnetorheological fluids, to reduce the nozzle area by up to 30 percent. The prototype of the variable-area fan nozzle implements an overlapping spring leaf assembly to simplify the initial design and to provide ease of structural control. A single bundle of shape memory alloy wire actuators is used to reduce the nozzle geometry. The nozzle is subsequently held in the reduced-area configuration by using magnetorheological fluid brakes. This prototype uses the inherent advantages of shape memory alloys in providing large induced strains and of magnetorheological fluids in generating large resistive forces. In addition, the spring leaf design also functions as a return spring, once the magnetorheological fluid brakes are released, to help force the shape memory alloy wires to return to their original position. A computerized real-time control system uses the derivative-gain and proportional-gain algorithms to operate the system. This design represents a novel approach to the active control of high-bypass-ratio turbofan engines. Researchers have estimated that such engines will reduce thrust specific fuel consumption by 9 percent over that of fixed-geometry fan nozzles. This research was conducted under a cooperative agreement (NCC3-839) at the University of Akron.

  8. Using prototyping in software development

    OpenAIRE

    Šinkovec, Miha

    2010-01-01

    Today the business system changers faster than the usual conventional cascade life cycle. Because of that, we can conclude, that today's programming system will no longer be presented as the answer to this topic in the developing age of ever changing user requirements. Neither increased performance or higher productivity will decrease the problem. The appropriate solution to this stated problem is prototyping. Instead of building and developing the whole system, we build a module that can...

  9. Iteration and Prototyping in Creating Technical Specifications.

    Science.gov (United States)

    Flynt, John P.

    1994-01-01

    Claims that the development process for computer software can be greatly aided by the writers of specifications if they employ basic iteration and prototyping techniques. Asserts that computer software configuration management practices provide ready models for iteration and prototyping. (HB)

  10. Printing of Titanium implant prototype

    International Nuclear Information System (INIS)

    Wiria, Florencia Edith; Shyan, John Yong Ming; Lim, Poon Nian; Wen, Francis Goh Chung; Yeo, Jin Fei; Cao, Tong

    2010-01-01

    Dental implant plays an important role as a conduit of force and stress to flow from the tooth to the related bone. In the load sharing between an implant and its related bone, the amount of stress carried by each of them directly related to their stiffness or modulus. Hence, it is a crucial issue for the implant to have matching mechanical properties, in particular modulus, between the implant and its related bone. Titanium is a metallic material that has good biocompatibility and corrosion resistance. Whilst the modulus of the bulk material is still higher than that of bone, it is the lowest among all other commonly used metallic implant materials, such as stainless steel or cobalt alloy. Hence it is potential to further reduce the modulus of pure Titanium by engineering its processing method to obtain porous structure. In this project, porous Titanium implant prototype is fabricated using 3-dimensional printing. This technique allows the flexibility of design customization, which is beneficial for implant fabrication as tailoring of implant size and shape helps to ensure the implant would fit nicely to the patient. The fabricated Titanium prototype had a modulus of 4.8-13.2 GPa, which is in the range of natural bone modulus. The compressive strength achieved was between 167 to 455 MPa. Subsequent cell culture study indicated that the porous Titanium prototype had good biocompatibility and is suitable for bone cell attachment and proliferation.

  11. Majorana Thermosyphon Prototype Experimental Results

    International Nuclear Information System (INIS)

    Fast, James E.; Reid, Douglas J.; Aguayo Navarrete, Estanislao

    2010-01-01

    The Majorana demonstrator will operate at liquid Nitrogen temperatures to ensure optimal spectrometric performance of its High Purity Germanium (HPGe) detector modules. In order to transfer the heat load of the detector module, the Majorana demonstrator requires a cooling system that will maintain a stable liquid nitrogen temperature. This cooling system is required to transport the heat from the detector chamber outside the shield. One approach is to use the two phase liquid-gas equilibrium to ensure constant temperature. This cooling technique is used in a thermosyphon. The thermosyphon can be designed so the vaporization/condensing process transfers heat through the shield while maintaining a stable operating temperature. A prototype of such system has been built at PNNL. This document presents the experimental results of the prototype and evaluates the heat transfer performance of the system. The cool down time, temperature gradient in the thermosyphon, and heat transfer analysis are studied in this document with different heat load applied to the prototype.

  12. The Alice dimuon trigger: overview and electronics prototypes

    International Nuclear Information System (INIS)

    Arnaldi, R.; Baldit, A.; Barret, V.; Bastid, N.

    2000-01-01

    ALICE is the LHC experiment (2005) dedicated to the study of heavy ion collisions. Amongst the ALICE sub-detectors, the muon spectrometer will investigate the dimuon production from heavy resonance (J/ψ,γ) decays, which is believed to be a promising signature of the QGP (quark Gluon Plasma) formation. For maximum efficiency of the spectrometer, a dedicated dimuon trigger is presently built. The detector part itself is based on RPCs operated in streamer mode and is the topic of another contribution to this conference. This paper gives the principle and the simulated performances of the trigger and is also focussed on the description of the electronics prototypes and future developments. The RPCs are read-out by X and Y orthogonal strips: the front-end chips are presently developed. The signals are sent to the trigger electronics which basically performs a pt cut on the tracks to reduce the background. A prototype of fast (decision time 200 ns) programmable electronics working in a pipelined mode at 40 MHz has been built and tested. This prototype handles simultaneously 160 digital information from the strips. The tests of the trigger card have required the construction of a pattern generator (160 bits at 40 MHz). (author)

  13. Design and Construction of Prototype Dark Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Peter Fisher

    2012-03-23

    The Lepton Quark Studies (LQS) group is engaged in searching for dark matter using the Dark Matter Time Projection Chamber (DMTPC) at the Waste Isolation Pilot Plant (WIPP) (Carlsbad, NM). DMTPC is a direction-sensitive dark matter detector designed to measure the recoil direction and energy deposited by fluorine nuclei recoiling from the interaction with incident WIMPs. In the past year, the major areas of progress have been: to publish the first dark matter search results from a surface run of the DMTPC prototype detector, to build and install the 10L prototype in the underground laboratory at WIPP which will house the 1 m{sup 3} detector, and to demonstrate charge and PMT readout of the TPC using prototype detectors, which allow triggering and {Delta}z measurement to be used in the 1 m{sup 3} detector under development.

  14. Analysis of Energy Transmission Modes of Flyback Converter

    Directory of Open Access Journals (Sweden)

    GONG Shu

    2014-08-01

    Full Text Available It is of significance to investigate energy transmission modes of a flyback converter for its optimum design. In this paper, the ETMs of a flyback converter are divided into three modes, which are continuous conduction mode-complete inductor supply mode, continuous conduction mode- incomplete inductor supply mode and discontinuous conduction mode-incomplete inductor supply mode, respectively. A deep analysis of the operation is made, a reduction of the boundary condition between the modes is conducted and a comparison of current stress, transformer AP and output ripple voltage between the modes is performed. A 30W prototype is developed and its experiment is done. The experiment results are in agreement with the theoretical analysis quite well.

  15. Prototype effect and the persuasiveness of generalizations

    OpenAIRE

    Dahlman, Christian; Sarwar, Farhan; Bååth, Rasmus; Wahlberg, Lena; Sikström, Sverker

    2015-01-01

    An argument that makes use of a generalization activates the prototype for the category used in the generalization. We conducted two experiments that investigated how the activation of the prototype affects the persuasiveness of the argument. The results of the experiments suggest that the features of the prototype overshadow and partly overwrite the actual facts of the case. The case is, to some extent, judged as if it had the features of the prototype instead of the features it actually ...

  16. Propagating annular modes

    Science.gov (United States)

    Sheshadri, A.; Plumb, R. A.

    2017-12-01

    The leading "annular mode", defined as the dominant EOF of surface pressure or of zonal mean zonal wind variability, appears as a dipolar structure straddling the mean midlatitude jet and thus seems to describe north-south wobbling of the jet latitude. However, extratropical zonal wind anomalies frequently tend to migrate poleward. This behavior can be described by the first two EOFs, the first (AM1) being the dipolar structure, and the second (AM2) having a tripolar structure centered on the mean jet. Taken in isolation, AM1 thus describes a north-south wobbling of the jet position, while AM2 describes a strengthening and narrowing of the jet. However, despite the fact that they are spatially orthogonal, and their corresponding time series temporally orthogonal, AM1 and AM2 are not independent, but show significant lag-correlations which reveal the propagation. The EOFs are not modes of the underlying dynamical system governing the zonal flow evolution. The true modes can be estimated using principal oscillation pattern (POP) analysis. In the troposphere, the leading POPs manifest themselves as a pair of complex conjugate structures with conjugate eigenvalues thus, in reality, constituting a single, complex, mode that describes propagating anomalies. Even though the principal components associated with the two leading EOFs decay at different rates, each decays faster than the true mode. These facts have implications for eddy feedback and the susceptibility of the mode to external perturbations. If one interprets the annular modes as the modes of the system, then simple theory predicts that the response to steady forcing will usually be dominated by AM1 (with the longest time scale). However, such arguments should really be applied to the true modes. Experiments with a simplified GCM show that climate response to perturbations do not necessarily have AM1 structures. Implications of these results for stratosphere-troposphere interactions are explored. The POP

  17. Z-2 Prototype Space Suit Development

    Science.gov (United States)

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Space Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion the Z-2 will be tested in the 11 foot human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' that the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model.

  18. Linear stability of tearing modes

    International Nuclear Information System (INIS)

    Cowley, S.C.; Kulsrud, R.M.; Hahm, T.S.

    1986-05-01

    This paper examines the stability of tearing modes in a sheared slab when the width of the tearing layer is much smaller than the ion Larmor radius. The ion response is nonlocal, and the quasineutrality retains its full integal form. An expansion procedure is introduced to solve the quasineutrality equation in powers of the width of the tearing layer over the ion Larmor radius. The expansion procedure is applied to the collisionless and semi-collisional tearing modes. The first order terms in the expansion we find to be strongly stabilizing. The physics of the mode and of the stabilization is discussed. Tearing modes are observed in experiments even though the slab theory predicts stability. It is proposed that these modes grow from an equilibrium with islands at the rational surfaces. If the equilibrium islands are wider than the ion Larmor radius, the mode is unstable when Δ' is positive

  19. Implicit face prototype learning from geometric information.

    Science.gov (United States)

    Or, Charles C-F; Wilson, Hugh R

    2013-04-19

    There is evidence that humans implicitly learn an average or prototype of previously studied faces, as the unseen face prototype is falsely recognized as having been learned (Solso & McCarthy, 1981). Here we investigated the extent and nature of face prototype formation where observers' memory was tested after they studied synthetic faces defined purely in geometric terms in a multidimensional face space. We found a strong prototype effect: The basic results showed that the unseen prototype averaged from the studied faces was falsely identified as learned at a rate of 86.3%, whereas individual studied faces were identified correctly 66.3% of the time and the distractors were incorrectly identified as having been learned only 32.4% of the time. This prototype learning lasted at least 1 week. Face prototype learning occurred even when the studied faces were further from the unseen prototype than the median variation in the population. Prototype memory formation was evident in addition to memory formation of studied face exemplars as demonstrated in our models. Additional studies showed that the prototype effect can be generalized across viewpoints, and head shape and internal features separately contribute to prototype formation. Thus, implicit face prototype extraction in a multidimensional space is a very general aspect of geometric face learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The Scintillator Tile Hadronic Calorimeter Prototype

    International Nuclear Information System (INIS)

    Rusinov, V.

    2006-01-01

    A high granularity scintillator hadronic calorimeter prototype is described. The calorimeter is based on a novel photodetector - Silicon Photo-Multiplier (SiPM). The main parameters of SiPM are discussed as well as readout cell construction and optimization. The experience with a small prototype production and testing is described. A new 8 k channel prototype is being manufactured now

  1. Rapid Prototyping: An Alternative Instructional Design Strategy.

    Science.gov (United States)

    Tripp, Steven D.; Bichelmeyer, Barbara

    1990-01-01

    Discusses the nature of instructional design and describes rapid prototyping as a feasible model for instructional system design (ISD). The use of prototyping in software engineering is described, similarities between software design and instructional design are discussed, and an example is given which uses rapid prototyping in designing a…

  2. Spin modes

    International Nuclear Information System (INIS)

    Gaarde, C.

    1985-01-01

    An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)

  3. The prototype triggerless data acquisition of the PANDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Milan; Reiter, Simon; Lange, Soeren; Kuehn, Wolfgang [II. Physikalisches Institut, Giessen Univ. (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    The PANDA detector will operate with a very high interaction rate of up to 20 MHz, in a free streaming mode without hardware trigger. Data filtering will be performed by complete online event reconstruction with a highly parallelized farm of FPGAs as first level and on a farm of GPUs or PCs as a second level. The requirement is a background reduction by a factor of >1000. A prototype trigger-less data acquisition (PTDAQ) system for the detector validation measurements comprises free streaming and synchronization readout, for event building and filtering has been developed. A first in beam environment test was performed at the Mainzer Mikrotron, reading out the barrel electromagnetic calorimeter prototype (Proto120).

  4. Customization of gaming technology and prototyping of rehabilitation applications

    DEFF Research Database (Denmark)

    Herbelin, Bruno; Ciger, Jan; Lewis Brooks, Anthony

    2008-01-01

    The field of rehabilitation has recently seen various experimentations with games using interfaces that require physical activity. In order to establish the basis for developments and experimentations with those interactive systems, we propose a rapid prototyping approach using various commercial...... and to elaborate on the use of such systems. In other words, the availability of a simple prototyping platform with free games and new interfaces already opens the discussion on the design of original rehabilitation applications....... devices and open source software. To demonstrate this idea, we first show how a simple free game can be adapted to specific needs − for training or use by disabled people − by using different sensors and control modes. Similarly, we show that an open on-line virtual world such as Second Life, although...

  5. Microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.; Zou, X.

    1990-01-01

    A serious degradation of confinement with additional heating is commonly observed on most tokamaks. The microtearing modes could provide an explanation for this experimental fact. They are driven linearly unstable by diamagnetism in collisional regimes, but it may be shown that the collisions in non linear regimes provide a small diffusion coefficient which can be only significant at the plasme edge. In the bulk of the plasma, the microtearing turbulence could play a basic role if it is unstable in the collisionless regime. While it is linearly stable without collisions, it could be driven unstable in realistic regimes by the radial diffusion it induces. To study this effect, we have used a model where the non linear action of the modes on a given helicity component is represented by a diffusion operator. They are found unstable for reasonable β p =2μ o nT/B 2 p , with a special radial profile of the potential vector A. The problem arises the validity of this model where non linearities in the trajectories behaviour are replaced by the diffusion which broadens resonances. To test this procedure, we calculate the actual electron distribution function when it is determined by the ergodicity of the field lines. We compute the correlations of the distribution function with the magnetic perturbation and compare them with the analytical expressions derived from the resonance broadening model. (author) 3 refs., 2 figs

  6. Comparative Analyses of Multi-Pulse Phase Controlled Rectifiers in Continuous Conduction Mode with a Two-Pole LC Output Filter for Surface Ship DC Applications

    Science.gov (United States)

    2013-03-01

    for this sub-mode, the minimum inductor current occurs at an angle 3 3t  (where 3 60    referenced to  ), as shown in Figure 13. 24...can be rewritten as    sin cos cosb b b ApA B      . (73) Grouping similar terms, yields  sin cosb b ApA B         , (74...where the fundamental frequency and each harmonic component are displayed graphically in a bar chart format as shown in Figure 25. The total current

  7. Project management strategies for prototyping breakdowns

    DEFF Research Database (Denmark)

    Granlien, Maren Sander; Pries-Heje, Jan; Baskerville, Richard

    2009-01-01

    , managing the explorative and iterative aspects of prototyping projects is not a trivial task. We examine the managerial challenges in a small scale prototyping project in the Danish healthcare sector where a prototype breakdown and project escalation occurs. From this study we derive a framework...... of strategies for coping with escalation in troubled prototyping projects; the framework is based on project management triangle theory and is useful when considering how to manage prototype breakdown and escalation. All strategies were applied in the project case at different points in time. The strategies led...

  8. Pseudomorphic growth mode of Pb on the Al{sub 13}Fe{sub 4}(0 1 0) approximant surface

    Energy Technology Data Exchange (ETDEWEB)

    Ledieu, J., E-mail: Julian.ledieu@univ-lorraine.fr [Institut Jean Lamour (UMR 7198 CNRS-Université de Lorraine), Parc de Saurupt, CS50840, 54011 Nancy Cedex (France); Weerd, M.-C de [Institut Jean Lamour (UMR 7198 CNRS-Université de Lorraine), Parc de Saurupt, CS50840, 54011 Nancy Cedex (France); Hahne, M.; Gille, P. [Department of Earth and Environmental Sciences, Crystallography Section, Ludwig-Maximilians-Universität München, Theresienstr. 41, D-80333 München (Germany); Fournée, V. [Institut Jean Lamour (UMR 7198 CNRS-Université de Lorraine), Parc de Saurupt, CS50840, 54011 Nancy Cedex (France)

    2015-11-30

    Highlights: • Pb adsorption has been characterised on the Al{sub 13}Fe{sub 4}(0 1 0) approximant surface. • A pseudomorphic Pb monolayer is formed at 300 K on this highly corrugated template. • The Pb atomic arrangement replicates the motifs observed on the clean surface. • The formation of surface alloys and intermixing can be disregarded. • Efficient energy dissipation of impinging adatoms allows additional layer deposition. - Abstract: We report the adsorption of lead adatoms on the pseudo-10-fold Al{sub 13}Fe{sub 4}(0 1 0) surface using low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). For the submonolayer regime, Pb adatoms remain highly mobile across the surface at 300 K. STM analysis indicates the formation of irregularly shaped islands of monoatomic height. The latter do not coalesce with increasing coverage. At 0.95 MLE coverage, the LEED patterns are consistent with a pseudomorphic growth of the adatoms. This is confirmed by STM measurements which reveal local motifs qualitatively similar to those observed on the clean Al{sub 13}Fe{sub 4}(0 1 0) surface, i.e. prior to dosing. Apart from the absence of plasmons, the XPS measurements of Pb 4f and Al 2s core levels are comparable to those observed for the Pb/Al(1 1 1) system.

  9. Prototype of a mechanical assistance device for the wrists' flexion-extension movement

    International Nuclear Information System (INIS)

    Politti, Julio C; Puglisi, Lisandro J; Farfan, Fernando D

    2007-01-01

    Using CMU actuators, a Prototype of Mechanical Assistance Device for the Wrist's Flexion Movement (PMA) was developed and probed in a mechanical model, in order to be implemented in a future as a dynamic powered orthosis or as a rehabilitation assistant instrument. Two Mayor Actuators conformed by three CMU actuators arranged in a series configuration, allows to an artificial hand to be placed in four predefined positions: 0 0 , 20 0 , 40 0 and 60 0 . The synchronism and control of the actuators is achieved with the Programmable Control Module (PCM). It is capable to drive up to six CMU actuators, and possess two different modes of execution: a Manual mode and an Exercise mode. In the Manual Mode, the position of the hand responds directly to the commands of the keyboard of the front panel, and in the Exercise mode, the hand realizes a repetitive and programmed movement. The prototype was tested in 100 positions in the Manual Mode and for 225 works cycles in the Exercise Mode. The relative repetition error was less than 5% for both test. This prototype only consumes 4,15W, which makes it possible to be powered by small rechargeable batteries, allowing its use as a portable device

  10. Magnetic soft mode behaviour investigated via multi-spin flip Raman spectroscopy on near surface Cd1-xMnxTe/Cd1-yMgyTe quantum wells

    International Nuclear Information System (INIS)

    Kehl, Christian

    2011-01-01

    The main motivation for this thesis was the experimental confirmation of the theoretically predicted magnetic soft mode and the analysis of its dependence on the hole-concentration and external B-field, as well as its disappearance with increasing sample temperature. For that purpose, CdMnTe/CdMgTe QWs (Mn: 0.6%, 1.0%) positioned close to the sample surface (13-19 nm) were investigated in an in-plane applied external magnetic field (up to 4.5 T in Voigt-geometry) via a two-colour experiment i.e. using two light sources. This allows the spin excitation of Mn-ions by simultaneously tuning the hole-concentration towards the ferromagnetic phase transition by photo-generated carriers. Thus, one tuneable laser is responsible for resonant below-barrier excitation as a probe for Multi-SF Raman scattering. The other laser excites photo-generated carriers from above barrier (2.41 eV) for tuning the hole concentration in the QW. Positioning the QW close to the sample surface causes a surface-induced p-doping of the QW (intrinsic hole concentration in the QW) and enables the active tuning of the hole concentration by photo-generated carriers due to different tunnelling behaviour of electrons and holes from the QW to the surface. The Mn-g-factor was decreased by quasi-continuously increasing the above-barrier illumination, while the below-barrier excitation was kept at a constant low power. This results in a Mn-g-factor reduction starting from its atomic value g=2.01 to lowest evaluated Mn-g-factor in this thesis g=1.77. This is a magnetic softening of 12%. Apart from the general magnetic soft mode behaviour at low temperatures, one of the main experimental results in this thesis is the confirmation of the theoretical prediction that the magnetic soft mode behaviour in the external B-field does not only depend on the carrier concentration but also on the B-field strength itself. An additional aspect is the temperature dependence of the magnetic soft mode. The Mn

  11. Magnetic soft mode behaviour investigated via multi-spin flip Raman spectroscopy on near surface Cd{sub 1-x}Mn{sub x}Te/Cd{sub 1-y}Mg{sub y}Te quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Kehl, Christian

    2011-03-28

    The main motivation for this thesis was the experimental confirmation of the theoretically predicted magnetic soft mode and the analysis of its dependence on the hole-concentration and external B-field, as well as its disappearance with increasing sample temperature. For that purpose, CdMnTe/CdMgTe QWs (Mn: 0.6%, 1.0%) positioned close to the sample surface (13-19 nm) were investigated in an in-plane applied external magnetic field (up to 4.5 T in Voigt-geometry) via a two-colour experiment i.e. using two light sources. This allows the spin excitation of Mn-ions by simultaneously tuning the hole-concentration towards the ferromagnetic phase transition by photo-generated carriers. Thus, one tuneable laser is responsible for resonant below-barrier excitation as a probe for Multi-SF Raman scattering. The other laser excites photo-generated carriers from above barrier (2.41 eV) for tuning the hole concentration in the QW. Positioning the QW close to the sample surface causes a surface-induced p-doping of the QW (intrinsic hole concentration in the QW) and enables the active tuning of the hole concentration by photo-generated carriers due to different tunnelling behaviour of electrons and holes from the QW to the surface. The Mn-g-factor was decreased by quasi-continuously increasing the above-barrier illumination, while the below-barrier excitation was kept at a constant low power. This results in a Mn-g-factor reduction starting from its atomic value g=2.01 to lowest evaluated Mn-g-factor in this thesis g=1.77. This is a magnetic softening of 12%. Apart from the general magnetic soft mode behaviour at low temperatures, one of the main experimental results in this thesis is the confirmation of the theoretical prediction that the magnetic soft mode behaviour in the external B-field does not only depend on the carrier concentration but also on the B-field strength itself. An additional aspect is the temperature dependence of the magnetic soft mode. The Mn

  12. Results from the FDIRC prototype

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, D.A., E-mail: roberts@umd.edu [University of Maryland, College Park, MD 20742 (United States); Arnaud, N. [Laboratoire de l’Accélérateur Linéaire, Centre Scientifique d’Orsay, F-91898 Orsay Cedex (France); Dey, B. [University of California, Riverside, CA 92521 (United States); Borsato, M. [Laboratoire de l’Accélérateur Linéaire, Centre Scientifique d’Orsay, F-91898 Orsay Cedex (France); Leith, D.W.G.S.; Nishimura, K.; Ratcliff, B.N. [SLAC, Stanford University, Palo Alto, CA 94309 (United States); Varner, G. [University of Hawaii, Honolulu, HI 96822 (United States); Va’vra, J. [SLAC, Stanford University, Palo Alto, CA 94309 (United States)

    2014-12-01

    We present results from a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC). This detector was designed as a prototype of the particle identification system for the SuperB experiment, and comprises 1/12 of the SuperB barrel azimuthal coverage with partial electronics implementation. The prototype was tested in the SLAC Cosmic Ray Telescope (CRT) which provides 3-D muon tracking with an angular resolution of ∼1.5 mrad, track position resolution of 5–6 mm, start time resolution of 70 ps, and a muon low-energy cutoff of ∼2 GeV provided by an iron range stack. The quartz focusing photon camera couples to a full-size BaBar DIRC bar box and is read out by 12 Hamamatsu H8500 MaPMTs providing 768 pixels. We used IRS2 waveform digitizing electronics to read out the MaPMTs. We present several results from our on-going development activities that demonstrate that the new optics design works very well, including: (a) single photon Cherenkov angle resolutions with and without chromatic corrections, (b) S/N ratio between the Cherenkov peak and background, which consists primarily of ambiguities in possible photon paths to a given pixel, (c) dTOP=TOP{sub measured}–TOP{sub expected} resolutions, and (d) performance of the detector in the presence of high-rate backgrounds. We also describe data analysis methods and point out limits of the present performance. - Highlights: • We present results from a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC). • The prototype was tested in the SLAC Cosmic Ray Telescope (CRT) which provides 3-D muon tracking. • We present several results from our on-going development activities that demonstrate that new optics design works very well. • We describe data analysis methods and point out limits of the present performance.

  13. Characteristics of H-mode-like discharges and ELM activities in the presence of {iota}/2{pi} = 1 surface at the ergodic layer in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Morita, S [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Morisaki, T [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Tanaka, K [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Masuzaki, S [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Goto, M [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Sakakibara, S [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Michael, C [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Narihara, K [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Ohdachi, S [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Sakamoto, R [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Sanin, A [Budker Institute of Nuclear Physics, 630090, Novosibirsk (Russian Federation); Toi, K [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Tokuzawa, T [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Vyacheslavov, L N [Budker Institute of Nuclear Physics, 630090, Novosibirsk (Russian Federation); Watanabe, K Y [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan)

    2006-05-15

    Magnetic configurations of LHD are characterized by the presence of chaotic magnetic field, the so-called ergodic layer, surrounding the core plasma. H-mode-like discharges have been obtained at an outwardly shifted configuration of R{sub ax} = 4.00 m with a thick ergodic layer, where the {iota}/2{pi} = 1 position is located in the middle of the ergodic layer. A clear density rise and a reduction of magnetic fluctuation were observed. ELM-like H{alpha} bursts also appeared with a radial propagation of density bursts. These H-mode-like discharges can be triggered by changing P{sub NBI}(<12 MW) from three beams to two beams in a density range (4-8) x 10{sup 13} cm{sup -3}. The ELM-like bursts vanished with a small change of the edge rotational transform. A precise profile measurement of the edge density bursts confirmed that ELM-like bursts occur at the {iota}/2{pi} = 1 position.

  14. Digital Prototyping of Milk Products

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Nielsen, Otto Højager Attermann; Skytte, Jacob Lercke

    2012-01-01

    reflectance measurements can be used for more extensive validation and for gathering data that can be used to extend our current model such that it can also predict how the optical properties develop during fermentation or acidification of milk to yogurt. A well-established way of measuring optical properties...... prototyping of milk products such that it can also predict how the optical properties develop during gelation of milk to yogurt. The influence of the colloidal aggregation on the optical properties is described by the static structure factor. As our method is noninvasive, we can use our setup for monitoring...

  15. Mechanical Prototyping and Manufacturing Internship

    Science.gov (United States)

    Grenfell, Peter

    2016-01-01

    The internship was located at the Johnson Space Center (JSC) Innovation Design Center (IDC), which is a facility where the JSC workforce can meet and conduct hands-on innovative design, fabrication, evaluation, and testing of ideas and concepts relevant to NASA's mission. The tasks of the internship included mechanical prototyping design and manufacturing projects in service of research and development as well as assisting the users of the IDC in completing their manufacturing projects. The first project was to manufacture hatch mechanisms for a team in the Systems Engineering and Project Advancement Program (SETMAP) hexacopter competition. These mechanisms were intended to improve the performance of the servomotors and offer an access point that would also seal to prevent cross-contamination. I also assisted other teams as they were constructing and modifying their hexacopters. The success of this competition demonstrated a proof of concept for aerial reconnaissance and sample return to be potentially used in future NASA missions. I also worked with Dr. Kumar Krishen to prototype an improved thermos and a novel, portable solar array. Computer-aided design (CAD) software was used to model the parts for both of these projects. Then, 3D printing as well as conventional techniques were used to produce the parts. These prototypes were then subjected to trials to determine the success of the designs. The solar array is intended to work in a cluster that is easy to set up and take down and doesn't require powered servomechanisms. It could be used terrestrially in areas not serviced by power grids. Both projects improve planetary exploration capabilities to future astronauts. Other projects included manufacturing custom rail brackets for EG-2, assisting engineers working on underwater instrument and tool cases for the NEEMO project, and helping to create mock-up parts for Space Center Houston. The use of the IDC enabled efficient completion of these projects at

  16. Prototype system of secure VOD

    Science.gov (United States)

    Minemura, Harumi; Yamaguchi, Tomohisa

    1997-12-01

    Secure digital contents delivery systems are to realize copyright protection and charging mechanism, and aim at secure delivery service of digital contents. Encrypted contents delivery and history (log) management are means to accomplish this purpose. Our final target is to realize a video-on-demand (VOD) system that can prevent illegal usage of video data and manage user history data to achieve a secure video delivery system on the Internet or Intranet. By now, mainly targeting client-server systems connected with enterprise LAN, we have implemented and evaluated a prototype system based on the investigation into the delivery method of encrypted video contents.

  17. CERN LHC dipole prototype success

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In a crash programme, the first prototype superconducting dipole magnet for CERN's LHC protonproton collider was successfully powered for the first time at CERN on 14 April, eventually sailing to 9T, above the 8.65T nominal LHC field, before quenching for the third time. The next stage is to install the delicate measuring system for making comprehensive magnetic field maps in the 10 m long, 50 mm diameter twin-apertures of the magnet. These measurements will check that the required LHC field quality has been achieved at both the nominal and injection fields

  18. Prototype plutonium-storage monitor

    International Nuclear Information System (INIS)

    Bliss, M.; Craig, R.A.; Sunberg, D.S.; Warner, R.A.

    1996-01-01

    Pacific Northwest National Laboratory (PNNL) has fabricated cerium-activated lithium silicate scintillating fibers via a hot-downdraw process. These fibers typically have an operational transmission length (e -1 length) of greater than 2 meters. This permits the fabrication of devices that, hitherto, were not possible to consider. A prototype neutron monitor for scrap Pu-storage containers was fabricated and tested for 70 days, taking data with a variety of sources in a high-background environment. These data and their implication in the context of a storage-monitor situation are discussed

  19. Rapid prototyping of robotic platforms

    CSIR Research Space (South Africa)

    De Ronde, Willis

    2016-11-01

    Full Text Available of thickness up to 200mm can be cut to create prototype chassis/ bodies or even the final product. One of the few limitations is the cutting of certain laminated materials, as this tends to produce delaminated cutting edges or even fractures in the case... mine inspection robot (Shongololo). Shongololo’s frame is made from engineering plastics while the chassis of Dassie was made from aluminium and cut using abrasive waterjet machining. The advantage of using abrasive waterjet machining is the speed...

  20. Prototype Learning and Dissociable Categorization Systems in Alzheimer’s Disease

    Science.gov (United States)

    Heindel, William C.; Festa, Elena K.; Ott, Brian R.; Landy, Kelly M.; Salmon, David P.

    2015-01-01

    Recent neuroimaging studies suggest that prototype learning may be mediated by at least two dissociable memory systems depending on the mode of acquisition, with A/Not-A prototype learning dependent upon a perceptual representation system located within posterior visual cortex and A/B prototype learning dependent upon a declarative memory system associated with medial temporal and frontal regions. The degree to which patients with Alzheimer’s disease (AD) can acquire new categorical information may therefore critically depend upon the mode of acquisition. The present study examined A/Not-A and A/B prototype learning in AD patients using procedures that allowed direct comparison of learning across tasks. Despite impaired explicit recall of category features in all tasks, patients showed differential patterns of category acquisition across tasks. First, AD patients demonstrated impaired prototype induction along with intact exemplar classification under incidental A/Not-A conditions, suggesting that the loss of functional connectivity within visual cortical areas disrupted the integration processes supporting prototype induction within the perceptual representation system. Second, AD patients demonstrated intact prototype induction but impaired exemplar classification during A/B learning under observational conditions, suggesting that this form of prototype learning is dependent on a declarative memory system that is disrupted in AD. Third, the surprisingly intact classification of both prototypes and exemplars during A/B learning under trial-and-error feedback conditions suggests that AD patients shifted control from their deficient declarative memory system to a feedback-dependent procedural memory system when training conditions allowed. Taken together, these findings serve to not only increase our understanding of category learning in AD, but to also provide new insights into the ways in which different memory systems interact to support the acquisition of

  1. An ab initio potential energy surface for the formic acid dimer: zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling splitting calculated in relaxed 1-4-mode subspaces.

    Science.gov (United States)

    Qu, Chen; Bowman, Joel M

    2016-09-14

    We report a full-dimensional, permutationally invariant potential energy surface (PES) for the cyclic formic acid dimer. This PES is a least-squares fit to 13475 CCSD(T)-F12a/haTZ (VTZ for H and aVTZ for C and O) energies. The energy-weighted, root-mean-square fitting error is 11 cm -1 and the barrier for the double-proton transfer on the PES is 2848 cm -1 , in good agreement with the directly-calculated ab initio value of 2853 cm -1 . The zero-point vibrational energy of 15 337 ± 7 cm -1 is obtained from diffusion Monte Carlo calculations. Energies of fundamentals of fifteen modes are calculated using the vibrational self-consistent field and virtual-state configuration interaction method. The ground-state tunneling splitting is computed using a reduced-dimensional Hamiltonian with relaxed potentials. The highest-level, four-mode coupled calculation gives a tunneling splitting of 0.037 cm -1 , which is roughly twice the experimental value. The tunneling splittings of (DCOOH) 2 and (DCOOD) 2 from one to three mode calculations are, as expected, smaller than that for (HCOOH) 2 and consistent with experiment.

  2. The tropospheric biennial oscillation defined by a biennial mode of sea surface temperature and its impact on the atmospheric circulation and precipitation in the tropical eastern Indo-western Pacific region

    Science.gov (United States)

    Kim, Jinju; Kim, Kwang-Yul

    2016-10-01

    Temporal and spatial patterns of anomalous atmospheric circulation and precipitation over the Indo-Pacific region are analyzed in conjunction with the Tropospheric Biennial Oscillation as represented by the biennial mode of sea surface temperature anomalies (SSTA). The biennial components of key variables are identified independently of other variability via CSEOF analysis. Then, its impact on the Asian-Australian monsoon is examined. The biennial mode exhibits a seasonally distinctive atmospheric response over the tropical eastern Indo-western Pacific (EIWP) region (90°-150°E, 20°S-20°N). In boreal summer, local meridional circulation is a distinguishing characteristic over the tropical EIWP region, whereas a meridionally expanded branch of intensified zonal circulation develops in austral summer. Temporally varying evolution and distinct timing of SSTA phase transition in the Indian and Pacific Oceans is considered a main factor for this variation of circulation in the tropical EIWP region. The impact of the biennial mode is not the same between the two seasons, with different impacts over ocean areas in Asian monsoon and Australian monsoon regions.

  3. Mode specificity in the OH + CHD{sub 3} reaction: Reduced-dimensional quantum and quasi-classical studies on an ab initio based full-dimensional potential energy surface

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hongwei, E-mail: hwsong@wipm.ac.cn; Yang, Minghui [Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Lu, Yunpeng [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Li, Jun [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Guo, Hua [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2016-04-28

    An initial state selected time-dependent wave packet method is applied to study the dynamics of the OH + CHD{sub 3} reaction with a six-dimensional model on a newly developed full-dimensional ab initio potential energy surface (PES). This quantum dynamical (QD) study is complemented by full-dimensional quasi-classical trajectory (QCT) calculations on the same PES. The QD results indicate that both translational energy and the excitation of the CH stretching mode significantly promote the reaction while the excitation of the umbrella mode has a negligible effect on the reactivity. For this early barrier reaction, interestingly, the CH stretching mode is more effective than translational energy in promoting the reaction except at very low collision energies. These QD observations are supported by QCT results. The higher efficacy of the CH stretching model in promoting this early barrier reaction is inconsistent with the prediction of the naively extended Polanyi’s rules, but can be rationalized by the recently proposed sudden vector projection model.

  4. Comparison of surface roughness and chip characteristics obtained under different modes of lubrication during hard turning of AISI H13 tool work steel.

    Science.gov (United States)

    Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.

    2016-09-01

    Surface roughness is one of the important parameters, which not only affects the service life of a component but also serves as a good index of machinability. Near Dry Machining, methods (NDM) are considered as sustainable alternative for workshops trying to bring down their dependence on cutting fluids and the hazards associated with their indiscriminate usage. The present work presents a comparison of the surface roughness and chip characteristics during hard turning of AISI H13 tool work steel using hard metal inserts under two popular NDM techniques namely the minimal fluid application and the Minimum Quantity Lubrication technique(MQL) using an experiment designed based on Taguchi's techniques. The statistical method of analysis of variance (ANOVA) was used to determine the relative significance of input parameters consisting of cutting speed, feed and depth of cut on the attainable surface finish and the chip characteristics. It was observed that the performance during minimal fluid application was better than that during MQL application.

  5. The leading mode of observed and CMIP5 ENSO-residual sea surface temperatures and associated changes in Indo-Pacific climate

    Science.gov (United States)

    Funk, Christopher C.; Hoell. Andrew,

    2015-01-01

    SSTs in the western Pacific Ocean have tracked closely with CMIP5 simulations despite recent hiatus cooling in the eastern Pacific. This paper quantifies these similarities and associated circulation and precipitation variations using the first global 1900–2012 ENSO-residual empirical orthogonal functions (EOFs) of 35 variables: observed SSTs; 28 CMIP5 SST simulations; Simple Ocean Data Assimilation (SODA) 25-, 70-, and 171-m ocean temperatures and sea surface heights (SSHs); and Twentieth Century Reanalysis, version 2 (20CRv2), surface winds and precipitation.

  6. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 4 discusses the following topics: Rod Compaction/Loading System Test Results and Analysis Report; Waste Collection System Test Results and Analysis Report; Waste Container Transfer Fixture Test Results and Analysis Report; Staging and Cutting Table Test Results and Analysis Report; and Upper Cutting System Test Results and Analysis Report

  7. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 5 discusses the following topics: Lower Cutting System Test Results and Analysis Report; NFBC Loading System Test Results and Analysis Report; Robotic Bridge Transporter Test Results and Analysis Report; RM-10A Remotec Manipulator Test Results and Analysis Report; and Manipulator Transporter Test Results and Analysis Report

  8. Prototype scale demonstration of CECE detritiation

    International Nuclear Information System (INIS)

    Sadhankar Ramesh; Cobanoglu, Macit

    2004-01-01

    AECL has developed and demonstrated the Combined Electrolysis and Catalytic Exchange (CECE) Process for detritiation of heavy water. Although CECE has been the subject of pilot-scale demonstrations by various organizations, AECL is the first to demonstrate this technology in an industrial prototype plant. AECL designed, built and operated a CECE demonstration facility under CAN/CSA N286 Quality Assurance Program. The facility was licensed by the Canadian nuclear regulator. This was a two-fold demonstration of the CECE technology - for upgrading (removal of light water) and for detritiation of heavy water. In 1998 June, AECL began operating the facility in upgrading mode. The design feed rate ranged up to 25 Mg/a for 95 mol% D 2 O feed water. After 18 months of operation in upgrading mode, the facility was reconfigured and operated for an additional 9 months from 2000 August in detritiation mode. Design capacity for detritiation was 5 Mg/a with a detritiation factor (DF) of 100. However, significantly higher DFs, up to 56 000, were demonstrated. Highlights of the detritiation demonstration were: Proven robustness of AECL's proprietary wetproofed catalyst for Liquid Phase Catalytic Exchange; Demonstration of a trickle-bed-recombiner for stoichiometric combination of deuterium and oxygen; Demonstration of electrolysis of highly tritiated heavy water; High process availability and controllability was demonstrated by a long interrupted run; Low emissions; Demonstration of high DF - up to 56 000 - a significant advantage of the CECE process over other approaches to detritiation; Validation of AECL's simulation code for the CECE process over a range of DFs from 100 to 50 000. Apart from the technology, AECL has expertise in all aspects of setting up a new detritiation facility including design, engineering, safety assessment, licensing support, project management and training. AECL is also the engineering and design contractor for a tritium removal facility that is under

  9. Augmented reality usage for prototyping speed up

    Directory of Open Access Journals (Sweden)

    Jiří Šťastný

    2011-01-01

    Full Text Available The integral part of production process in many companies is prototyping. Although, these companies commonly have high quality visualization tools (large screen projections, virtual reality, prototyping was never abandoned. There is a number of reasons. The most important is the possibility of model observation from any angle without any physical constraints and its haptic feedback. The interactivity of model adjustments is important as well. The direct work with the model allows the designers to focus on the creative process more than work with a computer. There is still a problem with a difficult adjustability of the model. More significant changes demand completely new prototype or at least longer time for its realization.The first part of the article describes our approach for solution of this problem by means of Augmented Reality. The merging of the real world model and digital objects allows streamline the work with the model and speed up the whole production phase significantly. The main advantage of augmented reality is the possibility of direct manipulation with the scene using a portable digital camera. Also adding digital objects into the scene could be done using identification markers placed on the surface of the model. Therefore it is not necessary to work with special input devices and lose the contact with the real world model. Adjustments are done directly on the model. The key problem of outlined solution is the ability of identification of an object within the camera picture and its replacement with the digital object. The second part of the article is focused especially on the identification of exact position and orientation of the marker within the picture. The identification marker is generalized into the triple of points which represents a general plane in space. There is discussed the space identification of these points and the description of representation of their position and orientation be means of transformation

  10. Evaluation of 3D printed optofluidic smart glass prototypes.

    Science.gov (United States)

    Wolfe, Daniel; Goossen, K W

    2018-01-22

    Smart glass or smart windows are an innovative technology used for thermal management, energy efficiency, and privacy applications. Notable commercially available smart glass relies on an electric stimuli to modulate the glass from a transparent to a translucent mode of operation. However, the current market technologies, such as electrochromic, polymer dispersed liquid crystal, and suspended particle devices are expensive and suffer from solar absorption, poor transmittance modulation, and in some cases, continuous power consumption. The authors of this paper present a novel optofluidic smart glass prototype capable of modulating visible light transmittance from 8% to 85%.

  11. Performance of a parallel plate volume calorimeter prototype

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, Gy.L.; Bizzeti, A.; Choumilov, E.; Civinini, C; D'Alessandro, R.; Ferrando, A.; Fouz, M.C.; Iglesias, A.; Ivochkin, V.; Josa, M.I.; Malinin, A.; Meschini, M.; Misyura, S.; Pojidaev, V.; Salicio, J.M.; Sikler, F.

    1995-01-01

    An iron/gas parallel plate volume calorimeter prototype, working in the avalanche mode, has been tested using electrons of 20 to 150 GeV/c momentum with high voltages varying from 5400 to 5600 V (electric fields ranging from 36 to 37 KV/cm), and a gas mixture of CF4/CO, (80/20%). The collected charge was measured as a function of the high voltage and of the electron energy. The energy resolution was also measured. Comparisons are made with Monte-Carlo predictions. Agreement between data and simulation allows the calculation of the expected performance of a full size calorimeter. (Author)

  12. Performance of a parallel plate volume calorimeter prototype

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, G.L.; Bizzeti, A.

    1995-09-01

    An iron/gas parallel plate volume calorimeter prototype, working in the avalanche mode, has been tested using electrons of 20 to 150 GeV/c momentum with high voltages varying from 5400 to 5600 V (electric fields ranging from 36 to 37 KV/cm), and a gas mixture of CF 4 /CO 2 (80/20%). The collected charge was measured as a function of the high voltage and of the electron energy. The energy resolution was also measured. Comparisons are made with Monte-Carlo predictions. Agreement between data and simulation allows the calculation of the expected performance of a full size calorimeter

  13. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    Science.gov (United States)

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-01-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices. PMID:27339700

  14. Mode coupling trigger of neoclassical magnetohydrodynamic tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Gianakon, T.A.; Hegna, C.C.; Callen, J.D.

    1997-05-01

    Numerical studies of the nonlinear evolution of coupled magnetohydrodynamic - type tearing modes in three-dimensional toroidal geometry with neoclassical effects are presented. The inclusion of neoclassical physics introduces an additional free-energy source for the nonlinear formation of magnetic islands through the effects of a bootstrap current in Ohm's law. The neoclassical tearing mode is demonstrated to be destabilized in plasmas which are otherwise Δ' stable, albeit once a threshold island width is exceeded. A possible mechanism for exceeding or eliminating this threshold condition is demonstrated based on mode coupling due to toroidicity with a pre-existing instability at the q = 1 surface

  15. Resource Prospector (RP) - Early Prototyping and Development

    Science.gov (United States)

    Andrews, D.; Colaprete, A.; Quinn, J.; Bluethmann, B.; Trimble, J.

    2015-01-01

    exploration of near-Earth asteroids (NEAs) and Mars. In order to reduce risk and explore system designs, the RP project is attempting two-fold approaches to development as it looks towards flight. We continue to explore flight planning, requirements, and interfaces definition by using Engineering Test Units (ETUs), looking towards lunar deployment, while also using fiscal year 2015 to develop, build and test an earth-terrestrial prototype rover and payload system. This terrestrial prototype, called "RP15", is built to both inform the system design, and to be a partnership advocacy tool for this unique mission. RP15 must be affordable within the resource and time constraints of fiscal year 2015, while working to the following Needs, Goals, and Objectives provided by HEOMD/AES: 1. Demonstrate rover mobility in a 1g environment 2. The Surface Segment (prototype rover + payload system) shall represent the flight system concept with as much fidelity as affordable (limited by cost and schedule) - Surface Segment shall be the approximate size/dimension/footprint -Surface Segment shall package all the expected devices (instruments, systems, etc.), even if some facets are mocked-up due to time/cost constraints -Overall Surface Segment fidelity negotiable to make achievable 3. Priority should be given to illustrating mission functionality over support functionality, which exists solely to support mission functionality This paper will provide an overview of RP project developments, including the design and build, capturing the development and initial integrated testing of RP15 in relevant environments.

  16. Peeling mode relaxation ELM model

    International Nuclear Information System (INIS)

    Gimblett, C. G.

    2006-01-01

    This paper discusses an approach to modelling Edge Localised Modes (ELMs) in which toroidal peeling modes are envisaged to initiate a constrained relaxation of the tokamak outer region plasma. Relaxation produces both a flattened edge current profile (which tends to further destabilise a peeling mode), and a plasma-vacuum negative current sheet which has a counteracting stabilising influence; the balance that is struck between these two effects determines the radial extent (rE) of the ELM relaxed region. The model is sensitive to the precise position of the mode rational surfaces to the plasma surface and hence there is a 'deterministic scatter' in the results that has an accord with experimental data. The toroidal peeling stability criterion involves the edge pressure, and using this in conjunction with predictions of rE allows us to evaluate the ELM energy losses and compare with experiment. Predictions of trends with the edge safety factor and collisionality are also made

  17. Testing of the scintillation sandwich prototype

    International Nuclear Information System (INIS)

    Vashkevich, V.

    1995-06-01

    The 3 m 2 prototype of the surface detector using optical fiber readout was completely prepared for testing measurements in February 1995 at Fermilab. Two 25 mm thick, 3 m 2 acrylic scintillation plates (1.2 x 2.5 m 2 ) are used for light collection in the upper (above the 25 mm steel plate) and lower (below the steel) counters of the sandwich. The light is collected with the help of 1 mm diameter wavelength shifter fiber loops 3 m long inserted in the grooves on the top surface of the scintillator, 3 fibers per groove. We used Kurary Y11, 200 ppm of shifter dye, and double clad fibers. 1.5 m of clear fibers spliced to each end of the shifter fiber transport the light to the phototube. Spacing between the grooves is 5 cm. The counter's edges were painted with BICRON (BC620) white reflective paint. The scintillation plates were wrapped with Dupont Tyvek. The glued bundle of fibers is connected to an EMI-9902KB 38 mm phototube through the simple light mixer bar. Used PM has a ''green extended'' rubidium bialkali photocathode. The report contains information on the testing of the scintillation sandwich

  18. Micromachining Lithium Niobate for Rapid Prototyping of Resonant Biosensors

    International Nuclear Information System (INIS)

    Al-Shibaany, Zeyad Yousif Abdoon; Hedley, John; Huo, Dehong; Hu, Zhongxu

    2014-01-01

    Lithium niobate material is widely used in MEMS application due to its piezoelectric properties. This paper presents the micromachining process of lithium niobate to rapid prototype a resonant biosensor design. A high precision CNC machine was used to machine a sample of lithium niobate material at 5 different spindle speeds to find out the best conditions to machine this brittle material. A qualitative visual check of the surface was performed by using scanning electron microscopy, surface roughness was quantitatively investigated using an optical surface profiler and Raman spectroscopy to check the strain of the surface. Results show that the surface quality of the lithium niobate was significantly affected by the spindle speed with optimum conditions at 70k rpm giving a strained surface with 500 nm rms roughness

  19. Patient specific ankle-foot orthoses using rapid prototyping.

    Science.gov (United States)

    Mavroidis, Constantinos; Ranky, Richard G; Sivak, Mark L; Patritti, Benjamin L; DiPisa, Joseph; Caddle, Alyssa; Gilhooly, Kara; Govoni, Lauren; Sivak, Seth; Lancia, Michael; Drillio, Robert; Bonato, Paolo

    2011-01-12

    Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD) software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait). The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required.

  20. Patient specific ankle-foot orthoses using rapid prototyping

    Directory of Open Access Journals (Sweden)

    Sivak Seth

    2011-01-01

    Full Text Available Abstract Background Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. Methods In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Results Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. Conclusions The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait. The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required.

  1. Time-dependent transport of a localized surface plasmon through a linear array of metal nanoparticles: Precursor and normal mode contributions

    Science.gov (United States)

    Compaijen, P. J.; Malyshev, V. A.; Knoester, J.

    2018-02-01

    We theoretically investigate the time-dependent transport of a localized surface plasmon excitation through a linear array of identical and equidistantly spaced metal nanoparticles. Two different signals propagating through the array are found: one traveling with the group velocity of the surface plasmon polaritons of the system and damped exponentially, and the other running with the speed of light and decaying in a power-law fashion, as x-1 and x-2 for the transversal and longitudinal polarizations, respectively. The latter resembles the Sommerfeld-Brillouin forerunner and has not been identified in previous studies. The contribution of this signal dominates the plasmon transport at large distances. In addition, even though this signal is spread in the propagation direction and has the lateral dimension larger than the wavelength, the field profile close to the chain axis does not change with distance, indicating that this part of the signal is confined to the array.

  2. Characterization of deep nanoscale surface trenches with AFM using thin carbon nanotube probes in amplitude-modulation and frequency-force-modulation modes

    International Nuclear Information System (INIS)

    Solares, Santiago D

    2008-01-01

    The characterization of deep surface trenches with atomic force microscopy (AFM) presents significant challenges due to the sharp step edges that disturb the instrument and prevent it from faithfully reproducing the sample topography. Previous authors have developed AFM methodologies to successfully characterize semiconductor surface trenches with dimensions on the order of tens of nanometers. However, the study of imaging fidelity for features with dimensions smaller than 10 nm has not yet received sufficient attention. Such a study is necessary because small features in some cases lead to apparently high-quality images that are distorted due to tip and sample mechanical deformation. This paper presents multi-scale simulations, illustrating common artifacts affecting images of nanoscale trenches taken with fine carbon nanotube probes within amplitude-modulation and frequency-force-modulation AFM (AM-AFM and FFM-AFM, respectively). It also describes a methodology combining FFM-AFM with a step-in/step-out algorithm analogous to that developed by other groups for larger trenches, which can eliminate the observed artifacts. Finally, an overview of the AFM simulation methods is provided. These methods, based on atomistic and continuum simulation, have been previously used to study a variety of samples including silicon surfaces, carbon nanotubes and biomolecules

  3. A dual-mode surface display system for the maturation and production of monoclonal antibodies in glyco-engineered Pichia pastoris.

    Directory of Open Access Journals (Sweden)

    Hussam H Shaheen

    Full Text Available State-of-the-art monoclonal antibody (mAb discovery methods that utilize surface display techniques in prokaryotic and eukaryotic cells require multiple steps of reformatting and switching of hosts to transition from display to expression. This results in a separation between antibody affinity maturation and full-length mAb production platforms. Here, we report for the first time, a method in Glyco-engineered Pichiapastoris that enables simultaneous surface display and secretion of full-length mAb molecules with human-like N-glycans using the same yeast cell. This paradigm takes advantage of homo-dimerization of the Fc portion of an IgG molecule to a surface-anchored "bait" Fc, which results in targeting functional "half" IgGs to the cell wall of Pichiapastoris without interfering with the secretion of full length mAb. We show the utility of this method in isolating high affinity, well-expressed anti-PCSK9 leads from a designed library that was created by mating yeasts containing either light chain or heavy chain IgG libraries. Coupled with Glyco-engineered Pichiapastoris, this method provides a powerful tool for the discovery and production of therapeutic human mAbs in the same host thus improving drug developability and potentially shortening the discovery time cycle.

  4. Unconventional modes in lasers with spatially varying gain and loss

    International Nuclear Information System (INIS)

    Ge Li; Tuereci, H. E.; Chong, Y. D.; Stone, A. D.; Rotter, S.

    2011-01-01

    We discuss a class of lasing modes created by a spatially inhomogeneous gain profile. These lasing modes are ''extra modes,'' in addition to, and very different from, conventional lasing modes, which arise from the passive cavity resonances. These new modes do not have high intensity across the entire gain region, but instead are localized at the gain boundary and throughout the gain-free region. They are surface modes, originating from the transmission resonances of the gain-free region. Using an S-matrix description we connect these surface modes to the lasing modes in PT-symmetric (balanced gain-loss) cavities.

  5. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1982-01-01

    We have completed a design of the Prototype Moving-Ring Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma (Compact Toroids). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three burn stations. Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for 1/3 of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power

  6. LEP vacuum chamber, early prototype

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The structure of LEP, with long bending magnets and little access to the vacuum chamber between them, required distributed pumping. This is an early prototype for the LEP vacuum chamber, made from extruded aluminium. The main opening is for the beam. The small channel to the right is for cooling water, to carry away the heat deposited by the synchroton radiation from the beam. The 4 slots in the channel to the left house the strip-shaped ion-getter pumps (see 7810255). The ion-getter pumps depended on the magnetic field of the bending magnets, too low at injection energy for the pumps to function well. Also, a different design was required outside the bending magnets. This design was therefore abandoned, in favour of a thermal getter pump (see 8301153 and 8305170).

  7. Prototype international quality assurance program

    International Nuclear Information System (INIS)

    Broadway, J.A.; Chambless, D.A.; Sapozhnikov, Yu.A.; Kalmykov, S.N.

    1998-01-01

    The international community presently lacks the ability to determine the quality and credibility of environmental measurements that is required to make sound decisions in matters related to international security, public health, and investment-related considerations. The ultimate goal of the work described in this article is to develop a credible information base including measurement capability for determination of environmental contamination and the potential for proliferation of material components of chemical or nuclear weapons. This study compared the accuracy obtained by six Russian and six U.S. laboratories for samples representative of classes of trace metals, dioxing-furans, and radioactive substances. The results obtained in this work indicate that current estimates for laboratory accuracy are likely overly optimistic. The weaknesses discovered by this prototype U.S. - Russia study also exist within the broader international community of laboratories. Further work is proposed to address the urgent need for the international community to improve performance evaluations for analytical measurements. (author)

  8. Prototype of industrial electrons accelerator

    International Nuclear Information System (INIS)

    Lopez, V.H.; Valdovinos, A.M.

    1992-01-01

    The interest and the necessity of Mexico's industry in the use of irradiation process has been increased in the last years. As examples are the irradiation of combustion gases (elimination of NO x and SO 2 ) and the polymer cross-linking between others. At present time at least twelve enterprises require immediately of them which have been contacted by electron accelerators suppliers of foreign countries. The first project step consisted in to identify the electrons accelerator type that in can be constructed in Mexico with the major number of possible equipment, instruments, components and acquisition materials local and useful for the major number of users. the characteristics of the accelerator prototype are: accelerator type transformer with multiple secondary insulated and rectifier circuits with a potential of 0.8 MV of voltage, the second step it consisted in an economic study that permitted to demonstrate the economic feasibility of its construction. (Author)

  9. Hadron therapy information sharing prototype

    CERN Document Server

    Roman, Faustin Laurentiu; Kanellopoulos, Vassiliki; Amoros, Gabriel; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken; Salt, Jose

    2013-01-01

    The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data federation, semantics, and analysis. There is a particular emphasis upon semantic consistency, achieved through intelligent, annotated form designs. The system as presented is ready for use in a clinical setting, and amenable to further customization. The essential contribution of the work reported here lies in the novel data integration and reporting methods, as well as the approach to software sustainability achieved through the use of community-supported open-source components.

  10. PEP-II prototype klystron

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Caryotakis, G.; Lee, T.G.; Pearson, C.; Wright, E.L.

    1993-04-01

    A 540-kW continuous-wave (cw) klystron operating at 476 MHz was developed for use as a power source for testing PEP-II rf accelerating cavities and rf windows. It also serves as a prototype for a 1.2 MW cw klystron presently being developed as a potential rf source for asymmetric colliding ring use. The design incorporates the concepts and many of the parts used in the original 353 MHz PEP klystron developed sixteen years ago. The superior computer simulation codes available today result in improved performance with the cavity frequencies, drift lengths, and output circuit optimized for the higher frequency.The design and operating results of this tube are described with particular emphasis on the factors which affect efficiency and stability

  11. Prototype high current, high duty factor negative hydrogen ion source for LAMPF

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Hayward, T.D.; Jackson, J.A.

    1975-01-01

    Present plans for the high current proton storage ring at LAMPF incorporate charge changing (stripping) injection of H - ions in all modes of operation. Achievable stored current levels in this device will be strongly dependent on the maximum H - beam intensity which can be accelerated by the linac, consistent with acceptable beam spill. This requirement has stimulated a program to develop an H - ion source capable of providing a suitably high peak current (up to 25 mA) at high duty factor (up to 12 percent), with a normalized x,x' or y,y' emittance acceptable to the accelerating system. There are presently two main approaches which could lead to H - ion sources providing this kind of performance. These are (a) the charge exchange method, in which an intense proton beam is fractionally converted to H - beam in a suitable charge adding medium, and (b) the direct extraction method, in which H - ions are obtained by a surface emission process associated with a gas discharge plasma. While both approaches may eventually find optimum application in different situations, it is not obvious, at present, which scheme will turn out to be the most satisfactory for LAMPF. A prototype charge exchange H - ion source has been constructed as a first step in the development program and is presently being evaluated. Work on surface emission direct extraction techniques is in the planning stages. (U.S.)

  12. Test case preparation using a prototype

    OpenAIRE

    Treharne, Helen; Draper, J.; Schneider, Steve A.

    1998-01-01

    This paper reports on the preparation of test cases using a prototype within the context of a formal development. It describes an approach to building a prototype using an example. It discusses how a prototype contributes to the testing activity as part of a lifecycle based on the use of formal methods. The results of applying the approach to an embedded avionics case study are also presented.

  13. A prototype for JDEM science data processing

    International Nuclear Information System (INIS)

    Gottschalk, Erik E

    2011-01-01

    Fermilab is developing a prototype science data processing and data quality monitoring system for dark energy science. The purpose of the prototype is to demonstrate distributed data processing capabilities for astrophysics applications, and to evaluate candidate technologies for trade-off studies. We present the architecture and technical aspects of the prototype, including an open source scientific execution and application development framework, distributed data processing, and publish/subscribe message passing for quality control.

  14. Rapid prototyping using CBCT: an initial experience

    International Nuclear Information System (INIS)

    Yovchev, D.; Deliverska, E.; Indjova, J.; Ugrinov, R.

    2011-01-01

    This report presents a case of fibrous dysplasia in the left lower jaw of a 12-year-old girl, scanned with CBCT. On the basis of CBCT scan a model of affected jaw was produced using a rapid-prototyping three-dimensional printer. The case demonstrates the possibility to get a prototype by CBCT data. Prototypes can be used to support the diagnosis, planning, training (students and postgraduates) and to obtain informed consent from the patient.

  15. Prototype calorimeters for the NA3 experiment

    CERN Multimedia

    1975-01-01

    The NA3 Experiment was set-up on the North Area of the SPS by the CERN/ Ecole Polytechnique/College de France/ Orsay/Saclay Collaboration, to study high transverse momentum leptons and hadrons from hadron collisions. The calorimeters measured the energy of hadrons (prototype on the right) and leptons (prototype on the left). They used a new type of plastic scintillator (plexipop). (see CERN Courier of November 1975) energy (prototype on the right)

  16. Investigation of Sideband Index Response to Prototype Gear Tooth Damage

    Science.gov (United States)

    Dempsey, Paula J.

    2013-01-01

    The objective of this analysis was to evaluate the ability of gear condition indicators (CI) to detect contact fatigue damage on spiral bevel gear teeth. Tests were performed in the NASA Glenn Spiral Bevel Gear Fatigue Rig on eight prototype gear sets (pinion/gear). Damage was initiated and progressed on the gear and pinion teeth. Vibration data was measured during damage progression at varying torque values while varying damage modes to the gear teeth were observed and documented with inspection photos. Sideband indexes (SI) and root mean square (RMS) CIs were calculated from the time synchronous averaged vibration data. Results found that both CIs respond differently to varying torque levels, damage levels and damage modes

  17. Prototype to measure bracket debonding force in vivo

    Directory of Open Access Journals (Sweden)

    Jéssika Lagni Tonus

    Full Text Available ABSTRACT Introduction: Material biodegradation that occurs in the mouth may interfere in the bonding strength between the bracket and the enamel, causing lower bond strength values in vivo, in comparison with in vitro studies. Objective: To develop a prototype to measure bracket debonding force in vivo and to evaluate, in vitro, the bond strength obtained with the prototype. Methods: A original plier (3M Unitek was modified by adding one strain gauge directly connected to its claw. An electronic circuit performed the reading of the strain gauge, and the software installed in a computer recorded the values of the bracket debonding force, in kgf. Orthodontic brackets were bonded to the facial surface of 30 bovine incisors with adhesive materials. In Group 1 (n = 15, debonding was carried out with the prototype, while tensile bond strength testing was performed in Group 2 (n = 15. A universal testing machine was used for the second group. The adhesive remnant index (ARI was recorded. Results: According to Student’s t test (α = 0.05, Group 1 (2.96 MPa and Group 2 (3.08 MPa were not significantly different. ARI score of 3 was predominant in the two groups. Conclusion: The prototype proved to be reliable for obtaining in vivo bond strength values for orthodontic brackets.

  18. Prototype to measure bracket debonding force in vivo

    Science.gov (United States)

    Tonus, Jéssika Lagni; Manfroi, Fernanda Borguetti; Borges, Gilberto Antonio; Grigolo, Eduardo Correa; Helegda, Sérgio; Spohr, Ana Maria

    2017-01-01

    ABSTRACT Introduction: Material biodegradation that occurs in the mouth may interfere in the bonding strength between the bracket and the enamel, causing lower bond strength values in vivo, in comparison with in vitro studies. Objective: To develop a prototype to measure bracket debonding force in vivo and to evaluate, in vitro, the bond strength obtained with the prototype. Methods: A original plier (3M Unitek) was modified by adding one strain gauge directly connected to its claw. An electronic circuit performed the reading of the strain gauge, and the software installed in a computer recorded the values of the bracket debonding force, in kgf. Orthodontic brackets were bonded to the facial surface of 30 bovine incisors with adhesive materials. In Group 1 (n = 15), debonding was carried out with the prototype, while tensile bond strength testing was performed in Group 2 (n = 15). A universal testing machine was used for the second group. The adhesive remnant index (ARI) was recorded. Results: According to Student’s t test (α = 0.05), Group 1 (2.96 MPa) and Group 2 (3.08 MPa) were not significantly different. ARI score of 3 was predominant in the two groups. Conclusion: The prototype proved to be reliable for obtaining in vivo bond strength values for orthodontic brackets. PMID:28444011

  19. High Dynamics and Precision Optical Measurement Using a Position Sensitive Detector (PSD in Reflection-Mode: Application to 2D Object Tracking over a Smart Surface

    Directory of Open Access Journals (Sweden)

    Ioan Alexandru Ivan

    2012-12-01

    Full Text Available When related to a single and good contrast object or a laser spot, position sensing, or sensitive, detectors (PSDs have a series of advantages over the classical camera sensors, including a good positioning accuracy for a fast response time and very simple signal conditioning circuits. To test the performance of this kind of sensor for microrobotics, we have made a comparative analysis between a precise but slow video camera and a custom-made fast PSD system applied to the tracking of a diffuse-reflectivity object transported by a pneumatic microconveyor called Smart-Surface. Until now, the fast system dynamics prevented the full control of the smart surface by visual servoing, unless using a very expensive high frame rate camera. We have built and tested a custom and low cost PSD-based embedded circuit, optically connected with a camera to a single objective by means of a beam splitter. A stroboscopic light source enhanced the resolution. The obtained results showed a good linearity and a fast (over 500 frames per second response time which will enable future closed-loop control by using PSD.

  20. First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout

    International Nuclear Information System (INIS)

    Alemi, M.; Campbell, M.; Gys, T.; Mikulec, B.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R.; Snoeys, W.; Wyllie, K.

    2000-01-01

    We report on the first operation of a hybrid photon detector prototype with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The prototype has been characterized using a low-intensity light-emitting diode operated in pulsed mode. Its performance in terms of single-photoelectron detection efficiency and imaging properties is presented. A model of photoelectron detection is proposed, and is shown to be in good agreement with the experimental data. It includes an estimate of the charge signal generated in the silicon detector, and the combined effects of the comparator threshold spread of the pixel readout chip, charge sharing at the pixel boundaries and back-scattering of the photoelectrons at the silicon detector surface

  1. First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout

    Energy Technology Data Exchange (ETDEWEB)

    Alemi, M.; Campbell, M.; Gys, T. E-mail: thierry.gys@cern.ch; Mikulec, B.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R.; Snoeys, W.; Wyllie, K

    2000-07-11

    We report on the first operation of a hybrid photon detector prototype with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The prototype has been characterized using a low-intensity light-emitting diode operated in pulsed mode. Its performance in terms of single-photoelectron detection efficiency and imaging properties is presented. A model of photoelectron detection is proposed, and is shown to be in good agreement with the experimental data. It includes an estimate of the charge signal generated in the silicon detector, and the combined effects of the comparator threshold spread of the pixel readout chip, charge sharing at the pixel boundaries and back-scattering of the photoelectrons at the silicon detector surface.

  2. Enhancing experience prototyping by the help of mixed-fidelity prototypes

    OpenAIRE

    Yasar, Ansar-Ul-Haque

    2007-01-01

    In this research review I undertook the problem related to the usage of a new concept known as the Mixed- Fidelity Prototype which is a mixture of its predecessors Low- and High- Fidelity Prototypes in Experience Prototyping. Experience Prototyping is a good way to explore, communicate and interact with the designs we develop like experiencing cycling on the ice, although the mood, snow conditions, bicycle type and many other factors really matter and tend to change with time. Experience Prot...

  3. Seismic Interferometry of Gulf of Mexico Basin Opening (GUMBO) Data: Extraction of Body and Surface Waves with a Mixed-Mode Array

    Science.gov (United States)

    Thangraj, J. S.; Quiros, D.; Pulliam, J.

    2017-12-01

    The Gulf of Mexico (GoM) is a relative small oceanic basin that formed by rifting between the continental blocks of North America and Yucatan in the Middle to Late Jurassic. Following the breakup, seafloor spreading continued until the Early Cretaceous. Since then, subsidence and sedimentation have shaped the GoM margin that we see today. To better understand the opening of the GoM, a long-offset (307 km) seismic refraction line was acquired in 2010. The transect was located on the northwest GoM margin, and consisted of several types of instruments. This mixed-mode array combined 31 ocean bottom seismographs (OBS), 412 high-frequency instruments (4.5 Hz geophones with RefTek 125A "Texan" digitizers) and 12 broadband stations. The R/V Iron Cat provided the airgun source used in the refraction experiment. The airgun generated 2028 shots in a period of 2.5 days which were recorded by the entire array. The airgun-generated seismic energy was clearly visible on the OBS recordings, however its amplitude was too low to be discerned on most of the onshore stations. In fact, this energy was only visible on Texan stations 1-50 (station 1 is located at the coast), extending 18 km inland, limiting the extend of the velocity model that can be obtained. Here, we apply seismic interferometry techniques to the 2.5 days of continuous data recorded by the Texan array with the goal of extending the spatial range for which the airgun-generated seismic energy can be observed. Preliminary results show that by treating the 2.5 days of continuously recorded airgun data as ambient noise, and applying time-domain cross-correlation, we can observe energy propagating 50 to 70 km inland with apparent velocities of 1800 - 2200 ms-1. These velocities agree with the compressional seismic velocity for the top 5 km of sediments under the GoM obtained from the OBS records, suggesting that we are observing compressional energy in the virtual source gathers (VSG). We also observe arrivals in the VSG

  4. Hanford prototype-barrier status report FY 1996

    International Nuclear Information System (INIS)

    Gee, G.W.; Ward, A.L.; Gilmore, B.G.; Link, S.O.; Dennis, G.W.; O'Neil, T.K.

    1996-11-01

    A prototype surface barrier is being evaluated as part of a treatability study at the 200-BP-1 Operable Unit in the 200 East Area of the Hanford Site. Tests include the application of irrigation water to the northern half of the barrier and subsequent measurement of water balance, wind and water erosion, subsidence, plant establishment,a nd plant and animal intrusion. The tests are designed to evaluate both irrigated and nonirrigated sideslope and vegetated surfaces over a period of 3 years. This report documents findings from the second year of testing

  5. Hanford prototype-barrier status report FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gee, G.W.; Ward, A.L.; Gilmore, B.G.; Link, S.O.; Dennis, G.W.; O`Neil, T.K.

    1996-11-01

    A prototype surface barrier is being evaluated as part of a treatability study at the 200-BP-1 Operable Unit in the 200 East Area of the Hanford Site. Tests include the application of irrigation water to the northern half of the barrier and subsequent measurement of water balance, wind and water erosion, subsidence, plant establishment,a nd plant and animal intrusion. The tests are designed to evaluate both irrigated and nonirrigated sideslope and vegetated surfaces over a period of 3 years. This report documents findings from the second year of testing.

  6. Mixed-mode fracture of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.

    1985-01-01

    The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.

  7. Tearing mode analysis in tokamaks, revisited

    International Nuclear Information System (INIS)

    Nishimura, Y.; Callen, J.D.; Hegna, C.C.

    1997-12-01

    A new Δ' shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio (ε ≤ 0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of finite pressure term. Numerical results compare favorably with Furth et al. results. The effects of finite pressure, which are shown to decrease Δ', are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric element stabilizes the tearing mode significantly, even in a low β regime before the toroidal magnetic curvature effects come into play. Double tearing modes in toroidal geometries are examined as well. Furthermore, m ≥ 2 tearing mode stability criteria are compared with three dimensional initial value MHD simulation by the FAR code

  8. Impacts of the leading modes of tropical Indian Ocean sea surface temperature anomaly on sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer

    Science.gov (United States)

    Liu, Senfeng; Duan, Anmin

    2017-02-01

    The two leading modes of the interannual variability of the tropical Indian Ocean (TIO) sea surface temperature (SST) anomaly are the Indian Ocean basin mode (IOBM) and the Indian Ocean dipole mode (IODM) from March to August. In this paper, the relationship between the TIO SST anomaly and the sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer is investigated by using correlation analysis and composite analysis based on multi-source observation data from 1979 to 2013, together with numerical simulations from an atmospheric general circulation model. The results indicate that the impacts of the IOBM on the circulation and rainfall over East Asia vary remarkably from spring to summer. The anomalous anticyclone over the tropical Northwest Pacific induced by the warm IOBM is closely linked with the Pacific-Japan or East Asia-Pacific teleconnection pattern, which persists from March to August. In the upper troposphere over East Asia, the warm phase of the IOBM generates a significant anticyclonic response from March to May. In June and July, however, the circulation response is characterized by enhanced subtropical westerly flow. A distinct anomalous cyclone is found in August. Overall, the IOBM can exert significant influence on the western North Pacific subtropical high, the South Asian high, and the East Asian jet, which collectively modulate the precipitation anomaly over East Asia. In contrast, the effects of the IODM on the climate anomaly over East Asia are relatively weak in boreal spring and summer. Therefore, studying the impacts of the TIO SST anomaly on the climate anomaly in East Asia should take full account of the different sub-seasonal response during boreal spring and summer.

  9. Lunar floor-fractured craters: Modes of dike and sill emplacement and implications of gas production and intrusion cooling on surface morphology and structure

    Science.gov (United States)

    Wilson, Lionel; Head, James W.

    2018-05-01

    Lunar floor-fractured craters (FFCs) represent the surface manifestation of a class of shallow crustal intrusions in which magma-filled cracks (dikes) rising to the surface from great depth encounter contrasts in host rock lithology (breccia lens, rigid solidified melt sheet) and intrude laterally to form a sill, laccolith or bysmalith, thereby uplifting and deforming the crater floor. Recent developments in the knowledge of lunar crustal thickness and density structure have enabled important revisions to models of the generation, ascent and eruption of magma, and new knowledge about the presence and behavior of magmatic volatiles has provided additional perspectives on shallow intrusion processes in FFCs. We use these new data to assess the processes that occur during dike and sill emplacement with particular emphasis on tracking the fate and migration of volatiles and their relation to candidate venting processes. FFCs result when dikes are capable of intruding close to the surface, but fail to erupt because of the substructure of their host impact craters, and instead intrude laterally after encountering a boundary where an increase in ductility (base of breccia lens) or rigidity (base of solidified melt sheet) occurs. Magma in dikes approaching the lunar surface experiences increasingly lower overburden pressures: this enhances CO gas formation and brings the magma into the realm of the low pressure release of H2O and sulfur compounds, both factors adding volatiles to those already collected in the rising low-pressure part of the dike tip. High magma rise velocity is driven by the positive buoyancy of the magma in the part of the dike remaining in the mantle. The dike tip overshoots the interface and the consequent excess pressure at the interface drives the horizontal flow of magma to form the intrusion and raise the crater floor. If sill intrusion were controlled by the physical properties at the base of the melt sheet, dikes would be required to approach to

  10. Characteristics of products generated by selective sintering and stereolithography rapid prototyping processes

    Science.gov (United States)

    Cariapa, Vikram

    1993-01-01

    The trend in the modern global economy towards free market policies has motivated companies to use rapid prototyping technologies to not only reduce product development cycle time but also to maintain their competitive edge. A rapid prototyping technology is one which combines computer aided design with computer controlled tracking of focussed high energy source (eg. lasers, heat) on modern ceramic powders, metallic powders, plastics or photosensitive liquid resins in order to produce prototypes or models. At present, except for the process of shape melting, most rapid prototyping processes generate products that are only dimensionally similar to those of the desired end product. There is an urgent need, therefore, to enhance the understanding of the characteristics of these processes in order to realize their potential for production. Currently, the commercial market is dominated by four rapid prototyping processes, namely selective laser sintering, stereolithography, fused deposition modelling and laminated object manufacturing. This phase of the research has focussed on the selective laser sintering and stereolithography rapid prototyping processes. A theoretical model for these processes is under development. Different rapid prototyping sites supplied test specimens (based on ASTM 638-84, Type I) that have been measured and tested to provide a data base on surface finish, dimensional variation and ultimate tensile strength. Further plans call for developing and verifying the theoretical models by carefully designed experiments. This will be a joint effort between NASA and other prototyping centers to generate a larger database, thus encouraging more widespread usage by product designers.

  11. Simultaneous excitation of the snake-like oscillations and the m/n = 1/1 resistive interchange modes around the iota = 1 rational surface just after hydrogen pellet injections in LHD plasmas

    Science.gov (United States)

    Bando, T.; Ohdachi, S.; Suzuki, Y.; Sakamoto, R.; Narushima, Y.; Takemura, Y.; Watanabe, K. Y.; Sakakibara, S.; Du, X. D.; Motojima, G.; Tanaka, K.; Morisaki, T.; LHD Experiment Group

    2018-01-01

    Two types of oscillation phenomena are found just after hydrogen ice pellet injections in the Large Helical Device (LHD). Oscillation phenomena appear when the deposition profile of a hydrogen ice pellet is localized around the rotational transform ι = 1 rational surface. At first, damping oscillations (type-I) appear only in the soft X-ray (SX) emission. They are followed by the second type of oscillations (type-II) where the magnetic fluctuations and density fluctuations synchronized to the SX fluctuations are observed. Both oscillations have poloidal/toroidal mode number, m/n = 1/1. Since the type-II oscillations appear when the local pressure is large and/or the local magnetic Reynold's number is small, it is reasonable that type-II oscillations are caused by the resistive interchange modes. Because both types of oscillations appear simultaneously at slightly different locations and with slightly different frequencies, it is certain that type-I oscillations are different from type-II oscillations, which we believe is the MHD instability. It is possible that type-I oscillations are caused by the asymmetric concentration of the impurities. The type-I oscillations are similar to the impurity snake phenomena observed in tokamaks though type-I oscillations survive only several tens of milliseconds in LHD.

  12. Prototyping SOS meta-theory in Maude

    NARCIS (Netherlands)

    Mousavi, M.R.; Reniers, M.A.; Mosses, P.D.; Ulidowski, I.

    2006-01-01

    We present a prototype implementation of SOS meta-theory in the Maude term rewriting language. The prototype defines the basic concepts of SOS meta-theory (e.g., transition formulae, deduction rules and transition system specifications) in Maude. Besides the basic definitions, we implement methods

  13. OPAL jet chamber full-scale prototype

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H M; Hauschild, M; Hartmann, H; Hegerath, A; Boerner, H; Burckhart, H J; Dittmar, M; Hammarstroem, R; Heuer, R D; Mazzone, L

    1986-12-01

    The concept of a jet chamber for the central detector of OPAL was tested with a full scale prototype. The design of this prototype, its mechanical and electrical structure and its support system for high voltage, gas, laser calibration, and readout are described. Operating experience was gathered since summer 1984. The chamber performance in terms of spatial resolution and particle identification capability is given.

  14. Gamification in a Prototype Household Energy Game

    NARCIS (Netherlands)

    Fijnheer, J.D.L.; van Oostendorp, H.; Veltkamp, R.C.

    2016-01-01

    Research where gamification is used to influence household energy consumption is an emerging field. This paper reviews design features of the prototype Powersaver Game. The aim of this game is to influence household energy consumption in the long-term. The evaluation of the design of the prototype,

  15. Rapid Prototyping in Instructional Design: Creating Competencies

    Science.gov (United States)

    Fulton, Carolyn D.

    2010-01-01

    Instructional designers working in rapid prototyping environments currently do not have a list of competencies that help to identify the knowledge, skills, and attitudes (KSAs) required in these workplaces. This qualitative case study used multiple cases in an attempt to identify rapid prototyping competencies required in a rapid prototyping…

  16. Analysis of plasma coupling with the prototype DIII-D ICRF antenna

    International Nuclear Information System (INIS)

    Ryan, P.M.; Hoffman, D.J.; Bigelow, T.S.; Baity, F.W.; Gardner, W.L.; Mayberry, M.J.; Rothe, K.E.

    1988-01-01

    Coupling to plasma in the H-mode is essential to the success of future ignited machines such as CIT. To ascertain voltage and current requirements for high-power second harmonic heating (2 MW in a 35- by 50-cm port), coupling to the DIII-D tokamak with a prototype compact loop antenna has been measured. The results show good loading for L-mode and limiter plasmas, but coupling 2 MW to an H-mode plasma demands voltages and currents near the limit of present technology. We report the technological analysis and progress that allow coupling of these power densities. 5 refs., 4 figs

  17. Analysis of plasma coupling with the prototype DIII-D ICRF antenna

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P.M.; Hoffman, D.J.; Bigelow, T.S.; Baity, F.W.; Gardner, W.L.; Mayberry, M.J.; Rothe, K.E.

    1988-01-01

    Coupling to plasma in the H-mode is essential to the success of future ignited machines such as CIT. To ascertain voltage and current requirements for high-power second harmonic heating (2 MW in a 35- by 50-cm port), coupling to the DIII-D tokamak with a prototype compact loop antenna has been measured. The results show good loading for L-mode and limiter plasmas, but coupling 2 MW to an H-mode plasma demands voltages and currents near the limit of present technology. We report the technological analysis and progress that allow coupling of these power densities. 5 refs., 4 figs.

  18. Dissipative Prototyping Methods: A Manifesto

    Science.gov (United States)

    Beesley, P.

    Taking a designer's unique perspective using examples of practice in experimental installation and digital protoyping, this manifesto acts as provocation for change and unlocking new potential by encouraging changes of perspective about the material realm. Diffusive form-language is proposed as a paradigm for architectural design. This method of design is applied through 3D printing and related digital fabrication methods, offering new qualities that can be implemented in design of realms including present earth and future interplanetary environments. A paradigm shift is encouraged by questioning conventional notions of geometry that minimize interfaces and by proposing the alternatives of maximized interfaces formed by effusive kinds of formal composition. A series of projects from the Canadian research studio of the Hylozoic Architecture group are described, providing examples of component design methods employing diffusive forms within combinations of tension-integrity structural systems integrated with hybrid metabolisms employing synthetic biology. Cultural implications are also discussed, drawing from architectural theory and natural philosophy. The conclusion of this paper suggests that the practice of diffusive prototyping can offer formative strategies contributing to design of future living systems.

  19. A French fuel cell prototype

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    A French prototype of a fuel cell based on the PEM (proton exchange membrane) technology has been designed by Helion, a branch of Technicatome, this fuel cell delivers 300 kW and will be used in naval applications and terrestrial transport. The main advantages of fuel cell are: 1) no contamination, even if the fuel used is natural gas the quantities of CO 2 and CO emitted are respectively 17 and 75 times as little as the maximal quantities allowed by European regulations, 2) efficiency, the electric yield is up to 60 % and can reach 80 % if we include the recovery of heat, 3) silent, the fuel cell itself does not make noise. The present price of fuel cell is the main reason that hampers its industrial development, this price is in fact strongly dependant on the cost of its different components: catalyzers, membranes, bipolar plates and the hydrogen supply. This article gives the technical characteristics of the Helion's fuel cell. (A.C.)

  20. Wireless Augmented Reality Prototype (WARP)

    Science.gov (United States)

    Devereaux, A. S.

    1999-01-01

    Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.

  1. Virtual Video Prototyping of Pervasive Healthcare Systems

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Bossen, Claus; Madsen, Kim Halskov

    2002-01-01

    Virtual studio technology enables the mixing of physical and digital 3D objects and thus expands the way of representing design ideas in terms of virtual video prototypes, which offers new possibilities for designers by combining elements of prototypes, mock-ups, scenarios, and conventional video....... In this article we report our initial experience in the domain of pervasive healthcare with producing virtual video prototypes and using them in a design workshop. Our experience has been predominantly favourable. The production of a virtual video prototype forces the designers to decide very concrete design...... issues, since one cannot avoid paying attention to the physical, real-world constraints and to details in the usage-interaction between users and technology. From the users' perspective, during our evaluation of the virtual video prototype, we experienced how it enabled users to relate...

  2. Virtual Video Prototyping for Healthcare Systems

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Bossen, Claus; Lykke-Olesen, Andreas

    2002-01-01

    Virtual studio technology enables the mixing of physical and digital 3D objects and thus expands the way of representing design ideas in terms of virtual video prototypes, which offers new possibilities for designers by combining elements of prototypes, mock-ups, scenarios, and conventional video....... In this article we report our initial experience in the domain of pervasive healthcare with producing virtual video prototypes and using them in a design workshop. Our experience has been predominantly favourable. The production of a virtual video prototype forces the designers to decide very concrete design...... issues, since one cannot avoid paying attention to the physical, real-world constraints and to details in the usage-interaction between users and technology. From the users' perspective, during our evaluation of the virtual video prototype, we experienced how it enabled users to relate...

  3. High confidence in falsely recognizing prototypical faces.

    Science.gov (United States)

    Sampaio, Cristina; Reinke, Victoria; Mathews, Jeffrey; Swart, Alexandra; Wallinger, Stephen

    2018-06-01

    We applied a metacognitive approach to investigate confidence in recognition of prototypical faces. Participants were presented with sets of faces constructed digitally as deviations from prototype/base faces. Participants were then tested with a simple recognition task (Experiment 1) or a multiple-choice task (Experiment 2) for old and new items plus new prototypes, and they showed a high rate of confident false alarms to the prototypes. Confidence and accuracy relationship in this face recognition paradigm was found to be positive for standard items but negative for the prototypes; thus, it was contingent on the nature of the items used. The data have implications for lineups that employ match-to-suspect strategies.

  4. Manufacturing prototypes for LIPAC beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, F., E-mail: fernando.arranz@ciemat.es [CIEMAT, Madrid (Spain); Brañas, B.; Iglesias, D. [CIEMAT, Madrid (Spain); Nomen, O. [IREC, Barcelona (Spain); Rapisarda, D.; Lapeña, J.; Muñoz, A. [CIEMAT, Madrid (Spain); Szcepaniak, B. [GALVANO-T, Windeck (Germany); Manini, J. [CARMAN, Madrid (Spain); Gómez, J. [TRINOS VACUUM, Valencia (Spain)

    2014-10-15

    Highlights: •Electroforming of copper and electronbeam welding techniques are compared. •Mechanical properties of Cu–stainless steel joint by electroforming are presented. •Achieved manufacturing tolerances are shown. •The difficulties and solutions for the complicated manufacturing are explained. -- Abstract: The purpose of the research is to define the most adequate manufacturing process for the dump of a linear deuteron accelerator. The deuteron beam can be pulsed as well as continuous with energies up to 9 MeV. The maximum beam power is 1.12 MW corresponding to a beam current of 125 mA. The requirements on the surface on which the deuterons will be stopped are quite demanding and the length and slenderness of the cone poses a considerable difficulty in the manufacturing process. The design of the beam dump is based on a copper cone 2500 mm long, 300 mm aperture and 5 to 6.5 mm thickness. Basically only two technologies were found feasible for the manufacturing of the cone: Electroforming and Electron Beam Welding (EBW). The article shows the main results found when manufacturing different prototypes.

  5. Numerical and experimental investigations to describe the mode of operation and effectivity of large surface high sensitive SPNDs (Self-Powered-Neutron-Detectors)

    International Nuclear Information System (INIS)

    Al-Dabagh, D.

    1981-08-01

    First a computer model for the parametric calculation of the (n,γ)-reaction rates in the emitter of the SPND was developed under use of the Monte-Carlo Program KENO II. To determine the escape-probability of the electrons produced via Compton- or photoelectric effect by the emitter as well as from the surrounding isolator, a new Monte-Carlo-Program was implemented under consideration of the Klein-Nishina-formula and the energy-range relationships for electrons. The approximate calculations performed for the electrons produced in the isolator show that the 'isolator flux' can give an important contribution to the total signal of the SPND. Subsequently with this program system an optimization of the neutron sensitivity was performed by a suitable choice of geometry (emitter thickness, isolator thickness). For a specially built large surface SPND with Gadolinium-emitter the neutron sensitivity was calculated. These results were checked by an In-Pile-Experiment in the FRJ-1 reactor. Very good agreement was found. The detector was also shown to exhibit excellent linearity and showed also the expected enhanced sensitivity. (orig./HP) [de

  6. Mode-conversion process and overdense-plasma heating in the electron cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Nakajima, S.; Abe, H.

    1988-01-01

    Through a particle-simulation investigation, a new mode-conversion process, through which an incident fast extraordinary mode (fast X mode) is converted into an electron Bernstein mode (B mode) via a (slow extraordinary mode slow X mode), is discovered in plasmas whose maximum density exceeds the cutoff density of the slow X mode. The converted B mode is found to heat the electrons efficiently in an overdense plasma region, when the plasma has the optimum density gradient at the plasma surface

  7. Modes of fossil preservation

    Science.gov (United States)

    Schopf, J.M.

    1975-01-01

    The processes of geologic preservation are important for understanding the organisms represented by fossils. Some fossil differences are due to basic differences in organization of animals and plants, but the interpretation of fossils has also tended to be influenced by modes of preservation. Four modes of preservation generally can be distinguished: (1) Cellular permineralization ("petrifaction") preserves anatomical detail, and, occasionally, even cytologic structures. (2) Coalified compression, best illustrated by structures from coal but characteristic of many plant fossils in shale, preserves anatomical details in distorted form and produces surface replicas (impressions) on enclosing matrix. (3) Authigenic preservation replicates surface form or outline (molds and casts) prior to distortion by compression and, depending on cementation and timing, may intergrade with fossils that have been subject to compression. (4) Duripartic (hard part) preservation is characteristic of fossil skeletal remains, predominantly animal. Molds, pseudomorphs, or casts may form as bulk replacements following dissolution of the original fossil material, usually by leaching. Classification of the kinds of preservation in fossils will aid in identifying the processes responsible for modifying the fossil remains of both animals and plants. ?? 1975.

  8. Development of a single-ring OpenPET prototype

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Wakizaka, Hidekatsu; Nishikido, Fumihiko; Hirano, Yoshiyuki; Inadama, Naoko; Murayama, Hideo; Ito, Hiroshi; Yamaya, Taiga

    2013-11-21

    One of the challenging applications of PET is implementing it for in-beam PET, which is an in situ monitoring method for charged particle therapy. For this purpose, we have previously proposed an open-type PET scanner, OpenPET. The original OpenPET had a physically opened field-of-view (FOV) between two detector rings through which irradiation beams pass. This dual-ring OpenPET (DROP) had a wide axial FOV including the gap. This geometry was not necessarily the most efficient for application to in-beam PET in which only a limited FOV around the irradiation field is required. Therefore, we have proposed a new single-ring OpenPET (SROP) geometry which can provide an accessible and observable open space with higher sensitivity and a reduced number of detectors than the DROP. The proposed geometry was a cylinder shape with its ends cut at a slant, in which the shape of each cut end became an ellipse. In this work, we developed and evaluated a small prototype of the SROP geometry for proof-of-concept. The SROP prototype was designed with 2 ellipse-shaped detector rings of 16 depth-of-interaction (DOI) detectors each. The DOI detectors consisted of 1024 GSOZ scintillator crystals which were arranged in 4 layers of 16×16 arrays, coupled to a 64-channel FP-PMT. Each ellipse-shaped detector ring had a major axis of 281.6 mm and a minor axis of 207.5 mm. For the slant mode, the rings were placed at a 45-deg slant from the axial direction and for the non-slant mode (used as a reference) they were at 90 deg from the axial direction with no gap. The system sensitivity measured from a {sup 22}Na point source was 5.0% for the slant mode. The average spatial resolutions of major and minor axis directions were calculated as 3.8 mm FWHM and 4.9 mm FWHM, respectively for the slant mode. This difference resulted from the ellipsoidal ring geometry and the spatial resolution of the minor axis direction degraded by the parallax error. Comparison between the slant mode and the non

  9. Automated Loading and Unloading of the Stratasys FDM 1600 Rapid Prototyping System

    OpenAIRE

    Brockmeier, Oivind

    2000-01-01

    Rapid prototyping systems have advanced significantly with respect to material capabilities, fabrication speed, and surface quality. However, build jobs are still manually activated one at a time. The result is non-productive machine time whenever an operator is not at hand to make a job changeover. A low-cost auxiliary system, named Continuous Layered Manufacturing (CLM), has been developed to automatically load and unload the FDM 1600 rapid prototyping system (Stratasys, Inc.). The modifica...

  10. Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode

    Science.gov (United States)

    Yuan, Sheng-Nan; Fang, Yun-Tuan

    2017-10-01

    In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA 0.25a; two kinds of modes coexist for 0.09a advantages in achieving slow light.

  11. High-mode-number ballooning modes in a heliotron/torsatron system. II. Stability

    International Nuclear Information System (INIS)

    Nakajima, N.

    1996-01-01

    In heliotron/torsatron systems that have a large Shafranov shift, the local magnetic shear is found to have no stabilizing effect on high-mode-number ballooning modes at the outer side of the torus, even in the region where the global shear is stellarator-like in nature. The disappearance of this stabilization, in combination with the compression of the flux surfaces at the outer side of the torus, leads at relatively low values of the plasma pressure to significant modifications of the stabilizing effect due to magnetic field-line bending on high-mode-number ballooning modes-specifically, that the field-line bending stabilization can be remarkably suppressed or enhanced. In an equilibrium that is slightly Mercier-unstable or completely Mercier-stable due to peaked pressure profiles, such as those used in standard stability calculations, high-mode-number ballooning modes are destabilized due to these modified stability effects, with their eigenfunctions highly localized along the field line. Highly localized mode structures such as these cause the ballooning mode eigenvalues ω 2 to have a strong field line dependence (i.e., α-variation) through the strong dependence of the local magnetic curvature, such that the level surfaces of ω 2 (ψ,θ k ,α) (≤0) become spheroids in (ψ,θ k ,α) space, where ψ labels flux surfaces and θ k is the radial wave number. Because the spheroidal level surfaces for unstable eigenvalues are surrounded by level surfaces for stable eigenvalues of high-mode-number toroidal Alfvacute en eigenmodes, those high-mode-number ballooning modes never lead to low-mode-number modes. In configuration space, these high-mode-number modes are localized in a single toroidal pitch of the helical coils, and hence they may experience substantial stabilization due to finite Larmor radius effects. copyright 1996 American Institute of Physics

  12. Design, fabrication and low power RF testing of a prototype beta=1, 1050 MHz cavity developed for electron linac

    International Nuclear Information System (INIS)

    Sarkar, S.; Mondal, J.; Mittal, K.C.

    2013-01-01

    A single cell 1050 MHz β = 1 elliptical cavity has been designed for possible use in High energy electron accelerator. A prototype Aluminium cavity has been fabricated by die punch method and low power testing of the cavity has been carried out by using VNA. The fundamental mode frequency of the prototype cavity is found out to be 1051.38 MHz and Q (loaded) and Q0 values corresponding to 2 modes are 8439 and 10013 respectively. Cell to cell coupling coefficient is 1.82 % from measurement which matches with the designed value (1.84%). The higher order mode frequencies are also measured and electric field of the cavity is confirmed by bead pull method. Low power RF measurements on the prototype cavity indicate that the critical RF parameters (Qo, f, Kc etc) for the cavity are consistent with the designed value. (author)

  13. Prototypical versus contemporary Mediterranean Diet.

    Science.gov (United States)

    Rizza, W; De Gara, L; Antonelli Incalzi, R; Pedone, C

    2016-10-01

    To investigate the evolution of the Mediterranean Diet (MD) in a delimited area of Southern Italy, by comparing the diet adopted 60-70 years ago (Prototypical Mediterranean Diet, PMD) with the contemporary one (Contemporary Mediterranean Diet, CMD), and to verify to what extent they fitted the recommendations of the Italian and the USDA dietary guidelines. We recruited a total of 106 participants, divided in two groups. PMD group included 52 women aged >80 years, with a good cognitive function and full independence in basic and instrumental activities of daily living. CMD group included 20 men and 34 women aged 50-60 years. Food intake was assessed by administering the EPIC food frequency questionnaire to each participant, and an additional survey to the PMD subjects only. Both PMD and CMD showed adequate intakes of macronutrients, although some deficiencies related to micronutrient requirements were evident. CMD showed a slightly greater use of animal products, processed and sugary foods, and higher intakes of simple sugars, animal proteins (49.6 vs 28.3 g/day), animal lipids (37.8 vs 20.1 g/day), saturated fats (25.0 vs 15.8 g/day) and cholesterol (305.0 vs 258.5 g/day). PMD showed many similarities to the original version of the MD in terms of macronutrients distribution and food choices. The documented evolution of the dietary habits over a 70 years timespan suggests that nowadays Mediterranean regions adhere less strictly to the original MD, although nutrients intakes are adequate to LARN and USDA recommendations. Copyright © 2016 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  14. Prototype-Incorporated Emotional Neural Network.

    Science.gov (United States)

    Oyedotun, Oyebade K; Khashman, Adnan

    2017-08-15

    Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many ''engineering'' prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as ``prototype-incorporated EmNN''. Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.

  15. Rapid prototyping and stereolithography in dentistry

    Science.gov (United States)

    Nayar, Sanjna; Bhuminathan, S.; Bhat, Wasim Manzoor

    2015-01-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena. PMID:26015715

  16. Rapid prototyping and stereolithography in dentistry.

    Science.gov (United States)

    Nayar, Sanjna; Bhuminathan, S; Bhat, Wasim Manzoor

    2015-04-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena.

  17. Review on CNC-Rapid Prototyping

    International Nuclear Information System (INIS)

    M Nafis O Z; Nafrizuan M Y; Munira M A; Kartina J

    2012-01-01

    This article reviewed developments of Computerized Numerical Control (CNC) technology in rapid prototyping process. Rapid prototyping (RP) can be classified into three major groups; subtractive, additive and virtual. CNC rapid prototyping is grouped under the subtractive category which involves material removal from the workpiece that is larger than the final part. Richard Wysk established the use of CNC machines for rapid prototyping using sets of 2½-D tool paths from various orientations about a rotary axis to machine parts without refixturing. Since then, there are few developments on this process mainly aimed to optimized the operation and increase the process capabilities to stand equal with common additive type of RP. These developments include the integration between machining and deposition process (hybrid RP), adoption of RP to the conventional machine and optimization of the CNC rapid prototyping process based on controlled parameters. The article ended by concluding that the CNC rapid prototyping research area has a vast space for improvement as in the conventional machining processes. Further developments and findings will enhance the usage of this method and minimize the limitation of current approach in building a prototype.

  18. Evaluation of a prototype infrasound system

    International Nuclear Information System (INIS)

    Whitaker, R.; Sandoval, T.; Breding, D.; Kromer, D.

    1997-01-01

    Under Department of Energy sponsorship, Sandia National Laboratories and Los Alamos National Laboratory cooperated to develop a prototype infrasonic array, with associated documentation, that could be used as part of the International Monitoring System. The United States Government or foreign countries could procure commercially available systems based on this prototype to fulfill their Comprehensive Test Ban Treaty (CTBT) obligations. The prototype is a four-element array in a triangular layout as recommended in CD/NTB/WP.224 with an element at each corner and one in the center. The prototype test configuration utilize an array spacing of 1 km. The prototype infrasound system has the following objectives: (1) Provide a prototype that reliably acquires and transmits near real-time infrasonic data to facilitate the rapid location and identification of atmospheric events. (2) Provide documentation that could be used by the United States and foreign countries to procure infrasound systems commercially to fulfill their CTBT responsibilities. Infrasonic monitoring is an effective, low cost technology for detecting atmospheric explosions. The low frequency components of explosion signals propagate to long ranges (few thousand kilometers) where they can be detected with an array of sensors. Los Alamos National Laboratory's expertise in infrasound systems and phenomenology when combined with Sandia's expertise in providing verification quality system for treaty monitoring make an excellent team to provide the prototype infrasound sensor system. By September 1997, the prototype infrasound system will have been procured, integrated, evaluated and documented. Final documentation will include a system requirements document, an evaluation report and a hardware design document. The hardware design document will describe the various hardware components used in the infrasound prototype and their interrelationships

  19. Effects of multiple modes interaction on the resistive wall mode instability

    International Nuclear Information System (INIS)

    Chen, Longxi; Lei, Wenqing; Ma, Zhiwei; Wu, Bin

    2013-01-01

    The effects of multiple modes interaction on the resistive wall mode (RWM) are studied in a slab geometry with and without plasma flow. The modes interaction can have a large effect on both the linear growth rate and the nonlinear saturation level of the RWM. We found that modes interaction can suppress the linear growth rate for the most unstable mode. The plasma flow can also help to control the growth of the RWM. The RWM can be stabilized completely by a plasma flow when considering the modes interaction. The effect of modes interaction on the RWM is stronger for the mode rational surface in the vacuum than that in the plasma. The modes interaction results in a substantially lowered saturation level for the most unstable RWM. (paper)

  20. Eight years' operation of the SGHWR prototype

    International Nuclear Information System (INIS)

    Phillips, J.L.

    1976-01-01

    Experience gained of the SGHWR system during the first eight years of operation of the UKAEA's 100 MW(e) prototype at AEE Winfrith is discussed. Modifications and additions have been made to the plant to overcome problems which only operation of a prototype unit can reveal. No problems have arisen which could not be overcome by the application of normal engineering resources, and there is no reason why the commercial successor to the prototype should be other than a fully viable proposition. (author)