WorldWideScience

Sample records for prototype sensor dosimeter

  1. Hanford beta-gamma personnel dosimeter prototypes and evaluation

    International Nuclear Information System (INIS)

    Fix, J.J.; Holbrook, K.L.; Soldat, K.L.

    1983-04-01

    Upgraded and modified Hanford dosimeter prototypes were evaluated for possible use at Hanford as a primary beta-gamma dosimeter. All prototypes were compatible with the current dosimeter card and holder design, as well as processing with the automated Hanford readers. Shallow- and deep-dose response was determined for selected prototypes using several beta sources, K-fluorescent x rays and filtered x-ray techniques. All prototypes included a neutron sensitive chip. A progressive evaluation of the performance of each of the upgrades to the current dosimeter is described. In general, the performance of the current dosimeter can be upgraded using individual chip sensitivity factors to improve precision and an improved algorithm to minimize bias. The performance of this dosimeter would be adequate to pass all categories of the ANSI N13.11 performance criteria for dosimeter procesors, provided calibration techniques compatible with irradiations adopted in the standard were conducted. The existing neutron capability of the dosimeter could be retained. Better dosimeter performance to beta-gamma radiation can be achieved by modifying the Hanford dosimeter so that four of the five chip positions are devoted to calculating these doses instead of the currently used two chip positions. A neutron sensitive chip was used in the 5th chip position, but all modified dosimeter prototypes would be incapable of discriminating between thermal and epithermal neutrons. An improved low energy beta response can be achieved for the current dosimeter and all prototypes considered by eliminating the security credential. Further improvement can be obtained by incorporating the 15-mil thick TLD-700 chips

  2. MITRE sensor layer prototype

    Science.gov (United States)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  3. Dosimeter

    International Nuclear Information System (INIS)

    Thomson, I.

    1986-01-01

    This invention relates to a dosimeter for measuring ionizing radiation, and particularly to a dosimeter using an insulated gate field effect transistor (IGFET) as a sensor, having substantially improved accuracy. An IGFET is a field effect transistor fabricated on a silicon substrate and having an oxide insulator between the gate electrode and the silicon substrate. The gate electrode can be either metal or polycrystalline silicon dioxide. This invention overcomes previously-noted problems with IGFET sensors - the variation of threshold voltage with temperature, their inherent zero offset which varies from wafer to wafer, and the zero drift in threshold voltage - by measuring the differential threshold between two IGFET sensors exposed to the same radiation, in which one is biased into its conducting region, and the other is biased either off or to a conducting level less than the first. The measured differential threshold voltage between the two transistors will be a measure of the gamma radiation dose

  4. ΔOSI: a prototype microstrip dosimeter for characterization of medical radiotherapy and radiosurgery systems

    International Nuclear Information System (INIS)

    Redondo-Fernandez, I.; Buttar, C.; Walsh, S.; Manolopoulos, S.; Homer, J.M.; Young, S.; Conway, J.

    2006-01-01

    As the technology for medical radiotherapy and radiosurgery evolves, there is a growing need for dosimeters capable of measuring dose distributions on-line with submillimeter spatial resolution, both for facility commissioning and patient-related quality assurance. We have designed and built a high spatial resolution dosimeter based on silicon micro-strip technology for characterization of small radiotherapy and radiosurgery fields. The aim is to provide relative dosimetry measurement with film-like spatial resolution and to be able to resolve the temporal evolution. Following the description of the prototypes, first beam test results of a 250 μm pitch, 128 channels prototype with X-rays in a clinical 6 MV accelerator are presented. The device demonstrated good dosimetric capabilities when compared to reference measurements made with ionization chambers and agrees with radiographic film in the steep dose gradient region produced by the collimator edge

  5. Development of semiconductor radiation sensors for portable alarm-dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. K.; Moon, B. S.; Chung, C. E.; Hong, S. B.; Kim, J. Y.; Kim, J. B.; Han, S. H.; Lee, W. G. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-01-01

    We studied Semiconductor Radiation Sensors for Portable Alarm-Dosimeter. We calculated response functions for gamma energy 0.021, 0.122, 0.662, 0.835, 1.2 MeV using EGS4 codes. When we measured at various distance from source to detector, the detection efficiency of Si semiconductor detector was better than that of GM tube. The linear absorption coefficients of steel and aluminum plate were measured. These experimental results of the response of detector for intensity of radiation field coincide to the theoretical expectation. The count value of Si detector was changed with changing thickness of steel as changing threshold voltage of discriminator, and the linear absorption coefficient increased with increasing threshold voltage. Radiation detection efficiency shows difference at each threshold voltage condition. This results coincided to the theoretical simulation. 33 refs., 27 figs., 8 tabs. (Author)

  6. Clinical prototype of a plastic water-equivalent scintillating fiber dosimeter array for QA applications

    International Nuclear Information System (INIS)

    Lacroix, Frederic; Archambault, Louis; Gingras, Luc; Guillot, Mathieu; Beddar, A. Sam; Beaulieu, Luc

    2008-01-01

    A clinical prototype of a scintillating fiber dosimeter array for quality assurance applications is presented. The array consists of a linear array of 29 plastic scintillation detectors embedded in a water-equivalent plastic sheet coupled to optical fibers used to guide optical photons to a charge coupled device (CCD) camera. The CCD is packaged in a light-tight, radiation-shielded housing designed for convenient transport. A custom designed connector is used to ensure reproducible mechanical positioning of the optical fibers relative to the CCD. Profile and depth dose characterization measurements are presented and show that the prototype provides excellent dose measurement reproducibility (±0.8%) in-field and good accuracy (±1.6% maximum deviation) relative to the dose measured with an IC10 ionization chamber

  7. A Prototype Tactile Sensor Array.

    Science.gov (United States)

    1982-09-15

    Active Touch Sensing. Technical Report, MIT Artificial Inteligence Laboratory, 1981. (9] Larcombe, M. Carbon Fibre Tactile Sensors. Technical Report...thesis, Carnegie-Mellon University, 1981. [13] Purbrick, John A. A Force Transducer Employing Conductive Silicone Rubber. Technical Report, MIT Artificial

  8. ECCE Toolkit: Prototyping Sensor-Based Interaction

    Directory of Open Access Journals (Sweden)

    Andrea Bellucci

    2017-02-01

    Full Text Available Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators. Prototyping physical interaction is hindered by the challenges of: (1 programming interactions among physical sensors/actuators and digital interfaces; (2 implementing functionality for different platforms in different programming languages; and (3 building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems, a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit.

  9. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad

    2013-08-27

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  10. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad; Shamim, Atif; Tarr, Nicholas Garry; Roy, Langis

    2013-01-01

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  11. Glass fibre sensors for medical applications - fibre-optical dosimeter system. Cooperation project 1991-1994. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    The final report summarizes the results of a cooperation project on the applications of fibre-optical sensors in medical technology. The FADOS dosimeter system is presented which comprises an implantable glass fibre dosimeter. It can be applied in radiotherapy for online dose metering directly at the tumour or in the surrounding healthy tissue. The dosimeter is placed in a tissue-compatible flexible catheter tube and remains inside the body during the radiotherapy treatiment. The measuring principle is based on the effect of radiation-induced damping inside a glass fibre. (DG) [de

  12. Towards real-time VMAT verification using a prototype, high-speed CMOS active pixel sensor.

    Science.gov (United States)

    Zin, Hafiz M; Harris, Emma J; Osmond, John P F; Allinson, Nigel M; Evans, Philip M

    2013-05-21

    This work investigates the feasibility of using a prototype complementary metal oxide semiconductor active pixel sensor (CMOS APS) for real-time verification of volumetric modulated arc therapy (VMAT) treatment. The prototype CMOS APS used region of interest read out on the chip to allow fast imaging of up to 403.6 frames per second (f/s). The sensor was made larger (5.4 cm × 5.4 cm) using recent advances in photolithographic technique but retains fast imaging speed with the sensor's regional read out. There is a paradigm shift in radiotherapy treatment verification with the advent of advanced treatment techniques such as VMAT. This work has demonstrated that the APS can track multi leaf collimator (MLC) leaves moving at 18 mm s(-1) with an automatic edge tracking algorithm at accuracy better than 1.0 mm even at the fastest imaging speed. Evaluation of the measured fluence distribution for an example VMAT delivery sampled at 50.4 f/s was shown to agree well with the planned fluence distribution, with an average gamma pass rate of 96% at 3%/3 mm. The MLC leaves motion and linac pulse rate variation delivered throughout the VMAT treatment can also be measured. The results demonstrate the potential of CMOS APS technology as a real-time radiotherapy dosimeter for delivery of complex treatments such as VMAT.

  13. Laboratory test of an APS-based sun sensor prototype

    Science.gov (United States)

    Rufino, Giancarlo; Perrotta, Alessandro; Grassi, Michele

    2017-11-01

    This paper deals with design and prototype development of an Active Pixel Sensor - based miniature sun sensor and a laboratory facility for its indoor test and calibration. The miniature sun sensor is described and the laboratory test facility is presented in detail. The major focus of the paper is on tests and calibration of the sensor. Two different calibration functions have been adopted. They are based, respectively, on a geometrical model, which has required least-squares optimisation of system physical parameters estimates, and on neural networks. Calibration results are presented for the above solutions, showing that accuracy in the order of 0.01° has been achieved. Neural calibration functions have attained better performance thanks to their intrinsic auto-adaptive structure.

  14. Characterisation of pixel sensor prototypes for the ALICE ITS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Reidt, Felix [CERN (Switzerland); Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: ALICE-Collaboration

    2014-07-01

    ALICE is preparing a major upgrade of its experimental apparatus to be installed in the second long LHC shutdown (LS2) in the years 2018-2019. A key element of the upgrade is the replacement of the Inner Tracking System (ITS) deploying Monolithic Active Pixel Sensors (MAPS). The upgraded ITS will have a reduced material budget while increasing the pixel density and readout rate capabilities. The novel design leads to higher pointing and momentum resolution as well as a p{sub T} acceptance extended to lower values. The corresponding sensor prototypes were qualified in laboratory measurements and beam tests with respect to their radiation tolerance and detection efficiency. This talk summarises recent results on the characterisation of prototypes belonging to the ALPIDE family.

  15. Secure Group Formation Protocol for a Medical Sensor Network Prototype

    DEFF Research Database (Denmark)

    Andersen, Jacob

    2009-01-01

    , and experience from user workshops and observations of clinicians at work on a hospital ward show that if the security mechanisms are not well designed, the technology is either rejected altogether, or they are circumvented leaving the system wide open to attacks. Our work targets the problem of designing......Designing security mechanisms such as privacy and access control for medical sensor networks is a challenging task; as such systems may be operated very frequently, at a quick pace, and at times in emergency situations. Understandably, clinicians hold extra unproductive tasks in low regard...... wireless sensors to be both secure and usable by exploring different solutions on a fully functional prototype platform. In this paper, we present an Elliptic Curve Cryptography (ECC) based protocol, which offers fully secure sensor set-up in a few seconds on standard (Telos) hardware. We evaluate...

  16. Chemical dosimeter

    International Nuclear Information System (INIS)

    Baker, W.B.; Clark, D.G.

    1979-01-01

    The dosimeter may be carried by individuals e.g. at the belt and serves to monitor for vinyl-chloride vapors in industrial plants and for toxic radon gas and toxic radon gas products in mines. It contains a pump, sucking an air flow through an orifice and a filter, as well as a sensor circuit for detecting low air flow rates and a battery testing circuit. (DG) 891 HP/DG 892 MKO [de

  17. Rapid Prototyping Human Interfaces Using Stretchable Strain Sensor

    Directory of Open Access Journals (Sweden)

    Tokiya Yamaji

    2017-01-01

    Full Text Available In the modern society with a variety of information electronic devices, human interfaces increase their importance in a boundary of a human and a device. In general, the human is required to get used to the device. Even if the device is designed as a universal device or a high-usability device, the device is not suitable for all users. The usability of the device depends on the individual user. Therefore, personalized and customized human interfaces are effective for the user. To create customized interfaces, we propose rapid prototyping human interfaces using stretchable strain sensors. The human interfaces comprise parts formed by a three-dimensional printer and the four strain sensors. The three-dimensional printer easily makes customized human interfaces. The outputs of the interface are calculated based on the sensor’s lengths. Experiments evaluate three human interfaces: a sheet-shaped interface, a sliding lever interface, and a tilting lever interface. We confirm that the three human interfaces obtain input operations with a high accuracy.

  18. Feasibility of Ultra-Thin Fiber-Optic Dosimeters for Radiotherapy Dosimetry.

    Science.gov (United States)

    Lee, Bongsoo; Kwon, Guwon; Shin, Sang Hun; Kim, Jaeseok; Yoo, Wook Jae; Ji, Young Hoon; Jang, Kyoung Won

    2015-11-17

    In this study, prototype ultra-thin fiber-optic dosimeters were fabricated using organic scintillators, wavelength shifting fibers, and plastic optical fibers. The sensor probes of the ultra-thin fiber-optic dosimeters consisted of very thin organic scintillators with thicknesses of 100, 150 and 200 μm. These types of sensors cannot only be used to measure skin or surface doses but also provide depth dose measurements with high spatial resolution. With the ultra-thin fiber-optic dosimeters, surface doses for gamma rays generated from a Co-60 therapy machine were measured. Additionally, percentage depth doses in the build-up regions were obtained by using the ultra-thin fiber-optic dosimeters, and the results were compared with those of external beam therapy films and a conventional fiber-optic dosimeter.

  19. Magnetic field dosimeter development

    International Nuclear Information System (INIS)

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation

  20. Development of a prototype lignin concentration sensor. Final report. Draft

    Energy Technology Data Exchange (ETDEWEB)

    Jeffers, L.A.

    1994-11-01

    The ultimate objective of the DOE-sponsored program discussed in this report is to commercialize an instrument for real-time, in-situ measurement of lignin in wood pulp at a variety of locations in the pulp process stream. The instrument will be used as a primary sensor for process control in the pulp and paper industry. Work done by B&W prior to the initiation of this program had shown: there is a functional relationship between the fluorescence intensity and the Kappa number as measured at the pulp mill laboratory. Kappa number is a standard wet chemical method for determination of the lignin concentration; the relationship is one of decreasing intensity with Kappa number, indicating operation in the quenched fluorescence regime; a great deal of scatter in the data. Because of the preliminary nature of the study, the origin of the scatter was not identified. This report documents the results of laboratory measurements made on a variety of well defined pulp samples to generate the data necessary to: determine the feasibility of an instrument for on-line lignin concentration measurement using laser fluorescence; identify the preferred measurement strategy; define the range of applicability of the instrument; and to provide background information to guide the design of a field-worthy prototype.

  1. Test Structures for Rapid Prototyping of Gas and Pressure Sensors

    Science.gov (United States)

    Buehler, M.; Cheng, L. J.; Martin, D.

    1996-01-01

    A multi-project ceramic substrate was used in developing a gas sensor and pressure sensor. The ceramic substrate cantained 36 chips with six variants including sensors, process control monitors, and an interconnect ship. Tha gas sensor is being developed as an air quality monitor and the pressure gauge as a barometer.

  2. Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.

    Science.gov (United States)

    Kesner, Samuel B; Howe, Robert D

    2011-07-21

    Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range.

  3. Observations of sensor bias dependent cluster centroid shifts in a prototype sensor for the LHCb Vertex Locator detector

    CERN Document Server

    Papadelis, Aras

    2006-01-01

    We present results from a recent beam test of a prototype sensor for the LHCb Vertex Locator detector, read out with the Beetle 1.3 front-end chip. We have studied the effect of the sensor bias voltage on the reconstructed cluster positions in a sensor placed in a 120GeV pion beam at a 10° incidence angle. We find an unexplained sysematic shift in the reconstructed cluster centroid when increasing the bias voltage on an already overdepleted sensor. The shift is independent of strip pitch and sensor thickness.

  4. Radiation dosimeter

    International Nuclear Information System (INIS)

    Lowe, D.

    1980-01-01

    A radiation dosimeter is described, comprising a thermoluminescent phosphor incorporated in matrix of polyethersulphone. The dosimeter is preferably a thin film formed by spreading a suspension of a powdered phosphor in a solution of polyethersulphone onto a flat surface. The solvent for the polyethersulphone is a mixture of a n-methyl-2-pyrrolidone and xylene in equal proportions. A thin, inert film of polyethersulphone can be cemented to one surface of the dosimeter so as to provide a skin dosimeter. (author)

  5. Plastic dosimeter

    International Nuclear Information System (INIS)

    Nagai, Shiro; Matsuda, Kohji.

    1988-01-01

    The report outlines major features and applications of plastic dosimeters. Some plastic dosimeters, including the CTA and PVC types, detect the response of the plastic material itself to radiations while others, such as pigment-added plastic dosimeters, contain additives as radiation detecting material. Most of these dosimeters make use of color centers produced in the dosimeter by radiations. The PMMA dosimeter is widely used in the field of radiation sterilization of food, feed and medical apparatus. The blue cellophane dosimeter is easy to handle if calibrated appropriately. The rad-color dosimeter serves to determine whether products have been irradiated appropriately. The CTA dosimeter has better damp proofing properties than the blue cellophane type. The pigment-added plastic dosimeter consists of a resin such as nylon, CTA or PVC that contains a dye. Some other plastic dosimeters are also described briefly. Though having many advantages, these plastic dosimeter have disadvantages as well. Some of their major disadvantages, including fading as well as large dependence on dose, temperature, humidity and anviroment, are discussed. (Nogami, K.)

  6. Development and Testing of Prototype Commercial Gasifier Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zelepouga, Serguei [Gas Technology Inst., Des Plaines, IL (United States); Moery, Nathan [Gas Technology Inst., Des Plaines, IL (United States); Wu, Mengbai [Gas Technology Inst., Des Plaines, IL (United States); Saveliev, Alexei [Gas Technology Inst., Des Plaines, IL (United States)

    2015-01-31

    This report presents the results of the sensor development and testing at the Wabash River gasifier. The project work was initiated with modification of the sensor software (Task 2) to enable real time temperature data acquisition, and to process and provide the obtained gasifier temperature information to the gasifier operators. The software modifications were conducted by the North Carolina State University (NCSU) researchers. The modified software was tested at the Gas Technology Institute (GTI) combustion laboratory to assess the temperature recognition algorithm accuracy and repeatability. Task 3 was focused on the sensor hardware modifications needed to improve reliability of the sensor system. NCSU conducted numerical modeling of the sensor probe’s purging flow. Based on the modeling results the probe purging system was redesigned to prevent carbon particulates deposition on the probe’s sapphire window. The modified design was evaluated and approved by the Wabash representative. The modified gasifier sensor was built and installed at the Wabash River gasifier on May 1 2014. (Task 4) The sensor was tested from the startup of the gasifier on May 5, 2015 until the planned autumn gasifier outage starting in the beginning of October, 2015. (Task 5) The project team successfully demonstrated the Gasifier Sensor system’s ability to monitor gasifier temperature while maintaining unobstructed optical access for six months without any maintenance. The sensor examination upon completion of the trial revealed that the system did not sustain any damage.

  7. Pen dosimeters

    CERN Multimedia

    SC/RP Group

    2006-01-01

    The Radiation Protection Group has decided to withdraw all pen dosimeters from the main PS and SPS access points. This will be effective as of January 2006. The following changes will be implemented: All persons working in a limited-stay controlled radiation area must wear an operational dosimeter in addition to their personal DIS dosimeter. Any persons not equipped with this additional dosimeter must contact the SC/RP Group, which will make this type of dosimeter available for temporary loan. A notice giving the phone numbers of the SC/RP Group members to contact will be displayed at the former distribution points for the pen dosimeters. Thank you for your cooperation. The SC/RP Group

  8. Evaluation of a Prototype pCO2 Optical Sensor

    Science.gov (United States)

    Sanborn-Marsh, C.; Sutton, A.; Sabine, C. L.; Lawrence-Salvas, N.; Dietrich, C.

    2016-12-01

    Anthropogenic greenhouse gas emissions continue to rise, driving climate change and altering the ocean carbonate systems. Carbonate chemistry can be characterized by any two of the four parameters: pH, total alkalinity, dissolved inorganic carbon, and partial pressure of dissolved carbon dioxide gas (pCO2). To fully monitor these dynamic systems, researchers must deploy a more temporally and spatially comprehensive sensor network. Logistical challenges, such as the energy consumption, size, lifetime, depth range, and cost of pCO2 sensors have limited the network's reach so far. NOAA's Pacific Marine Environmental Laboratory has conducted assessment tests of a pCO2 optical sensor (optode), recently developed by Atamanchuk et al (2014). We hope to deploy this optode in the summer of 2017 on high-resolution moored profiler, along with temperature, salinity, and oxygen sensors. While most pCO2 optodes have energy consumptions of 3-10 W, this 36mm-diameter by 86mm-long instrument consumes a mere 7-80 mW. Initial testing showed that its accuracy varied within an absolute range of 2-75 μatm, depending on environmental conditions, including temperature, salinity, response time, and initial calibration. Further research independently examining the effects of each variable on the accuracy of the data will also be presented.

  9. Prototyping Service Discovery and Usage in Wireless Sensor Networks

    NARCIS (Netherlands)

    Marin Perianu, Raluca; Scholten, Johan; Havinga, Paul J.M.

    2007-01-01

    Heterogeneous Wireless Sensor Networks (WSNs) are envisioned to provide different types of services in an open and dynamic environment. This paper presents the design, implementation and evaluation of a service discovery and usage solution for heterogeneous WSNs. The users have the possibility to

  10. IV and CV curves for irradiated prototype BTeV silicon pixel sensors

    International Nuclear Information System (INIS)

    Coluccia, Maria R.

    2002-01-01

    The authors present IV and CV curves for irradiated prototype n + /n/p + silicon pixel sensors, intended for use in the BTeV experiment at Fermilab. They tested pixel sensors from various vendors and with two pixel isolation layouts: p-stop and p-spray. Results are based on exposure with 200 MeV protons up to 6 x 10 14 protons/cm 2

  11. Results of the 2015 testbeam of a 180 nm AMS High-Voltage CMOS sensor prototype

    CERN Document Server

    Benoit, M.

    2016-07-21

    Active pixel sensors based on the High-Voltage CMOS technology are being investigated as a viable option for the future pixel tracker of the ATLAS experiment at the High-Luminosity LHC. This paper reports on the testbeam measurements performed at the H8 beamline of the CERN Super Proton Synchrotron on a High-Voltage CMOS sensor prototype produced in 180 nm AMS technology. Results in terms of tracking efficiency and timing performance, for different threshold and bias conditions, are shown.

  12. Demonstration of a Prototype Hydrogen Sensor and Electronics Package - Progress Report 2

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Amanda S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brosha, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-14

    This is the second progress report on the demonstration of a prototype hydrogen sensor and electronics package. It goes into detail about the five tasks, four of which are already completed as of August 2016, with the final to be completed by January 26, 2017. Then the budget is detailed along with the planned work for May 27, 2016 to July 27, 2016.

  13. Prototype Si microstrip sensors for the CDF-II ISL detector

    CERN Document Server

    Hara, K; Kanao, K; Kim, S; Ogasawara, M; Ohsugi, T; Shimojima, M; Takikawa, K

    1999-01-01

    Prototype Si microstrip sensors for the CDF-II ISL were fabricated by Hamamatsu Photonics and SEIKO Instruments using 4'' technology. The sensor is AC coupled and double-sided forming a stereo angle of 1.207 degree sign . The strip pitch is 112 mu m on both sides. The main differences between the two manufacturers lie on the technologies of passivation and the structure of coupling capacitors. We describe the design of the sensor and evaluation results of the performance. The evaluations include the total and individual strip currents and interstrip capacitance measured before and after sup 6 sup 0 Co gamma irradiation. (author)

  14. Communication and logging hub for rapid prototyping of environmental sensors: presenting the Smartphone.

    Science.gov (United States)

    Hut, R.

    2017-12-01

    When desiging prototype sensors for environmental variables a critical step is a comparison campaign where the new sensor is compared to current state of the art sensors. In this step one of the headaches for researchers can be connecting their sensor to a logging or communication device. I present a simple solution: to use smartphone that scans for Bluetooth Low Energy transmissions and uploads any measurement to a data server. In this way the prototype sensor only has to transmit its measurement values over BLE, which can be done using off-the-shelf components. The sensors don't have to be physically connected to the phone, allowing for very rapid deployment of sensors in locations that have a communication hub (ie. phone) installed. The communication and logging hub consists of nothing more than a low cost Android smartphone running a dedicated app. The phone is encased in a waterproof box with a large powerbank and a solar panel. I will demonstrate this live at the Fall Meeting. By installing these phones along permanent WMO certified station locations, comparisons campaigns can use the "golden standard" from the WMO without much problems.

  15. Wireless Prototype Based on Pressure and Bending Sensors for Measuring Gate Quality

    Science.gov (United States)

    Grenez, Florent; Villarejo, María Viqueira; Zapirain, Begoña García; Zorrilla, Amaia Méndez

    2013-01-01

    This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor), another one under the fifth metatarsal (left) and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor) and 100% (heel and bending sensors). Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently. PMID:23899935

  16. Wireless prototype based on pressure and bending sensors for measuring gait [corrected] quality.

    Science.gov (United States)

    Grenez, Florent; Viqueira Villarejo, María; García Zapirain, Begoña; Méndez Zorrilla, Amaia

    2013-07-29

    This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor), another one under the fifth metatarsal (left) and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor) and 100% (heel and bending sensors). Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently.

  17. Prototyping of a highly performant and integrated piezoresistive force sensor for microscale applications

    International Nuclear Information System (INIS)

    Komati, Bilal; Agnus, Joël; Clévy, Cédric; Lutz, Philippe

    2014-01-01

    In this paper, the prototyping of a new piezoresistive microforce sensor is presented. An original design taking advantage of both the mechanical and bulk piezoresistive properties of silicon is presented, which enables the easy fabrication of a very small, large-range, high-sensitivity with high integration potential sensor. The sensor is made of two silicon strain gauges for which widespread and known microfabrication processes are used. The strain gauges present a high gauge factor which allows a good sensitivity of this force sensor. The dimensions of this sensor are 700 μm in length, 100 μm in width and 12 μm in thickness. These dimensions make its use convenient with many microscale applications, notably its integration in a microgripper. The fabricated sensor is calibrated using an industrial force sensor. The design, microfabrication process and performances of the fabricated piezoresistive force sensor are innovative thanks to its resolution of 100 nN and its measurement range of 2 mN. This force sensor also presents a high signal-to-noise ratio, typically 50 dB when a 2 mN force is applied at the tip of the force sensor. (paper)

  18. Wireless Prototype Based on Pressure and Bending Sensors for Measuring Gate Quality

    Directory of Open Access Journals (Sweden)

    Amaia Méndez Zorrilla

    2013-07-01

    Full Text Available This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor, another one under the fifth metatarsal (left and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor and 100% (heel and bending sensors. Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently.

  19. A Prototype Land Information Sensor Web: Design, Implementation and Implication for the SMAP Mission

    Science.gov (United States)

    Su, H.; Houser, P.; Tian, Y.; Geiger, J. K.; Kumar, S. V.; Gates, L.

    2009-12-01

    Land Surface Model (LSM) predictions are regular in time and space, but these predictions are influenced by errors in model structure, input variables, parameters and inadequate treatment of sub-grid scale spatial variability. Consequently, LSM predictions are significantly improved through observation constraints made in a data assimilation framework. Several multi-sensor satellites are currently operating which provide multiple global observations of the land surface, and its related near-atmospheric properties. However, these observations are not optimal for addressing current and future land surface environmental problems. To meet future earth system science challenges, NASA will develop constellations of smart satellites in sensor web configurations which provide timely on-demand data and analysis to users, and can be reconfigured based on the changing needs of science and available technology. A sensor web is more than a collection of satellite sensors. That means a sensor web is a system composed of multiple platforms interconnected by a communication network for the purpose of performing specific observations and processing data required to support specific science goals. Sensor webs can eclipse the value of disparate sensor components by reducing response time and increasing scientific value, especially when the two-way interaction between the model and the sensor web is enabled. The study of a prototype Land Information Sensor Web (LISW) is sponsored by NASA, trying to integrate the Land Information System (LIS) in a sensor web framework which allows for optimal 2-way information flow that enhances land surface modeling using sensor web observations, and in turn allows sensor web reconfiguration to minimize overall system uncertainty. This prototype is based on a simulated interactive sensor web, which is then used to exercise and optimize the sensor web modeling interfaces. The Land Information Sensor Web Service-Oriented Architecture (LISW-SOA) has been

  20. Customizable Optical Force Sensor for Fast Prototyping and Cost-Effective Applications.

    Science.gov (United States)

    Díez, Jorge A; Catalán, José M; Blanco, Andrea; García-Perez, José V; Badesa, Francisco J; Gacía-Aracil, Nicolás

    2018-02-07

    This paper presents the development of an optical force sensor architecture directed to prototyping and cost-effective applications, where the actual force requirements are still not well defined or the most suitable commercial technologies would highly increase the cost of the device. The working principle of this sensor consists of determining the displacement of a lens by measuring the distortion of a refracted light beam. This lens is attached to an elastic interface whose elastic constant is known, allowing the estimation of the force that disturbs the optical system. In order to satisfy the requirements of the design process in an inexpensive way, this sensor can be built by fast prototyping technologies and using non-optical grade elements. To deal with the imperfections of this kind of manufacturing procedures and materials, four fitting models are proposed to calibrate the implemented sensor. In order to validate the system, two different sensor implementations with measurement ranges of ±45 N and ±10 N are tested with the proposed models, comparing the resulting force estimation with respect to an industrial-grade load cell. Results show that all models can estimate the loads with an error of about 6% of the measurement range.

  1. Curved sensors for compact high-resolution wide-field designs: prototype demonstration and optical characterization

    Science.gov (United States)

    Chambion, Bertrand; Gaschet, Christophe; Behaghel, Thibault; Vandeneynde, Aurélie; Caplet, Stéphane; Gétin, Stéphane; Henry, David; Hugot, Emmanuel; Jahn, Wilfried; Lombardo, Simona; Ferrari, Marc

    2018-02-01

    Over the recent years, a huge interest has grown for curved electronics, particularly for opto-electronics systems. Curved sensors help the correction of off-axis aberrations, such as Petzval Field Curvature, astigmatism, and bring significant optical and size benefits for imaging systems. In this paper, we first describe advantages of curved sensor and associated packaging process applied on a 1/1.8'' format 1.3Mpx global shutter CMOS sensor (Teledyne EV76C560) into its standard ceramic package with a spherical radius of curvature Rc=65mm and 55mm. The mechanical limits of the die are discussed (Finite Element Modelling and experimental), and electro-optical performances are investigated. Then, based on the monocentric optical architecture, we proposed a new design, compact and with a high resolution, developed specifically for a curved image sensor including optical optimization, tolerances, assembly and optical tests. Finally, a functional prototype is presented through a benchmark approach and compared to an existing standard optical system with same performances and a x2.5 reduction of length. The finality of this work was a functional prototype demonstration on the CEA-LETI during Photonics West 2018 conference. All these experiments and optical results demonstrate the feasibility and high performances of systems with curved sensors.

  2. Customizable Optical Force Sensor for Fast Prototyping and Cost-Effective Applications

    Directory of Open Access Journals (Sweden)

    Jorge A. Díez

    2018-02-01

    Full Text Available This paper presents the development of an optical force sensor architecture directed to prototyping and cost-effective applications, where the actual force requirements are still not well defined or the most suitable commercial technologies would highly increase the cost of the device. The working principle of this sensor consists of determining the displacement of a lens by measuring the distortion of a refracted light beam. This lens is attached to an elastic interface whose elastic constant is known, allowing the estimation of the force that disturbs the optical system. In order to satisfy the requirements of the design process in an inexpensive way, this sensor can be built by fast prototyping technologies and using non-optical grade elements. To deal with the imperfections of this kind of manufacturing procedures and materials, four fitting models are proposed to calibrate the implemented sensor. In order to validate the system, two different sensor implementations with measurement ranges of ±45 N and ±10 N are tested with the proposed models, comparing the resulting force estimation with respect to an industrial-grade load cell. Results show that all models can estimate the loads with an error of about 6% of the measurement range.

  3. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    International Nuclear Information System (INIS)

    Brombin, M.; Spolaore, M.; Serianni, G.; Barzon, A.; Franchin, L.; Pasqualotto, R.; Pomaro, N.; Taliercio, C.; Trevisan, L.; Schiesko, L.

    2014-01-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values

  4. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    Science.gov (United States)

    Brombin, M.; Spolaore, M.; Serianni, G.; Barzon, A.; Franchin, L.; Pasqualotto, R.; Pomaro, N.; Schiesko, L.; Taliercio, C.; Trevisan, L.

    2014-02-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  5. Electrostatic sensors for SPIDER experiment: design, manufacture of prototypes, and first tests.

    Science.gov (United States)

    Brombin, M; Spolaore, M; Serianni, G; Barzon, A; Franchin, L; Pasqualotto, R; Pomaro, N; Schiesko, L; Taliercio, C; Trevisan, L

    2014-02-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  6. Test beam results of a depleted monolithic active pixel sensor (DMAPS) prototype

    Energy Technology Data Exchange (ETDEWEB)

    Obermann, Theresa; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Bonn Univ. (Germany); Schwenker, Benjamin [Goettingen Univ. (Germany); Collaboration: ATLAS Pixel-Collaboration

    2016-07-01

    New monolithic detector concepts are currently being explored for future particle physics experiments, in particular for the upgrade of the ATLAS detector. Common to monolithic pixel detectors is the integration of the front-end circuitry and the sensor on the same silicon substrate. The DMAPS concept makes use of high resistive silicon as substrate. It enables the application of a high bias voltage to create a drift field for the charge collection in the sensor part as well as the full usage of CMOS logic in the same piece of silicon. DMAPS prototypes from several foundries are available since three years and have been extensively characterized in the lab. In this talk, results of test beam campaigns, with neutron irradiated prototypes implemented in the ESPROS process, are presented.

  7. Prototyping and testing of the Continuous External Rogowski ITER magnetic sensor

    International Nuclear Information System (INIS)

    Moreau, Ph.; Le-Luyer, A.; Malard, P.; Pastor, P.; Saint-Laurent, F.; Spuig, P.; Lister, J.; Toussaint, M.; Marmillod, P.; Testa, D.; Peruzzo, S.; Knaster, J.; Vayakis, G.; Hughes, S.; Patel, K.M.

    2013-01-01

    Highlights: ► ITER Continuous External Rogowski (CER) are designed for plasma and vacuum vessel current measurement. ► CER are located in the casing of Toroidal Field Coils and thus will operate at 4 K. ► The design of the sensors has been completed. ► CER prototypes have been manufactured by 2 suppliers. ► The R and D campaign on CER prototypes consisted in the measurement of about 100 parameters to characterize the CER. -- Abstract: The measurement of the plasma current in ITER plays an outstanding role as it is part of the machine protection and is a safety-relevant measurement: it will be used in relation with regulatory limits to show that the operation remains within the safe envelope defined in the ITER license. The Continuous External Rogowski (CER) is an inductive sensor designed for current measurements and located in the casing of 3 Toroidal Field Coils (TFCs). After the completion of the design of the CER, 4 prototypes of the sensor were manufactured and R and D activities were performed under a Grant with the European Domestic Agency (F4E-GRT-012). The work was carried out between 2010 and 2011 by the ITERMAG consortium comprising 3 laboratories: CRPP (Switzerland) as leader, CEA (France) and RFX (Italy). The R and D campaign on CER prototypes consisted in the measurement of about 100 parameters to characterize the CER in terms of electrical, thermal, mechanical and also of vacuum compatibility. From these results, electromagnetic modeling of the CER response was performed. It is demonstrated that the CER fulfills ITER requirements. However, the vacuum compatibility of the prototype has to be improved and solutions to cope with this issue are proposed

  8. Prototyping and testing of the Continuous External Rogowski ITER magnetic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, Ph., E-mail: philippe.jacques.moreau@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Le-Luyer, A.; Malard, P.; Pastor, P.; Saint-Laurent, F.; Spuig, P. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Lister, J.; Toussaint, M.; Marmillod, P.; Testa, D. [Centre de Recherches en Physique des Plasmas, EPFL (Switzerland); Peruzzo, S. [Consorzio RFX, Association EURATOM-ENEA, C.so Stati Uniti 4, 35127 Padova (Italy); Knaster, J. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); IFMIF EVEDA, Rokkasho (Japan); Vayakis, G.; Hughes, S.; Patel, K.M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► ITER Continuous External Rogowski (CER) are designed for plasma and vacuum vessel current measurement. ► CER are located in the casing of Toroidal Field Coils and thus will operate at 4 K. ► The design of the sensors has been completed. ► CER prototypes have been manufactured by 2 suppliers. ► The R and D campaign on CER prototypes consisted in the measurement of about 100 parameters to characterize the CER. -- Abstract: The measurement of the plasma current in ITER plays an outstanding role as it is part of the machine protection and is a safety-relevant measurement: it will be used in relation with regulatory limits to show that the operation remains within the safe envelope defined in the ITER license. The Continuous External Rogowski (CER) is an inductive sensor designed for current measurements and located in the casing of 3 Toroidal Field Coils (TFCs). After the completion of the design of the CER, 4 prototypes of the sensor were manufactured and R and D activities were performed under a Grant with the European Domestic Agency (F4E-GRT-012). The work was carried out between 2010 and 2011 by the ITERMAG consortium comprising 3 laboratories: CRPP (Switzerland) as leader, CEA (France) and RFX (Italy). The R and D campaign on CER prototypes consisted in the measurement of about 100 parameters to characterize the CER in terms of electrical, thermal, mechanical and also of vacuum compatibility. From these results, electromagnetic modeling of the CER response was performed. It is demonstrated that the CER fulfills ITER requirements. However, the vacuum compatibility of the prototype has to be improved and solutions to cope with this issue are proposed.

  9. Silicon telescope for prototype sensor characterisation using particle beam and cosmic rays

    CERN Multimedia

    Fu, Jinlin

    2016-01-01

    We present the design and the performance of a silicon strip telescope that we have built and recently used as reference tracking system for prototype sensor characterisation. The telescope was operated on beam at the CERN SPS and also using cosmic rays in the laboratory. We will describe the data acquisition system, based on a custom electronic board that we have developed, and the online monitoring system to control the quality of the data in real time.

  10. A prototype sensor system for the early detection of microbially linked spoilage in stored wheat grain

    Science.gov (United States)

    de Lacy Costello, B. P. J.; Ewen, R. J.; Gunson, H.; Ratcliffe, N. M.; Sivanand, P. S.; Spencer-Phillips, P. T. N.

    2003-04-01

    Sensors based on composites of metal oxides were fabricated and tested extensively under high-humidity and high-flow conditions with exposure to vapours reported to increase in the headspace of wheat grain (Triticum aestivum cv Hereward) colonized by fungi. The sensors that exhibited high sensitivity to target vapours combined with high stability were selected for inclusion into a four-sensor array prototype system. A sampling protocol aligned to parallel gas chromatography-mass spectrometry and human olfactory assessment studies was established for use with the sensor system. The sensor system was utilized to assess irradiated wheat samples that had been conditioned to 25% moisture content and inoculated with pathogens known to cause spoilage of grain in storage. These included the fungi Penicillium aurantiogriseum, Penicillium vulpinum, Penicillium verrucosum, Fusarium culmorum, Aspergillus niger, and Aspergillus flavus and the actinomycete, Streptomyces griseus. The sensor system successfully tracked the progress of the infections from a very early stage and the results were compared with human olfactory assessment panels run concurrently. A series of dilution studies were undertaken using previously infected grain mixed with sound grain, to improve the sensitivity and maximize the differentiation of the sensor system. An optimum set of conditions including incubation temperature, incubation time, sampling time, and flow rate were ascertained utilizing this method. The sensor system differentiated samples of sound grain from samples of sound grain with 1% (w/w) fungus infected grain added. Following laboratory trials, the prototype sensor system was evaluated in a commercial wheat grain intake facility. Thresholds calculated from laboratory tests were used to differentiate between sound and infected samples (classified by intake laboratory technicians) collected routinely from trucks delivering grain for use in food manufacture. All samples identified as having

  11. Investigation of a new generation of dosimeter based on BaFBr(Eu)-type photostimulable sensors: characterization and application to environmental and individual dosimetry

    International Nuclear Information System (INIS)

    Mouhssine, Dounia

    2004-01-01

    This research thesis deals with the characterization and implementation of a new dosimetry system for alpha, gamma and neutron radiations in compliance with new recommendations. This system is based on the use of photostimulable sensors (radio-luminescent films) which have some benefits with respect to conventional dosimeters. After an overview of radiation-matter interaction processes and of the main physical, radiometric and dosimetric quantities used in the field of radiation protection and dosimetry, the author presents various radiation detection methods based on semiconductors, on solid sensors of nuclear traces, and on luminophores. She presents and discusses experimental results obtained with the herein developed dosimeters, as well as the investigation of several parameters. Experimental results are compared with computation results obtained with the MCNP simulation code (Monte Carlo N Particles). Then, after an overview of radon (properties, origin, health risks) and of different active and passive methods of measurement of radon concentrations and of its descendants, the authors comments the first feasibility tests of this system for the detection of a radon signal

  12. Neutron dosimeter

    International Nuclear Information System (INIS)

    Bartko, J.; Schoch, K.F. Jr.; Congedo, T.V.; Anderson, S.L. Jr.

    1989-01-01

    This patent describes a nuclear reactor. It comprises a reactor core; a thermal shield surrounding the reactor core; a pressure vessel surrounding the thermal shield; a neutron dosimeter positioned outside of the thermal shield, the neutron dosimeter comprising a layer of fissile material and a second layer made of a material having an electrical conductivity which permanently varies as a function of its cumulative ion radiation dose; and means, outside the pressure vessel and electrically connected to the layer of second material, for measuring electrical conductivity of the layer of second material

  13. A Novel Low-Cost Sensor Prototype for Monitoring Temperature during Wine Fermentation in Tanks

    Directory of Open Access Journals (Sweden)

    Carlos de Castro

    2013-02-01

    Full Text Available This paper presents a multipurpose and low cost sensor for temperature control over the wine fermentation process, in order to steadily communicate data through wireless modules in real time to a viticulturist’s mobile or fixed device. The advantage of our prototype is due to the fact that it will be used by small winemakers in the “Ribera del Duero” area, and as it is a cheaper sensor and easy to use for the control and monitoring of the grape fermentation process, it will probably be used by other business men with the same necessities in the region. The microcontroller MSP430G2553 is among the components that make up the sensor, that are integrated onto a motherboard. It communicates with the RN-42 Bluetooth module through an UART interface. After verifying that all elements are working correctly, the parts are assembled to form the final prototype. This device has been tested in a winery in the region, fulfilling the initial project specifications.

  14. Accelerator Tests of the Prototype Energetic Heavy Ion Sensor (EHIS) for GOES-R

    Science.gov (United States)

    Connell, J. J.; Lopate, C.; McKibben, R. B.

    2010-12-01

    The Energetic Heavy Ion Sensor (EHIS) is part of the Space Environmental In-Situ Suite (SEISS) for the Geostationary Operational Environment Satellite series R (GOES-R) program. It will measure energetic protons from 10-200 MeV and ions through nickel (Z=28) with similar penetrating power. By use of an Angle Detecting Inclined Sensor (ADIS) system, EHIS achieves single element resolution with extensive on-board event processing. A prototype or "brass-board" instrument, fully functional but not intended for environmental testing, has been completed. In November of 2009, we exposed the prototype to protons at Massachusetts General Hospital (MGH) and in March of 2010, we exposed it to Ni primary and fragment beams at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). In both cases, the instrument was rotated over a range of angles and a moving degrader spread the energy from full beam energy to zero energy. We will present results of these tests. These show an angular resolution for the prototype which results in a one sigma charge resolution of ~0.25 e at Ni. The prototype also demonstrated the capability for calculating the charge of 2500 events per second with its internal processor, accumulating those events in on-board charge histograms, and thus providing unprecedented statistics in high flux conditions. The EHIS represents a major advance in capabilities for operational space weather instruments while also providing data quality suitable for scientific research. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  15. Landslide and Flood Warning System Prototypes based on Wireless Sensor Networks

    Science.gov (United States)

    Hloupis, George; Stavrakas, Ilias; Triantis, Dimos

    2010-05-01

    Wireless sensor networks (WSNs) are one of the emerging areas that received great attention during the last few years. This is mainly due to the fact that WSNs have provided scientists with the capability of developing real-time monitoring systems equipped with sensors based on Micro-Electro-Mechanical Systems (MEMS). WSNs have great potential for many applications in environmental monitoring since the sensor nodes that comprised from can host several MEMS sensors (such as temperature, humidity, inertial, pressure, strain-gauge) and transducers (such as position, velocity, acceleration, vibration). The resulting devices are small and inexpensive but with limited memory and computing resources. Each sensor node contains a sensing module which along with an RF transceiver. The communication is broadcast-based since the network topology can change rapidly due to node failures [1]. Sensor nodes can transmit their measurements to central servers through gateway nodes without any processing or they make preliminary calculations locally in order to produce results that will be sent to central servers [2]. Based on the above characteristics, two prototypes using WSNs are presented in this paper: A Landslide detection system and a Flood warning system. Both systems sent their data to central processing server where the core of processing routines exists. Transmission is made using Zigbee and IEEE 802.11b protocol but is capable to use VSAT communication also. Landslide detection system uses structured network topology. Each measuring node comprises of a columnar module that is half buried to the area under investigation. Each sensing module contains a geophone, an inclinometer and a set of strain gauges. Data transmitted to central processing server where possible landslide evolution is monitored. Flood detection system uses unstructured network topology since the failure rate of sensor nodes is expected higher. Each sensing module contains a custom water level sensor

  16. Results from a prototype MAPS sensor telescope and readout system with zero suppression for the heavy flavor tracker at STAR

    International Nuclear Information System (INIS)

    Greiner, L.; Matis, H.S.; Ritter, H.G.; Rose, A.; Stezelberger, T.; Sun, X.; Szelezniak, M.; Thomas, J.; Vu, C.; Wieman, H.

    2008-01-01

    We describe a three Mimostar-2 Monolithic Active Pixel Sensor (MAPS) sensor telescope prototype with an accompanying readout system incorporating on-the-fly data sparsification. The system has been characterized and we report on the measured performance of the sensor telescope and readout system in beam tests conducted both at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL) and in the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). This effort is part of the development and prototyping work that will lead to a vertex detector for the STAR experiment

  17. Silicon sensor prototypes for the Phase II upgrade of the CMS tracker

    Energy Technology Data Exchange (ETDEWEB)

    Bergauer, Thomas, E-mail: thomas.bergauer@oeaw.ac.at

    2016-09-21

    The High-Luminosity LHC (HL-LHC) has been identified as the highest priority program in High Energy Physics in the mid-term future. It will provide the experiments an additional integrated luminosity of about 2500 fb{sup −1} over 10 years of operation, starting in 2025. In order to meet the experimental challenges of unprecedented p–p luminosity, especially in terms of radiation levels and occupancy, the CMS collaboration will need to replace its entire strip tracker by a new one. In this paper the baseline layout option for this new Phase-II tracker is shown, together with two variants using a tilted barrel geometry or larger modules from 8-inch silicon wafers. Moreover, the two module concepts are discussed, which consist either of two strip sensors (2S) or of one strip and one pixel sensor (PS). These two designs allow p{sub T} discrimination at module level enabling the tracker to contribute to the L1 trigger decision. The paper presents testing results of the macro-pixel-light sensor for the PS module and shows the first electrical characterization of unirradiated, full-scale strip sensor prototypes for the 2S module concept, both on 6- and 8-inch wafers.

  18. A Prototype Flood Early Warning SensorWeb System for Namibia

    Science.gov (United States)

    Sohlberg, R. A.; Mandl, D.; Frye, S. W.; Cappelaere, P. G.; Szarzynski, J.; Policelli, F.; van Langenhove, G.

    2010-12-01

    During the past two years, there have been extensive floods in the country of Namibia, Africa which have affected up to a quarter of the population. Via a collaboration between a group funded by the Earth Science Technology Office (ESTO) at NASA that has been performing various SensorWeb prototyping activities for disasters, the Department of Hydrology in Namibia and the United Nations Space-based Information for Disaster and Emergency Response (UN-SPIDER) , experiments were conducted on how to apply various satellite resources integrated into a SensorWeb architecture along with in-situ sensors such as river gauges and rain gauges into a flood early warning system. The SensorWeb includes a global flood model and a higher resolution basin specific flood model. Furthermore, flood extent and status is monitored by optical and radar types of satellites and integrated via some automation. We have taken a practical approach to find out how to create a working system by selectively using the components that provide good results. The vision for the future is to combine this with the country side dwelling unit data base to create risk maps that provide specific warnings to houses within high risk areas based on near term predictions. This presentation will show some of the highlights of the effort thus far plus our future plans.

  19. Composite material dosimeters

    Science.gov (United States)

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  20. Fast Prototyping of Sensorized Cell Culture Chips and Microfluidic Systems with Ultrashort Laser Pulses

    Directory of Open Access Journals (Sweden)

    Sebastian M. Bonk

    2015-03-01

    Full Text Available We developed a confined microfluidic cell culture system with a bottom plate made of a microscopic slide with planar platinum sensors for the measurement of acidification, oxygen consumption, and cell adhesion. The slides were commercial slides with indium tin oxide (ITO plating or were prepared from platinum sputtering (100 nm onto a 10-nm titanium adhesion layer. Direct processing of the sensor structures (approximately three minutes per chip by an ultrashort pulse laser facilitated the production of the prototypes. pH-sensitive areas were produced by the sputtering of 60-nm Si3N4 through a simple mask made from a circuit board material. The system body and polydimethylsiloxane (PDMS molding forms for the microfluidic structures were manufactured by micromilling using a printed circuit board (PCB milling machine for circuit boards. The microfluidic structure was finally imprinted in PDMS. Our approach avoided the use of photolithographic techniques and enabled fast and cost-efficient prototyping of the systems. Alternatively, the direct production of metallic, ceramic or polymeric molding tools was tested. The use of ultrashort pulse lasers improved the precision of the structures and avoided any contact of the final structures with toxic chemicals and possible adverse effects for the cell culture in lab-on-a-chip systems.

  1. Optical dosimeter

    International Nuclear Information System (INIS)

    Drukaroff, I.; Fishman, R.

    1984-01-01

    A reflecting optical dosimeter is a thin block of optical material having an input light pipe at one corner and an output light pipe at another corner, arranged so that the light path includes several reflections off the edges of the block to thereby greatly extend its length. In a preferred embodiment, one corner of the block is formed at an angle so that after the light is reflected several times between two opposite edges, it is then reflected several more times between the other two edges

  2. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds.

    Science.gov (United States)

    Ng, Chee-Loon; Kai, Fuu-Ming; Tee, Ming-Hui; Tan, Nicholas; Hemond, Harold F

    2018-01-18

    Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic) capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5) and volatile organic compounds (VOCs). For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  3. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Chee-Loon Ng

    2018-01-01

    Full Text Available Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5 and volatile organic compounds (VOCs. For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  4. Portable dosimeter

    International Nuclear Information System (INIS)

    Buffa, A.; Caley, R.; Pfaff, K.

    1986-01-01

    A simple but very accurate portable dosimeter is described for indicating the intensity of ionizing radiation, comprising, as a unit: (a) a radiation-detection chamber having a pair of parallel, facing, electrically-conducting, radiation-permeable electrodes spaced from each other to define a volume for a gas which is ionized by the radiation when exposed thereto; (b) electric potential supply means connected across the electrodes for attracting the gas ions to the electrodes and transferring their charge to the electrodes; (c) detection circuit means connected across the electrodes and having at least one of high-frequency electromagnetic- and radiation-sensitive components for detecting the charge on the electrodes and indicating therefrom a representation of the intensity of the radiation; (d) radiation shield means surrounding the radiation-sensitive components of the detection circuit means for shielding the latter from the ionizing radiation; (e) electric shield means surrounding the sensitive components of the detection circuit means for shielding the latter from electromagnetic interference including any caused by the ionizing radiation; and (f) ion shield means potting the ion-sensitive components for shielding them from radiation-caused ambient ionization; whereby the entire dosimeter may be assembled as the unit and portably transported into various radiation sources

  5. Measurements on irradiated L1 sensor prototypes for the D0 Run IIb silicon detector project

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan, M.; Bolton, T.; Carnes, K.; /Kansas State U.; Demarteau, M.; /Fermilab; Demina, R.; /Rochester U.; Gray, T.; /Kansas State U.; Korjenevski, S.; /Rochester U.; Lehner, F.; /Zurich U.; Lipton, R.; Mao, H.S.; /Fermilab; McCarthy, R.; /SUNY, Stony Brook /Kansas State U. /Fermilab

    2010-01-01

    We report on irradiation studies of Hamamatsu prototype silicon microstrip detectors for layer 1 of the D0 upgrade project for Run IIb. The irradiation was carried out with 10 MeV protons up to proton fluence of 10{sup 14} p/cm{sup 2} at the J.R. Macdonald Laboratory, Manhatten, KS. The flux calibration was carefully checked using different dose normalization techniques. The results based on the obtained sensor leakage currents after irradiation show that the NIEL scaling hypothesis for low energy protons has to be applied with great care. We observe 30-40% less radiation damage in silicon for 10 MeV proton exposure than is expected from the predicted NIEL scaling.

  6. Measurements on irradiated L1 sensor prototypes for the D0 Run IIb silicon detector project

    International Nuclear Information System (INIS)

    Ahsan, M.; Bolton, T.; Carnes, K.; Demarteau, M.; Demina, R.; Gray, T.; Korjenevski, S.; Lehner, F.; Lipton, R.; Mao, H.S.; McCarthy, R.

    2010-01-01

    We report on irradiation studies of Hamamatsu prototype silicon microstrip detectors for layer 1 of the D0 upgrade project for Run IIb. The irradiation was carried out with 10 MeV protons up to proton fluence of 10 14 p/cm 2 at the J.R. Macdonald Laboratory, Manhatten, KS. The flux calibration was carefully checked using different dose normalization techniques. The results based on the obtained sensor leakage currents after irradiation show that the NIEL scaling hypothesis for low energy protons has to be applied with great care. We observe 30-40% less radiation damage in silicon for 10 MeV proton exposure than is expected from the predicted NIEL scaling.

  7. Prototype of a laser guide star wavefront sensor for the Extremely Large Telescope

    Science.gov (United States)

    Patti, M.; Lombini, M.; Schreiber, L.; Bregoli, G.; Arcidiacono, C.; Cosentino, G.; Diolaiti, E.; Foppiani, I.

    2018-06-01

    The new class of large telescopes, like the future Extremely Large Telescope (ELT), are designed to work with a laser guide star (LGS) tuned to a resonance of atmospheric sodium atoms. This wavefront sensing technique presents complex issues when applied to big telescopes for many reasons, mainly linked to the finite distance of the LGS, the launching angle, tip-tilt indetermination and focus anisoplanatism. The implementation of a laboratory prototype for the LGS wavefront sensor (WFS) at the beginning of the phase study of MAORY (Multi-conjugate Adaptive Optics Relay) for ELT first light has been indispensable in investigating specific mitigation strategies for the LGS WFS issues. This paper presents the test results of the LGS WFS prototype under different working conditions. The accuracy within which the LGS images are generated on the Shack-Hartmann WFS has been cross-checked with the MAORY simulation code. The experiments show the effect of noise on centroiding precision, the impact of LGS image truncation on wavefront sensing accuracy as well as the temporal evolution of the sodium density profile and LGS image under-sampling.

  8. Sensor Prototype to Evaluate the Contact Force in Measuring with Coordinate Measuring Arms

    Directory of Open Access Journals (Sweden)

    Eduardo Cuesta

    2015-06-01

    Full Text Available This paper describes the design, development and evaluation tests of an integrated force sensor prototype for portable Coordinate Measuring Arms (CMAs or AACMMs. The development is based on the use of strain gauges located on the surface of the CMAs’ hard probe. The strain gauges as well as their cables and connectors have been protected with a custom case, made by Additive Manufacturing techniques (Polyjet 3D. The same method has been selected to manufacture an ergonomic handle that includes trigger mechanics and the electronic components required for synchronizing the trigger signal when probing occurs. The paper also describes the monitoring software that reads the signals in real time, the calibration procedure of the prototype and the validation tests oriented towards increasing knowledge of the forces employed in manual probing. Several experiments read and record the force in real time comparing different ways of probing (discontinuous and continuous contact and measuring different types of geometric features, from single planes to exterior cylinders, cones, or spheres, through interior features. The probing force is separated into two components allowing the influence of these strategies in probe deformation to be known. The final goal of this research is to improve the probing technique, for example by using an operator training programme, allowing extra-force peaks and bad contacts to be minimized or just to avoid bad measurements.

  9. Direct reading dosimeter

    International Nuclear Information System (INIS)

    Thomson, I.

    1985-01-01

    This invention is a direct reading dosimeter which is light, small enough to be worn on a person, and measures both dose rates and total dose. It is based on a semiconductor sensor. The gate threshold voltage change rather than absolute value is measured and displayed as a direct reading of the dose rate. This is effected by continuously switching the gate of an MOS transistor from positive to negative bias. The output can directly drive a digital readout or trigger an audible alarm. The sensor device can be a MOSFET, bipolar transistor, or MOSFET capacitor which has its electrical characteristics change due to the trapped charge in the insulating layer of the device

  10. Development of a TL personal dosimeter identifiable PA exposure, and comparison with commercial TL dosimeters

    International Nuclear Information System (INIS)

    Kwon, J.W.; Kim, H.K.; Lee, J.K.; Kim, J.L.

    2004-01-01

    A single-dosimeter worn on the anterior surface of the body of a worker was found to significantly underestimate the effective dose to the worker when the radiation comes from the back. Several researchers suggested that this sort of underestimation can be corrected to a certain extent by using an extra dosimeter on the back. However, use of multiple dosimeters also has disadvantages such as complication in control or incurrence of extra cost. Instead of the common multi-dosimeter approach, in this study, a single dosimeter introducing asymmetric filters which enabled to identify PA exposure was designed, and its dose evaluation algorithm for AP-PA mixed radiation fields was established. A prototype TL personal dosimeter was designed and constructed. The Monte Carlo simulations were utilized in the design process and verified by experiments. The dosimeter and algorithm were applicable to photon radiation having an effective energy beyond 100 keV in AP-PA mixed radiation fields. A simplified performance test based on ANSI N13.11 showed satisfactory results. Considering that the requirements of the International Electrotechnical Commission (IEC) and the American National Standards Institute (ANSI) with regard to the dosimeter on angular dependency is reinforced, the dosimeter and the dose evaluation algorithm developed in this study provides a useful approach in practical personal dosimetry against inhomogeneous high energy radiation fields. (author)

  11. A Prototype Flux-Plate Heat-Flow Sensor for Venus Surface Heat-Flow Determinations

    Science.gov (United States)

    Morgan, Paul; Reyes, Celso; Smrekar, Suzanne E.

    2005-01-01

    Venus is the most Earth-like planet in the Solar System in terms of size, and the densities of the two planets are almost identical when selfcompression of the two planets is taken into account. Venus is the closest planet to Earth, and the simplest interpretation of their similar densities is that their bulk compositions are almost identical. Models of the thermal evolution of Venus predict interior temperatures very similar to those indicated for the regions of Earth subject to solid-state convection, but even global analyses of the coarse Pioneer Venus elevation data suggest Venus does not lose heat by the same primary heat loss mechanism as Earth, i.e., seafloor spreading. The comparative paucity of impact craters on Venus has been interpreted as evidence for relatively recent resurfacing of the planet associated with widespread volcanic and tectonic activity. The difference in the gross tectonic styles of Venus and Earth, and the origins of some of the enigmatic volcano-tectonic features on Venus, such as the coronae, appear to be intrinsically related to Venus heat loss mechanism(s). An important parameter in understanding Venus geological evolution, therefore, is its present surface heat flow. Before the complications of survival in the hostile Venus surface environment were tackled, a prototype fluxplate heat-flow sensor was built and tested for use under synthetic stable terrestrial surface conditions. The design parameters for this prototype were that it should operate on a conforming (sand) surface, with a small, self-contained power and recording system, capable of operating without servicing for at least several days. The precision and accuracy of the system should be < 5 mW/sq m. Additional information is included in the original extended abstract.

  12. Floating Gate CMOS Dosimeter With Frequency Output

    Science.gov (United States)

    Garcia-Moreno, E.; Isern, E.; Roca, M.; Picos, R.; Font, J.; Cesari, J.; Pineda, A.

    2012-04-01

    This paper presents a gamma radiation dosimeter based on a floating gate sensor. The sensor is coupled with a signal processing circuitry, which furnishes a square wave output signal, the frequency of which depends on the total dose. Like any other floating gate dosimeter, it exhibits zero bias operation and reprogramming capabilities. The dosimeter has been designed in a standard 0.6 m CMOS technology. The whole dosimeter occupies a silicon area of 450 m250 m. The initial sensitivity to a radiation dose is Hz/rad, and to temperature and supply voltage is kHz/°C and 0.067 kHz/mV, respectively. The lowest detectable dose is less than 1 rad.

  13. A very-low-cost dosimeter based on the off-the-shelf CD4007 MOSFET array for in vivo radiotherapy applications

    International Nuclear Information System (INIS)

    Siebel, O.F.; Pereira, J.G.; Souza, R.S.; Ramirez-Fernandez, F.J.; Schneider, M.C.; Galup-Montoro, C.

    2015-01-01

    Purpose: This paper presents a low-cost MOSFET dosimeter suitable for in vivo radiotherapy applications. We analyze different methods to extract the threshold voltage and how this extraction is affected by the dose dependence of slope factor and carrier mobility. Also, we discuss fundamental aspects of the basic building blocks of a MOSFET dosimeter, namely, the radiation sensor, the reader circuit and temperature desensitization. Methods: Experiments with ionizing radiation (6 MV X-ray beams) were carried out at the Centro de Pesquisas Oncológicas (CEPON) using linear accelerators to test the MOSFET dosimeter. Results: The main performance parameters of the dosimeter prototype are radiation sensitivity about 100 mV/Gy (sensor's sensitivity is around 6.7 mV/Gy), thermal dependence of 0.5 cGy/°C, reproducibility is about 2.6%, and radiation beam attenuation of 0.14%. Conclusions: The MOSFET dosimeter described in this article, which combines a simple and accurate readout procedure with a small size, low-cost, cable/battery-free sensor and very little attenuation of the radiation beam is a very appealing option for in vivo dosimetry. - Highlights: • We present a low-cost, cable/battery-free MOSFET sensor for radiotherapy. • We analyze methods to extract the key MOSFET dosimetric parameter (V T ). • We discuss fundamental aspects of building blocks of a MOSFET dosimeter. • Reproducibility (2.6%) comparable to commercial MOSFET dosimeters (1.7%). • Similar responses to radiation with commercial TLDs (S.D. around 2%)

  14. Aerometrics' laser-based lane-tracker sensor: engineering and on-the-road evaluation of advanced prototypes

    Science.gov (United States)

    Schuler, Carlos A.; Tapos, Francis M.; Alayleh, Mehyeddine M.; Bachalo, William D.

    1997-02-01

    Aerometrics initiated and continues on the development an innovative laser-diode based device that provides a warning signal when a motor-vehicle deviates from the center of the lane. The device is based on a sensor that scans the roadway on either side of the vehicle and determines the lateral position relative to the existing painted lines marking the lane. The principles of operation of the sensor, and the results of Aerometrics' early testing were presented last year in this forum. This paper presents Aerometrics' continuing efforts in bringing the technology to market. New prototypes have been developed and tested. Aerometrics' engineering efforts and the use of latest technologies have resulted in a 24-fold reduction in sensor volume when compared to their predecessors and similar reductions in weight. The current prototype measures less than 9 cm X 8 cm X 7 cm, and can be easily fit within the cavity of rear-view mirror holders used in most present-day vehicles. Also, advances in signal conditioning and processing have improved the reliability of the sensor. Results of continuing testing of the sensor will be presented.

  15. Technical comparison of the commercialized Racon model 21000 Portable, Reconfigurable Line Sensor (PRLS) and original Sandia/USAF prototype

    International Nuclear Information System (INIS)

    Blattman, D.A.

    1993-01-01

    The military has been moving from a global strategic response with fixed site asset protection to regional tactical response requirements. This change necessitates high security sensor systems that can be easily relocated and rapidly placed in operation by unskilled operators. The Portable, Reconfigurable Line Sensor (PRLS) was developed by Sandia National Laboratories with United States Air Force funding. Racon, Inc. is now commercializing the PRLS through a Cooperative Research and Development Agreement (CRDA) with the United States Air Force. The commercialized design of the new PRLS bi-static radar sensor benefits from the extensive field testing of the original Sandia/USAF-developed engineering prototype systems of the 1980s. Tests conducted in hot, cold, wind, rain, and snow conditions verified exceptional intruder detection capability, resistance to spoofing attempts, and insusceptibility to mutual interference and nuisance alarms caused by birds or small animals. The use of 1990's implementation technology combined with extensive testing information has resulted in significant product performance enhancements as well as cost savings. This paper compares technical features of the original Sandia/USAF prototypes with the new commercialized Racon model 21000 Portable, Reconfigurable Line Sensor. The PRLS advances the art of outdoor security to meet the Relocatable Sensor System (RSS) challenge of the 1990s

  16. Prototyping a Sensor Enabled 3d Citymodel on Geospatial Managed Objects

    Science.gov (United States)

    Kjems, E.; Kolář, J.

    2013-09-01

    One of the major development efforts within the GI Science domain are pointing at sensor based information and the usage of real time information coming from geographic referenced features in general. At the same time 3D City models are mostly justified as being objects for visualization purposes rather than constituting the foundation of a geographic data representation of the world. The combination of 3D city models and real time information based systems though can provide a whole new setup for data fusion within an urban environment and provide time critical information preserving our limited resources in the most sustainable way. Using 3D models with consistent object definitions give us the possibility to avoid troublesome abstractions of reality, and design even complex urban systems fusing information from various sources of data. These systems are difficult to design with the traditional software development approach based on major software packages and traditional data exchange. The data stream is varying from urban domain to urban domain and from system to system why it is almost impossible to design a complete system taking care of all thinkable instances now and in the future within one constraint software design complex. On several occasions we have been advocating for a new end advanced formulation of real world features using the concept of Geospatial Managed Objects (GMO). This paper presents the outcome of the InfraWorld project, a 4 million Euro project financed primarily by the Norwegian Research Council where the concept of GMO's have been applied in various situations on various running platforms of an urban system. The paper will be focusing on user experiences and interfaces rather then core technical and developmental issues. The project was primarily focusing on prototyping rather than realistic implementations although the results concerning applicability are quite clear.

  17. Advanced fire observation by the Intelligent Infrared Sensor prototype FOCUS on the International Space Station

    Science.gov (United States)

    Oertel, D.; Haschberger, P.; Tank, V.; Lanzl, F.; Zhukov, B.; Jahn, H.; Briess, K.; Lorenz, E.; Roeser, H.-P.; Ginati, A.; Tobehn, C.; Schulte in den Bäumen, J.; Christmann, U.

    1999-01-01

    Current and planned operational space-borne Earth observation systems provide spatially, radiometrically or temporally crude data for the detection and monitoring of high temperature phenomena on the surface of our planet. High Temperature Events (HTE) very often cause environmental disasters. Such HTE are forest and savannah fires, fires of open coal mines, volcanic activities and others (e.g. fires of oil wells, pipelines etc.). A simultaneous co-registration of a combination of infrared (IR) and visible (VIS) channels is the key for a reliable autonomous on-board detection of High Temperature Events (HTE) on Earth surface, such as vegetation fires and volcano eruptions. This is the main feature of the FOCUS experiment. Furthermore there are ecology-oriented objectives of the FOCUS experiment mainly related to spectrometric/imaging remote inspection and parameter extraction of selected HTEs, and to the assessment of some ecological consequences of HTEs, such as aerosol and gas emission. Based on own experimental work and supported by Co-Investigators from Italy, Greece, France, Spain, Russia and Germany, DLR proposed in 1997 to use the International Space Station (ISS) in its early utilization phase as a platform and test-bed for an Intelligent Infrared Sensor prototype FOCUS of a future Environmental Disaster Recognition Satellite System. FOCUS is considered by ESA as an important mission combining a number of proven technologies and observation techniques to provide the scientific and operational user community with key data for the classification and monitoring of forest fires. FOCUS was selected as one of five European ``Groupings'' to be flown as an externally mounted payload during the early utilisation phase of the ISS. The FOCUS Phase A Study will be performed by OHB-System, DLR and Zeiss from September 1998 until May 1999.

  18. Dosimeter charging apparatus

    International Nuclear Information System (INIS)

    Reuter, F.A.; Moorman, Ch.J.

    1985-01-01

    An apparatus for charging a dosimeter which has a capacitor connected between first and second electrodes and a movable electrode in a chamber electrically connected to the first electrode. The movable electrode deflects varying amounts depending upon the charge present on said capacitor. The charger apparatus includes first and second charger electrodes couplable to the first and second dosimeter electrodes. To charge the dosimeter, it is urged downwardly into a charging socket on the charger apparatus. The second dosimeter electrode, which is the dosimeter housing, is electrically coupled to the second charger electrode through a conductive ring which is urged upwardly by a spring. As the dosimeter is urged into the socket, the ring moves downwardly, in contact with the second charger electrode. As the dosimeter is further urged downwardly, the first dosimeter electrode and first charger electrode contact one another, and an insulator post carrying the first and second charger electrodes is urged downwardly. Downward movement of the post effects the application of a charging potential between the first and second charger electrodes. After the charging potential has been applied, the dosimeter is moved further into the charging socket against the force of a relatively heavy biasing spring until the dosimeter reaches a mechanical stop in the charging socket

  19. Dosimeter design specifications

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The combination dosimeter and security credential holder was developed as part of the effort involved to provide an automated readout and thermoluminescent dosimetry capability at Hanford. The holder is designed to accomodate the thermoluminescent dosimeter card, appropriate filters, the security credential and a snap type clip. The body of the holder is ABS plastic (acrylontrile-butadiene-styrene). The dosimeter holder and card is mold casted providing uniformity of construction

  20. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-091201) Report No: 22

    International Nuclear Information System (INIS)

    Goudarzi, Reza; Johannesson, Lars-Erik

    2009-12-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-091201. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements

  1. Prototype Repository - Sensor data report (period 100917-110101) Report no 24

    International Nuclear Information System (INIS)

    Goudarzi, Reza

    2012-08-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. At the end of November 2010 stared the dismantling of the outer section. This report presents data from measurements in the Prototype Repository during the period 2001-09-17-2011-01-01. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements

  2. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-090601) Report No: 21

    International Nuclear Information System (INIS)

    Goudarzi, Reza; Johannesson, Lars-Erik

    2009-07-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-090601. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by BBK) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements

  3. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-081201) Report No: 20

    International Nuclear Information System (INIS)

    Goudarzi, Reza; Johannesson, Lars-Erik

    2009-03-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-081201. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by BBK) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements

  4. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-090601) Report No: 21

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Reza; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2009-07-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-090601. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by BBK) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements.

  5. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-081201) Report No: 20

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Reza; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2009-03-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-081201. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by BBK) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements.

  6. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-091201) Report No: 22

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Reza; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2009-12-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-091201. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements.

  7. Prototype Repository - Sensor data report (period 100917-110101) Report no 24

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Reza [Clay Technology AB, Lund (Sweden)

    2012-08-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. At the end of November 2010 stared the dismantling of the outer section. This report presents data from measurements in the Prototype Repository during the period 2001-09-17-2011-01-01. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements.

  8. Material Agency In User-Centred Design Practices: High School Students Improvising (with) Smart Sensor Prototypes

    NARCIS (Netherlands)

    Sauer, S.

    2015-01-01

    This paper investigates (digital) materiality through an analysis of the "sociomaterial configuration" (Orlikowski 2009) of the participatory design project SensorLab (2010). In SensorLab, users were enrolled as designers: a group of high school students developed and tested smart pollution-sensing

  9. Material Agency In User-Centred Design Practices: High School Students Improvising (with) Smart Sensor Prototypes

    NARCIS (Netherlands)

    Sauer, S.C.

    2015-01-01

    This paper investigates (digital) materiality through an analysis of the “sociomaterial configuration” (Orlikowski 2009) of the participatory design project SensorLab (2010). In SensorLab, users were enrolled as designers: a group of high school students developed and tested smart pollution-sensing

  10. A prototype Ultraviolet Light Sensor based on ZnO Nanoparticles/Graphene Oxide Nanocomposite Using Low Temperature Hydrothermal Method

    International Nuclear Information System (INIS)

    Al-Fandi, M; Oweis, R; Khwailah, H; Al-Hattami, S; Al-Shawwa, E; Albiss, B A; Al-Akhras, M-Ali; Qutaish, H; AlZoubi, T

    2015-01-01

    A new prototype UV nanosensor using ZnO nanoparticles (NPs)/graphene oxide (GO) nanocomposite (ZnO-NP/GO) on silicon substrate is reported in this paper. The hybrid nanocomposite structure has been developed by an optimized hydrothermal process at low growth temperature (∼50 °C). In this hybrid nanosensor, the ZnO nanoparticles act as UV- absorbing and charge carrier generating material, while graphene with its superior electrical conductivity has been used as a charge transporting material. Various nanostructure characterization techniques were intensively utilized including SEM, EDX, XRD, FTIR and UV-VIS. Also, the I-V measurement was employed to evaluate the prototype sensor. The morphological SEM analysis showed that the ZnO-NPs (average diameter of 20 nm) were dispersed evenly on the GO sheets. As well, the EDX spectra confirmed the exact chemical composition of the intended structure. The room temperature UV-VIS measurement revealed an enhanced optical absorption of UV-light at an absorption band centered on 375 nm. The improved optical and electrical properties were observed at an optimum relative concentration of 1:10. Under UV light illumination, the measured I-V characteristic of the prototype detector exhibited a considerable photocurrent increase of the ZnO-NP/GO nanocomposite compared to pristine ZnO nanostructure. These results can be promising for future enhanced UV- sensing applications. (paper)

  11. Thermoluminescent dosimeter system

    International Nuclear Information System (INIS)

    Felice, P.E.; Gonzalez, J.L.; Seidel, J.G.

    1979-01-01

    An improved thermoluminescent dosimeter system and apparatus for sensing alpha particle emission is described. A thermoluminescent body is sealed between a pair of metallized plastic films. The dosimeter is mounted within a protective inverted cup or a tube closed at one end, which is disposed in a test hole for exposure to radioactive radon gas which is indicaive of uranium deposits

  12. SDI-100 radiation dosimeter

    International Nuclear Information System (INIS)

    Zheng Zheng; Zhao Yongfu; Dai Honggui

    1995-01-01

    An intelligent radiation dosimeter, with such functions as signal collection and data processing, store, print and display, has been developed. Its detector is made of a micro-semiconductor. This dosimeter can be used in laboratories for agricultural 60 Co irradiators, radiotherapeutic facilities and other small and medium-size 60 Co irradiators

  13. Passive radon daughter dosimeters

    International Nuclear Information System (INIS)

    McElroy, R.G.C.; Johnson, J.R.

    1986-03-01

    On the basis of an extensive review of the recent literature concerning passive radon daughter dosimeters, we have reached the following conclusions: 1) Passive dosimeters for measuring radon are available and reliable. 2) There does not presently exist an acceptable passive dosimeter for radon daughters. There is little if any hope for the development of such a device in the foreseeable future. 3) We are pessimistic about the potential of 'semi-passive dosimeters' but are less firm about stating categorically that these devices cannot be developed into a useful radon daughter dosimeter. This report documents and justifies these conclusions. It does not address the question of the worker's acceptance of these devices because at the present time, no device is sufficiently advanced for this question to be meaningful. 118 refs

  14. Operating results obtained in a nuclear power plant with a sensor surveillance prototype

    International Nuclear Information System (INIS)

    Jacquot, J.P.; Poujol, A.; Beaubatie, J.; Ciaramitaro, W.

    1983-03-01

    Surveillance methods have been validated and specific equipment have been built to measure the response time of sensors from a nuclear power plant protection channel. The reason of the choice of this parameter is twofold: the sensor response time is representative of the sensor physical status and is also part of the overall channel response time. Two surveillance methods are used: noise analysis (by AR or PSD modeling), and loop current step response (for resistance thermometer detectors only). The methods were validated on test facilities and on nuclear power plants. Two test equipments were built and tested on plants. Results are represented and conclusions are drawn on the feasibility of such methods for sensor surveillance [fr

  15. Rapid Prototyping of Power Management Protocols for Sensor Networks: A Case Study

    National Research Council Canada - National Science Library

    Arumugam, Mahesh; Wang, Limin; Kulkarni, Sandeep

    2006-01-01

    .... Specifically, existing programming platforms for sensor networks (e.g., nesC/TinyOS) use an event-driven programming model and, hence, require the designers to be responsible for stack management, buffer management, flow control, etc...

  16. Characterization of proton irradiated 3D-DDTC pixel sensor prototypes fabricated at FBK

    Energy Technology Data Exchange (ETDEWEB)

    La Rosa, A., E-mail: alessandro.larosa@cern.ch [CERN, Geneva 23, CH-1211 (Switzerland); Boscardin, M. [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy); Cobal, M. [Universita degli Studi di Udine and INFN Trieste, Gruppo Collegato di Udine, Via delle Scienze 208, I-33100 Udine (Italy); Dalla Betta, G.-F. [DISI, Universita degli Studi di Trento and INFN Padova, Gruppo Collegato d Trento, Via Sommarive 14, I-38123 Trento (Italy); Da Via, C. [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Darbo, G. [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Gallrapp, C. [CERN, Geneva 23, CH-1211 (Switzerland); Gemme, C. [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Huegging, F.; Janssen, J. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Micelli, A. [Universita degli Studi di Udine and INFN Trieste, Gruppo Collegato di Udine, Via delle Scienze 208, I-33100 Udine (Italy); Pernegger, H. [CERN, Geneva 23, CH-1211 (Switzerland); Povoli, M. [DISI, Universita degli Studi di Trento and INFN Padova, Gruppo Collegato d Trento, Via Sommarive 14, I-38123 Trento (Italy); Wermes, N. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Zorzi, N. [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy)

    2012-07-21

    In this paper we discuss results relevant to 3D Double-Side Double Type Column (3D-DDTC) pixel sensors fabricated at FBK (Trento, Italy) and oriented to the ATLAS upgrade. Some assemblies of these sensors featuring different columnar electrode configurations (2, 3, or 4 columns per pixel) and coupled to the ATLAS FEI3 read-out chip were irradiated up to large proton fluences and tested in laboratory with radioactive sources. In spite of the non-optimized columnar electrode overlap, sensors exhibit reasonably good charge collection properties up to an irradiation fluence of 2 Multiplication-Sign 10{sup 15}n{sub eq}cm{sup -2}, while requiring bias voltages in the order of 100 V. Sensor operation is further investigated by means of TCAD simulations which can effectively explain the basic mechanisms responsible for charge loss after irradiation.

  17. Characterization of proton irradiated 3D-DDTC pixel sensor prototypes fabricated at FBK

    CERN Document Server

    La Rosa, A; Cobal, M; Betta, G -F Dalla; Da Via, C; Darbo, G; Gallrapp, C; Gemme, C; Huegging, F; Janssen, J; Micelli, A; Pernegger, H; Povoli, M; Wermes, N; Zorzi, N

    2012-01-01

    In this paper we discuss results relevant to 3D Double-Side Double Type Column (3D-DDTC) pixel sensors fabricated at FBK (Trento, Italy) and oriented to the ATLAS upgrade. Some assemblies of these sensors featuring different columnar electrode configurations (2, 3, or 4 columns per pixel) and coupled to the ATLAS FEI3 read-out chip were irradiated up to large proton fluences and tested in laboratory with radioactive sources. In spite of the non optimized columnar electrode overlap, sensors exhibit reasonably good charge collection properties up to an irradiation fluence of 2 x 10**15 neq/cm2, while requiring bias voltages in the order of 100 V. Sensor operation is further investigated by means of TCAD simulations which can effectively explain the basic mechanisms responsible for charge loss after irradiation.

  18. Testbeam results of irradiated ams H18 HV-CMOS pixel sensor prototypes

    Science.gov (United States)

    Benoit, M.; Braccini, S.; Casse, G.; Chen, H.; Chen, K.; Di Bello, F. A.; Ferrere, D.; Golling, T.; Gonzalez-Sevilla, S.; Iacobucci, G.; Kiehn, M.; Lanni, F.; Liu, H.; Meng, L.; Merlassino, C.; Miucci, A.; Muenstermann, D.; Nessi, M.; Okawa, H.; Perić, I.; Rimoldi, M.; Ristić, B.; Barrero Pinto, M. Vicente; Vossebeld, J.; Weber, M.; Weston, T.; Wu, W.; Xu, L.; Zaffaroni, E.

    2018-02-01

    HV-CMOS pixel sensors are a promising option for the tracker upgrade of the ATLAS experiment at the LHC, as well as for other future tracking applications in which large areas are to be instrumented with radiation-tolerant silicon pixel sensors. We present results of testbeam characterisations of the 4th generation of Capacitively Coupled Pixel Detectors (CCPDv4) produced with the ams H18 HV-CMOS process that have been irradiated with different particles (reactor neutrons and 18 MeV protons) to fluences between 1× 1014 and 5× 1015 1-MeV- neq. The sensors were glued to ATLAS FE-I4 pixel readout chips and measured at the CERN SPS H8 beamline using the FE-I4 beam telescope. Results for all fluences are very encouraging with all hit efficiencies being better than 97% for bias voltages of 85 V. The sample irradiated to a fluence of 1× 1015 neq—a relevant value for a large volume of the upgraded tracker—exhibited 99.7% average hit efficiency. The results give strong evidence for the radiation tolerance of HV-CMOS sensors and their suitability as sensors for the experimental HL-LHC upgrades and future large-area silicon-based tracking detectors in high-radiation environments.

  19. Alarm pocket dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, H; Kitamura, S [Matsushita Electric Industrial Co. Ltd., Kadoma, Osaka (Japan)

    1975-04-01

    This instrument is a highly reliable pocket dosimeter which has been developed for personal monitoring use. The dosimeter generates an alarm sound when the exposure dose reaches a preset value. Using a tiny GM tube for a radiation detector and measuring the integrated dose by means of a digital counting method, this new pocket dosimeter has high accuracy and stability. Using a sealed alkali storage battery for the power supply, and with an automatic control charger, this dosimetry system is easy and economical to operate and maintain. Detectable radiation by the dosimeter are X and ..gamma.. rays. Standard preset dose values are 30, 50, 80 and 100 mR. Detection accuracy is betwen +10% and -20%. The dosimeter is continuously usable for more than 14 hours after charging for 2 hours. The dosimeter has the following features; good realiability, shock-proof loud and clear alarm sound, the battery charger also serves as a stock container for the dosimeters, and no switching operation required for the power supply due to the internal automatic switch. Therefore, the dosimetry system is very useful for personal monitoring management in many radiation industry establishments.

  20. Exploring the quality of latest sensor prototypes for the CMS Tracker Phase II Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    König, A., E-mail: axel.koenig@oeaw.ac.at

    2017-02-11

    The luminosity of the LHC will be increased by a factor of five to seven after the third long shutdown (LS3) scheduled in the mid of the next decade. The significant increase in luminosity along with the limitations of the current Tracker require a complete renewal of the CMS Outer Tracker, the Tracker Phase-2 Upgrade, during the LS3. New types of modules called PS and 2S modules are foreseen offering enhanced functionality and radiation hardness. Milestones in sensor R&D for the 2S modules as well as first characterization results are presented. AC-coupled silicon strip sensors of two vendors, produced on 6-inch as well as on 8-inch wafers, are considered which both are in n-on-p technology. Global as well as single strip parameters were measured providing insights into the quality of the sensors.

  1. Position dependence of charge collection in prototype sensors for the CMS pixel detector

    CERN Document Server

    Rohe, Tilman; Chiochia, Vincenzo; Cremaldi, Lucien M; Cucciarelli, Susanna; Dorokhov, Andrei; Konecki, Marcin; Prokofiev, Kirill; Regenfus, Christian; Sanders, David A; Son Seung Hee; Speer, Thomas; Swartz, Morris

    2004-01-01

    This paper reports on the sensor R&D activity for the CMS pixel detector. Devices featuring several design and technology options have been irradiated up to a proton fluence1 of 1 multiplied by 10**1**5 n //e//q/cm**2 at the CERN PS. Afterward, they were bump bonded to unirradiated readout chips and tested using high energy pions in the H2 beam line of the CERN SPS. The readout chip allows a nonzero suppressed full analogue readout and therefore a good characterization of the sensors in terms of noise and charge collection properties. The position dependence of signal is presented and the differences between the two sensor options are discussed. 20 Refs.

  2. Evaluation of personal dosimeters

    International Nuclear Information System (INIS)

    Correa, C. A.

    2007-01-01

    This work makes a screening of the different types of dosimeters present in the international market, to provide operative dosimetry of individual monitoring to measure Hp(10) and Hp(0,07)-specifically for external radiation gamma and beta, as well as to give knowledge of advances of passive and operative dosimetry, and the changes in the regulatory policy relative to these aspects. The data has been extracted from several providers of dosimeters, and the importance has been stressed in a good election of the dosimeter before its use, as well as the important advances in these equipment. (Author) 14 refs

  3. Characterization of silicon microstrip sensors, front-end electronics, and prototype tracking detectors for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Sorokin, Iurii

    2013-01-01

    The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryonic densities. The matter at the extreme conditions will be studied in collisions of a heavy ion beam with a fixed heavy element target. The present work is devoted to the development of the main component of the CBM experiment - the Silicon Tracking System (STS). The STS has to enable reconstruction of up to 1000 charged particle tracks per nucleus-nucleus interaction at the rate of up to 10 MHz, provide a momentum resolution Δp/p of 1 %, and withstand the radiation load of up to 10 14 n eq /cm 2 (n eq -neutron equivalent). The STS will be based on double-sided silicon microstrip sensors, that will be arranged in 8 planes in the aperture of the dipole magnet. Selftriggering readout electronics will be located on the periphery of the detecting planes, and connected to the sensors with low mass microcables. In the stage of R and D, as well as in the stages of pre-series and series production, characterization of the sensors, of the front-end electronics, and of the complete detector modules has to be performed. In the present work the required techniques were developed, and the performance of the latest detector prototypes was evaluated. A particular attention is paid to evaluation of the signal amplitude, as it is one of the most important detector characteristics. Techniques for measuring the passive electrical characteristics of the sensors were developed. These include: the coupling and the interstrip capacitances, the interstrip resistance, the bias resistance, the strip leakage current, the bulk capacitance, and the bulk leakage current. The techniques will be applied for the quality assurance of the sensors during the pre-series and the series production. Extensive characterization of the prototype readout chip, n-XYTER, was performed. The register settings were optimized, and the dependence of the amplitude response on

  4. Characterization of silicon microstrip sensors, front-end electronics, and prototype tracking detectors for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, Iurii

    2013-07-01

    The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryonic densities. The matter at the extreme conditions will be studied in collisions of a heavy ion beam with a fixed heavy element target. The present work is devoted to the development of the main component of the CBM experiment - the Silicon Tracking System (STS). The STS has to enable reconstruction of up to 1000 charged particle tracks per nucleus-nucleus interaction at the rate of up to 10 MHz, provide a momentum resolution Δp/p of 1 %, and withstand the radiation load of up to 10{sup 14} n{sub eq}/cm{sup 2} (n{sub eq}-neutron equivalent). The STS will be based on double-sided silicon microstrip sensors, that will be arranged in 8 planes in the aperture of the dipole magnet. Selftriggering readout electronics will be located on the periphery of the detecting planes, and connected to the sensors with low mass microcables. In the stage of R and D, as well as in the stages of pre-series and series production, characterization of the sensors, of the front-end electronics, and of the complete detector modules has to be performed. In the present work the required techniques were developed, and the performance of the latest detector prototypes was evaluated. A particular attention is paid to evaluation of the signal amplitude, as it is one of the most important detector characteristics. Techniques for measuring the passive electrical characteristics of the sensors were developed. These include: the coupling and the interstrip capacitances, the interstrip resistance, the bias resistance, the strip leakage current, the bulk capacitance, and the bulk leakage current. The techniques will be applied for the quality assurance of the sensors during the pre-series and the series production. Extensive characterization of the prototype readout chip, n-XYTER, was performed. The register settings were optimized, and the dependence of the

  5. Assessment of a new prototype hydrogel CO2 sensor; comparison with air tonometry

    NARCIS (Netherlands)

    ter Steege, W.F.; Herber, S.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert; Kolkman, J.

    2007-01-01

    a>Abstract a>Objective Gastrointestinal ischemia is always accompanied by an increased luminal CO2. Currently, air tonometry is used to measure luminal CO2. To improve the response time a new sensor was developed, enabling continuous CO2 measurement. It consists of a pH-sensitive hydrogel which

  6. Design, building and test of one prototype and four final position sensor assemblies: Hall effect position sensors

    Science.gov (United States)

    1976-01-01

    This report covers the development of a three channel Hall effect position sensing system for the commutation of a three phase dc torquer motor. The effort consisted of the evaluation, modification and re-packaging of a commercial position sensor and the design of a target configuration unique to this application. The resulting design meets the contract requirements and, furthermore, the test results indicate not only the practicality and versatility of the design, but also that there may be higher limits of resolution and accuracy achievable.

  7. Title: Accelerator Test of an Angle Detecting Inclined Sensor (ADIS) Prototype with Beams of 48Ca and Fragments

    Science.gov (United States)

    Connell, J. J.; Lopate, C.; McKibben, R. B.; Enman, A.

    2006-12-01

    The measurement and identification of high energy ions (> few MeV/n) from events originating on the Sun is of direct interest to the Living With a Star Program. These ions are a major source of Single Event Effects (SEE) in space-based electronics. Measurements of these ions also help in understanding phenomena such as Solar particle events and coronal mass ejections. These disturbances can directly affect the Earth and the near-Earth space environment, and thus human technology. The resource constraints on spacecraft generally mean that instruments that measure cosmic rays and Solar energetic particles must have low mass (a few kg) and power (a few W), be robust and reliable yet highly capable. Such instruments should identify ionic species (at least by element, preferably by isotope) from protons through the iron group. The charge and mass resolution of heavy ion instrument in space depends upon determining ions' angles of incidence. The Angle Detecting Inclined Sensor (ADIS) system is a highly innovative and uniquely simple detector configuration used to determine the angle of incidence of heavy ions in space instruments. ADIS replaces complex position sensing detectors (PSDs) with a system of simple, reliable and robust Si detectors inclined at an angle to the instrument axis. In August 2004 we tested ADIS prototypes with a 48Ca beam at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). We demonstrate that our prototype charged particle instrument design with an ADIS system has a charge resolution of better than 0.25 e. An ADIS based system is being incorporated into the Energetic Heavy Ion Sensor (EHIS), one of the instruments in the Space Environment In-Situ Suite (SEISS) on the next generation of Geostationary Operational Environmental Satellite (GOES-R) System. An ADIS based system was also selected for the High Energy Particle Sensor (HEPS), one of the instruments in the Space Environment Sensor Suite (SESS) on the

  8. Rancang Bangun Prototype Counter Mobil Menggunakan Sensor Giant Magnetic Resistance (Gmr Berbasis Mikrokontroler

    Directory of Open Access Journals (Sweden)

    Adnan Ardiansyah

    2017-06-01

    Full Text Available Kapadatan lalu lintas salah satunya diakibatkan pertambahan jumlah mobil yang tidak seimbang dengan pertambahan panjang jalan. Data kepadatan lalu lintas dapat menjadi informasi yang berguna untuk statistik pengembangan jalan dan pengguna jalan. Data tersebut didapatkan dengan cara menghitung manual ataupun dengan detektor yang ditanam pada jalan atau kamera CCTV. Namun, cara tersebut tidak efisien karena data yang didapat membutuhkan sumber daya manusia dan sumber dana yang besar. Pada penelitian ini, telah dirancang sistem sederhana yang dapat mendeteksi frekuensi atau jumlah kepadatan mobil tiap satuan waktu. Data diperoleh dengan mikrokontroler berbasis arduino yang menggunakan sensor magnet GMR sebagai input. Ketika kendaraan diatas telah melewati sistem, mikrokontroler memproses sinyal yang diterima dari sensor untuk mendapatkan data jumlah kendaraan. Serta LCD karakter 2x16 sebagai penampil data. Data yang diperoleh kemudian dapat digunakan untuk otomatisasi penggukur kemacetan dan sistem kontrol lalu lintas lainnya, menggantikan sistem detektor yang ditanam pada jalan raya dan video kamera dimalam hari dan untuk menutupi daerah yang tidak terjangkau. Hasil penelitian menujukan bahwa sensor mempunyai tingkat akurasi pengukuran 94,66%, serta mempunyai tingkat presisi yang cukup baik. Traffic data frequency can be beneficial for statistic extended road method and road user. Data may be found from manual counter or using detector implanted to the road or CCTV camera. However, that method not efficient because need operator in order to obtained the data and expensive cost. In this research, already planned a simple systemtraffic vehicle counter or vehicle quantity by the time. Data obtained by microcontroller Arduino UNO with magnetic sensor (GMR attached as input. When a vehicle passes above the circuit system, a microcontroller processes signal of sensor to obtain data quantity of vehicle. And also character LCD 2x16 as display data

  9. PROTOTYPING A SENSOR ENABLED 3D CITYMODEL ON GEOSPATIAL MANAGED OBJECTS

    OpenAIRE

    E. Kjems; J. Kolář

    2013-01-01

    One of the major development efforts within the GI Science domain are pointing at sensor based information and the usage of real time information coming from geographic referenced features in general. At the same time 3D City models are mostly justified as being objects for visualization purposes rather than constituting the foundation of a geographic data representation of the world. The combination of 3D city models and real time information based systems though can provide a whole...

  10. Development of a miniaturized watch-type dosimeter using a silicon printed-circuit board

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Sakamaki, Tsuyoshi; Matsumoto, Iwao; Aoyama, Kei; Nakamura, Takashi

    2008-01-01

    The electrical personal dosimeter using a silicon semiconductor sensor has the advantage of real time response and alarm function, which can prevent unexpected over-exposure. We tried to develop a miniaturized watch-type dosimeter by incorporating the silicon semiconductor sensor on a silicon printed-circuit board. Thin film resistors, capacitors and wiring patterns are formed on a downsized printed-circuit board. Electronic parts including transistors are mounted by soldering on the silicon printed-circuit board. The dosimeter is further miniaturized by downsizing the amplifier circuit, the semiconductor radiation sensor, the power supply circuit, setting parts and alarm part. The performance of the developed dosimeter was evaluated with respect to the gamma-ray spectra, angular dependence and linearity to dose equivalent rate, and it was confirmed that this dosimeter has the performance equivalent to a commercially available electrical personal dosimeter. (author)

  11. Medium access control and hardware prototype designs for low-energy wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Kohvakka, M.

    2009-07-01

    A Wireless Sensor Network (WSN) is an emerging technology consisting of small, cheap, and ultra-low energy sensor nodes, which cooperatively monitor physical quantities, actuate, and perform data processing tasks. A deployment may comprise thousands of randomly distributed autonomous nodes, which must self-configure and create a multi-hop network topology.This thesis focuses on low-energy WSNs targeting to long network lifetime. The main research problem is the combination of adaptive and scalable multi-hop networking with constrained energy budget, processing power, and communication bandwidth. The research problem is approached by energy-efficient protocols and low-power sensor node platforms. The main contribution of this thesis is an energy-efficient Medium Access Control (MAC) design for TUTWSN (Tampere University of Technology Wireless Sensor Network). The design comprises channel access and networking mechanisms, which specify data exchange, link synchronization, network self-configuration, and neighbor discovery operations. The second outcome are several low-power sensor node platforms, which have been designed and implemented to evaluate the performance of the MAC design and hardware components in real deployments. The third outcome are the performance models and analysis of several MAC designs including TUTWSN, IEEE 802.15.4, and the most essential research proposals.The results and conclusion of this Thesis indicate that it is possible to implement multi-hop WSNs in harsh and dynamic operation conditions with years of lifetime using current low-cost components and batteries. Energy analysis results indicate that the lowest energy consumption is achieved by using simple and high data-rate transceivers. It is also critical to minimize sleep mode power consumption of all components and to use accurate wake-up timers. However, the selection of components constitutes only a minor part of the solution, and an energy-efficient MAC layer design being able to

  12. Study of prototypes of LFoundry active CMOS pixels sensors for the ATLAS detector

    Science.gov (United States)

    Vigani, L.; Bortoletto, D.; Ambroz, L.; Plackett, R.; Hemperek, T.; Rymaszewski, P.; Wang, T.; Krueger, H.; Hirono, T.; Caicedo Sierra, I.; Wermes, N.; Barbero, M.; Bhat, S.; Breugnon, P.; Chen, Z.; Godiot, S.; Pangaud, P.; Rozanov, A.

    2018-02-01

    Current high energy particle physics experiments at the LHC use hybrid silicon detectors, in both pixel and strip configurations, for their inner trackers. These detectors have proven to be very reliable and performant. Nevertheless, there is great interest in depleted CMOS silicon detectors, which could achieve a similar performance at lower cost of production. We present recent developments of this technology in the framework of the ATLAS CMOS demonstrator project. In particular, studies of two active sensors from LFoundry, CCPD_LF and LFCPIX, are shown.

  13. Study of prototypes of LFoundry active CMOS pixels sensors for the ATLAS detector

    CERN Document Server

    Vigani, L.; Ambroz, L.; Plackett, R.; Hemperek, T.; Rymaszewski, P.; Wang, T.; Krueger, H.; Hirono, T.; Caicedo Sierra, I.; Wermes, N.; Barbero, M.; Bhat, S.; Breugnon, P.; Chen, Z.; Godiot, S.; Pangaud, P.; Rozanov, A.

    2018-01-01

    Current high energy particle physics experiments at the LHC use hybrid silicon detectors, in both pixel and strip configurations, for their inner trackers. These detectors have proven to be very reliable and performant. Nevertheless, there is great interest in depleted CMOS silicon detectors, which could achieve a similar performance at lower cost of production. We present recent developments of this technology in the framework of the ATLAS CMOS demonstrator project. In particular, studies of two active sensors from LFoundry, CCPD_LF and LFCPIX, are shown.

  14. Light scattering in optical CT scanning of Presage dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y; Adamovics, J; Cheeseborough, J C; Chao, K S; Wuu, C S, E-mail: yx2010@columbia.ed

    2010-11-01

    The intensity of the scattered light from the Presage dosimeters was measured using a Thorlabs PM100D optical power meter (Thorlabs Inc, Newton, NJ) with an optical sensor of 1 mm diameter sensitive area. Five Presage dosimeters were made as cylinders of 15.2 cm, 10 cm, 4 cm diameters and irradiated with 6 MV photons using a Varian Clinac 2100EX. Each dosimeter was put into the scanning tank of an OCTOPUS' optical CT scanner (MGS Research Inc, Madison, CT) filled with a refractive index matching liquid. A laser diode was positioned at one side of the water tank to generate a stationary laser beam of 0.8 mm width. On the other side of the tank, an in-house manufactured positioning system was used to move the optical sensor in the direction perpendicular to the outgoing laser beam from the dosimeters at an increment of 1 mm. The amount of scattered photons was found to be more than 1% of the primary light signal within 2 mm from the laser beam but decreases sharply with increasing off-axis distance. The intensity of the scattered light increases with increasing light attenuations and/or absorptions in the dosimeters. The scattered light at the same off-axis distance was weaker for dosimeters of larger diameters and for larger detector-to-dosimeter distances. Methods for minimizing the effect of the light scattering in different types of optical CT scanners are discussed.

  15. Prototype of a fiber optic sensor for online measurement of coating thickness

    Science.gov (United States)

    D'Emilia, Giulio

    1999-09-01

    In this paper the experimental characterization of a transducer for on line measurement of coating thickness in food industry applications is described, which is composed by a fiber optic probe and by an eddy-current proximity one. The method is based on measuring reflectance by a fiber optic probe of the coating plated on thin steel sheets. The eddy current proximity probe should be used to measure the substrate position. In order to evaluate the feasibility of this approach, a particular attention has been paid to the accuracy of the method, since an accuracy in the order of plus or minus 1 micrometer should be achieved for practical interest. With this aim, the effect of the main interfering and modifying quantities of geometrical (sensor size, probe head angle of incidence, working distance, ...) and optical (light source and photo-detector behavior stability, ...) type has been evaluated both theoretically and experimentally by using a calibration test bench in stationary working conditions. Furthermore, a calibration test bench has been built, where a translating and vibrating steel plate is realized, in order to evaluate the effect of translation velocity of the plate and also of cross vibrations. Results of dynamic calibration are also described and discussed, in order to get information about the final sensor configuration.

  16. Prototypes of Newly Conceived Inorganic and Biological Sensors for Health and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Rosanna Spera

    2012-12-01

    Full Text Available This paper describes the optimal implementation of three newly conceived sensors for both health and environmental applications, utilizing a wide range of detection methods and complex nanocomposites. The first one is inorganic and based on matrices of calcium oxide, the second is based on protein arrays and a third one is based on Langmuir-Blodgett laccase multi-layers. Special attention was paid to detecting substances significant to the environment (such as carbon dioxide and medicine (drug administration, cancer diagnosis and prognosis by means of amperometric, quartz crystal microbalance with frequency (QCM_F and quartz crystal microbalance with dissipation monitoring (QCM_D technologies. The resulting three implemented nanosensors are described here along with proofs of principle and their corresponding applications.

  17. Prototyping a sensor enabled 3D citymodel on geospatial managed objects

    DEFF Research Database (Denmark)

    Kjems, Erik; Kolář, Jan

    2013-01-01

    rather than constituting the foundation of a geographic data representation of the world. The combination of 3D city models and real time information based systems though can provide a whole new setup for data fusion within an urban environment and provide time critical information preserving our limited......One of the major development efforts within the GI Science domain are pointing at sensor based information and the usage of real time information coming from geographic referenced features in general. At the same time 3D City models are mostly justified as being objects for visualization purposes...... one constraint software design complex. On several occasions we have been advocating for a new end advanced formulation of real world features using the concept of Geospatial Managed Objects (GMO). This paper presents the outcome of the InfraWorld project, a 4 million Euro project financed primarily...

  18. Radon daughter dosimeter

    International Nuclear Information System (INIS)

    Durkin, J.

    1977-01-01

    This patent describes a portable radon daughter dosimeter unit used to measure radon gas alpha daughters in ambient air. These measurements can then be related to preselected preestablished standards contained in a remote central readout unit. The dosimeter unit is adapted to be worn by an operator in areas having alpha particle radiation such as in uranium mines. Within the dosimeter is a detector head housing having a filter head and a solid state surface barrier radiation detector; an air pump to get air to the detector head; a self contained portable power supply for the unit; and electronic circuitry to process detected charged electrons from the detector head to convert and count their pulses representatives of two alpha radon emitter daughters. These counted pulses are in binary form and are sent to a readout unit where a numerical readout displays the result in terms of working level-hours

  19. Radon daughter dosimeter

    International Nuclear Information System (INIS)

    Durkin, J.

    1977-01-01

    A portable radon daughter dosimeter unit used to measure Radon gas alpha daughters in ambient air is described. These measurements can then be related to preselected preestablished standards contained in a remote central readout unit. The dosimeter unit is adapted to be worn by an operator in areas having alpha particle radiation such as uranium mines. Within the dosimeter is a detector head housing having a filter head and a solid state surface barrier radiation detector; an air pump to get air to the detector head; a self contained portable power supply for the unit; and electronic circuitry to process detected charged electrons from the detector head to convert and count their pulses representatives of two alpha radon emitter daughters. These counted pulses are in binary form and are sent to a readout unit where a numerical readout diplays the result in terms of working level-hours

  20. Fundamentals of Polymer Gel Dosimeters

    Science.gov (United States)

    McAuley, Kim B.

    2006-12-01

    The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.

  1. The Design and Characterization of a Prototype Wideband Voltage Sensor Based on a Resistive Divider.

    Science.gov (United States)

    Garnacho, Fernando; Khamlichi, Abderrahim; Rovira, Jorge

    2017-11-17

    The most important advantage of voltage dividers over traditional voltage transformers is that voltage dividers do not have an iron core with non-linear hysteresis characteristics. The voltage dividers have a linear behavior with respect to over-voltages and a flat frequency response larger frequency range. The weak point of a voltage divider is the influence of external high-voltage (HV) and earth parts in its vicinity. Electrical fields arising from high voltages in neighboring phases and from ground conductors and structures are one of their main sources for systematic measurement errors. This paper describes a shielding voltage divider for a 24 kV medium voltage network insulated in SF6 composed of two resistive-capacitive dividers, one integrated within the other, achieving a flat frequency response up to 10 kHz for ratio error and up to 5 kHz for phase displacement error. The metal shielding improves its immunity against electric and magnetic fields. The characterization performed on the built-in voltage sensor shows an accuracy class of 0.2 for a frequency range from 20 Hz to 5 kHz and a class of 0.5 for 1 Hz up to 20 Hz. A low temperature effect is also achieved for operation conditions of MV power grids.

  2. Design prototype detection tools of Porous Tree using microcontroller Arduino Uno R3 and piezoelectric sensor

    Science.gov (United States)

    Sujadi, H.; Bastian, A.; Tira

    2018-05-01

    In the city, many trees are found uprooted and cause accidents and many losses. No exception in the area of Majalengka Regency of West Java Province which can also anytime an accident or disaster caused by fallen trees, where in Majalengka district is logging trees on the street and public places are not done regularly. Based on the above problems, the need for tools that can detect a porous tree, to assist in the sorting of trees which should be felled and not felled by the party who has the authority of the general management of BMCK. Previously created tools to detect porous trees imported from Hungary and Germany, namely Arbosonic3D and Sonic Tomography. This design uses piezoelectric sensors to detect how much pressure is received by fragile and fragile trees, of course the fragile and fragile strength of trees will be different when exposed to the same pressure given the fragile density of fragile and fragile trees, then the data sent to Arduino Uno R3 to be processed into an information. This research produces a means of detecting the loss of a tree for early detection and no falling trees.

  3. Radiation dosimeter assembly

    International Nuclear Information System (INIS)

    Seidel, J.G.

    1982-01-01

    A technique is disclosed for securing a thermoluminescent radiation dosimeter, used for monitoring underground radon gas in uranium prospecting, to a cup-like support member made of heavy gauge aluminum foil. A metalized film, consisting of an aluminum layer and a high tensile strength plastic layer, covers an aperture in the support members for the dosimeter. The film is secured by a high temperature adhesive to the support member, and both are capable of withstanding an annealing temperature of up to 300 0 C

  4. Personnel ionizing radiation dosimeter

    International Nuclear Information System (INIS)

    Williams, R.A.

    1975-01-01

    A dosimeter and method for use by personnel working in an area of mixed ionizing radiation fields for measuring and/or determining the effective energy of x- and gamma radiation; beta, x-, and gamma radiation dose equivalent to the surface of the body; beta, x-, and gamma radiation dose equivalent at a depth in the body; the presence of slow neutron, fast neutron dose equivalent; and orientation of the person wearing the dosimeter to the source of radiation is disclosed. Optionally integrated into this device and method are improved means for determining neutron energy spectrum and absorbed dose from fission gamma and neutron radiation resulting from accidental criticality

  5. MAARGHA: A Prototype System for Road Condition and Surface Type Estimation by Fusing Multi-Sensor Data

    Directory of Open Access Journals (Sweden)

    Deepak Rajamohan

    2015-07-01

    Full Text Available Road infrastructure in countries like India is expanding at a rapid pace and is becoming increasingly difficult for authorities to identify and fix the bad roads in time. Current Geographical Information Systems (GIS lack information about on-road features like road surface type, speed breakers and dynamic attribute data like the road quality. Hence there is a need to build road monitoring systems capable of collecting such information periodically. Limitations of satellite imagery with respect to the resolution and availability, makes road monitoring primarily an on-field activity. Monitoring is currently performed using special vehicles that are fitted with expensive laser scanners and need skilled resource besides providing only very low coverage. Hence such systems are not suitable for continuous road monitoring. Cheaper alternative systems using sensors like accelerometer and GPS (Global Positioning System exists but they are not equipped to achieve higher information levels. This paper presents a prototype system MAARGHA (MAARGHA in Sanskrit language means an eternal path to solution, which demonstrates that it can overcome the disadvantages of the existing systems by fusing multi-sensory data like camera image, accelerometer data and GPS trajectory at an information level, apart from providing additional road information like road surface type. MAARGHA has been tested across different road conditions and sensor data characteristics to assess its potential applications in real world scenarios. The developed system achieves higher information levels when compared to state of the art road condition estimation systems like Roadroid. The system performance in road surface type classification is dependent on the local environmental conditions at the time of imaging. In our study, the road surface type classification accuracy reached 100% for datasets with near ideal environmental conditions and dropped down to 60% for datasets with shadows and

  6. Accelerator test of an improved Angle Detecting Inclined Sensor (ADIS) prototype with beams of {sup 78}Kr and fragments

    Energy Technology Data Exchange (ETDEWEB)

    Connell, J.J., E-mail: james.connell@unh.edu [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Lopate, C. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); McLaughlin, K.R. [Space Science Center and Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824 (United States)

    2016-11-21

    The measurement of cosmic rays and Solar energetic particles in space is basic to our understanding of the Galaxy, the Sun, phenomena in the heliosphere and the emerging field of space weather. For these reasons, cosmic ray instruments are common on both scientific spacecraft and operational spacecraft such as weather satellites. Cosmic rays and Solar energetic particles include ions over the full range of elements found in the Solar System. High-resolution measurements of the elemental and isotopic composition require the angle of incidence of these energetic ions be determined to correct for pathlength variation in detectors within an instrument. The Angle Detecting Inclined Sensor (ADIS) system is a simple detector configuration used to determine the angle of incidence of heavy ions in space instruments. ADIS replaces complex position sensing detectors (PSDs) with a system of simple, reliable and robust detectors inclined at an angle to the instrument axis. An ADIS instrument thus offers significant advantages in mass, power, telemetry and cost. In February 2008 an improved ADIS prototype was tested with a 150 MeV/u {sup 78}Kr beam at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). This demonstrated a charge resolution of σ~0.3 e at Kr (Z=36), an exceptional charge resolution for such a simple instrument system.

  7. Thermoluminescence dosimeter reader

    International Nuclear Information System (INIS)

    Robertson, M.E.A.; Marshall, J.; Brabants, J.A.P.; Davies, M.E.

    1975-01-01

    An electric circuit arrangement is described including a photomultiplier tube and a high voltage source therefor also includes a feedback loop from the output of the tube to the high voltage source, and loop providing automatic gain stabilization for the tube. The arrangement is used in a dosimeter reader to provide sensitivity correction for the reader each time the reader is to be used

  8. Water-equivalent one-dimensional scintillating fiber-optic dosimeter for measuring therapeutic photon beam

    International Nuclear Information System (INIS)

    Moon, Jinsoo; Won Jang, Kyoung; Jae Yoo, Wook; Han, Ki-Tek; Park, Jang-Yeon; Lee, Bongsoo

    2012-01-01

    In this study, we fabricated a one-dimensional scintillating fiber-optic dosimeter, which consists of 9 scintillating fiber-optic dosimeters, septa, and PMMA blocks for measuring surface and percentage depth doses of a therapeutic photon beam. Each dosimeter embedded in the 1-D scintillating fiber-optic dosimeter is composed of square type organic scintillators and plastic optical fibers. Also black PVC films are used as septa to minimize cross-talk between the scintillating fiber-optic dosimeters. To construct a dosimeter system, a 1-D scintillating fiber-optic dosimeter and a CMOS image sensor were combined with 20 m-length plastic optical fibers. Using the dosimeter system, we measured surface and percentage depth doses of 6 and 15 MV photon beams and compared the results with those of EBT films and an ionization chamber. - Highlights: ► Fabrication of a one-dimensional scintillating fiber-optic dosimeter. ► The one-dimensional scintillating fiber-optic dosimeter has 9 scintillating fiber-optic dosimeters. ► Measurements of surface and percentage depth doses of a therapeutic photon beam. ► The results were compared with those of EBT films and an ionization chamber.

  9. Measurement system for the determination of the individual exposure of low frequency electric and magnetic fields on humans (personal dosimeter)

    International Nuclear Information System (INIS)

    Huber, E.

    1998-07-01

    The current doctorate introduces a free body electronic personal dosimeter for measuring the vector components of ELF-fields. In contrast to a conventional field strength meter not the undisturbed fields are used as a measure, but the inhomogeneous fields near the human body, measured over a long time (dosimetric concept). Based on an analytical and numerical 'dosimetric' model, the field signal together with the frequency information can be transformed for further evaluation in the average inner body current density. Here the current density is considered as a dose relevant measure. According to demands in industrial safety, requirements for a dosimeter are derived and developmental goals defined. These goals are realized by investigations and proficiency testings of electric and magnetic highly sensitive field sensors, the development of low-power electronics with good performance and the implementation of digital data processing on different platforms. The characterization of the influence of possible environmental variables on the realized prototype, the determination of the technical characteristics under various boundary conditions and an error analysis are further important parts of this work. The calibration of the INPEDO (individual personal dosimeter) measurement system in special calibration facilities (three axis Helmholtz coils for the magnetic and parallel plates according to the IEEE833-standard for the electric field) as well as first measurements taken under real operating conditions conclude this report. (orig.) [de

  10. Validation of a Piezoelectric Sensor Array-Based Device for Measurement of Carotid-Femoral Pulse Wave Velocity: The Philips Prototype.

    Science.gov (United States)

    Xu, Shao-Kun; Hong, Xiang-Fei; Cheng, Yi-Bang; Liu, Chang-Yuan; Li, Yan; Yin, Bin; Wang, Ji-Guang

    2018-03-01

    Multiple piezoelectric pressure mechanotransducers topologized into an array might improve efficiency and accuracy in collecting arterial pressure waveforms for measurement of pulse wave velocity (PWV). In the present study, we validated a piezoelectric sensor array-based prototype (Philips) against the validated and clinically widely used Complior device (Alam Medical). We recruited 33 subjects with a wide distribution of PWV. For the validation, PWV was measured sequentially with the Complior device (four times) and the Philips prototype (three times). With the 99 paired PWV values, we investigated the agreement between the Philips prototype and the Complior device using Pearson correlation analysis and Bland-Altman plot. We also performed analysis on the determinants and reproducibility of PWV measured with both devices. The correlation coefficient for PWV measured with the two devices was 0.92 ( p prototype slightly overestimated PWV by 0.24 (± 2 standard deviations, ± 1.91) m/s, especially when PWV was high. The correlation coefficient between the difference and the average of the Philips and Complior measurements was 0.21 ( p = 0.035). Nonetheless, they had similar determinants. Age, mean arterial pressure, and sex altogether explained 81.6 and 83.9% of the variance of PWV values measured with the Philips prototype and Complior device, respectively. When the two extremes of the three PWV values measured with the Philips prototype and the Complior device were investigated, the coefficients of variation were 8.26 and 3.26%, respectively. Compared with the Complior device, the Philips prototype had similar accuracy, determinants, and reproducibility in measuring PWV.

  11. CRRES dosimeter simulations

    International Nuclear Information System (INIS)

    Auchampaugh, G.; Cayton, T.

    1993-04-01

    Conflicting data have been obtained from electron instruments aboard CRRES (Combined Release and Radiation Effects Satellite). To gain insight and to help in the interpretation of the data, we have calculated electron- and proton-flux and dose response functions for the four domes of the CRRES dosimeters using the Los Alamos Monte Carlo radiation transport codes. The response functions were calculated for electron and proton energies representative of those present in the space radiation environment. We also calculated the response of the dosimeters to a model radiation environment for orbit 607, which occurred on April 1, 1991 and compared the results to the measured values. The electron and proton components of the radiation environment were calculated using the solar maximum versions of the AE8 and AP8 models, namely, AE8MAX and AP8MAX. To facilitate the second task, we wrote two FORTRAN programs (CRRESunderscoreSIMP for AP8MAX and CRRESunderscoreSIME for AE8MAX) to read in a standard CRRES data file and to produce a comparison file of the calculated and measured values for all four dosimeter domes.The FORTRAN code will be available to the Phillips Laboratory for their use in making comparisons to other orbital data

  12. New Neutron Dosimeter

    CERN Multimedia

    2001-01-01

    CERN has been operating an Individual Dosimetry Service for neutrons for about 35 years. The service was based on nuclear emulsions in the form of film packages which were developed and scanned in the Service. In 1999, the supplier of theses packages informed CERN that they will discontinue production of this material. TIS-RP decided to look for an external service provider for individual neutron dosimetry. After an extensive market survey and an invitation for tender, a supplier that met the stringent technical requirements set up by CERN's host states for personal dosimeters was identified. The new dosimeter is based on a track-etching technique. Neutrons have the capability of damaging plastic material. The microscopic damage centres are revealed by etching them in a strong acid. The resulting etch pits can be automatically counted and their density is proportional to dose equivalent from neutrons. On the technical side, the new dosimeter provides an improved independence of its response from energy and th...

  13. Radiation dosimeters for medical use

    International Nuclear Information System (INIS)

    Risticj, S. Goran

    2013-01-01

    The several personal radiation dosimeter types for medical use, which look like promising for this kind of application, as pMOS (RADFET) dosimeter, direct ion storage (DIS) dosimeters, thermoluminescent (TL) and optically stimulated luminescent (OSL) dosimeters, are described, and their advantages and disadvantages are analyzed. The p-channel metal-oxide-semiconductor (pMOS) dosimetric transistors allow dose measurements in vivo in real time, and they are especially important for radiotherapy. Direct ion storage (DIS) dosimeters are a hybrid of ion chamber and floating gate MOSFETs (FGMOSFETs), show very high sensitivity. Radiative processes that happen during the exposure of crystal to radiation are classified as prompt luminescence or radioluminescence (RL). In the case of an emission during stimulation, this phenomenon is referred to thermoluminescence or optically stimulated luminescence depending on whether the stimulation source is heat or light. TL and OSL dosimeters are natural or synthetic materials, which the intensity of emitted light is proportional to the irradiation dose. (Author)

  14. Application results of a prototype ultrasonic liquid film sensor to a 7 MPa steam-water two-phase flow experiment

    International Nuclear Information System (INIS)

    Aoyama, Goro; Fujimoto, Kiyoshi; Katono, Kenichi; Nagayoshi, Takuji; Baba, Atsushi; Yasuda, Kenichi

    2016-01-01

    A prototype ultrasonic liquid film sensor was applied to a high-temperature steam-water two-phase flow experiment. The liquid film sensor was vertically installed in a loop which was connected to HUSTLE, a multi-purpose steam source test facility. The hydraulic diameter of the measurement section was 9.4 mm. The output waveforms of the sensor were acquired with a digital oscilloscope. The fluid temperature and system pressure were kept at 288°C and 7.2 MPa, respectively, during the experiment. The pulse-echo method was used to calculate the liquid film thickness. The cross-correlation calculation was utilized to determine the time difference between the pulse reflected at the sensor surface and the pulse reflected at the liquid film surface. The time-averaged liquid film thicknesses were less than 0.055 mm in the annular flow condition. The increase of the time-averaged thickness was small with the change of the gas momentum flux. The film thicknesses measured with the sensor were compared with the past experimental results; the former were smaller than one-fourth of the thickness estimated as the mean film thickness. The comparison results suggested that the continuous liquid sublayer thickness was measured with the liquid film sensor. (author)

  15. Copper doped borate dosimeters revisited

    Energy Technology Data Exchange (ETDEWEB)

    Alajerami, Y.S.M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Medical Radiography, Al-Azhar University, Gaza Strip, Palestine (Country Unknown); Hashim, S., E-mail: suhairul@utm.my [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Oncology Treatment Centre, Sultan Ismail Hospital, 81100 Johor Bahru (Malaysia); Ghoshal, S.K. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Bradley, D.A. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mhareb, M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Saleh, M.A. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); National Atomic Energy Commission (NATEC), Sana' a (Yemen)

    2014-11-15

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu{sup +} and Cu{sup ++}) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu{sup +} ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated

  16. Copper doped borate dosimeters revisited

    International Nuclear Information System (INIS)

    Alajerami, Y.S.M.; Hashim, S.; Ghoshal, S.K.; Bradley, D.A.; Mhareb, M.; Saleh, M.A.

    2014-01-01

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu + and Cu ++ ) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu + ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated technique in borate

  17. Characteristics of radiophotoluminescent glass dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Masashi; Shiraishi, Akemi; Murakami, Hiroyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-07-01

    In Japan Atomic Energy Research Institute, a film badge is recently replaced by a new type radiophotoluminescent (RPL) glass dosimeter for external personal monitoring. Some fundamental characteristics of this dosimeter, such as dose dependence linearity, energy dependence, angular dependence, dose evaluation accuracy at mixed irradiation conditions, fading, etc., were examined at the Facility of Radiation Standard (FRS), JAERI. The results have proved that the RPL glass dosimeter has sufficient characteristics for practical use as a personal dosimeter for all of the items examined. (author)

  18. Development and characterization of real-time wide-energy range personal neutron dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takashi; Tsujimura, Norio (Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center); Yamano, Toshiya; Suzuki, Toshikazu; Okamoto, Eisuke

    1994-04-01

    The authors developed a real-time personal neutron dosimeter which could give neutron dose equivalent over wide energy region from thermal to 10 odd MeV by using 2 silicon detectors, fast neutron sensor and slow neutron sensor. The energy response of this dosimeter was evaluated under thermal neutron field, monoenergetic neutron field between 200 keV and 15 MeV, and moderated [sup 252]Cf neutron field. The neutron dose equivalent was estimated by adding neutron dose equivalent below 1 MeV given by slow neutron sensor and that above 1 MeV by fast neutron sensor. It was verified from various field tests that this dosimeter is able to give neutron dose equivalent within a factor of 2 margin of accuracy in reactor, accelerator, fusion research and nuclear fuel handling facilities. This dosimeter has more than one order higher sensitivity than conventional personal neutron dosimeters and is insensitive to [gamma]-rays up to about 500 mSv/h. This dosimeter will soon be commercially available as a personal dosimeter which gives neutron and [gamma]-ray dose equivalents simultaneously by installing [gamma]-ray silicon sensor. (author).

  19. Evaluation of optical fibres as gamma radiation dosimeter

    International Nuclear Information System (INIS)

    Bohra, Dinesh; Chaudhary, H.S.; Panwar, Lalit; Vaijapurkar, S.G.; Bhatnagar, P.K.; Dasgupta, K.

    2005-01-01

    Semiconductor base gamma and neutron sensors are the fastest and popular dosimeters and are in competition with Thermoluminescence (TL) and Radio photoluminescence (RPL) dosimeters. All over the world armed forces require a dosimeter which records cumulative doses of ionizing radiations from mcGy to 10 Gy and is readable repeatedly without loss of dose information. TL dosimeters do not meet the criteria and RPL dosimeter meet the expectations and are in use by armed forces. Technologists have used laser as an excitation source to stimulate the glass and have achieved success in recording gamma doses of occupational/accidental span (mcGy to 10 Gy). However synthesizing RPL glass batches with exactly same characteristics predoses is a difficult task. Silicon base phosphorous doped step index multimode optical fibre can be made in a significant quantity and large number of dosimeters from it can be achieved with uniform predose. The radiation induced transmission loss gives a measure of gamma dose which is cumulative, readable repeatedly without loss of information. Assorted composition, core dia optical fibres have been synthesized and evaluated for dose linearity, dose rate independence, fading, length optimization. Here in is described some results of recent experiments and sensitivities achieved. (author)

  20. Hanford personnel dosimeter supporting studies FY-1981

    International Nuclear Information System (INIS)

    1982-08-01

    This report examined specific functional components of the routine external personnel dosimeter program at Hanford. Components studied included: dosimeter readout; dosimeter calibration; dosimeter field response; dose calibration algorithm; dosimeter design; and TLD chip acceptance procedures. Additional information is also presented regarding the dosimeter response to light- and medium-filtered x-rays, high energy photons and neutrons. This study was conducted to clarify certain data obtained during the FY-1980 studies

  1. A critical assessment of two types of personal UV dosimeters.

    Science.gov (United States)

    Seckmeyer, Gunther; Klingebiel, Marcus; Riechelmann, Stefan; Lohse, Insa; McKenzie, Richard L; Liley, J Ben; Allen, Martin W; Siani, Anna-Maria; Casale, Giuseppe R

    2012-01-01

    Doses of erythemally weighted irradiances derived from polysulphone (PS) and electronic ultraviolet (EUV) dosimeters have been compared with measurements obtained using a reference spectroradiometer. PS dosimeters showed mean absolute deviations of 26% with a maximum deviation of 44%, the calibrated EUV dosimeters showed mean absolute deviations of 15% (maximum 33%) around noon during several test days in the northern hemisphere autumn. In the case of EUV dosimeters, measurements with various cut-off filters showed that part of the deviation from the CIE erythema action spectrum was due to a small, but significant sensitivity to visible radiation that varies between devices and which may be avoided by careful preselection. Usually the method of calibrating UV sensors by direct comparison to a reference instrument leads to reliable results. However, in some circumstances the quality of measurements made with simple sensors may be over-estimated. In the extreme case, a simple pyranometer can be used as a UV instrument, providing acceptable results for cloudless skies, but very poor results under cloudy conditions. It is concluded that while UV dosimeters are useful for their design purpose, namely to estimate personal UV exposures, they should not be regarded as an inexpensive replacement for meteorological grade instruments. © 2011 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  2. Development and underground testing of the α dosimeter: a solid state electronic personal radiation dosimeter for uranium miners

    International Nuclear Information System (INIS)

    Parkinson, R.N.; Roze, V.; Shepherd, R.

    1981-01-01

    The αDOSIMETER is a complete, integrated system designed to monitor the immediate worksite of underground miners where the disintegration for radon daughters is a risk to the health of mining personnel. The dosimeter weighing little more than one pound is worn by each miner throughout the entire shift and is powered by the miner's cap lamp battery. After this integration period, the unit is connected to a reading network whereupon the day's data is dumped, calculated and stored. Beginning in July 1980, prototype units were subjected to vigorous underground testing in uranium mines in Canada and the United States and in tin mines in Cornwall, UK. The testing results are summarized and proposals advanced for a typical mine monitoring system utilizing the αDOSIMETER

  3. A new radiochromic dosimeter film

    Science.gov (United States)

    Sidney, L. N.; Lynch, D. C.; Willet, P. S.

    By employing acid-sensitive leuco dyes in a chlorine-containing polymer matrix, a new radiochromic dosimeter film has been developed for gamma, electron beam, and ultraviolet radiation. These dosimeter films undergo a color change from colorless to royal blue, red fuchsia, or black, depending on dye selection, and have been characterized using a visible spectrophotometer over an absorbed dose range of 1 to 100 kGy. The primary features of the film are improved color stability before and after irradiation, whether stored in the dark or under artificial lights, and improved moisture resistance. The effects of absorbed dose, dose rate, and storage conditions on dosimeter performance are discussed. The dosimeter material may be produced as a free film or coated onto a transparent substrate and optionally backed with adhesive. Potential applications for these materials include gamma sterilization indicator films for food and medical products, electron beam dosimeters, and in-line radiation monitors for electron beam and ultraviolet processing.

  4. An assessment of radiotherapy dosimeters based on CVD grown diamond

    International Nuclear Information System (INIS)

    Ramkumar, S.; Buttar, C.M.; Conway, J.; Whitehead, A.J.; Sussman, R.S.; Hill, G.; Walker, S.

    2001-01-01

    Diamond is potentially a very suitable material for use as a dosimeter for radiotherapy. Its radiation hardness, the near tissue equivalence and chemical inertness are some of the characteristics of diamond, which make it well suited for its application as a dosimeter. Recent advances in the synthesis of diamond by chemical vapour deposition (CVD) technology have resulted in the improvement in the quality of material and increased its suitability for radiotherapy applications. We report in this paper, the response of prototype dosimeters based on two different types (CVD1 and CVD2) of CVD diamond to X-rays. The diamond devices were assessed for sensitivity, dependence of response on dose and dose rate, and compared with a Scanditronix silicon photon diode and a PTW natural diamond dosimeter. The diamond devices of CVD1 type showed an initial increase in response with dose, which saturates after ∼6 Gy. The diamond devices of CVD2 type had a response at low fields ( 1162.8 V/cm), the CVD2-type devices showed polarisation and dose-rate dependence. The sensitivity of the CVD diamond devices varied between 82 and 1300 nC/Gy depending upon the sample type and the applied voltage. The sensitivity of CVD diamond devices was significantly higher than that of natural diamond and silicon dosimeters. The results suggest that CVD diamond devices can be fabricated for successful use in radiotherapy applications

  5. Design of the passive personal dosimeter for miners using an allyl diglycol carbonate plastic. Phase 1

    International Nuclear Information System (INIS)

    1983-12-01

    The report summarizes the results of the feasibility study on the design and development of a passive personal dosimeter incorporating an allyl diglycol carbonate plastic (CR39) detector, for use by uranium miners. Based upon the feasibility study, a passive personal dosimeter using a capacitor-type electrostatic enhancement device has been designed. Preliminary tests indicate that the prototype could be used in the mine environment to differentiate radon and thoron daughters with a detection efficiency comparable to that of a typical active device. Further study is required, however, into the possible influence in the mine environment of local variations in charged fraction, upon the calibration of this dosimeter

  6. Prototype fiber Bragg Grattings (FBG) sensor based on intensity modulation of the laser diode low frequency vibrations measurement

    Science.gov (United States)

    Setiono, Andi; Ula, Rini Khamimatul; Hanto, Dwi; Widiyatmoko, Bambang; Purnamaningsih, Retno Wigajatri

    2016-02-01

    In general, Fiber Bragg Grating (FBG) sensor works based on observation of spectral response characteristic to detect the desired parameter. In this research, we studied intensity response characteristic of FBG to detect the dynamic strain. Experiment result show that the reflected intensity had linier relationships with dynamic strain. Based on these characteristics, we developed the FBG sensor to detect low frequency vibration. This sensor is designed by attaching the FBG on the bronze cantilever with dimensions of 85×3×0.5 mm. Measurement results showed that the sensor was able to detect vibrations in the frequency range of 7-10 Hz at temperature range of 25-45 ˚C. The measured frequency range is still within the frequency range of digging activity, therefore this vibration sensor can be applied for oil pipelines vandalisation detection system.

  7. Colorimetric gas dosimeter

    International Nuclear Information System (INIS)

    McConnaughey, P.W.; McKee, E.S.

    1984-01-01

    A gas dosimeter comprises a stack of porous sheets, impregnated with a reagent that changes color on contact with the gas to be determined, contained in a housing which has an opening to expose one end of the stack to the atmosphere to be tested. The gas to be determined penetrates by diffusion the layers of porous sheets, causing the sheets in the stack to change color sequentially from the end of the stack exposed to the atmosphere. The degree of penetration through the layers of porous sheets is a function of dosage exposure. The housing may be transparent with each superposed sheet in the stack being larger than the adjacent underlying sheet, so that each sheet is visible through the housing endwall

  8. The intelligence of dosimeter for ionization radiation

    International Nuclear Information System (INIS)

    He Jinglun

    1992-01-01

    The connection of dosimeter with microcomputer system is described, which has the functions of sampling, data handling, display and printing dose values in legal units of measurement. The accuracy and speed of measurement for dosimeters are also raised, thereby the dosimeters are made to have intelligence and the application range of dosimeter is enlarged

  9. Silver nitrate based gel dosimeter

    International Nuclear Information System (INIS)

    Titus, D; Samuel, E J J; Srinivasan, K; Roopan, S M; Madhu, C S

    2017-01-01

    A new radiochromic gel dosimeter based on silver nitrate and a normoxic gel dosimeter was investigated using UV-Visible spectrophotometry in the clinical dose range. Gamma radiation induced the synthesis of silver nanoparticles in the gel and is confirmed from the UV-Visible spectrum which shows an absorbance peak at around 450 nm. The dose response function of the dosimeter is found to be linear upto12Gy. In addition, the gel samples were found to be stable which were kept under refrigeration. (paper)

  10. Evaluation of personal integrating dosimeters

    International Nuclear Information System (INIS)

    Correa, C.A.; Bisauta, Mauricio A.

    2007-01-01

    The objective of this work is to analyze the different types of dosimeters present in the international market that are used to provide personal dose monitoring, specifically for external gamma and beta radiation, Hp(10) and Hp (0,07), as well as to add comments of advances in the field of passive and operative dosimetry, and the changes that are being produced in the regulating policy in other countries regarding the use of this devices. The technical specification of each dosimeter has been extracted of different catalogues of products. To conclude, the importance has been stressed in a proper selection of dosimeters with its advantages and disadvantages before its use. (author) [es

  11. Heater design for reading radiation dosimeters

    International Nuclear Information System (INIS)

    Seidel, J.G.; Felice, P.E.

    1982-01-01

    The nichrome heating element of a conventional dosimeter reading apparatus has been redesigned to include a flat-bottomed depression big enough to hold a thermoluminescent dosimeter. A thin glass plate is positioned in the recess on top of the dosimeter to retain it in the recess during the heating and reading process. This technique of securing the dosimeter in contact with the heating element avoids physical scratching or damage to the dosimeter

  12. LOW-COST PERSONNEL DOSIMETER.

    Science.gov (United States)

    specification was achieved by simplifying and improving the basic Bendix dosimeter design, using plastics for component parts, minimizing direct labor, and making the instrument suitable for automated processing and assembly. (Author)

  13. Citizen's dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Klemic, Gladys [Naperville, IL; Bailey, Paul [Chicago, IL; Breheny, Cecilia [Yonkers, NY

    2008-09-02

    The present invention relates to a citizen's dosimeter. More specifically, the invention relates to a small, portable, personal dosimetry device designed to be used in the wake of a event involving a Radiological Dispersal Device (RDD), Improvised Nuclear Device (IND), or other event resulting in the contamination of large area with radioactive material or where on site personal dosimetry is required. The card sized dosimeter generally comprises: a lower card layer, the lower card body having an inner and outer side; a upper card layer, the layer card having an inner and outer side; an optically stimulated luminescent material (OSLM), wherein the OSLM is sandwiched between the inner side of the lower card layer and the inner side of the upper card layer during dosimeter radiation recording, a shutter means for exposing at least one side of the OSLM for dosimeter readout; and an energy compensation filter attached to the outer sides of the lower and upper card layers.

  14. An Emergency Dosimeter for Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Braun, J; Nilsson, R

    1960-05-15

    A neutron dosimeter suitable for single emergency exposures is described. The dosimeter is furnished with detectors for thermal, epi-thermal and fast neutrons. This means that three of the constants by which the spectrum of the incident neutron flux is approximated, can be determined. The dose calculated from these approximated spectra is compared to the dose from spectra obtained in different standard spectra of types which may be expected in a radiation accident.

  15. Review of Fricke gel dosimeters

    International Nuclear Information System (INIS)

    Schreiner, L J

    2004-01-01

    The innovation of adding a gel matrix to the traditional Fricke dosimeter to stabilize geometric information established the field of gel dosimetry for radiation therapy. A discussion of Fricke gels provides an overview of the issues that determine the dose response of all gel dosimeters in general. In this paper we review some of the features of Fricke systems to illustrate these issues and, in addition, to motivate renewed clinical interest in Fricke gels

  16. Architectural prototyping

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2004-01-01

    A major part of software architecture design is learning how specific architectural designs balance the concerns of stakeholders. We explore the notion of "architectural prototypes", correspondingly architectural prototyping, as a means of using executable prototypes to investigate stakeholders...

  17. Digital neutron dosimeter

    International Nuclear Information System (INIS)

    Ramondetta, P.W.; Groeber, E.O.Jr.

    1978-01-01

    Design features for a portable battery-operated neutron dosimeter are described. The system employs a 50-mil PIN detector diode, whose forward voltage increases with exposure to fast neutrons. Because this change is permanent and cumulative, the system is able to integrate small doses (from 0 to 1000 rad) over long periods of time. The system is temperature compensated over its operating range of -40 C to +52C. Display accuracies of +-20 rad for readings below 100 rad and +-20% for readings above 100 rad are maintained throughout the range. Temperature correction is performed digitally after an initial analog-to-digital conversion of both the forward diode voltage and the ambient temperature. System flexibility is promoted with the use of a replaceable ROM for the final voltage-to-dose conversion table. This digital approach to temperature compensation, combined with the extensive use of CMOS circuitry, suggests the use of custom large-scale integration as a means of further reducing system weight and size. This possibility, as well as others, is discussed as a means of reducing system size. Test and evaluation results are also included. (author)

  18. The Calvet calorimetric dosimeter

    International Nuclear Information System (INIS)

    Puig, J.R.; Romano, F.

    1965-01-01

    This report describes a dosimeter based on the conduction calorimetry principle, and designed to operate in swimming-pool type nuclear reactors. The properties of the apparatus are as follows: 1 - the measurement is independent of the specific heat of the calorimetric elements; 2 - each calorimetric element is fitted with an electrical calibration; 3 - the apparatus is made up of two independent calorimetric elements; 4 - the nature of the calorimetric elements makes it possible to analyse the radiation received; 5 - the measurable intensities of the absorbed radiation vary from 4 to 4000 M/rads per hour; 6 - the sensitive part of the apparatus is fitted inside a cylinder 5 cm high and 2 cm in diameter. One pre-production unit made up of graphite and beryllium cores has been tried out in the reactor Siloe with radiation intensities of about 1 to 2 watts per gram. It absorbed an accumulated dose of 1.2*1O 12 rads without any weaknesses appearing. (authors) [fr

  19. Portable air quality sensor unit for participatory monitoring: an end-to-end VESNA-AQ based prototype

    Science.gov (United States)

    Vucnik, Matevz; Robinson, Johanna; Smolnikar, Miha; Kocman, David; Horvat, Milena; Mohorcic, Mihael

    2015-04-01

    Key words: portable air quality sensor, CITI-SENSE, participatory monitoring, VESNA-AQ The emergence of low-cost easy to use portable air quality sensors units is opening new possibilities for individuals to assess their exposure to air pollutants at specific place and time, and share this information through the Internet connection. Such portable sensors units are being used in an ongoing citizen science project called CITI-SENSE, which enables citizens to measure and share the data. The project aims through creating citizens observatories' to empower citizens to contribute to and participate in environmental governance, enabling them to support and influence community and societal priorities as well as associated decision making. An air quality measurement system based on VESNA sensor platform was primarily designed within the project for the use as portable sensor unit in selected pilot cities (Belgrade, Ljubljana and Vienna) for monitoring outdoor exposure to pollutants. However, functionally the same unit with different set of sensors could be used for example as an indoor platform. The version designed for the pilot studies was equipped with the following sensors: NO2, O3, CO, temperature, relative humidity, pressure and accelerometer. The personal sensor unit is battery powered and housed in a plastic box. The VESNA-based air quality (AQ) monitoring system comprises the VESNA-AQ portable sensor unit, a smartphone app and the remote server. Personal sensor unit supports wireless connection to an Android smartphone via built-in Wi-Fi. The smartphone in turn serves also as the communication gateway towards the remote server using any of available data connections. Besides the gateway functionality the role of smartphone is to enrich data coming from the personal sensor unit with the GPS location, timestamps and user defined context. This, together with an accelerometer, enables the user to better estimate ones exposure in relation to physical activities, time

  20. Study on the angular dependence of personal exposure dosimeter - Focus on thermoluminescent dosimeter and photoluminescent dosimeter

    International Nuclear Information System (INIS)

    Dong, Kyung-Rae; Kweon, Dae Cheol; Chung, Woon-Kwan; Goo, Eun-Hoe; Dieter, Kevin; Choe, Chong-Hwan

    2011-01-01

    Radiation management departments place more emphasis on the accuracy of measurements than on the increase in the average dose and personal exposure dose from the use of radiation equipment and radioactive isotopes. Although current measurements are taken using devices, such as film badge dosimeters, pocket dosimeters and thermoluminescent dosimeters (TLDs), this study compared the angular dependence between the widely used TLDs and photoluminescent dosimeter (PLDs) in order to present primary data and evaluate the utility of PLD as a new dosimeter device. For X-ray fluoroscopy, a whole body phantom was placed on a table with a setting for the G-I technical factors fixed at a range of approximately 40 cm with a range of ±90 o at an interval scale of 15 o from the center location of an average radiological worker for PLDs (GD-450) and TLDs (Carot). This process was repeated 10 times, and at each time, the cumulative dosage was interpreted from 130 dosimeters using TLDs (UD-710R, Panasonic) and PLDs (FGD-650). The TLD and PLD showed a 52% and 23% decrease in the depth dosage from 0 o to -90 o , respectively. Therefore, PLDs have a lower angular dependence than TLDs.

  1. Electronic dosimeter characteristics and new developments

    International Nuclear Information System (INIS)

    Thompson, I.M.G.

    1999-01-01

    Electronic dosimeters are very much more versatile than existing passive dosimeters such as TLDs and film badges which have previously been the only type of dosimeters approved by national authorities for the legal measurement of doses to occupationally exposed workers. Requirements for the specifications and testing of electronic dosimeters are given in the standards produced by the International Electrotechnical Commission Working Group IEC SC45B/B8. A description is given of these standards and the use of electronic dosimeters as legal dosimeters is discussed. (author)

  2. The rapid detection of methyl tert-butyl ether (MtBE) in water using a prototype gas sensor system.

    Science.gov (United States)

    de Lacy Costello, B P J; Sivanand, P S; Ratcliffe, N M; Reynolds, D M

    2005-01-01

    The gasoline additive Methyl-tertiary-Butyl Ether (MtBE) is the second most common contaminant of groundwater in the USA and represents an important soil contaminant. This compound has been detected in the groundwater in at least 27 states as a result of leaking underground storage facilities (gasoline storage tanks and pipelines). Since the health effects of MtBE are unclear the potential threat to drinking water supplies is serious. Therefore, the ability to detect MtBE at low levels (ppb) and on-line at high-risk groundwater sites would be highly desirable. This paper reports the use of 'commercial' and metal oxide sensor arrays for the detection of MtBE in drinking and surface waters at low ppb level (microg.L(-1) range). The output responses from some of the sensors were found to correlate well with MtBE concentrations under laboratory conditions.

  3. Passive dosimeters other than film and TLDs [thermoluminescent dosimeter

    International Nuclear Information System (INIS)

    Hankins, D.E.

    1986-01-01

    This presentation will describe CR-39 plastic as a personnel neutron dosimeter. Recent research at LLNL and elsewhere has resulted in the development of a dosimetry system that is superior to any personnel neutron dosimeter previously available. The author describes the features of the dosimetry system and the new etching procedures and techniques in detail. Most of the research was done at the LLNL and has been supported as a part of the DOE Neutron Dosimetry Upgrade Program. 10 refs., 4 figs., 1 tab

  4. Mexican gems as thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Azorin N, J.

    1979-01-01

    The possibility of using naturally ocurring mexican gems as thermoluminescent dosimeters (TLD) was investigated. Twelve types of gems were irradiated with X and gamma rays in order to determinate their dosimetric properties. Three of these gems showed favorable thermoluminescent characteristics compared with commercial thermoluminescent dosimeters. The plots of their thermoluminescent response as a function of gamma dose are straight lines on full log paper in the dose range 10 -2 to 10 2 Gy. The energy dependence is very strong to low energies of the radiation. Their fading was found to be about 5%/yr. and they may be annealed as reused without loss in sensitivity. Therefore, these gems can be used as X and gamma radiation dosimeters. (author)

  5. CVD diamond detectors and dosimeters

    International Nuclear Information System (INIS)

    Manfredotti, C.; Fizzotti, F.; LoGiudice, A.; Paolini, C.; Oliviero, P.; Vittone, E.; Torino Univ., Torino

    2002-01-01

    Natural diamond, because of its well-known properties of tissue-equivalence, has recorded a wide spreading use in radiotherapy planning with electron linear accelerators. Artificial diamond dosimeters, as obtained by Chemical Vapour Deposition (CVD) could be capable to offer the same performances and they can be prepared in different volumes and shapes. The dosimeter sensitivity per unit volume may be easily proved to be better than standard ionization microchamber. We have prepared in our laboratory CVD diamond microchamber (diamond tips) in emispherical shape with an external diameter of 200 μm, which can be used both as X-ray beam profilometers and as microdosimeters for small field applications like stereotaxy and also for in vivo applications. These dosimeters, which are obtained on a wire substrate that could be either metallic or SiC or even graphite, display good performances also as ion or synchrotron X-rays detectors

  6. Neutron dosimeter utilizing CR-39

    International Nuclear Information System (INIS)

    Souza, H.V.C. de.

    1991-05-01

    A personnel neutron dosimeter has been developed with discretization in a wide range of energies of real interest, utilizing the CR-39 polymer, to detect recoil protons in the fast range, and alpha particles in the thermal and epithermal ranges, with possibility to be disposed in the IRD/CNEN's conventional film badge suport. They are presented, abstractly, the difficulties and importance of the neutron dosimetry, beyond the general objectives that motivated this work execution. The details of the materials utilized in the dosimeter confection, and the experimental methodology employed to obtain the performance curves are presented. The results about linearity response of the dosimeter with respect to equivalent dose, in a wide range of doses, and about the verified angular dependence are analysed. (author)

  7. To the attention of all dosimeter users

    CERN Multimedia

    2005-01-01

    Many regular users of CERN personal dosimeters do not respect the safety regulations, which include a compulsory monthly read-out of the dosimeter. Therefore we would like to remind everybody that if the dosimeter is not read for a period of 3 months or more, we will ask for a return or replacement of the dosimeter, which has a value of CHF 350.-. We would like to emphasise that the dosimeter must be read even if you have not entered controlled areas. Staff members or CERN users who enter controlled areas only occasionally may exchange their regular dosimeter for a short term visitor dosimeter (VCT). This dosimeter has a limited validity period but without for a compulsory periodic read-out. For further information please contact dosimetry.service@cern.ch Thank you for your cooperation. Dosimetry Service Bldg. 24 E 011 http://cern.ch/rp-dosimetry

  8. To the attention of all dosimeter users

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Many regular users of CERN personal dosimeters do not respect the safety regulations, which include the compulsory monthly read-out of the dosimeter. Therefore we would like to remind everybody that if the dosimeter is not read for a period of 3 months or more, we will ask for a return or replacement of the dosimeter, which has a value of CHF 350.-. We would like to emphasise that the dosimeter must be read even if you have not entered controlled areas. Staff members or CERN users who enter controlled areas only occasionally may exchange their regular dosimeter for a short term visitor dosimeter (VCT). This dosimeter has a limited validity period but without for a compulsory periodic read-out. For further information please contact dosimetry.service@cern.ch Thank you for your cooperation. Dosimetry Service Bld 24 E 011 http://cern.ch/rp-dosimetry

  9. To the attention of all dosimeter users

    CERN Multimedia

    Dosimetry Service

    2006-01-01

    Many regular users of CERN personal dosimeters do not respect the safety regulations, which include the compulsory monthly read-out of the dosimeter. We would therefore like to remind everybody that if the dosimeter is not read for a period of 3 months or more, we will ask for a return or replacement of the dosimeter, which has a value of CHF 350,-. We would like to emphasise that the dosimeter must be read even if you have not entered controlled areas. Staff members or CERN users who enter controlled areas only occasionally may exchange their regular dosimeter for a short-term visitor dosimeter (VCT). This dosimeter has a limited validity period but does not require a periodic read-out. For further information please contact dosimetry.service@cern.ch Thank you for your cooperation. Dosimetry Service - Bldg. 24 E 011 - http://cern.ch/rp-dosimetry

  10. Flame-sintered ceramic exoelectron dosimeter samples

    International Nuclear Information System (INIS)

    Petel, M.; Holzapfel, G.

    1979-01-01

    New techniques for the preparation of integrating solid state dosimeters, particularly exoelectron dosimeters, have been initiated. The procedure consists in melting the powdered dosimeter materials in a hot, fast gas stream and depositing the ceramic layer. The gas stream is generated either through a chemical flame or by an electrical arc plasma. Results will be reported on the system Al 2 O 3 /stainless steel as a first step to a usable exoelectron dosimeter

  11. Prototyping a Web-of-Energy Architecture for Smart Integration of Sensor Networks in Smart Grids Domain.

    Science.gov (United States)

    Caballero, Víctor; Vernet, David; Zaballos, Agustín; Corral, Guiomar

    2018-01-30

    Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid's Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.

  12. Personnel neutron dosimeter evaluation and upgrade program

    International Nuclear Information System (INIS)

    Fix, J.J.; Brackenbush, L.W.; McDonald, J.C.; Roberson, P.L.; Holbrook, K.L.; Endres, G.W.R.; Faust, L.G.

    1983-01-01

    Evaluation of neutron dosimeters from twelve DOE laboratories involved about 2500 dosimeter irradiations at both PNL and the National Bureau of Standards (NBS) using neutrons of several energies and doses and several irradiations for good statistical analysis. The data and their analyses will be published later. The information evaluates accuracy, precision, lower dose detection, and energy response of dosimeters

  13. Dosimeter charging and/or reading apparatus

    International Nuclear Information System (INIS)

    Fine, L.T.; Jackson, T.P.

    1980-01-01

    A device is disclosed for charging and/or reading a capacitor associated with an electrometer incorporated in a radiation dosimeter for the purpose of initializing or ''zeroing'', the dosimeter at the commencement of a radiation measurement cycle or reading it at any time thereafter. The dosimeter electrometer has a movable electrode the position of which is indicative of the charge remaining on the dosimeter capacitor and in turn the amount of radiation incident on the dosimeter since it was zeroed. The charging device also includes means for discharging, immediately upon conclusion of the dosimeter capacitor charging operation, stray capacitance inherent in the dosimeter by reason of its mechanical construction. The charge on the stray capacitance, if not discharged at the conclusion of the dosimeter capacitor charging operation, leaks off during the measurement cycle, introducing measurement errors. A light source and suitable switch means are provided for automatically illuminating the movable electrode of the dosimeter electrometer as an incident to charging the dosimeter capacitor to facilitate reading the initial, or ''zero'', position of the movable electrometer electrode after the dosimeter capacitor has been charged and the stray capacitance discharged. Also included is a manually actuatable switch means, which is operable independently of the aforementioned automatic switch means, to energize the lamp and facilitate reading of the dosimeter without charging

  14. Prototyping a Web-of-Energy Architecture for Smart Integration of Sensor Networks in Smart Grids Domain

    Science.gov (United States)

    Vernet, David; Corral, Guiomar

    2018-01-01

    Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid’s Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29385748

  15. Prototyping a Web-of-Energy Architecture for Smart Integration of Sensor Networks in Smart Grids Domain

    Directory of Open Access Journals (Sweden)

    Víctor Caballero

    2018-01-01

    Full Text Available Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid’s Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.

  16. Collaborative Prototyping

    DEFF Research Database (Denmark)

    Bogers, Marcel; Horst, Willem

    2014-01-01

    of the prototyping process, the actual prototype was used as a tool for communication or development, thus serving as a platform for the cross-fertilization of knowledge. In this way, collaborative prototyping leads to a better balance between functionality and usability; it translates usability problems into design......This paper presents an inductive study that shows how collaborative prototyping across functional, hierarchical, and organizational boundaries can improve the overall prototyping process. Our combined action research and case study approach provides new insights into how collaborative prototyping...... can provide a platform for prototype-driven problem solving in early new product development (NPD). Our findings have important implications for how to facilitate multistakeholder collaboration in prototyping and problem solving, and more generally for how to organize collaborative and open innovation...

  17. Cell-phone interference with pocket dosimeters

    International Nuclear Information System (INIS)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M; Ayyangar, Komanduri M; Raman, Natarajan V; Enke, Charles A

    2005-01-01

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag. (note)

  18. Cell-phone interference with pocket dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M; Ayyangar, Komanduri M; Raman, Natarajan V; Enke, Charles A [Department of Radiation Oncology, University of Nebraska Medical Center, 987521 Nebraska Medical Center, Omaha, NE 68198-7521 (United States)

    2005-05-07

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag. (note)

  19. Development and characterisation of Monolithic Active Pixel Sensor prototypes for the upgrade of the ALICE Inner Tracking System

    CERN Document Server

    Collu, Alberto

    ALICE (A Large Ion Collider Experiment) is dedicated to the study and characterisation of the Quark-­‐Gluon Plasma (QGP), exploiting the unique potential of ultrarelativistic heavy-­‐ion collisions at the CERN Large Hadron Collider (LHC). The increase of the LHC luminosity leading up to about 50 kHz Pb-­‐Pb interaction rate after the second long shutdown (in 2018-­‐2019) will offer the possibility to perform high precision measurements of rare probes over a wide range of momenta. These measurements are statistically limited or not even possible with the present experimental set up. For this reason, an upgrade strategy for several ALICE detectors is being pursued. In particular, it is foreseen to replace the Inner Tracking System (ITS) by a new detector which will significantly improve the tracking and vertexing capabilities of ALICE in the upgrade scenario. The new ITS will have a barrel geometry consisting of seven layers of Monolithic Active Pixel Sensors (MAPS) with high granularity, which will...

  20. Analysis of test beam data of ALPIDE, the final Monolithic Active Pixel Sensor (MAPS) prototype for the ALICE ITS upgrade

    CERN Document Server

    Emriskova, Natalia

    2017-01-01

    The ALICE collaboration is currently preparing a major upgrade of its apparatus, planned for installation during the second long shutdown of the Large Hadron Collider in 2019-20. The main pillar of the upgrade is the replacement of the current Inner Tracking System (ITS) with a new, low-material, high resolution silicon pixel detector, made of Monolithic Active Pixel Sensors (MAPS). This technology, combining front-end circuitry and sensitive layer in a single device, will lead to a higher granularity of the detector and therefore a better pointing resolution. The silicon pixel chips, called ALPIDEs, developed specifically for the new ITS, are currently characterized using test beams. A part of this characterization is presented in this work. The project involves the very first analysis of test beam data with inclined tracks. The tested ALPIDE is rotated with respect to the beam, hence the particles cross the chip with an inclined incidence angle. The influence of these rotations on the efficiency profile...

  1. Integration of a prototype wireless communication system with micro-electromechanical temperature and humidity sensor for concrete pavement health monitoring

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2015-12-01

    Full Text Available In recent years, structural health monitoring and management (SHMM has become a popular approach and is considered essential for achieving well-performing, long-lasting, sustainable transportation infrastructure systems. Key requirements in ideal SHMM of road infrastructure include long-term, continuous, and real-time monitoring of pavement response and performance under various pavement geometry-materials-loading configurations and environmental conditions. With advancements in wireless technologies, integration of wireless communications into sensing device is considered an alternate and superior solution to existing time- and labor-intensive wired sensing systems in meeting the requirements of an ideal SHMM. This study explored the development and integration of a wireless communications sub-system into a commercial off-the-shelf micro-electromechanical sensor-based concrete pavement monitoring system. A success-rate test was performed after the wireless transmission system was buried in the concrete slab, and the test results indicated that the system was able to provide reliable communications at a distance of more than 46 m (150 feet. This will be a useful feature for highway engineers performing routine pavement scans from the pavement shoulder without the need for traffic control or road closure.

  2. Improved sample holders for the PMMA dosimeters

    International Nuclear Information System (INIS)

    Kobayashi, Toshikazu; Sone, Koji; Iso, Katsuaki

    1994-01-01

    PMMA dosimeters are widely used for high dose dosimetry. Dose is determined by measuring the change in optical density of the irradiated PMMA dosimeter element. Measurement precision depends on the mounting method of a dosimeter element in the sample room of a spectrophotometer. We tried to prepare three types of holders, (holders A, B and C in Figs. 1-3), according to the shape of PMMA dosimeter elements. We measured optical density of the irradiated PMMA dosimeter elements by using the three types of holders. It is revealed that the holder of the type A gives more precise results for the Red 4034 or Gammachrome YR dosimeter than that of the type B. The measurements with a spectrophotometer using the type C holder gives better results for the Red acrylic dosimeter than the case of the measurements by the exclusive reader. (author)

  3. Single and multichannel scintillating fiber dosimeter for radiotherapic beams with SiPM readout

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.it [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca (Italy); Ferri, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (Italy); Novati, C. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca (Italy); Ostinelli, A. [Ospedale Sant' Anna, Servizio di Fisica Sanitaria (Italy); Paternoster, G.; Piemonte, C. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (Italy); Prest, M. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca (Italy); Vallazza, E. [INFN Sezione di Trieste (Italy)

    2016-12-01

    The treatment of many neoplastic diseases requires the use of radiotherapy, which consists in the irradiation of the tumor, identified as the target volume, with ionizing radiations generated both by administered radiopharmaceuticals or by linear particle accelerators (LINACs). The radiotherapy beam delivered to the patient must be regularly checked to assure the best tumor control probability: this task is performed with dosimeters, i.e. devices able to provide a measurement of the dose deposited in their sensitive volume. This paper describes the development of two scintillator dosimeter prototypes for radiotherapic applications based on plastic scintillating fibers read out by high dynamic range Silicon PhotoMultipliers. The first dosimeter, consisting of a single-channel prototype with a pair of optical fibers, a scintillating and a white one, read out by two SiPMs, has been fully characterized and led to the development of a second multi-channel dosimeter based on an array of scintillating fibers: this device represents the first step towards the assembly of a “one-shot” device, capable to perform some of the daily quality controls in a few seconds. The dosimeters characterization was performed with a Varian Clinac iX linear accelerator at the Radiotherapy Department of the St. Anna Hospital in Como (IT).

  4. Bronchial dosimeter for radon progeny

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, T.K.; Yu, K.N.; Nikezic, D.; Haque, A.K.M.M. [City University of Hong Kong, Hong Kong (China); Vucic, D. [Faculty of Technology, University of Nis, Lescovac (Yugoslavia)

    2000-05-01

    Traditionally, assessments of the bronchial dose from radon progeny were carried out by measuring the unattached fraction (f{sub p}) of potential alpha energy concentration (PAEC), the total PAEC, activity median diameters (AMDs) and equilibrium factor, and then using dosimetric lung models. A breakthrough was proposed by Hopke et al. (1990) to use multiple metal wire screens to mimic the deposition properties of radon progeny in the nasal (N) and tracheobronchial (T-B) regions directly. In particular, they were successful in using four layers of 400-mesh wire screens with a face velocity of 12 cm s{sup -1} for the simulation of radon progeny deposition in the T-B region. Oberstedt and Vanmarcke (1995) carried out precise calibrations for the system, and named the system as the 'bronchial dosimeter'. Based on these, Yu and Guan (1998) proposed a portable bronchial dosimeter similar to a normal measurement system for radon progeny or PAEC and consisted of only a single sampler and employed only one 400-mesh wire screen and one filter. However, all these 'bronchial dosimeters' in fact only determined the fraction of potential alpha energy from radon progeny deposited in the T-B region, which required certain assumptions and calculations to further give the final bronchial dose. In the present work, a true 'bronchial dosimeter' was designed, which consisted of three 400-mesh wire screens and a filter. With a face velocity of 11 cm s{sup -1}, the deposition pattern on the wire screens was found to satisfactorily match the variation of the dose conversion factor (in the unit of mSv/WLM) with the size of radon progeny from 1 to 1000 nm. In this way, this bronchial dosimeter directly gave the bronchial dose from the alpha counts recorded on the wire-screens and the filter paper. With the development of this bronchial dosimeter, the present practice of 'dose estimation' from large-scale radon surveys can be replaced by large

  5. Laser CT evaluation on normoxic PAGAT gel dosimeter

    International Nuclear Information System (INIS)

    Kumar, D S; Samuel, E J J; Watanabe, Y

    2013-01-01

    Optical computed tomography has been shown to be a potentially useful imaging tool for the radiation therapy physicists. In radiation therapy, researchers have used optical CT for the readout of 3D dosimeters. The purpose of this paper is to describe the initial evaluation of a newly fabricated laser CT scanner for 3D gel dosimetry which works using the first generation principle. A normoxic PAGAT (Polyacrylamide Gelatin and Tetrakis) gel is used as a dosimeter for this analysis. When a laser passes through the gel phantom, absorption and scattering of photon take place. The optical attenuation coefficient of the laser can be obtained by measuring its intensity after passing through the gel by a sensor. The scanner motion is controlled by a computer program written in Microsoft Visual C++. Reconstruction and data analysis on the irradiated gel phantom is performed by suitable algorithm using Matlab software.

  6. Optical CT evaluation on normoxic polymer gel dosimeter

    International Nuclear Information System (INIS)

    Samuel, E. James Jebaseelan

    2013-01-01

    Optical computed tomography has been shown to be a potentially useful imaging tool for the radiation therapy physicists. In radiation therapy, researchers have used optical CT for the readout of 3D dosimeters. The purpose of this paper is to explicate the initial evaluation of a newly fabricated laser CT scanner for '3D gel dosimetry' which works in the first generation principle. The normoxic PAGAT (Polyacrylamide Gelatin and Tetrakis) gel is used as a dosimeter for this analysis. When laser passes through this gel phantom, absorption and scattering of photon take place. The optical attenuation coefficient of the laser can be obtained by measuring its intensity after passing through the gel by a sensor.The scanner motion is controlled by the program written in Microsoft Visual C++. Reconstruction and data analysis on the irradiated gel phantom is performed by suitable algorithm using Matlab software. (author)

  7. Operation of Personal Electronic Dosimeters at NRCN

    International Nuclear Information System (INIS)

    Weinstein, M.; Abraham, A.; Tshuva, A.; German, U.

    2004-01-01

    In the recent years, electronic personal dosimeters (EPD's) are increasingly being used at NRCN, replacing the old direct reading dosimeters that are still widely used. The most significant advantage of the new dosimeters is the real time alarm in a radiation field exceeding a pre-determined threshold. The EPD dosimeters are more precise and can measure γ, β and x rays of a wide range of energies. In addition, the electronic dosimeters collects and stores the reading at a fixed pattern (every 10 seconds) and keeps the data until it is downloaded from the dosimeter. This feature gives the ability to build a personal time-dependent exposure report for each worker who carries this device and to analyze, identify and measure the exact dose, time and duration of any exposure event he was involved in. Designing and building a personal electronic dosimeter became possible as a result of the massive technological improvements of semi conductor detectors and the minimization processes of microprocessors and low energy electronic devices. The main purpose for personal electronic dosimeters was to monitor on-line doses for radiation workers.A special reader device enables to download data and upload operational settings of the dosimeters. By means of this communication channel, one can save the data acquired by the dosimeter, clear the dosimeter memory and set the dosimeter operational parameters. There are two possible working patterns. The first is to read and set all the dosimeters at a central point, normally a dosimetry laboratory (single reader) and the second and more expensive one, is to build a network of readers covering the plant for obtaining on-line communication

  8. Electret dosimeter utilizing gas multiplication

    International Nuclear Information System (INIS)

    Ikeya, M.; Miki, T.

    1980-01-01

    It was found that the high electric field around the surface of an electret leads to cascade multiplication of the ionization process in a surrounding gas. Very sensitive charge decay constants of the order of 1mrad, were obtained for electrets composed of polyvinyliden fluoride or teflon polymers. The reduced charge is stable and can be utilized in personnel dosimetry. A simple pocket chamber dosimeter is described consisting of a small speaker or buzzer, a cylindrical chamber filled with air, argon or other gases, a polymer thermoelectret foil and an electrode. The sonic vibration of the foil induces an alternating charge on the electrode which is amplified and detected. The feasibility of this dosimeter and its shock and vibration resistance have been demonstrated. (author)

  9. Development of colored alumilite dosimeter

    CERN Document Server

    Obara, K; Yagi, T; Yokoo, N

    2003-01-01

    In the ITER (International Thermonuclear Experimental Reactor), in-vessel components such as blanket and divertor, which are installed in the vacuum vessel of the ITER, are maintained by remote handling equipment (RH equipment). The RH equipment for maintenance is operated under sever environmental conditions, such as high temperature (50 approx 100 degC), high gamma-ray radiation (approx 1 kGy/h) in an atmosphere of inert gas or vacuum; therefore many components of the RH equipment must have a suitable radiation resistance efficiency for long time operation (10 approx 100 MGy). Typical components of the RH equipment have been extensively tested under an intensive gamma-ray radiation. Monitoring of the radiation dose of the components of the RH equipment is essential to control the operation period of the RH equipment considering radiation resistance. However, the maximum measurable radiation dose of the conventional dosimeters, such as ionization chamber, liquid, glass and plastic dosimeters are limited to b...

  10. RADIATION DOSIMETER AND DOSIMETRIC METHODS

    Science.gov (United States)

    Taplin, G.V.

    1958-10-28

    The determination of ionizing radiation by means of single fluid phase chemical dosimeters of the colorimetric type is presented. A single fluid composition is used consisting of a chlorinated hydrocarbon, an acidimetric dye, a normalizer and water. Suitable chlorinated hydrocarbons are carbon tetrachloride, chloroform, trichloroethylene, trichlorethane, ethylene dichioride and tetracbloroethylene. Suitable acidimetric indicator dyes are phenol red, bromcresol purple, and creosol red. Suitable normallzers are resorcinol, geraniol, meta cresol, alpha -tocopberol, and alpha -naphthol.

  11. Approving of personal dosimeter services

    International Nuclear Information System (INIS)

    Bergman, K.; Malmqvist, L.

    2001-09-01

    The Swedish regulation SSI FS 98:5 requires that radiological workers of category A use dosemeters from an approved personal dosimetry service. The regulation also includes certain specific dosimeter requirements, which are based on those presented in the Technical Recommendations by the European Commission (Report EUR 14852 EN, 1994). All services have been tested for their ability to determine Hp(10) and some of them to determine Hp(0.07) at one radiation quality. The test was performed in the interval 0.2 mSv to 100 mSv at three different dose equivalents unknown to the system owner. The 11 services operating in Sweden at the moment use 5 different types of dosimeters. The five unique systems have been tested regarding the angular and energy dependence of the response of the dosimeters. The dosimeters were irradiated to a personal dose equivalent of about 1 mSv at three photon energies and at four angles (0, 20, 40 and 60 deg. resp. ) both vertically and horizontally rotated. Only 2 of the services determine Hp(0.07) for beta and gamma radiation and were tested for this quantity. The test results for Hp(10) are all except two within the trumpet curve. For the unique systems it is shown that the uncertainty related to angular response at a specified energy is within the required ±40 % except for the lowest X-ray quality at 40 kV. The response is more dependent on photon energy than on the direction of the photon radiation and the choice of radiation quality for the calibration is of great importance for the system performance

  12. Radiation sensitive polymer gel dosimeters

    International Nuclear Information System (INIS)

    Lepage, M.; Back, S.A.J.; Baldock, C.; Whittaker, A.K.; Rintoul, L.

    2000-01-01

    Full text: Radiation sensitive gels are studied for their potential to retain a permanent 3D dose distribution for applications in radiotherapy. Co-monomers dissolved in a tissue-equivalent hydrogel undergo a polymerization reaction upon absorption of ionizing radiation. The polymer formed influences the local spin-spin relaxation time (T 2 ) of the dosimeter that can be determined using magnetic resonance imaging (MRI). The relationship between T2 and the absorbed dose was studied for different initial chemical compositions. The aim was to find a model linking the changes in T 2 with absorbed dose to the initial composition of the dosimeter. It is believed this will help designing new gel dosimeters having desired properties to minimize the uncertainty in the determination of the dose distribution. 1 H, 13 C nuclear magnetic resonance spectroscopy and FT-Raman spectroscopy were used to quantify the amount of monomers still remaining after the absorption of a given dose of radiation. This data is used to model the changes of T2 as a function of the absorbed dose. A model of fast exchange of magnetization between three proton pools was used, where the fraction of protons (f x H ) in the x th pool is obtained from the chemical composition of the dosimeter and the apparent T2 of each pool is determined for a given composition. Initially, the protons are contained in two pools; a mobile (mob), which contains the water protons and the monomers protons, and a gelatin (gela) proton pool. The mobile pool is partially depleted as polymer is formed, the protons are transferred into the polymer (pol) pool. In the figure, the experimental data along with the calculated values are plotted for three different monomer concentrations, with the gelatin concentration fixed. The model is seen to provide a good fit to the experimental data

  13. Dedicated multichannel readout ASIC coupled with single crystal diamond for dosimeter application

    International Nuclear Information System (INIS)

    Fabbri, A; Notaristefani, F De; Galasso, M; Cencelli, V Orsolini; Falco, M D; Marinelli, M; Tortora, L; Verona, C; Rinati, G Verona

    2013-01-01

    This paper reports on the tests of a low-noise, multi-channel readout integrated circuit used as a readout electronic front-end for a diamond multi-pixel dosimeter. The system is developed for dose distribution measurement in radiotherapy applications. The first 10-channel prototype chip was designed and fabricated in a 0.18 um CMOS process. Every channel includes a charge integrator with a 10 pF capacitor and a double slope A/D converter. The diamond multi-pixel detector, based on CVD synthetic single crystal diamond Schottky diodes, is made by a 3 × 3 sensor matrix. The overall device has been tested under irradiation with 6 MeV radio therapeutic photon beams at the Policlinico ''Tor Vergata'' (PTV) hospital. Measurements show a 20 fA RMS leakage current from the front-end input stage and a negligible dark current from the diamond detector, a stable temporal response and a good linear behaviour as a function of both dose and dose rate. These characteristics were common to each tested channel.

  14. Prototyping Practice

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin

    2015-01-01

    This paper examines the role of the prototyping in digital architecture. During the past decade, a new research field has emerged exploring the digital technology’s impact on the way we think, design and build our environment. In this practice the prototype, the pavilion, installation or demonstr......This paper examines the role of the prototyping in digital architecture. During the past decade, a new research field has emerged exploring the digital technology’s impact on the way we think, design and build our environment. In this practice the prototype, the pavilion, installation...

  15. Electrical and functional characterisation with single chips and module prototypes of the 1.2 Gb/s serial data link of the monolithic active pixel sensor for the upgrade of the ALICE Inner Tracking System

    CERN Document Server

    Bonora, Matthias; Aglieri Rinella, Gianluca; Hillemanns, Hartmut; Kim, Daehyeok; Kugathasan, Thanushan; Lattuca, Alessandra; Mazza, Giovanni; Sielewicz, Krzysztof Marek; Snoeys, Walter

    2017-01-01

    The upgrade of the ALICE Inner Tracking System uses a newly developed monolithic active pixel sensor (ALPIDE) which will populate seven tracking layers surrounding the interaction point. Chips communicate with the readout electronics using a 1.2 Gb/s data link and a 40 Mb/s bidirectional control link. Event data are transmitted to the readout electronics over microstrips on a Flexible Printed Circuit and a 6 m long twinaxial cable. This paper outlines the characterisation effort for assessing the Data Transmission Unit performance of single sensors and prototypes of the detector modules. It describes the different prototypes used, the test system and procedures, and results of laboratory and irradiation tests.

  16. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  17. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  18. Acoustic evaluation of polymer gel dosimeters

    International Nuclear Information System (INIS)

    Mather, M.L.; De Deene, Y.; Baldock, C.; Whittaker, A.K.

    2002-01-01

    Advances in radiotherapy treatment techniques such as intensity modulated radiotherapy are placing increasing demands on radiation dosimetry for verification of dose distributions in 3D. In response, polymer gel dosimeters that are capable of recording dose distributions in 3D are currently being developed. Recently, a new technique for evaluation of absorbed dose distributions in these dosimeters using ultrasound was introduced. The current work aims to demonstrate the potential of ultrasound as an evaluation technique for polymer gel dosimeters and to investigate the ultrasound properties of two different dosimeter formulations, PAG and MAGIC gels

  19. Fast-neutron solid-state dosimeter

    International Nuclear Information System (INIS)

    Kecker, K.H.; Haywood, F.F.; Perdue, P.T.; Thorngate, J.H.

    1975-01-01

    This patent relates to an improved fast-neutron solid-state dosimeter that does not require separation of materials before it can be read out, that utilizes materials that do not melt or otherwise degrade at about 300 0 C readout temperature, that provides a more efficient dosimeter, and that can be reused. The dosimeters are fabricated by intimately mixing a TL material, such as CaSO 4 :Dy, with a powdered polyphenyl, such as p-sexiphenyl, and hot-pressing the mixture to form pellets, followed by out-gassing in a vacuum furnace at 150 0 C prior to first use dosimeters

  20. Analysis of the Accuracy and Performance of a Continuous Glucose Monitoring Sensor Prototype: An In-Silico Study Using the UVA/PADOVA Type 1 Diabetes Simulator.

    Science.gov (United States)

    Breton, Marc D; Hinzmann, Rolf; Campos-Nañez, Enrique; Riddle, Susan; Schoemaker, Michael; Schmelzeisen-Redeker, Guenther

    2017-05-01

    Computer simulation has been shown over the past decade to be a powerful tool to study the impact of medical devices characteristics on clinical outcomes. Specifically, in type 1 diabetes (T1D), computer simulation platforms have all but replaced preclinical studies and are commonly used to study the impact of measurement errors on glycemia. We use complex mathematical models to represent the characteristics of 3 continuous glucose monitoring systems using previously acquired data. Leveraging these models within the framework of the UVa/Padova T1D simulator, we study the impact of CGM errors in 6 simulation scenarios designed to generate a wide variety of glycemic conditions. Assessment of the simulated accuracy of each different CGM systems is performed using mean absolute relative deviation (MARD) and precision absolute relative deviation (PARD). We also quantify the capacity of each system to detect hypoglycemic events. The simulated Roche CGM sensor prototype (RCGM) outperformed the 2 alternate systems (CGM-1 & CGM-2) in accuracy (MARD = 8% vs 11.4% vs 18%) and precision (PARD = 6.4% vs 9.4% vs 14.1%). These results held for all studied glucose and rate of change ranges. Moreover, it detected more than 90% of hypoglycemia, with a mean time lag less than 4 minutes (CGM-1: 86%/15 min, CGM-2: 57%/24 min). The RCGM system model led to strong performances in these simulation studies, with higher accuracy and precision than alternate systems. Its characteristics placed it firmly as a strong candidate for CGM based therapy, and should be confirmed in large clinical studies.

  1. Development of colored alumilite dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Shibanuma, Kiyoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Yagi, Toshiaki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yokoo, Noriko [Radiation Application Development Association, Tokai, Ibaraki (Japan)

    2003-03-01

    In the ITER (International Thermonuclear Experimental Reactor), in-vessel components such as blanket and divertor, which are installed in the vacuum vessel of the ITER, are maintained by remote handling equipment (RH equipment). The RH equipment for maintenance is operated under sever environmental conditions, such as high temperature (50{approx}100 degC), high gamma-ray radiation ({approx}1 kGy/h) in an atmosphere of inert gas or vacuum; therefore many components of the RH equipment must have a suitable radiation resistance efficiency for long time operation (10{approx}100 MGy). Typical components of the RH equipment have been extensively tested under an intensive gamma-ray radiation. Monitoring of the radiation dose of the components of the RH equipment is essential to control the operation period of the RH equipment considering radiation resistance. However, the maximum measurable radiation dose of the conventional dosimeters, such as ionization chamber, liquid, glass and plastic dosimeters are limited to be approximately 1MGy which is too low to monitor the RH equipment for the ITER. In addition, these conventional dosimeters do not involve sufficient radiation resistance against the high gamma-ray radiation as well as are not easy handling and low cost. Based on the above backgrounds, a new dosimeter with bleaching of an azo group dye to be applied to a radiation monitor has been developed for high gamma-ray radiation use. The colored alumilite dosimeter is composed of the azo group dye (-N=N-) in an anodic oxidation layer of aluminum alloy (Al{sub 2}O{sub 3}). It can monitor the radiation dose by measuring the change of the bleaching of azo dye in the Al{sub 2}O{sub 3} layer due to gamma-ray irradiation. The degree of bleaching is measured as the change of hue (color) and brightness based on the Munsell's colors with a three dimensional universe using spectrophotometer. In the tests, the dependencies such as colors, anodized layer thickness, type of azo

  2. Development of real time personal neutron dosimeter with two silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Tsujimura, N. [Tohoku Univ., Cyclotron and Radioisotope Center, Aoba, Aramaki, Aoba-ku (Japan); Yamano, T. [Tokyo Factory, Fuji Electric Co. Ltd., Tokyo (Japan)

    1992-07-01

    We developed a real time personal neutron dosimeter by using two types of silicon p-n junction detectors, thermal neutron sensor and fast neutron sensor. The thermal neutron sensor which is {sup 10}B doped n-type silicon with a polyethylene radiator mainly counts neutrons of energy front thermal to I MeV, and the fast neutron sensor which is p-type silicon with a polyethylene radiator is sensitive to neutrons above I MeV. The neutron sensitivity measurements revealed that the dosimeter has a rather flat response for dose equivalent from thermal to 15 MeV, excluding a drop from 50 keV to I MeV. In order to get conversion factor from counts to dose equivalent as accurately as possible, we performed the field test of the dosimeter calibration in several neutron-generating fields. By introducing the two-group dose estimation method, this dosimeter can give the neutron dose equivalent within about 50% errors. (author)

  3. Unikabeton Prototype

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Dombernowsky, Per

    2011-01-01

    The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project was elabor......The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project...... of Architecture was to develop a series of optimisation experiments, concluding in the design and optimisation of a full scale prototype concrete structure....

  4. Handheld Broadband Electromagnetic UXO Sensor

    National Research Council Canada - National Science Library

    Won, I. J; San Filipo, William A; Marqusee, Jeffrey; Andrews, Anne; Robitaille, George; Fairbanks, Jeffrey; Overbay, Larry

    2005-01-01

    The broadband electromagnetic sensor improvement and demonstration undertaken in this project took the prototype GEM-3 and evolved it into an operational sensor with increased bandwidth and dynamic...

  5. Development of a multichannel dosimeter for radiotherapy

    International Nuclear Information System (INIS)

    Menezes, Claudio Jose Mesquita

    2000-06-01

    In radiotherapy, verification of the patient dose is of great important for the success of the treatment. Uncertainties in the evaluation of this dose can produce serious complications such as the loss of the control of the disease and damage to normal tissue. Semiconductor detectors present advantages over other types of radiation detectors such as ionization chambers and thermoluminescent dosimeters including small dimensions, high sensitivity and fast response. In this work, a multichannel dosimetric system is linear with dose, for a 6 MV x-ray beam and also with a beam of cobalt-60 gamma rays. The coefficients of determination of the calibration curves were better then 0,9998 in all cases. The four sensors presented similar response with the dose for different field sizes. The variation of the response was smaller than 1%. In a related study, depth dose was measured, and the results showed a good agreement compared to theoretical values. The angular response of the detectors showed a variation of 7% for angles of 45 deg C. Using the Anderson Random phantom, dose at the isocenter was determined from measurements of the surface dose. From the results obtained it can be concluded that the dosimetric system developed is adequate for the evaluation of many parameters in radiation fields used in radiotherapy. This system can be used to measure the patient entrance dose under treatment conditions, and the equipment can be used in the radiotherapy quality assurance program. (author)

  6. A PC based thin film dosimeter system

    DEFF Research Database (Denmark)

    Miller, A.; Hargittai, P.; Kovacs, A.

    2000-01-01

    A dosimeter system based on the Riso B3 dosimeter film, an office scanner for use with PC and the associated software is presented. The scanned image is analyzed either with standard software (Paint Shop Pro 5 or Excel) functions or with the computer code "Scanalizer" that allows presentation...

  7. Solution Prototype

    DEFF Research Database (Denmark)

    Efeoglu, Arkin; Møller, Charles; Serie, Michel

    2013-01-01

    This paper outlines an artifact building and evaluation proposal. Design Science Research (DSR) studies usually consider encapsulated artifact that have relationships with other artifacts. The solution prototype as a composed artifact demands for a more comprehensive consideration in its systematic...... environment. The solution prototype that is composed from blending product and service prototype has particular impacts on the dualism of DSR’s “Build” and “Evaluate”. Since the mix between product and service prototyping can be varied, there is a demand for a more agile and iterative framework. Van de Ven......’s research framework seems to fit this purpose. Van de Ven allows for an iterative research approach to problem solving with flexible starting point. The research activity is the result between the iteration of two dimensions. This framework focuses on the natural evaluation, particularly on ex...

  8. Software Prototyping

    Science.gov (United States)

    Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R.

    2016-01-01

    Summary Background Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. Objective To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Methods Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Results Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system. PMID:27081404

  9. A SiPM based real time dosimeter for radiotherapic beams

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.it [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11 22100 Como (Italy); Conti, V. [Ospedale Sant' Anna, Servizio di Fisica Sanitaria, Como (Italy); Lietti, D.; Milan, L.; Novati, C. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11 22100 Como (Italy); Ostinelli, A. [Ospedale Sant' Anna, Servizio di Fisica Sanitaria, Como (Italy); Prest, M.; Romanó, C. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11 22100 Como (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2015-02-11

    This paper describes the development of a scintillator dosimeter prototype for radiotherapic applications based on plastic scintillating fibers readout by Silicon PhotoMultipliers. The dosimeter, whose probes are water equivalent, could be used for quality control measurements, beam characterization and in vivo dosimetry, allowing a real time measurement of the dose spatial distribution. This paper describes the preliminary percentual depth dose scan performed with clinical 6 and 18 MV photon beams, comparing the results with a reference curve. The measurements were performed using a Varian Clinac iX linear accelerator at the Radiotherapy Department of the St. Anna Hospital in Como (IT). The prototype has given promising results, allowing real time measurements of relative dose without applying any correction factors.

  10. Development of Thermoluminescence Dosimeter CaSO4:Dy as Personal and Environmental Dosimeters

    International Nuclear Information System (INIS)

    Hasnel Sofyan

    2009-01-01

    Development of personal and environmental dosimeters using material phosphors of CaSO 4 :Dy powder in form capillary glass and disc teflon thermoluminescence (TL) dosimeter have been done. TL dosimeter CaSO 4 :Dy powder used can record dose response less than 0.01 mGy. Fading of TL dosimeter capillary glass after 29 days is 25%. In 1 batch, making of CaSO 4 :Dy powder can obtain 2 groups of dosimeter capillaries with coefficient variance smaller than 10%. This discrepancy caused difference in powder making and reading of the TL dosimeter. TL dosimeter CaSO 4 :Dy teflon disc with dia. 5 mm and 0.8 mm thickness is homogeneous mixture between phosphor powder with dia. 80 to 150 mesh and teflon powder dia. 20 μm. The composition of CaSO 4 :Dy and teflon in TL dosimeter influence sensitivity of the dosimeter. It’ concluded that in order to obtain optimal sensitivity of TL dosimeter, the composition of CaSO 4 :Dy and teflon is 3 and 1 with pressured of disc in 700 MPa. (author).

  11. Scintillation counter based radiation dosimeter

    International Nuclear Information System (INIS)

    Shin, Jeong Hyun

    2009-02-01

    The average human exposure per year is about 240mrem which is come from Radon and human body and terrestrial and cosmic radiation and man-made source. Specially radiation exposure through air from environmental radiation sources is 80mrem/yr(= 0.01mR/hr) which come from Terrestrial and cosmic radiation. Radiation dose is defined as energy deposit/mass. There are two major methods to detect radiation. First method is the energy integration using Air equivalent material like GM counter wall material. Second method is the spectrum to dose conversion method using NaI(Tl), HPGe. These two methods are using generally to detect radiation. But these methods are expensive. So we need new radiation detection method. The research purpose is the development of economical environmental radiation dosimeter. This system consists of Plastic/Inorganic scintillator and Si photo-diode based detector and counting based circuitry. So count rate(cps) can be convert to air exposure rate(R/hr). There are three major advantages in this system. First advantages is no high voltage power supply like GM counter. Second advantage is simple electronics. Simple electronics system can be achieved by Air-equivalent scintillation detector with Al filter for the same detection efficiency vs E curve. From former two advantages, we can know the most important advantages of the this system. Third advantage is economical system. The price of typical GM counter is about $1000. But the price of our system is below $100 because of plastic scintillator and simple electronics. The role of scintillation material is emitting scintillation which is the flash of light produced in certain materials when they absorb ionizing radiation. Plastic scintillator is organic scintillator which is kind of hydrocarbons. The special point are cheap price, large size production(∼ton), moderate light output, fast light emission(ns). And the role of Al filter is equalizing counting efficiency of air and scintillator for

  12. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    Science.gov (United States)

    Britton, Jr; Charles, L [Alcoa, TN; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  13. Performance testing of extremity dosimeters, Study 2

    International Nuclear Information System (INIS)

    Harty, R.; Reece, W.D.; Hooker, C.D.

    1990-04-01

    The Health Physics Society Standards Committee (HPSSC) Working Group on Performance Testing of Extremity Dosimeters has issued a draft of a proposed standard for extremity dosimeters. The draft standard proposes methods to be used for testing dosimetry systems that determine occupational radiation dose to the extremities and the performance criterion used to determine compliance with the standard. Pacific Northwest Laboratory (PNL) has conducted two separate evaluations of the performance of extremity dosimeter processors to determine the appropriateness of the draft standard, as well as to obtain information regarding the performance of extremity dosimeters. Based on the information obtained during the facility visits and the results obtained from the performance testing, it was recommended that changes be made to ensure that the draft standard is appropriate for extremity dosimeters. The changes include: subdividing the mixture category and the beta particle category; eliminating the neutron category until appropriate flux-to-dose equivalent conversion factors are derived; and changing the tolerance level for the performance criterion to provide consistency with the performance criterion for whole body dosimeters, and to avoid making the draft standard overly difficult for processors of extremity dosimeters to pass. 20 refs., 10 figs., 6 tabs

  14. [AOR characterization and zoning: a dosimeter for blue light].

    Science.gov (United States)

    Dario, R; Uva, J; Di Lecce, V; Quarto, A

    2011-01-01

    The paper presents the results obtained thanks to an innovative experimental device for the assessment of artificial optical radiation (AOR) exposure in workplace. This . device was developed by 'Politecnico di Bari-DIASS'. The wearable personal dosimeter has three sensors: one is used for measuring head position/movement, therefore there is a color light sensor to determine the AOR and finally there is a video camera to localize sources. Our system is connected to a netbook via USB cable that allows one to obtain the real and extimated value of worker's exposure, also with "augmented reality". The aim of this paper is realizing work place safety zoning for the classifacation of not only specific dangerous areas through the analysis of overlapping information from the device.

  15. Reduction of radiation exposure for the examiner in angiography using a direct dosimeter

    International Nuclear Information System (INIS)

    Kamusella, Peter; Wissgott, C.; Scheer, F.; Andresen, R.; Wiggermann, P.

    2013-01-01

    Purpose: To evaluate whether a reduction in radiation exposure can be achieved using a direct dosimeter with an acoustic warning signal (model EDD-30, Unfors Instruments, Billdal, Sweden). Materials and Methods: A total of 183 diagnostic and interventional angiographies of the pelvis and lower limbs using a direct dosimeter were analyzed. The vascular interventions were performed either by an experienced examiner (> 5000 interventions), an intermediate examiner (> 1000 interventions) or by a beginner (< 200 interventions). The measuring sensor of the direct dosimeter was attached to the back of the left hand, below the sterile glove, and was worn throughout the examination. If the limit values set on the dosimeter were exceeded, an acoustic signal sounded. At the end of the examination, the mean dose and the mean dose rate could be read off directly. Results: Exposure is clearly dependent on the experience of the examiner. The highest mean dose rate was found for the beginner, followed by the intermediate examiner. The lowest dose rate was shown by the experienced examiner, even though he mostly performed complex interventions. Over the course of 3 months, an improvement in the average dose rate can be shown in the third month for the intermediate examiner. Conclusion: The use of a direct dosimeter with an acoustic warning signal is a practicable tool for sensitizing interventional radiologists to unavoidable radiation exposure, with the aim of reducing the dose. 'Real-time' dosimetry represents a sensible extension of indirect protection of the radiation-exposed examiner in angiography. (orig.)

  16. Undoped and doped poly(tetraphenylbenzidine) as sensitive material for an impedimetric nitrogen dioxide gas dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Marr, I.; Moos, R., E-mail: functional.materials@uni-bayreuth.de [Department of Functional Materials, University of Bayreuth, Bayreuth 95440 (Germany); Neumann, K.; Thelakkat, M. [Department of Macromolecular Chemistry I, Applied Functional Polymers, University of Bayreuth, Bayreuth 95440 (Germany)

    2014-09-29

    This article presents a nitrogen dioxide (NO{sub 2}) detecting gas dosimeter based on poly(tetraphenylbenzidine) poly(TPD) as nitrogen oxide (NO{sub x}) sensitive layer. Gas dosimeters are suitable devices to determine reliably low levels of analytes over a long period of time. During NO{sub x} exposure, the analyte molecules are accumulated irreversibly in the sensing layer of the dosimeter enhancing the conductivity of the hole conducting poly(TPD), which can be measured by impedance spectroscopy. Due to their possibility for low cost production by simple printing techniques and very good physical, photochemical, and electrochemical properties, poly(TPD)s are suitable for application in gas dosimeters operated at room temperature. We studied the effect of doping with a Co(III)-complex in combination with a conducting salt on the dosimeter behavior. Compared to the undoped material, a strong influence of the doping can be observed: the conductivity of the sensing material increases significantly, the noise of the signal decreases and an unwanted recovery of the sensor signal can be prevented, leading to a NO{sub x} detection limit <10 ppm.

  17. A personal radio-frequency dosimeter with cumulative-dose recording capabilities

    International Nuclear Information System (INIS)

    Rochelle, R.W.; Moore, M.R.; Thomas, R.S.; Ewing, P.D.; Hess, R.A.; Hoffheins, B.S.

    1990-01-01

    The radio-frequency (rf) dosimeter developed by the Oak Ridge National Laboratory is a portable, pocket-sized cumulative-dose recording device designed to detect and record the strengths and durations of electric fields present in the work areas of naval vessels. The device measures an integrated dose and records the electric fields that exceed the permissible levels set by the American National Standards Institute. Features of the rf dosimeter include a frequency range of 30 MHz to 10 GHz and a three-dimensional sensor. Data obtained with the rf dosimeter will be used to determine the ambient field-strength profile for shipboard personnel over an extended time. Readings are acquired and averaged over a 6-min period corresponding to the rise time of the core body temperature. These values are stored for up to 6 months, after which the data are transferred to a computer via the dosimeter's serial port. The rf dosimeter should increase knowledge of the levels of electric fields to which individuals are exposed. 13 refs., 16 figs., 2 tabs

  18. Miniature Active Space Radiation Dosimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro will extend our Phase I R&D to develop a family of miniature, active space radiation dosimeters/particle counters, with a focus on biological/manned...

  19. Intercomparison measurements with albedo neutron dosimeters

    International Nuclear Information System (INIS)

    Alberts, W.G.; Kluge, H.

    1994-01-01

    Since the introduction of the albedo dosimeter as the official personal neutron dosimeter the dosimetry services concerned have participated in intercomparison measurements at the PTB. Their albedo dosimeters were irradiated in reference fields produced by unmoderated and D 2 O-moderated 252 Cf neutron sources in the standard irradiation facility of the PTB. Six fields with fluences different in energy and angle distribution could be realised in order to determine the response of the albedo dosimeter. The dose equivalent values evaluated by the services were compared with the reference values of the PTB for the directional dose equivalent H'(10). The results turned out to be essentially dependent on the evaluation method and the choice of the calibration factors. (orig.) [de

  20. The shelf life of dyed polymethylmethacrylate dosimeters

    International Nuclear Information System (INIS)

    Bett, R.; Watts, M.F.; Plested, M.E.

    2002-01-01

    The long-term stability of the radiation response of Harwell Red 4034 and Amber 3042 Perspex Dosimeters has been monitored for more than 15 years, and the resulting data used in the justification of their shelf-life specifications

  1. An improved dosimeter having constant flow pump

    International Nuclear Information System (INIS)

    Baker, W.B.

    1980-01-01

    A dosemeter designed for individual use which can be used to monitor toxic radon gas and toxic related products of radon gas in mines and which incorporates a constant air stream flowing through the dosimeter is described. (U.K.)

  2. Use of wrist albedo neutron dosimeters

    International Nuclear Information System (INIS)

    Hankins, D.E.

    1983-01-01

    We are developing a wrist dosimeter that can be used to measure the exposure at the wrist to x-rays, gamma rays, beta-particles, thermal neutrons and fast neutrons. It consists of a modified Hankins Type albedo neutron dosimeter and also contains three pieces of CR-39 plastic. ABS plastic in the form of an elongated hemisphere provides the beta and low energy x-ray shielding necessary to meet the requirement of depth dose measurements at 1 cm. The dosimeter has a beta window located in the side of the hemisphere oriented towards an object being held in the hands. A TLD 600 is positioned under the 1 cm thick ABS plastic and is used to measure the thermal neutron dose. At present we are using Velcro straps to hold the dosimeter on the inside of the wrist. 9 figures

  3. Superheated drop, open-quotes Bubbleclose quotes, dosimeters

    International Nuclear Information System (INIS)

    Harper, M.J.; Lindler, K.W.; Nelson, M.E.; Johnson, T.L.; Jones, C.R.; Rabovsky, J.L.; Rao, N.; Kerschner, H.F.; Reil, G.K.; Schwartz, R.B.

    1991-01-01

    Superheated Drop Dosimeters (SDD) offer a sensitive, immediate measure of the neutron dose equivalent, but their dynamic range is limited and their response varies with temperature, pressure, and vibration. They contain thousands of superheated liquid drops in a stabilizing matrix. High linear energy transfer (LET) radiation triggers vaporization of the drops into visible bubbles. If the matrix is a liquid, the bubbles slowly rise, and the number present indicates the dose rate. Dose may be measured by displacement of the matrix, or by counting the sounds of vaporization. If the matrix is a gel, the bubbles are fixed, and their number is proportional to the dose equivalent. Our research has focused on modeling and elimination of the environmental response, extension of the dynamic range, and tests and evaluations of prototype devices

  4. Review of four novel dosimeters developed for use in radiotherapy

    Science.gov (United States)

    Metcalfe, P.; Quinn, A.; Loo, K.; Lerch, M.; Petasecca, M.; Wong, J.; Hardcastle, N.; Carolan, M.; McNamara, J.; Cutajar, D.; Fuduli, I.; Espinoza, A.; Porumb, C.; Rosenfeld, A.

    2013-06-01

    Centre for Medical Radiation Physics (CMRP) is a research strength at the University of Wollongong, the main research theme of this centre is to develop prototype novel radiation dosimeters. Multiple detector systems have been developed by Prof Rosenfelds' group for various radiation detector applications. This paper focuses on four current detector systems being developed and studied at CMRP. Two silicon array detectors include the magic plate and dose magnifying glass (DMG), the primary focus of these two detectors is high spatial and temporal resolution dosimetry in intensity modulated radiation therapy (IMRT) beams. The third detector discussed is the MOSkinTM which is a high spatial resolution detector based on MOSFET technology, its primary role is in vivo dosimetry. The fourth detector system discussed is BrachyView, this is a high resolution dose viewing system based on Medipix detector technology.

  5. The LLNL CR-39 personnel neutron dosimeter

    International Nuclear Information System (INIS)

    Hankins, D.E.; Homann, S.; Westermark, J.

    1987-01-01

    We developed a personnel neutron dosimetry system based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This CR-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. 3 refs., 4 figs

  6. Perfection of the individual photographic emulsion dosimeter

    International Nuclear Information System (INIS)

    Soudain, G.

    1960-01-01

    A photographic dosimeter making possible the measurement of γ radiation doses of from 10 mr up to 800 r by means of 3 emulsion bands of varying sensitivity stuck to the same support is described. The dosimeter has also a zone for marking and a test film insensitive to radiation. This requires a photometric measurement by diffuse reflection an d makes it possible to measure doses with an accuracy of 20 per cent. (author) [fr

  7. Intercomparison of high energy neutron personnel dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the 9 Be(p,n) 9 B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work

  8. A fibre optic dosimeter customised for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Suchowerska, N. [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia)], E-mail: Natalka@email.cs.nsw.gov.au; Lambert, J.; Nakano, T. [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia); Law, S. [School of Physics, University of Sydney, NSW 2006 (Australia); Optical Fibre Technology Centre, University of Sydney, 206 National Innovation Centre, Australian Technology Park, Eveleigh, NSW 1430 (Australia); Elsey, J. [Bandwidth Foundry Pty Ltd, Australian Technology Park, NSW, 1430 (Australia); McKenzie, D.R. [School of Physics, University of Sydney, NSW 2006 (Australia)

    2007-04-15

    In-vivo dosimetry for brachytherapy cancer treatment requires a small dosimeter with a real time readout capability that can be inserted into the patient to determine the dose to critical organs. Fibre optic scintillation dosimeters, consisting of a plastic scintillator coupled to an optical fibre, are a promising dosimeter for this application. We have implemented specific design features to optimise the performance of the dosimeter for specific in-vivo dosimetry during brachytherapy. Two sizes of the BrachyFOD{sup TM} scintillation dosimeter have been developed, with external diameters of approximately 2 and 1 mm. We have determined their important dosimetric characteristics (depth dose relation, angular dependence, energy dependence). We have shown that the background signal created by Cerenkov and fibre fluorescence does not significantly affect the performance in most clinical geometries. The dosimeter design enables readout at less than 0.5 s intervals. The clinical demands of real time in-vivo brachytherapy dosimetry can uniquely be satisfied by the BrachyFOD{sup TM}.

  9. Polymer gel dosimeter based on itaconic acid

    International Nuclear Information System (INIS)

    Mattea, Facundo; Chacón, David

    2015-01-01

    A new polymeric dosimeter based on itaconic acid and N, N’-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158 cGy/min, 226 cGy min and 298 cGy/min with doses up to 1000 Gy. The dosimeters presented a linear response in the dose range 75–1000 Gy, sensitivities of 0.037 1/Gy at 298 cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species. - Highlights: • A novel polymer gel dosimeters based on itaconic acid is presented and characterized. • The typical linear trend of the dose behavior in a specific dose range was found. • Different gel structures were formed when oxygen and an antioxidant were present. • Absorbed dose is univocally correlated with optic absorbance and Raman spectroscopy. • Itaconic acid appears as a reliable radiation dosimeter that may be further improved.

  10. Comparative study of some new EPR dosimeters

    International Nuclear Information System (INIS)

    Alzimami, K.S.; Maghraby, Ahmed M.; Bradley, D.A.

    2014-01-01

    Investigations have been made of four new radiation dosimetry EPR candidates from the same family of materials: sulfamic acid, sulfanillic acid, homotaurine, and taurine. Mass energy attenuation coefficients, mass stopping power values and the time dependence of the radiation induced radicals are compared. Also investigated are the microwave saturation behavior and the effect of applied modulation amplitude on both peak-to-peak line width (W PP ) and peak-to-peak signal height (H PP ). The dosimeters are characterized by simple spectra and stable radiation-induced radicals over reasonable durations, especially in taurine dosimeters. Sulfamic acid dosimeters possessed the highest sensitivity followed by taurine and homotaurine and sulfanillic. - Highlights: ► Several EPR dosimeters were suggested based on SO 3 − radical. ► Taurine, homotaurine, sulfanilic, and sulfamic acid all possess simple EPR spectra. ► Dosimeters were compared to each other in terms of the dosimetric point of view. ► Energy dependence curves of the selected dosimeters were compared to eachother

  11. Application of solid dosimeter to radiation control

    International Nuclear Information System (INIS)

    Tsujimoto, Tadashi

    1988-01-01

    Individual exposure dose measuring devices are used to measure the dose of each person in facilities using radiations. Major devices of this type currently used in Japan include the film badge, thermoluminescence dosimeter, portable radiation dosimeter and fluorescent glass dosimeter. All of these devices except the portable radiation dosimeter are of a solid type. Various portable-type spatial dose rate measuring devices, generally called survey meters, are available to determine the spatial distribution of radiations. Major survey meters incorporates an ionization chamber, GM counter tube or scintillation counter, while BF 3 counting tubes are available for neutron measurement. Of these, the scintillation dosimeter is of a solid type. A new scintillation survey meter has recently been developed which incorporated a discrimination bias modulation circuit. Dosimeters incorporating an ionization chamber or a GM counter tube are generally used as portable alarms. Recently, a new solid-type alarm has been developed which incorporates a solicon radiation detector. Microcomputers are also used for self-diagnosis, data processing, automatic calibration, etc. (Nogami, K.)

  12. DNA adducts as molecular dosimeters

    International Nuclear Information System (INIS)

    Lucier, G.W.

    1990-01-01

    There is compelling evidence that DNA adducts play an important role in the actions of many pulmonary carcinogens. During the last ten years sensitive methods (antibodies and 32 P-postlabeling) have been developed that permit detection of DNA adducts in tissues of animals or humans exposed to low levels of some genotoxic carcinogens. This capability has led to approaches designed to more reliably estimate the shape of the dose-response curve in the low dose region for a few carcinogens. Moreover, dosimetry comparisions can, in some cases, be made between animals and humans which help in judging the adequacy of animal models for human risk assessments. There are several points that need to be considered in the evaluation of DNA adducts as a molecular dosimeter. For example, DNA adduct formation is only one of many events that are needed for tumor development and some potent carcinogens do not form DNA adducts; i.e., TCDD. Other issues that need to be considered are DNA adduct heterogeneity, DNA repair, relationship of DNA adducts to somatic mutation and cell specificity in DNA adduct formation and persistence. Molecular epidemiology studies often require quantitation of adducts in cells such as lymphocytes which may or may not be reliable surrogates for adduct concentrations in target issues. In summary, accurate quantitation of low levels of DNA adducts may provide data useful in species to species extrapolation of risk including the development of more meaningful human monitoring programs

  13. Sensor

    OpenAIRE

    Gleeson, Helen; Dierking, Ingo; Grieve, Bruce; Woodyatt, Christopher; Brimicombe, Paul

    2015-01-01

    An electrical temperature sensor (10) comprises a liquid crystalline material (12). First and second electrically conductive contacts (14), (16), having a spaced relationship there between, contact the liquid crystalline material (12). An electric property measuring device is electrically connected to the first and second contacts (14), (16) and is arranged to measure an electric property of the liquid crystalline material (12). The liquid crystalline material (12) has a transition temperatur...

  14. Presentation Trainer Prototype 1.0

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketch comprises the first prototype of the presentation trainer. The application uses the Microsoft Kinect sensor and was built using the Processing 1.5.1 development environment. Available under the GNU LGPL licence version 3 or higher.

  15. Development of portable ESR spectrometer as a reader for alanine dosimeters

    International Nuclear Information System (INIS)

    Kojima, T.; Haruyama, Y.; Tachibana, H.; Tanaka, R.; Okamoto, J.

    1993-01-01

    A prototype portable electron spin resonance (ESR) spectrometer was designed and tested, and its feasibility as a reader of alanine dosimeters was studied from the two standpoints of reproducibility of readings and sensitivity sufficient for dosimetry in the absorbed dose range 1-100 kGy. It has two main components: a permanent magnet and resonator; and a unit box with a microwave and auto-frequency control (AFC) circuit, a sweep controller of magnetic field, display, etc. In the present preliminary study, reproducibility values are measured with the same ESR parameters and alanine-polystyrene (alanine-PS) dosimeter at a dose of 1 kGy: repeatedly measuring without removing dosimeter from the cavity; individual measurement with removing and inserting again into the cavity with readjustment of ESR parameters. Alanine/ESR dosimetry using this spectrometer has a measurable dose range from 1 to 100 kGy with relatively high precision within ± 3% (1σ) as a preliminary result. The portable ESR spectrometer may also be modified as an automatic, more precise, dedicated alanine dosimeter reader. (author)

  16. Composite Resin Dosimeters: A New Concept and Design for a Fibrous Color Dosimeter.

    Science.gov (United States)

    Kinashi, Kenji; Iwata, Takato; Tsuchida, Hayato; Sakai, Wataru; Tsutsumi, Naoto

    2018-04-11

    Polystyrene (PS)-based composite microfibers combined with a photochromic spiropyran dye, 1,3,3-trimethylindolino-6'-nitrobenzopyrylospiran (6-nitro BIPS), and a photostimulable phosphor, europium-doped barium fluorochloride (BaFCl:Eu 2+ ), were developed for the detection of X-ray exposure doses on the order of approximately 1 Gy. To produce the PS-based composite microfibers, we employed a forcespinning method that embeds a high concentration of phosphor in PS in a safe, inexpensive, and simple procedure. On the basis of the optimization of the forcespinning process, fibrous color dosimeters with a high radiation dose sensitivity of 1.2-4.4 Gy were fabricated. The color of the dosimeters was found to transition from white to blue in response to X-ray exposure. The optimized fibrous color dosimeter, made from a solution having a PS/6-nitro BIPS/BaFCl:Eu 2+ /C 2 Cl 4 ratio of 7.0/0.21/28.0/28.0 (wt %) and produced with a 290 mm distance between the needle and collectors, a 0.34 mm 23 G needle nozzle, and a spinneret rotational rate of 3000 rpm, exhibited sensitivity to a dose as low as 1.2 Gy. To realize practical applications, we manufactured the optimized fibrous color dosimeter into a clothlike color dosimeter. The clothlike color dosimeter was mounted on a stuffed bear, and its coloring behavior was demonstrated upon X-ray exposure. After exposure with X-ray, a blue colored and shaped in the form of the letter "[Formula: see text]" clearly appeared on the surface of the clothlike color dosimeter. The proposed fibrous color dosimeters having excellent workability will be an unprecedented dosimetry and contributed to all industries utilizing radiation dosimeters. This new fibrous "composite resin dosimeter" should be able to replace traditional, wearable, and individual radiation dose monitoring devices, such as film badges.

  17. Blood proteins as carcinogen dosimeters

    International Nuclear Information System (INIS)

    Tannenbaum, S.R.; Skipper, P.L.

    1986-01-01

    The problem of quantifying exposure to genotoxins in a given individual represents a formidable challenge. In this paper methods which rely on the covalent binding of carcinogens and their metabolites to blood proteins are described. That carcinogens interact with proteins as well as with DNA has been established, although whether protein-carcinogen adducts can result in genetic damage has not been established. It has been shown, however, that the amount of a protein carcinogen adduct formed may be used as a quantitative measure of exposure to a carcinogen. Such a measure presumably is reflective of the absorption, metabolism, and excretion of the compound in an exposed individual. Protein adduction may reflect exposure in a time-frame of weeks to months. Thus, protein adduct measurement is a form of human chemical dosimetry. Hemoglobin and albumin are promising candidates for such dosimeters. Hemoglobin has a lifetime of about 120 days in humans; thus, circulating levels of carcinogen-modified hemoglobin will reflect the level of carcinogen exposure during a period of nearly four months. It also possesses some metabolic competence, particularly, the ability to oxidize aromatic hydroxylamines to nitroso compounds which react quite efficiently with sulfhydryl groups. Albumin has a half-life of 20 to 25 days in man. This protein does not possess metabolic capacity other than, perhaps, some esterase activity. In contrast to hemoglobin, though, it is not protected by the erythrocyte membrane and might be the target for a greater number of carcinogens. It is present and is synthesized in the same cells in which the reactive metabolic intermediates of carcinogens are mostly formed - the hepatocytes. Also, albumin has a number of high-affinity binding sites for a broad spectrum of xenobiotics and endobiotics. 25 refs., 1 tab

  18. Automated Calibration of Dosimeters for Diagnostic Radiology

    International Nuclear Information System (INIS)

    Romero Acosta, A.; Gutierrez Lores, S.

    2015-01-01

    Calibration of dosimeters for diagnostic radiology includes current and charge measurements, which are often repetitive. However, these measurements are usually done using modern electrometers, which are equipped with an RS-232 interface that enables instrument control from a computer. This paper presents an automated system aimed to the measurements for the calibration of dosimeters used in diagnostic radiology. A software application was developed, in order to achieve the acquisition of the electric charge readings, measured values of the monitor chamber, calculation of the calibration coefficient and issue of a calibration certificate. A primary data record file is filled and stored in the computer hard disk. The calibration method used was calibration by substitution. With this system, a better control over the calibration process is achieved and the need for human intervention is reduced. the automated system will be used in the calibration of dosimeters for diagnostic radiology at the Cuban Secondary Standard Dosimetry Laboratory of the Center for Radiation Protection and Hygiene. (Author)

  19. Water equivalence of polymer gel dosimeters

    International Nuclear Information System (INIS)

    Sellakumar, P.; James Jebaseelan Samuel, E.; Supe, Sanjay S.

    2007-01-01

    To evaluate the water equivalence and radiation transport properties of polymer gel dosimeters over the wide range of photon and electron energies 14 different types of polymer gels were considered. Their water equivalence was evaluated in terms of effective atomic number (Z eff ), electron density (ρ e ), photon mass attenuation coefficient (μ/ρ), photon mass energy absorption coefficient (μ en /ρ) and total stopping power (S/ρ) tot of electrons using the XCOM and the ESTAR database. The study showed that the effective atomic number of polymer gels were very close ( en /ρ for all polymer gels were in close agreement ( tot of electrons in polymer gel dosimeters were within 1% agreement with that of water. From the study we conclude that at lower energy (<80keV) the polymer gel dosimeters cannot be considered water equivalent and study has to be carried out before using the polymer gel for clinical application

  20. Fiber-optic dosimeters for radiation therapy

    Science.gov (United States)

    Li, Enbang; Archer, James

    2017-10-01

    According to the figures provided by the World Health Organization, cancer is a leading cause of death worldwide, accounting for 8.8 million deaths in 2015. Radiation therapy, which uses x-rays to destroy or injure cancer cells, has become one of the most important modalities to treat the primary cancer or advanced cancer. The newly developed microbeam radiation therapy (MRT), which uses highly collimated, quasi-parallel arrays of x-ray microbeams (typically 50 μm wide and separated by 400 μm) produced by synchrotron sources, represents a new paradigm in radiotherapy and has shown great promise in pre-clinical studies on different animal models. Measurements of the absorbed dose distribution of microbeams are vitally important for clinical acceptance of MRT and for developing quality assurance systems for MRT, hence are a challenging and important task for radiation dosimetry. On the other hand, during the traditional LINAC based radiotherapy and breast cancer brachytherapy, skin dose measurements and treatment planning also require a high spatial resolution, tissue equivalent, on-line dosimeter that is both economical and highly reliable. Such a dosimeter currently does not exist and remains a challenge in the development of radiation dosimetry. High resolution, water equivalent, optical and passive x-ray dosimeters have been developed and constructed by using plastic scintillators and optical fibers. The dosimeters have peak edge-on spatial resolutions ranging from 50 to 500 microns in one dimension, with a 10 micron resolution dosimeter under development. The developed fiber-optic dosimeters have been test with both LINAC and synchrotron x-ray beams. This work demonstrates that water-equivalent and high spatial resolution radiation detection can be achieved with scintillators and optical fiber systems. Among other advantages, the developed fiber-optic probes are also passive, energy independent, and radiation hard.

  1. Diffusion measurement in ferrous infused gel dosimeters

    International Nuclear Information System (INIS)

    Zahmatkesh, M. H.; Healy, B. J.

    2003-01-01

    Background: The compositions of Ferrous sulphate, Agarose and Xylenol orange dye and Ferrous sulphate, Gelatin and Xylenol orange dye in solution of distilled water and sulphuric acid are two tissue-equivalent gel dosimeters. Ionizing radiation causes oxidation of Fe 2+ ion to Fe 3+ ions which diffuse through the gel matrix and blur the image of absorbed dose over a period of hours after irradiation. Materials and methods: 25 m M sulphuric acid, 0.4 mm ferrous ammonium sulphate, 0.2 mm xylenol orange dye and 1% by weight agarose in distilled water named Agarose and Xylenol orange dye and 0.1 mm ferrous ammonium sulphate, 0.1 mm xylenol orange dye, 50 mm sulphuric acid and 5% by weight gelatin in distilled water named Gelatin and Xylenol orange dye are used as two gel dosimeters. All chemicals were supplied by Sigma Ald ridge Company, Germany. The gels were poured in Perspex casts and were irradiated to a beam of X ray from linear accelerators or X ray machine. Results: In this study diffusion coefficients of Agarose and Xylenol orange dye and Gelatin and Xylenol orange dye dosimeters have been measured through a computer program for different temperature. The ferric ion diffusion coefficient (D) for the Agarose and Xylenol orange dye and Gelatin and Xylenol orange dye dosimeters were measured as (1.19.±0.03) x 10 -2 cm 2 .hr -1 and (0.83±0.03) x 10 -2 cm 2 .hr -1 respectively at room temperature. Conclusion: For both dosimeters the diffusion coefficients decreased with gel storage temperatures down to 6 d ig C . Gelatin and Xylenol orange dye dosimeters have advantage of lower diffusion coefficient for a specified temperature

  2. DEPRON dosimeter for ``Lomonosov'' satellite

    Science.gov (United States)

    Brilkov, Ivan; Vedenkin, Nikolay; Panasyuk, Mikhail; Amelyushkin, Aleksandr; Petrov, Vasily; Nechayev, Oleg; Benghin, Victor

    appearance of the instrument DEPRON (Dosimeter of Electrons, PROtons and Neutrons) was determined. DEPRON is intended for registration of the absorbed doses and linear energy transfer spectra for high-energy electrons, protons and nuclei of space radiation, as well as registration of thermal and slow neutrons. The experiment based on DEPRON instrument is aimed at the studies of the distribution of space radiation dose rate at high latitude paths in order to study the flight paths of perspective manned spacecraft. Present work provides a brief description of the DEPRON instrument, its calibration results and the structure of the output data.

  3. Test and Evaluation of a Prototyped Sensor-Camera Network for Persistent Intelligence, Surveillance, and Reconnaissance in Support of Tactical Coalition Networking Environments

    Science.gov (United States)

    2006-06-01

    networks is home automation . Wireless sensor networks can be employed in a home environment similar to the ways they are deployed in environmental...and industrial settings. Home automation provides increased control of home appliances and security. Climate control and security systems are the...most common types of home automation applications. However, as technology 12 has increased, new applications are emerging. For example

  4. Automating the personnel dosimeter monitoring program

    International Nuclear Information System (INIS)

    Compston, M.W.

    1982-12-01

    The personnel dosimetry monitoring program at the Portsmouth uranium enrichment facility has been improved by using thermoluminescent dosimetry to monitor for ionizing radiation exposure, and by automating most of the operations and all of the associated information handling. A thermoluminescent dosimeter (TLD) card, worn by personnel inside security badges, stores the energy of ionizing radiation. The dosimeters are changed-out periodically and are loaded 150 cards at a time into an automated reader-processor. The resulting data is recorded and filed into a useful form by computer programming developed for this purpose

  5. Research on the formula of radiochromic film dosimeters

    International Nuclear Information System (INIS)

    Li Huazhi; Xiao Zhenhong; Lin Min; Cui Ying; Chen Kesheng; Chen Yundong; Ye Hongsheng; Lin Jingwen

    2006-10-01

    The formula of radiochromic film dosimeters was studied. Commercially available nylon was used as the matrix, while hexahydroxyethyl pararosaniline cyanide (HPR-CN) and pararosaniline cyanide (PR-CN) that are made in China and other countries were used as the dyes of the dosimeters. the performance of the thin film dosimeters made in CIAE was tested and compared with each other. The formula of the dosimeters was finally confirmed by testing its physical properties and dosimetric characteristics. (authors)

  6. Indoor radon level measurements in Iran using AEOI passive dosimeters

    International Nuclear Information System (INIS)

    Sohrabi, M.; Solaymanian, A.R.

    1988-01-01

    A passive radon diffusion dosimeter was developed at the RPD of AEOI for nationwide indoor radon level measurements. Several parameters of the dosimeter were studied. Radon levels were determined in about 250 houses in Ramsar (a high natural radiation area), Tehran, Babolsar and Gonabad. In this paper, the results of some dosimeter parameters as well as radon levels in indoor air are reported

  7. Calibration and testing of the DMG gamma dosimeter

    International Nuclear Information System (INIS)

    Dolgirev, E.I.

    1987-01-01

    25-1000 nGy/h (2.5-1000 μrad/h) absorbed dose gamma dosimeter for measuring the efficient equivalent irradiation dose for population is developed. It has two subranges 1000 nGy/h and 250 nGy/h. Results of dosimeter calibration and testing are presented. The dosimeter error for both subranges is less than 10%

  8. Development and dosimetric evaluation of radiochromic PCDA vesicle gel dosimeters

    International Nuclear Information System (INIS)

    Sun, P.; Fu, Y.C.; Hu, J.; Hao, N.; Huang, W.; Jiang, B.

    2016-01-01

    The gel dosimeter has the unique capacity in recording radiation dose distribution in three dimensions (3D), which has the specific advantages in dosimetry measurements where steep dose gradients exist, such as in intensity-modulated radiation therapy (IMRT), brachytherapy and so on. Some 3D dosimeters, such as Fricke gel dosimeters, polymer gel dosimeters, the PRESAGE plastic dosimeters and micelle gel dosimeters have appeared recently. However, there are several disadvantages of these 3D dosimeters limit their application in radiotherapy dose verification. In this study, a novel radiochromic gel dosimeter for 3D dose verification of radiotherapy was developed by dispersing nanovesicles self-assembled by 10,12-pentacosadiynoic acid (PCDA) into the tissue equivalence gel matrix. The characteristics of radiochromic PCDA vesicle gel dosimeters were evaluated. The results indicate that these radiochromic gel dosimeters have good linear dose response to X-ray irradiation in the dose range of 2–100 Gy. In addition, the radiochromic gel dosimeters breakthrough the limitations of the existing gel dosimeters such as diffusion effect, post-radiation effect, and poor forming ability. The response of the gel dosimeter does not show any dose rate dependence, energy dependence and temperature effect, and there was no obvious difference in the gel response between single and cumulative dose of fractional irradiation. Hence, the radiochromic PCDA vesicle gel dosimeters developed in this study could be generally applied to 3D dose verification in radiotherapy. - Highlights: • A novel radiochromic gel dosimeter was developed by dispersing PCDA nanovesicles into the tissue equivalence gel matrix. • This nanovesicle overcomes the dose image blurring caused by the diffusion of monomer molecules. • This nanovesicle limits the polymer chain growth, so as to reduce the post-radiation effect. • The gel matrixes possess excellent tissue equivalence and elastic strength, which

  9. Investigating hydrogel dosimeter decomposition by chemical methods

    International Nuclear Information System (INIS)

    Jordan, Kevin

    2015-01-01

    The chemical oxidative decomposition of leucocrystal violet micelle hydrogel dosimeters was investigated using the reaction of ferrous ions with hydrogen peroxide or sodium bicarbonate with hydrogen peroxide. The second reaction is more effective at dye decomposition in gelatin hydrogels. Additional chemical analysis is required to determine the decomposition products

  10. Response characteristics of selected personnel neutron dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Fix, J.J.; Hadley, R.T.; Holbrook, K.L.; Yoder, R.C.; Roberson, P.L.; Endres, G.W.R.; Nichols, L.L.; Schwartz, R.B.

    1983-09-01

    Performance characteristics of selected personnel neutron dosimeters in current use at Department of Energy (DOE) facilities were determined from their evaluation of neutron dose equivalent received after irradiations with specific neutron sources at either the National Bureau of Standards (NBS) or the Pacific Northwest Laboratory (PNL). The characteristics assessed included: lower detection level, energy response, precision and accuracy. It was found that when all of the laboratories employed a common set of calibrations, the overall accuracy was approximately +-20%, which is within uncertainty expected for these dosimeters. For doses above 80 mrem, the accuracy improved to better than 10% when a common calibration was used. Individual differences found in this study may reflect differences in calibration technique rather than differences in the dose rates of actual calibration standards. Second, at dose rates above 100 mrem, the precision for the best participants was generally below +-10% which is also within expected limits for these types of dosimeters. The poorest results had a standard deviation of about +-25%. At the lowest doses, which were sometimes below the lower detection limit, the precision often approached or exceeded +-100%. Third, the lower level of detection for free field 252 Cf neutrons generally ranged between 20 and 50 mrem. Fourth, the energy dependence study provided a characterization of the response of the dosimeters to neutron energies far from the calibration energy. 11 references, 22 figures, 26 tables

  11. Silicon Diode Dosimeter for Fast Neutrons

    International Nuclear Information System (INIS)

    Svansson, L.; Widell, C.O.; Swedberg, P.; Wik, M.

    1968-11-01

    The change of the current-voltage characteristics of a small silicon diode is used as a measure of fast neutron dose in the Fast Neutron Dosimeter 5422. This change is permanent and therefore it is possible to integrate doses over a long period of time. Doses from some rad up to 1000 rad can be measured and the information stored is not destroyed during readout. Considerable research work in this field has previously been carried out by the Swedish Institute for National Defence in collaboration with the Institute of Semiconductor Research Stockholm. The present investigation has been made in order to establish the possibilities of the dosimeter for practical applications and to study the variations of important parameters as a function of the production process. In particular the following parameters have been studied: - dose sensitivity, - energy dependence; - fading effect; - temperature influence; - maximum measurable dose. In general one might conclude that the dosimeter 5422 well fulfills requirements usually specified for a dosimeter for field service. Temperature influence and fading effect are of little practical importance within the recommended range of measurement

  12. Silicon Diode Dosimeter for Fast Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Svansson, L; Widell, C O; Swedberg, P [The Inst. of Semiconductor Researc h, Stockholm (Sweden); Wik, M [The Swedish Institute for National Defence, Sun dbyberg (Sweden)

    1968-11-15

    The change of the current-voltage characteristics of a small silicon diode is used as a measure of fast neutron dose in the Fast Neutron Dosimeter 5422. This change is permanent and therefore it is possible to integrate doses over a long period of time. Doses from some rad up to 1000 rad can be measured and the information stored is not destroyed during readout. Considerable research work in this field has previously been carried out by the Swedish Institute for National Defence in collaboration with the Institute of Semiconductor Research Stockholm. The present investigation has been made in order to establish the possibilities of the dosimeter for practical applications and to study the variations of important parameters as a function of the production process. In particular the following parameters have been studied: - dose sensitivity, - energy dependence; - fading effect; - temperature influence; - maximum measurable dose. In general one might conclude that the dosimeter 5422 well fulfills requirements usually specified for a dosimeter for field service. Temperature influence and fading effect are of little practical importance within the recommended range of measurement.

  13. Compton effect thermally activated depolarization dosimeter

    Science.gov (United States)

    Moran, Paul R.

    1978-01-01

    A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.

  14. Clinical dosimeter based on diamond detector

    International Nuclear Information System (INIS)

    Chervjakov, A.M.; Ljalina, L.I.; Ljutina, G.J.; Khrunov, V.S.; Martynov, S.S.; Popov, S.A.

    2002-01-01

    Full text: Diamond detectors have found application in the relative dosimetry and their parameters have been described elsewhere. Today, the exclusive producer of the diamond detector is the Institute of Physical and Technical Problems, Russia, and exclusive dealer is the PTW-Freiburg. The main features of the diamond detector are good long time stability, suitable range of the energy dependence for photon and electron beams in clinical use, independence of the measured date from temperature and pressure. The high sensitivity per volume unit of the diamond detector (1500 times higher than ionization chamber) allowed using detectors with very small volume (1-5 mm 3 ) and rather simple electronics for ionization current registration. The new dosimeter consists of the diamond detector itself, 40 m registration cable, pre-amplifier, micro-processor block for data handling and absorbed dose calculation using the calibration factor of diamond detector in terms of absorbed dose to water. Dosimeter has the possibility to work with PC using standard RS-232 interface. The main features of the dosimeter are as follows: the range of dose rate measurements for photon, electron and proton beams is within 0.01-1.0 Gy/s; the energy ranges for photons are 0.08-25 MeV, and 4-25 MeV for electrons, with energy dependence no more than ±2%; the main uncertainty of the dose measurements is within ±2%; the pre-irradiation dose for diamond detector is no more than 10 Gy; the sensitive volume of the used diamond detectors is within 1-5 mm 3 ; the weight of the dosimeter no more than 2 kg. The new dosimeter was evaluated at the Central Research Institute of Roentgenology and Radiology, St. Petersburg, Russia to verify its performance. The dosimeter was used as a reference instrument for dose measurements at Cobalt-60 unit, SL75-5 and SL-20 linear accelerators and the test results have shown that the device have met the specifications. It is planned to produce dosimeter as serial device by

  15. Role of gel dosimeters in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Khajeali, Azim; Farajollahi, Ali Reza; Khodadadi, Roghayeh; Kasesaz, Yaser; Khalili, Assef

    2015-01-01

    Gel dosimeters have acquired a unique status in radiotherapy, especially with the advent of the new techniques in which there is a need for three-dimensional dose measurement with high spatial resolution. One of the techniques in which the use of gel dosimeters has drawn the attention of the researchers is the boron neutron capture therapy. Exploring the history of gel dosimeters, this paper sets out to study their role in the boron neutron capture therapy dosimetric process. - Highlights: • Gel dosimeters have been investigated. • Conventional dosimetric proses of BNCT has been investigated. • Role of gel dosimeters in BNCT has been investigated

  16. Directional Radiation Dosimeter for Area and Environmental Monitoring

    International Nuclear Information System (INIS)

    Manzoli, J.E.; Campos, V.P.; Moura, E.S.

    2009-01-01

    It is presented a dosimeter that is able to measure the photon exposure and the direction from where the radiation came from. Preliminary measurements performed by this new directional radiation dosimeter demonstrate its application. This dosimeter consists of a small lead cube with thermoluminescent discs on each face, placed in well known coordinates. Only one dosimeter of this kind indicates the direction of the radiation beam, if it came from a unique position. This study was conducted inside the radiation room of a Cobalt-60 Gamma Irradiator and the dosimeter indicated the source position

  17. Recent developments with a prototype fan-beam optical CT scanner

    Science.gov (United States)

    Campbell, W. G.; Jirasek, A.; Wells, D.

    2013-06-01

    The latest design of a prototype fan-beam optical computed tomography scanner is presented. A new beam creation system consists of a 635 nm laser diode module with variable, DC voltage-controlled beam intensity. A change in scanner alignment allows for the elimination of ring artefacts caused by data corruption that is spaced symmetrically across the detector array. These artefacts, as well as a pair of streaking artefacts caused by flask seams, are removed in sinogram space. A flask registration technique has been developed that allows for accurate, reproducible dosimeter placement. Protocol investigations with gel dosimeters have indicated the importance of: i) proper cooling techniques during gel manufacture, and ii) scanning the dosimeter while it is at room temperature. Latest reconstructions of a normoxic polymer gel dosimeter are presented as an indicator of current system performance.

  18. Recent developments with a prototype fan-beam optical CT scanner

    International Nuclear Information System (INIS)

    Campbell, W G; Jirasek, A; Wells, D

    2013-01-01

    The latest design of a prototype fan-beam optical computed tomography scanner is presented. A new beam creation system consists of a 635 nm laser diode module with variable, DC voltage-controlled beam intensity. A change in scanner alignment allows for the elimination of ring artefacts caused by data corruption that is spaced symmetrically across the detector array. These artefacts, as well as a pair of streaking artefacts caused by flask seams, are removed in sinogram space. A flask registration technique has been developed that allows for accurate, reproducible dosimeter placement. Protocol investigations with gel dosimeters have indicated the importance of: i) proper cooling techniques during gel manufacture, and ii) scanning the dosimeter while it is at room temperature. Latest reconstructions of a normoxic polymer gel dosimeter are presented as an indicator of current system performance.

  19. Dental tissue as a thermoluminescence dosimetry dosimeter

    International Nuclear Information System (INIS)

    Solaimani, F.; Zahmatkesh, M.H.; Akhlaghpoor, Sh.

    2003-01-01

    Background: Thermoluminescence dosimetry is one of the dosimetry procedures used widely as routine and personal dosimeters. In order to extend this kind of dosimeters, dental tissue has been examined and was found promising as a Thermoluminescence Dosimetry dosimeter. Materials and Methods: In this study, 70 health teeth were collected. The only criterion, wich was considered for selection of the teeth, was the healthiness of them regardless of age and gender of the donors. All collected samples were washed and cleaned and milled uniformly. The final powder had a uniform grain size between 100-300 micrometer. The sample was divided into four groups. Group A and B were used for measurement of density and investigation of variation of thermoluminescent characteristics with temperature respectively. Groups C and D were used for investigation of variation of thermoluminescent intensity with dose and fading of this intensity with time. In all cases the results obtained with dental tissue were compared to a standard LiF, thermoluminescence dosimetry dosimeter. Results: It was found that, average density of the dental tissue was 1.570 g/cm 3 , which is comparable to density of LiF, which is 1.612g/cm 3 . It was also concluded that the range of 0-300 d ig C , dental tissue has a simple curve with two specific peaks at 140 and 25 d ig C respectively. The experiment also showed that, the variation of relative intensity versus dose is linear in the range of 0.04-0.1 Gy. The fading rate of dental tissue is higher than LiF but still in the acceptable range (14% per month in compare to 5.2% per month). Conclusion: Dental tissue as a natural dosimeter is comparable with Thermoluminescence Dosimetry and can be used in accidental events with a good approximation

  20. Influence of dose history on thermoluminescence response of Ge-doped silica optical fibre dosimeters

    International Nuclear Information System (INIS)

    Moradi, F.; Mahdiraji, G.A.; Dermosesian, E.; Khandaker, M.U.; Ung, N.M.; Mahamd Adikan, F.R.; Amin, Y.M.

    2017-01-01

    Nowadays, silica based optical fibres show enough potential to be used as TL dosimeters in different applications. Reuse of optical fibre as a practical dosimeter demands to complete removal of accumulated doses via previous irradiations. This work investigates the existence and/or effect of remnant doses in fibre dosimeter from the previous irradiations, and proposes a method to control this artifact. A single mode Ge-doped optical fibre is used as TL radiation sensor, while a well calibrated Gammacell with 60 Co source is used for irradiations. The effect of irradiation history on the TL response of optical fibres is surveyed extensively for doses ranged from 1 to 1000 Gy. The results show that the absorbed dose history in a fibre affects its response in the next irradiation cycles. It is shown that a dose history of around 100 Gy can increase the response of optical fibre by a factor of 1.72. The effect of annealing at higher temperatures on stabilizing the fibre response is also examined and results revealed that another alteration in the structure of trapping states occurs in glass medium which can change the sensitivity of fibres. Preservation of the sensitivity during successive irradiation cycles can be achieved by a proper annealing procedure accompanied by a pre-dose treatment. - Highlights: • Influence of dose history on TL characteristics of fibre dosimeter is explored. • The phenomenon behind the TL variation caused by dose history is discussed. • Effect of annealing temperature on performance of fibre dosimeter is studied. • Pre-treatment methods for mitigating variation in reproducibility are proposed.

  1. Comparison of alanine dosimeters using silicone as their binder to a commercial, polystyrene-bound, alanine dosimeter

    International Nuclear Information System (INIS)

    Galindo, S.; Urena-Nunez, F.

    1997-01-01

    The feasibility of practical boron-containing alanine ESR dosimeters for gamma-neutron mixed field irradiation dosimeters depends in part on whether the γ response characteristics of these silicone-bound dosimeters are comparable to those of a commercially available dosimeter that has been used by the International Atomic Energy Agency (International Dose Assurance Service) as a transfer reference dosimeter. This work presents the results of the comparison of 3 batches of silicone-bound alanine dosimeters. The first batch consists of a mixture of alanine and boric acid; the second, alanine and borax; and the last contains only alanine. Results indicate that γ response characteristics of the silicone-bound samples are comparable to those of the commercial, polystyrene-bound, alanine dosimeter and that silicone has a strong potential as a binding substance for alanine ESR dosimetry. (Author)

  2. A radon (thoron) daughter personal alpha-dosimeter of the passive type using a diffused-junction detector and an electrostatic collector

    International Nuclear Information System (INIS)

    Bigu, J.; Frattini, A.

    1984-05-01

    A solid-state alpha-dosimeter has been designed and found to be suitable for personal and environmental radon-thoron daughter monitoring. The dosimeter basically consists of an electrostatic collector and an alpha-particle counting system with spectroscopy capabilities. The sensitive volume (∼20 cm 3 ) of the electrostatic collector consists of a cylindrically-shaped metal wire screen and a diffused-junction silicon alpha-detector covered with a thin aluminized mylar sheet. A DC voltage (∼450 V) is applied between the wire screen and the mylar sheet, the latter held at negative potential relative to the metal screen. Data can be retrieved during or after sampling by means of a micro-computer (Epson HX20) via a RS-232 communcation interface unit. The dosimeter has been calibrated in a large (26 m 3 ) radon/thoron test facility. A linear relationship was found between radon gas concentration and radon daughter Working Level, and the dosimeter's alpha-count. The dosimeter is mounted on top of an ordinary miner's cap lamp battery and is ideally suited for personal monitoring in underground uranium mines and other working areas. The dosimeter presented here is a considerably improved version of an earlier prototype

  3. Thermal drift reduction with multiple bias current for MOSFET dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Carvajal, M A; Martinez-Olmos, A; Morales, D P; Lopez-Villanueva, J A; Palma, A J [Departamento de Electronica y TecnologIa de Computadores, ETSIIT, Universidad de Granada, E-18071 Granada (Spain); Lallena, A M, E-mail: carvajal@ugr.es [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)

    2011-06-21

    New thermal compensation methods suitable for p-channel MOSFET (pMOS) dosimeters with the usual dose readout procedure based on a constant drain current are presented. Measuring the source-drain voltage shifts for two or three different drain currents and knowing the value of the zero-temperature coefficient drain current, I{sub ZTC}, the thermal drift of source-drain or threshold voltages can be significantly reduced. Analytical expressions for the thermal compensation have been theoretically deduced on the basis of a linear dependence on temperature of the parameters involved. The proposed thermal modelling has been experimentally proven. These methods have been applied to a group of ten commercial pMOS transistors (3N163). The thermal coefficients of the source-drain voltage and the threshold voltage were reduced from -3.0 mV deg. C{sup -1}, in the worst case, down to -70 {mu}V deg. C{sup -1}. This means a thermal drift of -2.4 mGy deg. C{sup -1} for the dosimeter. When analysing the thermal drifts of all the studied transistors, in the temperature range from 19 to 36 deg. C, uncertainty was obtained in the threshold voltage due to a thermal drift of {+-}9mGy (2 SD), a commonly acceptable value in most radiotherapy treatments. The procedures described herein provide thermal drift reduction comparable to that of other technological or numerical strategies, but can be used in a very simple and low-cost dosimetry sensor.

  4. New junctionless RADFET dosimeter design for low-cost radiation monitoring applications

    International Nuclear Information System (INIS)

    Arar, Djemai; Djeffal, Faycal; Bentrcia, Toufik; Chahdi, Mohamed

    2014-01-01

    This paper is devoted to the presentation of a quantitative analysis of the Junctionless Gate All Around RADFET (JL GAA RADFET) dosimeter, where the numerical simulation has been carried out using the Atlas 3-D simulator. The impact of the total dose, alternative gate materials and the channel doping on the threshold voltage of the JL GAA RADFET is addressed. The obtained results have indicated a significant improvement in the subthreshold parameters when compared to the conventional GAA RADFET dosimeter. Therefore, the implementation of junctionless-based sensors in the near future can provide more accurate results with low costs, in addition to alleviating many difficulties in the measurement procedure. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. New junctionless RADFET dosimeter design for low-cost radiation monitoring applications

    Energy Technology Data Exchange (ETDEWEB)

    Arar, Djemai; Djeffal, Faycal [Department of Electronics, University of Batna, Batna 05000 (Algeria); Bentrcia, Toufik; Chahdi, Mohamed [Department of Physics, University of Batna, Batna 05000 (Algeria)

    2014-01-15

    This paper is devoted to the presentation of a quantitative analysis of the Junctionless Gate All Around RADFET (JL GAA RADFET) dosimeter, where the numerical simulation has been carried out using the Atlas 3-D simulator. The impact of the total dose, alternative gate materials and the channel doping on the threshold voltage of the JL GAA RADFET is addressed. The obtained results have indicated a significant improvement in the subthreshold parameters when compared to the conventional GAA RADFET dosimeter. Therefore, the implementation of junctionless-based sensors in the near future can provide more accurate results with low costs, in addition to alleviating many difficulties in the measurement procedure. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Radiation Dose Measurement Using Chemical Dosimeters

    International Nuclear Information System (INIS)

    Lee, Min Sun; Kim, Eun Hee; Kim, Yu Ri; Han, Bum Soo

    2010-01-01

    The radiation dose can be estimated in various ways. Dose estimates can be obtained by either experiment or theoretical analysis. In experiments, radiation impact is assessed by measuring any change caused by energy deposition to the exposed matter, in terms of energy state (physical change), chemical production (chemical change) or biological abnormality (biological change). The chemical dosimetry is based on the implication that the energy deposited to the matter can be inferred from the consequential change in chemical production. The chemical dosimetry usually works on the sample that is an aqueous solution, a biological matter, or an organic substance. In this study, we estimated absorbed doses by quantitating chemical changes in matter caused by radiation exposure. Two different chemical dosimeters, Fricke and ECB (Ethanol-Chlorobenzene) dosimeter, were compared in several features including efficacy as dose indicator and effective dose range

  7. Sensitive color dosimeters using photochromic diarylethenes

    International Nuclear Information System (INIS)

    Irie, Setsuko; Irie, Masahiro

    2008-01-01

    Various types of color dosimeters are conveniently used for estimating absorbed dose in the radiation sterilization of biomedical materials. Diarylethenes with heterocyclic aryl groups are extensively studied for the applications to the optoelectronic devices, such as optical memory media and photowitching devices because of their thermally irreversible and fatigue-resistant properties. The colors of diarylethenes never fade in the dark conditions. The thermally stable dithienylethene derivatives are applied to sensitive color dosimeters. Upon γ-irradiation, polystyrene films containing diarylethene derivatives, such as 1,2-bis(2-methyl-5-phenyl-3-thienyl) perfluorocyclopentene 1 or 1,2-bis(2,5-dimethyl-3-thienyl) perfluorocyclopentene 2, and fluorescent metal complexes turned blue or red. Even if the absorbed dose was as small as 10 Gy, a clear color change was observed. (author)

  8. Small is beautiful: SAIC's new dosimeter

    International Nuclear Information System (INIS)

    Benson, R.G.

    1991-01-01

    Science Applications International Corporation (California) has developed an energy-compensated Geiger tube in a package the size of a small pocket pager. In fact, the whole dosimeter measures just 48mm x 72mm x 17mm. The rugged, lightweight unit is sensitive enough to record radiation ranging from low background levels caused by the earth's surface, the sun, or cosmic radiation, to beyond lethal dose levels. The PD-1 provides dose measurement, dose rate measurement, and ''chip'' functions. A chirper sounds each time a specified dose is accumulated, and the chirp increments are defined by the user. A dosimeter reader provides a simple interface for bi-directional communication with host PC. The Geiger tube provides improved accuracy over a wider energy range than current solid state devices. Features such as long battery life, long calibration life (two years or longer), and easy calibration procedure should help to simplify the work of health physicists overseeing dosimetry management programmes. (author)

  9. Individual dosimeter for radon and thoron daughters

    International Nuclear Information System (INIS)

    Chapuis, A.M.; Duport, P.; Zettwoog, P.

    1979-01-01

    The dosimeter is designed for the continuous measurement of the concentration of α emitters from the uranium 238 and thorium 232 series. It enables the measurement of, firstly the aerosol concentration of 218 Po (Radium A), 214 Po (Radium C') and 212 Po (Thorium C') and secondly the activity of long-lived α emitters in aerosols coming from ore dusts. One light weight version of this dosimeter is autonomous for 18 hours and is designed to measure individual doses, due to inhalation, for workers employed in uranium mines and ore processing plants. An other version using the same sampling head allows the monitoring of air concentrations in working environments. Living quarters, or free air

  10. Human hair as a pollutant dosimeter

    International Nuclear Information System (INIS)

    Al-Hashimi, A.

    1991-01-01

    Human hair has been proved to be a better dosimeter than even blood for tracing most of the heavy metal toxins when they penetrate the biosphere. The high precision of the neutron activation analysis (NAA) enabled researchers to elegantly differentiate between endogenous and exogenous contamination and thoroughly study poisonings caused by these physiologically-unimportant elements. Extensive volume of bench-scale work has been accomplished in these laboratories to show the capacity of INAA to detect the presence of 10 nuclides (or more) with a precision of about 5%. The principal objective of the present study is to employ this assaying power and the tendency of scalp hair to uptake heavy metals from aqueous solutions, to design a dosimeter which can easily be used by the environmentalists. The findings should also be of interest to the waste-management people who are searching for a cost-effective technique to remove these pollutants from relatively large volumes of industrial effluents

  11. High dose potassium-nitrate chemical dosimeter

    International Nuclear Information System (INIS)

    Dorda de Cancio, E.M.; Munoz, S.S.

    1982-01-01

    This dosimeter is used to control 10 kGY-order doses (1 Mrad). Nitrate suffers a radiolitic reduction phenomena, which is related to the given dose. The method to use potassium nitrate as dosimeter is described, as well as effects of the temperature of irradiation, pH, nitrate concentration and post-irradiation stability. Nitrate powder was irradiated at a Semi-Industrial Plant, at Centro Atomico Ezeiza, and also in a Gammacell-220 irradiator. The dose rates used were 2,60 and 1,80 KGY/hour, and the given doses varied between 1,0 and 150 KGY. The uncertainty was +-3% in all the range. (author) [es

  12. Selfcalibrated alanine/EPR dosimeters. A new generation of solid state/EPR dosimeters

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Gancheva, V.

    1999-01-01

    Alanine/EPR dosimeters are well established as secondary, reference dosimeters for high-energy radiation. However, there are various sources of uncertainty in the evaluation of absorbed dose. This arises primarily from the necessity to calibrate each EPR spectrometer and each batch of dosimeters before their use. In order to overcome this disadvantage, a new generation alanine/EPR dosimeter has been developed, and its possibilities as a radiation detector are reported. Principally, it is a mixture of alanine, some quantity of EPR active substance, and a binding material. The EPR active substance, acting as an internal EPR standard, is chosen to have EPR parameters which are independent of the irradiation dose. The simultaneous recording of the spectra of both the sample and the standard under the same experimental conditions and the estimation of the ratio I alanine /I Mn as a function of the absorbed dose strongly reduces the uncertainties. The response of these dosimeters for 60 Co γ-radiation exhibits excellent linearity and reproducibility in the range of absorbed dose, 10 2 - 5 x 10 4 Gy. (author)

  13. A pocket type thermoluminescent personnel dosimeter

    International Nuclear Information System (INIS)

    Vora, K.G.; Nagpal, J.S.; Pendurkar, H.K.; Gangadharan, P.

    1979-01-01

    A pocket type thermoluminescent personnel dosemeter using CaSO 4 : Dy phosphor is described. Two glass capillaries containing the phosphor are fitted into a plastic tube and covered by a cylindrical filter. The combination is fitted into an ink barrel of a fountain pen. The response of this Dy glass dosimeter was studied for various incident photon energies. A uniform response over the energy range from 33 keV to 1250 keV is achieved. (A.K.)

  14. Phosphor for thermoluminescent type radiation dosimeter

    International Nuclear Information System (INIS)

    Nada, N.; Yamashita, T.

    1975-01-01

    This has the accumulation effect of radiation energy and is mainly used as the element for thermoluminescent type radiation dosimeters. It has as the principal constituent a phosphor consisting of calcium sulfate as the principal constituent and other impurity elements such as dysprosium, thulium and the like. It is more sensitive by the order of 1 to 2 or more figures than the conventional ones and is excellent in the retention of absorbed radiation energy. (U.S.)

  15. Dosimeter characteristics and service performance requirements

    International Nuclear Information System (INIS)

    Ambrosi, P.; Bartlett, D.T.

    1999-01-01

    The requirements for personal dosimeters and dosimetry services given by ICRP 26, ICRP 35, ICRP 60 and ICRP 75 are summarised and compared with the requirements given in relevant international standards. Most standards could be made more relevant to actual workplace conditions. In some standards, the required tests of energy and angular dependence of the response are not sufficient, or requirements on overall uncertainty are lacking. (author)

  16. Color-indicator dosimeter for ionizing radiation

    International Nuclear Information System (INIS)

    Panchenkov, G.M.; Kozlov, L.L.; Molin, A.A.; Ershova, Z.F.; Mikhailov, L.M.; Juzvyak, A.G.; Valitov, R.B.; Churov, V.P.; Grinev, M.P.

    1980-01-01

    Colorimetric dosimeter of ionizing radiation, containing 70-100 w % of a thermoplastic polymer, 10-40 w. % of a softener, 0.5-3.0 w. % of stabilizer and two dyes compatible with the polymer is designed. The first dye is chosen among zanthene- polymethine- or pyrazolon dyes, while the other is a triarylmethane- indigo- thiazine- indophenol- indiamine- or indaniline dye. (E.G.)

  17. Performance evaluation of a colorimetric hydrazine dosimeter

    Science.gov (United States)

    Brenner, Karen P.; Rose-Pehrsson, Susan L.

    1994-06-01

    A dosimeter for real-time, colorimetric detection of hydrazine in air has been developed. The passive badge consists of a dosimeter card containing a vanillin solution coated on a thin paper substrate. The active patch consists of a thick cellulose substrate coated with a vanillin solution. When placed in a plastic sample holder attached to a personnel pump, up to 5 L/min can be drawn through the active badge substrate. Through a condensation reaction, vanillin reacts with hydrazine to form a colored product that absorbs in the visible region. The hydrazone formed in the reaction is yellow; its intensity is proportional to the dose. When exposed passively to hydrazine, the experimental detection limit is less than 20 ppb-hrs. Extrapolated results indicate a detection limit of less than 5 ppb-hrs for long sampling periods. Actively sampling of hydrazine vapors gives an experimental detection limit of less than 100 ppb-L at a sample rate of 5 L/min. Relative humidity effects on badge response were minor. High humidity enhanced the color development on the vanillin badge; while low humidity had no effect on badge response. Interference testing of the dosimeters revealed a tobacco smoke interference. Preliminary shelf life tests indicated no decrease in sensitivity to hydrazine when stored at room temperature for 6 months.

  18. Conceptual design of the SMART dosimeter

    Science.gov (United States)

    Johnson, Erik B.; Vogel, Sam; Frank, Rebecca; Stoddard, Graham; Vera, Alonzo; Alexander, David; Christian, James

    2017-08-01

    Active dosimeters for astronauts and space weather monitors are critical tools for mitigating radiation induced health issues or system failure on capital equipment. Commercial spaceflight, deep space flight, and satellites require smarter, smaller, and lower power dosimeters. There are a number of instruments with flight heritage, yet as identified in NASA's roadmaps, these technologies do not lend themselves to a viable solution for active dosimetry for an astronaut, particularly for deep space missions. For future missions, nano- and micro-satellites will require compact instruments that will accurately assess the radiation hazard without consuming major resources on the spacecraft. RMD has developed the methods for growing an advanced scintillation material called phenylcarbazole, which provides pulse shape discrimination between protons and electrons. When used in combination with an anti-coincidence detector system, an assessment of the dose from charged ions and neutral particles can be determined. This is valuable as damage on a system (such as silicon or tissue) is dependent on the particle species. Using this crystal with readout electronics developed in partnership with COSMIAC at the University of New Mexico, the design of the Small Mixed field Autonomous Radiation Tracker (SMART) Dosimeter consists of a low-power analog to digital conversion scheme with low-power digital signal processing algorithms, which are to be implemented within a compact system on a chip, such as the Xilinx Zynq series. A review of the conceptual design is presented.

  19. The active personnel dosimeter---APFEL enterprises superheated drop detector

    International Nuclear Information System (INIS)

    Ipe, N.E.; Donahue, R.J.; Busick, D.D.

    1991-03-01

    The Active Personnel Dosimeter (APD) provides a digital readout of events caused by neutrons interacting with superheated liquid droplets. The droplets are suspended in a gel held in a replaceable cartridge. Upon neutron interaction, the superheated droplet vaporizes, forming a bubble. The sound produced in this process is recorded by transducers that sense the accompanying pressure pulse. The APD electronically discriminates against spurious noise and vibration. Studies with the production prototype APDs indicate that the detector response is linear up to about 0.40 mSv, with large variations sometimes from predicted values and between cartridges at higher dose equivalents. The response to standard neutron sources (bare 252 Cf, PuBe, PuB, PuF, PuLi) is reported and compared with the expected response. Unirradiated cartridges self-nucleate when heated to temperatures of 46 degrees C. The APD is insensitive to low-energy photons but responds to high-energy photons and electrons. 8 refs., 2 figs., 3 tabs

  20. Anthracene dosimeter characterization under radiotherapy photons

    International Nuclear Information System (INIS)

    Czelusniak, Caroline

    2011-01-01

    New radiotherapy techniques such as intensity-modulated radiation therapy and stereotactic radiosurgery have increased the need for dosimeters that can provide measurements in real time with high spatial resolution. Organic scintillation dosimeters are able to measure with accuracy small radiation fields and fields with high gradients, besides having advantages such as water and soft tissue equivalence and the possibility to be used in vivo. Anthracene is an organic scintillator crystal with the highest known scintillation efficiency among organic scintillation materials. The objective of this work is to characterize the anthracene as a dosimeter under radiotherapy photons energies, analysing its signal against average granulosity, intern capsule diameter, absorbed dose, absorbed dose rate, photon energy and its spatial resolution; with the last one analysed under three methods (edge spread function, line spread function and modulation transfer function). The photons energies used were 1.25 MeV ( 60 Co), 0.661 MeV ( 137 Cs) and X-rays (effective energies of 28.4; 46.5; 48.5; 94.0 e 106.0 keV). The scintillation detection system consisted of an optical fiber with one end attached to the anthracene capsule and the other to a photomultiplier tube maintained by power supply followed by an electrometer. Once Cerenkov radiation occurs in the optical fiber, it was removed from the total scintillation signal trough the subtraction of the signal, taken irradiating the optical fiber without the anthracene attached to one of its extremity. From results obtained, one can infer that the dosimeter signal increases proportionally with average granulosity and intern capsule diameter. The signal is linearly dependent of absorbed dose, linearly dependent of low photons energies and independent for high photons energies, as well as independent of the absorbed dose rate. From the spatial resolution values obtained it was possible to infer that the one obtained through modulation

  1. Comparison of electronic digital alarm dosimeter with TLD

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Pandey, J.P.N.; Shinde, A M.; Purohit, R.G.; Sarkar, P.K.

    2012-01-01

    Control of exposure of radiation workers on day to day basis has been made easy by use of semiconductor based electronic digital dosimeter. Additional dose constraints of 10 mSv for occupational radiation workers have made it essential to use such type of digital personal monitoring devices. In addition to conventional ionisation chamber based direct reading dosimeters, additional 35 semiconductor based digital dosimeters model MGP DMC 2000 S were used for the monitoring of personal exposure of radiation workers in a spent fuel reprocessing plant. Though better least count and good performance over a wide range of dose rate are claimed by the manufacture, before making use of such dosimeter on large scale, validation of its performance is required to be checked. In this paper, an effort is made to determine the performance of digital dosimeters, by exposing these digital dosimeters in combination with TLDs at different radiation levels and obtained results were compared and analysed

  2. Dose measurement during defectoscopic work using electronic personal dosimeters

    International Nuclear Information System (INIS)

    Smoldasova, J.

    2008-01-01

    Personal monitoring of the external radiation of radiation, personnel exposed to sources of ionizing radiation at a workplace is an important task of the radiological protection. Information based on the measured quantities characterizing the level of the exposure of radiation personnel enable to assess the optimum radiological protection at the relevant workplace and ascertain any deviation from the normal operation in time. Different types of personal dosimeters are used to monitor the external radiation of radiation personnel. Basically, there are two types of dosimeters, passive and active (electronic). Passive dosimeters provide information on the dose of exposure after its evaluation, while electronic dosimeters provide this information instantly. The goal of the work is to compare data acquired during different working activities using the DMC 2000 XB electronic dosimeters and the passive film dosimeters currently used at the defectoscopic workplace. (authors)

  3. Feasibility study of a photoconductor based dosimeter for quality assurance in radiotherapy

    Science.gov (United States)

    Lee, Y. K.; Kim, S. W.; Kim, J. N.; Kang, Y. N.; Kim, J. Y.; Lee, D. S.; Kim, K. T.; Han, M. J.; Ahn, K. J.; Park, S. K.

    2017-09-01

    With the recent market entries of new types of linear accelerators (LINACs) with a multi leaf collimator (MLC) mounted on them, high-precision radiosurgery applying a LINAC to measure high-dose radiation on the target region has been gaining popularity. Systematic and accurate quality assurance (QA) is of vital important for high-precision radiosurgery because of its increased risk of side effects including life-threatening ones such as overexposure of healthy tissues to high-dose radiation beams concentrated on small areas. Therefore, accurate dose and dose-distribution measurements are crucial in the treatment procedure. The accurate measurement of the properties of beams concentrated on small areas requires high-precision dosimeters capable of high-resolution output and dose mapping as well as accurate dosimetry in penumbra regions. In general, the properties of beams concentrated on small areas are measured using thermos luminescent dosimeters (TLD), diode detectors, ion chambers, diamond detectors, or films, and many papers have presented the advantages and disadvantages of each of these detectors for dosimetry. In this study, a solid-state photoconductor dosimeter was developed, and its clinical usability was tested by comparing its relative dosimetric performance with that of a conventional ion chamber. As materials best-suited for radiation dosimeters, four candidates namely lead (II) iodide (PbI2), lead (II) oxide (PbO), mercury (II) iodide (HgI2), and HgI2/ titanium dioxide (TiO2) composite, the performances of which were proved in previous studies, were used. The electrical properties of each candidate material were examined using the sedimentation method, one of the particle-in-binder (PIB) methods, and unit-cell-type prototypes were fabricated. The unit-cell samples thus prepared were cut into specimens of area 1 × 1 cm2 with 400-μ m thickness. The electrical properties of each sample, such as sensitivity, dark current, output current, rising time

  4. Field Data Logger Prototype for Power Converters

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Ghimire, Pramod; Thøgersen, Paul Bach

    2014-01-01

    and subsequent analysis of the data. This paper presents the development of a low cost prototype field data logger prototype using Raspberry PI and industrial sensors. The functionalities of the data logger prototype are described. An online rainflow count algorithm has been implemented as well.......Mission profile data is very important for the cost effective and reliable design of power converters. The converter design can be improved on the basis of actual field data. Actual mission profile data can be collected for the power converters using field data loggers over a long period of time...

  5. Handheld, Broadband Electromagnetic UXO Sensor: Cost & Performance Report

    National Research Council Canada - National Science Library

    Won, I. J; SanFilipo, Bill; Oren, Alex

    2006-01-01

    The broadband electromagnetic sensor improvement and demonstration undertaken in this project took the prototype GEM-3 and evolved it into an operational sensor with increased bandwidth and dynamic...

  6. EUSO-TA prototype telescope

    Energy Technology Data Exchange (ETDEWEB)

    Bisconti, Francesca, E-mail: francesca.bisconti@kit.edu

    2016-07-11

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  7. EUSO-TA prototype telescope

    Science.gov (United States)

    Bisconti, Francesca; JEM-EUSO Collaboration

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  8. Radiation-induced coloration of nitro blue tetrazolium gel dosimeter for low dose applications

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.A.; Beshir, W.B.; Hassan, H.M.; Soliman, Y.S.

    2017-01-01

    A radiochromic sensor of nitro blue tetrazolium (NBT) in gelatin was evaluated as a new gel dosimeter for radiation applications. The NBT gel has the advantage of visual color change from faint yellow to violet at low absorbed doses (10–1000 Gy). This color change appears as a result of the reduction of NBT to colored formazan then to diformazan species with further increase of absorbed doses. Responses of the gel at different NBT concentrations were analyzed at the absorption maximum centered at 527 nm. An increase of NBT concentrations in the gel enhances the radiation dose sensitivity. Energy dependent study implies the tissue equivalency of the gel in the energy range of 0.15–20 MeV. Dependence of the gel response on irradiation temperature, and color stability before and after irradiation were also studied. The combined uncertainty associated with the dose monitoring (10–1000 Gy) is 6.26% (2σ). Thus, the NBT gel shows its suitability for food irradiation, insect population control, and some food irradiation applications. - Highlights: • Preparation of nitro blue tetrazolium (NBT) gel for the dose range of 10–1000 Gy. • The sensitivity of it increases with increasing NBT concentrations. • The response of irradiated dosimeter is stable after 5 h from irradiation. • The prepared gel dosimeter is a tissue equivalent. • Its combined uncertainty is equal to 6.26% for 10–1000 Gy dose level.

  9. An implantable radiation dosimeter for use in external beam radiation therapy

    International Nuclear Information System (INIS)

    Scarantino, Charles W.; Ruslander, David M.; Rini, Christopher J.; Mann, Gregory G.; Nagle, H. Troy; Black, Robert D.

    2004-01-01

    An implantable radiation dosimeter for use with external beam therapy has been developed and tested both in vitro and in canines. The device uses a MOSFET dosimeter and is polled telemetrically every day during the course of therapy. The device is designed for permanent implantation and also acts as a radiographic fiducial marker. Ten dogs (companion animals) that presented with spontaneous, malignant tumors were enrolled in the study and received an implant in the tumor CTV. Three dogs received an additional implant in collateral normal tissue. Radiation therapy plans were created for the animals and they were treated with roughly 300 cGy daily fractions until completion of the prescribed cumulative dose. The primary endpoints of the study were to record any adverse events due to sensor placement and to monitor any movement away from the point of placement. No adverse events were recorded. Unacceptable device migration was experienced in two subjects and a retention mechanism was developed to prevent movement in the future. Daily dose readings were successfully acquired in all subjects. A rigorous in vitro calibration methodology has been developed to ensure that the implanted devices maintain an accuracy of ±3.5% relative to an ionization chamber standard. The authors believe that an implantable radiation dosimeter is a practical and powerful tool that fosters individualized patient QA on a daily basis

  10. Evaluation of discrepancies between thermoluminescent dosimeter and direct-reading dosimeter results

    International Nuclear Information System (INIS)

    Shaw, K.R.

    1993-07-01

    Currently at Oak Ridge National Laboratory (ORNL), the responses of thermoluminescent dosimeters (TLDs) and direct-reading dosimeters (DRDs) are not officially compared or the discrepancies investigated. However, both may soon be required due to the new US Department of Energy (DOE) Radiological Control Manual. In the past, unofficial comparisons of the two dosimeters have led to discrepancies of up to 200%. This work was conducted to determine the reasons behind such discrepancies. For tests conducted with the TLDs, the reported dose was most often lower than the delivered dose, while DRDs most often responded higher than the delivered dose. Trends were identified in personnel DRD readings, and ft was concluded that more training and more control of the DRDs could improve their response. TLD responses have already begun to be improved; a new background subtraction method was implemented in April 1993, and a new dose algorithm is being considered. It was concluded that the DOE Radiological Control Manual requirements are reasonable for identifying discrepancies between dosimeter types, and more stringent administrative limits might even be considered

  11. IAEA reference dosimeter: Alanine-ESR

    International Nuclear Information System (INIS)

    Mehta, K.; Girzikowsky, R.

    1999-01-01

    Since 1985, the IAEA has been using alanine-ESR as a transfer dosimeter for its dose quality audit service, namely the International Dose Assurance Service. The alanine dosimeters are rod-type containing 70 wt% DL--α-alanine and 30 wt% polystyrene. We have two self-shielded gamma facilities for the calibration of the dosimetry system, where the temperature within the irradiation chamber can be controlled by a specially designed unit. A 4th order polynomial is fitted to the 16 data points in the dose range of 100 Gy to 50 kGy. The measured value of the irradiation temperature coefficient at two dose values (15 and 45 kGy) is 0.23 %/deg. C. Also, the ESR-response was followed for several dosimeters for about 8 months to study the post-irradiation effect. A value of 0.008 %/day was observed for the fading of the response for two dose values (15 and 45 kGy) and three irradiation temperatures (15, 27 and 40 deg. C). The effect of the analysis temperature on the ESR response was also studied. The combined relative uncertainty for the IAEA alanine-ESR dosimetry system is 1.5% (k=1). This includes that transferred from the primary laboratory for the dose rate measurements of the gamma facilities, dosimetry system calibration uncertainties, batch variability and uncertainty in the curve fitting procedure. This value however does not include the contribution due to the irradiation temperature correction which is applied when it differs from that during calibration; this component being specific for each dose measurement. (author)

  12. Acceptance Testing of Thermoluminescent Dosimeter Holders.

    Science.gov (United States)

    Romanyukha, Alexander; Grypp, Matthew D; Sharp, Thad J; DiRito, John N; Nelson, Martin E; Mavrogianis, Stanley T; Torres, Jeancarlo; Benevides, Luis A

    2018-05-01

    The U.S. Navy uses the Harshaw 8840/8841 dosimetric (DT-702/PD) system, which employs LiF:Mg,Cu,P thermoluminescent dosimeters (TLDs), developed and produced by Thermo Fisher Scientific (TFS). The dosimeter consists of four LiF:Mg,Cu,P elements, mounted in Teflon® on an aluminum card and placed in a plastic holder. The holder contains a unique filter for each chip made of copper, acrylonitrile butadiene styrene (ABS), Mylar®, and tin. For accredited dosimetry labs, the ISO/IEC 17025:2005(E) requires an acceptance procedure for all new equipment. The Naval Dosimetry Center (NDC) has developed and tested a new non-destructive procedure, which enables the verification and the evaluation of embedded filters in the holders. Testing is based on attenuation measurements of low-energy radiation transmitted through each filter in a representative sample group of holders to verify that the correct filter type and thickness are present. The measured response ratios are then compared with the expected response ratios. In addition, each element's measured response is compared to the mean response of the group. The test was designed and tested to identify significant nonconformities, such as missing copper or tin filters, double copper or double tin filters, or other nonconformities that may impact TLD response ratios. During the implementation of the developed procedure, testing revealed a holder with a double copper filter. To complete the evaluation, the impact of the nonconformities on proficiency testing was examined. The evaluation revealed failures in proficiency testing categories III and IV when these dosimeters were irradiated to high-energy betas.

  13. Evaluation of fading factor and self-dose for glass dosimeter and thermoluminescence dosimeter

    International Nuclear Information System (INIS)

    Yamasaki, T.; Yamanishi, H.; Miyake, H.; Komura, K.

    2000-01-01

    The glass dosimeter (GD) and thermoluminescence dosimeter (TLD) are both passive radiation detectors. They are often used for measuring environmental radiation. In order to measure low dose rate preciously, it is important to evaluate decreased dose due to fading and self-dose during the exposure period. We evaluate the fading factor and self-dose of thee passive detectors, GD and TLD. We select Ogoya tunnel for the experiment. The tunnel is suitable field for measuring faded dose and self-dose because it is low cosmic radiation. At the center of the tunnel, the intensity of cosmic ray is reduced to about 1/177 than the outside of the funnel. We prepared two sets of dosimeters. One set consists of five GDs, five TLDs and some pre-irradiated GDs and TLDs that are exposed to standard radiation of 4 mGy by Cs-137. These dosimeters are put in the 10 cm thick lead box in order to shield the terrestrial gamma ray. One set is located at the center of the tunnel and the other is the outside of the funnel. The dosimeters were exposed for ten months, from May 1998 to March 1999. After the exposure, the readers of dosimeters are carried into the funnel to read out the signals promptly as soon as taking out the dosimeters. As a result of the measurement, four kinds of data are taken for GD and TLD respectively. Assumed that the self-dose and cosmic ray are constant during exposure, the four independent unknown quantities, a self-dose a dose due to cosmic ray and a fading coefficient at the center of the tunnel and at the outside, are considered. Therefore four simultaneous equations should be obtained. From these examinations, the faded dose of GD is less than 1%, but that of TLD is about 16% during ten months. The coefficient for compensation of fading of GD and TLD is given as the half of the each value. At the outside of the tunnel, the measured dose rate of cosmic ray that can pass through the 10 cm lead is evaluated to be about 16 nGy/h by both detectors. The self

  14. Rethink! prototyping transdisciplinary concepts of prototyping

    CERN Document Server

    Nagy, Emilia; Stark, Rainer

    2016-01-01

    In this book, the authors describe the findings derived from interaction and cooperation between scientific actors employing diverse practices. They reflect on distinct prototyping concepts and examine the transformation of development culture in their fusion to hybrid approaches and solutions. The products of tomorrow are going to be multifunctional, interactive systems – and already are to some degree today. Collaboration across multiple disciplines is the only way to grasp their complexity in design concepts. This underscores the importance of reconsidering the prototyping process for the development of these systems, particularly in transdisciplinary research teams. “Rethinking Prototyping – new hybrid concepts for prototyping” was a transdisciplinary project that took up this challenge. The aim of this programmatic rethinking was to come up with a general concept of prototyping by combining innovative prototyping concepts, which had been researched and developed in three sub-projects: “Hybrid P...

  15. Architectures of prototypes and architectural prototyping

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Christensen, Michael; Sandvad, Elmer

    1998-01-01

    together as a team, but developed a prototype that more than fulfilled the expectations of the shipping company. The prototype should: - complete the first major phase within 10 weeks, - be highly vertical illustrating future work practice, - continuously live up to new requirements from prototyping......This paper reports from experience obtained through development of a prototype of a global customer service system in a project involving a large shipping company and a university research group. The research group had no previous knowledge of the complex business of shipping and had never worked...... sessions with users, - evolve over a long period of time to contain more functionality - allow for 6-7 developers working intensively in parallel. Explicit focus on the software architecture and letting the architecture evolve with the prototype played a major role in resolving these conflicting...

  16. Wallac automatic alarm dosimeter type RAD21

    International Nuclear Information System (INIS)

    Burgess, P. H.; Iles, W.J.

    1980-02-01

    The Automatic Alarm Dosimeter type RAD 21 is a batterypowered personal dosemeter and exposure rate alarm monitor, designed to be worn on the body, covering an exposure range from 0.1 to 999.9 mR and has an audible alarm which can be pre-set over the range 1 mR h -1 to 250 mR h -1 . The instrument is designed to measure x- and γ radiation over the energy range 50 keV to 3 MeV. The facilities and controls, the radiation, electrical, environmental and mechanical characteristics, and the manual, have been evaluated. (U.K.)

  17. A monolithic 180 nm CMOS dosimeter for wireless In Vivo Dosimetry

    International Nuclear Information System (INIS)

    Villani, E.G.; Crepaldi, M.; DeMarchi, D.; Gabrielli, A.; Khan, A.; Pikhay, E.; Roizin, Y.; Rosenfeld, A.; Zhang, Z.

    2016-01-01

    The design, fabrication and testing of a novel monolithic system-on-chip dosimeter fabricated in a standard 180 nm CMOS technology is described. The device, implementing a radiation sensor and an RF transmitter, is proposed to address the need for real-time In Vivo Dosimetry (IVD) of radiation during Linac radiotherapy sessions. Owing to its small size, of approximately 1 mm"3, such solution could be made in-body implantable and, as such, provide a much-enhanced high-resolution, real-time dose measurement to improve Quality Assurance (QA) in radiation therapy. The device transmits the related information on dose of radiation wirelessly to a remote receiver operating in the Medical Implant Communication Service (MICS) band. Comprehensive description of the various phases of this project, including the development of the radiation sensors and integrated RF transmitter to perform the readout, along with the final test results using a radiation beam, will be given. - Highlights: • A Monolithic Dosimeter for real time dosimetry during radiotherapy is proposed. • The proposed device is 1 mm3 in size and could potentially be body implantable. • The device includes a radiation sensor and RF readout, operating in the MICS band. • Detailed tests have been performed under radiation beam in a clinical environment. • Reported sensitivity is 1 cGy over 50 Gy, with an accuracy of better than 3%.

  18. Development of a prototype of a candidate camera payload

    OpenAIRE

    Oltedal, Jon Kalevi

    2016-01-01

    The second prototype for the NUTS camera module have been tested to confirm if changes made from the first prototype were successful. The first prototype suffered from noise issues when operating at the maximum clock frequency of 96MHz. This needed to be fixed for the MT9P031 image sensor to be usable in further designs. Debugging and testing using the camera prototype hardware and software proved that the prototype managed to produce noise free images with bright parts in the images. These r...

  19. Solid state neutron dosimeter for space applications. Final Report

    International Nuclear Information System (INIS)

    Entine, G.; Nagargar, V.; Sharif, D.

    1990-08-01

    Personnel engaged in space flight are exposed to significant flux of high energy neutrons arising from both primary and secondary sources of ionizing radiation. Presently, there exist no compact neutron sensor capable of being integrated in a flight instrument to provide real time measurement of this radiation flux. A proposal was made to construct such an instrument using special PIN silicon diode which has the property of being insensitive to the other forms of ionizing radiation. Studies were performed to determine the design and construction of a better reading system to allow the PIN diode to be read with high precision. The physics of the device was studied, especially with respect to those factors which affect the sensitivity and reproducibility of the neutron response. This information was then used to develop methods to achieve high sensitivity at low neutron doses. The feasibility was shown of enhancing the PIN diode sensitivity to make possible the measurement of the low doses of neutrons encountered in space flights. The new PIN diode will make possible the development of a very compact, accurate, personal neutron dosimeter

  20. Liquid polymers for using in a holographic ionizing radiation dosimeter

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.

    1979-01-01

    Some liquid polymeric systems for using in the holographic ionizing radiation dosimeter are presented. It is shown that the action of radiation on polymers leads to the destruction of the polymeric chains or to perform them, the both processes being applied in radiation dosimetry. Some advantages of the holographic dosimeter are outlined comparatively with those common used. (author)

  1. LLL development of a combined etch track: albedo dosimeter

    International Nuclear Information System (INIS)

    Griffith, R.V.; Fisher, J.C.; Harder, C.A.

    1977-01-01

    The addition of polycarbonate sheet to albedo detectors for electrochemical etching provides a simple, inexpensive way to reduce the spectral sensitivity of the personnel dosimeter without losing the albedo features of sensitivity and ease of automation. The ECEP technique also provides the dosimetrist with the potential for identifying conditions of body orientation that might otherwise lead to significant error in dosimeter evaluation

  2. Evaluation of a prototype infrasound system

    International Nuclear Information System (INIS)

    Whitaker, R.; Sandoval, T.; Breding, D.; Kromer, D.

    1997-01-01

    Under Department of Energy sponsorship, Sandia National Laboratories and Los Alamos National Laboratory cooperated to develop a prototype infrasonic array, with associated documentation, that could be used as part of the International Monitoring System. The United States Government or foreign countries could procure commercially available systems based on this prototype to fulfill their Comprehensive Test Ban Treaty (CTBT) obligations. The prototype is a four-element array in a triangular layout as recommended in CD/NTB/WP.224 with an element at each corner and one in the center. The prototype test configuration utilize an array spacing of 1 km. The prototype infrasound system has the following objectives: (1) Provide a prototype that reliably acquires and transmits near real-time infrasonic data to facilitate the rapid location and identification of atmospheric events. (2) Provide documentation that could be used by the United States and foreign countries to procure infrasound systems commercially to fulfill their CTBT responsibilities. Infrasonic monitoring is an effective, low cost technology for detecting atmospheric explosions. The low frequency components of explosion signals propagate to long ranges (few thousand kilometers) where they can be detected with an array of sensors. Los Alamos National Laboratory's expertise in infrasound systems and phenomenology when combined with Sandia's expertise in providing verification quality system for treaty monitoring make an excellent team to provide the prototype infrasound sensor system. By September 1997, the prototype infrasound system will have been procured, integrated, evaluated and documented. Final documentation will include a system requirements document, an evaluation report and a hardware design document. The hardware design document will describe the various hardware components used in the infrasound prototype and their interrelationships

  3. Assessment of Siemens plessey electronic personal dosimeter

    International Nuclear Information System (INIS)

    Hirning, C.R.; Lopez, S.; Yuen, P.S.

    1994-01-01

    This report presents the results of a laboratory assessment of the performance of a new type of personal dosimeter. The Electronic Personal Dosimeter, or EPD, was developed jointly by the National Radiological Protection Board and Siemens Plessey Controls Limited, both of the United Kingdom. Twenty pre-production units of the EPD and a reader were purchased by Ontario Hydro for the assessment. The tests were conducted jointly by Ontario Hydro's Health and Safety Division and AECL Research's Chalk River Laboratories (CRL), with funding from the Candu Owner's Group. A total of 26 tests were conducted, divided between Ontario Hydro and AECL. The test results were compared with the relevant requirements of three standards. In general, the performance of the EPD was found to be quite acceptable. It met most of the relevant requirements of the three standards and most of the design specifications. However, the following deficiencies were found: slow response time; sensitivity to high-frequency EMF; poor resistance to dropping; and an alarm that is not loud enough. In addition, the response of the EPD to low-energy beta rays may be too low for some applications. There were serious problems with the reliability of operation of the pre production EPDs used in these tests. 9 refs., 34 tabs., 20 figs

  4. Assessment of Siemens plessey electronic personal dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Hirning, C R; Lopez, S [Ontario Hydro, Toronto, ON (Canada); Yuen, P S [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

    1994-01-01

    This report presents the results of a laboratory assessment of the performance of a new type of personal dosimeter. The Electronic Personal Dosimeter, or EPD, was developed jointly by the National Radiological Protection Board and Siemens Plessey Controls Limited, both of the United Kingdom. Twenty pre-production units of the EPD and a reader were purchased by Ontario Hydro for the assessment. The tests were conducted jointly by Ontario Hydro`s Health and Safety Division and AECL Research`s Chalk River Laboratories (CRL), with funding from the Candu Owner`s Group. A total of 26 tests were conducted, divided between Ontario Hydro and AECL. The test results were compared with the relevant requirements of three standards. In general, the performance of the EPD was found to be quite acceptable. It met most of the relevant requirements of the three standards and most of the design specifications. However, the following deficiencies were found: slow response time; sensitivity to high-frequency EMF; poor resistance to dropping; and an alarm that is not loud enough. In addition, the response of the EPD to low-energy beta rays may be too low for some applications. There were serious problems with the reliability of operation of the pre production EPDs used in these tests. 9 refs., 34 tabs., 20 figs.

  5. The dosimeter personal use in controlled area

    International Nuclear Information System (INIS)

    Costa, R. F.

    2015-01-01

    The discovery of X-rays revolutionized medicine because it allowed a patient to be examined internally with no surgery. But also caused damage to health professionals and patients due, its oxidizing action. In the beginning of its discovery, many doctors were exposed and exposed beams to their patients for long periods of time, therefore, they developed diseases caused by radiation and the medical community realized that something was wrong. Then created a radiological protection commission to regulate its use in humans and so limit your exposure. Today we know that many companies still did not fit the standards of radiation protection. So we evaluate the technical professionals in radiology regarding the correct use of personal dosimeter, through a descriptive study with a quantitative approach, we used the information collection technique based on a questionnaire developed for this purpose which was delivered and collected personally. From this survey, we sought to assess the knowledge of the basic guidelines of radiological protection. He concluded that the majority of respondents know the rules of use of the personal dosimeter, but do not use it properly, due mainly to lack of supervision by the company, overwork and neglect. (author)

  6. Laser readable thermoluminescent radiation dosimeters and methods for producing thereof

    International Nuclear Information System (INIS)

    Braunlich, P.F.; Tetzlaff, W.

    1989-01-01

    Thin layer thermoluminescent radiation dosimeters for use in laser readable dosimetry systems, and methods of fabricating such thin layer dosimeters are disclosed. The thin layer thermoluminescent radiation dosimeters include a thin substrate made from glass or other inorganic materials capable of withstanding high temperatures and high heating rates. A thin layer of a thermoluminescent phosphor material is heat bonded to the substrate using an inorganic binder such as glass. The dosimeters can be mounted in frames and cases for ease in handling. Methods of the invention include mixing a suitable phosphor composition and binder, both being in particulate or granular form. The mixture is then deposited onto a substrate such as by using mask printing techniques. The dosimeters are thereafter heated to fuse and bond the binder and phosphor to the substrate. 34 figs

  7. Reactor Gamma Heat Measurements with Calorimeters and Thermoluminescence Dosimeters

    DEFF Research Database (Denmark)

    Haack, Karsten; Majborn, Benny

    1973-01-01

    Intercomparison measurements of reactor γ-ray heating were carried out with calorimeters and thermoluminescence dosimeters. Within the measurement uncertainties the two methods yield coincident results. In the actual measurement range thermoluminescence dosimeters are less accurate than calorimet......Intercomparison measurements of reactor γ-ray heating were carried out with calorimeters and thermoluminescence dosimeters. Within the measurement uncertainties the two methods yield coincident results. In the actual measurement range thermoluminescence dosimeters are less accurate than...... calorimeters, but possess advantages such as a small probe size and the possibility of making simultaneous measurements at many different positions. Hence, thermoluminescence dosimeters may constitute a valuable supplement to calorimeters for reactor γ-ray heating measurements....

  8. Energy response study of modified CR-39 neutron personnel dosimeter

    International Nuclear Information System (INIS)

    Sathian, Deepa; Bakshi, A.K.; Datta, D.; Nair, Sreejith S.; Sathian, V.; Mishra, Jitendra; Sen, Meghnath

    2018-01-01

    Personnel neutron dosimetry is an integral part of radiation protection. No single dosimeter provides the satisfactory energy response, sensitivity, angular dependence characteristics and accuracy necessary to meet the requirement of an ideal personnel neutron dosimeter. The response of a personnel neutron dosimeter is critically dependent upon the energy distribution of the neutron field. CR-39 personnel neutron dosimeters were typically calibrated in the standard neutron field of 252 Cf and 241 Am-Be in our laboratory, although actual neutron fields may vary from the calibration neutron spectrum. Recently the badge cassette of the personnel neutron dosimeter was changed due to frequent damage of the PVC badge used earlier. This paper discusses energy response of CR-39 solid state nuclear track detector loaded in this modified badge cassette as per latest ISO recommendation

  9. Advances in the development of Cr-39 based neutron dosimeters

    International Nuclear Information System (INIS)

    Hadlock, D.E.; Parkhurst, M.A.

    1987-12-01

    A combination thermoluminescent dosimeter (TLD) and track etch dosimeter (TED), which can be used for detecting neutrons over a wide energy range, has been developed through recent research in passive neutron dosimetery. This dosimeter uses Li-600 TLDs to detect thermal and low energy neutrons reflected from the body, and the TED polymer of CR-39, to detect fast neutrons from proton recoil interactions with the polyethylene radiator or with CR-39 itself. Some form of the combination dosimeter is currently in use at several US Department of Energy (DOE) facilities, and its use is expected to expand over the next year to include all DOE facilities where significant neutron exposures may occur. The extensive research conducted on the TED component over the past six years has continually focused on material improvements, reduction in processing time and dosimeter handling, and ease of sample readout with the goal of automating the process as much as possible. 1 fig

  10. Temperature dependence of gafchromic MD-55 dosimeter

    International Nuclear Information System (INIS)

    Klassen, Norman V.; Zwan, Len van der; Cygler, Joanna

    1997-01-01

    Objective: Gafchromic MD-55 is a fairly new, thin film dosimeter that develops a blue color (λ max = 676 nm) when irradiated with ionizing radiation. The increase in absorbance is nearly proportional to the absorbed dose. MD-55 can be used for high precision dosimetry if care is taken to assure reproducible film orientation in the spectrophotometer as well as temperature control during both irradiation and reading. In order to achieve the maximum sensitivity of this dosimeter the readings of the optical density should be taken at λ max . It was reported for another type of Gafchromic film (DM-1260), that both λ max and ε max decrease with an increase in the temperature of the spectrophotometer. The purpose of this study was to characterize the reading temperature dependence of the new type of Gafchromic film available on the market and to find optimal conditions for using it for high precision dosimetry. Materials and Methods: Irradiations were carried out using 60 Co gamma rays from an Eldorado irradiator. The dosimeters were sandwiched in a lucite phantom with 4.4 mm build-up and irradiated in the center of a 10 cm x 10 cm field at 1 meter from the source. The temperature during irradiations was 22 deg. C. The dose rate was about 0.68 Gy/min. Measurements of optical density were made using a Cary 210 spectrophotometer. A bandpass of 3.5 nm was used. The temperature of the baseplate of the sample holder was regulated to +/-0.05 deg. C and measured by a probe lying on the baseplate. In all cases, values of OD were only recorded after they had come to a constant value, which was reached within 5 minutes of inserting the dosimeter into the sample chamber of the spectrophotometer. Results: The temperature dependence of the OD at 676 nm was measured in 2 studies using 6 dosimeters that had received 0, 1.0, 3.5, 6.2, 14.5 Gy. Readings were taken at 7 temperatures between 18.8 and 28.1 deg. C. By returning to the initial temperature several hours later, it was found

  11. Fast fluence measurement for JOYO irradiation field using niobium dosimeter

    International Nuclear Information System (INIS)

    Ito, Chikara

    2004-03-01

    Neutron fluence and spectrum are key parameters in various irradiation tests and material surveillance tests so they need to be evaluated accurately. The reactor dosimetry test has been conducted by the multiple foil activation method, and a niobium dosimeter has been developed for measurement of fast neutron fluence in the experimental fast reactor JOYO. The inelastic scattering reaction of 93 Nb has a low threshold energy, about 30 keV, and the energy distribution of reaction cross section is similar to the displacement cross section for iron. Therefore, a niobium dosimeter is suitable for evaluation of the fast neutron fluence and the displacement per atom for iron. Moreover, a niobium dosimeter is suited to measure neutron fluence in long-term irradiation test because 93 Nb, which is produced by the reaction, has a long half-life (16.4 years). This study established a high precision measurement technique using the niobium reaction rate. The effect of self-absorption was decreased by the solution and evaporation to dryness of niobium dosimeter. The dosimeter weight was precisely measured using the inductively coupled plasma mass spectrometer. This technique was applied to JOYO dosimetry. The fast neutron fluences (E > 0.1 MeV) found by measuring the reaction rate in the niobium dosimeter were compared with the values evaluated using the multiple foil activation method. The ratio of measured fast neutron fluences by means of niobium dosimeter and multiple foil activation method range from 0.97 to 1.03 and agree within the experimental uncertainty. The measurement errors of fast neutron fluence by niobium dosimeter range from 4.5% (fuel region) to 10.1% (in-vessel storage rack). As a result of this study, the high precision measurement of fast neutron fluence by niobium dosimeters was confirmed. The accuracy of fast reactor dosimetry will be improved by application of niobium dosimeters to the irradiation tests in the JOYO MK-III core. (author)

  12. Energy-dependency correction factors for the digital dosimeters using in NMD environment dose assessment

    International Nuclear Information System (INIS)

    Lai, Y.C.; Huang, Y. F.; Chen, Y.W.

    2008-01-01

    Full text: Short-term environment dose-rate assessments using real-time digital dosimeters within a Nuclear Medicine Department (NMD) are gaining more world-wide uses recently. In the past, conventional ion chamber-type survey-meters are used dominantly in environmental dose rates evaluation. Although it has suffered less gamma energy-dependency, but it is less sensitive in comparison with other digital dosimeters and more bulky in design that can hardly make it into a pocket size application. With modern electronic advancement and its shrinking in physical size, real-time personal dosimeter nowadays has gaining more popular to use a miniature G-M counter or a solid-state diode sensor, or even a NaI(Tl) scintillation device for ambient radiation monitoring. Radiation sensor operated in pulse-mode can never been used in doses or dose rates determination since each digital pulse has carried no energy information of the impinging gamma ray being interactive with, especially in the G-M counter or the diode sensor case. The raw count rates measured from a pulse-mode device are heavily dependent on the packaging of the sensor to make it less energy-sensitive. The doses or dose rates are then calculated by using a built-in conversion factor, based on a Cs-137 beam source calibration data conducted by various manufacturing vendors, to convert its raw counts into a so-called dose or dose-rate unit. In this study, we have focused our interests in the low energy response of the digital dosimeters from several brands currently for our in-house uses. Mainly, Tc-99m and I-131 in point sources and water phantoms detection configurations have been deployed to simulate our NMD outpatients for environment radiation monitoring purpose. The energy-dependent correction factors of the digital dosimeters will be evaluated by using calibrated Tc-99m or I-131 standard sources directly that has much lower gamma energy than the Cs-137 beam source of 661 keV. In the near future, we would

  13. Luminescence studies of rare earth doped dosimeters

    International Nuclear Information System (INIS)

    Karali, T.

    1999-10-01

    The main objective of this thesis has been to address the applications and fundamentals of thermoluminescence (TL) and to contribute to existing knowledge about TL mechanisms in materials which are applied as radiation dosimeters. This issue has been explored for a long time but the mechanisms lack completeness and certainty. TL, Radioluminescence (RL) and Radio-thermoluminescence (RLTL) measurements have been conducted on a high sensitivity TL spectrometer both at low (30-290 K) and high (25-400 deg. C) temperatures, and different heat treatments (furnace and laser) were conducted in order to study the possible impurity clustering which changes the TL spectra and efficiency of the dosimeters. Studies have been based on three different host structure, namely sulphate, borates and zircon. The spectra of calcium sulphate samples doped with Tm 3+ and Dy 3+ at different concentration were examined using TL, RL and RLTL. Similar procedures were applied to the borate samples. Modifications of the material by thermal treatments convert the state of dispersion of the rare earth ions between isolated, pair or defect clusters, which alter the dosimeter efficiency. In some cases, modified geometries are detectable by movement of the line emissions such as for quenched samples which are attributable to new microcrystal line phases. The study of co-doped samples showed unequivocal evidence of a glow peak displacement of the two dopants within a single sample. This result supports the new view that RE 3+ ions could form part of a complex defect acting as both charge trap and recombination centres. Pulsed laser heating with a UV laser changed the glow curve shape and lead to strong signals. The detailed mechanisms for this process are discussed. The RL and TL spectra of synthetic zircon crystals doped with different RE 3+ ions (Pr, Sm, Eu, Gd, Ho, Dy, Er, and Yb) and phosphorus are reported. Even though there is some intrinsic emission from the host lattice the major signals are

  14. Test plan for prototype dielectric permittivity sensor

    International Nuclear Information System (INIS)

    Pfeifer, M.C.

    1993-07-01

    The digface characterization project funded by the Buried Waste Integrated Demonstration (BWID) is designed to test a new method of monitoring hazardous conditions during the remediation at waste sites. Often on a large scale, the exact cause of each anomaly is difficult to determine and ambiguities remain in the characterization of a site. The digface characterization concept is designed to alleviate some of this uncertainty by creating systems that monitor small volumes of soil and detect anomalous areas during remediation before they are encountered. The goal of the digface characterization demonstration is to detect changes in the physical properties from one volume to another and relate these changes in physical properties to changes in the level of contamination. Dielectric permittivity mapping is a method that might prove useful in digface characterization. In this project, the role of a dielectric permittivity monitoring device is under investigation. This project addresses two issues: what are the optimal means of mapping dielectric permittivity contrasts and what types of targets can be detected using dielectric permittivity mapping

  15. An approved personal dosimetry service based on an electronic dosimeter

    International Nuclear Information System (INIS)

    Marshall, T.O.; Bartlett, D.T.; Burgess, P.H.; Campbell, J.I.; Hill, C.E.; Pook, E.A.; Sandford, D.J.

    1991-01-01

    At the Second Conference on Radiation Protection and Dosimetry a paper was presented which, in part, announced the development of an electronic dosimeter to be undertaken in the UK by the National Radiological Protection Board (NRPB) and Siemens Plessey Controls Ltd. This dosimeter was to be of a standard suitable for use as the basis of an approved personal dosimetry service for photon and beta radiations. The project has progressed extremely well and dosimeters and readers are about to become commercially available. The system and the specification of the dosimeter are presented. The NRPB is in the process of applying for approval by the Health and Safety Executive (HSE) to operate as personal monitoring service based on this dosimeter. As part of the approval procedure the dosimeter is being type tested and is also undergoing an HSE performance test and wearer trials. The tests and the wearer trials are described and a summary of the results to date presented. The way in which the service will be organized and operated is described and a comparison is made between the running of the service and others based on passive dosimeters at NRPB

  16. Water-resistant alanine-EPR dosimeter alanpol

    International Nuclear Information System (INIS)

    Peimel-Stuglik, Zofia; Bryl-Sandelewska, Teresa; Mirkowski, Krzysztof; Sartowska, Bozena

    2009-01-01

    Alanpol-water-resistant alanine-electron paramagnetic resonance (EPR) dosimeter consisted of cheap DL-α-alanine (9.8-27%) suspended in polyethylene matrix was presented. The rods (O=2.8 mm) were extruded from a hot mixture of alanine and low-density polyethylene. No grinding or crushing was used for alanine preparation. An orientation of cylindrical crystals, up to 300 μm long in parallel to the rod axis was responsible for some differences in a shape of EPR signal. These differences had no negative consequences for dosimetric applications. Signal-to-dose dependence was linear up to 10 kGy. Standard deviation of dosimetric answer was up to ±1.8% and up to 2.4% for dosimeters with 9.8% and 27% of DL-α-alanine, respectively. Irradiation temperature coefficient for both dosimeters was equal 0.2%/ deg. C. Hydrophobic properties of polyethylene and small number of alanine crystals located on the surface of the rod led to high resistance of dosimeters to water and humidity. The 24 h soaking of irradiated dosimeters in liquid water-reduced EPR signals by 3-4% and by 2-3% for dosimeters with 27% and 9.8% of DL-α-alanine, respectively. Three month storage time of irradiated dosimeters in room conditions decreases EPR signal for ∼3%.

  17. Investigating On Colour Stability Conditions Of Postirradiation Radiochromic Film Dosimeter

    International Nuclear Information System (INIS)

    Nguyen Nguyet Dieu; Doan Binh; Pham Thu Hong; Cao Van Chung; Nguyen Thanh Duoc

    2011-01-01

    B3 dosimeter is a thin film with average thickness of 0.0194 mm, which is supplied by the Gex company, the United States. This dosimeter was influenced by many factors: light, temperature, humidity during and after irradiation process. In fact, B3 film dosimeters will be stable under certain conditions such as tightly sealed packs, controlled irradiation and stored temperature after irradiated. Therefore, investigation of the stability effect of postirradiated B3 film dosimeters on the heating temperature, heating time and storing time is carried out before the absorbed dose is read and followed standard reading procedures. When exposed to ionizing radiation, the dosimeters change from colorless to colour. The absorbed doses are read on a Genesys 20 spectrophotometer at a wavelength of 544 nm. Absorbed dose range is investigated from 0.55 to 80 kGy. Experimental results were indicated that colour stability of the postirradiated dosimeters at a temperature of 65 ± 3 o C for 30 minutes and keeping them in desiccator for 5 minutes before read out. Under these conditions, colour stability of B3 film dosimeter has maintained for 3 months. (author)

  18. New Generation of self-calibrated SS/EPR dosimeters: Alanine/EPR dosimeters

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Gancheva, V.

    1999-01-01

    A new type of solid state/EPR dosimeters is described. Principally, it contains radiation sensitive diamagnetic material, some quantity of EPR active, but radiation insensitive, substance (for example Mn 2+ /MgO) and a binding material. In the present case alanine is used as a radiation sensitive substance. With this dosimeter, the EPR spectra of alanine and Mn 2+ are simultaneously recorded and the calibration graph represents the ratio of alanine versus Mn 2+ EPR signal intensity as a function of absorbed dose. In this way the reproducibility of the results is expected to be improved significantly including their intercomparison among different laboratories. Homogeneity of the prepared dosimeters and their behaviour (fading of EPR signals with time, influence of different meteorological conditions) show satisfactory reproducibility and stability with time. Because two different EPR active samples are recorded simultaneously, the influence of some instrument setting parameters (microwave power, modulation amplitude and modulation frequency) on the ratio I alanine /I Mn is also investigated. (author)

  19. p-MOSFET total dose dosimeter

    Science.gov (United States)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor)

    1994-01-01

    A p-MOSFET total dose dosimeter where the gate voltage is proportional to the incident radiation dose. It is configured in an n-WELL of a p-BODY substrate. It is operated in the saturation region which is ensured by connecting the gate to the drain. The n-well is connected to zero bias. Current flow from source to drain, rather than from peripheral leakage, is ensured by configuring the device as an edgeless MOSFET where the source completely surrounds the drain. The drain junction is the only junction not connected to zero bias. The MOSFET is connected as part of the feedback loop of an operational amplifier. The operational amplifier holds the drain current fixed at a level which minimizes temperature dependence and also fixes the drain voltage. The sensitivity to radiation is made maximum by operating the MOSFET in the OFF state during radiation soak.

  20. Guidelines for the calibration of personnel dosimeters

    International Nuclear Information System (INIS)

    Roberson, P.L.; Holbrook, K.L.

    1984-01-01

    This guide describes minimum acceptable performance levels for personnel dosimetry systems used at Department of Energy (DOE) facilities. The goal is to improve both the quality of radiological calibrations and the methods of comparing reported occupational doses between DOE facilities. Reference calibration techniques are defined. A standard for evaluation of personnel dosimetry systems and recommended design parameters for personnel dosimeters are also included. Approximate intervals for the radiation energies for which these guidelines are appropriate are 15 keV to 2 MeV for photons; above 0.3 MeV for beta particles; and 1 keV to 2 MeV for neutrons. An analysis of ANSI N13.11 was completed using performance evaluations of selected personnel dosimetry systems in use at DOE facilities. The results of this analysis are incorporated in the guidelines

  1. Study of an individual neutron dosimeter

    International Nuclear Information System (INIS)

    Debeauvais, M.; Tripier, J.

    1976-01-01

    A dosimeter using Kodak LR 115 cellulose nitrate as detecting material was designed. It serves to determine 3 neutron energy ranges. The 6 Li(n,α)t reaction is used for the thermal region, the sensitivity being 0.2mrads to 1 rad for neutron energies between thermal and 0.05eV. The same reaction defines the 0.05eV to 1000eV energy range but the detection system is placed inside a cadmium screen; the sensitivity is 0.2 to 500rads. Finally above 1MeV the neutron reactions used are those on the detector components themselves, i.e. elastic collisions and (nα) reactions on carbon, nitrogen and oxygen nuclei. Detection is possible between 0.7 and 700 rads [fr

  2. SU-E-T-749: Thorough Calibration of MOSFET Dosimeters

    International Nuclear Information System (INIS)

    Plenkovich, D; Thomas, J

    2015-01-01

    Purpose: To improve the accuracy of the MOSFET calibration procedure by performing the measurement several times and calculating the average value of the calibration factor for various photon and electron energies. Methods: The output of three photon and six electron beams of Varian Trilogy linear accelerator SN 5878 was calibrated. Five reinforced standard sensitivity MOSFET dosimeters were placed in the calibration jig and connected to the Reader Module. As the backscatter material was used 7 cm of Virtual Water. The MOSFET dosimeters were covered with 1.5 cm thick bolus for the regular and SRS 6 MV beams, 3 cm bolus for 15 MV beam, 1.5 cm bolus for 6 MeV electron beam, and 2 cm bolus for the electron energies of 9, 12, 15, 18, and 22 MeV. The dosimeters were exposed to 100 MU, and the calibration factor was determined using the mobileMOSFET software. To improve the accuracy of calibration, this procedure was repeated ten times and the calibration factors were averaged. Results: As the number of calibrations was increasing the variability of calibration factors of different dosimeters was decreasing. After ten calibrations, the calibration factors for all five dosimeters were within 1% of one another for all energies, except 6 MV SRS photons and 6 MeV electrons, for which the variability was 2%. Conclusions: The described process results in calibration factors which are almost independent of modality or energy. Once calibrated, the dosimeters may be used for in-vivo dosimetry or for daily verification of the beam output. Measurement of the radiation dose under bolus and scatter to the eye are examples of frequent use of calibrated MOSFET dosimeters. The calibration factor determined for full build-up is used under these circumstances. To the best of our knowledge, such thorough procedure for calibrating MOSFET dosimeters has not been reported previously. Best Medical Canada provided MOSFET dosimeters for this project

  3. Organic liquids as ''activ media'' in a holographic ionizing radiation dosimeter

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.

    1979-01-01

    Some types of organic liquids for using as activ media in a holographic ionizing radiation dosimeter are presented. One outlined the advantages of the holographic dosimeter comparatively with those of common used dosimeters. One presented the advantages of utilization of the organic liquids comparatively with another chemical systems used in a holographic ionizing radiation dosimeter. (author)

  4. Characterization of Prototype LSST CCDs

    Energy Technology Data Exchange (ETDEWEB)

    OCONNOR,P.; FRANK, J.; GEARY, J.C.; GILMORE, D.K.; KOTOV, I.; RADEKA, V.; TAKACS, P.; TYSON, J.A.

    2008-06-23

    The ambitious science goals of the Large Synoptic Survey Telescope (LSST) will be achieved in part by a wide-field imager that will achieve a new level of performance in terms of area, speed, and sensitivity. The instrument performance is dominated by the focal plane sensors, which are now in development. These new-generation sensors will make use of advanced semiconductor technology and will be complemented by a highly integrated electronics package located inside the cryostat. A test laboratory has been set up at Brookhaven National Laboratory (BNL) to characterize prototype sensors and to develop test and assembly techniques for eventual integration of production sensors and electronics into modules that will form the final focal plane. As described in [1], the key requirements for LSST sensors are wideband quantum efficiency (QE) extending beyond lpm in the red, control of point spread function (PSF), and fast readout using multiple amplifiers per chip operated in parallel. In addition, LSST's fast optical system (f71.25) places severe constraints on focal plane flatness. At the chip level this involves packaging techniques to minimize warpage of the silicon die, and at the mosaic level careful assembly and metrology to achieve a high coplanarity of the sensor tiles. In view of the long lead time to develop the needed sensor technology, LSST undertook a study program with several vendors to fabricate and test devices which address the most critical performance features [2]. The remainder of this paper presents key results of this study program. Section 2 summarizes the sensor requirements and the results of design optimization studies, and Section 3 presents the sensor development plan. In Section 4 we describe the test bench at BNL. Section 5 reports measurement results obtained to date oh devices fabricated by several vendors. Section 6 presents a summary of the paper and an outlook for the future work. We present characterization methods and results on

  5. Design of calibration method in neutron and individual dosimeter

    International Nuclear Information System (INIS)

    Belkhodia, M.

    1984-12-01

    Usually albedo dosemeters are calibrated with beam of monoenergetic neutrons. Since neutron energy around neutron sources varies greatly, we applied the calibration method to a mixed field whose energy spectrum lies between 0.025 ev and 10 Mev. The method is based on a mathematical model that deals with the dosimeter response as a function at the neutron energy. The measurements carried out with solid state nuclear track detectors show the dosimeter practical aspect. The albedo dosimeter calibration gave results on good agreement with the international institution recommendations

  6. Development of a new type thyroid glands dosimeter

    International Nuclear Information System (INIS)

    He Lihua; Song Yiyang; Chen Qin; Chen Yannan

    2000-01-01

    A new dosimeter of 125 I in thyroid gland is described. The dosimeter consists of NaI(Tl) detector and intelligent data recorder. Single-chip-microcomputer is used for data handling. The activity of 125 I in thyroid glands of human being is measured directly, rapidly, and accurately. Furthermore, it can calculate and display the intake, committed dose equivalent and committed effective dose equivalent. The measuring range of 125 I in thyroid glands is 10-2 x 10 6 Bq. The dosimeter has been operating continuously for a long time with high stability

  7. Polymer gel dosimeter with AQUAJOINT® as hydrogel matrix

    Science.gov (United States)

    Maeyama, Takuya; Ishida, Yasuhiro; Kudo, Yoshihiro; Fukasaku, Kazuaki; Ishikawa, Kenichi L.; Fukunishi, Nobuhisa

    2018-05-01

    We report a polymer gel dosimeter based on a new gel matrix (AQUAJOINT®) that is a thermo-irreversible hydrogel formed by mixing two types of water-based liquids at room temperature. Normoxic N-vinylpyrrolidone-based polymer gels were prepared with AQUAJOINT® instead of gelatin. This AQUAJOINT®-based gel dosimeter exhibits a 2.5-fold increase in sensitivity over a gelatin-based gel dosimeter and a linear dose-response in the dose range of 0-8 Gy. This gel has heat resistance in a jar and controlled gel properties such as viscoelastic and mechanical characters, which may be useful for deformable polymer gel dosimetry.

  8. Environmental monitoring by CaSO4:Dy TL dosimeters

    International Nuclear Information System (INIS)

    Deme, S.; Szabo, P.P.

    1975-12-01

    The thermoluminescent dosimeters of high sensitivity are useful for monitoring the area near nuclear installations. CaSO 4 :Dy TL dosimeters have high sensitivity and low fading so that by means of them the dose from the background can be measured with an accuracy of 10-20%. An increase of 2 mR in the background can be observed and doses as high as 1000R can be registered with an accuracy of 5%. The measuring method and results are reported here. For two years these CaSO 4 :Dy dosimeters have been successfully used at the site of the Central Research Institute for Physics. (K.A.)

  9. Alanine EPR dosimeter response in proton therapy beams

    International Nuclear Information System (INIS)

    Gall, K.; Serago, C.; Desrosiers, M.; Bensen, D.

    1997-01-01

    We report a series of measurements directed to assess the suitability of alanine as a mailable dosimeter for dosimetry quality assurance of proton radiation therapy beams. These measurements include dose-response of alanine at 140 MeV, and comparison of response vs energy with a parallel plate ionization chamber. All irradiations were made at the Harvard Cyclotron Laboratory, and the dosimeters were read at NIST. The results encourage us that alanine could be expected to serve as a mailable dosimeter with systematic error due to differential energy response no greater than 3% when doses of 25 Gy are used. (Author)

  10. Investigation of self-indicating radiation personal dosimeter

    International Nuclear Information System (INIS)

    Xia Wen; Ye Honsheng; Lin Min; Xu Lijun; Chen Kesheng; Chen Yizhen

    2014-01-01

    A self-indicating radiation personal dosimeter was investigated using radiation sensitive material diacetylene monomer PCDA, which was a component of the polymerization system. The substrate material, solvent, sensitive material, solution temperature, thickness of film and the preparation method were studied. The dosimeter colour changes from white to blue when exposed 0.1-2.5 Gy, and the linearly dependent coefficient of the exposure response is 0.9998, the stability of absorbency in two weeks after exposure is testified well. It can be used as self-indicating radiation alert personal dosimeter. (authors)

  11. Device for the automatic evaluation of pencil dosimeters

    International Nuclear Information System (INIS)

    Schallopp, B.

    1976-01-01

    In connenction with the automation of radiation protection in nuclear power plants, an automatic reading device has been developed for the direct input of the readings of pencil dosimeters into a computer. Voltage measurements would be simple but are excluded, because the internal electrode of the dosimeter may not be touched, for operational reasons. This paper describes an optical/electronic conversion device in which the reading of the dosimeter is projected onto a Vidicon, scanned, and converted into a digital signal for output to the computer. (orig.) [de

  12. Personal noise dosimeters: Accuracy and reliability in varied settings

    Directory of Open Access Journals (Sweden)

    Sheri Lynn Cook-Cunningham

    2014-01-01

    Full Text Available This study investigated the accuracy, reliability, and characteristics of three brands of personal noise dosimeters (N = 7 units in both pink noise (PN environments and natural environments (NEs through the acquisition of decibel readings, Leq readings and noise doses. Acquisition periods included repeated PN conditions, choir room rehearsals and participant (N = 3 Leq and noise dosages procured during a day in the life of a music student. Among primary results: (a All dosimeters exhibited very strong positive correlations for PN measurements across all instruments; (b all dosimeters were within the recommended American National Standard Institute (ANSI SI.25-1991 standard of ±2 dB (A of a reference measurement; and (c all dosimeters were within the recommended ANSI SI.25-1991 standard of ±2 dB (A when compared with each other. Results were discussed in terms of using personal noise dosimeters within hearing conservation and research contexts and recommendations for future research. Personal noise dosimeters were studied within the contexts of PN environments and NEs (choral classroom and the day in the life of collegiate music students. This quantitative study was a non-experimental correlation design. Three brands of personal noise dosimeters (Cirrus doseBadge, Quest Edge Eg5 and Etymotic ER200D were tested in two environments, a PN setting and a natural setting. There were two conditions within each environment. In the PN environment condition one, each dosimeter was tested individually in comparison with two reference measuring devices (Ivie and Easera while PN was generated by a Whites Instrument PN Tube. In condition two, the PN procedures were replicated for longer periods while all dosimeters measured the sound levels simultaneously. In the NE condition one, all dosimeters were placed side by side on a music stand and recorded sound levels of choir rehearsals over a 7-h rehearsal period. In NE, condition two noise levels were measured

  13. Imagining the prototype

    OpenAIRE

    Brouwer, C. E.; Bhomer, ten, M.; Melkas, H.; Buur, J.

    2013-01-01

    This article reports on the analysis of a design session, employing conversation analysis. In the design session three experts and a designer discuss a prototype of a shirt, which has been developed with the input from these experts. The analysis focuses on the type of involvement of the participants with the prototype and how they explicate the points they make in the discussion with or without making use of the prototype. Three techniques for explicating design issues that exploit the proto...

  14. Rapid Prototyping Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  15. Fabrication and Prototyping Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Fabrication and Prototyping Lab for composite structures provides a wide variety of fabrication capabilities critical to enabling hands-on research and...

  16. A pocket warning γ-dosimeter with numerical display

    International Nuclear Information System (INIS)

    Jones, A.R.

    1980-09-01

    A pocket warning dosimeter is described. It provides alarms (continuous tone and a flashing red light) when a presettable dose has been accumulated in the range .064 - 16.4 rads (0.64 - 164 μGy). This warning level can be selected in nine steps of 2 with a switch inside the dosimeter. The dose rate is indicated by a series of sound pulses whose repetition rate is proportional to the dose rate. At 1 rad/h (10 mGy/h) about 17 pluses/minute are emitted. The accumulated dose up to 20 rads (0.2 Gy) is displayed in steps of 1 mrad (10 μGy) with a liquid crystal display. A red LED lights before battery failure occurs. The effects of changes in temperature, battery voltage, dose rate and photon energy upon dosimeter sensitivity are presented. Finally, the applications of the dosimeter are discussed. (auth)

  17. Investigating potential physicochemical errors in polymer gel dosimeters

    International Nuclear Information System (INIS)

    Sedaghat, Mahbod; Lepage, Martin; Bujold, Rachel

    2011-01-01

    Measurement errors in polymer gel dosimetry can originate either during irradiation or scanning. One concern related to the exothermic nature of polymerization reaction was that the heat released in polymer gel dosimeters during irradiation modifies their dose response. In this paper, the effect of heat released from the exothermal polymerization reaction on the dose response of a number of dosimeters was studied. In addition, we investigated whether heat-generated geometric distortion existed in newly proposed gel dosimeters that contain highly thermoresponsive polymers. Our results suggest that despite a significant internal temperature increase in some gel compositions, their dose responses are not affected when oxygen is well expelled mechanically from the gel mixture. We also report on significant pre-irradiation instability in some recently developed polymer gel dosimeters but that geometric distortions were not observed. Data obtained by a set of small calibration vials are compared to those obtained from larger phantoms, and potential physicochemical causes of deviations between them are identified.

  18. UVB DNA dosimeters analyzed by polymerase chain reactors

    International Nuclear Information System (INIS)

    Yoshida, Hiroko; Regan, J.D.; Florida Inst. of Tech., Melbourne, FL

    1997-01-01

    Purified bacteriophage λ DNA was dried on a UV-transparent polymer film and served as a UVB dosimeter for personal and ecological applications. Bacteriophage λ DNA was chosen because it is commercially available and inexpensive, and its entire sequence is known. Each dosimeter contained two sets of DNA sandwiched between UV-transparent polymer films, one exposed to solar radiation (experimental) and another protected from UV radiation by black paper (control). The DNA dosimeter was then analyzed by a polymerase chain reaction (PCR) that amplifies a 500 base pair specific region of λ DNA. Photoinduced damage in DNA blocks polymerase from synthesizing a new strand; therefore, the amount of amplified product in UV-exposed DNA was reduced from that found in control DNA. The dried λ DNA dosimeter is compact, robust, safe and transportable, stable over long storage times and provides the total UVB dose integrated over the exposure time. (author)

  19. Investigating potential physicochemical errors in polymer gel dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Sedaghat, Mahbod; Lepage, Martin [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); Bujold, Rachel, E-mail: martin.lepage@usherbrooke.ca [Service de radio-oncologie, Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC (Canada)

    2011-09-21

    Measurement errors in polymer gel dosimetry can originate either during irradiation or scanning. One concern related to the exothermic nature of polymerization reaction was that the heat released in polymer gel dosimeters during irradiation modifies their dose response. In this paper, the effect of heat released from the exothermal polymerization reaction on the dose response of a number of dosimeters was studied. In addition, we investigated whether heat-generated geometric distortion existed in newly proposed gel dosimeters that contain highly thermoresponsive polymers. Our results suggest that despite a significant internal temperature increase in some gel compositions, their dose responses are not affected when oxygen is well expelled mechanically from the gel mixture. We also report on significant pre-irradiation instability in some recently developed polymer gel dosimeters but that geometric distortions were not observed. Data obtained by a set of small calibration vials are compared to those obtained from larger phantoms, and potential physicochemical causes of deviations between them are identified.

  20. Limitations of commonly used thick-element personal dosimeters

    International Nuclear Information System (INIS)

    Gupta, V.P.

    1983-01-01

    In the ANSI Standard N13.11, accepted in June 1982, radiation dose depths of 1.0 cm and 0.007 cm in tissue for protection dosimetry have been adopted for deep and shallow dose equivalent estimations respectively. This standard is presently used for a mandatory personnel dosimetry performance testing program in the United States. Estimation of shallow-dose equivalent using a two-element dosimeter is described under the guidelines of this standard and the dosimetry practices followed by most dosimeter processors. A mathematical formulation, correlating a dosimeter response and shallow-dose equivalent factors at different energies, is presented. Also, the performance of a two-element thermoluminescent dosimeter is examined and the shallow-dose equivalent response results, both for the beta particles and photons, are discussed

  1. Temperature, humidity and time. Combined effects on radiochromic film dosimeters

    DEFF Research Database (Denmark)

    Abdel-Fattah, A.A.; Miller, A.

    1996-01-01

    The effects of both relative humidity and temperature during irradiation on the dose response of FWT-60-00 and Riso B3 radiochromic film dosimeters have been investigated in the relative humidity (RH) range 11-94% and temperature range 20-60 degrees C for irradiation by Co-60 photons and 10-Me......V electrons. The results show that humidity and temperature cannot be treated as independent variables, rather there appears to be interdependence between absorbed dose, temperature, and humidity. Dose rate does not seem to play a significant role. The dependence of temperature during irradiation is +0.......25 +/- 0.1% per degrees C for the FWT-60-00 dosimeters and +0.5 +/- 0.1% per degrees C For Riso B3 dosimeters at temperatures between 20 and 50 degrees C and at relative humidities between 20 and 53%. At extreme conditions both with respect to temperature and to humidity, the dosimeters show much stronger...

  2. Comparison of the effectiveness of polymer gel dosimeters (Magic ...

    African Journals Online (AJOL)

    demonstrate that the gel dosimeters are best suited for nuclear medicine. Keywords: Magic ... International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African. Index Medicus .... Reaction rate. 2.15E-6.

  3. Radiation dosimeter utilizing the thermoluminescence of lithium fluoride.

    Science.gov (United States)

    CAMERON, J R; DANIELS, F; JOHNSON, N; KENNEY, G

    1961-08-04

    A dosimeter, with little wavelength dependence and large useful energy range for electromagnetic radiation, which is simple to use and read, has been developed. It appears to have applications in personnel monitoring as well as radiation research.

  4. Antioxidant effect of green tea on polymer gel dosimeter

    International Nuclear Information System (INIS)

    Samuel, E J J; Sathiyaraj, P; Deena, T; Kumar, D S

    2015-01-01

    Extract from Green Tea (GTE) acts as an antioxidant in acrylamide based polymer gel dosimeter. In this work, PAGAT gel was used for investigation of antioxidant effect of GTE.PAGAT was called PAGTEG (Polyacrylamide green tea extract gel dosimeter) after adding GTE. Free radicals in water cause pre polymerization of polymer gel before irradiation. Polyphenols from GTE are highly effective to absorb the free radicals in water. THPC is used as an antioxidant in polymer gel dosimeter but here we were replaced it by GTE and investigated its effect by spectrophotometer. GTE added PAGAT samples response was lower compared to THPC added sample. To increase the sensitivity of the PAGTEG, sugar was added. This study confirmed that THPC was a good antioxidant for polymer gel dosimeter. However, GTE also can be used as an antioxidant in polymer gel if use less quantity (GTE) and add sugar as sensitivity enhancer

  5. Storage Telemetry of Radionuclide Tracers by Implantable Thermoluminescent Dosimeters

    DEFF Research Database (Denmark)

    Bojsen, J.; Møller, U.; Christensen, Poul

    1977-01-01

    A storage telemetrical method using thermoluminescent (TL) dosimeters for long-term measurements of incorporated radioactive substances in unrestrained rats has been developed. The system has been used in combination with radiotelemetrical registration of the circadian temperature rhythm. By sequ...

  6. Triton and alpha-particle contribution from LiF converter for neutron dosimeter

    CERN Document Server

    Camacho, M E; Balcazar, M

    1999-01-01

    A personnel neutron dosimeter prototype based on chemical and electrochemical etched CR-39 detector, combined with LiF converter, has been calibrated using an ICRP-like phantom, under a heavy-water moderated Californium source neutron spectra; A conversion factor of 1.052+-126 spots cm sup - sup 2 mSv sup - sup 1 was obtained. The sealing properties of the detector holder showed a ten-fold reduction in radon background when it was tested in a high radon atmosphere. A convenient mechanical shock resistance was achieved in LiF converters by sintering to 11 tons pressure LiF powder at 650 deg. C, during one hour.

  7. X-rays individual dose assessment using TLD dosimeters

    International Nuclear Information System (INIS)

    Salas, Carlos

    2008-01-01

    This paper describes the methodology used in Embalse NPP for measuring individual X-ray dose in dentists and radiologists, who work in areas near the plant. Personnel is provided with TLD personal dosimeters for thoracic use, as well as TLD ring dosimeters. This individual X-ray dosimetry is fundamental in order to know the effective energy coming from the radiation field, since the dosimetry factors depend on it. On the other hand, the response of the TLD crystals also depends of the effective energy; this accentuates the problem when assessing the individual dose. The X-ray dosimeter must simultaneously determine the value of the effective energy and the corresponding dose value. The basic principle for determining effective energy is by using at least two different TLD materials covered by filters of different thickness. The TLD materials used have totally energy responses. Therefore, different readouts from each of the crystals are obtained. The ratio between both readouts provides a factor that depends of the effective energy but that is 'independent' from the exposure values irradiated to the dosimeter. The Personal TLD dosimeter currently in use is Bicron-Harshaw. It comprises a carrier model 8807. This carrier contains a card model 2211 which groups two TLD 200 crystals and two TLD 100 crystals. It has internal filters at each side of the TLD 200 crystals. The periodical calibration of these dosimeters consists in the irradiation of some dosimeters with different X-ray energy beams in the National Atomic Energy Commission (CNEA). This dosimeter was used, by the National Regulatory Authority (ARN) in several comparisons, always getting satisfactory results. (author)

  8. Stable Chemical Dosimeters for Partial Reconstruction of Nuclear Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dvornik, I.; Zec, U.; Baric, M.; Razem, D. [Ruder Boskovic Nuclear Institute, Zagreb, Yugoslavia (Croatia)

    1969-10-15

    The application of chemical dosimeters, tissue equivalent with respect to gamma rays and neutrons, is proposed for dosimetric topography of the space around nuclear devices in case of accidents. The dosimeters in the form of sealed glass ampoules have sufficient sensitivity and long-term stability and are evaluated or checked directly by conventional spectrophotometry. The sensitivity, expressed as yield per rad, is approximately equal for gamma rays and neutrons. The resolution in both cases is about one rad, and the range is up to several thousand rads. The precision of dosimetry is {+-} 1 rad or {+-} 2%, whichever is higher. In free space and unshielded the dosimeter measures the total rad-absorbed dose delivered by gamma rays and neutrons, i.e. the first collision gamma plus neutron dose. If used on- or in-phantom, especially if several dosimeters are disposed within and around the same phantom, it can give important data about the amount of the neutron component of the dose and about the effective mean energy of incident neutrons. The neutron component of the dose can be directly measured if the gamma dosimeter is used together with the chemical dosimeter. The experiments giving the change of optical density per rad and the radiation chemical yield with respect to the absorbed dose delivered by 14-MeV neutrons are described in detail. The possibility is also mentioned of applying the dosimeter as a very sensitive monitor for thermal neutrons, which is due to the chlorine content of 4.73% and activation to {sup 38}Cl. The opinion is expressed that this dosimeter deserves some attention as a part of future planning and development work on area and personnel accidental dosimetry systems. (author)

  9. Angular dependence of the nanoDot OSL dosimeter

    OpenAIRE

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan; Followill, David S.; Ibbott, Geoffrey S.

    2011-01-01

    Purpose: Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight∕OSL system from Landauer, Inc. The purpose of...

  10. The NRPB's new dosimeter and dose record keeping services

    International Nuclear Information System (INIS)

    Dennis, J.A.; Marshall, T.O.; Shaw, K.B.

    1976-01-01

    A new automated dosimeter and record keeping service which the National Radiological Protection Board (UK) intends to introduce in 1977 is described. The automated system, based on a thermoluminescent dosimeter, will be linked to a fully computerised record keeping system with automatic printing of dose records and Transfer Records operated at its Headquarters at Harwell. The new system will dispense with much manual labour which in the past has introduced inevitable errors and incurred increasing costs. (U.K.)

  11. Electrochemical development of particle tracks in CR-39 polymer dosimeter

    International Nuclear Information System (INIS)

    Hadlock, D.E.; Parkhurst, M.A.; Yang, C.S.; Groeger, J.; Johnson, J.R.; Huang, S.J.

    1985-09-01

    Electrochemical etching of CR-39 polymeric track etch neutron detectors results in proton-recoil tracks can be distinguished from background tracks much better than tracks developed solely by chemical etching. A newly designed and constructed electrochemical etching apparatus allows large numbers of dosimeters to be processed simultaneously with consistent results. Many processing systems have been developed for chemical and electrochemical etching of the track etch dosimeters. Three systems specifically show great promise and are being studied extensively

  12. Development of an in situ fatigue sensor.

    Science.gov (United States)

    2011-01-01

    A prototype in situ fatigue sensor has been designed, constructed and evaluated experimentally for its ability to monitor the accumulation of fatigue damage in a cyclically loaded steel structure, e.g., highway bridge. The sensor consists of multiple...

  13. Calibration and performance testing of electronic personal dosimeters (EPD)

    International Nuclear Information System (INIS)

    Banaga, H.A.

    2008-04-01

    In modern radiation protection practices, active personal dosimeters are becoming absolutely necessary operational tools for satisfying the ALARA principle. The aim of this work was to carry out calibration and performance testing of ten electronic personal dosimeters (EPD) used for the individual monitoring. The EPDs were calibrated in terms of operation radiation protection quantity, personal dose equivalent, Hp (10). Calibrations were carried out at three of x-ray beam qualities described in ISO 4037 namely 60, 100 and 150 kV in addition to Cs-137 gamma ray quality. The calibrations were performed using polymethylmethacrylate (PMMA) phantom with dimensions 20*20*15 cm 3 . Conversion coefficient Hp (10)/K air for the phantom was also calculated. The response and linearity of the dosimeter at the specified energies were also tested. The EPDs tested showed that the calibration coefficient ranged from 0.60 to 1.31 and an equivalent response for the specified energies that ranged from 0.76 to 1.67. The study demonstrated the possibility of using non standard phantom for calibrating dosimeters used for individual monitoring. The dosimeters under study showed a good response in all energies except the response in quality 100 kV. The linearity of the dosimeters was within ±15%, with the exception of the quality 100 kV where this limit was exceeded.(Author)

  14. Characterization of Thymol blue Radiochromic dosimeters for high dose applications

    Directory of Open Access Journals (Sweden)

    Feras M. Aldweri

    2018-03-01

    Full Text Available Thymol blue (TB solutions and Thymol blue Polyvinyl Alcohol (TB-PVA films have been introduced as Radiochromic dosimeter for high dose applications. The dosimeters were irradiated with gamma ray (60Co source from 5 to 30 kGy for film, and from 0.150 kGy to 4 kGy for solution. The optical density of unirradiated and irradiated TB solution as well as TB-PVA film dosimeters were studied in terms of absorbance at 434 nm using UV/VIS spectrophotometer. The effects of scan temperature, light pre-gamma irradiation, dose rate, relative humidity and stability of the absorbance of solutions and films after irradiation were investigated. We found the dose sensitivity of TB solution and TB-PVA film dosimeters increases significantly with increases of the absorbed dose as well as with the increases of TB dye concentrations. The useful dose range of developed TB solutions and TB-PVA films dosimeters is in the range 0.125–1 kGy and of 5–20 kGy, respectively. Keywords: Dose sensitivity, Radio-chromic dosimeter, Thymol blue, Absorbance, Concentrations

  15. Experimental evaluation of a MOSFET dosimeter for proton dose measurements

    International Nuclear Information System (INIS)

    Kohno, Ryosuke; Nishio, Teiji; Miyagishi, Tomoko; Hirano, Eriko; Hotta, Kenji; Kawashima, Mitsuhiko; Ogino, Takashi

    2006-01-01

    The metal oxide semiconductor field-effect transistor (MOSFET) dosimeter has been widely studied for use as a dosimeter for patient dose verification. The major advantage of this detector is its size, which acts as a point dosimeter, and also its ease of use. The commercially available TN502RD MOSFET dosimeter manufactured by Thomson and Nielsen has never been used for proton dosimetry. Therefore we used the MOSFET dosimeter for the first time in proton dose measurements. In this study, the MOSFET dosimeter was irradiated with 190 MeV therapeutic proton beams. We experimentally evaluated dose reproducibility, linearity, fading effect, beam intensity dependence and angular dependence for the proton beam. Furthermore, the Bragg curve and spread-out Bragg peak were also measured and the linear-energy transfer (LET) dependence of the MOSFET response was investigated. Many characteristics of the MOSFET response for proton beams were the same as those for photon beams reported in previous papers. However, the angular MOSFET responses at 45, 90, 135, 225, 270 and 315 degrees for proton beams were over-responses of about 15%, and moreover the MOSFET response depended strongly on the LET of the proton beam. This study showed that the angular dependence and LET dependence of the MOSFET response must be considered very carefully for quantitative proton dose evaluations

  16. Radiation measured for ISS-Expedition 12 with different dosimeters

    International Nuclear Information System (INIS)

    Zhou, D.; Semones, E.; Gaza, R.; Johnson, S.; Zapp, N.; Weyland, M.

    2007-01-01

    Radiation in low Earth orbit (LEO) is mainly from Galactic Cosmic Rays (GCR), solar energetic particles and particles in South Atlantic Anomaly (SAA). These particles' radiation impact to astronauts depends strongly on the particles' linear energy transfer (LET) and is dominated by high LET radiation. It is important to investigate the LET spectrum for the radiation field and the influence of radiation on astronauts. At present, the best active dosimeters used for all LET are the tissue equivalent proportional counter (TEPC) and silicon detectors; the best passive dosimeters are thermoluminescence dosimeters (TLDs) or optically stimulated luminescence dosimeters (OSLDs) for low LET and CR-39 plastic nuclear track detectors (PNTDs) for high LET. TEPC, CR-39 PNTDs, TLDs and OSLDs were used to investigate the radiation for space mission Expedition 12 (ISS-11S) in LEO. LET spectra and radiation quantities (fluence, absorbed dose, dose equivalent and quality factor) were measured for the mission with these different dosimeters. This paper introduces the operation principles for these dosimeters, describes the method to combine the results measured by CR-39 PNTDs and TLDs/OSLDs, presents the experimental LET spectra and the radiation quantities

  17. Designing and testing prototypes

    NARCIS (Netherlands)

    Vereijken, P.; Wijnands, F.; Stol, W.

    1995-01-01

    This second progress report focuses on designing a theoretical prototype by linking parameters to methods and designing the methods in this context until they are ready for initial testing. The report focuses also on testing and improving the prototype in general and the methods in particular until

  18. EUCLID ARCHIVE SYSTEM PROTOTYPE

    NARCIS (Netherlands)

    Belikov, Andrey; Williams, Owen; Droge, Bob; Tsyganov, Andrey; Boxhoorn, Danny; McFarland, John; Verdoes Kleijn, Gijs; Valentijn, E; Altieri, Bruno; Dabin, Christophe; Pasian, F.; Osuna, Pedro; Soille, P.; Marchetti, P.G.

    2014-01-01

    The Euclid Archive System prototype is a functional information system which is used to address the numerous challenges in the development of fully functional data processing system for Euclid. The prototype must support the highly distributed nature of the Euclid Science Ground System, with Science

  19. Specifications in software prototyping

    OpenAIRE

    Luqi; Chang, Carl K.; Zhu, Hong

    1998-01-01

    We explore the use of software speci®cations for software prototyping. This paper describes a process model for software prototyping, and shows how specifications can be used to support such a process via a cellular mobile phone switch example.

  20. EPCiR prototype

    DEFF Research Database (Denmark)

    2003-01-01

    A prototype of a residential pervasive computing platform based on OSGi involving among other a mock-up of an health care bandage.......A prototype of a residential pervasive computing platform based on OSGi involving among other a mock-up of an health care bandage....

  1. Experimental determination of the PTW 60019 microDiamond dosimeter active area and volume

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, Marco, E-mail: marco.marinelli@uniroma2.it; Prestopino, G.; Verona, C.; Verona-Rinati, G. [INFN–Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata,” Via del Politecnico 1, Roma 00133 (Italy)

    2016-09-15

    Purpose: Small field output correction factors have been studied by several research groups for the PTW 60019 microDiamond (MD) dosimeter, by comparing the response of such a device with both reference dosimeters and Monte Carlo simulations. A general good agreement is observed for field sizes down to about 1 cm. However, evident inconsistencies can be noticed when comparing some experimental results and Monte Carlo simulations obtained for smaller irradiation fields. This issue was tentatively attributed by some authors to unintentional large variations of the MD active surface area. The aim of the present study is a nondestructive experimental determination of the MD active surface area and active volume. Methods: Ten MD dosimeters, one MD prototype, and three synthetic diamond samples were investigated in the present work. 2D maps of the MD response were recorded under scanned soft x-ray microbeam irradiation, leading to an experimental determination of the device active surface area. Profiles of the device responses were measured as well. In order to evaluate the MD active volume, the thickness of the diamond sensing layer was independently evaluated by capacitance measurements and alpha particle detection experiments. The MD sensitivity, measured at the PTW calibration laboratory, was also used to calculate the device active volume thickness. Results: An average active surface area diameter of (2.19 ± 0.02) mm was evaluated by 2D maps and response profiles of all the MDs. Average active volume thicknesses of (1.01 ± 0.13) μm and (0.97 ± 0.14) μm were derived by capacitance and sensitivity measurements, respectively. The obtained results are well in agreement with the nominal values reported in the manufacturer dosimeter specifications. A homogeneous response was observed over the whole device active area. Besides the one from the device active volume, no contributions from other components of the housing nor from encapsulation materials were observed in

  2. Cooperative Prototyping Experiments

    DEFF Research Database (Denmark)

    Bødker, Susanne; Grønbæk, Kaj

    1989-01-01

    This paper describes experiments with a design technique that we denote cooperative prototyping. The experiments consider design of a patient case record system for municipal dental clinics in which we used HyperCard, an off the shelf programming environment for the Macintosh. In the ecperiments we...... tried to achieve a fluent work-like evaluation of prototypes where users envisioned future work with a computer tool, at the same time as we made on-line modifications of prototypes in cooperation with the users when breakdown occur in their work-like evaluation. The experiments showed...... that it was possible to make a number of direct manipulation changes of prototypes in cooperation with the users, in interplay with their fluent work-like evaluation of these. However, breakdown occurred in the prototyping process when we reached the limits of the direct manipulation support for modification. From...

  3. Commissioning and characteristics of MOSFET dosimeter

    International Nuclear Information System (INIS)

    Gopiraj, A.; Billimagga, Ramesh S.; Rekha, M.; Ramasubramaniam, V.

    2007-01-01

    The verification of the dose delivered to a patient is an important part of the quality assurance in radiotherapy. Thermoluminescent dosimeters (TLDs) and semiconductor diodes were mostly used for this purpose. Recently Metal Oxide Semiconductor field effect transistors (MOSFET) have been proposed for the application in radiotherapy. Each type of detector has its own advantages and disadvantages. The TLD size is very small and therefore can be used both for measurement and dose delivered to a patient and for measurements of dose distribution in a humanoid phantom. The main disadvantages of the TLDs are the time required by the preparation procedure and the limited accuracy which depends on the experience of the user. Additionally, TLDs do not allow an immediate readout. The main disadvantages of semiconductor diodes are the necessity of using a cable which can disturb normal clinical work especially when in vivo measurements are carried out, and the necessity of applying of many correction factors to achieve high accuracy. We procured MOSFET system from Thomson and Nielsen Electronic Ltd. The reproducibility as a function of dose and linearity and calibration factor of the MOSFET detectors were measured. The effects of energy, field size and accumulated dose on the response of the detectors were investigated

  4. Excited species in the FBX dosimeter system

    International Nuclear Information System (INIS)

    Gupta, B.L.

    2003-01-01

    In the FBX dosimeter solution, the excitation of xylenol orange (XO) produces maximum emission at 550-575 nm both at room and liquid nitrogen temperatures (about 85%) having a lifetime of 0.20-0.36 ns. In addition, at room temperature there is an emission at 350 nm for the excitation at 260 nm (about 15%) having a longer lifetime of 3.71-4.01 ns. Benzoic acid (BA) has excitation at 284-295 nm and emission at 320-365 nm having a lifetime of 1.38 ns. In an aqueous solution containing 5x10 -3 mol dm -3 BA, 2x10 -4 mol dm -3 XO and 0.04 mol dm -3 H 2 SO 4 there is no XO emission at 550 nm due to UV absorption at 260 nm by BA. In this solution, 2 emissions are observed near 350-360 nm, having lifetimes of 1.25 ns (89%) and 2.86 ns (11%). The wavelengths for the emission of XO and absorption of ferric-XO complex are nearly the same. Excited XO produces oxidation of ferrous ions and BA increases the chain length

  5. Evaluation of environmental monitoring thermoluminescent dosimeter locations

    International Nuclear Information System (INIS)

    Kinnison, R.

    1992-12-01

    Geostatistics, particularly kriging, has been used to assess the adequacy of the existing NTS thermoluminescent dosimeter network for determination of environmental exposure levels. (Kriging is a linear estimation method that results in contour plots of both the pattern of the estimated gamma radiation over the area of measurements and also of the standard deviations of the estimated exposure levels.) Even though the network was not designed as an environmental monitoring network, ft adequately serves this function in the region of Pahute and Rainier Mesas.. The Yucca Flat network is adequate only if a reasonable definition of environmental exposure levels is required; R is not adequate for environmental monitoring in Yucca Flat if a coefficient of variation of 10 percent or less is chosen as the criterion for network design. A revision of the Yucca Flat network design should be based on a square grid pattern with nodes 5000 feet (about one mile) apart, if a 10 percent coefficient of variation criterion is adopted. There were insufficient data for southern and western sections of the NTS to perform the geostatistical analysis. A very significant finding was that a single network design cannot be used for the entire NTS, because different areas have different variograms. Before any design can be finalized, the NTS management must specify the exposure unit area and coefficient of variation that are to be used as design criteria

  6. Characteristics and application of alanine dosimeter 'Aminogray'

    International Nuclear Information System (INIS)

    Kashiwazaki, Shigeru; Matsuyama, Shigeki; Hatta, Toshimasa; Yagyu, Hideki; Kojima, Takuji; Tanaka, Ryuichi; Morita, Yohsuke.

    1988-01-01

    Recently, accompanying the progress of nuclear power generation and space development, the evaluation of reliability for the materials and parts used under irradiation has become important. For the evaluation of reliability, the accurate grasp of radiation dose is the prerequisite. In some case, the measurement of cumulative dose in a long period in an actual environment becomes necessary. In this paper, the characteristics and application of a new dosimeter element 'Aminogray' which is suitable to the above requirement are reported. Aminogray is rodshape element made by forming alanine, a kind of amino acid, using a binder polymer, and the alanine content is 70 wt.%, and the polymer is polystyrene. An element of 3 mm diameter and 30 mm length is enclosed in a polystyrene cylinder of 4 mm thickness. This thickness was determined by considering the electronic equilibrium condition in Co-60 gamma-ray irradiation. The principle of the measurement is to determine a dose by measuring the amount of free radicals produced in alanine by radiation using ESR method. The free radicals are extremely stable, and exist for a long period, and the amount of radical production is proportional to absorbed dose. The development, characteristics and application of Aminogray are reported. (K.I.)

  7. Argentine Republic intercomparison programme for personal dosimeters

    International Nuclear Information System (INIS)

    Gregori, Beatriz N.; Papadopulos, Susana B.; Kunst, Juan J.; Cruzate, Juan A.; Saravi, Margarita C.

    2004-01-01

    In 1997 an Intercomparison Program for individual monitoring started in order to test (on a voluntary basis) the performance in absorbed dose and personal dose equivalent determinations. The aim of the program was also to gain some insight into the general aspects related to the type of the personnel dosimeter used, the calibration procedures, the phantom spectral dependence and the management of radiological quantities. The Regional Reference Center for Dosimetry (CCR), of the Argentine National Atomic Energy Commission and the Physical Dosimetry Laboratory of the Argentine National Regulatory Authority, performed the irradiations. Those were done free air and on ICRU phantom, using X-ray, quality ISO: W60, W80, W110 and W200; and 137 Cs and 60 Co gamma rays, normal and angular (0, 30, 60 degrees) incidence. In the framework of the Program, an upgraded workshop took place and the national standard, IRAM 17146, was elaborated as well. In this work, the laboratories performance and its temporal evolution is shown from 1997 up to 2002. The suggestions to improve their performance are also included. (author)

  8. PERANCANGAN DAN PENGEMBANGAN PROTOTYPE SISTEM PARKIR

    Directory of Open Access Journals (Sweden)

    Indah Ayu Septriyaningrum

    2016-10-01

    Abstrak  Sistem parkir manual pada pelayanan parkir mall memerlukan pengelolaan dan pengembangan sistem yang lebih rumit dan jauh dari kata efisien. Informasi yang didapatkan pengelola parkir terkait kondisi parkir di lapangan setiap harinya masih kurang. Tujuan dari penelitian ini adalah merancang dan mengembangkan prototype sistem parkir. Metode pengembangan dan perancangan sistem pada penelitian ini adalah metode Waterfall. Hasil yang didapatkan adalah sistem ini dapat mendeteksi keberadaan mobil pada slot parkir yang tersedia dengan bantuan Intel Galileo Board Gen 2 sebagai kontroler, sensor LDR (Light Dependent Resistor dan sensor ultrasonik (PING sebagai alat bantu pendeteksi keberadaan mobil. Sistem dapat menampilkan aktifitas parkir pada aplikasi web seperti kondisi lahan parkir kosong, lahan terisi, waktu masuk, waktu keluar, lama parkir dan kapasitas parkir yang tersedia serta grafik pemakaian lahan parkir. Dapat disimpulkan bahwa perancangan dan pengembangan sistem berhasil diimplementasikan. Kata Kunci : Sistem parkir, waterfall, Intel Galileo Board Gen 2,sensor LDR (Light Dependent Resistor, sensor ultrasonik

  9. Radiation-induced refraction artifacts in the optical CT readout of polymer gel dosimeters

    International Nuclear Information System (INIS)

    Campbell, Warren G.; Jirasek, Andrew; Wells, Derek M.

    2014-01-01

    Purpose: The objective of this work is to demonstrate imaging artifacts that can occur during the optical computed tomography (CT) scanning of polymer gel dosimeters due to radiation-induced refractive index (RI) changes in polyacrylamide gels. Methods: A 1 L cylindrical polyacrylamide gel dosimeter was irradiated with 3 × 3 cm 2 square beams of 6 MV photons. A prototype fan-beam optical CT scanner was used to image the dosimeter. Investigative optical CT scans were performed to examine two types of rayline bending: (i) bending within the plane of the fan-beam and (ii) bending out the plane of the fan-beam. To address structured errors, an iterative Savitzky–Golay (ISG) filtering routine was designed to filter 2D projections in sinogram space. For comparison, 2D projections were alternatively filtered using an adaptive-mean (AM) filter. Results: In-plane rayline bending was most notably observed in optical CT projections where rays of the fan-beam confronted a sustained dose gradient that was perpendicular to their trajectory but within the fan-beam plane. These errors caused distinct streaking artifacts in image reconstructions due to the refraction of higher intensity rays toward more opaque regions of the dosimeter. Out-of-plane rayline bending was observed in slices of the dosimeter that featured dose gradients perpendicular to the plane of the fan-beam. These errors caused widespread, severe overestimations of dose in image reconstructions due to the higher-than-actual opacity that is perceived by the scanner when light is bent off of the detector array. The ISG filtering routine outperformed AM filtering for both in-plane and out-of-plane rayline errors caused by radiation-induced RI changes. For in-plane rayline errors, streaks in an irradiated region (>7 Gy) were as high as 49% for unfiltered data, 14% for AM, and 6% for ISG. For out-of-plane rayline errors, overestimations of dose in a low-dose region (∼50 cGy) were as high as 13 Gy for unfiltered

  10. Mobile Prototyping Platforms for Remote Engineering Applications

    Directory of Open Access Journals (Sweden)

    Karsten Henke

    2009-08-01

    Full Text Available This paper describes a low-cost mobile communication platform as a universal rapid-prototyping system, which is based on the Quadrocopter concept. At the Integrated Hardware and Software Systems Group at the Ilmenau University of Technology these mobile platforms are used to motivate bachelor and master students to study Computer Engineering sciences. This could be done by increasing their interest in technical issues, using this platform as integral part of a new ad-hoc lab to demonstrate different aspects in the area of Mobile Communication as well as universal rapid prototyping nodes to investigate different mechanisms for self-organized mobile communication systems within the International Graduate School on Mobile Communications. Beside the three fields of application, the paper describes the current architecture concept of the mobile prototyping platform as well as the chosen control mechanism and the assigned sensor systems to fulfill all the required tasks.

  11. Monte Carlo simulation experiments on box-type radon dosimeter

    International Nuclear Information System (INIS)

    Jamil, Khalid; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid

    2014-01-01

    Epidemiological studies show that inhalation of radon gas ( 222 Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the 222 Rn concentrations (Bq/m 3 ) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter’s dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (η int ) and alpha hit efficiency (η hit ). The η int depends upon only on the dimensions of the dosimeter and η hit depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper explains that how radon

  12. PRMS Data Warehousing Prototype

    Science.gov (United States)

    Guruvadoo, Eranna K.

    2002-01-01

    Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis, design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.

  13. Prototype ALICE front-end card

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    This circuit board is a prototype 48-channel front end digitizer card for the ALICE time projection chamber (TPC), which takes electrical signals from the wire sensors in the TPC and shapes the data before converting the analogue signal to digital data. A total of 4356 cards will be required to process the data from the ALICE TPC, the largest of this type of detector in the world.

  14. Description and evaluation of the Hanford personnel dosimeter program from 1944 through 1989. [Contain Glossary

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.H.; Fix, J.J.; Baumgartner, W.V.; Nichols, L.L.

    1990-09-01

    This report describes the evolution of personnel dosimeter technology at Hanford since the inception of Hanford operations in 1944. Each of the personnel dosimeter systems used by people working or visiting Hanford is described. In addition, the procedures used to calibrate and calculate dose for each of the dosimeter systems are described. The accuracy of the recorded dose, primarily whole body deep dose, for the different dosimeter systems is evaluated. The evaluation is based on an extensive review of historical literature, as well as a 1989 intercomparison study of all film dosimeters and performance testing of the thermoluminescent dosimeter, also conducted during 1989. 73 refs., 40 figs., 41 tabs.

  15. Application of Glycine-TTC dosimeter in gamma radiation processing facility

    International Nuclear Information System (INIS)

    Shinde, S.H.; Mondal, S.; Kulkarni, M.S.

    2018-01-01

    Glycine-TTC dosimeter was found to have a useful dose range of 5 to 30 kGy using spectro-photometric read-out method. Potential use of this dosimeter was demonstrated by measuring dose-rate in gamma chamber GC 900. The aim of the present study was to verify the performance of this dosimeter in actual industrial processing conditions encountered in radiation processing facility such as Gamma Radiation Processing Plant for Spices (GRPPS), BRIT, Vashi. Accordingly, glycine-TTC dosimeters were irradiated along with routine dosimeter viz. ceric-cerous of GRPPS and reference standard dosimeter viz. alanine EPR

  16. A monolithic 180 nm CMOS dosimeter for In Vivo Dosimetry medical application

    International Nuclear Information System (INIS)

    Villani, E.G.; Crepaldi, M.; DeMarchi, D.; Gabrielli, A.; Khan, A.; Pikhay, E.; Roizin, Y.; Rosenfeld, A.; Zhang, Z.

    2014-01-01

    The design and development of a monolithic system-on-chip dosimeter fabricated in a standard 180 nm CMOS technology is described. The device is intended for real time In Vivo measurement of dose of radiation during radiotherapy sessions. Owing to its proposed small size, of approximately 1 mm 3 , such solution could be made in-body implantable and, as such, provide a much-enhanced high-resolution, real-time dose measurement for quality assurance in radiation therapy. The device transmits the related information on dose of radiation wirelessly to an external receiver operating in the MICS band. The various phases of this two years project, started in 2011, including the design and development of radiation sensors and integrated RF to perform the readout, will be described. - Highlights: • A novel monolithic CMOS dosimeter of size of 1 mm 3 has been proposed. • Three different fabrications using a CMOS 180 nm technology have been carried out. • Radiation tests results showed a sensitivity of 1 cGy with accuracy better than 3%. • Preliminary RF tests showed that an RF signal is detectable in free air

  17. In vivo dose measurement using TLDs and MOSFET dosimeters for cardiac radiosurgery.

    Science.gov (United States)

    Gardner, Edward A; Sumanaweera, Thilaka S; Blanck, Oliver; Iwamura, Alyson K; Steel, James P; Dieterich, Sonja; Maguire, Patrick

    2012-05-10

    In vivo measurements were made of the dose delivered to animal models in an effort to develop a method for treating cardiac arrhythmia using radiation. This treatment would replace RF energy (currently used to create cardiac scar) with ionizing radiation. In the current study, the pulmonary vein ostia of animal models were irradiated with 6 MV X-rays in order to produce a scar that would block aberrant signals characteristic of atrial fibrillation. The CyberKnife radiosurgery system was used to deliver planned treatments of 20-35 Gy in a single fraction to four animals. The Synchrony system was used to track respiratory motion of the heart, while the contractile motion of the heart was untracked. The dose was measured on the epicardial surface near the right pulmonary vein and on the esophagus using surgically implanted TLD dosimeters, or in the coronary sinus using a MOSFET dosimeter placed using a catheter. The doses measured on the epicardium with TLDs averaged 5% less than predicted for those locations, while doses measured in the coronary sinus with the MOSFET sensor nearest the target averaged 6% less than the predicted dose. The measurements on the esophagus averaged 25% less than predicted. These results provide an indication of the accuracy with which the treatment planning methods accounted for the motion of the target, with its respiratory and cardiac components. This is the first report on the accuracy of CyberKnife dose delivery to cardiac targets.

  18. Solid-state personal dosimeter using dose conversion algorithm

    International Nuclear Information System (INIS)

    Lee, B.J.; Lee, Wanno; Cho, Gyuseong; Chang, S.Y.; Rho, S.R.

    2003-01-01

    Solid-state personal dosimeters using semiconductor detectors have been widely used because of their simplicity and real time operation. In this paper, a personal dosimeter based on a silicon PIN photodiode has been optimally designed by the Monte Carlo method and also developed. For performance test, the developed dosimeter was irradiated within the energy range between 50 keV and 1.25 MeV, the exposure dose rate between 3 mR/h and 25 R/h. The thickness of 0.2 mm Cu and 1.0 mm Al was selected as an optimal filter by simulation results. For minimizing the non-linear sensitivity on energy, dose conversion algorithm was presented, which was able to consider pulse number as well as pulse amplitude related to absorbed energies. The sensitivities of dosimeters developed by the proposed algorithm and the conventional method were compared and analyzed in detail. When dose conversion algorithm was used, the linearity of sensitivity was better about 38%. This dosimeter will be used for above 65 keV within the relative response of ±10% to 137 Cs

  19. Design, construction and characterization of a dosimeter for neutron radiation

    International Nuclear Information System (INIS)

    Souto, Eduardo de Brito

    2007-01-01

    An individual dosimeter for neutron-gamma mixed field dosimetry was design and developed aiming monitoring the increasing number of workers potentially exposed to neutrons. The proposed dosimeter was characterized to an Americium-Beryllium source spectrum and dose range of radiation protection interest (up to 20 mSv). Thermoluminescent albedo dosimetry and nuclear tracks dosimetry, traditional techniques found in the international literature, with materials of low cost and national production, were used. A commercial polycarbonate, named SS-1, was characterized for solid state tack detector application. The chemical etching parameters and the methodology of detectors evaluation were determined. The response of TLD-600, TLD-700 and SS-1 were studied and algorithms for dose calculation of neutron and gamma radiation of Americium- Beryllium sources were proposed. The ratio between thermal, albedo and fast neutrons responses, allows analyzing the spectrum to which the dosimeter was submitted and correcting the track detector response to variations in the radiation incidence angle. The new dosimeter is fully characterized, having sufficient performance to be applied as neutron dosimeter in Brazil. (author)

  20. Temperature, humidity and time., Combined effects on radiochromic film dosimeters

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.A.; Miller, A.

    1996-01-01

    The effects of both relative humidity and temperature during irradiation on the dose response of FWT-60-00 and Riso B3 radiochromic film dosimeters have been investigated in the relative humidity (RH) range 11-94% and temperature range 20-60 o C for irradiation by 60 Co photons and 10-MeV electrons. The results show that humidity and temperature cannot be treated as independent variables, rather there appears to be interdependence between absorbed dose, temperature, and humidity. Dose rate does not seem to play a significant role. The dependence of temperature during irradiation is + 0.25 ± 0.1% per o C for the FWT-60-00 dosimeters and +0.5 ± 0.1% per o C for Riso B3 dosimeters at temperatures between 20 and 50 o C and at relative humidities between 20 and 53%. At extreme conditions both with respect to temperature and to humidity, the dosimeters show much stronger dependences. Whenever possible one should use dosimeters sealed in pouches under controlled intermediate humidity conditions (30-50%) or, if that is impractical, one should maintain conditions of calibration as close as possible to the conditions of use. Without that precaution, severe dosimetry errors may result. (author)

  1. Site-specific calibration of the Hanford personnel neutron dosimeter

    International Nuclear Information System (INIS)

    Endres, A.W.; Brackenbush, L.W.; Baumgartner, W.V.; Rathbone, B.A.

    1994-10-01

    A new personnel dosimetry system, employing a standard Hanford thermoluminescent dosimeter (TLD) and a combination dosimeter with both CR-39 nuclear track and TLD-albedo elements, is being implemented at Hanford. Measurements were made in workplace environments in order to verify the accuracy of the system and establish site-specific factors to account for the differences in dosimeter response between the workplace and calibration laboratory. Neutron measurements were performed using sources at Hanford's Plutonium Finishing Plant under high-scatter conditions to calibrate the new neutron dosimeter design to site-specific neutron spectra. The dosimeter was also calibrated using bare and moderated 252 Cf sources under low-scatter conditions available in the Hanford Calibration Laboratory. Dose equivalent rates in the workplace were calculated from spectrometer measurements using tissue equivalent proportional counter (TEPC) and multisphere spectrometers. The accuracy of the spectrometers was verified by measurements on neutron sources with calibrations directly traceable to the National Institute of Standards and Technology (NIST)

  2. PNNL Results from 2010 CALIBAN Criticality Accident Dosimeter Intercomparison Exercise

    International Nuclear Information System (INIS)

    Hill, Robin L.; Conrady, Matthew M.

    2011-01-01

    This document reports the results of the Hanford personnel nuclear accident dosimeter (PNAD) and fixed nuclear accident dosimeter (FNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on September 20-23, 2010. Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimeter intercomparison exercise at the Commissariat a Energie Atomique (CEA) Valduc Center near Dijon, France on September 20-23, 2010. The intercomparison exercise was funded by the U.S. Department of Energy, Nuclear Criticality Safety Program, with Lawrence Livermore National Laboratory as the lead Laboratory. PNNL was one of six invited DOE Laboratory participants. The other participating Laboratories were: Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 National Security Complex at Oak Ridge, and Sandia National Laboratory (SNL). The goals of PNNL's participation in the intercomparison exercise were to test and validate the procedures and algorithm currently used for the Hanford personnel nuclear accident dosimeters (PNADs) on the metallic reactor, CALIBAN, to test exposures to PNADs from the side and from behind a phantom, and to test PNADs that were taken from a historical batch of Hanford PNADs that had varying degrees of degradation of the bare indium foil. Similar testing of the PNADs was done on the Valduc SILENE test reactor in 2009 (Hill and Conrady, 2010). The CALIBAN results are reported here.

  3. Personnel neutron dosimeter for use in a plutonium processing plant

    International Nuclear Information System (INIS)

    Brunskill, R.T.; Hwang, F.S.W.

    1978-01-01

    A thermoluminesence dosimeter for personnel neutron dose measurement, which is based on the albedo principle, has been developed at Windscale works. The dosimeter has been calibrated against a 238 Pu/Be neutron source using different degrees of moderation and against a variety of neutron spectra prevailing in different areas of the Plutonium Finishing Plant. The dosimeter consists of two identical parts in which the sensitive elements are graphite discs which have thermoluminescent crystals sealed to the plane faces with a high temperature resin. The graphite discs are supported in teflon washers which fit into a body of tufnol. A circular insert of boronated polythene in each tufnol body provides a thermal neutron absorber for the sensitive element in the other half of the dosimeter. Natural lithium borate was used as the neutron sensitive phosphor and a lithium borate made from isotopes 7 Li (99.9%) and 11 B (99.2%) as the neutron insensitive materials. Neutron-sensitive lithium borate is sealed to one face of each disc and the neutron-insensitive material to the opposite face. The dosimeter is so assembled that the neutron-sensitive faces both lie in the central plane. The design is such that one neutron sensitive face responds to the incident flux of neutron only while the other responds to the albedo flux

  4. Calibration of film dosimeters by means of absorbed dose calorimeters

    International Nuclear Information System (INIS)

    Nikolaev, S.M.; Vanyushkin, B.M.; Kon'kov, N.G.

    1980-01-01

    Methods of graduating film dosimeters by means of calorimeters of absorbed doses, are considered. Graduating of film dosimeters at the energies of accelerated electrons from 4 to 10 MeV can be carried out by means of quasiadiabatic calorimeter of local absorption, the absorber thickness of which should not exceed 5-10% of Rsub(e) value, where Rsub(e) - free electron path of the given energy. In this case film is located inside the calorimeter. For graduating films with thickness not less than (0.1-0.2)Rsub(e) it is suggested to use calorimeter of full absorption; then the graduated dosimeters are located in front of the calorimeter. Graduation of films at small energies of electrons is exercised by means of a package of films, approximately Rsub(e) thick. A design of quasiadiabatic calorimeter, intended for graduating dosimeters within the energy range of electron beam from 4 to 10 MeV, is considered. The quasiadiabatic calorimeter is a thin graphite tablet with heater and thermocouple, surrounded by foam plastic thermostating case. Electricity quantity, accumulated during the radiation field pass, is measured in the case of using the quasiadiabatic calorimeter for film graduating. The results of graduating film dosimeters, obtained using film package with Rsub(e) thickness, are presented. The obtained results coincide within 5% limits with the data known beforehand [ru

  5. Technology review: prototyping platforms for monitoring ambient conditions.

    Science.gov (United States)

    Afolaranmi, Samuel Olaiya; Ramis Ferrer, Borja; Martinez Lastra, Jose Luis

    2018-05-08

    The monitoring of ambient conditions in indoor spaces is very essential owing to the amount of time spent indoors. Specifically, the monitoring of air quality is significant because contaminated air affects the health, comfort and productivity of occupants. This research work presents a technology review of prototyping platforms for monitoring ambient conditions in indoor spaces. It involves the research on sensors (for CO 2 , air quality and ambient conditions), IoT platforms, and novel and commercial prototyping platforms. The ultimate objective of this review is to enable the easy identification, selection and utilisation of the technologies best suited for monitoring ambient conditions in indoor spaces. Following the review, it is recommended to use metal oxide sensors, optical sensors and electrochemical sensors for IAQ monitoring (including NDIR sensors for CO 2 monitoring), Raspberry Pi for data processing, ZigBee and Wi-Fi for data communication, and ThingSpeak IoT platform for data storage, analysis and visualisation.

  6. The neutron response of a 7 LiF thermoluminescent dosimeter incorporated in the UKAEA criticality dosimeter

    International Nuclear Information System (INIS)

    Eid, A.M.; Delafield, H.J.

    1976-04-01

    There are practical advantages in incorporating a 7 LiF thermoluminescent dosimeter (TLD) for the measurement of γ-ray dose, into the personnel criticality dosimeter. This paper investigated the corrections necessary for the inherent direct response of the TLD neutrons, and its enhanced indirect response from prompt γ-rays resulting from neutron interactions with the metallic foils contained in the criticality dosimeter. The response of the TLD to fast fission neutrons was measured to be 0.02 γ rad/n rad. The indirect response of the TLD to thermal neutrons was measured to be 4.8 x 10 -10 rad n -1 cm 2 for dosimeters exposed in free air, and 7 x 10 -10 rad n -1 cm 2 for dosimeters worn on the body respectively. Application of these correction factors to TLD measurements made at International Dosimetry Intercomparisons (sponsored by the I.A.E.A.) gave improved agreement with the values given by other participants. (author)

  7. Photon energy response of an aluminum oxide TLD environmental dosimeter

    International Nuclear Information System (INIS)

    Olsher, R.H.

    1992-01-01

    Because of aluminum oxide's significant advantage in sensitivity (about a factor of 30) over LiF, minimal fading characteristics and ease of processing, aluminum oxide thermoluminescent dosimeters (TLDS) are being phased in at Los alamos for environmental monitoring of photon radiation. The new environmental dosimeter design consists of a polyethylene holder, about 0. 5 cm thick, loaded with a stack of four aluminum oxide TLD chips, each 1 mm thick and 5 mm in diameter. As part of the initial evaluation of the new design, the photon energy response of the dosimeter was calculated over the range from 10 keV to 1 MeV. Specific goals of the analysis included the determination of individual chip response in the stack, assessment of the response variation due to TLD material (i.e., LiF versus A1 2 O 3 ), and the effect of copper filtration in flattening the response

  8. US progress on the development of CR-39 based neutron dosimeters

    International Nuclear Information System (INIS)

    Hadlock, D.E.

    1987-06-01

    Historically at US nuclear facilities, two types of personnel neutron dosimeters have been in routine use: nuclear track emulsion-Type A (NTA) film and thermoluminescent dosimeter (TLD)-albedo. Both of these dosimeters have energy-dependent responses. Therefore, the neutron energy spectra must be known, to interpret the dosimeter results properly. A new state-of-the-art dosimetry system has been developed within the US Department of Energy (US DOE) Personnel Neutron Dosimeter Evaluation and Upgrade Program. This system is called the combination thermoluminescent dosimeter/track etch dosimeter (TLD/TED). This paper briefly describes US DOE research currently being conducted to further enhance the TED portion of the combination TLD/TED system. The research areas involved include dose sensitivity, neutron energy range, specialized radiators, self-developing dosimeters, and neutron spectrometry. 1 fig., 1 tab

  9. Passive dosimetry: introduction of a new dosimeter based on OSL technology

    International Nuclear Information System (INIS)

    Archambault, V.; Le Roy, G.; Prugnaud, B.

    2005-01-01

    A new passive dosimeter based on OSL technology has been introduced on the French market. In this article are described: the technology and the material on which this new detector relied, the dosimeter itself. (author)

  10. Angular dependence of the nanoDot OSL dosimeter

    International Nuclear Information System (INIS)

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan; Followill, David S.; Ibbott, Geoffrey S.

    2011-01-01

    Purpose: Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight/OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system. Methods: Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, as well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX. Results: When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found. Conclusions: A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions.

  11. Comparison between two kind of power circuits for personal dosimeter

    International Nuclear Information System (INIS)

    Liu Zhengshan; Deng Changming; Guo Zhanjie

    2002-01-01

    Personal Dosimeter is commonly requested using battery for its power supply, and hope the battery life is long. Also with the fall of battery voltage, some performance of instrument as well as drop, Reasonable supply design can protract the battery life. The author introduces two method: power supply with battery directly and supply used power chip conversion. Combine personal dosimeter, the authors carried comparison for battery life, power consumption, cost and volume. Based on the comparison result and instrument fact request, one can choose method of power circuit

  12. Locations of criticality alarms and nuclear accident dosimeters at Hanford

    International Nuclear Information System (INIS)

    1992-08-01

    Hanford facilities that contain fissionable materials capable of achieving critical mass are monitored with nuclear accident dosimeters (NADS) in compliance with the requirements of DOE Order 5480.11, Chapter XI, Section 4.c. (DOE 1988). The US Department of Energy (DOE) Richland Field Office (RL) has assigned the responsibility for maintaining and evaluating the Hanford NAD system to the Instrumentation and External Dosimetry (I ampersand ED) Section of Pacific Northwest Laboratory's (PNL's) Health Physics Department. This manual provides a description of the Hanford NAD, criteria and instructions for proper NAD placement, and the locations of these dosimeters onsite

  13. Design of Smart Home Systems Prototype Using MyRIO

    Science.gov (United States)

    Ratna Wati, Dwi Ann; Abadianto, Dika

    2017-06-01

    This paper presents the design of smart home systems prototype. It applies. MyRIO 1900 embedded device as the main controller of the smart home systems. The systems include wireless monitoring systems and email based notifications as well as data logging. The prototype systems use simulated sensor such as temperature sensor, push button as proximity sensor, and keypad while its simulated actuators are buzzer as alarm system, LED as light and LCD. Based on the test and analysis, the smart home systems prototype as well as the wireless monitoring systems have real time responses when input signals are available. Tbe performance of MyRIO controller is excellent and it results in a stable system.

  14. First Results with the Prototype Detectors of the Si/W ECAL

    Energy Technology Data Exchange (ETDEWEB)

    Strom, D; Frey, R.; /Oregon U.; Breidenbach, M.; Deng, J.; Freytag, D.; Graf, N.; Haller, G.; /SLAC; Radeka, V.; /Brookhaven

    2005-07-12

    Measurements on the prototype silicon sensors for use with an electromagnetic calorimeter with tungsten absorber are reported. The prototype sensors are based on a hexagonal geometry that optimally utilizes the space available on 6 inch silicon wafers. The sensors are segmented into approximately 750 5mm hexagonal pixels, which are connected to a bump-bonding array located at the center of the sensors. We report on those properties of the sensors that are important for linear collider applications including depletion voltage, stray capacitance and series resistance.

  15. From prototype to product

    DEFF Research Database (Denmark)

    Andersen, Tariq Osman; Bansler, Jørgen P.; Kensing, Finn

    2017-01-01

    This paper delves into the challenges of engaging patients, clinicians and industry stakeholders in the participatory design of an mHealth platform for patient-clinician collaboration. It follows the process from the development of a research prototype to a commercial software product. In particu......This paper delves into the challenges of engaging patients, clinicians and industry stakeholders in the participatory design of an mHealth platform for patient-clinician collaboration. It follows the process from the development of a research prototype to a commercial software product....... In particular, we draw attention to four major challenges of (a) aligning the different concerns of patients and clinicians, (b) designing according to clinical accountability, (c) ensuring commercial interest, and (d) dealing with regulatory constraints when prototyping safety critical health Information...... Technology. Using four illustrative cases, we discuss what these challenges entail and the implications they pose to Participatory Design. We conclude the paper by presenting lessons learned....

  16. Radiation dosimeter built with plastic scintillator

    International Nuclear Information System (INIS)

    Barrea, R.A.

    1990-01-01

    Ionization chambers, with air equivalent plastic walls, have been used as the main x-ray dosimetry system, since its response permits to give the doses in Roentgens. From the commercial availability of plastic scintillators with air equivalent atomic number we have studied its use in x-ray dosimetry. This paper devised a system with which it is possible to reduce side effects that introduce errors and obtain a response independent of energy, from 20 to 180 KeV and it is also expected to behave that way for higher energies. The system has a high efficiency and precision for a wide dose range and it is then a new alternative to measure x-ray doses. Results obtained with a prototype, built ad-hog, make it possible its use with dosimetric purposes with several advantages over conventional. (author)

  17. PANDA Muon System Prototype

    Science.gov (United States)

    Abazov, Victor; Alexeev, Gennady; Alexeev, Maxim; Frolov, Vladimir; Golovanov, Georgy; Kutuzov, Sergey; Piskun, Alexei; Samartsev, Alexander; Tokmenin, Valeri; Verkheev, Alexander; Vertogradov, Leonid; Zhuravlev, Nikolai

    2018-04-01

    The PANDA Experiment will be one of the key experiments at the Facility for Antiproton and Ion Research (FAIR) which is under construction now in the territory of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. PANDA is aimed to study hadron spectroscopy and various topics of the weak and strong forces. Muon System is chosen as the most suitable technology for detecting the muons. The Prototype of the PANDA Muon System is installed on the test beam line T9 at the Proton Synchrotron (PS) at CERN. Status of the PANDA Muon System prototype is presented with few preliminary results.

  18. Prototyping a Smart City

    DEFF Research Database (Denmark)

    Korsgaard, Henrik; Brynskov, Martin

    In this paper, we argue that by approaching the so-called Smart City as a design challenge, and an interaction design perspective, it is possible to both uncover existing challenges in the interplay between people, technology and society, as well as prototype possible futures. We present a case...... in which we exposed data about the online communication between the citizens and the municipality on a highly visible media facade, while at the same time prototyped a tool that enabled citizens to report ‘bugs’ within the city....

  19. PANDA Muon System Prototype

    Directory of Open Access Journals (Sweden)

    Abazov Victor

    2018-01-01

    Full Text Available The PANDA Experiment will be one of the key experiments at the Facility for Antiproton and Ion Research (FAIR which is under construction now in the territory of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. PANDA is aimed to study hadron spectroscopy and various topics of the weak and strong forces. Muon System is chosen as the most suitable technology for detecting the muons. The Prototype of the PANDA Muon System is installed on the test beam line T9 at the Proton Synchrotron (PS at CERN. Status of the PANDA Muon System prototype is presented with few preliminary results.

  20. Automated dose estimation for lost or damaged dosimeters

    International Nuclear Information System (INIS)

    Thompson, W.L.; Deininger, R.J.

    1988-01-01

    This paper reports that some dosimetry vendors will compute doses for their customers' lost/damaged dosimeters based upon an average of recent dosimeter readings. However, the vendors usually require authorization from the customer for each such occurrence. Therefore, the tedious task of keeping track of the overdue status of each missing dosimeter and constantly notifying the vendor is still present. Also, depending on the monthly variability of a given person's doses, it may be more valid to use the employee's average dose, his/her highest dose over a recent period, an average dose of other employees with similar job duties for that period, or the maximum permissible dose. Thus, the task of estimating doses for lost/damaged dosimeters cannot be delegated to dosimetry vendor. Instead, the radiation safety department must sue the data supplied by the vendor as input for performing estimates. The process is performed automatically at the Medical Center Hospital of Vermont using a personal computer and a relational database

  1. Sugar dosimeters. Part 1. State of the art

    International Nuclear Information System (INIS)

    Peimel-Stuglik, Z.

    2008-01-01

    A review of the literature dealing with the possibility of using sugars, in particular sucrose, as dosimetric material is presented. All methods involved were divided according to analytical techniques used in dosimetric signal measurements (polarimetry, spectrophotometry and electron paramagnetic resonance - EPR). Double-signal sugar dosimeters (EPR + spectrophotometry) are also described. (author) [pl

  2. Validation of an Innovative Satellite-Based UV Dosimeter

    Science.gov (United States)

    Morelli, Marco; Masini, Andrea; Simeone, Emilio; Khazova, Marina

    2016-08-01

    We present an innovative satellite-based UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in-vivo assessment of the erythemal effects on some volunteers having a controlled exposure to solar radiation.Both validations showed that the satellite-based UV dosimeter has a good accuracy and reliability needed for health-related applications.The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. This app will be launched on the global market by siHealth Ltd in May 2016 under the name of "HappySun" and available both for Android and for iOS devices (more info on http://www.happysun.co.uk).Extensive R&D activities are on-going for further improvement of the satellite-based UV dosimeter's accuracy.

  3. The passive radon-thoron discriminative dosimeter for practical use

    International Nuclear Information System (INIS)

    Doi, Masahiro; Kobayashi, Sadayoshi

    1994-01-01

    A passive radon-thoron discriminative dosimeter for practical use has been developed. The body of the practical R-T dosimeter is made of two hemispheric diffusion chambers of carbonized plastic whose diameters are 110 mm and 70 mm, respectively. These diameters are determined to improve the detection efficiency of radon as well as thoron and also the discrimination ratio of radon to thoron. Inner surface of the detector housing is smooth and free from electrified charge to assure the uniform deposition of radon and thoron progeny, because the detector housing is molded out of carbonized plastic as an anti-static material. In addition, structure of an air inlet has improved to contact more tightly with a glass fiber filter to prevent dust from entering the detector housing. The air inlet of the detector housing is also covered with a half-cutted hemispherical windbreak to protect the glass fiber filter from weathering and to stabilize the influence of convectional air flow on the radon and thoron entry rate into two hemispherical diffusion chambers of the dosimeter. The results of calibration exercises showed that the lower detection limit of radon and thoron concentrations were estimated to be 5.1 Bqm -3 and 7.9 Bqm -3 respectively in 2 months exposure. And an interim measurement in the concrete cellar proved that the practical R-T dosimeter has enough specifications to be used in the large-scale radon-thoron discriminative survey. (author)

  4. Fast neutron dosimeter with wide base silicon diode

    International Nuclear Information System (INIS)

    Ma Lu

    1986-01-01

    This paper briefly introduces a wide base silicon diode fast neutron dosimeter with wide measuring range and good energy response to fast neutron. It is suitable to be used to detect fast neutrons in the mixed field of γ-ray, thermal neutrons and fast neutrons

  5. Study of a plastic detector as a neutron dosimeter

    International Nuclear Information System (INIS)

    Cuauhtecatl Hernandes, V.

    1982-01-01

    Studies were carried out through nuclear reactions (n, p); (n, heavy ion), and (n,α) of the dosimetric properties of CR 39 commercial brand polymers. A system was devised for calculating the number of neutron induced nuclear reactions and geometric absolute efficiency factors. Feasibility of the utilization of CR 39 in monitoring and in personnel dosimeters is also discussed. (author)

  6. Dosimetry of blood irradiation using an alanine/ESR dosimeter

    International Nuclear Information System (INIS)

    Chen, F.; Covas, D.T.; Baffa, O.

    2001-01-01

    A batch of 80 DL-alanine dosimeters was supplied to Hemocentro of the Hospital and Clinics of Faculdade de Medicina de Ribeirao Preto (HC-FMRP) SP, Brazil for the purpose of quality control of the radiation dose delivered to blood bags. The irradiation was made using two (40x40) cm 2 parallel opposed radiation fields each with 80 cm of source to surface distance in the Radiotherapy Section of HC-FMRP with the 60 Co teletherapy unit. The calculated radiation absorbed dose at the center of the box was 20 Gy. The dosimeter readings were performed using a Varian E-4 ESR Spectrometer operating in X-band. For the 80 dosimeters and over the irradiation volume throughout a blood bag, the minimum and maximum doses were 14 and 23 Gy, respectively. The mean dose was (18±2) Gy (1σ), and the coefficient of variability was 11.1%. Alanine dosimeters demonstrated easy handling, good precision and adequate sensitivity for this application

  7. Design and development of a PMOSFET gamma ray dosimeter

    International Nuclear Information System (INIS)

    Khanna, V.K.; Kumar, A.; Gupta, R.P.; Pandya, A.; Roy, Rajesh

    2005-01-01

    A P-channel MOSFET chip has been designed for detection of gamma radiations. The chip consists of three MOSFETs of different geometrical parameters for achieving sensitivity to low and high dose ranges. One of the MOSFET structures has a closed geometry to reduce the leakage current. The developed dosimeter being a MOSFET, its IC (Integrated Circuit)-compatibility helps in easy interfacing with readout circuitry. The dosimeter fabrication process is based on metal-gate MOSFET technology with thick gate oxide to increase the effective number of electron-hole pairs generated by the gamma rays impinging on the device. The process for the chip realization has been designed and simulated to achieve the required impurity diffusion profile. The chip has been fabricated using the above process and electrically characterized. The device has been exposed to gamma ray source and its characteristics measured. The change in threshold voltage of the MOSFET after exposure has been used to calculate the sensitivity of the device. The developed dosimeter has potential applications in personnel dosimetry and cancer treatment. This paper describes the basic detection mechanism of the MOSFET, the design approach, and fabrication process of the MOSFET dosimeter. (author)

  8. Calibration results obtained with Liulin-4 type dosimeters

    Czech Academy of Sciences Publication Activity Database

    Dacheva, T.; Tomova, B.; Matviichuka, Y.; Dimitrova, P.; Lemaireb, J.; Gregoirec, G.; Cyamukunguc, M.; Schmitzc, H.; Fujitakad, K.; Uchihorid, Y.; Kitamurad, H.; Reitze, G.; Beaujeanf, R.; Petrovg, V.; Shurshakovg, V.; Benghing, V.; Spurný, František

    2002-01-01

    Roč. 30, č. 4 (2002), s. 917-925 ISSN 0273-1177 Institutional research plan: CEZ:AV0Z1048901 Keywords : CERN high-energy reference field * detector * dosimeter Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.448, year: 2002

  9. Portable battery-free charger for radiation dosimeters

    International Nuclear Information System (INIS)

    Manning, F.W.

    1984-01-01

    This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter

  10. Portable battery-free charger for radiation dosimeters

    Science.gov (United States)

    Manning, Frank W.

    1984-01-01

    This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter.

  11. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  12. Imagining the prototype

    NARCIS (Netherlands)

    Brouwer, C. E.; Bhomer, ten M.; Melkas, H.; Buur, J.

    2013-01-01

    This article reports on the analysis of a design session, employing conversation analysis. In the design session three experts and a designer discuss a prototype of a shirt, which has been developed with the input from these experts. The analysis focuses on the type of involvement of the

  13. MIND performance and prototyping

    International Nuclear Information System (INIS)

    Cervera-Villanueva, A.

    2008-01-01

    The performance of MIND (Magnetised Iron Neutrino Detector) at a neutrino factory has been revisited in a new analysis. In particular, the low neutrino energy region is studied, obtaining an efficiency plateau around 5 GeV for a background level below 10 -3 . A first look has been given into the detector optimisation and prototyping

  14. The prototype fast reactor

    International Nuclear Information System (INIS)

    Broomfield, A.M.

    1985-01-01

    The paper concerns the Prototype Fast Reactor (PFR), which is a liquid metal cooled fast reactor power station, situated at Dounreay, Scotland. The principal design features of a Fast Reactor and the PFR are given, along with key points of operating history, and health and safety features. The role of the PFR in the development programme for commercial reactors is discussed. (U.K.)

  15. AGS Booster prototype magnets

    Energy Technology Data Exchange (ETDEWEB)

    Danby, G.; Jackson, J.; Lee, Y.Y.; Phillips, R.; Brodowski, J.; Jablonski, E.; Keohane, G.; McDowell, B.; Rodger, E.

    1987-03-19

    Prototype magnets have been designed and constructed for two half cells of the AGS Booster. The lattice requires 2.4m long dipoles, each curved by 10/sup 0/. The multi-use Booster injector requires several very different standard magnet cycles, capable of instantaneous interchange using computer control from dc up to 10 Hz.

  16. AGS booster prototype magnets

    International Nuclear Information System (INIS)

    Danby, G.; Jackson, J.; Lee, Y.Y.; Phillips, R.; Brodowski, J.; Jablonski, E.; Keohane, G.; McDowell, B.; Rodger, E.

    1987-01-01

    Prototype magnets have been designed and constructed for two half cells of the AGS Booster. The lattice requires 2.4m long dipoles, each curved by 10 0 . The multi-use Booster injector requires several very different standard magnet cycles, capable of instantaneous interchange using computer control from dc up to 10 Hz

  17. Cockroft Walton accelerator prototype

    International Nuclear Information System (INIS)

    Hutapea, Sumihar.

    1976-01-01

    Prototype of a Cockroft Walton generator using ceramic and plastic capacitors is discussed. Compared to the previous generator, the construction and components are much more improved. Pralon is used for the high voltage insulation column and plastic is used as a dielectric material for the high voltage capacitor. Cockroft Walton generator is used as a high tension supply for an accelerator. (author)

  18. Prompt and Precise Prototyping

    Science.gov (United States)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  19. Surrogates-based prototyping

    NARCIS (Netherlands)

    Du Bois, E.; Horvath, I.

    2014-01-01

    The research is situated in the system development phase of interactive software products. In this detailed design phase, we found a need for fast testable prototyping to achieve qualitative change proposals on the system design. In this paper, we discuss a literature study on current software

  20. Z Andromedae: the prototype

    International Nuclear Information System (INIS)

    Viotti, R.; Giangrande, A.; Ricciardi, O.; Cassatella, A.

    1982-01-01

    Z And is considered as the ''prototype'' of the symbiotic stars. Besides its symbiotic spectrum, the star is also known for its characteristic light curve (and for the related spectral variations). Since many theoretical speculations on Z And and similar objects have been based on the luminosity and spectral variations of this star, the authors critically analyse the observational data concerning it. (Auth.)

  1. Prototype ATLAS straw tracker

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This is an early prototype of the straw tracking device for the ATLAS detector at CERN. This detector will be part of the LHC project, scheduled to start operation in 2008. The straw tracker will consist of thousands of gas-filled straws, each containing a wire, allowing the tracks of particles to be followed.

  2. Monte Carlo simulation experiments on box-type radon dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Khalid, E-mail: kjamil@comsats.edu.pk; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid

    2014-11-11

    Epidemiological studies show that inhalation of radon gas ({sup 222}Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the {sup 222}Rn concentrations (Bq/m{sup 3}) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter’s dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (η{sub int}) and alpha hit efficiency (η{sub hit}). The η{sub int} depends upon only on the dimensions of the dosimeter and η{sub hit} depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper

  3. Courthouse Prototype Building

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Mini [ORNL; New, Joshua Ryan [ORNL; Im, Piljae [ORNL

    2018-02-01

    As part of DOE's support of ANSI/ASHRAE/IES Standard 90.1 and IECC, researchers at Pacific Northwest National Laboratory (PNNL) apply a suite of prototype buildings covering 80% of the commercial building floor area in the U.S. for new construction. Efforts have started on expanding the prototype building suite to cover 90% of the commercial building floor area in the U.S., by developing prototype models for additional building types including place of worship, public order and safety, public assembly. Courthouse is courthouse is a sub-category under the “Public Order and Safety" building type category; other sub-categories include police station, fire station, and jail, reformatory or penitentiary.ORNL used building design guides, databases, and documented courthouse projects, supplemented by personal communication with courthouse facility planning and design experts, to systematically conduct research on the courthouse building and system characteristics. This report documents the research conducted for the courthouse building type and proposes building and system characteristics for developing a prototype building energy model to be included in the Commercial Building Prototype Model suite. According to the 2012 CBECS, courthouses occupy a total of 436 million sqft of floor space or 0.5% of the total floor space in all commercial buildings in the US, next to fast food (0.35%), grocery store or food market (0.88%), and restaurant or cafeteria (1.2%) building types currently included in the Commercial Prototype Building Model suite. Considering aggregated average, courthouse falls among the larger with a mean floor area of 69,400 sqft smaller fuel consumption intensity building types and an average of 94.7 kBtu/sqft compared to 77.8 kBtu/sqft for office and 80 kBtu/sqft for all commercial buildings.Courthouses range in size from 1000 sqft to over a million square foot building gross square feet and 1 courtroom to over 100 courtrooms. Small courthouses

  4. Comprehensive Angular Response Study of LLNL Panasonic Dosimeter Configurations and Artificial Intelligence Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Stone, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-30

    In April of 2016, the Lawrence Livermore National Laboratory External Dosimetry Program underwent a Department of Energy Laboratory Accreditation Program (DOELAP) on-site assessment. The assessment reported a concern that the study performed in 2013 Angular Dependence Study Panasonic UD-802 and UD-810 Dosimeters LLNL Artificial Intelligence Algorithm was incomplete. Only the responses at ±60° and 0° were evaluated and independent data from dosimeters was not used to evaluate the algorithm. Additionally, other configurations of LLNL dosimeters were not considered in this study. This includes nuclear accident dosimeters (NAD) which are placed in the wells surrounding the TLD in the dosimeter holder.

  5. Calibration of dosimeters at 80-120 keV electron irradiation

    DEFF Research Database (Denmark)

    Miller, A.; Helt-Hansen, J.

    to calibrate thin-film dosimeters (Risø B3 and alanine films) by irradiation at the 80–120 keV electron accelerators. This calibration was compared to a 10MeV calibration, and we show that the radiation response of the dosimeter materials (the radiation chemical yield) is constant at these irradiation energies....... However, dose gradients within the dosimeters, when it is irradiated at low electron energies,mean that calibration function here will depend on both irradiation energy and the required effective point of measurement of the dosimeter. These are general effects that apply to any dosimeter that has a non...

  6. VALIDATION OF HANFORD PERSONNEL AND EXTREMITY DOSIMETERS IN PLUTONIUM ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Scherpelz, Robert I.; Fix, John J.; Rathbone, Bruce A.

    2000-02-10

    A study was performed in the Plutonium Finishing Plant to assess the performance of Hanford personnel neutron dosimetry. The study was assessed whole body dosimetry and extremity dosimetry performance. For both parts of the study, the TEPC was used as the principle instrument for characterizing workplace neutron fields. In the whole body study, 12.7-cm-diameter TEPCs were used in ten different locations in the facility. TLD and TED personnel dosimeters were exposed on a water-filled phantom to enable a comparison of TEPC and dosimeter response. In the extremity study, 1.27-cm-diameter TEPCs were exposed inside the fingers of a gloveboxe glove. Extremity dosimeters were wrapped around the TEPCs. The glove was then exposed to six different cans of plutonium, simulating the exposure that a worker's fingers would receive in a glovebox. The comparison of TEPC-measured neutron dose equivalent to TLD-measured gamma dose equivalent provided neutron-to-gamma ratios that can be used to estimate the neutron dose equivalent received by a worker's finger based on the gamma readings of an extremity dosimeter. The study also utilized a Snoopy and detectors based on bubble technology for assessing neutron exposures, providing a comparison of the effectiveness of these instruments for workplace monitoring. The study concludes that the TLD component of the HCND performs adequately overall, with a positive bias of 30%, but exhibits excessive variability in individual results due to instabilities in the algorithm. The TED response was less variable but only 20% of the TEPC reference dose on average because of the low neutron energies involved. The neutron response of the HSD was more variable than the TLD component of the HCND and biased high by a factor of 8 overall due to its calibration to unmoderated 252Cf. The study recommends further work to correct instabilities in the HCND algorithm and to explore the potential shown by the bubble-based dosimeters.

  7. Ionizing radiation M.O.S. dosimeters: sensibility and stability

    International Nuclear Information System (INIS)

    Gessinn, F.

    1993-12-01

    This thesis is a contribution to the study of the ionizing radiation responsivity of P.O.M.S. dosimeters. Unlike the development of processing hardening techniques, our works goal were to increase, on the one hand, the M.O.S. dosimeters sensitivity in order to detect small radiation doses and on the other hand, the stability with time and temperature of the devices, to minimize the absorbed-dose estimation errors. With this aim in mind, an analysis of all processing parameters has been carried out: the M.O.S. dosimeter sensitivity is primarily controlled by the gate oxide thickness and the irradiation electric field. Thus, P.M.O.S. transistors with 1 and 2 μm thick silica layers have been fabricated for our experiments. The radiation response of our devices in the high-field mode satisfactorily fits a D ox 2 power law. The maximum sensitivity achieved (9,2 V/Gy for 2μm devices) is close to the ideal value obtained when considering only an unitary carrier-trapping level, and allows to measure about 10 -2 Gy radiation doses. Read-time stability has been evaluated under bias-temperature stress conditions: experiments underscore slow fading, corresponding to 10 -3 Gy/h. The temperature response has also been studied: the analytical model we have developed predicts M.O.S. transistors threshold voltage variations over the military specifications range [-50 deg. C, + 150 deg. C]. Finally, we have investigated the possibilities of irradiated dosimeters thermal annealing for reusing. It appears clearly that radiation-induced damage annealing is strongly gate bias dependent. Furthermore, dosimeters radiation sensitivity seems not to be affected by successive annealings. (author). 146 refs., 58 figs., 9 tabs

  8. Evaluation of the implementation and use of active personal dosimeters for neutrons in Brazil

    International Nuclear Information System (INIS)

    Castro B, C. P.; Wagner P, W.; De Souza P, K. C.

    2014-08-01

    This work was conducted through of a field research based on a questionnaire sent to users of active personal dosimeters. A retrospective study of the last six years was also carried out of the services in the Neutron Metrology Laboratory (2008-2013) referent to the active personal dosimeters, taking into consideration the standards ISO-8529-3 and IEC-61526. The active personal dosimeters are defined as any instrument of individual monitoring with direct reading capacity, used by individuals exposed to ionizing radiation fields. Through research was verified that the active personal dosimeters work associated with other dosimeter types. Considering all dosimeters declared in the questionnaire, only two dosimeters (MGP brand Dmc 2000-GN model and the brand ATOMTEX model AT2503A) have conformity declaration with the international standard IEC-61526: 2005 reported by the manufacturers. (author)

  9. MIDN: A spacecraft Micro-dosimeter mission

    International Nuclear Information System (INIS)

    Pisacane, V. L.; Ziegler, J. F.; Nelson, M. E.; Caylor, M.; Flake, D.; Heyen, L.; Youngborg, E.; Rosenfeld, A. B.; Cucinotta, F.; Zaider, M.; Dicello, J. F.

    2006-01-01

    MIDN (Micro-dosimetry instrument) is a payload on the MidSTAR-I spacecraft (Midshipman Space Technology Applications Research) under development at the United States Naval Academy. MIDN is a solid-state system being designed and constructed to measure Micro-dosimetric spectra to determine radiation quality factors for space environments. Radiation is a critical threat to the health of astronauts and to the success of missions in low-Earth orbit and space exploration. The system will consist of three separate sensors, one external to the spacecraft, one internal and one embedded in polyethylene. Design goals are mass <3 kg and power <2 W. The MidSTAR-I mission in 2006 will provide an opportunity to evaluate a preliminary version of this system. Its low power and mass makes it useful for the International Space Station and manned and unmanned interplanetary missions as a real-time system to assess and alert astronauts to enhanced radiation environments. (authors)

  10. CMOS Integrated Carbon Nanotube Sensor

    International Nuclear Information System (INIS)

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-01-01

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  11. Database Replication Prototype

    OpenAIRE

    Vandewall, R.

    2000-01-01

    This report describes the design of a Replication Framework that facilitates the implementation and com-parison of database replication techniques. Furthermore, it discusses the implementation of a Database Replication Prototype and compares the performance measurements of two replication techniques based on the Atomic Broadcast communication primitive: pessimistic active replication and optimistic active replication. The main contributions of this report can be split into four parts....

  12. Brachial Plexus Blocker Prototype

    OpenAIRE

    Stéphanie Coelho Monteiro

    2017-01-01

    Although the area of surgical simulation has been the subject of study in recent years, it is still necessary to develop artificial experimental models with a perspective to dismiss the use of biological models. Since this makes the simulators more real, transferring the environment of the health professional to a physical or virtual reality, an anesthetic prototype has been developed, where the motor response is replicated when the brachial plexus is subjected to a proximal nervous stimulus....

  13. Wireless Augmented Reality Prototype (WARP)

    Science.gov (United States)

    Devereaux, A. S.

    1999-01-01

    Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.

  14. Prototyping real-time systems

    OpenAIRE

    Clynch, Gary

    1994-01-01

    The traditional software development paradigm, the waterfall life cycle model, is defective when used for developing real-time systems. This thesis puts forward an executable prototyping approach for the development of real-time systems. A prototyping system is proposed which uses ESML (Extended Systems Modelling Language) as a prototype specification language. The prototyping system advocates the translation of non-executable ESML specifications into executable LOOPN (Language of Object ...

  15. Tracking and Monitoring with Dosimeter-Enabled ARG-US RFID System - 12009

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.; Lee, H.; De Lurgio, P.; Kearney, C.M.; Craig, B.; Soos, I.H.; Tsai, H.; Liu, Y. [Argonne National Laboratory, Argonne, IL 60439 (United States); Shuler, J. [U.S. Department of Energy, Washington, D.C. 20585 (United States)

    2012-07-01

    Automated monitoring and tracking of materials with radio frequency identification (RFID) technology can significantly improve both the operating efficiency of radiological facilities and the application of the ALARA (as low as reasonably achievable) principle in them. One such system, called ARG-US, has been developed by Argonne National Laboratory for the U.S. Department of Energy (DOE) Packaging and Certification Program to use in managing sensitive nuclear and radioactive materials. Several ARG-US systems are in various stages of deployment and advanced testing across DOE sites. ARG-US utilizes sensors in the tags to continuously monitor the state of health of the packaging and promptly disseminates alarms to authorized users. In conjunction with global positioning system (GPS) tracking provided by TRANSCOM, the system can also monitor and track packages during transport. A compact dosimeter has been incorporated in the ARG-US tags via an onboard universal asynchronous receiver/transmitter interface. The detector has a wide measurement range for gamma radiation - from 0.1 mSv/h to 8 Sv/h. The detector is able to generate alarms for both high and low radiation and for a high cumulative dose. In a large installation, strategically located dosimeter-enabled tags can yield an accurate, real-time, 2D or 3D dose field map that can be used to enhance facility safety, security, and safeguards. This implementation can also lead to a reduced need for manned surveillance and reduced exposure of personnel to radiation, consistent with the ALARA principle at workplaces. (authors)

  16. Online monitoring of absorbed dose in undulator magnets with RADFET dosimeters at FERMI@Elettra

    International Nuclear Information System (INIS)

    Fröhlich, L.; Casarin, K.; Quai, E.; Holmes-Siedle, A.; Severgnini, M.; Vidimari, R.

    2013-01-01

    The FERMI@Elettra free-electron laser, based on a 1.3 GeV electron linac, requires the monitoring of radiation doses up to a few kGy for the protection of sensitive equipment such as permanent magnet undulators. A new dosimetry system DOSFET-L01, employing an array of RADFETs spread throughout the accelerator, was developed. So far, the system has performed flawlessly for almost two years, taking one dose reading per minute around the clock. The REM RFT-300 sensors were set in zero-bias mode, i.e. with all electrodes grounded during exposure. This choice of mode allows the measurement of a high range of integrated doses – up to a few kGy. The paper describes the new read-out system and its application, calibration measurements in cobalt-60 and 6 MeV bremsstrahlung radiation sources giving rise to a novel response function, and new data on “fade” under the zero-bias mode of use for over 300 days at room temperature. Regular readings from 28 RADFETs placed within seven undulators over the first 20 months of operation of the accelerator demonstrate how the system tracks and locates periods of high and low dose rate and thereby contributes to the protection from beam loss. The readings from the RADFET system are found to be in good agreement with Gafchromic EBT2 film dosimeters. Based on the results reported, the choice of bias mode may be revised so as to reduce fade and improve the accuracy conferred by a positive-bias mode. -- Highlights: ► We developed a system for online dosimetry with RADFET sensors under zero bias. ► The system is calibrated for doses up to 10 kGy with REM RFT-300 sensors. ► We collected data on fade for over 300 days from irradiation. ► We present undulator dose measurements for 20 months of operation of FERMI@Elettra. ► Dose measurements are in good agreement with chemical film dosimeters

  17. Developing novel extensions to support prototyping for interactive social robots

    NARCIS (Netherlands)

    Bhömer, ten M.; Bartneck, C.; Hu, J.; Ahn, R.M.C.; Tuyls, K.P.; Delbressine, F.L.M.; Feijs, L.M.G.

    2009-01-01

    Lego Mindstorms NXT is a platform highly suitable for prototyping in the field of interactive social robotics. During a technology masterclass at Eindhoven University of Technology students from the department of Industrial Design have developed five novel extensions (sensors and actuators) for the

  18. Hardware prototype with component specification and usage description

    NARCIS (Netherlands)

    Azam, Tre; Aswat, Soyeb; Klemke, Roland; Sharma, Puneet; Wild, Fridolin

    2017-01-01

    Following on from D3.1 and the final selection of sensors, in this D3.2 report we present the first version of the experience capturing hardware prototype design and API architecture taking into account the current limitations of the Hololens not being available until early next month in time for

  19. A prototype analysis of vengeance

    NARCIS (Netherlands)

    Elshout, Maartje; Nelissen, Rob; van Beest, Ilja

    2015-01-01

    The authors examined the concept of vengeance from a prototype perspective. In 6 studies, the prototype structure of vengeance was mapped. Sixty-nine features of vengeance were identified (Study 1), and rated on centrality (Study 2). Further studies confirmed the prototype structure. Compared to

  20. Use of Ukrainian semiconductor dosimeters in a CERN particle accelerator field

    Science.gov (United States)

    Rosenfeld, A.; Khivrich, V.; Kuts, V.; Tavlet, M.; Malfante, L.; Munoz-Ferrada, C.

    1994-08-01

    The results of the application of p-i-n and MOS dosimeters in the PS-ACOL Irradiation Facility (PSAIF) at CERN for separate measurements of gamma dose and fast neutron fluences are presented. The mixed gamma-neutron field was due to 26 GeV protons hitting an irridium target, yielding an instantaneous dose rate of approximately 3.10(sup 5) Gy/s. Good agreement with calibration curves is found for MOS in a (sup 60)Co gamma source as well as for p-i-n sensors in a neutron reactor spectrum with mean energy of 1 MeV. Experimental results from PSAIF are presented and pulse current injection annealing of p-i-n diodes is considered. Such sensors are very convenient for on-line separated total dose measurements in mixed gamma-neutron radiation fields, as well as for radiation hardness testing of electronic components on irradiation facilities, and could be installed near the detector area of LHC.

  1. Design and Implementation of a Prototype with a Standardized Interface for Transducers in Ambient Assisted Living

    Directory of Open Access Journals (Sweden)

    Enrique Dorronzoro

    2015-01-01

    Full Text Available Solutions in the field of Ambient Assisted Living (AAL do not generally use standards to implement a communication interface between sensors and actuators. This makes these applications isolated solutions because it is so difficult to integrate them into new or existing systems. The objective of this research was to design and implement a prototype with a standardized interface for sensors and actuators to facilitate the integration of different solutions in the field of AAL. Our work is based on the roadmap defined by AALIANCE, using motes with TinyOS telosb, 6LoWPAN, sensors, and the IEEE 21451 standard protocol. This prototype allows one to upgrade sensors to a smart status for easy integration with new applications and already existing ones. The prototype has been evaluated for autonomy and performance. As a use case, the prototype has been tested in a serious game previously designed for people with mobility problems, and its advantages and disadvantages have been analysed.

  2. First dose-map measured with a polycrystalline diamond 2D dosimeter under an intensity modulated radiotherapy beam

    Energy Technology Data Exchange (ETDEWEB)

    Scaringella, M., E-mail: scaringella@gmail.com [Università di Firenze, Dipartimento di Ingegneria dell’Informazione, Firenze (Italy); Zani, M. [INFN Sezione di Firenze, Sesto Fiorentino, Firenze (Italy); Università di Firenze, Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Firenze (Italy); Baldi, A. [Università di Firenze, Dipartimento di Ingegneria Industriale, Firenze (Italy); Bucciolini, M. [INFN Sezione di Firenze, Sesto Fiorentino, Firenze (Italy); Università di Firenze, Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Firenze (Italy); Pace, E.; Sio, A. de [INFN Sezione di Firenze, Sesto Fiorentino, Firenze (Italy); Università di Firenze, Dipartimento di Fisica e Astronomia, Sesto Fiorentino, Firenze (Italy); Talamonti, C. [INFN Sezione di Firenze, Sesto Fiorentino, Firenze (Italy); Università di Firenze, Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Firenze (Italy); Bruzzi, M. [INFN Sezione di Firenze, Sesto Fiorentino, Firenze (Italy); Università di Firenze, Dipartimento di Fisica e Astronomia, Sesto Fiorentino, Firenze (Italy)

    2015-10-01

    A prototype of bidimensional dosimeter made on a 2.5×2.5 cm{sup 2} active area polycrystalline Chemical Vapour Deposited (pCVD) diamond film, equipped with a matrix of 12×12 contacts connected to the read-out electronics, has been used to evaluate a map of dose under Intensity Modulated Radiation Therapy (IMRT) fields for a possible application in pre-treatment verifications of cancer treatments. Tests have been performed under a 6–10 MVRX beams with IMRT fields for prostate and breast cancer. Measurements have been taken by measuring the 144 pixels in different positions, obtained by shifting the device along the x/y axes to span a total map of 14.4×10 cm{sup 2}. Results show that absorbed doses measured by our pCVD diamond device are consistent with those calculated by the Treatment Planning System (TPS)

  3. Characterization of high-sensitivity metal oxide semiconductor field effect transistor dosimeters system and LiF:Mg,Cu,P thermoluminescence dosimeters for use in diagnostic radiology

    International Nuclear Information System (INIS)

    Dong, S.L.; Chu, T.C.; Lan, G.Y.; Wu, T.H.; Lin, Y.C.; Lee, J.S.

    2002-01-01

    Monitoring radiation exposure during diagnostic radiographic procedures has recently become an area of interest. In recent years, the LiF:Mg,Cu,P thermoluminescence dosimeter (TLD-100H) and the highly sensitive metal oxide semiconductor field effect transistor (MOSFET) dosimeter were introduced as good candidates for entrance skin dose measurements in diagnostic radiology. In the present study, the TLD-100H and the MOSFET dosimeters were evaluated for sensitivity, linearity, energy, angular dependence, and post-exposure response. Our results indicate that the TLD-100H dosimeter has excellent linearity within diagnostic energy ranges and its sensitivity variations were under 3% at tube potentials from 40 Vp to 125 kVp. Good linearity was also observed with the MOSFET dosimeter, but in low-dose regions the values are less reliable and were found to be a function of the tube potentials. Both dosimeters also presented predictable angular dependence in this study. Our findings suggest that the TLD-100H dosimeter is more appropriate for low-dose diagnostic procedures such as chest and skull projections. The MOSFET dosimeter system is valuable for entrance skin dose measurement with lumbar spine projections and certain fluoroscopic procedures

  4. Assessing Doses to Interventional Radiologists Using a Personal Dosimeter Worn Over a Protective Apron

    International Nuclear Information System (INIS)

    Stranden, E.; Widmark, A.; Sekse, T.

    2008-01-01

    Background: Interventional radiologists receive significant radiation doses, and it is important to have simple methods for routine monitoring of their exposure. Purpose: To evaluate the usefulness of a dosimeter worn outside the protective apron for assessments of dose to interventional radiologists. Material and Methods: Assessments of effective dose versus dose to dosimeters worn outside the protective apron were achieved by phantom measurements. Doses outside and under the apron were assessed by phantom measurements and measurements on eight radiologists wearing two routine dosimeters for a 2-month period during ordinary working conditions. Finger doses for the same radiologists were recorded using thermoluminescent dosimeters (TLD; DXT-RAD Extremity dosimeters). Results: Typical values for the ratio between effective dose and dosimeter dose were found to be about 0.02 when the radiologist used a thyroid shield and about 0.03 without. The ratio between the dose to the dosimeter under and outside a protective apron was found to be less than 0.04. There was very good correlation between finger dose and dosimeter dose. Conclusion: A personal dosimeter worn outside a protective apron is a good screening device for dose to the eyes and fingers as well as for effective dose, even though the effective dose is grossly overestimated. Relatively high dose to the fingers and eyes remains undetected by a dosimeter worn under the apron

  5. Assessing Doses to Interventional Radiologists Using a Personal Dosimeter Worn Over a Protective Apron

    Energy Technology Data Exchange (ETDEWEB)

    Stranden, E.; Widmark, A.; Sekse, T. (Buskerud Univ. College, Drammen (Norway))

    2008-05-15

    Background: Interventional radiologists receive significant radiation doses, and it is important to have simple methods for routine monitoring of their exposure. Purpose: To evaluate the usefulness of a dosimeter worn outside the protective apron for assessments of dose to interventional radiologists. Material and Methods: Assessments of effective dose versus dose to dosimeters worn outside the protective apron were achieved by phantom measurements. Doses outside and under the apron were assessed by phantom measurements and measurements on eight radiologists wearing two routine dosimeters for a 2-month period during ordinary working conditions. Finger doses for the same radiologists were recorded using thermoluminescent dosimeters (TLD; DXT-RAD Extremity dosimeters). Results: Typical values for the ratio between effective dose and dosimeter dose were found to be about 0.02 when the radiologist used a thyroid shield and about 0.03 without. The ratio between the dose to the dosimeter under and outside a protective apron was found to be less than 0.04. There was very good correlation between finger dose and dosimeter dose. Conclusion: A personal dosimeter worn outside a protective apron is a good screening device for dose to the eyes and fingers as well as for effective dose, even though the effective dose is grossly overestimated. Relatively high dose to the fingers and eyes remains undetected by a dosimeter worn under the apron

  6. Performances of Dose Measurement of Commercial Electronic Dosimeters using Geiger Muller Tube and PIN Diode

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyunjun; Kim, Chankyu; Kim, Yewon; Kim, Giyoon; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    There are two categories in personal dosimeters, one is passive type dosimeter such as TLD (thermoluminescence dosimeter) and the other is active type dosimeter such as electronic dosimeter can show radiation dose immediately while TLD needs long time to readout its data by heating process. For improving the reliability of measuring dose for any energy of radiations, electronic dosimeter uses energy filter by metal packaging its detector using aluminum or copper, but measured dose of electronic dosimeter with energy filter cannot be completely compensated in wide radiation energy region. So, in this paper, we confirmed the accuracy of dose measurement of two types of commercial EPDs using Geiger Muller tube and PIN diode with CsI(Tl) scintillator in three different energy of radiation field. The experiment results for Cs-137 was almost similar with calculation value in the results of both electronic dosimeters, but, the other experiment values with Na-22 and Co-60 had higher error comparing with Cs-137. These results were caused by optimization of their energy filters. The optimization was depending on its thickness of energy filter. So, the electronic dosimeters have to optimizing the energy filter for increasing the accuracy of dose measurement or the electronic dosimeter using PIN diode with CsI(Tl) scintillator uses the multi-channel discriminator for using its energy information.

  7. Reproducibility and signal response linearity of Alanine gel dosimeter

    International Nuclear Information System (INIS)

    Silva, Cleber Feijo Silva; Campos, Leticia Lucente

    2008-01-01

    Gel Dosimetry has been studied mainly for medical applications, because it presents signal response in the dose range used in radiotherapy treatments and it can be applied for three dimensional dosimetry. Alanine gel dosimeter is a new gel material developed at IPEN that presents significant improvement on previous alanine systems developed by Costa (1994). The DL-Alanine (C 3 H 7 NO 2 ) is an amino acid tissue equivalent that improves the production of ferric ions in the solution. These ferric ions concentration can be measured by spectrophotometry technique. This work aims to study the reproducibility of the alanine gel solutions and the signal response as a function of gamma radiation dose, considering that these two properties are very important for characterizing and standardizing any dosimeter. (author)

  8. Medical extrapolation chamber dosimeter model XW6012A

    International Nuclear Information System (INIS)

    Jin Tao; Wang Mi; Wu Jinzheng; Guo Qi

    1992-01-01

    An extrapolation chamber dosimeter has been developed for clinical dosimetry of electron beams and X-rays from medical linear accelerators. It consists of a new type extrapolation chamber, a water phantom and an intelligent portable instrument. With a thin entrance window and a φ20 mm collecting electrode made of polystyrene, the electrode spacing can be varied from 0.2 to 6 mm. The dosimeter can accomplish dose measurement automatically, and has functions of error self-diagnosis and dose self-recording. The energy range applicable is 0.5-20 MeV, and the dose-rate range 0.02-40 Gy/min. The total uncertainty is 2.7%

  9. Investigations of CR39 dosimeters for neutron routine dosimetry

    International Nuclear Information System (INIS)

    Weinstein, M.; Abraham, A.; Tshuva, A.; German, U.

    2004-01-01

    CR-39 is a polymeric nuclear track detector which is widely used for neutron dosimetry. CR-39 detector development was conducted at a number of laboratories throughout the world(1,2) , and was accepted also for routine dosimetry. However, there are shortcomings which must be taken into consideration the lack of a dosimetry grade material which causes batch variations, significant angular dependence and a moderate sensitivity. CR-39 also under-responds for certain classes of neutron spectra (lower energy neutrons from reactors or high energy accelerator-produced neutrons).In order to introduce CR-39 as a routine dosimeter at NRCN, a series of checks were performed. The present work describes the results of some of our checks, to characterize the main properties of CR-39 dosimeters

  10. Water-equivalence of gel dosimeters for radiology medical imaging

    International Nuclear Information System (INIS)

    Valente, M; Vedelago, J.; Perez, P.; Chacon, D.; Mattea, F.; Velasquez, J.

    2017-10-01

    International dosimetry protocols are based on determinations of absorbed dose to water. Ideally, the phantom material should be water equivalent; that is, it should have the same absorption and scatter properties as water. This study presents theoretical, experimental and Monte Carlo modeling of water-equivalence of Fricke and polymer (NIPAM, PAGAT and itaconic acid ITABIS) gel dosimeters. Mass and electronic densities along with effective atomic number were calculated by means of theoretical approaches. Samples were scanned by standard computed tomography and high-resolution micro computed tomography. Photon mass attenuation coefficients and electron stopping powers were examined by Monte Carlo simulations. Theoretical, Monte Carlo and experimental results confirmed good water-equivalence for all gel dosimeters. Overall variations with respect to water in the low energy radiology range (up to 130 k Vp) were found to be less than 3% in average. (Author)

  11. Electronic personal dosimeter heralds a revolution in legal dosimetry

    International Nuclear Information System (INIS)

    Fletcher, R.

    1991-01-01

    The Electronic Personal Dosimeter (EPD) developed by Siemens Plessey Controls and the UK's national Radiological Protection Board is approaching the pre-production stage. It provides ''legal'' dosimetry and all the features of a personal alarming dosimeter. The EPD uses solid state semiconductor detectors for gamma and beta radiation and has a dose threshold of about 1μ Sv, with a low energy gamma range down to 20 KeV. It has a multi function liquid crystal display for instant readout and audible and visual alarms. Two separates dose stores are maintained. Short term dose for tactical management and long term dose for approved dosimetry service record keeping. The latter can be reset only by an approved dosimetry service and is maintained on a search memory disk which can be read even if the EPD is destroyed. (UK)

  12. Some properties of commercial dyed plastic as radiation dosimeters

    International Nuclear Information System (INIS)

    Rageh, M.S.I.; El-Assy, N.B.; Ashry, M.

    1986-01-01

    The use of commercial dyed plastics (red and green perspex) as radiation dosimeters in a cobalt-60 sterilizing plant is described. The results are satisfactory and offer advantages over the other dosimeters. The increase in the optical density for red perspex at wavelengths 650 and 750 nm with radiation can be used for absorbed dose measurements over the ranges from 1 to 7.5 KGy and from 5 to 25 KGy correspondingly. The decrease in the optical density for green perspex at 596, 612 and 641 nm with absorbed dose can extend the linear response range up to about 45 KGy. The fading of intensity of the irradiation induced absorption bands in dyed plastics after storage at different temperatures had been investigated

  13. Water-equivalence of gel dosimeters for radiology medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Valente, M; Vedelago, J.; Perez, P. [Instituto de Fisica Enrique Gaviola - CONICET, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA, Cordoba (Argentina); Chacon, D.; Mattea, F. [Universidad Nacional de Cordoba, FAMAF, Laboratorio de Investigacion e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA Cordoba (Argentina); Velasquez, J., E-mail: valente@famaf.unc.edu.ar [ICOS Inmunomedica, Lago Puyehue 01745, Temuco (Chile)

    2017-10-15

    International dosimetry protocols are based on determinations of absorbed dose to water. Ideally, the phantom material should be water equivalent; that is, it should have the same absorption and scatter properties as water. This study presents theoretical, experimental and Monte Carlo modeling of water-equivalence of Fricke and polymer (NIPAM, PAGAT and itaconic acid ITABIS) gel dosimeters. Mass and electronic densities along with effective atomic number were calculated by means of theoretical approaches. Samples were scanned by standard computed tomography and high-resolution micro computed tomography. Photon mass attenuation coefficients and electron stopping powers were examined by Monte Carlo simulations. Theoretical, Monte Carlo and experimental results confirmed good water-equivalence for all gel dosimeters. Overall variations with respect to water in the low energy radiology range (up to 130 k Vp) were found to be less than 3% in average. (Author)

  14. The Response of Alanine Dosimeters in Thermal Neutron Fields

    DEFF Research Database (Denmark)

    Schmitz, T.; Bassler, Niels; Sharpe, P.

    response of all pellets could be reproduced by calculations within a uncertainty of 5 %. For all experiments three dose components have been separated. A proton dose is generated in the 14N(n,p)14C reaction. Secondary gammas are generated by various (n,γ) reactions, dominated by the 2.2 MeV photon from...... experiments the dosimeters will be exposed to higher neutron energies, which are more typical for BNCT treatments. References: [1] Barth, R.F; 2009: Boron neutron capture therapy at the crossroads: Challenges and opportunities. Applied Radiation and Isotopes 67, 3-6. [2] Rogus, R.D.; Harling, O.K.; Yanch, J.C...... for treatment of liver metastases. Applied Radiation and Isotopes 67, 238-241. [4] Sharpe, P.; Sephtan, J.; 2000: An automated system for the measurement of alanine/EPR dosimeters. Applied Radiation and Isotopes 52, 1185-1188....

  15. International intercomparison of environmental dosimeters under field and laboratory conditions

    International Nuclear Information System (INIS)

    Gesell, T.F.; de Planque Burke, G.; Becker, K.

    1975-04-01

    Based on the results of a pilot study at ORNL in 1973, a more comprehensive international intercomparison of integrating dosimeters for the assessment of external penetrating environmental radiation fields was carried out. Forty-one laboratories from eleven countries participated in this study. A total of 56 sets of six detectors each were mailed to and from Houston, Texas, where they were exposed for three months (July to September 1974) as follows: two in an unprotected space out-of-doors 1 m above ground; two in an air-conditioned shielded area with a known, low exposure rate; and two with the second group, but with an additional exposure to 30 mR. Evaluation of the dosimeters provides information on the calibration precision, the accuracy of field measurement, and transit exposure. Results are discussed. (U.S.)

  16. An improved design of QFE dosimeter charging unit

    International Nuclear Information System (INIS)

    Speight, R.G.; Clifton, J.J.

    1976-02-01

    The availability of commercial charging units for quartz fibre electroscope dosimeters (QFEs) in the United Kingdom has been limited to small battery units intended for use in laboratory conditions. The use of large numbers of QFEs by semi-skilled staff has resulted in damage to many dosimeters, particularly at the charging pins. Difficulties have also been experienced in the viewing of the scale and fibre in non-laboratory lighting conditions. These problems have resulted in the development of a robust charging and viewing unit, which is described in this report. The new unit which is mains electricity powered, is contained in a case 230 x 305 x 150 mm weighing 4.5 kg. (U.K.)

  17. Development of diffusion-based radon daughter dosimeters

    International Nuclear Information System (INIS)

    Phillips, C.R.; Khan, A.; Leung, H.

    1983-07-01

    The objective of this work is to investigate the possible application of the mechanisms of thermophoresis and electrostatic collection via electrets to the collection of radon daughters with reference to personal alpha dosimeters for use in uranium mines. The potential advantage accruing from adoption of either one of these collection mechanisms is that collection is passive and does not depend upon the use of a pump (active), and is, therefore, intrinsically much more reliable

  18. Letter concerning Li2B4O7 thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Soares, C.G.

    1979-01-01

    This letter reports the comparison of two commercially available types of lithium borate thermoluminesence dosimeters: one in which crystalline lithium borate was pressed into chips, and the other in which lithium borate was dispersed in a glass matrix. When irradiated with cobalt 60 gamma radiation, the response of a single sample of each type was reproducible to within 1%. However, differences between the two samples were apparent in their long term storage characteristics

  19. The radiation dosimeter on-board the FY-4 Satellite

    Science.gov (United States)

    Zhang, B.; Sun, Y.; Zhang, S.; Zhang, X.; Sun, Y.; Jing, T.

    2017-12-01

    The total radiation dose effect can lead to a decrease in the performance of satellite devices or materials. Accurately obtaining the total radiation dose during satellite operation could help to analyze the abnormality of payloads in orbit and optimize the design of radiation shielding. The radiation dosimeter is one of the space environmental monitoring devices on the "FY-4" satellite, which is a new generation of geostationary meteorological satellite. The dosimeter consists of 8 detectors, which are installed in different locations of the satellite, to obtain the total radiation dose with different shielding thickness and different orientations. To measure a total radiation dose up to 2000krad(Si), 100nm ion implantation RADFET was used. To improve the sensitivity of the dosimeter, the bias voltage of RADFET is set to 15V, and a 10V, 15-bit A/D is adopted to digitalize the RADFET's threshold voltage, which is increased as the total radiation dose grows. In addition, the temperature effect of RADFET is corrected from the measured temperature on orbit. The preliminary monitoring results show that the radiation dose is less than 35rad (Si) per day at 0.87 mm shielding thickness of equivalent aluminum in the geostationary orbit, and the dose in Y direction of the satellite is less than those in the X and Z directions. The radiation dose at the thickness of 3.87 mm equivalent aluminum is less than 1rad(Si)/day. It is found that the daily total dose measured by the dosimeter has a strong correlation with the flux of high energy electrons.

  20. Gaas Displacement Damage Dosimeter Based on Diode Dark Currents

    Directory of Open Access Journals (Sweden)

    Warner Jeffrey H.

    2017-01-01

    Full Text Available GaAs diode dark currents are correlated over a very large proton energy range as a function of displacement damage dose (DDD. The linearity of the dark current increase with DDD over a wide range of applied voltage bias deems this device an excellent candidate for a displacement damage dosimeter. Additional proton testing performed in situ enabled error estimate determination to within 10% for simulated space use.

  1. Calculated energy response of lithium fluoride finger-tip dosimeters

    International Nuclear Information System (INIS)

    Johns, T.F.

    1965-07-01

    Calculations have been made of the energy response of the lithium fluoride thermoluminescent dosimeters being used at A.E.E. Winfrith for the measurement of radiation doses to the finger-tips of people handling radio-active materials. It is shown that the energy response is likely to be materially affected if the sachet in which the powder is held contains elements with atomic numbers much higher than 9 (e.g. if the sachet is made from polyvinyl chloride). (author)

  2. Design and Implementation of Accurate and Efficient Pocket Dosimeter

    International Nuclear Information System (INIS)

    Shehata, S.A.; Abdelkhalek, K.L.

    2005-01-01

    It is so important in the field of radiation therapy and radiation protection to have dosimeters to determine the absorbed dose, which is transferred to human body by ionizing radiation. In this paper the design and implementation of a wide-range pocket dosimeter (PKD-1) with high accuracy to measure personal equivalent dose and dose rate of gamma radiation will be presented. This pocket dosimeter is micro controller-based and powered from 9 V rechargeable battery. The overall power consumption is significantly reduced by smart software and hardware design allowing longer time intervals between recharging. The integrated alphanumerical LCD displays not only of the accumulated dose and current dose rate, but also displays alarm messages such as low battery. For reasons of power saving the LCD is activated on demand by pressing the push button or automatically when an alarm occurs. Audible and visual alarms have been added to PKD-1 in order that they cannot be accidentally overlooked or ignored. PKD-1 can be connected to any PC through its serial port (RS232) and User Interface software has been developed for easy displaying and recording of radiation readings over any time period

  3. Environmental radiation monitoring of nuclear sites by thermoluminescent dosimeters (TLD)

    International Nuclear Information System (INIS)

    Duftschmid, K.E.; Strachotinsky, Ch.

    1978-04-01

    The measurement of environmental radiation doses around nuclear facilities requires the detection of few mrem/year. The properties of the automatic TLD-system Harshaw Mod. 2271 for such measurements have been evaluated under practical conditions and optimized techniques derived. The automatic TLD-system is based on LiF dosimeter cards with two crystals providing gamma and beta dose values. Limit of detection defined as three standard deviations of residuel dose is 1,2 mR. Automatic readout combined with electronic data evaluation are especially useful for large monitoring networks. Practical intercomparisons of this dosimeter with bulb-type CaF 2 detectors have been performed showing good agreement of both detector. Although bulb-dosimeters proved to be extremely sensitive with a limit of detection at 0,012 mR which makes them very suitable for very short exposure times, the automatic LiF system is superior in regards of man power requirement if monthly monitoring periods are sufficient. The system has been tested in practice during two international intercomparisons performed by the US Department of Energy - Health and Safety Laboratory New York and the Physikalisch Technische Bundesanstalt Braunschweig, Germany, showing excellent agreement. Furthermore a routine monitoring network consisting of 12 measurement positions around the Research Center Seibersdorf has been operated with this technique since more than two years. (author)

  4. Calcium carbonate as a possible dosimeter for high irradiation doses

    International Nuclear Information System (INIS)

    Negron M, A.; Ramos B, S.; Camargo R, C.; Uribe, R. M.; Gomez V, V.; Kobayashi, K.

    2014-08-01

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  5. Electron-energy deposition in skin and thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Mei, G.T.Y.

    1986-01-01

    The primary object of this study was to investigate the relations between dosimeter response and skin dose resulting from beta-particle irradiation. This object was achieved by combining evaluation of beta-source energy spectra, calculation of flux energy spectra, and employment of a Monte-Carlo electron-transport computer program for determination of depth-dose distribution in multislab geometries. Intermediate results from three steps of evaluation were compared individually with experimental data or with other theoretical results and showed excellent agreement. The combined method is applicable for the electron agreement. The combined method is applicable for the electron energy range of 1 keV to 5 MeV for both monoenergetic electrons and energy-distributed electrons. Determination of dosimeter response - skin dose relationships for homogeneous atmospheric beta-particle sources and for two specific configurations of LiF TLD's have been carried out in this study. Information based on these calculations is of value in designing beta-particle dosimeters as well as in assessing potential occupational and public health risks associated with the nuclear power industry

  6. Raman Spectroscopy of Irradiated Normoxic Polymethacrylic Acid Gel Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Bong, Ji Hye; Kwon, Soo Il; Cho, Yu Ra; Park, Chae Hee; Park, Hyung Wook [Kyonggi University, Suwon (Korea, Republic of); Choi, Kyu Seok; Yu, Soo Chang [Kunsan National University, Gunsan (Korea, Republic of)

    2011-02-15

    A quantitative analysis of the decreasing rate of the monomer and increasing rate of the polymerization was made by monitoring radiation level increments using Raman spectroscopy within the therapeutic radiation range for a normoxic polymethacrylic acid gel dosimeter. The gel dosimeter was synthesized by stirring materials such as gelatin, distilled water, methacrylic acid, hydroquinone and tetrakis phosphonium chloride at 50 .deg. C, and the synthesized gel was contained in a 10- mm diameter and 32-mm high vial to conduct measurement. 24 hours after gel synthesis, it was irradiated from 0 Gy to 20 Gy by 2 Gy using a Co-60 radiotherapy unit. With use of the Cryo FE-SEM, structural changes in the 0 Gy and 10 Gy gel dosimeters were investigated. The Raman spectra were acquired using 532-nm laser as the excitation source. In accordance with fitting the changes in C-COOH stretching (801 cm{sup -1}), C=C stretching (1639 cm{sup -1}) and vinyl CH{sub 2} stretching (3114 cm{sup -1}) vibrational modes for monomer and CH{sub 2} bending vibrational mode (1451 cm{sup -1}) for polymer, sensitive parameter S for each mode was calculated. The values of S for monomer bands and polymer band were ranged in 6.0 ± 2.6 Gy and 7.2 ± 2.3 Gy, respectively, which shows a relatively good conformity of the decreasing rate of monomer and the increasing rate of polymerization within the range of error.

  7. Silver dichromate - a suitable dosimeter for radiation processing

    International Nuclear Information System (INIS)

    Hoang Hoa Mai; Nguyen Dinh Duong

    1995-01-01

    An aqueous dosimeter system based on solution of silver dichromate in perchloric acid and spectrophotometry analysis was investigated. The optical absorption characteristics of solutions have been studied. The molar extinction coefficients and radiation-yield of the dosimeter solutions were determined. The mechanism of radiation-induced reactions in the solutions is also considered. A formula for calculating the dose based on absorbance measurements is presented. The G-value of dichromate reduction caused by gamma radiation was determined. The value found, 0.397 is close to the values of the other authors. Two solutions with different concentrations of dichromate have been chosen to match two applicable dose ranges. The solution containing 0.5 mM Ag 2 Cr 2 O 7 in 0.1 M HClO 4 is applied to dose range of 1 -12 kGy and the solution with 0.5 mM Ag 2 Cr 2 O 7 and 2.00 mM K 2 Cr 2 O 7 in 0.1 M HClO 4 is applied to dose range of 3 to 50 kGy. It was found that the relationship between net absorbance ΔA and radiation dose, D is essentially linear over expected dose ranges. The calibration curves have been drawn up by using least square method. In routine use for gamma radiation the dosimeter show good accuracy, reproducibility and stability of the response. (author). 10 refs., 4 figs., 3 tabs

  8. An environmental BeO-OSL dosimeter for emergency response

    International Nuclear Information System (INIS)

    Woda, Clemens; Kaiser, Jan Christian; Urso, Laura; Greiter, Matthias

    2012-01-01

    A conceptual design is presented to use measurements of localized absorbed dose in inner cities for production of high resolution maps of the radioactive contamination following a nuclear emergency or radiological attack. The doses are derived from luminescent detectors pre-fixed at places of high importance (e.g. public squares). For such an environmental dosimeter, BeO is used, which can be read out using optically stimulated luminescence (OSL). A suitable casing of black Perspex has been developed to give a sufficiently accurate estimate of the air kerma value at the detector position. The dosimeter is characterized according to light tightness, dose response and angular photon energy dependence. A short overview of the approach for map production is also given. - Highlights: ► An inexpensive, environmentally stable BeO based OSL dosimeter has been developed for emergency response. ► The detector enables fast readouts and shows highly favorable dosimetric properties. ► A conceptual design is described to produce maps of radioactive contamination from localized dose measurements in urban areas.

  9. Calcium carbonate as a possible dosimeter for high irradiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Negron M, A.; Ramos B, S.; Camargo R, C. [UNAM, Instituto de Ciencias Nucleares, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Uribe, R. M. [Kent State University, College of Technology, Kent OH (United States); Gomez V, V. [UNAM, Instituto de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Kobayashi, K., E-mail: negron@nucleares.unam.mx [Yokohama National University (Japan)

    2014-08-15

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  10. Evaluation of a Prototype Low-Cost, Modular, Wireless Electroencephalography (EEG) Headset Design for Widespread Application

    Science.gov (United States)

    2016-06-01

    therefore did not implement or test actual sensors or electronic components (analog-to-digital conversion, power , and the wireless transmission ...ARL-TR-7703 ● JUNE 2016 US Army Research Laboratory Evaluation of a Prototype Low-Cost, Modular, Wireless Electroencephalography...originator. ARL-TR-7703 ● JUNE 2016 US Army Research Laboratory Evaluation of a Prototype Low-Cost, Modular, Wireless

  11. OPAL Jet Chamber Prototype

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the dirfferent parts of the tracking system. This piece is a prototype of the jet chambers

  12. Prototyping Augmented Reality

    CERN Document Server

    Mullen, Tony

    2011-01-01

    Learn to create augmented reality apps using Processing open-source programming language Augmented reality (AR) is used all over, and you may not even realize it. Smartphones overlay data onto live camera views to show homes for sale, restaurants, or historical sites. American football broadcasts use AR to show the invisible first-down line on the field to TV viewers. Nike and Budweiser, among others, have used AR in ads. Now, you can learn to create AR prototypes using 3D data, Processing open-source programming language, and other languages. This unique book is an easy-to-follow guide on how

  13. Nightshade Prototype Experiments (Silverleaf)

    Energy Technology Data Exchange (ETDEWEB)

    Danielson, Jeremy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bauer, Amy L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-23

    The Red Sage campaign is a series of subcritical dynamic plutonium experiments designed to measure ejecta. Nightshade, the first experiments in Red Sage scheduled for fiscal year 2019, will measure the amount of ejecta emission into vacuum from a double-­shocked plutonium surface. To address the major technical risks in Nightshade, a Level 2 milestone was developed for fiscal year 2016. Silverleaf, a series of four experiments, was executed at the Los Alamos National Laboratory in July and August 2016 to demonstrate a prototype of the Nightshade package and to satisfy this Level 2 milestone. This report is documentation that Red Sage Level 2 milestone requirements were successfully met.

  14. Electron beam energy monitoring using thermoluminescent dosimeters and electron back scattering

    International Nuclear Information System (INIS)

    Nelson, Vinod; Gray, Alison

    2013-01-01

    Periodic checks of megavoltage electron beam quality are a fundamental requirement in ensuring accurate radiotherapy treatment delivery. In the present work, thermoluminescent dosimeters (TLDs) positioned on either side of a lead sheet at the surface of a water equivalent phantom were used to monitor electron beam quality using the electron backscattering method. TLD100 and TLD100H were evaluated as upstream detectors and TLD200, TLD400 and TLD500 were evaluated as downstream detectors. The evaluation assessed the test sensitivity and correlation, long and short term reproducibility, dose dependence and glow curve features. A prototype of an in-air jig suitable for use in postal TLD dose audits was also developed and an initial evaluation performed. The results indicate that the TLD100-TLD200 combination provides a sensitive and reproducible method to monitor electron beam quality. The light weight and easily fabricated in-air jig was found to produce acceptable results and has the potential to be used by radiation monitoring agencies to carry out TLD postal quality assurance audits, similar to audits presently being conducted for photon beams. -- Highlights: ► Monitoring electron beam quality via electron backscattering was investigated. ► Different thermoluminescent materials were evaluated as detectors. ► A TLD100-TLD200 combination produced the most sensitive and reproducible results. ► An in-air jig was evaluated to allow measurements via postal dose audits

  15. Quality assurance of HDR 192Ir sources using a Fricke dosimeter.

    Science.gov (United States)

    Austerlitz, C; Mota, H; Almeida, C E; Allison, R; Sibata, C

    2007-04-01

    A prototype of a Fricke dosimetry system consisting of a 15 x 15 x 15 cm3 water phantom made of Plexiglas and a 11.3-ml Pyrex balloon fitted with a 0.2 cm thick Pyrex sleeve in its center was created to assess source strength and treatment planning algorithms for use in high dose rate (HDR) 192Ir afterloading units. In routine operation, the radioactive source is positioned at the end of a sleeve, which coincides with the center of the spherical balloon that is filled with Fricke solution, so that the solution is nearly isotropically irradiated. The Fricke system was calibrated in terms of source strength against a reference well-type ionization chamber, and in terms of radial dose by means of an existing algorithm from the HDR's treatment planning system. Because the system is based on the Fricke dosimeter itself, for a given type and model of 192Ir source, the system needs initial calibration but no recalibration. The results from measurements made over a 10 month period, including source decay and source substitutions, have shown the feasibility of using such a system for quality control (QC) of HDR afterloading equipment, including both the source activity and treatment planning parameters. The benefit of a large scale production and the use of this device for clinical HDR QC audits via mail are also discussed.

  16. A Multiple Sensor Machine Vision System for Automatic Hardwood Feature Detection

    Science.gov (United States)

    D. Earl Kline; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman; Robert L. Brisbin

    1993-01-01

    A multiple sensor machine vision prototype is being developed to scan full size hardwood lumber at industrial speeds for automatically detecting features such as knots holes, wane, stain, splits, checks, and color. The prototype integrates a multiple sensor imaging system, a materials handling system, a computer system, and application software. The prototype provides...

  17. Fabrication and Optimization of a PAGATA Gel Dosimeter: Increasing the Melting Point of the PAGAT Gel Dosimeter with Agarose Additive

    Directory of Open Access Journals (Sweden)

    Bakhtiar Azadbakht

    2010-12-01

    Full Text Available Introduction: The PAGAT polymer gel dosimeter melts at 30 ˚C and even at room temperature during the summer, so it needs to be kept in a cool place such as a refrigerator. To increase the stability of the PAGAT gel, different amounts of agarose were added to the PAGAT gel composition and the PAGATA gel was manufactured. Material and Methods: The PAGATA gel vials were irradiated using a Co-60 machine. Then, the samples were evaluated using a 1.5 T Siemens MRI scanner. The ingredients of the PAGATA normoxic gel dosimeter were 4.5% N-N' methylen-bis-acrylamide, 4.5% acrylamide, 4.5% gelatine, 5 mM tetrakis (THPC, 0.01 mM hydroquinone (HQ, 0.5% agarose and 86% de-ionized water (HPLC. Results: Melting point and sensitivity of the PAGAT gel dosimeter with addition of 0.0, 0.3, 0.5, 1.0, 1.5 and 2.0% of agarose were measured, in which the melting points were increased to 30, 82, 86, 88, 89 and 90°C and their sensitivities found to be 0.113, 0.1059, 0.125, 0.122, 0.115 and 0.2  respectively. Discussion and Conclusions: Adding agarose increased the sensitivity and background R2 of the evaluated samples. The optimum amount of agarose was found to be 0.5% regarding these parameters and also the melting point of the gel dosimeter. A value of 0.5% agarose was found to be an optimum value considering the increase of sensitivity to 0.125 and melting point to 86°C but at the expense of increasing the background R2 to 4.530.

  18. Comparison between dosimeter films and electronic dosimeters results obtained in F-18 production practices at IEN/CNEN

    International Nuclear Information System (INIS)

    Paulo, Osvaldir; Carlos, Luiz R.J.; Mendes, Milton

    2008-01-01

    Full text: The aim of the present work is the comparison of the dose rates values obtained from dosimeter films with the values obtained from electronic dosimeters used by radiological protection technician involved in practices with fluorine-18 production in CV-28 cyclotron at IEN/CNEN. The motivation for this work was the increase on the demand of this radiopharmaceutical. Nowadays there is an increase demand on the number of clinics and hospitals which had started to use the technique of radiodiagnostic using positron-emission tomography (PET). Therefore, the produced radionuclide activities (physics quantity) and also the complexity of the practices of radiological protection in the areas of that facility had increased a lot. The conventional statistical methods will be used to evaluate the results obtained in the analysis of the data obtained in the reading of the dosimeters. This comparative method is however a first step to taking decisions regarding radiological protection service. Therefore that the radiometric surveys of routine are taken in consideration, as well as the information from the technician of radiological protection that is working in those areas. All this data will give support to improve and implement methods and practices on the accelerators' facilities. In addition, the use of these electronic dosimeters will makes possible the technician read these dose rates received immediately during the practices and use these information you make decisions. In case of dose rates values to present above the expected the practice will be ploughed. Another point to be considered is that this work will propitiate the future updates of the procedures designated to those practices and to conduct at the radiological protection optimization. (author)

  19. Investigation of radiological properties and water equivalency of PRESAGE dosimeters

    International Nuclear Information System (INIS)

    Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Adamovics, John; Bosi, Stephen; Kim, Jung-Ha; Baldock, Clive

    2011-01-01

    Purpose: PRESAGE is a dosimeter made of polyurethane, which is suitable for 3D dosimetry in modern radiation treatment techniques. Since an ideal dosimeter is radiologically water equivalent, the authors investigated water equivalency and the radiological properties of three different PRESAGE formulations that differ primarily in their elemental compositions. Two of the formulations are new and have lower halogen content than the original formulation. Methods: The radiological water equivalence was assessed by comparing the densities, interaction probabilities, and radiation dosimetry properties of the three different PRESAGE formulations to the corresponding values for water. The relative depth doses were calculated using Monte Carlo methods for 50, 100, 200, and 350 kVp and 6 MV x-ray beams. Results: The mass densities of the three PRESAGE formulations varied from 5.3% higher than that of water to as much as 10% higher than that of water for the original formulation. The probability of photoelectric absorption in the three different PRESAGE formulations varied from 2.2 times greater than that of water for the new formulations to 3.5 times greater than that of water for the original formulation. The mass attenuation coefficient for the three formulations is 12%-50% higher than the value for water. These differences occur over an energy range (10-100 keV) in which the photoelectric effect is the dominant interaction. The collision mass stopping powers of the relatively lower halogen-containing PRESAGE formulations also exhibit marginally better water equivalency than the original higher halogen-containing PRESAGE formulation. Furthermore, the depth dose curves for the lower halogen-containing PRESAGE formulations are slightly closer to that of water for a 6 MV beam. In the kilovoltage energy range, the depth dose curves for the lower halogen-containing PRESAGE formulations are in better agreement with water than the original PRESAGE formulation. Conclusions: Based

  20. EPR of gamma-irradiated polycrystalline alanine-in-glass dosimeter

    International Nuclear Information System (INIS)

    Al-Karmi, Anan M.; Morsy, M.A.

    2008-01-01

    This study attempts to overcome some of the reported discrepancies in alanine-EPR reproducibility that may be related to alanine dosimeter preparation and/or EPR spectrometer settings. The dosimeters were prepared by packing pure polycrystalline L-α-alanine directly as supplied by the manufacturer in glass tubes. This dosimeter production scheme avoids any possible contribution to the EPR signal from a binding material. The dosimeters were irradiated with gamma ray to low-dose ranges typical for medical therapy (0-20 Gy). Special attention has been paid to the study of minimum detectable dose, measurement repeatability and reproducibility, and post-irradiation stability. The dosimeter exhibited a linear dose response in the dose range from 0.1 to 20 Gy. These positive properties favor the polycrystalline alanine-in-glass tube as a radiation dosimeter

  1. Studies on reduction of dosimeter used in the product dose mapping process at Sinagama Plant

    International Nuclear Information System (INIS)

    Sofian Ibrahim; Syuhada Ramli; Cosmos George; Zarina Mohd Nor; Kamarudin Buyong; Shahidan Yob; Nor Ishadi Ismail; Mohd Sidek Othman; Ahsanulkhaliqin Abdul Wahab; Mohd Khairul Azfar Ramli

    2012-01-01

    Product dose mapping is the determination of the best product loading configuration which will be used during routine sterilization. In product dose mapping, dosimeters are placed throughout products at strategic locations to determine the zones of minimum and maximum dose. On previous Sinagama's product dose mapping method, a total of 240 unit's ceric-cerous dosimeter been used for a tote. Based on the data obtained from Irradiator Dose Mapping Report in 2004 and data from recent studies, the number of dosimeter to be used in product dose mapping can be reduced to 28 units without sacrificing precision and accuracy of the dose mapping results. This also led changes of the placing dosimeter method from Plane system to Coordinate system. Reduction of 88 % on dosimeters usage will directly reduce the cost of expenses on dosimeter, time and labor. (author)

  2. DataCollection Prototyping

    CERN Multimedia

    Beck, H.P.

    DataCollection is a subsystem of the Trigger, DAQ & DCS project responsible for the movement of event data from the ROS to the High Level Triggers. This includes data from Regions of Interest (RoIs) for Level 2, building complete events for the Event Filter and finally transferring accepted events to Mass Storage. It also handles passing the LVL1 RoI pointers and the allocation of Level 2 processors and load balancing of Event Building. During the last 18 months DataCollection has developed a common architecture for the hardware and software required. This involved a radical redesign integrating ideas from separate parts of earlier TDAQ work. An important milestone for this work, now achieved, has been to demonstrate this subsystem in the so-called Phase 2A Integrated Prototype. This prototype comprises the various TDAQ hardware and software components (ROSs, LVL2, etc.) under the control of the TDAQ Online software. The basic functionality has been demonstrated on small testbeds (~8-10 processing nodes)...

  3. OMS FDIR: Initial prototyping

    Science.gov (United States)

    Taylor, Eric W.; Hanson, Matthew A.

    1990-01-01

    The Space Station Freedom Program (SSFP) Operations Management System (OMS) will automate major management functions which coordinate the operations of onboard systems, elements and payloads. The objectives of OMS are to improve safety, reliability and productivity while reducing maintenance and operations cost. This will be accomplished by using advanced automation techniques to automate much of the activity currently performed by the flight crew and ground personnel. OMS requirements have been organized into five task groups: (1) Planning, Execution and Replanning; (2) Data Gathering, Preprocessing and Storage; (3) Testing and Training; (4) Resource Management; and (5) Caution and Warning and Fault Management for onboard subsystems. The scope of this prototyping effort falls within the Fault Management requirements group. The prototyping will be performed in two phases. Phase 1 is the development of an onboard communications network fault detection, isolation, and reconfiguration (FDIR) system. Phase 2 will incorporate global FDIR for onboard systems. Research into the applicability of expert systems, object-oriented programming, fuzzy sets, neural networks and other advanced techniques will be conducted. The goals and technical approach for this new SSFP research project are discussed here.

  4. Live Piloting and Prototyping

    Directory of Open Access Journals (Sweden)

    Francesca Rizzo

    2013-07-01

    Full Text Available This paper presents current trends in service design research concerning large scale projects aimed at generating changes at a local scale. The strategy adopted to achieve this, is to co-design solutions including future users in the development process, prototyping and testing system of products and services before their actual implementation. On the basis of experience achieved in the European Project Life 2.0, this paper discusses which methods and competencies are applied in the development of these projects, eliciting the lessons learnt especially from the piloting phase in which the participatory design (PD approach plays a major role. In the first part, the topic is introduced jointly with the theoretical background where the user center design and participatory design methods are presented; then the Life 2.0 project development is described; finally the experience is discussed from a service design perspective, eliciting guidelines for piloting and prototyping services in a real context of use. The paper concludes reflecting on the designers’ role and competencies needed in this process.

  5. Dose response of thin-film dosimeters irradiated with 80-120 keV electrons

    DEFF Research Database (Denmark)

    Helt-Hansen, J.; Miller, A.; Sharpe, P.

    2005-01-01

    Thin-film dosimeters (Riso B3 and alanine films) were irradiated at 10 MeV and 80-120 keV electron accelerators, and it has been shown that the radiation response of the dosimeter materials (the radiation chemical yields) are constant at these irradiation energies. However, dose gradients within ...... are present within the dosimeter. (C) 2005 Elsevier Ltd. All rights reserved....

  6. Automatic dosimeter for kerma measurement based on commercial PIN photo diodes

    International Nuclear Information System (INIS)

    Kushpil, V.; Kushpil, S.; Huna, Z.

    2011-01-01

    A new automatic dosimeter for measurement of radiation dose from neutron and ionization radiation is presented. The dosimeter (kerma meter) uses commercial PIN diodes with long base as its active element. Later it provides a maximal dependence of the minority carriers life time versus absorbed dose. The characteristics of the dosimeter were measured for several types of commercial diodes. Device can be useful in many environmental or industrial applications. (authors)

  7. Sensor for metal detection

    KAUST Repository

    Kodzius, Rimantas

    2014-06-26

    NOVELTY - The sensor has a microfluidic flow channel that is provided with an inlet port, an outlet port, and a detection chamber. The detection chamber is provided with a group of sensing electrodes (4) having a working electrode (8), a counter electrode (9), and a reference electrode (10). A flow sensor is configured to measure flow in the channel. A temperature sensor (6) is configured to measure temperature in the channel (3). An electrical connection is configured to connect the sensor to a sensing device. USE - Sensor for detecting metal such as toxic metal in sample such as clinical sample such as stool, saliva, sputum, bronchial lavage, urine, vaginal swab, nasal swab, biopsy, tissue, tears, breath, blood, serum, plasma, cerebrospinal fluid, peritoneal fluid, pleural fluid, pericardial fluid, joint fluid, and amniotic fluid, water sample, food sample, air sample, and soil sample (all claimed). ADVANTAGE - The sensor for use with the portable analytical instrument is configured for detection of metalsin samples. The sensor can provide the excellent solution for on-site metal detection, including heavy metal detection. The sensors can provide significant advantages in higher throughput, lower cost, at the same time being less labor intensive and less dependent on individual skills. The disposable design of the sensor, the enhanced reliability and repeatability of measurements can be obtained. The sensors can be widely applied in various industries. DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following: (1) a system for detecting metal in sample; and (2) a method for using sensor for detecting metal in sample. DESCRIPTION OF DRAWING(S) - The drawing shows a schematic view of the sensor prototype. Channel (3) Sensing electrodes (4) Temperature sensor (6) Working electrode (8) Counter electrode (9) Reference electrode (10)

  8. Polymer temperature sensor for textronic applications

    International Nuclear Information System (INIS)

    Bielska, Sylwia; Sibinski, Maciej; Lukasik, Andrzej

    2009-01-01

    The aim of this paper is to present research work of designing prototype textile sensors dedicated to human body temperature measurements. The sensor construction was especially elaborated to be integrated into protective clothing as a practical realization of intelligent e-textile concept. These types of sensors should be easily incorporable in clothing structures without disturbance of fabric flexibility (Carpi and De Rossi). The construction of the new type functional sensor testing is presented and illustrated by its parameters and thermal characteristics.

  9. Evaluation of characteristics of a novel real-time dosimeter for patient's skin exposure

    International Nuclear Information System (INIS)

    Morishima, Yoshiaki; Katahira, Yoshiaki; Chiba, Hiroo; Chida, Koichi; Takeda, Ken; Onodera, Risa

    2011-01-01

    Findings are reported concerning the essential characteristics and clinical application of a novel Unfors' PSD (Patient Skin Dosimeter) in comparison with the previous Mcmahorn's SDM (Skin Dose Monitor, now commercially unavailable). The structure of PSD and SDM are essentially the same, in which the sensor (silicon semiconductor) is connected to the dose displaying part with cable. Used were X-ray machine for cardiac catheter of Toshiba KXO-80C (2.6 mm Al filter) under conditions of 15 pulses/sec, duration 3 ms, transillumination 1 min, FID (focus-image intensifier distance) 105 cm and tube voltage 50-125 kV, and 20 cm thick acryl phantom. PSD, SDM and Radcal 6 cc-thimble ionization chamber corrected by Japan Quality Assurance Organization, were placed behind the phantom. Properties were characterized for energy dependency (tube voltage), linearity of dose, reproducibility, irradiation field change (3-10 cm x 14 and 16 cm), and angle dependency. For clinical application, PSD was stuck on 3 sites of the back of 5 patients (4 M/1F, av. age 62 y) undergoing coronary angiography or percutaneous coronary intervention. Results were: PSD, better energy dependency than SDM; PSD and ADM, good linearity up to 2 Gy; both, good reproducibility; less effect of field change in SDM; PSD, better angle dependency than SDM; and cable/ sensor of PSD, imaged on the display at the actual clinical practice. It was concluded that PSD was of performance characteristics equal to or superior to SDM but should be improved further as its cable and sensor images in the display might hinder the operation or treatment site. (author)

  10. Design of Interrogation Protocols for Radiation Dose Measurements Using Optically-Stimulated Luminescent Dosimeters.

    Science.gov (United States)

    Abraham, Sara A; Kearfott, Kimberlee J; Jawad, Ali H; Boria, Andrew J; Buth, Tobias J; Dawson, Alexander S; Eng, Sheldon C; Frank, Samuel J; Green, Crystal A; Jacobs, Mitchell L; Liu, Kevin; Miklos, Joseph A; Nguyen, Hien; Rafique, Muhammad; Rucinski, Blake D; Smith, Travis; Tan, Yanliang

    2017-03-01

    Optically-stimulated luminescent dosimeters are capable of being interrogated multiple times post-irradiation. Each interrogation removes a fraction of the signal stored within the optically-stimulated luminescent dosimeter. This signal loss must be corrected to avoid systematic errors in estimating the average signal of a series of optically-stimulated luminescent dosimeter interrogations and requires a minimum number of consecutive readings to determine an average signal that is within a desired accuracy of the true signal with a desired statistical confidence. This paper establishes a technical basis for determining the required number of readings for a particular application of these dosimeters when using certain OSL dosimetry systems.

  11. Dose intercomparison study involving Fricke, ethanol chlorobenzene, PMMA and alanine dosimeters

    International Nuclear Information System (INIS)

    Lanuza, L.G.; Cabalfin, E.G.; Kojima, T.; Tachibana, H.

    1999-01-01

    A dose intercomparison study was carried out between the Philippine Nuclear Research Institute (PNRI) and Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute (JAERI) to determine reliability of the dosimetry systems being used by PNRI employing ethanol chlorobenzene (ECB), Fricke and alanine dosimeters. The Fricke and ECB dosimeters were prepared at PNRI while the alanine-polystyrene dosimeter was provided by JAERI. Fricke or ECB dosimeters were irradiated together with alanine at PNRI gamma irradiation facilities. Analyses of the Fricke and ECB dosimeters were performed at PNRI while alanine dosimeters were analyzed at JAERI. A comparison study between alanine and polymethylmethacrylate (PMMA, Radix RN15) dosimeters was also undertaken at JAERI. The dosimeters were irradiated together under different irradiation conditions using the gamma irradiation facilities of JAERI and Radia Industry Co. Ltd. (Japan). Evaluations of PMMA and alanine dosimeters were both performed at JAERI. Result of the dose intercomparison of PNRI with the International Atomic Energy Agency through the International Dose Assurance Service (IDAS) is also presented. (author)

  12. Dose intercomparison study involving Fricke, ethanol chlorobenzene, PMMA and alanine dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Lanuza, L G; Cabalfin, E G [Philippine Nuclear Research Institute, Quezon City (Philippines); Kojima, T; Tachibana, H [Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research institute, Takasaki (Japan)

    1999-03-01

    A dose intercomparison study was carried out between the Philippine Nuclear Research Institute (PNRI) and Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute (JAERI) to determine reliability of the dosimetry systems being used by PNRI employing ethanol chlorobenzene (ECB), Fricke and alanine dosimeters. The Fricke and ECB dosimeters were prepared at PNRI while the alanine-polystyrene dosimeter was provided by JAERI. Fricke or ECB dosimeters were irradiated together with alanine at PNRI gamma irradiation facilities. Analyses of the Fricke and ECB dosimeters were performed at PNRI while alanine dosimeters were analyzed at JAERI. A comparison study between alanine and polymethylmethacrylate (PMMA, Radix RN15) dosimeters was also undertaken at JAERI. The dosimeters were irradiated together under different irradiation conditions using the gamma irradiation facilities of JAERI and Radia Industry Co. Ltd. (Japan). Evaluations of PMMA and alanine dosimeters were both performed at JAERI. Result of the dose intercomparison of PNRI with the International Atomic Energy Agency through the International Dose Assurance Service (IDAS) is also presented. (author) 8 refs, 3 figs, 4 tabs

  13. Shipboard Wireless Sensor Networks Utilizing Zigbee Technology

    National Research Council Canada - National Science Library

    Zacot, Chimi

    2006-01-01

    .... The tests included range, reliability, and a battery life tests. In the second portion, a prototype pressure sensor was created by matching reliable low power pressure transducer to a Zigbee enabled mote via an integrated DAQ unit...

  14. Prototypes as Platforms for Participation

    DEFF Research Database (Denmark)

    Horst, Willem

    developers, and design it accordingly. Designing a flexible prototype in combination with supportive tools to be used by both interaction designers and non-designers during development is introduced as a way to open up the prototyping process to these users. Furthermore I demonstrate how such a flexible...... on prototyping, by bringing to attention that the prototype itself is an object of design, with its users and use context, which deserves further attention. Moreover, in this work I present concrete tools and methods that can be used by interaction designers in practice. As such this work addresses both......The development of interactive products in industry is an activity involving different disciplines – such as different kinds of designers, engineers, marketers and managers – in which prototypes play an important role. On the one hand, prototypes can be powerful boundary objects and an effective...

  15. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  16. Brachial Plexus Blocker Prototype

    Directory of Open Access Journals (Sweden)

    Stéphanie Coelho Monteiro

    2017-08-01

    Full Text Available Although the area of surgical simulation has been the subject of study in recent years, it is still necessary to develop artificial experimental models with a perspective to dismiss the use of biological models. Since this makes the simulators more real, transferring the environment of the health professional to a physical or virtual reality, an anesthetic prototype has been developed, where the motor response is replicated when the brachial plexus is subjected to a proximal nervous stimulus. Using action-research techniques, with this simulator it was possible to validate that the human nerve response can be replicated, which will aid the training of health professionals, reducing possible risks in a surgical environment.

  17. Naval Prototype Optical Interferometer (NPOI)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Used for astrometry and astronomical imaging, the Naval Prototype Optical Interferometer (NPOI) is a distributed aperture optical telescope. It is operated...

  18. Mobile prototyping with Axure 7

    CERN Document Server

    Hacker, Will

    2013-01-01

    This book is a step-by-step tutorial which includes hands-on examples and downloadable Axure files to get you started with mobile prototyping immediately. You will learn how to develop an application from scratch, and will be guided through each and every step.If you are a mobile-centric developer/designer, or someone who would like to take their Axure prototyping skills to the next level and start designing and testing mobile prototypes, this book is ideal for you. You should be familiar with prototyping and Axure specifically, before you read this book.

  19. Networked Sensor Arrays

    International Nuclear Information System (INIS)

    Tighe, R. J.

    2002-01-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical

  20. Optimizing the sensitivity and radiological properties of the PRESAGE® dosimeter using metal compounds

    International Nuclear Information System (INIS)

    Alqathami, Mamdooh; Blencowe, Anton; Qiao, Greg; Adamovics, John; Geso, Moshi

    2012-01-01

    The aim of this study is to investigate the radiation-modifying effects of incorporating commercially available bismuth-, tin- and zinc-based compounds in the composition of the PRESAGE ® dosimeter, and the feasibility of employing such compounds for radiation dose enhancement. Furthermore, we demonstrate that metal compounds can be included in the formulation to yield water-equivalent PRESAGE ® dosimeters with enhanced dose response. Various concentrations of the metal compounds were added to a newly developed PRESAGE ® formulation and the resulting dosimeters were irradiated with 100 kV and 6 MV photon beams. A comparison between sensitivity and radiological properties of the PRESAGE ® dosimeters with and without the addition of metal compounds was carried out. Optical density changes of the dosimeters before and after irradiation were measured using a spectrophotometer. In general, when metal compounds were incorporated in the composition of the PRESAGE ® dosimeter, the sensitivity of the dosimeters to radiation dose increased depending on the type and concentration of the metal compound, with the bismuth compound showing the highest dose enhancement factor. In addition, these metal compounds were also shown to improve the retention of the post-response absorption value of the PRESAGE ® dosimeter over a period of 2 weeks. Thus, incorporating 1–3 mM (ca. 0.2 wt%) of any of the three investigated metal compounds in the composition of the PRESAGE ® dosimeter is found to be an efficient way to enhance the sensitivity of the dosimeter to radiation dose and stabilize its post-response for longer times. Furthermore, the addition of small amounts of the metal compounds also accelerates the polymerization of the PRESAGE ® dosimeter precursors, significantly reducing the fabrication time. Finally, a novel water-equivalent PRESAGE ® dosimeter formula optimized with metal compounds is proposed for clinical use in both kilovoltage and megavoltage radiotherapy