WorldWideScience

Sample records for prototype dual-energy computed

  1. Dual-Energy Computed Tomography: Image Acquisition, Processing, and Workflow.

    Science.gov (United States)

    Megibow, Alec J; Kambadakone, Avinash; Ananthakrishnan, Lakshmi

    2018-07-01

    Dual energy computed tomography has been available for more than 10 years; however, it is currently on the cusp of widespread clinical use. The way dual energy data are acquired and assembled must be appreciated at the clinical level so that the various reconstruction types can extend its diagnostic power. The type of scanner that is present in a given practice dictates the way in which the dual energy data can be presented and used. This article compares and contrasts how dual source, rapid kV switching, and spectral technologies acquire and present dual energy reconstructions to practicing radiologists. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. A novel dual energy method for enhanced quantitative computed tomography

    Science.gov (United States)

    Emami, A.; Ghadiri, H.; Rahmim, A.; Ay, M. R.

    2018-01-01

    Accurate assessment of bone mineral density (BMD) is critically important in clinical practice, and conveniently enabled via quantitative computed tomography (QCT). Meanwhile, dual-energy QCT (DEQCT) enables enhanced detection of small changes in BMD relative to single-energy QCT (SEQCT). In the present study, we aimed to investigate the accuracy of QCT methods, with particular emphasis on a new dual-energy approach, in comparison to single-energy and conventional dual-energy techniques. We used a sinogram-based analytical CT simulator to model the complete chain of CT data acquisitions, and assessed performance of SEQCT and different DEQCT techniques in quantification of BMD. We demonstrate a 120% reduction in error when using a proposed dual-energy Simultaneous Equation by Constrained Least-squares method, enabling more accurate bone mineral measurements.

  3. Dual energy computed tomography for the head.

    Science.gov (United States)

    Naruto, Norihito; Itoh, Toshihide; Noguchi, Kyo

    2018-02-01

    Dual energy CT (DECT) is a promising technology that provides better diagnostic accuracy in several brain diseases. DECT can generate various types of CT images from a single acquisition data set at high kV and low kV based on material decomposition algorithms. The two-material decomposition algorithm can separate bone/calcification from iodine accurately. The three-material decomposition algorithm can generate a virtual non-contrast image, which helps to identify conditions such as brain hemorrhage. A virtual monochromatic image has the potential to eliminate metal artifacts by reducing beam-hardening effects. DECT also enables exploration of advanced imaging to make diagnosis easier. One such novel application of DECT is the X-Map, which helps to visualize ischemic stroke in the brain without using iodine contrast medium.

  4. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark

    DEFF Research Database (Denmark)

    Hansen, David Christoffer; Seco, Joao; Sørensen, Thomas Sangild

    2015-01-01

    Background. Accurate stopping power estimation is crucial for treatment planning in proton therapy, and the uncertainties in stopping power are currently the largest contributor to the employed dose margins. Dual energy x-ray computed tomography (CT) (clinically available) and proton CT (in...... development) have both been proposed as methods for obtaining patient stopping power maps. The purpose of this work was to assess the accuracy of proton CT using dual energy CT scans of phantoms to establish reference accuracy levels. Material and methods. A CT calibration phantom and an abdomen cross section...... phantom containing inserts were scanned with dual energy and single energy CT with a state-of-the-art dual energy CT scanner. Proton CT scans were simulated using Monte Carlo methods. The simulations followed the setup used in current prototype proton CT scanners and included realistic modeling...

  5. Development of optimized segmentation map in dual energy computed tomography

    Science.gov (United States)

    Yamakawa, Keisuke; Ueki, Hironori

    2012-03-01

    Dual energy computed tomography (DECT) has been widely used in clinical practice and has been particularly effective for tissue diagnosis. In DECT the difference of two attenuation coefficients acquired by two kinds of X-ray energy enables tissue segmentation. One problem in conventional DECT is that the segmentation deteriorates in some cases, such as bone removal. This is due to two reasons. Firstly, the segmentation map is optimized without considering the Xray condition (tube voltage and current). If we consider the tube voltage, it is possible to create an optimized map, but unfortunately we cannot consider the tube current. Secondly, the X-ray condition is not optimized. The condition can be set empirically, but this means that the optimized condition is not used correctly. To solve these problems, we have developed methods for optimizing the map (Method-1) and the condition (Method-2). In Method-1, the map is optimized to minimize segmentation errors. The distribution of the attenuation coefficient is modeled by considering the tube current. In Method-2, the optimized condition is decided to minimize segmentation errors depending on tube voltagecurrent combinations while keeping the total exposure constant. We evaluated the effectiveness of Method-1 by performing a phantom experiment under the fixed condition and of Method-2 by performing a phantom experiment under different combinations calculated from the total exposure constant. When Method-1 was followed with Method-2, the segmentation error was reduced from 37.8 to 13.5 %. These results demonstrate that our developed methods can achieve highly accurate segmentation while keeping the total exposure constant.

  6. Dual energy computer tomography. Objectve dosimetry, image quality and dose efficiency; Dual Energy Computertomographie. Objektive Dosimetrie, Bildqualitaet und Dosiseffizienz

    Energy Technology Data Exchange (ETDEWEB)

    Schenzle, Jan Christian

    2012-05-24

    The aim of the present studies was an objective reflection of newly developed methods of modern imaging techniques concerning radiation exposure to the human body. Dual Source computed tomography has opened up a broad variety of new diagnostic possibilities. Using two X-ray sources with an angular offset of about 90 in a single gantry, images with a high spatiotemporal resolution can be achieved, for example in patients suffering acute chest pain. The Dual Energy Mode is based on the acquisition of two data sets with two different X-ray spectra which make it possible to identify certain substances with different spectral properties like bone, iodine or other organic material. [6-17] There is no doubt that this technical innovation will make an essential contribution to clinical diagnostics, but it remained to be proven that there is no additional dose. An anthropomorphic Phantom and thermoluminiscent detectors were used to objectively quantify the radiation dose resulting from the different examination protocols. For Dual Energy CT examinations, it was possible to verify dose neutrality in combination with comparable image quality and even improved contrast to noise ratio. Nowadays, this protocol is used in clinical routine examinations, e.g. for the evaluation of pulmonary embolism. A milestone in dose reduction was reached with modern triple rule out protocols. Causes of acute chest pain such as heart attack, pulmonary embolism or aortic rupture can be differentiated in a single examination with a high precision and a fractional amount of dose compared to conventional methods.

  7. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark.

    Science.gov (United States)

    Hansen, David C; Seco, Joao; Sørensen, Thomas Sangild; Petersen, Jørgen Breede Baltzer; Wildberger, Joachim E; Verhaegen, Frank; Landry, Guillaume

    2015-01-01

    Accurate stopping power estimation is crucial for treatment planning in proton therapy, and the uncertainties in stopping power are currently the largest contributor to the employed dose margins. Dual energy x-ray computed tomography (CT) (clinically available) and proton CT (in development) have both been proposed as methods for obtaining patient stopping power maps. The purpose of this work was to assess the accuracy of proton CT using dual energy CT scans of phantoms to establish reference accuracy levels. A CT calibration phantom and an abdomen cross section phantom containing inserts were scanned with dual energy and single energy CT with a state-of-the-art dual energy CT scanner. Proton CT scans were simulated using Monte Carlo methods. The simulations followed the setup used in current prototype proton CT scanners and included realistic modeling of detectors and the corresponding noise characteristics. Stopping power maps were calculated for all three scans, and compared with the ground truth stopping power from the phantoms. Proton CT gave slightly better stopping power estimates than the dual energy CT method, with root mean square errors of 0.2% and 0.5% (for each phantom) compared to 0.5% and 0.9%. Single energy CT root mean square errors were 2.7% and 1.6%. Maximal errors for proton, dual energy and single energy CT were 0.51%, 1.7% and 7.4%, respectively. Better stopping power estimates could significantly reduce the range errors in proton therapy, but requires a large improvement in current methods which may be achievable with proton CT.

  8. The role of dual-energy computed tomography in the assessment of pulmonary function

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hye Jeon [Department of Radiology, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do 431-796 (Korea, Republic of); Hoffman, Eric A. [Departments of Radiology, Medicine, and Biomedical Engineering, University of Iowa, 200 Hawkins Dr, CC 701 GH, Iowa City, IA 52241 (United States); Lee, Chang Hyun; Goo, Jin Mo [Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of); Levin, David L. [Department of Radiology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905 (United States); Kauczor, Hans-Ulrich [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Seo, Joon Beom, E-mail: seojb@amc.seoul.kr [Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 388-1, Pungnap 2-dong, Songpa-ku, Seoul, 05505 (Korea, Republic of)

    2017-01-15

    Highlights: • The dual-energy CT technique enables the differentiation of contrast materials with material decomposition algorithm. • Pulmonary functional information can be evaluated using dual-energy CT with anatomic CT information, simultaneously. • Pulmonary functional information from dual-energy CT can improve diagnosis and severity assessment of diseases. - Abstract: The assessment of pulmonary function, including ventilation and perfusion status, is important in addition to the evaluation of structural changes of the lung parenchyma in various pulmonary diseases. The dual-energy computed tomography (DECT) technique can provide the pulmonary functional information and high resolution anatomic information simultaneously. The application of DECT for the evaluation of pulmonary function has been investigated in various pulmonary diseases, such as pulmonary embolism, asthma and chronic obstructive lung disease and so on. In this review article, we will present principles and technical aspects of DECT, along with clinical applications for the assessment pulmonary function in various lung diseases.

  9. Ion range estimation by using dual energy computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Huenemohr, Nora; Greilich, Steffen [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; Krauss, Bernhard [Siemens AG, Forchheim (Germany). Imaging and Therapy; Dinkel, Julien [German Cancer Research Center (DKFZ), Heidelberg (Germany). Radiology; Massachusetts General Hospital, Boston, MA (United States). Radiology; Gillmann, Clarissa [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; University Hospital Heidelberg (Germany). Radiation Oncology; Ackermann, Benjamin [Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); Jaekel, Oliver [German Cancer Research Center (DKFZ), Heidelberg (Germany). Medical Physics in Radiation Oncology; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); University Hospital Heidelberg (Germany). Radiation Oncology

    2013-07-01

    Inaccurate conversion of CT data to water-equivalent path length (WEPL) is one of the most important uncertainty sources in ion treatment planning. Dual energy CT (DECT) imaging might help to reduce CT number ambiguities with the additional information. In our study we scanned a series of materials (tissue substitutes, aluminum, PMMA, and other polymers) in the dual source scanner (Siemens Somatom Definition Flash). Based on the 80 kVp/140Sn kVp dual energy images, the electron densities Q{sub e} and effective atomic numbers Z{sub eff} were calculated. We introduced a new lookup table that translates the Q{sub e} to the WEPL. The WEPL residuals from the calibration were significantly reduced for the investigated tissue surrogates compared to the empirical Hounsfield-look-up table (single energy CT imaging) from (-1.0 {+-} 1.8)% to (0.1 {+-} 0.7)% and for non-tissue equivalent PMMA from -7.8% to -1.0%. To assess the benefit of the new DECT calibration, we conducted a treatment planning study for three different idealized cases based on tissue surrogates and PMMA. The DECT calibration yielded a significantly higher target coverage in tissue surrogates and phantom material (i.e. PMMA cylinder, mean target coverage improved from 62% to 98%). To verify the DECT calibration for real tissue, ion ranges through a frozen pig head were measured and compared to predictions calculated by the standard single energy CT calibration and the novel DECT calibration. By using this method, an improvement of ion range estimation from -2.1% water-equivalent thickness deviation (single energy CT) to 0.3% (DECT) was achieved. If one excludes raypaths located on the edge of the sample accompanied with high uncertainties, no significant difference could be observed. (orig.)

  10. Optimum energies for dual-energy computed tomography

    International Nuclear Information System (INIS)

    Talbert, A.J.; Brooks, R.A.; Morgenthaler, D.G.

    1980-01-01

    By performing a dual-energy scan, separate information can be obtained on the Compton and photoelectric components of attenuation for an unknown material. This procedure has been analysed for the optimum energies, and for the optimum dose distribution between the two scans. It was found that an equal dose at both energies was a good compromise, compared with optimising the dose distributing for either the Compton or photoelectric components individually. For monoenergetic beams, it was found that low energy of 40 keV produced minimum noise when using high-energy beams of 80 to 100 keV. This was true whether one maintained constant integral dose or constant surface dose. A low energy of 50 keV which is more nearly attainable in practice, produced almost as good a degree of accuracy. The analysis can be extended to polyenergetic beams by the inclusion of a noise factor. The above results were qualitatively unchanged, although the noise was increased by about 20% with integral dose equivalence and 50% with surface dose equivalence. It is very important to make the spectra as narrow as possible, especially at the low energy, in order to minimise the noise. (author)

  11. Evaluation of bone mineral density with dual energy quantitative computed tomography (DEQCT)

    International Nuclear Information System (INIS)

    Ito, Masako; Hayashi, Kuniaki; Yamada, Naoyuki.

    1989-01-01

    The purpose of this study was twofold: to investigate the precision and accuracy of dual energy quantitative computed tomography (QCT) and to investigate age-related changes of bone marrow density (BMD) in patients without metabolic disorders. Rapid kilovolt peak switching system, with which SOMATOM DR-H CT is equipped, allows dual energy scanning. KV-separated images and material-separated images were calculated from dual energy scan data. KV-separated data was regarded as single energy QCT. In phantom studies, dipotassium hydrogen phosphate solution, water, and ethanol were used to simulate bone mineral, lean soft tissue, and fat, respectively. Values of BMD obtained by dual energy scanning method had an error of 5.5% per 10% increase of fat, as compared with 12% for BMD values obtained by single energy scanning method. However, single energy scanning method had a higher precision than dual energy scanning method in determining BMD. The selection of CT section is considered most important in the clinical determination of BMD. In a study of age-related changes of BMD in the vertebral trabecular and cortical bones in 161 patients, BMD was found to have two peaks for women in their twenties and thirties, and one peak for men in their twenties. Bone marrow density rapidly declined among women aged 50 years or more. These results suggest that the content of fat in the trabecular bone may increase progressively after the age of 40, regardless of sex. (N.K.)

  12. Feasibility of dual-energy computed tomography in radiation therapy planning

    Science.gov (United States)

    Sheen, Heesoon; Shin, Han-Back; Cho, Sungkoo; Cho, Junsang; Han, Youngyih

    2017-12-01

    In this study, the noise level, effective atomic number ( Z eff), accuracy of the computed tomography (CT) number, and the CT number to the relative electron density EDconversion curve were estimated for virtual monochromatic energy and polychromatic energy. These values were compared to the theoretically predicted values to investigate the feasibility of the use of dual-energy CT in routine radiation therapy planning. The accuracies of the parameters were within the range of acceptability. These results can serve as a stepping stone toward the routine use of dual-energy CT in radiotherapy planning.

  13. Initial experience with visualizing hand and foot tendons by dual-energy computed tomography.

    Science.gov (United States)

    Deng, Kai; Sun, Cong; Liu, Cheng; Ma, Rui

    2009-01-01

    To assess the feasibility of visualizing hand and foot tendons by dual-energy computed tomography (CT). Twenty patients who suffered from hand or feet pains were scanned on dual-source CT (Definition, Forchheim, Germany) with dual-energy mode at tube voltages of 140 and 80 kV and a corresponding ratio of 1:4 between tube currents. The reconstructed images were postprocessed by volume rendering techniques (VRT) and multiplanar reconstruction (MPR). All of the suspected lesions were confirmed by surgery or follow-up studies. Twelve patients (total of 24 hands and feet, respectively) were found to be normal and the other eight patients (total of nine hands and feet, respectively) were found abnormal. Dual-energy techniques are very useful in visualizing tendons of the hands and feet, such as flexor pollicis longus tendon, flexor digitorum superficialis/profundus tendon, Achilles tendon, extensor hallucis longus tendon, and extensor digitorum longus tendon, etc. It can depict the whole shape of the tendons and their fixation points clearly. Peroneus longus tendon in the sole of the foot was not displayed very well. The distal ends of metacarpophalangeal joints with extensor digitoium tendon and extensor pollicis longus tendon were poorly shown. The lesions of tendons such as the circuitry, thickening, and adherence were also shown clearly. Dual-energy CT offers a new method to visualize tendons of the hand and foot. It could clearly display both anatomical structures and pathologic changes of hand and foot tendons.

  14. Dual energy quantitative computed tomography (QCT). Precision of the mineral density measurements

    International Nuclear Information System (INIS)

    Braillon, P.; Bochu, M.

    1989-01-01

    The improvement that could be obtained in quantitative bone mineral measurements by dual energy computed tomography was tested in vitro. From the results of 15 mineral density measurements (in mg Ca/cm 3 , done on a precise lumbar spine phantom (Hologic) and referred to the values obtained on the same slices on a Siemens Osteo-CT phantom, the precision found was 0.8%, six times better than the precision calculated from the uncorrected measured values [fr

  15. Single- versus dual-energy quantitative computed tomography for spinal densitometry in patients with rheumatoid arthritis

    International Nuclear Information System (INIS)

    Laan, R.F.J.M.; Erning, L.J.Th.O. van; Lemmens, J.A.M.; Putte, L.B.A. van de; Ruijs, S.H.J.; Riel, P.L.C.M. van

    1992-01-01

    Lumbar bone mineral density was measured by both single- and dual-energy quantitative computed tomography in 109 patients with rheumatoid arthritis. The results were corrected for the age-related increase in vertebral fat content by converting them to percentages of expected densities, using sex and energy-level specific regression equations obtained in a normal reference population. The percentages of expected density are approximately 10% lower in the single- than in the dual-energy mode, both in the patients with and without prednisone therapy. This difference is statistically highly significant, and is positively correlated with the duration of the disease and with the degree of radiological joint destruction. The data suggest that the vertebral fat content may be increased in patients with rheumatoid arthritis, as a consequence of disease-dependent mechanisms. (Author)

  16. Development of a dual-energy computed tomography quality control program: Characterization of scanner response and definition of relevant parameters for a fast-kVp switching dual-energy computed tomography system.

    Science.gov (United States)

    Nute, Jessica L; Jacobsen, Megan C; Stefan, Wolfgang; Wei, Wei; Cody, Dianna D

    2018-04-01

    A prototype QC phantom system and analysis process were developed to characterize the spectral capabilities of a fast kV-switching dual-energy computed tomography (DECT) scanner. This work addresses the current lack of quantitative oversight for this technology, with the goal of identifying relevant scan parameters and test metrics instrumental to the development of a dual-energy quality control (DEQC). A prototype elliptical phantom (effective diameter: 35 cm) was designed with multiple material inserts for DECT imaging. Inserts included tissue equivalent and material rods (including iodine and calcium at varying concentrations). The phantom was scanned on a fast kV-switching DECT system using 16 dual-energy acquisitions (CTDIvol range: 10.3-62 mGy) with varying pitch, rotation time, and tube current. The circular head phantom (22 cm diameter) was scanned using a similar protocol (12 acquisitions; CTDIvol range: 36.7-132.6 mGy). All acquisitions were reconstructed at 50, 70, 110, and 140 keV and using a water-iodine material basis pair. The images were evaluated for iodine quantification accuracy, stability of monoenergetic reconstruction CT number, noise, and positional constancy. Variance component analysis was used to identify technique parameters that drove deviations in test metrics. Variances were compared to thresholds derived from manufacturer tolerances to determine technique parameters that had a nominally significant effect on test metrics. Iodine quantification error was largely unaffected by any of the technique parameters investigated. Monoenergetic HU stability was found to be affected by mAs, with a threshold under which spectral separation was unsuccessful, diminishing the utility of DECT imaging. Noise was found to be affected by CTDIvol in the DEQC body phantom, and CTDIvol and mA in the DEQC head phantom. Positional constancy was found to be affected by mAs in the DEQC body phantom and mA in the DEQC head phantom. A streamlined scan protocol

  17. Evaluation of computer-aided detection and dual energy software in detection of peripheral pulmonary embolism on dual-energy pulmonary CT angiography

    International Nuclear Information System (INIS)

    Lee, Choong Wook; Seo, Joon Beom; Song, Jae-Woo; Kim, Mi-Young; Lee, Ha Young; Park, Yang Shin; Chae, Eun Jin; Jang, Yu Mi; Kim, Namkug; Krauss, Bernard

    2011-01-01

    To evaluate the sensitivity of computer-aided detection(CAD) and dual-energy software('Lung PBV', 'Lung Vessels') for detecting peripheral pulmonary embolism(PE). Between Jan-2007 and Jan-2008, 309 patients underwent dual-energy CT angiography(DECTA) for the evaluation of suspected PE. Among them, 37 patients were retrospectively selected; 21 with PE at segmental-or-below levels and 16 without PE according to clinical reports. A standard computer assisted detection (CAD) package and two new types of software('Lung PBV', 'Lung Vessels') were applied on a dedicated workstation. This resulted in four alternative tests for detecting PE: DECTA alone and DECTA with CAD, 'Lung Vessels' and 'Lung PBV'. Two radiologists independently read all cases at different reading sessions. Two thoracic radiologists set the reference standard by combining all information from DECTA and software. The sensitivity of detection for all, segmental and subsegmental-or-below PE were assessed. The reference standard contained 136 PE(segmental 65, subsegmental-or-below 71). With DECTA alone, the sensitivity of detection for all, segmental and subsegmental-or-below pulmonary arteries was 54.5%/73.7%/34.4%; DECTA with CAD, 57.8%/76.8%/37.9%; DECTA with 'Lung PBV', 61.1%/79.9%/41.4%; DECTA with 'Lung Vessels', 64.0%/78.3%/48.5% respectively. The use of CAD, Lung Vessels and Lung PBV shows improved capability to detect peripheral PE. (orig.)

  18. Projection decomposition algorithm for dual-energy computed tomography via deep neural network.

    Science.gov (United States)

    Xu, Yifu; Yan, Bin; Chen, Jian; Zeng, Lei; Li, Lei

    2018-03-15

    Dual-energy computed tomography (DECT) has been widely used to improve identification of substances from different spectral information. Decomposition of the mixed test samples into two materials relies on a well-calibrated material decomposition function. This work aims to establish and validate a data-driven algorithm for estimation of the decomposition function. A deep neural network (DNN) consisting of two sub-nets is proposed to solve the projection decomposition problem. The compressing sub-net, substantially a stack auto-encoder (SAE), learns a compact representation of energy spectrum. The decomposing sub-net with a two-layer structure fits the nonlinear transform between energy projection and basic material thickness. The proposed DNN not only delivers image with lower standard deviation and higher quality in both simulated and real data, and also yields the best performance in cases mixed with photon noise. Moreover, DNN costs only 0.4 s to generate a decomposition solution of 360 × 512 size scale, which is about 200 times faster than the competing algorithms. The DNN model is applicable to the decomposition tasks with different dual energies. Experimental results demonstrated the strong function fitting ability of DNN. Thus, the Deep learning paradigm provides a promising approach to solve the nonlinear problem in DECT.

  19. Dual-energy computed tomographic virtual noncalcium algorithm for detection of bone marrow edema in acute fractures: early experiences.

    Science.gov (United States)

    Reagan, Adrian C; Mallinson, Paul I; O'Connell, Timothy; McLaughlin, Patrick D; Krauss, Bernhard; Munk, Peter L; Nicolaou, Savvas; Ouellette, Hugue A

    2014-01-01

    Computed tomography (CT) is often used to assess the presence of occult fractures when plain radiographs are equivocal in the acute traumatic setting. While providing increased spatial resolution, conventional computed tomography is limited in the assessment of bone marrow edema, a finding that is readily detectable on magnetic resonance imaging (MRI).Dual-energy CT has recently been shown to demonstrate patterns of bone marrow edema similar to corresponding MRI studies. Dual-energy CT may therefore provide a convenient modality for further characterizing acute bony injury when MRI is not readily available. We report our initial experiences of 4 cases with imaging and clinical correlation.

  20. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    Science.gov (United States)

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  1. Can a dual-energy computed tomography predict unsuitable stone components for extracorporeal shock wave lithotripsy?

    Science.gov (United States)

    Ahn, Sung Hoon; Oh, Tae Hoon; Seo, Ill Young

    2015-09-01

    To assess the potential of dual-energy computed tomography (DECT) to identify urinary stone components, particularly uric acid and calcium oxalate monohydrate, which are unsuitable for extracorporeal shock wave lithotripsy (ESWL). This clinical study included 246 patients who underwent removal of urinary stones and an analysis of stone components between November 2009 and August 2013. All patients received preoperative DECT using two energy values (80 kVp and 140 kVp). Hounsfield units (HU) were measured and matched to the stone component. Significant differences in HU values were observed between uric acid and nonuric acid stones at the 80 and 140 kVp energy values (penergy values (p<0.001). DECT improved the characterization of urinary stone components and was a useful method for identifying uric acid and calcium oxalate monohydrate stones, which are unsuitable for ESWL.

  2. Tophaceous Gout in an Anorectic Patient Visualized by Dual Energy Computed Tomography (DECT)

    DEFF Research Database (Denmark)

    Christensen, Heidi Dahl; Sheta, Hussam; Birger Morillon, Melanie

    2016-01-01

    BACKGROUND Gout is characterized by deposition of uric acid crystals (monosodium urate) in tissues and fluids. This can cause acute inflammatory arthritis. The 2015 ACR/EULAR criteria for the diagnosis of gout include dual energy computed tomography (DECT)-demonstrated monosodium urate crystals...... known to have anorexia nervosa. During our clinical examination, we detected plenty of tophi on both hands, but no swollen joints. The diagnosis of gout was made by visualizing crystals in a biopsy from a tophus. The first line of treatment was allopurinol, the second line was rasburicase...... and soft tissue. CONCLUSIONS DECT is an imaging modality useful to assess urate crystal deposits at diagnosis of gout and could be considered during treatment evaluation. Lack of adherence to treatment should be considered when P-urate values vary significantly and when DECT scans over years persistently...

  3. The feasibility of colorectal cancer detection using dual-energy computed tomography with iodine mapping

    International Nuclear Information System (INIS)

    Boellaard, T.N.; Henneman, O.D.F.; Streekstra, G.J.; Venema, H.W.; Nio, C.Y.; Dorth-Rombouts, M.C. van; Stoker, J.

    2013-01-01

    Aim: To assess the feasibility of colorectal cancer detection using dual-energy computed tomography with iodine mapping and without bowel preparation or bowel distension. Materials and methods: Consecutive patients scheduled for preoperative staging computed tomography (CT) because of diagnosed or high suspicion for colorectal cancer were prospectively included in the study. A single contrast-enhanced abdominal CT acquisition using dual-source mode (100 kV/140 kV) was performed without bowel preparation. Weighted average 120 kV images and iodine maps were created with post-processing. Two observers performed a blinded read for colorectal lesions after being trained on three colorectal cancer patients. One observer performed an unblinded read for lesion detectability and placed a region of interest (ROI) within each lesion. Results: In total 21 patients were included and 18 had a colorectal cancer at the time of the CT acquisition. Median cancer size was 43 mm [interquartile range (IQR) 27–60 mm] and all 18 colorectal cancers were visible on the 120 kV images and iodine map during the unblinded read. During the blinded read, observers found 90% (27/30) of the cancers with 120 kV images only and 96.7% (29/30) after viewing the iodine map in addition (p = 0.5). Median enhancement of colorectal cancers was 29.9 HU (IQR 23.1–34.6). The largest benign lesions (70 and 25 mm) were visible on the 120 kV images and iodine map, whereas four smaller benign lesions (7–15 mm) were not. Conclusion: Colorectal cancers are visible on the contrast-enhanced dual-energy CT without bowel preparation or insufflation. Because of the patient-friendly nature of this approach, further studies should explore its use for colorectal cancer detection in frail and elderly patients

  4. Dual energy CT

    DEFF Research Database (Denmark)

    Al-Najami, Issam; Drue, Henrik Christian; Steele, Robert

    2017-01-01

    and inaccurate with existing methods. Dual Energy Computed Tomography (DECT) enables qualitative tissue differentiation by simultaneous scanning with different levels of energy. We aimed to assess the feasibility of DECT in quantifying tumor response to neoadjuvant therapy in loco-advanced rectal cancer. METHODS...... to determine the average quantitative parameters; effective-Z, water- and iodine-concentration, Dual Energy Index (DEI), and Dual Energy Ratio (DER). These parameters were compared to the regression in the resection specimen as measured by the pathologist. RESULTS: Changes in the quantitative parameters...

  5. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 2: Radiation Dose and Iodine Sensitivity.

    Science.gov (United States)

    Foley, W Dennis; Shuman, William P; Siegel, Marilyn J; Sahani, Dushyant V; Boll, Daniel T; Bolus, David N; De Cecco, Carlo N; Kaza, Ravi K; Morgan, Desiree E; Schoepf, U Joseph; Vrtiska, Terri J; Yeh, Benjamin M; Berland, Lincoln L

    This is the second of a series of 4 white papers that represent Expert Consensus Documents developed by the Society of Computed Body Tomography and Magnetic Resonance through its task force on dual-energy computed tomography. This paper, part 2, addresses radiation dose and iodine sensitivity in dual-energy computed tomography.

  6. Compound analysis of gallstones using dual energy computed tomography-Results in a phantom model

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Ralf W., E-mail: ralfwbauer@aol.co [Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany); Schulz, Julian R., E-mail: julian.schulz@t-online.d [Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany); Zedler, Barbara, E-mail: zedler@em.uni-frankfurt.d [Department of Forensic Medicine, Clinic of the Goethe University Frankfurt, Kennedyallee 104, 60596 Frankfurt (Germany); Graf, Thomas G., E-mail: thomas.gt.graf@siemens.co [Siemens AG Healthcare Sector, Computed Tomography, Physics and Applications, Siemensstrasse 1, 91313 Forchheim (Germany); Vogl, Thomas J., E-mail: t.vogl@em.uni-frankfurt.d [Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt (Germany)

    2010-07-15

    Purpose: The potential of dual energy computed tomography (DECT) for the analysis of gallstone compounds was investigated. The main goal was to find parameters, that can reliably define high percentage (>70%) cholesterol stones without calcium components. Materials and methods: 35 gallstones were analyzed with DECT using a phantom model. Stone samples were put into specimen containers filled with formalin. Containers were put into a water-filled cylindrical acrylic glass phantom. DECT scans were performed using a tube voltage/current of 140 kV/83 mAs (tube A) and 80 kV/340 mAs (tube B). ROI-measurements to determine CT attenuation of each sector of the stones that had different appearance on the CT images were performed. Finally, semi-quantitative infrared spectroscopy (FTIR) of these sectors was performed for chemical analysis. Results: ROI-measurements were performed in 45 different sectors in 35 gallstones. Sectors containing >70% of cholesterol and no calcium component (n = 20) on FTIR could be identified with 95% sensitivity and 100% specificity on DECT. These sectors showed typical attenuation of -8 {+-} 4 HU at 80 kV and +22 {+-} 3 HU at 140 kV. Even the presence of a small calcium component (<10%) hindered the reliable identification of cholesterol components as such. Conclusion: Dual energy CT allows for reliable identification of gallstones containing a high percentage of cholesterol and no calcium component in this pre-clinical phantom model. Results from in vivo or anthropomorphic phantom trials will have to confirm these results. This may enable the identification of patients eligible for non-surgical treatment options in the future.

  7. Compound analysis of gallstones using dual energy computed tomography-Results in a phantom model

    International Nuclear Information System (INIS)

    Bauer, Ralf W.; Schulz, Julian R.; Zedler, Barbara; Graf, Thomas G.; Vogl, Thomas J.

    2010-01-01

    Purpose: The potential of dual energy computed tomography (DECT) for the analysis of gallstone compounds was investigated. The main goal was to find parameters, that can reliably define high percentage (>70%) cholesterol stones without calcium components. Materials and methods: 35 gallstones were analyzed with DECT using a phantom model. Stone samples were put into specimen containers filled with formalin. Containers were put into a water-filled cylindrical acrylic glass phantom. DECT scans were performed using a tube voltage/current of 140 kV/83 mAs (tube A) and 80 kV/340 mAs (tube B). ROI-measurements to determine CT attenuation of each sector of the stones that had different appearance on the CT images were performed. Finally, semi-quantitative infrared spectroscopy (FTIR) of these sectors was performed for chemical analysis. Results: ROI-measurements were performed in 45 different sectors in 35 gallstones. Sectors containing >70% of cholesterol and no calcium component (n = 20) on FTIR could be identified with 95% sensitivity and 100% specificity on DECT. These sectors showed typical attenuation of -8 ± 4 HU at 80 kV and +22 ± 3 HU at 140 kV. Even the presence of a small calcium component (<10%) hindered the reliable identification of cholesterol components as such. Conclusion: Dual energy CT allows for reliable identification of gallstones containing a high percentage of cholesterol and no calcium component in this pre-clinical phantom model. Results from in vivo or anthropomorphic phantom trials will have to confirm these results. This may enable the identification of patients eligible for non-surgical treatment options in the future.

  8. Dual-energy computed tomography of cruciate ligament injuries in acute knee trauma

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, Erno K. [Helsinki University Hospital, Toeoeloe Trauma Center, Department of Radiology, Helsinki Medical Imaging Center, Helsinki (Finland); Koskinen, Seppo K. [Karolinska Universitetssjukhuset, Department of Clinical Science, Intervention and Technology (CLINTEC), Stockholm (Sweden)

    2015-09-15

    To examine dual-energy computed tomography (DECT) in evaluating cruciate ligament injuries. More specifically, the purpose was to assess the optimal keV level in DECT gemstone spectral imaging (GSI) images and to examine the usefulness of collagen-specific color mapping and dual-energy bone removal in the evaluation of cruciate ligaments and the popliteus tendon. At a level 1 trauma center, a 29-month period of emergency department DECT examinations for acute knee trauma was reviewed by two radiologists for presence of cruciate ligament injuries, visualization of the popliteus tendon and the optimal keV level in GSI images. Three different evaluating protocols (GSI, bone removal and collagen-specific color mapping) were rated. Subsequent MRI served as a reference standard for intraarticular injuries. A total of 18 patients who had an acute knee trauma, DECT and MRI were found. On MRI, six patients had an ACL rupture. DECT's sensitivity and specificity to detect ACL rupture were 79 % and 100 %, respectively. The DECT vs. MRI intra- and interobserver proportions of agreement for ACL rupture were excellent or good (kappa values 0.72-0.87). Only one patient had a PCL rupture. In GSI images, the optimal keV level was 63 keV. GSI of 40-140 keV was considered to be the best evaluation protocol in the majority of cases. DECT is a usable method to evaluate ACL in acute knee trauma patients with rather good sensitivity and high specificity. GSI is generally a better evaluation protocol than bone removal or collagen-specific color mapping in the evaluation of cruciate ligaments and popliteus tendon. (orig.)

  9. Local differences in mineral content in vertebral trabecular bone measured by dual-energy computed tomography

    International Nuclear Information System (INIS)

    Nepper-Rasmussen, J.; Mosekilde, L.; Aarhus Univ.

    1989-01-01

    Twelve lumbar vertebral bodies from cadavers were examined with dual-energy CT, to measure the calcium content in a big central region of interest (ROI). In each of five vertebrae the calcium content was also measured in six small ROI. After completed scanning, six small cylinders were drilled out from each vertebra, and the ash-density of each cylinder was measured. The dual-energy CT measurements correlated well with the ash-density. Both ash-density and dual-energy CT showed a significantly higher mineral content in the posterior part of the vertebrae than in the anterior part, and this difference might be responsible for problems encountered with the reproducibility of dual-energy CT. (orig.)

  10. Comparative analysis of bone mineral contents with dual-energy quantitative computed tomography

    International Nuclear Information System (INIS)

    Choi, T. J.; Yoon, S. M.; Kim, O. B.; Lee, S. M.; Suh, S. J.

    1997-01-01

    The Dual-Energy Quantitative Computed Tomography(DEQCT) was compared with bone equivalent K 2 HPO 4 standard solution and ash weight of animal cadaveric trabecular bone in the measurement of bone mineral contents(BMC). The attenuation coefficient of tissues highly depends on the radiation energy, density and effective atomic number of composition. The bone mineral content of DEQCT in this experiments was determined from empirical constants and mass attenuation coefficients of bone, fat and soft tissue equivalent solution in two photon spectra. In this experiments, the BMC of DEQCT with 80 and 120kV p X rays was compared to ash weight of animal trabecular bone. We obtained the mass attenuation coefficient of 0.2409, 0.5608 and 0.2206 in 80kV p , and 0.2046, 0.3273 and 0.1971 cm 2 /g in 120kV p X-ray spectra for water, bone and fat equivalent materials, respectively. The BMC with DEQCT was accomplished with empirical constants K 1 =0.3232, K 2 =0.2450 and mass attenuation coefficients has very closed to ash weight of animal trabecular bone. The BMC of empirical DEQCT and that of manufacturing DEQCT were correlated with ash weight as a correlation r=0.998 and r=0.996, respectively. The BMC of empirical DEQCT using the experimental mass attenuation coefficients and that of manufacture have showed very close to ash weight of animal trabecular bone. (author)

  11. Endoleak detection using single-acquisition split-bolus dual-energy computer tomography (DECT)

    Energy Technology Data Exchange (ETDEWEB)

    Javor, D.; Wressnegger, A.; Unterhumer, S.; Kollndorfer, K.; Nolz, R.; Beitzke, D.; Loewe, C. [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria)

    2017-04-15

    To assess a single-phase, dual-energy computed tomography (DECT) with a split-bolus technique and reconstruction of virtual non-enhanced images for the detection of endoleaks after endovascular aneurysm repair (EVAR). Fifty patients referred for routine follow-up post-EVAR CT and a history of at least one post-EVAR follow-up CT examination using our standard biphasic (arterial and venous phase) routine protocol (which was used as the reference standard) were included in this prospective trial. An in-patient comparison and an analysis of the split-bolus protocol and the previously used double-phase protocol were performed with regard to differences in diagnostic accuracy, radiation dose, and image quality. The analysis showed a significant reduction of radiation dose of up to 42 %, using the single-acquisition split-bolus protocol, while maintaining a comparable diagnostic accuracy (primary endoleak detection rate of 96 %). Image quality between the two protocols was comparable and only slightly inferior for the split-bolus scan (2.5 vs. 2.4). Using the single-acquisition, split-bolus approach allows for a significant dose reduction while maintaining high image quality, resulting in effective endoleak identification. (orig.)

  12. Accessory spleen versus lymph node: Value of iodine quantification with dual-energy computed tomography

    International Nuclear Information System (INIS)

    Winklhofer, Sebastian; Lin, Wei-Ching; Lambert, Jack W.; Yeh, Benjamin M.

    2017-01-01

    Objectives: To evaluate whether iodine quantification with Dual-Energy Computed Tomography (DECT) improves the differentiation of accessory spleens (AS) from lymph nodes (LN) compared to CT number measurements. Methods: Abdominal DECT images of 75 patients with either AS (n = 35) or LN (n = 48) (benign entity) were retrospectively evaluated. Hounsfield Units (HU) and iodine concentrations of AS, LN and the main spleen were measured. Receiver operating characteristics (ROC) were performed to calculate an optimal threshold for distinguishing AS from LN. Sensitivity, specificity, and accuracy were calculated for distinguishing AS from LN by iodine concentration measurements. Results: Mean CT numbers and iodine concentrations were higher for AS (148 ± 29 HU and 48.2 ± 11 × 100 μg/cc) than LN (83 ± 19 HU and 31.5 ± 6.2 × 100 μg/cc, respectively, P < 0.001 each). Mean CT numbers were lower for AS compared to the main spleen (161 ± 29HU, P < 0.01), whereas mean iodine concentrations (47.7 ± 10 × 100 μg/cc) were not significantly different (P = 0.095). An iodine concentration greater than 38 × 100 μg/cc suggested AS with a sensitivity, specificity and accuracy of 91%, 85%, and 88%, respectively (Area under ROC curve 0.941). Conclusions: Iodine measurements might contribute to the differentiation of AS from LN. Iodine concentrations similar to that of the main spleen may help to confirm the diagnosis of AS.

  13. Differentiation of benign and malignant lung lesions: Dual-Energy Computed Tomography findings.

    Science.gov (United States)

    González-Pérez, Víctor; Arana, Estanislao; Barrios, María; Bartrés, Albert; Cruz, Julia; Montero, Rafael; González, Manuel; Deltoro, Carlos; Martínez-Pérez, Encarnación; De Aguiar-Quevedo, Karol; Arrarás, Miguel

    2016-10-01

    To determine whether parameters generated by Dual-Energy Computed Tomography (DECT) can distinguish malignant from benign lung lesions. A prospective review of 125 patients with 126 lung lesions (23 benign and 103 malignant) who underwent lung DECT during arterial phase. All lesions were confirmed by tissue sampling. A radiologist semi-automatically contoured lesions and placed regions of interest (ROIs) in paravertebral muscle (PVM) for normalization. Variables related to absorption in Hounsfield units (HU), effective atomic number (Zeff), iodine concentration (ρI) and spectral CT curves were assessed. Receiver operating characteristic (ROC) curves were generated to calculate sensitivity and specificity as predictors of malignancy. Multivariate logistic regression analysis was performed. Reproducibility of measures normalized with PVM was poor. Bivariate analysis showed minimum Zeff and normalized mean Zeff to be statistically significant (p=0.001), with area under the curve (AUC) values: 0.66 (CI 95% 0.54-0.80) and 0.72 (CI 95%, 0.60-0.84), respectively. Logistic regression models showed no differences between raw and normalized measurements. In both models, minimum HU (OR: 0.9) and size (OR: 0.1) were predictive of benign lesions. A quantitative approach to DECT using raw measurements is simpler than logistic regression models. Normalization to PVM was not clinically reliable due to its poor reproducibility. Further studies are needed to confirm our findings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Differentiation of benign and malignant lung lesions: Dual-Energy Computed Tomography findings

    International Nuclear Information System (INIS)

    González-Pérez, Víctor; Arana, Estanislao; Barrios, María; Bartrés, Albert; Cruz, Julia; Montero, Rafael; González, Manuel; Deltoro, Carlos; Martínez-Pérez, Encarnación; De Aguiar-Quevedo, Karol; Arrarás, Miguel

    2016-01-01

    Purpose: To determine whether parameters generated by Dual-Energy Computed Tomography (DECT) can distinguish malignant from benign lung lesions. Methods: A prospective review of 125 patients with 126 lung lesions (23 benign and 103 malignant) who underwent lung DECT during arterial phase. All lesions were confirmed by tissue sampling. A radiologist semi-automatically contoured lesions and placed regions of interest (ROIs) in paravertebral muscle (PVM) for normalization. Variables related to absorption in Hounsfield units (HU), effective atomic number (Z eff ), iodine concentration (ρ I ) and spectral CT curves were assessed. Receiver operating characteristic (ROC) curves were generated to calculate sensitivity and specificity as predictors of malignancy. Multivariate logistic regression analysis was performed. Results: Reproducibility of measures normalized with PVM was poor. Bivariate analysis showed minimum Z eff and normalized mean Z eff to be statistically significant (p = 0.001), with area under the curve (AUC) values: 0.66 (CI 95% 0.54–0.80) and 0.72 (CI 95%, 0.60–0.84), respectively. Logistic regression models showed no differences between raw and normalized measurements. In both models, minimum HU (OR: 0.9) and size (OR: 0.1) were predictive of benign lesions. Conclusions: A quantitative approach to DECT using raw measurements is simpler than logistic regression models. Normalization to PVM was not clinically reliable due to its poor reproducibility. Further studies are needed to confirm our findings.

  15. Differentiation of benign and malignant lung lesions: Dual-Energy Computed Tomography findings

    Energy Technology Data Exchange (ETDEWEB)

    González-Pérez, Víctor [Dept Radiophysics, Foundation IVO, Valencia (Spain); Arana, Estanislao, E-mail: aranae@uv.es [Dept Radiology, Foundation IVO, Valencia (Spain); Barrios, María [Dept Radiology, Foundation IVO, Valencia (Spain); Bartrés, Albert [Dept Radiophysics, Foundation IVO, Valencia (Spain); Cruz, Julia [Dept Pathology, Foundation IVO, Valencia (Spain); Montero, Rafael [GE Healthcare Diagnostic Imaging, Iberia (Spain); González, Manuel; Deltoro, Carlos [Dept Radiology, Foundation IVO, Valencia (Spain); Martínez-Pérez, Encarnación [Dept Pneumology, Foundation IVO, Valencia (Spain); De Aguiar-Quevedo, Karol; Arrarás, Miguel [Dept Thoracic Surgery, Foundation IVO, Valencia (Spain)

    2016-10-15

    Purpose: To determine whether parameters generated by Dual-Energy Computed Tomography (DECT) can distinguish malignant from benign lung lesions. Methods: A prospective review of 125 patients with 126 lung lesions (23 benign and 103 malignant) who underwent lung DECT during arterial phase. All lesions were confirmed by tissue sampling. A radiologist semi-automatically contoured lesions and placed regions of interest (ROIs) in paravertebral muscle (PVM) for normalization. Variables related to absorption in Hounsfield units (HU), effective atomic number (Z{sub eff}), iodine concentration (ρ{sub I}) and spectral CT curves were assessed. Receiver operating characteristic (ROC) curves were generated to calculate sensitivity and specificity as predictors of malignancy. Multivariate logistic regression analysis was performed. Results: Reproducibility of measures normalized with PVM was poor. Bivariate analysis showed minimum Z{sub eff} and normalized mean Z{sub eff} to be statistically significant (p = 0.001), with area under the curve (AUC) values: 0.66 (CI 95% 0.54–0.80) and 0.72 (CI 95%, 0.60–0.84), respectively. Logistic regression models showed no differences between raw and normalized measurements. In both models, minimum HU (OR: 0.9) and size (OR: 0.1) were predictive of benign lesions. Conclusions: A quantitative approach to DECT using raw measurements is simpler than logistic regression models. Normalization to PVM was not clinically reliable due to its poor reproducibility. Further studies are needed to confirm our findings.

  16. Assessment of hepatic fatty infiltration using dual-energy computed tomography: a phantom study

    International Nuclear Information System (INIS)

    Li, Jung-Hui; Tsai, Chang-Yu; Huang, Hsuan-Ming

    2014-01-01

    The purpose of this study was to examine the performance of dual-energy computed tomography (DECT) for the quantification of liver fat content (LFC). We prepared two phantoms: homogenized mixtures of porcine liver and fat and homogeneous mixtures of liver- and fat-equivalent solutions. Tubes containing mixtures with known fat concentrations were scanned on a dual-source CT scanner using two DE scanning protocols (80 kV/Sn140 kV and 100 kV/Sn140 kV). Attenuation curves obtained from DECT were used to describe attenuations of various degrees of LFC at different energies. LFC was calculated from DECT data and compared with the known LFC. The phantom made of liver/fat mixtures was not used for liver fat quantification because the increase of fat content did not show a decline of CT numbers. This may be due to inhomogeneity as observed in CT images. Attenuation curves obtained from two DE scanning protocols had the ability to discriminate small differences in fat concentrations. Our results also showed a strong correlation between DECT measurements and known LFC (R 2  > 0.99, P < 0.005). DECT will be a reliable tool for liver fat quantification. Furthermore, attenuation curves obtained from DECT data can be used for discriminating various degrees of LFC. (paper)

  17. Complementary contrast media for metal artifact reduction in dual-energy computed tomography.

    Science.gov (United States)

    Lambert, Jack W; Edic, Peter M; FitzGerald, Paul F; Torres, Andrew S; Yeh, Benjamin M

    2015-07-01

    Metal artifacts have been a problem associated with computed tomography (CT) since its introduction. Recent techniques to mitigate this problem have included utilization of high-energy (keV) virtual monochromatic spectral (VMS) images, produced via dual-energy CT (DECT). A problem with these high-keV images is that contrast enhancement provided by all commercially available contrast media is severely reduced. Contrast agents based on higher atomic number elements can maintain contrast at the higher energy levels where artifacts are reduced. This study evaluated three such candidate elements: bismuth, tantalum, and tungsten, as well as two conventional contrast elements: iodine and barium. A water-based phantom with vials containing these five elements in solution, as well as different artifact-producing metal structures, was scanned with a DECT scanner capable of rapid operating voltage switching. In the VMS datasets, substantial reductions in the contrast were observed for iodine and barium, which suffered from contrast reductions of 97% and 91%, respectively, at 140 versus 40 keV. In comparison under the same conditions, the candidate agents demonstrated contrast enhancement reductions of only 20%, 29%, and 32% for tungsten, tantalum, and bismuth, respectively. At 140 versus 40 keV, metal artifact severity was reduced by 57% to 85% depending on the phantom configuration.

  18. Prediction of infarction development after endovascular stroke therapy with dual-energy computed tomography.

    Science.gov (United States)

    Djurdjevic, Tanja; Rehwald, Rafael; Knoflach, Michael; Matosevic, Benjamin; Kiechl, Stefan; Gizewski, Elke Ruth; Glodny, Bernhard; Grams, Astrid Ellen

    2017-03-01

    After intraarterial recanalisation (IAR), the haemorrhage and the blood-brain barrier (BBB) disruption can be distinguished using dual-energy computed tomography (DECT). The aim of the present study was to investigate whether future infarction development can be predicted from DECT. DECT scans of 20 patients showing 45 BBB disrupted areas after IAR were assessed and compared with follow-up examinations. Receiver operator characteristic (ROC) analyses using densities from the iodine map (IM) and virtual non-contrast (VNC) were performed. Future infarction areas are denser than future non-infarction areas on IM series (23.44 ± 24.86 vs. 5.77 ± 2.77; p VNC series (29.71 ± 3.33 vs. 35.33 ± 3.50; p 17.13 HU; p VNC series allowed prediction of infarction volume. Future infarction development after IAR can be reliably predicted with the IM series. The prediction of haemorrhages and of infarction size is less reliable. • The IM series (DECT) can predict future infarction development after IAR. • Later haemorrhages can be predicted using the IM and the BW series. • The volume of definable hypodense areas in VNC correlates with infarction volume.

  19. Prediction of infarction development after endovascular stroke therapy with dual-energy computed tomography

    International Nuclear Information System (INIS)

    Djurdjevic, Tanja; Gizewski, Elke Ruth; Grams, Astrid Ellen; Rehwald, Rafael; Glodny, Bernhard; Knoflach, Michael; Matosevic, Benjamin; Kiechl, Stefan

    2017-01-01

    After intraarterial recanalisation (IAR), the haemorrhage and the blood-brain barrier (BBB) disruption can be distinguished using dual-energy computed tomography (DECT). The aim of the present study was to investigate whether future infarction development can be predicted from DECT. DECT scans of 20 patients showing 45 BBB disrupted areas after IAR were assessed and compared with follow-up examinations. Receiver operator characteristic (ROC) analyses using densities from the iodine map (IM) and virtual non-contrast (VNC) were performed. Future infarction areas are denser than future non-infarction areas on IM series (23.44 ± 24.86 vs. 5.77 ± 2.77; p < 0.0001) and more hypodense on VNC series (29.71 ± 3.33 vs. 35.33 ± 3.50; p < 0.0001). ROC analyses for the IM series showed an area under the curve (AUC) of 0.99 (cut-off: <9.97 HU; p < 0.05; sensitivity 91.18 %; specificity 100.00 %; accuracy 0.93) for the prediction of future infarctions. The AUC for the prediction of haemorrhagic infarctions was 0.78 (cut-off >17.13 HU; p < 0.05; sensitivity 90.00 %; specificity 62.86 %; accuracy 0.69). The VNC series allowed prediction of infarction volume. Future infarction development after IAR can be reliably predicted with the IM series. The prediction of haemorrhages and of infarction size is less reliable. (orig.)

  20. Prediction of infarction development after endovascular stroke therapy with dual-energy computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Djurdjevic, Tanja; Gizewski, Elke Ruth; Grams, Astrid Ellen [Medical University of Innsbruck, Department of Neuroradiology, Innsbruck (Austria); Rehwald, Rafael; Glodny, Bernhard [Medical University of Innsbruck, Department of Radiology, Innsbruck (Austria); Knoflach, Michael; Matosevic, Benjamin; Kiechl, Stefan [Medical University of Innsbruck, Department of Neurology, Innsbruck (Austria)

    2017-03-15

    After intraarterial recanalisation (IAR), the haemorrhage and the blood-brain barrier (BBB) disruption can be distinguished using dual-energy computed tomography (DECT). The aim of the present study was to investigate whether future infarction development can be predicted from DECT. DECT scans of 20 patients showing 45 BBB disrupted areas after IAR were assessed and compared with follow-up examinations. Receiver operator characteristic (ROC) analyses using densities from the iodine map (IM) and virtual non-contrast (VNC) were performed. Future infarction areas are denser than future non-infarction areas on IM series (23.44 ± 24.86 vs. 5.77 ± 2.77; p < 0.0001) and more hypodense on VNC series (29.71 ± 3.33 vs. 35.33 ± 3.50; p < 0.0001). ROC analyses for the IM series showed an area under the curve (AUC) of 0.99 (cut-off: <9.97 HU; p < 0.05; sensitivity 91.18 %; specificity 100.00 %; accuracy 0.93) for the prediction of future infarctions. The AUC for the prediction of haemorrhagic infarctions was 0.78 (cut-off >17.13 HU; p < 0.05; sensitivity 90.00 %; specificity 62.86 %; accuracy 0.69). The VNC series allowed prediction of infarction volume. Future infarction development after IAR can be reliably predicted with the IM series. The prediction of haemorrhages and of infarction size is less reliable. (orig.)

  1. Accessory spleen versus lymph node: Value of iodine quantification with dual-energy computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Winklhofer, Sebastian, E-mail: Sebastian.winklhofer@usz.ch [Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave., Box 0628, M-372, San Francisco, CA 94143-0628 (United States); Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Lin, Wei-Ching, E-mail: d7466@mail.cmuh.org.tw [Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave., Box 0628, M-372, San Francisco, CA 94143-0628 (United States); Department of Radiology, China Medical University Hospital, No. 2, Yuh-Der Rd., Taichung 40447, Taiwan (China); Department of Biomedical Imaging and Radiological science, China Medical University, No. 91, Syueshih Rd., Taichung 40402, Taiwan (China); Lambert, Jack W., E-mail: Jack.Lambert@ucsf.edu [Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave., Box 0628, M-372, San Francisco, CA 94143-0628 (United States); Yeh, Benjamin M., E-mail: Benjamin.Yeh@ucsf.edu [Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave., Box 0628, M-372, San Francisco, CA 94143-0628 (United States)

    2017-02-15

    Objectives: To evaluate whether iodine quantification with Dual-Energy Computed Tomography (DECT) improves the differentiation of accessory spleens (AS) from lymph nodes (LN) compared to CT number measurements. Methods: Abdominal DECT images of 75 patients with either AS (n = 35) or LN (n = 48) (benign entity) were retrospectively evaluated. Hounsfield Units (HU) and iodine concentrations of AS, LN and the main spleen were measured. Receiver operating characteristics (ROC) were performed to calculate an optimal threshold for distinguishing AS from LN. Sensitivity, specificity, and accuracy were calculated for distinguishing AS from LN by iodine concentration measurements. Results: Mean CT numbers and iodine concentrations were higher for AS (148 ± 29 HU and 48.2 ± 11 × 100 μg/cc) than LN (83 ± 19 HU and 31.5 ± 6.2 × 100 μg/cc, respectively, P < 0.001 each). Mean CT numbers were lower for AS compared to the main spleen (161 ± 29HU, P < 0.01), whereas mean iodine concentrations (47.7 ± 10 × 100 μg/cc) were not significantly different (P = 0.095). An iodine concentration greater than 38 × 100 μg/cc suggested AS with a sensitivity, specificity and accuracy of 91%, 85%, and 88%, respectively (Area under ROC curve 0.941). Conclusions: Iodine measurements might contribute to the differentiation of AS from LN. Iodine concentrations similar to that of the main spleen may help to confirm the diagnosis of AS.

  2. Measurement of breast tissue composition with dual energy cone-beam computed tomography: A postmortem study

    Energy Technology Data Exchange (ETDEWEB)

    Ding Huanjun; Ducote, Justin L.; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2013-06-15

    Purpose: To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. Methods: Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. Results: Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of -11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. Conclusions: The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis.

  3. Comparison of bone volume measurements using conventional single and dual energy computed tomography

    International Nuclear Information System (INIS)

    Kim, Yung Kyoon; Park, Sang Hoon; Kim, Yon Min

    2017-01-01

    The study examines changes in calcium volume on born by comparing two figures; one is measured by dual energy computed tomography(DECT) followed by applying variation in monochromatic energy selection( keV), material decomposition(MD), and material suppressed iodine(MSI) analysis, and the other is measured by conventional single source computed tomography(CSCT). For this study, based on CSCT images taken by using human mimicked phantom, 70, 100, 140 keV and MSI, MD material calcium weighting( MCW) and MD material iodine weighting(MIW) of DECT were applied respectively. Then calculated calcium volume was converted to Agatston score for comparison. Volume of human mimicked phantom was in inverse proportion to keV. The volume decreased while keV increased(p<0.05). The most similar DECT volumes were reconstructed at 70 keV, the difference was showed 35.8±12.2 for rib, femur (16.1±24.1), pelvis(13.7±18.8), and spine(179.0±61.8). However, the volume of MSI was down for each organ; the volume of rib was 5.55%, femur(76.34%), pelvis(55.16%) and spine(87.58%). The volume of MSI decreased 55.9% for rib, femur(80.7%), pelvis(69.6%) and spine(54.2%) while MD MIW reduced for rib(83.51%), femur(87.68%), pelvis(86.64%), and spine(82.62%). With the results, the study found that outcomes were affected by the method which examiners employed. When using DECT, calcium volume of born dropped with keV increased. It also found that the most similar DECT images were reconstructed at 70 keV. The results of experiments implied that the users of MSI and MD should be cautious of errors as there are big differences in scores between those two methods

  4. Comparison of bone volume measurements using conventional single and dual energy computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yung Kyoon; Park, Sang Hoon [Dept. of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Yon Min [Dept. of Radiotechnology, Wonkwang Health Science University, Iksan (Korea, Republic of)

    2017-06-15

    The study examines changes in calcium volume on born by comparing two figures; one is measured by dual energy computed tomography(DECT) followed by applying variation in monochromatic energy selection( keV), material decomposition(MD), and material suppressed iodine(MSI) analysis, and the other is measured by conventional single source computed tomography(CSCT). For this study, based on CSCT images taken by using human mimicked phantom, 70, 100, 140 keV and MSI, MD material calcium weighting( MCW) and MD material iodine weighting(MIW) of DECT were applied respectively. Then calculated calcium volume was converted to Agatston score for comparison. Volume of human mimicked phantom was in inverse proportion to keV. The volume decreased while keV increased(p<0.05). The most similar DECT volumes were reconstructed at 70 keV, the difference was showed 35.8±12.2 for rib, femur (16.1±24.1), pelvis(13.7±18.8), and spine(179.0±61.8). However, the volume of MSI was down for each organ; the volume of rib was 5.55%, femur(76.34%), pelvis(55.16%) and spine(87.58%). The volume of MSI decreased 55.9% for rib, femur(80.7%), pelvis(69.6%) and spine(54.2%) while MD MIW reduced for rib(83.51%), femur(87.68%), pelvis(86.64%), and spine(82.62%). With the results, the study found that outcomes were affected by the method which examiners employed. When using DECT, calcium volume of born dropped with keV increased. It also found that the most similar DECT images were reconstructed at 70 keV. The results of experiments implied that the users of MSI and MD should be cautious of errors as there are big differences in scores between those two methods.

  5. Concept of effective atomic number and effective mass density in dual-energy X-ray computed tomography

    International Nuclear Information System (INIS)

    Bonnin, Anne; Duvauchelle, Philippe; Kaftandjian, Valérie; Ponard, Pascal

    2014-01-01

    This paper focuses on dual-energy X-ray computed tomography and especially the decomposition of the measured attenuation coefficient in a mass density and atomic number basis. In particular, the concept of effective atomic number is discussed. Although the atomic number is well defined for chemical elements, the definition of an effective atomic number for any compound is not an easy task. After reviewing different definitions available in literature, a definition related to the method of measurement and X-ray energy, is suggested. A new concept of effective mass density is then introduced in order to characterize material from dual-energy computed tomography. Finally, this new concept and definition are applied on a simulated case, focusing on explosives identification in luggage

  6. Diagnostic accuracy of dual-energy computed tomography in patients with gout: A meta-analysis.

    Science.gov (United States)

    Lee, Young Ho; Song, Gwan Gyu

    2017-08-01

    This study aimed to evaluate the diagnostic performance of dual-energy computed tomography (DECT) for patients with gout. We searched the Medline, Embase, and Cochrane Library databases, and performed a meta-analysis on the diagnostic accuracy of DECT in patients with gout. A total of eight studies including 510 patients with gout and 268 controls (patients with non-gout inflammatory arthritis) were available for the meta-analysis. The pooled sensitivity and specificity of DECT were 84.7% (95% confidence interval [CI]: 81.3-87.7) and 93.7% (93.0-96.3), respectively. The positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 9.882 (6.122-15.95), 0.163 (0.097-0.272), and 78.10 (31.14-195.84), respectively. The area under the curve of DECT was 0.956 and the Q * index was 0.889, indicating a high diagnostic accuracy. Some between-study heterogeneity was found in the meta-analyses. However, there was no evidence of a threshold effect (Spearman correlation coefficient = 0.419; p = 0.035). In addition, meta-regression showed that the sample size, study design, and diagnostic criteria were not sources of heterogeneity, and subgroup meta-analyses did not change the overall diagnostic accuracy. Our meta-analysis of published studies demonstrates that DECT has a high diagnostic accuracy and plays an important role in the diagnosis of gout. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Utility of single-energy and dual-energy computed tomography in clot characterization: An in-vitro study.

    Science.gov (United States)

    Brinjikji, Waleed; Michalak, Gregory; Kadirvel, Ramanathan; Dai, Daying; Gilvarry, Michael; Duffy, Sharon; Kallmes, David F; McCollough, Cynthia; Leng, Shuai

    2017-06-01

    Background and purpose Because computed tomography (CT) is the most commonly used imaging modality for the evaluation of acute ischemic stroke patients, developing CT-based techniques for improving clot characterization could prove useful. The purpose of this in-vitro study was to determine which single-energy or dual-energy CT techniques provided optimum discrimination between red blood cell (RBC) and fibrin-rich clots. Materials and methods Seven clot types with varying fibrin and RBC densities were made (90% RBC, 99% RBC, 63% RBC, 36% RBC, 18% RBC and 0% RBC with high and low fibrin density) and their composition was verified histologically. Ten of each clot type were created and scanned with a second generation dual source scanner using three single (80 kV, 100 kV, 120 kV) and two dual-energy protocols (80/Sn 140 kV and 100/Sn 140 kV). A region of interest (ROI) was placed over each clot and mean attenuation was measured. Receiver operating characteristic curves were calculated at each energy level to determine the accuracy at differentiating RBC-rich clots from fibrin-rich clots. Results Clot attenuation increased with RBC content at all energy levels. Single-energy at 80 kV and 120 kV and dual-energy 80/Sn 140 kV protocols allowed for distinguishing between all clot types, with the exception of 36% RBC and 18% RBC. On receiver operating characteristic curve analysis, the 80/Sn 140 kV dual-energy protocol had the highest area under the curve for distinguishing between fibrin-rich and RBC-rich clots (area under the curve 0.99). Conclusions Dual-energy CT with 80/Sn 140 kV had the highest accuracy for differentiating RBC-rich and fibrin-rich in-vitro thrombi. Further studies are needed to study the utility of non-contrast dual-energy CT in thrombus characterization in acute ischemic stroke.

  8. Aortic endograft surveillance: use of fast-switch kVp dual-energy computed tomography with virtual noncontrast imaging.

    Science.gov (United States)

    Maturen, Katherine E; Kleaveland, Patricia A; Kaza, Ravi K; Liu, Peter S; Quint, Leslie E; Khalatbari, Shokoufeh H; Platt, Joel F

    2011-01-01

    To assess endoleak detection and patients' radiation exposure using fast-switch peak kilovoltage (kVp) dual-energy computed tomography (DECT) with virtual noncontrast (VNC) imaging. Institutional review board approved retrospective review of triphasic CTs for endograft follow-up: single-energy true noncontrast (TNC) and dual-energy arterial- and venous-phase postcontrast scans on GE HD-750 64-detector scanners. Iodine-subtracted VNC images generated from dual-energy data. Two radiologists (VNC readers) independently performed 2 reading sessions without TNC images: (1) arterial and VNC and (2) venous and VNC. Interrater agreement, leak detection sensitivity, and dose estimates were calculated. Original dictations described 24 endoleaks in 78 scans. Virtual noncontrast reader agreement was high (κ = 0.78-0.79). Virtual noncontrast reader ranges for sensitivity and negative predictive value for leak detection were 87.5% to 95.8% and 94.0% to 98.0% in venous phase. Dose reduction estimate was 40% by eliminating one phase and 64% by eliminating 2 phases of imaging. Virtual noncontrast images from fast-switch peak kilovoltage DECT data can substitute for TNC imaging in the postendograft aorta, conferring substantial dose reduction. Eliminating 1 of 2 postcontrast phases further reduces dose, with greater negative predictive value for leak detection in the venous versus the arterial phase. Thus, the use of a monophasic venous-phase DECT with VNC images is suggested for long-term endograft surveillance in stable patients.

  9. [Application of second generation dual-source computed tomography dual-energy scan mode in detecting pancreatic adenocarcinoma].

    Science.gov (United States)

    Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu

    2010-12-01

    To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.

  10. Impact of polychromatic x-ray sources on helical, cone-beam computed tomography and dual-energy methods

    International Nuclear Information System (INIS)

    Sidky, Emil Y; Zou Yu; Pan Xiaochuan

    2004-01-01

    Recently, there has been much work devoted to developing accurate and efficient algorithms for image reconstruction in helical, cone-beam computed tomography (CT). Little attention, however, has been directed to the effect of physical factors on helical, cone-beam CT image reconstruction. This work investigates the effect of polychromatic x-rays on image reconstruction in helical, cone-beam computed tomography. A pre-reconstruction dual-energy technique is developed to reduce beam-hardening artefacts and enhance contrast in soft tissue

  11. Evaluation of non-linear blending in dual-energy computed tomography

    International Nuclear Information System (INIS)

    Holmes, David R.; Fletcher, Joel G.; Apel, Anja; Huprich, James E.; Siddiki, Hassan; Hough, David M.; Schmidt, Bernhard; Flohr, Thomas G.; Robb, Richard; McCollough, Cynthia; Wittmer, Michael; Eusemann, Christian

    2008-01-01

    Dual-energy CT scanning has significant potential for disease identification and classification. However, it dramatically increases the amount of data collected and therefore impacts the clinical workflow. One way to simplify image review is to fuse CT datasets of different tube energies into a unique blended dataset with desirable properties. A non-linear blending method based on a modified sigmoid function was compared to a standard 0.3 linear blending method. The methods were evaluated in both a liver phantom and patient study. The liver phantom contained six syringes of known CT contrast which were placed in a bovine liver. After scanning at multiple tube currents (45, 55, 65, 75, 85, 95, 105, and 115 mAs for the 140-kV tube), the datasets were blended using both methods. A contrast-to-noise (CNR) measure was calculated for each syringe. In addition, all eight scans were normalized using the effective dose and statistically compared. In the patient study, 45 dual-energy CT scans were retrospectively mixed using the 0.3 linear blending and modified sigmoid blending functions. The scans were compared visually by two radiologists. For the 15, 45, and 64 HU syringes, the non-linear blended images exhibited similar CNR to the linear blended images; however, for the 79, 116, and 145 HU syringes, the non-linear blended images consistently had a higher CNR across dose settings. The radiologists qualitatively preferred the non-linear blended images of the phantom. In the patient study, the radiologists preferred non-linear blending in 31 of 45 cases with a strong preference in bowel and liver cases. Non-linear blending of dual energy data can provide an improvement in CNR over linear blending and is accompanied by a visual preference for non-linear blended images. Further study on selection of blending parameters and lesion conspicuity in non-linear blended images is being pursued

  12. Bone mineral density in renal osteodystrophy: Comparison of dual energy X-ray absorptiometry and quantitative computed tomography

    International Nuclear Information System (INIS)

    Funke, M.; Maeurer, J.; Grabbe, E.; Scheler, F.

    1992-01-01

    Measurements of bone density were carried out in 25 patients on dialysis for terminal renal insufficiency, using quantitative computed tomography (QCT) and dual energy X-ray absorptiometry (DXA). Unlike in subjects with normal kidneys, there was no significant correlation between these methods in this series. Ten patients showed an increase in bone density of the vertebral spongiosa on QCT measurements, which was interpreted as due to osteosclerotic bone changes in renal osteopathy. QCT showed advantages over DXA in demonstrating these changes. (orig.) [de

  13. Bone mineral density in renal osteodystrophy: Comparison of dual energy X-ray absorptiometry and quantitative computed tomography. Vergleichende Untersuchungen mit der quantitativen Computertomographie und der Dual-Energy-X-Ray-Absorptiometrie zur Knochendichte bei renaler Osteopathie

    Energy Technology Data Exchange (ETDEWEB)

    Funke, M.; Maeurer, J.; Grabbe, E. (Abt. Roentgendiagnostik, Klinikum, Goettingen Univ. (Germany)); Scheler, F. (Abt. Nephrologie und Rheumatologie, Klinikum, Goettingen Univ. (Germany))

    1992-08-01

    Measurements of bone density were carried out in 25 patients on dialysis for terminal renal insufficiency, using quantitative computed tomography (QCT) and dual energy X-ray absorptiometry (DXA). Unlike in subjects with normal kidneys, there was no significant correlation between these methods in this series. Ten patients showed an increase in bone density of the vertebral spongiosa on QCT measurements, which was interpreted as due to osteosclerotic bone changes in renal osteopathy. QCT showed advantages over DXA in demonstrating these changes. (orig.).

  14. SU-G-IeP3-04: Effective Dose Measurements in Fast Kvp Switch Dual Energy Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raudabaugh, J; Moore, B [Duke Medical Physics, Duke Radiation Dosimetry Laboratory (United States); Nguyen, G; Yoshizumi, T [Duke Radiology, Duke Radiation Dosimetry Laboratory (United States); Lowry, C; Nelson, R [Duke Radiology (United States)

    2016-06-15

    Purpose: The objective of this study was two-fold: (a) to test a new approach to approximating organ dose by using the effective energy of the combined 80kV/140kV beam in dual-energy (DE) computed tomography (CT), and (b) to derive the effective dose (ED) in the abdomen-pelvis protocol in DECT. Methods: A commercial dual energy CT scanner was employed using a fast-kV switch abdomen/pelvis protocol alternating between 80 kV and 140 kV. MOSFET detectors were used for organ dose measurements. First, an experimental validation of the dose equivalency between MOSFET and ion chamber (as a gold standard) was performed using a CTDI phantom. Second, the ED of DECT scans was measured using MOSFET detectors and an anthropomorphic phantom. For ED calculations, an abdomen/pelvis scan was used using ICRP 103 tissue weighting factors; ED was also computed using the AAPM Dose Length Product (DLP) method and compared to the MOSFET value. Results: The effective energy was determined as 42.9 kV under the combined beam from half-value layer (HVL) measurement. ED for the dual-energy scan was calculated as 16.49 ± 0.04 mSv by the MOSFET method and 14.62 mSv by the DLP method. Conclusion: Tissue dose in the center of the CTDI body phantom was 1.71 ± 0.01 cGy (ion chamber) and 1.71 ± 0.06 (MOSFET) respectively; this validated the use of effective energy method for organ dose estimation. ED from the abdomen-pelvis scan was calculated as 16.49 ± 0.04 mSv by MOSFET and 14.62 mSv by the DLP method; this suggests that the DLP method provides a reasonable approximation to the ED.

  15. Empirical dual energy calibration (EDEC) for cone-beam computed tomography

    International Nuclear Information System (INIS)

    Stenner, Philip; Berkus, Timo; Kachelriess, Marc

    2007-01-01

    Material-selective imaging using dual energy CT (DECT) relies heavily on well-calibrated material decomposition functions. These require the precise knowledge of the detected x-ray spectra, and even if they are exactly known the reliability of DECT will suffer from scattered radiation. We propose an empirical method to determine the proper decomposition function. In contrast to other decomposition algorithms our empirical dual energy calibration (EDEC) technique requires neither knowledge of the spectra nor of the attenuation coefficients. The desired material-selective raw data p 1 and p 2 are obtained as functions of the measured attenuation data q 1 and q 2 (one DECT scan=two raw data sets) by passing them through a polynomial function. The polynomial's coefficients are determined using a general least squares fit based on thresholded images of a calibration phantom. The calibration phantom's dimension should be of the same order of magnitude as the test object, but other than that no assumptions on its exact size or positioning are made. Once the decomposition coefficients are determined DECT raw data can be decomposed by simply passing them through the polynomial. To demonstrate EDEC simulations of an oval CTDI phantom, a lung phantom, a thorax phantom and a mouse phantom were carried out. The method was further verified by measuring a physical mouse phantom, a half-and-half-cylinder phantom and a Yin-Yang phantom with a dedicated in vivo dual source micro-CT scanner. The raw data were decomposed into their components, reconstructed, and the pixel values obtained were compared to the theoretical values. The determination of the calibration coefficients with EDEC is very robust and depends only slightly on the type of calibration phantom used. The images of the test phantoms (simulations and measurements) show a nearly perfect agreement with the theoretical μ values and density values. Since EDEC is an empirical technique it inherently compensates for scatter

  16. Accuracy of Combined Computed Tomography Colonography and Dual Energy Iiodine Map Imaging for Detecting Colorectal masses using High-pitch Dual-source CT.

    Science.gov (United States)

    Sun, Kai; Han, Ruijuan; Han, Yang; Shi, Xuesen; Hu, Jiang; Lu, Bin

    2018-02-28

    To evaluate the diagnostic accuracy of combined computed tomography colonography (CTC) and dual-energy iodine map imaging for detecting colorectal masses using high-pitch dual-source CT, compared with optical colonography (OC) and histopathologic findings. Twenty-eight consecutive patients were prospectively enrolled in this study. All patients were underwent contrast-enhanced CTC acquisition using dual-energy mode and OC and pathologic examination. The size of the space-occupied mass, the CT value after contrast enhancement, and the iodine value were measured and statistically compared. The sensitivity, specificity, accuracy rate, and positive predictive and negative predictive values of dual-energy contrast-enhanced CTC were calculated and compared between conventional CTC and dual-energy iodine images. The iodine value of stool was significantly lower than the colonic neoplasia (P dual-energy iodine maps imaging was 95.6% (95% CI = 77.9%-99.2%). The specificity of the two methods was 42.8% (95% CI = 15.4%-93.5%) and 100% (95% CI = 47.9%-100%; P = 0.02), respectively. Compared with optical colonography and histopathology, combined CTC and dual-energy iodine maps imaging can distinguish stool and colonic neoplasia, distinguish between benign and malignant tumors initially and improve the diagnostic accuracy of CTC for colorectal cancer screening.

  17. Evaluation of low-dose dual energy computed tomography for in vivo assessment of renal/ureteric calculus composition.

    Science.gov (United States)

    Mahalingam, Harshavardhan; Lal, Anupam; Mandal, Arup K; Singh, Shrawan Kumar; Bhattacharyya, Shalmoli; Khandelwal, Niranjan

    2015-08-01

    This study aimed to assess the accuracy of low-dose dual-energy computed tomography (DECT) in predicting the composition of urinary calculi. A total of 52 patients with urinary calculi were scanned with a 128-slice dual-source DECT scanner by use of a low-dose protocol. Dual-energy (DE) ratio, weighted average Hounsfield unit (HU) of calculi, radiation dose, and image noise levels were recorded. Two radiologists independently rated study quality. Stone composition was assessed after extraction by Fourier transform infrared spectroscopy (FTIRS). Analysis of variance was used to determine if the differences in HU values and DE ratios between the various calculus groups were significant. Threshold cutoff values to classify the calculi into separate groups were identified by receiver operating characteristic curve analysis. A total of 137 calculi were detected. FTIRS analysis differentiated the calculi into five groups: uric acid (n=17), struvite (n=3), calcium oxalate monohydrate and dihydrate (COM-COD, n=84), calcium oxalate monohydrate (COM, n=28), and carbonate apatite (n=5). The HU value could differentiate only uric acid calculi from calcified calculi (p80% sensitivity and specificity to differentiate them. The DE ratio could not differentiate COM from COM-COD calculi. No study was rated poor in quality by either of the observers. The mean radiation dose was 1.8 mSv. Low-dose DECT accurately predicts urinary calculus composition in vivo while simultaneously reducing radiation exposure without compromising study quality.

  18. Image enhancement by spectral-error correction for dual-energy computed tomography.

    Science.gov (United States)

    Park, Kyung-Kook; Oh, Chang-Hyun; Akay, Metin

    2011-01-01

    Dual-energy CT (DECT) was reintroduced recently to use the additional spectral information of X-ray attenuation and aims for accurate density measurement and material differentiation. However, the spectral information lies in the difference between low and high energy images or measurements, so that it is difficult to acquire accurate spectral information due to amplification of high pixel noise in the resulting difference image. In this work, an image enhancement technique for DECT is proposed, based on the fact that the attenuation of a higher density material decreases more rapidly as X-ray energy increases. We define as spectral error the case when a pixel pair of low and high energy images deviates far from the expected attenuation trend. After analyzing the spectral-error sources of DECT images, we propose a DECT image enhancement method, which consists of three steps: water-reference offset correction, spectral-error correction, and anti-correlated noise reduction. It is the main idea of this work that makes spectral errors distributed like random noise over the true attenuation and suppressed by the well-known anti-correlated noise reduction. The proposed method suppressed noise of liver lesions and improved contrast between liver lesions and liver parenchyma in DECT contrast-enhanced abdominal images and their two-material decomposition.

  19. Dual-energy bone removal computed tomography (BRCT): preliminary report of efficacy of acute intracranial hemorrhage detection.

    Science.gov (United States)

    Naruto, Norihito; Tannai, Hidenori; Nishikawa, Kazuma; Yamagishi, Kentaro; Hashimoto, Masahiko; Kawabe, Hideto; Kamisaki, Yuichi; Sumiya, Hisashi; Kuroda, Satoshi; Noguchi, Kyo

    2018-02-01

    One of the major applications of dual-energy computed tomography (DECT) is automated bone removal (BR). We hypothesized that the visualization of acute intracranial hemorrhage could be improved on BRCT by removing bone as it has the highest density tissue in the head. This preliminary study evaluated the efficacy of a DE BR algorithm for the head CT of trauma patients. Sixteen patients with acute intracranial hemorrhage within 1 day after head trauma were enrolled in this study. All CT examinations were performed on a dual-source dual-energy CT scanner. BRCT images were generated using the Bone Removal Application. Simulated standard CT and BRCT images were visually reviewed in terms of detectability (presence or absence) of acute hemorrhagic lesions. DECT depicted 28 epidural/subdural hemorrhages, 17 contusional hemorrhages, and 7 subarachnoid hemorrhages. In detecting epidural/subdural hemorrhage, BRCT [28/28 (100%)] was significantly superior to simulated standard CT [17/28 (61%)] (p = .001). In detecting contusional hemorrhage, BRCT [17/17 (100%)] was also significantly superior to simulated standard CT [11/17 (65%)] (p = .0092). BRCT was superior to simulated standard CT in detecting acute intracranial hemorrhage. BRCT could improve the detection of small intracranial hemorrhages, particularly those adjacent to bone, by removing bone that can interfere with the visualization of small acute hemorrhage. In an emergency such as head trauma, BRCT can be used as support imaging in combination with simulated standard CT and bone scale CT, although BRCT cannot replace a simulated standard CT.

  20. Dosimetric Evaluation of Metal Artefact Reduction using Metal Artefact Reduction (MAR) Algorithm and Dual-energy Computed Tomography (CT) Method

    Science.gov (United States)

    Laguda, Edcer Jerecho

    Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient's medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method. Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three

  1. Myocardial perfusion assessment by dual-energy computed tomography in patients with intermediate to high likelihood of coronary artery disease

    International Nuclear Information System (INIS)

    De Zam, M.C.; Capunay, C.; Rodriguez Granillo, G.A.; Deviggiano, A.; Campisi, R.; Munain, M. López de; Vallejos, J.; Carrascosa, P.M.

    2015-01-01

    Objectives. We sought to explore the feasibility and diagnostic performance of dual-energy computed tomography (DECT) for the evaluation of myocardial perfusion in patients with intermediate to high likelihood of coronary artery disease (CAD), and to assess the impact of beam hardening artifacts (HAE). Methods. The present prospective study involved patients with known or suspected CAD referred for myocardial perfusion imaging by single-photon emission computed tomography (SPECT). Twenty patients were included in the study protocol, and scanned using DECT imaging (n = 20). The same pharmacological stress was used for DECT and SPECT scans. Results. A total of 680 left ventricular segments were evaluated by DECT and SPECT. The contrast to noise ratio was 8.8±2.9. The diagnostic performance of DECT was very good in identifying perfusion defects [area under ROC curve (AUC) of DECT 0.90 (0.86-0.94)] compared with SPECT, and remained unaffected when including only segments affected by beam hardening artifacts (BHA) [AUC= DECT 0.90 (0.84-0.96)]. Conclusions. In this pilot investigation, myocardial perfusion assessment by DECT imaging in patients with intermediate to high likelihood of CAD was feasible and remained unaffected by the presence of BHA. (authors) [es

  2. A Novel Imaging Technique (X-Map) to Identify Acute Ischemic Lesions Using Noncontrast Dual-Energy Computed Tomography.

    Science.gov (United States)

    Noguchi, Kyo; Itoh, Toshihide; Naruto, Norihito; Takashima, Shutaro; Tanaka, Kortaro; Kuroda, Satoshi

    2017-01-01

    We evaluated whether X-map, a novel imaging technique, can visualize ischemic lesions within 20 hours after the onset in patients with acute ischemic stroke, using noncontrast dual-energy computed tomography (DECT). Six patients with acute ischemic stroke were included in this study. Noncontrast head DECT scans were acquired with 2 X-ray tubes operated at 80 kV and Sn150 kV between 32 minutes and 20 hours after the onset. Using these DECT scans, the X-map was reconstructed based on 3-material decomposition and compared with a simulated standard (120 kV) computed tomography (CT) and diffusion-weighted imaging (DWI). The X-map showed more sensitivity to identify the lesions as an area of lower attenuation value than a simulated standard CT in all 6 patients. The lesions on the X-map correlated well with those on DWI. In 3 of 6 patients, the X-map detected a transient decrease in the attenuation value in the peri-infarct area within 1 day after the onset. The X-map is a powerful tool to supplement a simulated standard CT and characterize acute ischemic lesions. However, the X-map cannot replace a simulated standard CT to diagnose acute cerebral infarction. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Volume-based quantification using dual-energy computed tomography in the differentiation of thymic epithelial tumours: an initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Suyon; Hur, Jin; Im, Dong Jin; Suh, Young Joo; Hong, Yoo Jin; Lee, Hye-Jeong; Kim, Young Jin; Choi, Byoung Wook [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Seoul (Korea, Republic of); Han, Kyunghwa [Yonsei University College of Medicine, Yonsei Biomedical Research Institute, Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Seoul (Korea, Republic of); Kim, Dae Joon; Lee, Chang Young [Yonsei University College of Medicine, Department of Thoracic and Cardiovascular Surgery, Seoul (Korea, Republic of); Shin, Ha Young [Yonsei University College of Medicine, Department of Neurology, Seoul (Korea, Republic of)

    2017-05-15

    To investigate the diagnostic value of dual-energy computed tomography (DECT) in differentiating between low- and high-risk thymomas and thymic carcinomas. Our institutional review board approved this study, and patients provided informed consent. We prospectively enrolled 37 patients (20 males, mean age: 55.6 years) with thymic epithelial tumour. All patients underwent DECT. For quantitative analysis, two reviewers measured the following tumour parameters: CT attenuation value in contrast Hounsfield units (CHU), iodine-related HU and iodine concentration (mg/ml). Pathological results confirmed the final diagnosis. Of the 37 thymic tumours, 23 (62.2 %) were low-risk thymomas, five (13.5 %) were high-risk thymomas and nine (24.3 %) were thymic carcinomas. According to quantitative analysis, iodine-related HU and iodine concentration were significantly different among low-risk thymomas, high-risk thymomas and thymic carcinomas (median: 29.78 HU vs. 14.55 HU vs. 19.95 HU, p = 0.001 and 1.92 mg/ml vs. 0.99 mg/ml vs. 1.18 mg/ml, p < 0.001, respectively). DECT using a quantitative analytical method based on iodine concentration measurement can be used to differentiate among thymic epithelial tumours using single-phase scanning. (orig.)

  4. Dual-Energy Computed Tomography Gemstone Spectral Imaging: A Novel Technique to Determine Human Cardiac Calculus Composition.

    Science.gov (United States)

    Cheng, Ching-Li; Chang, Hsiao-Huang; Ko, Shih-Chi; Huang, Pei-Jung; Lin, Shan-Yang

    2016-01-01

    Understanding the chemical composition of any calculus in different human organs is essential for choosing the best treatment strategy for patients. The purpose of this study was to assess the capability of determining the chemical composition of a human cardiac calculus using gemstone spectral imaging (GSI) mode on a single-source dual-energy computed tomography (DECT) in vitro. The cardiac calculus was directly scanned on the Discovery CT750 HD FREEdom Edition using GSI mode, in vitro. A portable fiber-optic Raman spectroscopy was also applied to verify the quantitative accuracy of the DECT measurements. The results of spectral DECT measurements indicate that effective Z values in 3 designated positions located in this calculus were 15.02 to 15.47, which are close to values of 15.74 to 15.86, corresponding to the effective Z values of calcium apatite and hydroxyapatite. The Raman spectral data were also reflected by the predominant Raman peak at 960 cm for hydroxyapatite and the minor peak at 875 cm for calcium apatite. A potential single-source DECT with GSI mode was first used to examine the morphological characteristics and chemical compositions of a giant human cardiac calculus, in vitro. The CT results were consistent with the Raman spectral data, suggesting that spectral CT imaging techniques could be accurately used to diagnose and characterize the compositional materials in the cardiac calculus.

  5. Top 50 Highly Cited Articles on Dual Energy Computed Tomography (DECT) in Abdominal Radiology: A Bibliometric Analysis

    Science.gov (United States)

    Gong, Bo; Wu, Yuhao; O’Keeffe, Michael E; Berger, Ferco H; McLaughlin, Patrick D; Nicolaou, Savvas

    2017-01-01

    Summary This study aims to identify the 50 most highly cited articles on dual energy computed tomography (DECT) in abdominal radiology Thomson Reuters Web of Science All Databases was queried without year or language restriction. Only original research articles with a primary focus on abdominal radiology using DECT were selected. Review articles, meta-analyses, and studies without human subjects were excluded. Fifty articles with the highest average yearly citation were identified. These articles were published between 2007 and 2017 in 12 journals, with the most in Radiology (12 articles). Articles had a median of 7 authors, with all first authors but one primarily affiliated to radiology departments. The United States of America produced the most articles (16), followed by Germany (13 articles), and China (7 articles). Most studies used Dual Source DECT technology (35 articles), followed by Rapid Kilovoltage Switching (14 articles), and Sequential Scanning (1 article). The top three scanned organs were the liver (24%), kidney (16%), and urinary tract (15%). The most commonly studied pathology was urinary calculi (28%), renal lesion/tumor (23%), and hepatic lesion/tumor (20%). Our study identifies intellectual milestones in the applications of DECT in abdominal radiology. The diversity of the articles reflects on the characteristics and quality of the most influential publications related to DECT. PMID:29657641

  6. Preclinical validation of automated dual-energy X-ray absorptiometry and computed tomography-based body composition measurements

    International Nuclear Information System (INIS)

    DEVRIESE, Joke; Pottel, Hans; BEELS, Laurence; VAN DE WIELE, Christophe; MAES, Alex; GHEYSENS, Olivier

    2016-01-01

    The aim of this study was to determine and validate a set of Hounsfield unit (HU) ranges to segment computed tomography (CT) images into tissue types and to test the validity of dual-energy X-ray absorptiometry (DXA) tissue segmentation on pure, unmixed porcine tissues. This preclinical prospective study was approved by the local ethical committee. Different quantities of porcine bone tissue (BT), lean tissue (LT) and adipose tissue (AT) were scanned using DXA and CT. Tissue type segmentation in DXA was performed via the standard clinical protocol and in CT through different sets of HU ranges. Percent coefficients of variation (%CV) were used to assess precision while % differences of observed masses were tested against zero using the Wilcoxon signed-rank Test. Total mass DXA measurements differ little but significantly (P=0.016) from true mass, while total mass CT measurements based on literature values show non-significant (P=0.69) differences of 1.7% and 2.0%. BT mass estimates with DXA differed more from true mass (median -78.2 to -75.8%) than other tissue types (median -11.3 to -8.1%). Tissue mass estimates with CT and literature HU ranges showed small differences from true mass for every tissue type (median -10.4 to 8.8%). The most suited method for automated tissue segmentation is CT and can become a valuable tool in quantitative nuclear medicine.

  7. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 1: Technology and Terminology.

    Science.gov (United States)

    Siegel, Marilyn J; Kaza, Ravi K; Bolus, David N; Boll, Daniel T; Rofsky, Neil M; De Cecco, Carlo N; Foley, W Dennis; Morgan, Desiree E; Schoepf, U Joseph; Sahani, Dushyant V; Shuman, William P; Vrtiska, Terri J; Yeh, Benjamin M; Berland, Lincoln L

    This is the first of a series of 4 white papers that represent Expert Consensus Documents developed by the Society of Computed Body Tomography and Magnetic Resonance through its task force on dual-energy computed tomography (DECT). This article, part 1, describes the fundamentals of the physical basis for DECT and the technology of DECT and proposes uniform nomenclature to account for differences in proprietary terms among manufacturers.

  8. Potential of gadolinium as contrast material in second generation dual energy computed tomography - An ex vivo phantom study.

    Science.gov (United States)

    Bongers, Malte N; Schabel, Christoph; Krauss, Bernhard; Claussen, Claus D; Nikolaou, Konstantin; Thomas, Christoph

    To evaluate the potential of gadolinium (Gd) as contrast material (CM) in second generation dual energy computed tomography (DECT). In a phantom model, DECT post-processing was used to increase Gd attenuation using advanced monoenergetic extrapolation (MEI), to create virtual non-contrast images (Gd-VNC) and Gd maps and to quantify Gd content. Dilutions of Gd and iodinated CM (7-296 HU) were filled in syringes, placed in an attenuation phantom and scanned with standard DECT protocols (80 &100/Sn140 kV). MEI (40-190 keV) and VNC images as well as Gd maps were computed. The amount of Gd was quantified and the accuracy was compared to iodine images. Linear regression models were calculated to evaluate Gd attenuation of equivolume CM doses and clinical MRI doses. Applying monoenergetic reconstructions and using Gd as contrast agent (Gd MEI 40 keV) doubled Hounsfield-Units (HU) and 90% of the SNR (averaged: 225 HU, SNR3.1) are achievable, as compared to iodinated CM at 120 kV (averaged:110 HU, SNR3.5), at Gd doses of 1.0mmol/kg BW. The accuracies of Gd-VNC (deviation, 6±12 HU) images and Gd quantification (measurement error, 17%) were not significantly different to those of iodine enhanced images (VNC:deviation, 2±11 HU; measurement error,14%). Using monoenergetic extrapolation at 40keV, it is possible to increase Gd-CM attenuation significantly. Thus, equivalent HU and half the SNR in comparison to a standard dose of ICM at 120kV can be expected at a Gd-CM dose of 0.5mmol/kg BW. Post-processing features of iodine based DECT like monoenergetic or VNC images, iodine maps or quantification of CM are feasible with the use of Gd-CM. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Detection of simulated pulmonary nodules by single-exposure dual-energy computed radiography of the chest: effect of a computer-aided diagnosis system (Part 2)

    International Nuclear Information System (INIS)

    Kido, Shoji; Kuriyama, Keiko; Kuroda, Chikazumi; Nakamura, Hironobu; Ito, Wataru; Shimura, Kazuo; Kato, Hisatoyo

    2002-01-01

    Objective: To evaluate the performance of the computer-aided diagnosis (CAD) scheme on the detection of pulmonary nodules (PNs) in single-exposure dual-energy subtraction computed radiography (CR) images of the chest, and to evaluate the effect of this CAD scheme on radiologists' detectabilities. Methods and material: We compared the detectability by the CAD scheme with the detectability by 12 observers by using conventional CR (C-CR) and bone-subtracted CR (BS-CR) images of 25 chest phantoms with a low-contrast nylon nodule. Results: Both in the CAD scheme and for the observers, the detectability of BS-CR images was superior to that of C-CR images (P<0.005). The detection performance of the CAD scheme was equal to that of the observers. The nodules detected by the CAD did not necessarily coincide with those by the observers. Thus, if observers can use the results of the CAD system as a 'second opinion', their detectabilities increase. Conclusion: The CAD system for detection of PNs in the single-exposure dual-energy subtraction method is promising for improving radiologists' detectabilities of PNs

  10. Dual-energy computed tomography for characterizing urinary calcified calculi and uric acid calculi: A meta-analysis

    International Nuclear Information System (INIS)

    Zheng, Xingju; Liu, Yuanyuan; Li, Mou; Wang, Qiyan; Song, Bin

    2016-01-01

    Objective: A meta-analysis was conducted to determine the accuracy of dual-energy computed tomography (DECT) for differentiating urinary uric acid and calcified calculi. Methods: The databases PubMed, EMBASE, Web of Science, and the Cochrane Library were searched up to May 2016 for relevant original studies. Data were extracted to calculate the pooled sensitivity, specificity, diagnostic odds ratio (OR), positive and negative likelihood ratios (PLR and NLR), and areas under summary receiver operating characteristic (AUROC) curves for analysis. Results: Nine studies (609 stones in 415 patients) were included. For differentiating uric acid (UA) and non-UA calculi with DECT, the analysis indicated: pooled weighted sensitivity, 0.955 (95% CI, 0.888–0.987); specificity, 0.985 (95% CI, 0.970–0.993); PLR, 0.084 (95% CI, 0.041–0.170); NLR 33.327 (95% CI, 18.516–59.985); and diagnostic OR 538.18 (95% CI, 195.50–1478.5). The AUROC value was 0.9901. For calcified stones, the analysis indicated: pooled weighted sensitivity, 0.994 (95% CI, 0.969–1); specificity, 0.973 (95% CI, 0.906–0.997); PLR, 11.200 (95% CI, 4.922–25.486); NLR 0.027 (95% CI, 0.010–0.072); and diagnostic OR 654.89 (95% CI, 151.31–2834.4). The AUROC value was 0.9915. Conclusion: This meta-analysis found that DECT is a highly accurate noninvasive method for characterizing urinary uric acid and calcified calculi.

  11. Evaluation of Functional Marrow Irradiation Based on Skeletal Marrow Composition Obtained Using Dual-Energy Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Magome, Taiki [Department of Radiological Sciences, Faculty of Health Sciences, Komazawa University, Tokyo (Japan); Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Froelich, Jerry [Department of Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Takahashi, Yutaka [Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiation Oncology, Osaka University, Osaka (Japan); Arentsen, Luke [Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Holtan, Shernan; Verneris, Michael R. [Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota (United States); Brown, Keenan [Mindways Software Inc, Austin, Texas (United States); Haga, Akihiro; Nakagawa, Keiichi [Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Holter Chakrabarty, Jennifer L. [College of Medicine, Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Giebel, Sebastian [Department of Bone Marrow Transplantation, Comprehensive Cancer Center M. Curie-Sklodowska Memorial Institute, Gliwice (Poland); Wong, Jeffrey [Department of Radiation Oncology, Beckman Research Institute, City of Hope, Duarte, California (United States); Dusenbery, Kathryn [Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Storme, Guy [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Brussels (Belgium); Hui, Susanta K., E-mail: shui@coh.org [Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiation Oncology, Beckman Research Institute, City of Hope, Duarte, California (United States)

    2016-11-01

    Purpose: To develop an imaging method to characterize and map marrow composition in the entire skeletal system, and to simulate differential targeted marrow irradiation based on marrow composition. Methods and Materials: Whole-body dual energy computed tomography (DECT) images of cadavers and leukemia patients were acquired, segmented to separate bone marrow components, namely, bone, red marrow (RM), and yellow marrow (YM). DECT-derived marrow fat fraction was validated using histology of lumbar vertebrae obtained from cadavers. The fractions of RM (RMF = RM/total marrow) and YMF were calculated in each skeletal region to assess the correlation of marrow composition with sites and ages. Treatment planning was simulated to target irradiation differentially at a higher dose (18 Gy) to either RM or YM and a lower dose (12 Gy) to the rest of the skeleton. Results: A significant correlation between fat fractions obtained from DECT and cadaver histology samples was observed (r=0.861, P<.0001, Pearson). The RMF decreased in the head, neck, and chest was significantly inversely correlated with age but did not show any significant age-related changes in the abdomen and pelvis regions. Conformity of radiation to targets (RM, YM) was significantly dependent on skeletal sites. The radiation exposure was significantly reduced (P<.05, t test) to organs at risk (OARs) in RM and YM irradiation compared with standard total marrow irradiation (TMI). Conclusions: Whole-body DECT offers a new imaging technique to visualize and measure skeletal-wide marrow composition. The DECT-based treatment planning offers volumetric and site-specific precise radiation dosimetry of RM and YM, which varies with aging. Our proposed method could be used as a functional compartment of TMI for further targeted radiation to specific bone marrow environment, dose escalation, reduction of doses to OARs, or a combination of these factors.

  12. Myocardial iodine concentration measurement using dual-energy computed tomography for the diagnosis of cardiac amyloidosis. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Chevance, Virgile; Legou, Francois; Ridouani, Fourat [AP-HP (Assistance Publique-Hopitaux de Paris, Creteil), Groupe Hospitalier Henri Mondor-Albert Chenevier, Service d' Imagerie Medicale, Creteil (France); Damy, Thibaud [AP-HP (Assistance Publique-Hopitaux de Paris, Creteil), Hospitalier Henri Mondor-Albert Chenevier, Service de Cardiologie, Creteil (France); Universite Paris-Est-Creteil (UPEC), DHU (Departement Hospitalo-Universitaire), ATVB Ageing-Thorax-Vessels-Blood, IMRB Institut Mondor de Recherche Biomedicale, Creteil (France); Universite Paris-Est-Creteil (UPEC), GRC Amyloid Research Institute and Reseau Amylose Mondor, Groupe Hospitalier Henri Mondor-Albert Chenevier, Creteil (France); Tacher, Vania; Kobeiter, Hicham [AP-HP (Assistance Publique-Hopitaux de Paris, Creteil), Groupe Hospitalier Henri Mondor-Albert Chenevier, Service d' Imagerie Medicale, Creteil (France); Universite Paris-Est-Creteil (UPEC), DHU (Departement Hospitalo-Universitaire), ATVB Ageing-Thorax-Vessels-Blood, IMRB Institut Mondor de Recherche Biomedicale, Creteil (France); Luciani, Alain; Rahmouni, Alain [AP-HP (Assistance Publique-Hopitaux de Paris, Creteil), Groupe Hospitalier Henri Mondor-Albert Chenevier, Service d' Imagerie Medicale, Creteil (France); Universite Paris-Est-Creteil, (UPEC), DHU (Departement Hospitalo-Universitaire) VIC Virus-Immunity-Cancer, IMRB Institut Mondor de Recherche Biomedicale, Creteil (France); Deux, Jean-Francois [AP-HP (Assistance Publique-Hopitaux de Paris, Creteil), Groupe Hospitalier Henri Mondor-Albert Chenevier, Service d' Imagerie Medicale, Creteil (France); Universite Paris-Est-Creteil, (UPEC), DHU (Departement Hospitalo-Universitaire) ATVB Ageing-Thorax-Vessels-Blood, IMRB Institut Mondor de Recherche Biomedicale, Creteil (France); Universite Paris-Est-Creteil (UPEC), GRC Amyloid Research Institute and Reseau Amylose Mondor, Groupe Hospitalier Henri Mondor-Albert Chenevier, Creteil (France)

    2018-02-15

    To measure myocardium iodine concentration (MIC) in patients with cardiac amyloidosis (CA) using dual-energy computed tomography (DECT). Twenty-two patients with CA, 13 with non-amyloid hypertrophic cardiomyopathies (CH) and 10 control patients were explored with pre-contrast, arterial and 5-minute DECT acquisition (Iomeprol; 1.5 mL/kg). Inter-ventricular septum (IVS) thickness, blood pool iodine concentration (BPIC), MIC (mg/mL), iodine ratio and extra-cellular volume (ECV) were calculated. IVS thickness was significantly (p < 0.001) higher in CA (17 ± 4 mm) and CH (15 ± 3 mm) patients than in control patients (10 ± 1 mm). CA patients exhibited significantly (p < 0.001) higher 5-minute MIC [2.6 (2.3-3.1) mg/mL], 5-minute iodine ratio (0.88 ± 0.12) and ECV (0.56 ± 0.07) than CH [1.7 (1.4-2.2) mg/mL, 0.57 ± 0.07 and 0.36 ± 0.05, respectively] and control patients [1.9 (1.7-2.4) mg/mL, 0.58 ± 0.07 and 0.35 ± 0.04, respectively]. CH and control patients exhibited similar values (p = 0.9). The area under the curve of 5-minute iodine ratio for the differential diagnosis of CA from CH patients was 0.99 (0.73-1.0; p = 0.001). With a threshold of 0.65, the sensitivity and specificity of 5-minute iodine ratio were 100% and 92%, respectively. Five-minute MIC and iodine ratio were increased in CA patients and exhibited best diagnosis performance to diagnose CA in comparison to other parameters. (orig.)

  13. Myocardial iodine concentration measurement using dual-energy computed tomography for the diagnosis of cardiac amyloidosis. A pilot study

    International Nuclear Information System (INIS)

    Chevance, Virgile; Legou, Francois; Ridouani, Fourat; Damy, Thibaud; Tacher, Vania; Kobeiter, Hicham; Luciani, Alain; Rahmouni, Alain; Deux, Jean-Francois

    2018-01-01

    To measure myocardium iodine concentration (MIC) in patients with cardiac amyloidosis (CA) using dual-energy computed tomography (DECT). Twenty-two patients with CA, 13 with non-amyloid hypertrophic cardiomyopathies (CH) and 10 control patients were explored with pre-contrast, arterial and 5-minute DECT acquisition (Iomeprol; 1.5 mL/kg). Inter-ventricular septum (IVS) thickness, blood pool iodine concentration (BPIC), MIC (mg/mL), iodine ratio and extra-cellular volume (ECV) were calculated. IVS thickness was significantly (p < 0.001) higher in CA (17 ± 4 mm) and CH (15 ± 3 mm) patients than in control patients (10 ± 1 mm). CA patients exhibited significantly (p < 0.001) higher 5-minute MIC [2.6 (2.3-3.1) mg/mL], 5-minute iodine ratio (0.88 ± 0.12) and ECV (0.56 ± 0.07) than CH [1.7 (1.4-2.2) mg/mL, 0.57 ± 0.07 and 0.36 ± 0.05, respectively] and control patients [1.9 (1.7-2.4) mg/mL, 0.58 ± 0.07 and 0.35 ± 0.04, respectively]. CH and control patients exhibited similar values (p = 0.9). The area under the curve of 5-minute iodine ratio for the differential diagnosis of CA from CH patients was 0.99 (0.73-1.0; p = 0.001). With a threshold of 0.65, the sensitivity and specificity of 5-minute iodine ratio were 100% and 92%, respectively. Five-minute MIC and iodine ratio were increased in CA patients and exhibited best diagnosis performance to diagnose CA in comparison to other parameters. (orig.)

  14. Dual-Energy Micro-Computed Tomography Imaging of Radiation-Induced Vascular Changes in Primary Mouse Sarcomas

    International Nuclear Information System (INIS)

    Moding, Everett J.; Clark, Darin P.; Qi, Yi; Li, Yifan; Ma, Yan; Ghaghada, Ketan; Johnson, G. Allan; Kirsch, David G.; Badea, Cristian T.

    2013-01-01

    Purpose: To evaluate the effects of radiation therapy on primary tumor vasculature using dual-energy (DE) micro-computed tomography (micro-CT). Methods and Materials: Primary sarcomas were generated with mutant Kras and p53. Unirradiated tumors were compared with tumors irradiated with 20 Gy. A liposomal-iodinated contrast agent was administered 1 day after treatment, and mice were imaged immediately after injection (day 1) and 3 days later (day 4) with DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically by use of CD31 immunofluorescence and fluorescently-labeled dextrans. Results: Radiation treatment significantly decreased tumor growth from day 1 to day 4 (P 2 =0.53) and dextran accumulation (R 2 =0.63) on day 4, respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs 0.091, P<.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation, with dextran fractional area increasing 5.2-fold and liposomal-iodine concentration increasing 4.0-fold. Conclusions: DE micro-CT is an effective tool for noninvasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment

  15. Dual-energy computed tomography for characterizing urinary calcified calculi and uric acid calculi: A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xingju; Liu, Yuanyuan; Li, Mou; Wang, Qiyan; Song, Bin, E-mail: binsong65@yahoo.com

    2016-10-15

    Objective: A meta-analysis was conducted to determine the accuracy of dual-energy computed tomography (DECT) for differentiating urinary uric acid and calcified calculi. Methods: The databases PubMed, EMBASE, Web of Science, and the Cochrane Library were searched up to May 2016 for relevant original studies. Data were extracted to calculate the pooled sensitivity, specificity, diagnostic odds ratio (OR), positive and negative likelihood ratios (PLR and NLR), and areas under summary receiver operating characteristic (AUROC) curves for analysis. Results: Nine studies (609 stones in 415 patients) were included. For differentiating uric acid (UA) and non-UA calculi with DECT, the analysis indicated: pooled weighted sensitivity, 0.955 (95% CI, 0.888–0.987); specificity, 0.985 (95% CI, 0.970–0.993); PLR, 0.084 (95% CI, 0.041–0.170); NLR 33.327 (95% CI, 18.516–59.985); and diagnostic OR 538.18 (95% CI, 195.50–1478.5). The AUROC value was 0.9901. For calcified stones, the analysis indicated: pooled weighted sensitivity, 0.994 (95% CI, 0.969–1); specificity, 0.973 (95% CI, 0.906–0.997); PLR, 11.200 (95% CI, 4.922–25.486); NLR 0.027 (95% CI, 0.010–0.072); and diagnostic OR 654.89 (95% CI, 151.31–2834.4). The AUROC value was 0.9915. Conclusion: This meta-analysis found that DECT is a highly accurate noninvasive method for characterizing urinary uric acid and calcified calculi.

  16. Assessment of an advanced monoenergetic reconstruction technique in dual-energy computed tomography of head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Moritz H.; Scholtz, Jan-Erik; Kraft, Johannes; Bauer, Ralf W.; Kaup, Moritz; Dewes, Patricia; Bucher, Andreas M.; Burck, Iris; Lehnert, Thomas; Kerl, J.M.; Vogl, Thomas J. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt am Main (Germany); Wagenblast, Jens [University Hospital Frankfurt, Department of Otolaryngology, Head and Neck Surgery, Frankfurt am Main (Germany); Wichmann, Julian L. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt am Main (Germany); Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States)

    2015-08-15

    To define optimal keV settings for advanced monoenergetic (Mono+) dual-energy computed tomography (DECT) in patients with head and neck squamous cell carcinoma (SCC). DECT data of 44 patients (34 men, mean age 55.5 ± 16.0 years) with histopathologically confirmed SCC were reconstructed as 40, 55, 70 keV Mono + and M0.3 (30 % 80 kV) linearly blended series. Attenuation of tumour, sternocleidomastoid muscle, internal jugular vein, submandibular gland, and noise were measured. Three radiologists with >3 years of experience subjectively assessed image quality, lesion delineation, image sharpness, and noise. The highest lesion attenuation was shown for 40 keV series (248.1 ± 94.1 HU), followed by 55 keV (150.2 ± 55.5 HU; P = 0.001). Contrast-to-noise ratio (CNR) at 40 keV (19.09 ± 13.84) was significantly superior to all other reconstructions (55 keV, 10.25 ± 9.11; 70 keV, 7.68 ± 6.31; M0.3, 5.49 ± 3.28; all P < 0.005). Subjective image quality was highest for 55 keV images (4.53; κ = 0.38, P = 0.003), followed by 40 keV (4.14; κ = 0.43, P < 0.001) and 70 keV reconstructions (4.06; κ = 0.32, P = 0.005), all superior (P < 0.004) to linear blending M0.3 (3.81; κ = 0.280, P = 0.056). Mono + DECT at low keV levels significantly improves CNR and subjective image quality in patients with head and neck SCC, as tumour CNR peaks at 40 keV, and 55 keV images are preferred by observers. (orig.)

  17. Dual-Energy Micro-Computed Tomography Imaging of Radiation-Induced Vascular Changes in Primary Mouse Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Moding, Everett J. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Clark, Darin P.; Qi, Yi [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Li, Yifan; Ma, Yan [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Ghaghada, Ketan [The Edward B. Singleton Department of Pediatric Radiology, Texas Children' s Hospital, Houston, Texas (United States); Johnson, G. Allan [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Kirsch, David G. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Badea, Cristian T., E-mail: cristian.badea@duke.edu [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States)

    2013-04-01

    Purpose: To evaluate the effects of radiation therapy on primary tumor vasculature using dual-energy (DE) micro-computed tomography (micro-CT). Methods and Materials: Primary sarcomas were generated with mutant Kras and p53. Unirradiated tumors were compared with tumors irradiated with 20 Gy. A liposomal-iodinated contrast agent was administered 1 day after treatment, and mice were imaged immediately after injection (day 1) and 3 days later (day 4) with DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically by use of CD31 immunofluorescence and fluorescently-labeled dextrans. Results: Radiation treatment significantly decreased tumor growth from day 1 to day 4 (P<.05). There was a positive correlation between CT measurement of tumor FBV on day 1 and extravasated iodine on day 4 with microvascular density (MVD) on day 4 (R{sup 2}=0.53) and dextran accumulation (R{sup 2}=0.63) on day 4, respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs 0.091, P<.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation, with dextran fractional area increasing 5.2-fold and liposomal-iodine concentration increasing 4.0-fold. Conclusions: DE micro-CT is an effective tool for noninvasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment.

  18. Use of dual-energy computed tomography to measure skeletal-wide marrow composition and cancellous bone mineral density.

    Science.gov (United States)

    Arentsen, Luke; Hansen, Karen E; Yagi, Masashi; Takahashi, Yutaka; Shanley, Ryan; McArthur, Angela; Bolan, Patrick; Magome, Taiki; Yee, Douglas; Froelich, Jerry; Hui, Susanta K

    2017-07-01

    Temporal and spatial variations in bone marrow adipose tissue (MAT) can be indicative of several pathologies and confound current methods of assessing immediate changes in bone mineral remodeling. We present a novel dual-energy computed tomography (DECT) method to monitor MAT and marrow-corrected volumetric BMD (mcvBMD) throughout the body. Twenty-three cancellous skeletal sites in 20 adult female cadavers aged 40-80 years old were measured using DECT (80 and 140 kVp). vBMD was simultaneous recorded using QCT. MAT was further sampled using MRI. Thirteen lumbar vertebrae were then excised from the MRI-imaged donors and examined by microCT. After MAT correction throughout the skeleton, significant differences (p < 0.05) were found between QCT-derived vBMD and DECT-derived mcvBMD results. McvBMD was highly heterogeneous with a maximum at the posterior skull and minimum in the proximal humerus (574 and 0.7 mg/cc, respectively). BV/TV and BMC have a nearly significant correlation with mcvBMD (r = 0.545, p = 0.057 and r = 0.539, p = 0.061, respectively). MAT assessed by DECT showed a significant correlation with MRI MAT results (r = 0.881, p < 0.0001). Both DECT- and MRI-derived MAT had a significant influence on uncorrected vBMD (r = -0.86 and r = -0.818, p ≤ 0.0001, respectively). Conversely, mcvBMD had no correlation with DECT- or MRI-derived MAT (r = 0.261 and r = 0.067). DECT can be used to assess MAT while simultaneously collecting mcvBMD values at each skeletal site. MAT is heterogeneous throughout the skeleton, highly variable, and should be accounted for in longitudinal mcvBMD studies. McvBMD accurately reflects the calcified tissue in cancellous bone.

  19. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography

    International Nuclear Information System (INIS)

    Cai, C.; Rodet, T.; Mohammad-Djafari, A.; Legoupil, S.

    2013-01-01

    Purpose: Dual-energy computed tomography (DECT) makes it possible to get two fractions of basis materials without segmentation. One is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical DECT measurements are usually obtained with polychromatic x-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam polychromaticity fail to estimate the correct decomposition fractions and result in beam-hardening artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log preprocessing and the ill-conditioned water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on nonlinear forward models counting the beam polychromaticity show great potential for giving accurate fraction images.Methods: This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint maximum a posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a nonquadratic cost function. To solve it, the use of a monotone conjugate gradient algorithm with suboptimal descent steps is proposed.Results: The performance of the proposed approach is analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also

  20. Phantom-less bone mineral density (BMD) measurement using dual energy computed tomography-based 3-material decomposition

    Science.gov (United States)

    Hofmann, Philipp; Sedlmair, Martin; Krauss, Bernhard; Wichmann, Julian L.; Bauer, Ralf W.; Flohr, Thomas G.; Mahnken, Andreas H.

    2016-03-01

    Osteoporosis is a degenerative bone disease usually diagnosed at the manifestation of fragility fractures, which severely endanger the health of especially the elderly. To ensure timely therapeutic countermeasures, noninvasive and widely applicable diagnostic methods are required. Currently the primary quantifiable indicator for bone stability, bone mineral density (BMD), is obtained either by DEXA (Dual-energy X-ray absorptiometry) or qCT (quantitative CT). Both have respective advantages and disadvantages, with DEXA being considered as gold standard. For timely diagnosis of osteoporosis, another CT-based method is presented. A Dual Energy CT reconstruction workflow is being developed to evaluate BMD by evaluating lumbar spine (L1-L4) DE-CT images. The workflow is ROI-based and automated for practical use. A dual energy 3-material decomposition algorithm is used to differentiate bone from soft tissue and fat attenuation. The algorithm uses material attenuation coefficients on different beam energy levels. The bone fraction of the three different tissues is used to calculate the amount of hydroxylapatite in the trabecular bone of the corpus vertebrae inside a predefined ROI. Calibrations have been performed to obtain volumetric bone mineral density (vBMD) without having to add a calibration phantom or to use special scan protocols or hardware. Accuracy and precision are dependent on image noise and comparable to qCT images. Clinical indications are in accordance with the DEXA gold standard. The decomposition-based workflow shows bone degradation effects normally not visible on standard CT images which would induce errors in normal qCT results.

  1. Virtual non-contrast in second-generation, dual-energy computed tomography: Reliability of attenuation values

    International Nuclear Information System (INIS)

    Toepker, Michael; Moritz, Thomas; Krauss, Bernhard; Weber, Michael; Euller, Gordon; Mang, Thomas; Wolf, Florian; Herold, Christian J.; Ringl, Helmut

    2012-01-01

    Purpose: To evaluate the reliability of attenuation values in virtual non-contrast images (VNC) reconstructed from contrast-enhanced, dual-energy scans performed on a second-generation dual-energy CT scanner, compared to single-energy, non-contrast images (TNC). Materials and methods: Sixteen phantoms containing a mixture of contrast agent and water at different attenuations (0–1400 HU) were investigated on a Definition Flash-CT scanner using a single-energy scan at 120 kV and a DE-CT protocol (100 kV/SN140 kV). For clinical assessment, 86 patients who received a dual-phase CT, containing an unenhanced single-energy scan at 120 kV and a contrast enhanced (110 ml Iomeron 400 mg/ml; 4 ml/s) DE-CT (100 kV/SN140 kV) in an arterial (n = 43) or a venous phase, were retrospectively analyzed. Mean attenuation was measured within regions of interest of the phantoms and in different tissue types of the patients within the corresponding VNC and TNC images. Paired t-tests and Pearson correlation were used for statistical analysis. Results: For all phantoms, mean attenuation in VNC was 5.3 ± 18.4 HU, with respect to water. In 86 patients overall, 2637 regions were measured in TNC and VNC images, with a mean difference between TNC and VNC of −3.6 ± 8.3 HU. In 91.5% (n = 2412) of all cases, absolute differences between TNC and VNC were under 15 HU, and, in 75.3% (n = 1986), differences were under 10 HU. Conclusions: Second-generation dual-energy CT based VNC images provide attenuation values close to those of TNC. To avoid possible outliers multiple measurements are recommended especially for measurements in the spleen, the mesenteric fat, and the aorta.

  2. Detection of parathyroid adenomas using a monophasic dual-energy computed tomography acquisition: diagnostic performance and potential radiation dose reduction

    International Nuclear Information System (INIS)

    Leiva-Salinas, Carlos; Flors, Lucia; Durst, Christopher R.; Hou, Qinghua; Mukherjee, Sugoto; Patrie, James T.; Wintermark, Max

    2016-01-01

    The aims of the study were to compare the diagnostic performance of a combination of virtual non-contrast (VNC) images and arterial images obtained from a single-phase dual-energy CT (DECT) acquisition and standard non-contrast and arterial images from a biphasic protocol and to study the potential radiation dose reduction of the former approach. All DECT examinations performed for evaluation of parathyroid adenomas during a 13-month period were retrospectively reviewed. An initial single-energy unenhanced acquisition was followed by a dual-energy arterial phase acquisition. ''Virtual non-contrast images'' were generated from the dual-energy acquisition. Two independent and blinded radiologists evaluated three different sets of images during three reading sessions: single arterial phase, single-phase DECT (virtual non-contrast and arterial phase), and standard biphasic protocol (true non-contrast and arterial phase). The accuracy of interpretation in lateralizing an adenoma to the side of the neck and localizing it to a quadrant in the neck was evaluated. Sixty patients (mean age, 65.5 years; age range, 38-87 years) were included in the study. The lateralization and localization accuracy, sensitivity, and positive predicted value (PPV) and negative predicted value (NPV) of the different image datasets were comparable. The combination of VNC and arterial images was more specific than arterial images alone to lateralize a parathyroid lesion (OR = 1.93, p = 0.043). The use of the single-phase protocol resulted in a calculated radiation exposure reduction of 52.8 %. Virtual non-contrast and arterial images from a single DECT acquisition showed similar diagnostic accuracy than a biphasic protocol, providing a significant dose reduction. (orig.)

  3. Detection of parathyroid adenomas using a monophasic dual-energy computed tomography acquisition: diagnostic performance and potential radiation dose reduction

    Energy Technology Data Exchange (ETDEWEB)

    Leiva-Salinas, Carlos; Flors, Lucia; Durst, Christopher R.; Hou, Qinghua; Mukherjee, Sugoto [University of Virginia, Department of Radiology, Division of Neuroradiology, Charlottesville, VA (United States); Patrie, James T. [University of Virginia, Department of Public Health Sciences, Charlottesville, VA (United States); Wintermark, Max [Stanford University, Department of Radiology, Palo Alto, CA (United States)

    2016-11-15

    The aims of the study were to compare the diagnostic performance of a combination of virtual non-contrast (VNC) images and arterial images obtained from a single-phase dual-energy CT (DECT) acquisition and standard non-contrast and arterial images from a biphasic protocol and to study the potential radiation dose reduction of the former approach. All DECT examinations performed for evaluation of parathyroid adenomas during a 13-month period were retrospectively reviewed. An initial single-energy unenhanced acquisition was followed by a dual-energy arterial phase acquisition. ''Virtual non-contrast images'' were generated from the dual-energy acquisition. Two independent and blinded radiologists evaluated three different sets of images during three reading sessions: single arterial phase, single-phase DECT (virtual non-contrast and arterial phase), and standard biphasic protocol (true non-contrast and arterial phase). The accuracy of interpretation in lateralizing an adenoma to the side of the neck and localizing it to a quadrant in the neck was evaluated. Sixty patients (mean age, 65.5 years; age range, 38-87 years) were included in the study. The lateralization and localization accuracy, sensitivity, and positive predicted value (PPV) and negative predicted value (NPV) of the different image datasets were comparable. The combination of VNC and arterial images was more specific than arterial images alone to lateralize a parathyroid lesion (OR = 1.93, p = 0.043). The use of the single-phase protocol resulted in a calculated radiation exposure reduction of 52.8 %. Virtual non-contrast and arterial images from a single DECT acquisition showed similar diagnostic accuracy than a biphasic protocol, providing a significant dose reduction. (orig.)

  4. Virtual non-contrast in second-generation, dual-energy computed tomography: reliability of attenuation values.

    Science.gov (United States)

    Toepker, Michael; Moritz, Thomas; Krauss, Bernhard; Weber, Michael; Euller, Gordon; Mang, Thomas; Wolf, Florian; Herold, Christian J; Ringl, Helmut

    2012-03-01

    To evaluate the reliability of attenuation values in virtual non-contrast images (VNC) reconstructed from contrast-enhanced, dual-energy scans performed on a second-generation dual-energy CT scanner, compared to single-energy, non-contrast images (TNC). Sixteen phantoms containing a mixture of contrast agent and water at different attenuations (0-1400 HU) were investigated on a Definition Flash-CT scanner using a single-energy scan at 120 kV and a DE-CT protocol (100 kV/SN140 kV). For clinical assessment, 86 patients who received a dual-phase CT, containing an unenhanced single-energy scan at 120 kV and a contrast enhanced (110 ml Iomeron 400 mg/ml; 4 ml/s) DE-CT (100 kV/SN140 kV) in an arterial (n=43) or a venous phase, were retrospectively analyzed. Mean attenuation was measured within regions of interest of the phantoms and in different tissue types of the patients within the corresponding VNC and TNC images. Paired t-tests and Pearson correlation were used for statistical analysis. For all phantoms, mean attenuation in VNC was 5.3±18.4 HU, with respect to water. In 86 patients overall, 2637 regions were measured in TNC and VNC images, with a mean difference between TNC and VNC of -3.6±8.3 HU. In 91.5% (n=2412) of all cases, absolute differences between TNC and VNC were under 15HU, and, in 75.3% (n=1986), differences were under 10 HU. Second-generation dual-energy CT based VNC images provide attenuation values close to those of TNC. To avoid possible outliers multiple measurements are recommended especially for measurements in the spleen, the mesenteric fat, and the aorta. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Dual-Energy Computed Tomography Angiography of the Lower Extremity Runoff: Impact of Noise-Optimized Virtual Monochromatic Imaging on Image Quality and Diagnostic Accuracy.

    Science.gov (United States)

    Wichmann, Julian L; Gillott, Matthew R; De Cecco, Carlo N; Mangold, Stefanie; Varga-Szemes, Akos; Yamada, Ricardo; Otani, Katharina; Canstein, Christian; Fuller, Stephen R; Vogl, Thomas J; Todoran, Thomas M; Schoepf, U Joseph

    2016-02-01

    The aim of this study was to evaluate the impact of a noise-optimized virtual monochromatic imaging algorithm (VMI+) on image quality and diagnostic accuracy at dual-energy computed tomography angiography (CTA) of the lower extremity runoff. This retrospective Health Insurance Portability and Accountability Act-compliant study was approved by the local institutional review board. We evaluated dual-energy CTA studies of the lower extremity runoff in 48 patients (16 women; mean age, 63.3 ± 13.8 years) performed on a third-generation dual-source CT system. Images were reconstructed with standard linear blending (F_0.5), VMI+, and traditional monochromatic (VMI) algorithms at 40 to 120 keV in 10-keV intervals. Vascular attenuation and image noise in 18 artery segments were measured; signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Five-point scales were used to subjectively evaluate vascular attenuation and image noise. In a subgroup of 21 patients who underwent additional invasive catheter angiography, diagnostic accuracy for the detection of significant stenosis (≥50% lumen restriction) of F_0.5, 50-keV VMI+, and 60-keV VMI data sets were assessed. Objective image quality metrics were highest in the 40- and 50-keV VMI+ series (SNR: 20.2 ± 10.7 and 19.0 ± 9.5, respectively; CNR: 18.5 ± 10.3 and 16.8 ± 9.1, respectively) and were significantly (all P traditional VMI technique and standard linear blending for evaluation of the lower extremity runoff using dual-energy CTA.

  6. Dual-energy index value of luminal air in fecal-tagging computed tomography colonography: findings and impact on electronic cleansing.

    Science.gov (United States)

    Cai, Wenli; Zhang, Da; Lee, June-Goo; Shirai, Yu; Kim, Se Hyung; Yoshida, Hiroyuki

    2013-01-01

    The purpose of our study was to measure the dual-energy index (DEI) value of colonic luminal air in both phantom and clinical fecal-tagging dual-energy computed tomography (CT) colonography (DE-CTC) images and to demonstrate its impact on dual-energy electronic cleansing. For the phantom study, a custom-ordered colon phantom was scanned by a dual-energy CT scanner (SOMATON Definition Flash; Siemens Healthcare, Forchheim, Germany) at two photon energies: 80 and 140 kVp. Before imaging, the phantom was filled with a 300-mL mixture of simulated fecal materials tagged by a nonionic iodinated contrast agent at three contrast concentrations: 20, 40, and 60 mg/mL. Ten regions-of-interest (ROIs) were randomly placed in each of the colonic luminal air, abdominal fat, bony structure, and tagged material in each scan. For the clinical study, 22 DE-CTC (80 and 140 kVp) patient cases were collected, who underwent a low-fiber, low-residue diet bowel preparation and orally administered iodine-based fecal tagging. Twenty ROIs were randomly placed in each of the colonic luminal air, abdominal fat, abdominal soft tissue, and tagged fecal material in each scan. For each ROI, the mean CT values in both 80- and 140-kVp images were measured, and then its DEI was calculated. In the phantom study, the mean DEI values of luminal air were 0.270, 0.298, 0.386, and 0.402 for the four groups of tagging conditions: no tagged material and tagged with three groups of contrast concentrations at 20, 40, and 60 mg/mL. In the clinical study, the mean DEI values were 0.341, -0.012, -0.002, and 0.188 for colonic luminal air, abdominal fat, abdominal soft tissue, and tagged fecal material, respectively. In our study, we observed that the DEI values of colonic luminal air in DE-CTC images (>0.10) were substantially higher than the theoretical value of 0.0063. In addition, the observed DEI values of colonic luminal air were significantly higher than those of soft tissue. These findings have an important

  7. Incidental Findings in Abdominal Dual-Energy Computed Tomography: Correlation Between True Noncontrast and Virtual Noncontrast Images Considering Renal and Liver Cysts and Adrenal Masses.

    Science.gov (United States)

    Slebocki, Karin; Kraus, Bastian; Chang, De-Hua; Hellmich, Martin; Maintz, David; Bangard, Christopher

    To assess correlation between attenuation measurements of incidental findings in abdominal second generation dual-energy computed tomography (CT) on true noncontrast (TNC) and virtual noncontrast (VNC) images. Sixty-three patients underwent arterial dual-energy CT (Somatom Definition Flash, Siemens; pitch factor, 0.75-1.0; gantry rotation time, 0.28 seconds) after endovascular aneurysm repair, consisting of a TNC single energy CT scan (collimation, 128 × 0.6 mm; 120 kVp) and a dual-energy arterial phase scan (collimation, 32 × 0.6 mm, 140 and 100 kVp; blended, 120 kVp data set). Attenuation measurements in Hounsfield units (HU) of liver parenchyma and incidental findings like renal and hepatic cysts and adrenal masses on TNC and VNC images were done by drawing regions of interest. Statistical analysis was performed by paired t test and Pearson correlation. Incidental findings were detected in 56 (89%) patients. There was excellent correlation for both renal (n = 40) and hepatic cysts (n = 12) as well as adrenal masses (n = 6) with a Pearson correlation of 0.896, 0.800, and 0.945, respectively, and mean attenuation values on TNC and VNC images of 10.6 HU ± 12.8 versus 5.1 HU ± 17.5 (attenuation value range from -8.8 to 59.1 HU vs -11.8 to 73.4 HU), 6.4 HU ± 5.8 versus 6.3 HU ± 4.6 (attenuation value range from 2.0 to 16.2 HU vs -3.0 to 15.9 HU), and 12.8 HU ± 11.2 versus 12.4 HU ± 10.2 (attenuation value range from -2.3 to 27.5 HU vs -2.2 to 23.6 HU), respectively. As proof of principle, liver parenchyma measurements also showed excellent correlation between TNC and VNC (n = 40) images with a Pearson correlation of 0.839 and mean attenuation values on TNC and VNC images of 47.2 HU ± 10.5 versus 43.8 HU ± 8.7 (attenuation value range from 21.9 to 60.2 HU vs 4.5 to 65.3 HU). In conclusion, attenuation measurements of incidental findings like renal cysts or adrenal masses on TNC and VNC images derived from second generation dual-energy CT scans show excellent

  8. First experience with single-source dual-energy computed tomography in six patients with acute arthralgia: a feasibility experiment using joint aspiration as a reference

    Energy Technology Data Exchange (ETDEWEB)

    Diekhoff, Torsten; Kiefer, Tobias; Hamm, Bernd; Hermann, Kay-Geert A. [Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Freie Universitaet Berlin, Department of Radiology, Berlin (Germany); Ziegeler, Katharina; Feist, Eugen [Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Freie Universitaet Berlin, Department of Rheumatology and Clinical Immunology, Berlin (Germany); Mews, Juergen [Toshiba Medical Systems Europe, BV, Zoetermeer (Netherlands)

    2015-11-15

    Dual-energy computed tomography (DECT) is an emerging imaging technique for examining patients with suspected gout. Single-source dual-energy CT (S-DECT) is a new way of obtaining DECT information on conventional CT scanners rather than using special dual-source CT systems. We tested the feasibility of S-DECT (320-row CT; Aquilion ONE, Toshiba Medical Systems, Otawara, Japan) in 6 patients (5 men, 1 woman; mean age 61.3, range 48 to 69 years) with acute arthralgia and suspected gout, and compared the S-DECT findings with the results of joint aspiration. Three patients had a diagnosis of gouty arthritis with negatively birefringent crystals in synovial fluid, in addition to gouty tophi in S-DECT. Three patients had no detectable crystals by polarization microscopy and no tophi on DECT. Their final diagnoses were rheumatoid arthritis, activated osteoarthritis, and septic arthritis in one case each. This initial experience suggests that S-DECT might be a valuable alternative to dual-source CT. Hence, more patients may benefit from its additional diagnostic abilities in the future. (orig.)

  9. First experience with single-source dual-energy computed tomography in six patients with acute arthralgia: a feasibility experiment using joint aspiration as a reference

    International Nuclear Information System (INIS)

    Diekhoff, Torsten; Kiefer, Tobias; Hamm, Bernd; Hermann, Kay-Geert A.; Ziegeler, Katharina; Feist, Eugen; Mews, Juergen

    2015-01-01

    Dual-energy computed tomography (DECT) is an emerging imaging technique for examining patients with suspected gout. Single-source dual-energy CT (S-DECT) is a new way of obtaining DECT information on conventional CT scanners rather than using special dual-source CT systems. We tested the feasibility of S-DECT (320-row CT; Aquilion ONE, Toshiba Medical Systems, Otawara, Japan) in 6 patients (5 men, 1 woman; mean age 61.3, range 48 to 69 years) with acute arthralgia and suspected gout, and compared the S-DECT findings with the results of joint aspiration. Three patients had a diagnosis of gouty arthritis with negatively birefringent crystals in synovial fluid, in addition to gouty tophi in S-DECT. Three patients had no detectable crystals by polarization microscopy and no tophi on DECT. Their final diagnoses were rheumatoid arthritis, activated osteoarthritis, and septic arthritis in one case each. This initial experience suggests that S-DECT might be a valuable alternative to dual-source CT. Hence, more patients may benefit from its additional diagnostic abilities in the future. (orig.)

  10. Separation of hepatic iron and fat by dual-source dual-energy computed tomography based on material decomposition: an animal study.

    Science.gov (United States)

    Ma, Jing; Song, Zhi-Qiang; Yan, Fu-Hua

    2014-01-01

    To explore the feasibility of dual-source dual-energy computed tomography (DSDECT) for hepatic iron and fat separation in vivo. All of the procedures in this study were approved by the Research Animal Resource Center of Shanghai Ruijin Hospital. Sixty rats that underwent DECT scanning were divided into the normal group, fatty liver group, liver iron group, and coexisting liver iron and fat group, according to Prussian blue and HE staining. The data for each group were reconstructed and post-processed by an iron-specific, three-material decomposition algorithm. The iron enhancement value and the virtual non-iron contrast value, which indicated overloaded liver iron and residual liver tissue, respectively, were measured. Spearman's correlation and one-way analysis of variance (ANOVA) were performed, respectively, to analyze statistically the correlations with the histopathological results and differences among groups. The iron enhancement values were positively correlated with the iron pathology grading (r = 0.729, pVNC) values were negatively correlated with the fat pathology grading (r = -0.642,pVNC values (F = 25.308,pVNC values were only observed between the fat-present and fat-absent groups. Separation of hepatic iron and fat by dual energy material decomposition in vivo was feasible, even when they coexisted.

  11. Reduction of dark-band-like metal artifacts caused by dental implant bodies using hypothetical monoenergetic imaging after dual-energy computed tomography.

    Science.gov (United States)

    Tanaka, Ray; Hayashi, Takafumi; Ike, Makiko; Noto, Yoshiyuki; Goto, Tazuko K

    2013-06-01

    The aim of this study was to evaluate the usefulness of hypothetical monoenergetic images after dual-energy computed tomography (DECT) for assessment of the bone encircling dental implant bodies. Seventy-two axial images of implantation sites clipped out from image data scanned using DECT in dual-energy mode were used. Subjective assessment on reduction of dark-band-like artifacts (R-DBAs) and diagnosability of adjacent bone condition (D-ABC) in 3 sets of DECT images-a fused image set (DE120) and 2 sets of hypothetical monoenergetic images (ME100, ME190)-was performed and the results were statistically analyzed. With regards to R-DBAs and D-ABC, significant differences among DE120, ME100, and ME190 were observed. The ME100 and ME190 images revealed more artifact reduction and diagnosability than those of DE120. DECT imaging followed by hypothetical monoenergetic image construction can cause R-DBAs and increase D-ABC and may be potentially used for the evaluation of postoperative changes in the bone encircling implant bodies. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Single source dual-energy computed tomography in the diagnosis of gout: Diagnostic reliability in comparison to digital radiography and conventional computed tomography of the feet

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Tobias; Diekhoff, Torsten [Department of Radiology, Charité—Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität, Berlin, Charitéplatz 1, 10117 Berlin (Germany); Hermann, Sandra [Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Charitéplatz 1, 10117 Berlin (Germany); Stroux, Andrea [Department of Medical Informatics, Biometry and Epidemiology, Freie Universität Berlin, Berlin (Germany); Mews, Jürgen; Blobel, Jörg [Toshiba Medical Systems Europe, BV, Zilverstraat 1, 2701 RP Zoetermeer (Netherlands); Hamm, Bernd [Department of Radiology, Charité—Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität, Berlin, Charitéplatz 1, 10117 Berlin (Germany); Hermann, Kay-Geert A., E-mail: kghermann@gmail.com [Department of Radiology, Charité—Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität, Berlin, Charitéplatz 1, 10117 Berlin (Germany)

    2016-10-15

    Objectives: To investigate the diagnostic value of single-source dual-energy computed tomography (SDECT) in gouty arthritis and to compare its capability to detect urate depositions with digital radiography (DR) and conventional computed tomography (CT). Methods: Forty-four patients who underwent SDECT volume scans of the feet for suspected gouty arthritis were retrospectively analyzed. SDECT, CT (both n = 44) and DR (n = 36) were scored by three blinded readers for presence of osteoarthritis, erosions, and tophi. A diagnosis was made for each imaging modality. Results were compared to the clinical diagnosis using the American College of Rheumatology (ACR) classification criteria. Results: The patient population was divided into a gout (n = 21) and control (n = 23) group based on final clinical diagnosis. Osteoarthritis was evident in 15 joints using CT and 30 joints using DR (p = 0.165). There were 134 erosions detected by CT compared to 38 erosions detected by DR (p < 0.001). In total 119 tophi were detected by SDECT, compared to 85 tophi by CT (p = 0.182) and 25 tophi by DR (p < 0.001). SDECT had best diagnostic value for diagnosis of gout compared to DR and conventional CT (sensitivity and specificity for SDECT: 71.4% and 95.7%, CT: 71.4% and 91.3% and DR: 44.4% and 83.3%, respectively). For all three readers, Cohen’s kappa for DR and conventional CT were substantial for all scoring items and ranged from 0.75 to 0.77 and 0.72–0.76, respectively. For SDECT Cohen’s kappa was good to almost perfect with 0.77–0.84. Conclusions: SDECT is capable to detect uric acid depositions with good sensitivity and high specificity in feet, therefore diagnostic confidence is improved. Using SDECT, inter-reader variance can be markedly reduced for the detection of gouty tophi.

  13. Single source dual-energy computed tomography in the diagnosis of gout: Diagnostic reliability in comparison to digital radiography and conventional computed tomography of the feet

    International Nuclear Information System (INIS)

    Kiefer, Tobias; Diekhoff, Torsten; Hermann, Sandra; Stroux, Andrea; Mews, Jürgen; Blobel, Jörg; Hamm, Bernd; Hermann, Kay-Geert A.

    2016-01-01

    Objectives: To investigate the diagnostic value of single-source dual-energy computed tomography (SDECT) in gouty arthritis and to compare its capability to detect urate depositions with digital radiography (DR) and conventional computed tomography (CT). Methods: Forty-four patients who underwent SDECT volume scans of the feet for suspected gouty arthritis were retrospectively analyzed. SDECT, CT (both n = 44) and DR (n = 36) were scored by three blinded readers for presence of osteoarthritis, erosions, and tophi. A diagnosis was made for each imaging modality. Results were compared to the clinical diagnosis using the American College of Rheumatology (ACR) classification criteria. Results: The patient population was divided into a gout (n = 21) and control (n = 23) group based on final clinical diagnosis. Osteoarthritis was evident in 15 joints using CT and 30 joints using DR (p = 0.165). There were 134 erosions detected by CT compared to 38 erosions detected by DR (p < 0.001). In total 119 tophi were detected by SDECT, compared to 85 tophi by CT (p = 0.182) and 25 tophi by DR (p < 0.001). SDECT had best diagnostic value for diagnosis of gout compared to DR and conventional CT (sensitivity and specificity for SDECT: 71.4% and 95.7%, CT: 71.4% and 91.3% and DR: 44.4% and 83.3%, respectively). For all three readers, Cohen’s kappa for DR and conventional CT were substantial for all scoring items and ranged from 0.75 to 0.77 and 0.72–0.76, respectively. For SDECT Cohen’s kappa was good to almost perfect with 0.77–0.84. Conclusions: SDECT is capable to detect uric acid depositions with good sensitivity and high specificity in feet, therefore diagnostic confidence is improved. Using SDECT, inter-reader variance can be markedly reduced for the detection of gouty tophi.

  14. Myocardial perfusion imaging with dual energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); De Cecco, Carlo N. [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncology and Pathology, University of Rome “Sapienza”, Rome (Italy); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Spandorfer, Adam; Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States)

    2016-10-15

    Highlights: • Stress dual-energy sCTMPI offers the possibility to directly detect the presence of myocardial perfusion defects. • Stress dual-energy sCTMPI allows differentiating between reversible and fixed myocardial perfusion defects. • The combination of coronary CT angiography and dual-energy sCTMPI can improve the ability of CT to detect hemodynamically relevant coronary artery disease. - Abstract: Dual-energy CT (DECT) enables simultaneous use of two different tube voltages, thus different x-ray absorption characteristics are acquired in the same anatomic location with two different X-ray spectra. The various DECT techniques allow material decomposition and mapping of the iodine distribution within the myocardium. Static dual-energy myocardial perfusion imaging (sCTMPI) using pharmacological stress agents demonstrate myocardial ischemia by single snapshot images of myocardial iodine distribution. sCTMPI gives incremental values to coronary artery stenosis detected on coronary CT angiography (CCTA) by showing consequent reversible or fixed myocardial perfusion defects. The comprehensive acquisition of CCTA and sCTMPI offers extensive morphological and functional evaluation of coronary artery disease. Recent studies have revealed that dual-energy sCTMPI shows promising diagnostic accuracy for the detection of hemodynamically significant coronary artery disease compared to single-photon emission computed tomography, invasive coronary angiography, and cardiac MRI. The aim of this review is to present currently available DECT techniques for static myocardial perfusion imaging and recent clinical applications and ongoing investigations.

  15. Experimental verification of stopping-power prediction from single- and dual-energy computed tomography in biological tissues

    Science.gov (United States)

    Möhler, Christian; Russ, Tom; Wohlfahrt, Patrick; Elter, Alina; Runz, Armin; Richter, Christian; Greilich, Steffen

    2018-01-01

    An experimental setup for consecutive measurement of ion and x-ray absorption in tissue or other materials is introduced. With this setup using a 3D-printed sample container, the reference stopping-power ratio (SPR) of materials can be measured with an uncertainty of below 0.1%. A total of 65 porcine and bovine tissue samples were prepared for measurement, comprising five samples each of 13 tissue types representing about 80% of the total body mass (three different muscle and fatty tissues, liver, kidney, brain, heart, blood, lung and bone). Using a standard stoichiometric calibration for single-energy CT (SECT) as well as a state-of-the-art dual-energy CT (DECT) approach, SPR was predicted for all tissues and then compared to the measured reference. With the SECT approach, the SPRs of all tissues were predicted with a mean error of (-0.84  ±  0.12)% and a mean absolute error of (1.27  ±  0.12)%. In contrast, the DECT-based SPR predictions were overall consistent with the measured reference with a mean error of (-0.02  ±  0.15)% and a mean absolute error of (0.10  ±  0.15)%. Thus, in this study, the potential of DECT to decrease range uncertainty could be confirmed in biological tissue.

  16. Meta-analysis of dual-energy computed tomography virtual non-calcium imaging to detect bone marrow edema.

    Science.gov (United States)

    Li, Mou; Qu, Yali; Song, Bin

    2017-10-01

    This meta-analysis aimed to evaluate the accuracy of dual-energy CT (DECT) virtual non-calcium (VNC) imaging for the detection of bone marrow edema (BME). A systematic literature search up to March 2017 was performed to find relevant original studies. Two reviewers independently selected studies, assessed literature quality, and extracted data. Pooled sensitivity, specificity, area under receiver operating characteristic (AUROC) curve, and other measures of DECT accuracy for detecting BME were calculated using random effects models. Risk of heterogeneity was assessed for the appropriateness of meta-analysis. Fourteen studies involving 2205 regions of vertebrae, hips, knees, and ankles were included. To evaluate the accuracy of BME detection using DECT, calculations were performed to obtain a pooled sensitivity of 0.812 (95% confidence interval [CI], 0.780-0.841) and specificity of 0.951 (95% CI, 0.940-0.960). The AUROC value was 0.9635. The major potential cause of heterogeneity was bone position. No significant publication bias was present. DECT VNC imaging gives very good diagnostic performance for BME detection and will likely be an important and common modality for acute assessment in the future. Copyright © 2017. Published by Elsevier B.V.

  17. Dual-Energy Computed Tomography in Stroke Imaging: Technical and Clinical Considerations of Virtual Noncontrast Images for Detection of the Hyperdense Artery Sign.

    Science.gov (United States)

    Winklhofer, Sebastian; Vittoria De Martini, Ilaria; Nern, Chrisitian; Blume, Iris; Wegener, Susanne; Pangalu, Athina; Valavanis, Antonios; Alkadhi, Hatem; Guggenberger, Roman

    The technical feasibility of virtual noncontrast (VNC) images from dual-energy computed tomography (DECT) for the detection of the hyperdense artery sign (HAS) in ischemic stroke patients was investigated. True noncontrast (TNC) scans of 60 patients either with or without HAS (n = 30 each) were investigated. Clot presence and characteristics were assessed on VNC images from DECT angiography and compared with TNC images. Clot characterization included the level of confidence for diagnosing HAS, a qualitative clot burden score, and quantitative attenuation (Hounsfield unit [HU]) measurements. Sensitivity, specificity, and accuracy of VNC for diagnosing HAS were 97%, 90%, and 93%, respectively. No significant differences were found regarding the diagnostic confidence (P = 0.18) and clot burden score (P = 0.071). No significant HU differences were found among vessels with HAS in VNC (56 ± 7HU) and TNC (57 ± 8HU) (P = 0.691) images. Virtual noncontrast images derived from DECT enable an accurate detection and characterization of HAS.

  18. SU-F-T-398: Improving Radiotherapy Treatment Planning Using Dual Energy Computed Tomography Based Tissue Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tomic, N; Bekerat, H; Seuntjens, J; Forghani, R; DeBlois, F; Devic, S [McGill University, Montreal, QC (Canada)

    2016-06-15

    Purpose: Both kVp settings and geometric distribution of various materials lead to significant change of the HU values, showing the largest discrepancy for high-Z materials and for the lowest CT scanning kVp setting. On the other hand, the dose distributions around low-energy brachytherapy sources are highly dependent on the architecture and composition of tissue heterogeneities in and around the implant. Both measurements and Monte Carlo calculations show that improper tissue characterization may lead to calculated dose errors of 90% for low energy and around 10% for higher energy photons. We investigated the ability of dual-energy CT (DECT) to characterize more accurately tissue equivalent materials. Methods: We used the RMI-467 heterogeneity phantom scanned in DECT mode with 3 different set-ups: first, we placed high electron density (ED) plugs within the outer ring of the phantom; then we arranged high ED plugs within the inner ring; and finally ED plugs were randomly distributed. All three setups were scanned with the same DECT technique using a single-source DECT scanner with fast kVp switching (Discovery CT750HD; GE Healthcare). Images were transferred to a GE Advantage workstation for DECT analysis. Spectral Hounsfield unit curves (SHUACs) were then generated from 50 to 140-keV, in 10-keV increments, for each plug. Results: The dynamic range of Hounsfield units shrinks with increased photon energy as the attenuation coefficients decrease. Our results show that the spread of HUs for the three different geometrical setups is the smallest at 80 keV. Furthermore, among all the energies and all materials presented, the largest difference appears at high Z tissue equivalent plugs. Conclusion: Our results suggest that dose calculations at both megavoltage and low photon energies could benefit in the vicinity of bony structures if the 80 keV reconstructed monochromatic CT image is used with the DECT protocol utilized in this work.

  19. Hypodense liver lesions in patients with hepatic steatosis: do we profit from dual-energy computed tomography?

    Energy Technology Data Exchange (ETDEWEB)

    Nattenmueller, Johanna; Hosch, Waldemar; Nguyen, Tri-Thien; Skornitzke, Stephan; Joeres, Andreas; Grenacher, Lars; Kauczor, Hans-Ulrich; Sommer, Christof M.; Stiller, Wolfram [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (DIR), Heidelberg (Germany)

    2015-12-15

    To evaluate dual-energy CT (DECT) imaging of hypodense liver lesions in patients with hepatic steatosis, having a high incidence in the general population and among cancer patients receiving chemotherapy. One hundred and five patients with hepatic steatosis (liver parenchyma <40 HU) underwent contrast-enhanced DECT with reconstruction of pure iodine (PI), optimum contrast (OC), 80 kV{sub p}, and 120 kV{sub p}-equivalent data sets. Image noise (IN), lesion to liver signal to noise (SNR) and contrast to noise (CNR) ratios were quantitatively analysed; image quality was rated on a 5-point scale (1, excellent; 2, good; 3, fair; 4, poor; 5, non-diagnostic) by two independent reviewers. In 21 patients with hypodense liver lesions, IN was lowest in PI followed by 120 kV{sub p}-equivalent and OC, and highest in 80 kV{sub p}. SNR was highest in PI (1.30), followed by 120 kV{sub p}-equivalent (0.72) and 80 kV{sub p} (0.63), and lowest in OC (0.55). CNR was highest in 120 kV{sub p}-equivalent (4.95), followed by OC (4.55) and 80 kV{sub p} (4.14), and lowest in PI (3.63). The 120 kV{sub p}-equivalent series exhibited best overall qualitative image score (1.88), followed by OC (1.98), 80 kV{sub p} (3.00) and PI (3.67). In our study, the 120 kV{sub p}-equivalent series was best suited for visualization of hypodense lesions within steatotic liver parenchyma, while using DECT currently seems to offer no additional diagnostic advantage. (orig.)

  20. Technical note: optimization for improved tube-loading efficiency in the dual-energy computed tomography coupled with balanced filter method.

    Science.gov (United States)

    Saito, Masatoshi

    2010-08-01

    This article describes the spectral optimization of dual-energy computed tomography using balanced filters (bf-DECT) to reduce the tube loadings and dose by dedicating to the acquisition of electron density information, which is essential for treatment planning in radiotherapy. For the spectral optimization of bf-DECT, the author calculated the beam-hardening error and air kerma required to achieve a desired noise level in an electron density image of a 50-cm-diameter cylindrical water phantom. The calculation enables the selection of beam parameters such as tube voltage, balanced filter material, and its thickness. The optimal combination of tube voltages was 80 kV/140 kV in conjunction with Tb/Hf and Bi/Mo filter pairs; this combination agrees with that obtained in a previous study [M. Saito, "Spectral optimization for measuring electron density by the dual-energy computed tomography coupled with balanced filter method," Med. Phys. 36, 3631-3642 (2009)], although the thicknesses of the filters that yielded a minimum tube output were slightly different from those obtained in the previous study. The resultant tube loading of a low-energy scan of the present bf-DECT significantly decreased from 57.5 to 4.5 times that of a high-energy scan for conventional DECT. Furthermore, the air kerma of bf-DECT could be reduced to less than that of conventional DECT, while obtaining the same figure of merit for the measurement of electron density and effective atomic number. The tube-loading and dose efficiencies of bf-DECT were considerably improved by sacrificing the quality of the noise level in the images of effective atomic number.

  1. Spinal dual-energy computed tomography: improved visualisation of spinal tumorous growth with a noise-optimised advanced monoenergetic post-processing algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Mareen; Weiss, Jakob; Selo, Nadja; Notohamiprodjo, Mike; Bamberg, Fabian; Nikolaou, Konstantin; Othman, Ahmed E. [Eberhard Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Flohr, Thomas [Siemens Healthcare GmbH, Erlangen (Germany)

    2016-11-15

    The aim of this study was to evaluate the effect of advanced monoenergetic post-processing (MEI+) on the visualisation of spinal growth in contrast-enhanced dual-energy CT (DE-CT). Twenty-six oncologic patients (age, 61 ± 17 years) with spinal tumorous growth were included. Patients underwent contrast-enhanced dual-energy CT on a third-generation dual-source CT scanner. Image acquisition was in dual-energy mode (100/Sn150kV), and scans were initiated 90 s after contrast agent administration. Virtual monoenergetic images (MEI+) were reconstructed at four different kiloelectron volts (keV) levels (40, 60, 80, 100) and compared to the standard blended portal venous computed tomography (CT{sub pv}). Image quality was assessed qualitatively (conspicuity, delineation, sharpness, noise, confidence; two independent readers; 5-point Likert scale; 5 = excellent) and quantitatively by calculating signal-to-noise (SNR) and contrast-to-noise-ratios (CNR). For a subgroup of 10 patients with MR imaging within 4 months of the DE-CT, we compared the monoenergetic images to the MRIs qualitatively. Highest contrast of spinal growth was observed in MEI+ at 40 keV, with significant differences to CT{sub pv} and all other keV reconstructions (60, 80, 100; p < 0.01). Highest conspicuity, delineation and sharpness were observed in MEI+ at 40 keV, with significant differences to CT{sub pv} (p < 0.001). Similarly, MEI+ at 40 keV yielded highest diagnostic confidence (4.6 ± 0.6), also with significant differences to CT{sub pv} (3.45 ± 0.9, p < 0.001) and to high keV reconstructions (80, 100; p ≤ 0.001). Similarly, CNR calculations revealed highest scores for MEI+ at 40 keV followed by 60 keV and CT{sub pv}, with significant differences to high keV MEI+ reconstructions. Qualitative analysis scores peaked for MR images followed by the MEI+ 40-keV reconstructions. MEI+ at low keV levels can significantly improve image quality and delineation of spinal growth in patients with portal

  2. Separation of hepatic iron and fat by dual-source dual-energy computed tomography based on material decomposition: an animal study.

    Directory of Open Access Journals (Sweden)

    Jing Ma

    Full Text Available OBJECTIVE: To explore the feasibility of dual-source dual-energy computed tomography (DSDECT for hepatic iron and fat separation in vivo. MATERIALS AND METHODS: All of the procedures in this study were approved by the Research Animal Resource Center of Shanghai Ruijin Hospital. Sixty rats that underwent DECT scanning were divided into the normal group, fatty liver group, liver iron group, and coexisting liver iron and fat group, according to Prussian blue and HE staining. The data for each group were reconstructed and post-processed by an iron-specific, three-material decomposition algorithm. The iron enhancement value and the virtual non-iron contrast value, which indicated overloaded liver iron and residual liver tissue, respectively, were measured. Spearman's correlation and one-way analysis of variance (ANOVA were performed, respectively, to analyze statistically the correlations with the histopathological results and differences among groups. RESULTS: The iron enhancement values were positively correlated with the iron pathology grading (r = 0.729, p<0.001. Virtual non-iron contrast (VNC values were negatively correlated with the fat pathology grading (r = -0.642,p<0.0001. Different groups showed significantly different iron enhancement values and VNC values (F = 25.308,p<0.001; F = 10.911, p<0.001, respectively. Among the groups, significant differences in iron enhancement values were only observed between the iron-present and iron-absent groups, and differences in VNC values were only observed between the fat-present and fat-absent groups. CONCLUSION: Separation of hepatic iron and fat by dual energy material decomposition in vivo was feasible, even when they coexisted.

  3. Dual energy cardiac CT.

    Science.gov (United States)

    Carrascosa, Patricia; Deviggiano, Alejandro; Rodriguez-Granillo, Gastón

    2017-06-01

    Conventional single energy CT suffers from technical limitations related to the polychromatic nature of X-rays. Dual energy cardiac CT (DECT) shows promise to attenuate and even overcome some of these limitations, and might broaden the scope of patients eligible for cardiac CT towards the inclusion of higher risk patients. This might be achieved as a result of both safety (contrast reduction) and physiopathological (myocardial perfusion and characterization) issues. In this article, we will review the main clinical cardiac applications of DECT, that can be summarized in two core aspects: coronary artery evaluation, and myocardial evaluation.

  4. Impact of reduced-radiation dual-energy protocols using 320-detector row computed tomography for analyzing urinary calculus components: initial in vitro evaluation.

    Science.gov (United States)

    Cai, Xiangran; Zhou, Qingchun; Yu, Juan; Xian, Zhaohui; Feng, Youzhen; Yang, Wencai; Mo, Xukai

    2014-10-01

    To evaluate the impact of reduced-radiation dual-energy (DE) protocols using 320-detector row computed tomography on the differentiation of urinary calculus components. A total of 58 urinary calculi were placed into the same phantom and underwent DE scanning with 320-detector row computed tomography. Each calculus was scanned 4 times with the DE protocols using 135 kV and 80 kV tube voltage and different tube current combinations, including 100 mA and 570 mA (group A), 50 mA and 290 mA (group B), 30 mA and 170 mA (group C), and 10 mA and 60 mA (group D). The acquisition data of all 4 groups were then analyzed by stone DE analysis software, and the results were compared with x-ray diffraction analysis. Noise, contrast-to-noise ratio, and radiation dose were compared. Calculi were correctly identified in 56 of 58 stones (96.6%) using group A and B protocols. However, only 35 stones (60.3%) and 16 stones (27.6%) were correctly diagnosed using group C and D protocols, respectively. Mean noise increased significantly and mean contrast-to-noise ratio decreased significantly from groups A to D (P calculus component analysis while reducing patient radiation exposure to 1.81 mSv. Further reduction of tube currents may compromise diagnostic accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Anatomical decomposition in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Lung cancer is the leading cause of cancer death worldwide and the early diagnosis of lung cancer has recently become more important. For early screening lung cancer, computed tomography (CT) has been used as a gold standard for early diagnosis of lung cancer [1]. The major advantage of CT is that it is not susceptible to the problem of misdiagnosis caused by anatomical overlapping while CT has extremely high radiation dose and cost compared to chest radiography. Chest digital tomosynthesis (CDT) is a recently introduced new modality for lung cancer screening with relatively low radiation dose compared to CT [2] and also showing high sensitivity and specificity to prevent anatomical overlapping occurred in chest radiography. Dual energy material decomposition method has been proposed for better detection of pulmonary nodules as means of reducing the anatomical noise [3]. In this study, possibility of material decomposition in CDT was tested by simulation study and actual experiment using prototype CDT. Furthermore organ absorbed dose and effective dose were compared with single energy CDT. The Gate v6 (Geant4 application for tomographic emission), and TASMIP (Tungsten anode spectral model using the interpolating polynomial) code were used for simulation study and simulated cylinder shape phantom consisted of 4 inner beads which were filled with spine, rib, muscle and lung equivalent materials. The patient dose was estimated by PCXMC 1.5 Monte Carlo simulation tool [4]. The tomosynthesis scan was performed with a linear movement and 21 projection images were obtained over 30 degree of angular range with 1.5° degree of angular interval. The proto type CDT system has same geometry with simulation study and composed of E7869X (Toshiba, Japan) x-ray tube and FDX3543RPW (Toshiba, Japan) detector. The result images showed that reconstructed with dual energy clearly visualize lung filed by removing unnecessary bony structure. Furthermore, dual energy CDT could enhance

  6. Dual-energy computed tomography in patients with cutaneous malignant melanoma: Comparison of noise-optimized and traditional virtual monoenergetic imaging.

    Science.gov (United States)

    Martin, Simon S; Wichmann, Julian L; Weyer, Hendrik; Albrecht, Moritz H; D'Angelo, Tommaso; Leithner, Doris; Lenga, Lukas; Booz, Christian; Scholtz, Jan-Erik; Bodelle, Boris; Vogl, Thomas J; Hammerstingl, Renate

    2017-10-01

    The aim of this study was to investigate the impact of noise-optimized virtual monoenergetic imaging (VMI+) reconstructions on quantitative and qualitative image parameters in patients with cutaneous malignant melanoma at thoracoabdominal dual-energy computed tomography (DECT). Seventy-six patients (48 men; 66.6±13.8years) with metastatic cutaneous malignant melanoma underwent DECT of the thorax and abdomen. Images were post-processed with standard linear blending (M_0.6), traditional virtual monoenergetic (VMI), and VMI+ technique. VMI and VMI+ images were reconstructed in 10-keV intervals from 40 to 100keV. Attenuation measurements were performed in cutaneous melanoma lesions, as well as in regional lymph node, subcutaneous and in-transit metastases to calculate objective signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. Five-point scales were used to evaluate overall image quality and lesion delineation by three radiologists with different levels of experience. Objective indices SNR and CNR were highest at 40-keV VMI+ series (5.6±2.6 and 12.4±3.4), significantly superior to all other reconstructions (all Ptraditional VMI in patients with cutaneous malignant melanoma at thoracoabdominal DECT. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Usefulness of dual energy single photon emission computed tomography with 99mTc-pyrophosphate and 201TlCl in diagnosis of acute myocardial infarction

    International Nuclear Information System (INIS)

    Shohgase, Takashi; Okita, Kohichi; Sakai, Hiroto; Fukuda, Hiroyuki; Anzai, Teisuke; Yamaguchi, Masashi; Koseki, Yukio; Tsujita, Naoyuki; Itoh, Hideki

    1990-01-01

    The dual energy single photon emission computed tomography (D-SPECT) with 99m Tc-Pyrophosphate and 201 TlCl was evaluated, using Bull's Eye Map representation in 30 patients with acute myocardial infarction. D-SPECT imaging for infarct detection was 100% sensitive. The patients were divided into two groups. One group had an overlap of accumulation of 99m Tc and 201 TlCl in the infarct zone and the other had no overlap. Fifteen of 19 patients (78.9%) in whom reperfusion was successful showed an overlap. Ten of 11 patients in whom reperfusion was unsuccessful showed no overlap. In the patients with successful reperfusion, the group that showed an overlap had a shorter interval between the onset of acute myocardial infarction and the reperfusion of coronary artery than the group that showed no overlap. But one case showed that collateral circulation had an influence on the overlap. In conclusion, using Bull's Eye Map representation, D-SPECT was useful to detect infarct and the overlap of accumulation of 99m Tc and 201 TlCl might be used as an index of early recanalization. (author)

  8. Iodine concentration calculated by dual-energy computed tomography (DECT) as a functional parameter to evaluate thyroid metabolism in patients with hyperthyroidism.

    Science.gov (United States)

    Binh, Duong Duc; Nakajima, Takahito; Otake, Hidenori; Higuchi, Tetsuya; Tsushima, Yoshito

    2017-07-19

    Thyroid function in patients with Grave's disease is usually evaluated by thyroid scintigraphy with radioactive iodine. Recently, dual-energy computed tomography (DECT) with two different energy X-rays can calculate iodine concentrations and can be applied for iodine measurements in thyroid glands. This study aimed to assess the potential use of DECT for the functional assessment of the thyroid gland. Thirteen patients with Grave's disease treated at our hospital from May to September 2015 were included in this retrospective study. Before treatments, all subjects had undergone both iodine scintigraphy [three and 24 h after oral administration of 123 I (20 μCi)] and non-enhanced DECT. The region of interests (ROIs) were placed in both lobes of the thyroid glands, and CT values (HU: Hounsfield unit) and iodine concentrations (mg/mL) calculated from DECT images were measured. The correlation between CT values and iodine concentrations from DECT in the thyroid gland was evaluated and then the iodine concentrations were compared with radioactive iodine uptake ratios by thyroid scintigraphy. Mean (±SD) 123 I uptake increased from 46.3 (±22.2) % (range, 11.1-80.1) at 3 h, to 66.5 (±15.2) % (range, 40.0-86.1) at 24 h (p hyperthyroid patients.

  9. Theoretical variance analysis of single- and dual-energy computed tomography methods for calculating proton stopping power ratios of biological tissues

    International Nuclear Information System (INIS)

    Yang, M; Zhu, X R; Mohan, R; Dong, L; Virshup, G; Clayton, J

    2010-01-01

    We discovered an empirical relationship between the logarithm of mean excitation energy (ln I m ) and the effective atomic number (EAN) of human tissues, which allows for computing patient-specific proton stopping power ratios (SPRs) using dual-energy CT (DECT) imaging. The accuracy of the DECT method was evaluated for 'standard' human tissues as well as their variance. The DECT method was compared to the existing standard clinical practice-a procedure introduced by Schneider et al at the Paul Scherrer Institute (the stoichiometric calibration method). In this simulation study, SPRs were derived from calculated CT numbers of known material compositions, rather than from measurement. For standard human tissues, both methods achieved good accuracy with the root-mean-square (RMS) error well below 1%. For human tissues with small perturbations from standard human tissue compositions, the DECT method was shown to be less sensitive than the stoichiometric calibration method. The RMS error remained below 1% for most cases using the DECT method, which implies that the DECT method might be more suitable for measuring patient-specific tissue compositions to improve the accuracy of treatment planning for charged particle therapy. In this study, the effects of CT imaging artifacts due to the beam hardening effect, scatter, noise, patient movement, etc were not analyzed. The true potential of the DECT method achieved in theoretical conditions may not be fully achievable in clinical settings. Further research and development may be needed to take advantage of the DECT method to characterize individual human tissues.

  10. A feasibility study for anatomical noise reduction in dual-energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, D.; Kim, Y.-s.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.

    2016-01-01

    Lung cancer is the leading cause of cancer death worldwide. Thus, early diagnosis is of considerable importance. For early screening of lung cancer, computed tomography (CT) has been used as the gold standard. Chest digital tomosynthesis (CDT) is a recently introduced modality for lung cancer screening with a relatively low radiation dose compared to CT. The dual energy material decomposition method has been proposed for better detection of pulmonary nodules by means of reducing anatomical noise. In this study, the possibility of material decomposition in CDT was tested by both a simulation study and an experimental study using a CDT prototype. The Geant4 application for tomographic emission (GATE) v6 and tungsten anode spectral model using interpolating polynomials (TASMIP) codes were used for the simulation study to create simulated phantom shapes consisting of five inner cylinders filled with different densities of bone and airequivalent materials. Furthermore, the CDT prototype system and human phantom chest were used for the experimental study. CDT scan in both the simulation and experimental studies was performed with linear movement and 21 projection images were obtained over a 30 degree angular range with a 1.5 degree angular interval. To obtain materialselective images, a projectionbased energy subtraction technique was applied to high and low energy images. The resultant simulation images showed that dual-energy reconstruction could achieve an approximately 32% higher contrast to noise ratio (CNR) in images and the difference in CNR value according to bone density was significant compared to single energy CDT. Additionally, image artifacts were effectively corrected in dual energy CDT simulation studies. Likewise the experimental study with dual energy produced clear images of lung fields and bone structure by removing unnecessary anatomical structures. Dual energy tomosynthesis is a new technique; therefore, there is little guidance regarding its

  11. A feasibility study for anatomical noise reduction in dual-energy chest digital tomosynthesis

    International Nuclear Information System (INIS)

    Lee, D.; Choi, S.; Kim, H.-J.; Kim, Y.-S.; Choi, S.; Lee, H.

    2016-01-01

    Lung cancer is the leading cause of cancer death worldwide. Thus, early diagnosis is of considerable importance. For early screening of lung cancer, computed tomography (CT) has been used as the gold standard. Chest digital tomosynthesis (CDT) is a recently introduced modality for lung cancer screening with a relatively low radiation dose compared to CT. The dual energy material decomposition method has been proposed for better detection of pulmonary nodules by means of reducing anatomical noise. In this study, the possibility of material decomposition in CDT was tested by both a simulation study and an experimental study using a CDT prototype. The Geant4 application for tomographic emission (GATE) v6 and tungsten anode spectral model using interpolating polynomials (TASMIP) codes were used for the simulation study to create simulated phantom shapes consisting of five inner cylinders filled with different densities of bone and airequivalent materials. Furthermore, the CDT prototype system and human phantom chest were used for the experimental study. CDT scan in both the simulation and experimental studies was performed with linear movement and 21 projection images were obtained over a 30 degree angular range with a 1.5 degree angular interval. To obtain materialselective images, a projectionbased energy subtraction technique was applied to high and low energy images. The resultant simulation images showed that dual-energy reconstruction could achieve an approximately 32% higher contrast to noise ratio (CNR) in images and the difference in CNR value according to bone density was significant compared to single energy CDT. Additionally, image artifacts were effectively corrected in dual energy CDT simulation studies. Likewise the experimental study with dual energy produced clear images of lung fields and bone structure by removing unnecessary anatomical structures. Dual energy tomosynthesis is a new technique; therefore, there is little guidance regarding its

  12. Case-control study to estimate the performance of dual-energy computed tomography for anterior cruciate ligament tears in patients with history of knee trauma

    Energy Technology Data Exchange (ETDEWEB)

    Glazebrook, Katrina N.; Leng, Shuai; Murthy, Naveen S.; Howe, B.M.; Ringler, Michael D.; McCollough, Cynthia H.; Fletcher, J.G. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Brewerton, Lee J. [Alberta Health Services South Zone, Department of Radiology, Lethbridge, Alberta (Canada); Carter, Rickey E. [Mayo Clinic, Department of Biostatistics, Rochester, MN (United States); Rhee, Peter C.; Dahm, Diane L.; Stuart, Michael J. [Mayo Clinic, Department of Orthopedics, Rochester, MN (United States)

    2014-03-15

    Computed tomography (CT) is used to assess for fracture after knee trauma, but identification of ligamentous injuries may also be beneficial. Our purpose is to assess the potential of dual-energy computed tomography (DECT) for the detection of complete anterior cruciate ligament (ACL) disruption. Sixteen patients with unilateral traumatic ACL disruption (average of 58 days following trauma) confirmed by MRI, and 11 control patients without trauma, underwent DECT of both knees. For each knee, axial, sagittal, and oblique sagittal images (with DECT bone removal, single-energy (SE) bone removal, and DECT tendon-specific color mapping) were reconstructed. Four musculoskeletal radiologists randomly evaluated the 324 DECT reconstructed series (54 knees with 6 displays) separately, to assess for ACL disruption using a five-point scale (1 = definitely not torn, to 5 = definitely torn). ROC analysis was used to compare performance across readers and displays. Sagittal oblique displays (mixed kV soft tissue, SE bone removal, and DECT bone removal) demonstrated higher areas under the curve for ACL disruption (AUC = 0.95, 0.93 and 0.95 respectively) without significant differences in performance between readers (p > 0.23). Inter-reader agreement was also better for these display methods (ICC range 0.62-0.69) compared with other techniques (ICC range 0.41-0.57). Mean sensitivity for ACL disruption was worst for DECT tendon-specific color map and axial images (24 % and 63 % respectively). DECT knee images with oblique sagittal reconstructions using either mixed kV or bone removal displays (either DECT or SE) depict ACL disruption in the subacute or chronic setting with reliable identification by musculoskeletal radiologists. (orig.)

  13. Dual energy radiography using active detector technology

    International Nuclear Information System (INIS)

    Seibert, J.A.; Poage, T.F.; Alvarez, R.E.

    1996-01-01

    A new technology has been implemented using an open-quotes active-detectorclose quotes comprised of two computed radiography (CR) imaging plates in a sandwich geometry for dual-energy radiography. This detector allows excellent energy separation, short exposure time, and high signal to noise ratio (SNR) for clinically robust open-quotes bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images with minimum patient motion. Energy separation is achieved by two separate exposures at widely different kVp's: the high energy (120 kVp + 1.5 mm Cu filter) exposure is initiated first, followed by a short burst of intense light to erase the latent image on the front plate, and then a 50 kVp (low energy) exposure. A personal computer interfaced to the x-ray generator, filter wheel, and active detector system orchestrates the acquisition sequence within a time period of 150 msec. The front and back plates are processed using a CR readout algorithm with fixed speed and wide dynamic range. open-quotes Bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images are calculated by geometric alignment of the two images and application of dual energy decomposition algorithms on a pixel by pixel basis. Resultant images of a calibration phantom demonstrate an increase of SNR 2 / dose by ∼73 times when compared to a single exposure open-quotes passive-detectorclose quotes comprised of CR imaging plates, and an ∼8 fold increase compared to a screen-film dual-energy cassette comprised of different phosphor compounds. In conclusion, dual energy imaging with open-quotes active detectorclose quotes technology is clinically feasible and can provide substantial improvements over conventional methods for dual-energy radiography

  14. Dual-energy imaging method to improve the image quality and the accuracy of dose calculation for cone-beam computed tomography.

    Science.gov (United States)

    Men, Kuo; Dai, Jianrong; Chen, Xinyuan; Li, Minghui; Zhang, Ke; Huang, Peng

    2017-04-01

    To improve the image quality and accuracy of dose calculation for cone-beam computed tomography (CT) images through implementation of a dual-energy cone-beam computed tomography method (DE-CBCT), and evaluate the improvement quantitatively. Two sets of CBCT projections were acquired using the X-ray volumetric imaging (XVI) system on a Synergy (Elekta, Stockholm, Sweden) system with 120kV (high) and 70kV (low) X-rays, respectively. Then, the electron density relative to water (relative electron density (RED)) of each voxel was calculated using a projection-based dual-energy decomposition method. As a comparison, single-energy cone-beam computed tomography (SE-CBCT) was used to calculate RED with the Hounsfield unit-RED calibration curve generated by a CIRS phantom scan with identical imaging parameters. The imaging dose was measured with a dosimetry phantom. The image quality was evaluated quantitatively using a Catphan 503 phantom with the evaluation indices of the reproducibility of the RED values, high-contrast resolution (MTF 50% ), uniformity, and signal-to-noise ratio (SNR). Dose calculation of two simulated volumetric-modulated arc therapy plans using an Eclipse treatment-planning system (Varian Medical Systems, Palo Alto, CA, USA) was performed on an Alderson Rando Head and Neck (H&N) phantom and a Pelvis phantom. Fan-beam planning CT images for the H&N and Pelvis phantom were set as the reference. A global three-dimensional gamma analysis was used to compare dose distributions with the reference. The average gamma values for targets and OAR were analyzed with paired t-tests between DE-CBCT and SE-CBCT. In two scans (H&N scan and body scan), the imaging dose of DE-CBCT increased by 1.0% and decreased by 1.3%. It had a better reproducibility of the RED values (mean bias: 0.03 and 0.07) compared with SE-CBCT (mean bias: 0.13 and 0.16). It also improved the image uniformity (57.5% and 30.1%) and SNR (9.7% and 2.3%), but did not affect the MTF 50% . Gamma

  15. Computer-assisted trauma care prototype.

    Science.gov (United States)

    Holzman, T G; Griffith, A; Hunter, W G; Allen, T; Simpson, R J

    1995-01-01

    Each year, civilian accidental injury results in 150,000 deaths and 400,000 permanent disabilities in the United States alone. The timely creation of and access to dynamically updated trauma patient information at the point of injury is critical to improving the state of care. Such information is often non-existent, incomplete, or inaccurate, resulting in less than adequate treatment by medics and the loss of precious time by medical personnel at the hospital or battalion aid station as they attempt to reassess and treat the patient. The Trauma Care Information Management System (TCIMS) is a prototype system for facilitating information flow and patient processing decisions in the difficult circumstances of civilian and military trauma care activities. The program is jointly supported by the United States Advanced Research Projects Agency (ARPA) and a consortium of universities, medical centers, and private companies. The authors' focus has been the human-computer interface for the system. We are attempting to make TCIMS powerful in the functions it delivers to its users in the field while also making it easy to understand and operate. To develop such a usable system, an approach known as user-centered design is being followed. Medical personnel themselves are collaborating with the authors in its needs analysis, design, and evaluation. Specifically, the prototype being demonstrated was designed through observation of actual civilian trauma care episodes, military trauma care exercises onboard a hospital ship, interviews with civilian and military trauma care providers, repeated evaluation of evolving prototypes by potential users, and study of the literature on trauma care and human factors engineering. This presentation at MedInfo '95 is still another avenue for soliciting guidance from medical information system experts and users. The outcome of this process is a system that provides the functions trauma care personnel desire in a manner that can be easily and

  16. Use of dual energy X-ray absorptiometry, the trabecular bone score and quantitative computed tomography in the evaluation of chronic kidney disease-mineral and bone disorders.

    Science.gov (United States)

    Pocock, Nicholas

    2017-03-01

    In subjects with chronic kidney disease (CKD) who suffer a minimal trauma fracture, the problem is to differentiate between osteoporosis and the various forms of renal bone disease associated with CKD-mineral and bone disorder. This problem is exacerbated by the fact that renal osteodystrophy may coexist with osteoporosis. The World Health Organization's bone mineral density (BMD) criteria for osteopenia ( -2.5 < T-score < -1.0) and osteoporosis (a T-score ≤ -2.5) may be used in patients with CKD stages 1-3. In CKD stages 4-5, BMD by dual-energy X-ray absorptiometry (DXA) is less predictive and may underestimate fracture risk. The development of absolute fracture risk (AFR) algorithms, such as FRAX® and the Garvan absolute fracture risk calculator, to predict risk of fracture over a given time (usually 10 years) aims to incorporate non-BMD risk factors into the clinical assessment. FRAX® has been shown to be useful to assess fracture risk in CKD but may underestimate fracture risk in advanced CKD. The trabecular bone score is a measure of grey scale homogeneity obtained from spine DXA, which correlates to trabecular microarchitecture and is an independent risk factor for fracture. Recent data demonstrate the potential utility of the trabecular bone score adjustment of AFR through the FRAX® algorithm in subjects with CKD. Parameters of bone microarchitecture using peripheral quantitative computed tomography (pQCT) or high-resolution pQCT are also able to discriminate fracture status in subjects with CKD. However, there are at present no convincing data that the addition of pQCT or high-resolution pQCT parameters to DXA BMD improves fracture discrimination. More advanced estimates of bone strength derived from measurements of micro-architecture, by QCT-derived finite element analysis may be incorporated into AFR algorithms in the future. © 2017 Asian Pacific Society of Nephrology.

  17. Computed Tomography of the Head and Neck Region for Tumor Staging-Comparison of Dual-Source, Dual-Energy and Low-Kilovolt, Single-Energy Acquisitions.

    Science.gov (United States)

    May, Matthias Stefan; Bruegel, Joscha; Brand, Michael; Wiesmueller, Marco; Krauss, Bernhard; Allmendinger, Thomas; Uder, Michael; Wuest, Wolfgang

    2017-09-01

    The aim of this study was to intra-individually compare the image quality obtained by dual-source, dual-energy (DSDE) computed tomography (CT) examinations and different virtual monoenergetic reconstructions to a low single-energy (SE) scan. Third-generation DSDE-CT was performed in 49 patients with histologically proven malignant disease of the head and neck region. Weighted average images (WAIs) and virtual monoenergetic images (VMIs) for low (40 and 60 keV) and high (120 and 190 keV) energies were reconstructed. A second scan aligned to the jaw, covering the oral cavity, was performed for every patient to reduce artifacts caused by dental hardware using a SE-CT protocol with 70-kV tube voltages and matching radiation dose settings. Objective image quality was evaluated by calculating contrast-to-noise ratios. Subjective image quality was evaluated by experienced radiologists. Highest contrast-to-noise ratios for vessel and tumor attenuation were obtained in 40-keV VMI (all P image quality was also highest for 40-keV, but differences to 60-keV VMI, WAI, and 70-kV SE were nonsignificant (all P > 0.05). High kiloelectron volt VMIs reduce metal artifacts with only limited diagnostic impact because of insufficiency in case of severe dental hardware. CTDIvol did not differ significantly between both examination protocols (DSDE: 18.6 mGy; 70-kV SE: 19.4 mGy; P = 0.10). High overall image quality for tumor delineation in head and neck imaging were obtained with 40-keV VMI. However, 70-kV SE examinations are an alternative and modified projections aligned to the jaw are recommended in case of severe artifacts caused by dental hardware.

  18. Attenuation-based kV pair selection in dual source dual energy computed tomography angiography of the chest: impact on radiation dose and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Renapurkar, Rahul D.; Azok, Joseph; Lempel, Jason; Karim, Wadih; Graham, Ruffin [Thoracic Imaging, L10, Imaging Institute, Cleveland Clinic, Cleveland, OH (United States); Primak, Andrew [Siemens Medical Solutions, Malvern, PA (United States); Tandon, Yasmeen [Case Western Reserve University-Metro Health Medical Center, Department of Radiology, Cleveland, OH (United States); Bullen, Jennifer [Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH (United States); Dong, Frank [Section of Medical Physics, Cleveland Clinic, Cleveland, OH (United States)

    2017-08-15

    The purpose of this study was to evaluate the impact of attenuation-based kilovoltage (kV) pair selection in dual source dual energy (DSDE)-pulmonary embolism (PE) protocol examinations on radiation dose savings and image quality. A prospective study was carried out on 118 patients with suspected PE. In patients in whom attenuation-based kV pair selection selected the 80/140Sn kV pair, the pre-scan 100/140Sn CTDIvol (computed tomography dose index volume) values were compared with the pre-scan 80/140Sn CTDIvol values. Subjective and objective image quality parameters were assessed. Attenuation-based kV pair selection switched to the 80/140Sn kV pair (''switched'' cohort) in 63 out of 118 patients (53%). The mean 100/140Sn pre-scan CTDIvol was 8.8 mGy, while the mean 80/140Sn pre-scan CTDIvol was 7.5 mGy. The average estimated dose reduction for the ''switched'' cohort was 1.3 mGy (95% CI 1.2, 1.4; p < 0.001), representing a 15% reduction in dose. After adjusting for patient weight, mean attenuation was significantly higher in the ''switched'' vs. ''non-switched'' cohorts in all five pulmonary arteries and in all lobes on iodine maps. This study demonstrates that attenuation-based kV pair selection in DSDE examination is feasible and can offer radiation dose reduction without compromising image quality. (orig.)

  19. Evaluation of the 3D spatial distribution of the Calcium/Phosphorus ratio in bone using computed-tomography dual-energy analysis.

    Science.gov (United States)

    Hadjipanteli, A; Kourkoumelis, N; Fromme, P; Huang, J; Speller, R D

    2016-01-01

    The Calcium/Phosphorus (Ca/P) ratio was shown to vary between healthy bones and bones with osteoporotic symptoms. The relation of the Ca/P ratio to bone quality remains under investigation. To study this relation and determine if the ratio can be used to predict bone fractures, a non-invasive 3D imaging technique is required. The first aim of this study was to test the effectiveness of a computed-tomography dual-energy analysis (CT-DEA) technique developed to assess the Ca/P ratio in bone apatite (collagen-free bone) in identifying differences between healthy and inflammation-mediated osteoporotic (IMO) bones. The second aim was to extend the above technique for its application to a more complex structure, intact bone, that could potentially lead to clinical use. For the first aim, healthy and IMO rabbit cortical bone apatite samples were assessed. For the second aim, some changes were made to the technique, which was applied to healthy and IMO intact bone samples. Statistically significant differences between healthy and IMO bone apatite were found for the bulk Ca/P ratio, low Ca/P ratio proportion and interconnected low Ca/P ratio proportion. For the intact bone samples, the bulk Ca/P ratio was found to be significantly different between healthy and IMO. Results show that the CT-DEA technique can be used to identify differences in the Ca/P ratio between healthy and osteoporotic, in both bone apatite and intact bone. With quantitative imaging becoming an increasingly important advancement in medical imaging, CT-DEA for bone decomposition could potentially have several applications. Copyright © 2015. Published by Elsevier Ltd.

  20. Evaluation of image quality and radiation dose using gold nanoparticles and other clinical contrast agents in dual-energy Computed Tomography (CT): CT abdomen phantom

    Science.gov (United States)

    Zukhi, J.; Yusob, D.; Tajuddin, A. A.; Vuanghao, L.; Zainon, R.

    2017-05-01

    The aim of this study was to evaluate the image quality and radiation dose using commercial gold nanoparticles and clinical contrast agents in dual-energy Computed Tomography (CT). Five polymethyl methacrylate (PMMA) tubes were used in this study, where four tubes were filled with different contrast agents (barium, iodine, gadolinium, and gold nanoparticles). The fifth tube was filled with water. Two optically stimulated luminescence dosimeters (OSLD) were placed in each tube to measure the radiation dose. The tubes were placed in a fabricated adult abdominal phantom of 32 cm in diameter using PMMA. The phantom was scanned using a DECT at low energy (80 kV) and high energy (140 kV) with different pitches (0.6 mm and 1.0 mm) and different slice thickness (3.0 mm and 5.0 mm). The tube current was applied automatically using automatic exposure control (AEC) and tube current modulation recommended by the manufacturer (CARE Dose 4D, Siemens, Germany). The contrast-to-noise ratio (CNR) of each contrast agent was analyzed using Weasis software. Gold nanoparticles has highest atomic number (Z = 79) than barium (Z = 56), iodine (Z = 53) and gadolinium (Z = 64). The CNR value of each contrast agent increases when the slice thickness increases. The radiation dose obtained from this study decreases when the pitch increases. The optimal imaging parameters for gold nanoparticles and other clinical contrast agents is obtained at pitch value of 1.0 mm and slice thickness of 5.0 mm. Low noise and low radiation dose obtained at these imaging parameters. The optimal imaging parameters obtained in this study can be applied in multiple contrast agents imaging.

  1. Evaluation of image quality and radiation dose using gold nanoparticles and other clinical contrast agents in dual-energy Computed Tomography (CT): CT abdomen phantom

    International Nuclear Information System (INIS)

    Zukhi, J; Yusob, D; Vuanghao, L; Zainon, R; Tajuddin, A A

    2017-01-01

    The aim of this study was to evaluate the image quality and radiation dose using commercial gold nanoparticles and clinical contrast agents in dual-energy Computed Tomography (CT). Five polymethyl methacrylate (PMMA) tubes were used in this study, where four tubes were filled with different contrast agents (barium, iodine, gadolinium, and gold nanoparticles). The fifth tube was filled with water. Two optically stimulated luminescence dosimeters (OSLD) were placed in each tube to measure the radiation dose. The tubes were placed in a fabricated adult abdominal phantom of 32 cm in diameter using PMMA. The phantom was scanned using a DECT at low energy (80 kV) and high energy (140 kV) with different pitches (0.6 mm and 1.0 mm) and different slice thickness (3.0 mm and 5.0 mm). The tube current was applied automatically using automatic exposure control (AEC) and tube current modulation recommended by the manufacturer (CARE Dose 4D, Siemens, Germany). The contrast-to-noise ratio (CNR) of each contrast agent was analyzed using Weasis software. Gold nanoparticles has highest atomic number (Z = 79) than barium (Z = 56), iodine (Z = 53) and gadolinium (Z = 64). The CNR value of each contrast agent increases when the slice thickness increases. The radiation dose obtained from this study decreases when the pitch increases. The optimal imaging parameters for gold nanoparticles and other clinical contrast agents is obtained at pitch value of 1.0 mm and slice thickness of 5.0 mm. Low noise and low radiation dose obtained at these imaging parameters. The optimal imaging parameters obtained in this study can be applied in multiple contrast agents imaging. (paper)

  2. A pilot trial on pulmonary emphysema quantification and perfusion mapping in a single-step using contrast-enhanced dual-energy computed tomography.

    Science.gov (United States)

    Lee, Choong Wook; Seo, Joon Beom; Lee, Youngjoo; Chae, Eun Jin; Kim, Namkug; Lee, Hyun Joo; Hwang, Hye Jeon; Lim, Chae-Hun

    2012-01-01

    To know whether contrast-enhanced dual-energy computed tomography angiography (DECTA) can be used for simultaneous assessment of emphysema quantification and regional perfusion evaluation. We assessed 27 patients who had pulmonary emphysema and no pulmonary embolism on visual assessment of CT images, among 584 consecutive patients who underwent DECTA for the evaluation of pulmonary embolism. Virtual noncontrast (VNC) images were generated by modifying the "Liver VNC" application in a dedicated workstation. Using in-house software, the low-attenuation area below 950HU (LAA950), the 15th percentile attenuation (15pctlVNC) and the mean lung attenuation (MeanVNC) were calculated. The "Lung PBV" application was used to assess perfusion, and the low-iodine area below 5HU (LIA5), the 15th percentile iodine (15pctlIodine), and the mean iodine value (MeanIodine) were calculated from iodine map images. The correlation between VNC parameters and pulmonary function test data (available in 22 patients) and the correlation between VNC and iodine map parameters (all included 27 patients) were assessed. Color-coded map of VNC image were compared with iodine map images for the evaluation of regional heterogeneity. We observed moderate correlations between LAA950 and predicted %FEV1 (rs = -0.47, P VNC images. We observed moderate correlations between quantitative parameters on VNC images and pulmonary function test data, and also observed moderate correlations between the severity of parenchymal destruction, as determined from VNC images, and perfusion status, as determined from iodine maps. Therefore, the contrast-enhanced DECTA can be used for the emphysema quantification and regional perfusion evaluation by using the VNC images and iodine map, simultaneously.

  3. WE-G-BRF-05: Feasibility of Markerless Motion Tracking Using Dual Energy Cone Beam Computed Tomography (DE-CBCT) Projections

    International Nuclear Information System (INIS)

    Panfil, J; Patel, R; Surucu, M; Roeske, J

    2014-01-01

    Purpose: To compare markerless template-based tracking of lung tumors using dual energy (DE) cone-beam computed tomography (CBCT) projections versus single energy (SE) CBCT projections. Methods: A RANDO chest phantom with a simulated tumor in the upper right lung was used to investigate the effectiveness of tumor tracking using DE and SE CBCT projections. Planar kV projections from CBCT acquisitions were captured at 60 kVp (4 mAs) and 120 kVp (1 mAs) using the Varian TrueBeam and non-commercial iTools Capture software. Projections were taken at approximately every 0.53° while the gantry rotated. Due to limitations of the phantom, angles for which the shoulders blocked the tumor were excluded from tracking analysis. DE images were constructed using a weighted logarithmic subtraction that removed bony anatomy while preserving soft tissue structures. The tumors were tracked separately on DE and SE (120 kVp) images using a template-based tracking algorithm. The tracking results were compared to ground truth coordinates designated by a physician. Matches with a distance of greater than 3 mm from ground truth were designated as failing to track. Results: 363 frames were analyzed. The algorithm successfully tracked the tumor on 89.8% (326/363) of DE frames compared to 54.3% (197/363) of SE frames (p<0.0001). Average distance between tracking and ground truth coordinates was 1.27 +/− 0.67 mm for DE versus 1.83+/−0.74 mm for SE (p<0.0001). Conclusion: This study demonstrates the effectiveness of markerless template-based tracking using DE CBCT. DE imaging resulted in better detectability with more accurate localization on average versus SE. Supported by a grant from Varian Medical Systems

  4. Effectiveness of Adaptive Statistical Iterative Reconstruction for 64-Slice Dual-Energy Computed Tomography Pulmonary Angiography in Patients With a Reduced Iodine Load: Comparison With Standard Computed Tomography Pulmonary Angiography.

    Science.gov (United States)

    Lee, Ji Won; Lee, Geewon; Lee, Nam Kyung; Moon, Jin Il; Ju, Yun Hye; Suh, Young Ju; Jeong, Yeon Joo

    2016-01-01

    The aim of the study was to assess the effectiveness of the adaptive statistical iterative reconstruction (ASIR) for dual-energy computed tomography pulmonary angiography (DE-CTPA) with a reduced iodine load. One hundred forty patients referred for chest CT were randomly divided into a DE-CTPA group with a reduced iodine load or a standard CTPA group. Quantitative and qualitative image qualities of virtual monochromatic spectral (VMS) images with filtered back projection (VMS-FBP) and those with 50% ASIR (VMS-ASIR) in the DE-CTPA group were compared. Image qualities of VMS-ASIR images in the DE-CTPA group and ASIR images in the standard CTPA group were also compared. All quantitative and qualitative indices, except attenuation value of pulmonary artery in the VMS-ASIR subgroup, were superior to those in the VMS-FBP subgroup (all P ASIR images were superior to those of ASIR images in the standard CTPA group (P ASIR images of the DE-CTPA group than in ASIR images of the standard CTPA group (P = 0.001). The ASIR technique tends to improve the image quality of VMS imaging. Dual-energy computed tomography pulmonary angiography with ASIR can reduce contrast medium volume and produce images of comparable quality with those of standard CTPA.

  5. Improved tissue assignment using dual-energy computed tomography in low-dose rate prostate brachytherapy for Monte Carlo dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Côté, Nicolas [Département de Physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4 (Canada); Bedwani, Stéphane [Département de Radio-Oncologie, Centre Hospitalier de l’Université de Montréal (CHUM), 1560 Rue Sherbrooke Est, Montréal, Québec H2L 4M1 (Canada); Carrier, Jean-François, E-mail: jean-francois.carrier.chum@ssss.gouv.qc.ca [Département de Physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4, Canada and Département de Radio-Oncologie, Centre Hospitalier de l’Université de Montréal (CHUM), 1560 Rue Sherbrooke Est, Montréal, Québec H2L 4M1 (Canada)

    2016-05-15

    Purpose: An improvement in tissue assignment for low-dose rate brachytherapy (LDRB) patients using more accurate Monte Carlo (MC) dose calculation was accomplished with a metallic artifact reduction (MAR) method specific to dual-energy computed tomography (DECT). Methods: The proposed MAR algorithm followed a four-step procedure. The first step involved applying a weighted blend of both DECT scans (I {sub H/L}) to generate a new image (I {sub Mix}). This action minimized Hounsfield unit (HU) variations surrounding the brachytherapy seeds. In the second step, the mean HU of the prostate in I {sub Mix} was calculated and shifted toward the mean HU of the two original DECT images (I {sub H/L}). The third step involved smoothing the newly shifted I {sub Mix} and the two original I {sub H/L}, followed by a subtraction of both, generating an image that represented the metallic artifact (I {sub A,(H/L)}) of reduced noise levels. The final step consisted of subtracting the original I {sub H/L} from the newly generated I {sub A,(H/L)} and obtaining a final image corrected for metallic artifacts. Following the completion of the algorithm, a DECT stoichiometric method was used to extract the relative electronic density (ρ{sub e}) and effective atomic number (Z {sub eff}) at each voxel of the corrected scans. Tissue assignment could then be determined with these two newly acquired physical parameters. Each voxel was assigned the tissue bearing the closest resemblance in terms of ρ{sub e} and Z {sub eff}, comparing with values from the ICRU 42 database. A MC study was then performed to compare the dosimetric impacts of alternative MAR algorithms. Results: An improvement in tissue assignment was observed with the DECT MAR algorithm, compared to the single-energy computed tomography (SECT) approach. In a phantom study, tissue misassignment was found to reach 0.05% of voxels using the DECT approach, compared with 0.40% using the SECT method. Comparison of the DECT and SECT D

  6. Pulmonary Perfusion Changes as Assessed by Contrast-Enhanced Dual-Energy Computed Tomography after Endoscopic Lung Volume Reduction by Coils.

    Science.gov (United States)

    Lador, Frédéric; Hachulla, Anne-Lise; Hohn, Olivia; Plojoux, Jérôme; Ronot, Maxime; Montet, Xavier; Soccal, Paola M

    2016-01-01

    Endoscopic lung volume reduction by coils (LVRC) is a recent treatment approach for severe emphysema. Furthermore, dual-energy computed tomography (DECT) now offers a combined assessment of lung morphology and pulmonary perfusion. The aim of our study was to assess the impact of LVRC on pulmonary perfusion with DECT. Seventeen patients (64.8 ± 6.7 years) underwent LVRC. DECT was performed prior to and after LVRC. For each patient, lung volumes and emphysema quantification were automatically calculated. Then, 6 regions of interest (ROIs) on the iodine perfusion map were drawn in the anterior, mid, and posterior right and left lungs at 4 defined levels. The ROI values were averaged to obtain lung perfusion as assessed by the lung's iodine concentration (CLung, μg·cm-3). The CLung values were normalized using the left atrial iodine concentration (CLA) to take into account differences between successive DECT scans. The 6-min walk distance (6MWD) improved significantly after the procedure (p = 0.0002). No lung volume changes were observed between successive DECT scans for any of the patients (p = 0.32), attesting the same suspended inspiration. After LVRC, the emphysema index was significantly reduced in the treated lung (p = 0.0014). Lung perfusion increased significantly adjacent to the treated areas (CLung/CLA from 3.4 ± 1.7 to 5.6 ± 2.2, p < 0.001) and in the ipsilateral untreated areas (from 4.1 ± 1.4 to 6.6 ± 1.7, p < 0.001), corresponding to a mean 65 and 61% increase in perfusion, respectively. No significant difference was observed in the contralateral upper and lower areas (from 4.4 ± 1.9 to 4.8 ± 2.1, p = 0.273, and from 4.9 ± 2.0 to 5.2 ± 1.7, p = 0.412, respectively). A significant correlation between increased 6MWD and increased perfusion was found (p = 0.0027, R2 = 0.3850). Quantitative analysis based on DECT acquisition revealed that LVRC results in a significant increase in perfusion in the coil-free areas adjacent to the treated ones, as

  7. Clinical validation of dual-source dual-energy computed tomography (DECT) for coronary and valve imaging in patients undergoing trans-catheter aortic valve implantation (TAVI).

    Science.gov (United States)

    Mahoney, R; Pavitt, C W; Gordon, D; Park, B; Rubens, M B; Nicol, E D; Padley, S P

    2014-08-01

    To assess the validity of virtual non-contrast (VNC) reconstructions for coronary artery calcium (CACS) and aortic valve calcium scoring (AVCS) in patients undergoing trans-catheter aortic valve implantation (TAVI). Twenty-three consecutive TAVI patients underwent a three-step computed tomography (CCT) acquisition: (1) traditional CACS; (2) dual-energy (DE) CT coronary angiogram (CTCA); and (3) DE whole-body angiogram. Linear regression was used to model calcium scores generated from VNC images with traditional scores to derive a conversion factor [2.2 (95% CI: 1.97-2.58)]. The effective radiation dose for the TAVI protocol was compared to a standard control group. Bland-Altman analysis and weighted k-statistic were used to assess inter-method agreement for absolute score and risk centiles. CACS and AVCS from VNC reconstructions correlated well with traditional scores (r = 0.94 and r = 0.86; both p VNC and non-contrast coronary calcium scores [mean difference -71.8 (95% limits of agreement -588.7 to 445.1)], with excellent risk stratification into risk centiles (k = 0.99). However, the agreement was weaker for the aortic valve [mean difference -210.6 (95% limits of agreement -1233.2 to 812)]. Interobserver variability was excellent for VNC CACS [mean difference of 6 (95% limits of agreement 134.1-122.1)], and AVCS [mean difference of -16.4 (95% limits of agreement 576 to -608.7)]. The effective doses for the DE TAVI protocol was 16.4% higher than standard TAVI protocol (22.7 versus 19.5 mSv, respectively) accounted for by the DE CTCA dose being 47.8% higher than that for a standard CTCA [9.9 (5.6-14.35) versus 6.7 (1.17-13.72) mSv; p VNC reconstructions. However, the dose from DE CTCA is significantly greater than the standard single-energy CTCA precluding the use of this technology in routine clinical practice. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  8. Dual-energy computed tomography to assess tumor response to hepatic radiofrequency ablation: potential diagnostic value of virtual noncontrast images and iodine maps.

    Science.gov (United States)

    Lee, Su Hyun; Lee, Jeong Min; Kim, Kyung Won; Klotz, Ernst; Kim, Se Hyung; Lee, Jae Young; Han, Joon Koo; Choi, Byung Ihn

    2011-02-01

    to determine the value of dual-energy (DE) scanning with virtual noncontrast (VNC) images and iodine maps in the evaluation of therapeutic response to radiofrequency ablation (RFA) for hepatic tumors. a total of 75 patients with hepatic tumors and who underwent DE computed tomography (CT) after RFA, were enrolled in this study. Our DE CT protocol included precontrast, arterial, and portal phase scans. VNC images and iodine maps were created from 80 to 140 kVp images during the arterial and portal phases. VNC images were then compared with true, noncontrast (TNC) images, and iodine maps were compared with linearly blended images, both qualitatively and quantitatively. For the former comparison, image quality and acceptability of the VNC images as a replacement for TNC images were both rated. The CT numbers of the hepatic parenchyma, ablation zone, and image noise were measured. For the latter comparison, lesion conspicuity of the ablation zone and the additional benefit of integrating the iodine map into the routine protocol, were assessed. Contrast-to-noise ratios (CNR) of the ablation zone-to-liver and aorta-to-liver as well as the CT number differences between the center and the periphery of the ablation zone were calculated. The image quality of the VNC images was rated as good (mean grading score, 1.88) and the level of acceptance was 90% (68/75). The mean CT numbers of the hepatic parenchyma and ablation zone did not differ significantly between the TNC and the VNC images (P > 0.05). The lesion conspicuity of the ablation zone was rated as excellent or good in 97% of the iodine map (73/75), and the additional benefits of the iodine maps were positively rated as better to the same (mean 1.5). The CNR of the aorta-to-liver parenchyma was significantly higher on the iodine map (P = 0.002), and the CT number differences between the center and the periphery of the ablation zone were significantly lower on the iodine map (P VNC images can be an alternative to TNC

  9. SU-F-207-07: Dual-Energy Computed Tomography Detection Limit of Various Radiopaque Contrast Agents That Can Be Infused Within Absorbable Inferior Vena Cava Filters

    Energy Technology Data Exchange (ETDEWEB)

    Melancon, A; Jacobsen, M; Salatan, F; Jones, A; Cody, D; Nute, J; Melancon, M [U.T.M.D Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Absorbable IVC filters are shown to be safe and efficacious in preventing pulmonary embolism. These absorbable filters disappear from the body after their required duration, alleviating costly removal procedures and downstream complications. Monitoring the positioning and integrity of absorbable devices using dual-energy computed tomography (DECT) would improve treatment efficacy. The purpose of this study is to determine the limit of detection and the energy dependence of DECT for various contrast agents that may be infused within the IVC filters including gold nanoparticles (AuNP) having diameters of 2 and 4 nm. Methods: All imaging studies were performed on a GE Discovery CT750 system in Gemstone Spectral Imaging (GSI) mode. Plastic vials containing the contrast agent solutions of water and blood were placed in a water bath, and images were acquired with the GSI-5 preset. The images were reformatted into the coronal plane and 5mm diameter ROIs were placed within each solution on a GE Advantage Workstation. Monoenergetic reconstructions were generated from 40 – 140 keV. Results: Mass attenuation (contrast per unit density) for AuNPs was greater than iron, but less than barium and iodine. Contrast was 10.2 (± 3.6) HU for 4 nm AuNP at 0.72 mg/ml and 12.1 (± 4.2) for 2 nm AuNP at 0.31 mg/ml at 70 keV suggesting reasonable chance of visualization at these concentrations for 70 keV reconstruction. The contrast as a function of CT energy is similar in both water and blood. Iodine is most dependent, followed closely by barium and iron, and trailed by a large margin by the AuNP. This was unexpected given Au’s large atomic number and the predominance of photoelectric effect at low energy. Conclusion: Infusion of IVC filters with AuNP is feasible. Discrimination of AuNP-infused IVC filters from surrounding anatomy warrants further investigation.

  10. Prototyping and Simulating Parallel, Distributed Computations with VISA

    National Research Council Canada - National Science Library

    Demeure, Isabelle M; Nutt, Gary J

    1989-01-01

    ...] to support the design, prototyping, and simulation of parallel, distributed computations. In particular, VISA is meant to guide the choice of partitioning and communication strategies for such computations, based on their performance...

  11. Dual Energy Computed Tomography to Evaluate Hepatocellular Carcinoma Treated with Transcatheter Arterial Chemo-Embolization: Comparison between the Linear Blending and Nonlinear Moidal Blending Methods

    International Nuclear Information System (INIS)

    Shin, Sang Soo; Kim, Hyeong Wook; Lee, Daun; Kang, Heoung Keun; Kim, Jin Woong; Heo, Suk Hee; Jeong, Yong Yeon; Seon, Hyun Ju

    2012-01-01

    To compare the linear blending image with the nonlinear moidal blending image using dual energy CT for the evaluation of the viable portion of hepatocellular carcinoma (HCC) after transcatheter arterial chemoembolization (TACE). One-hundred and twenty three HCC patients incompletely treated after TACE were enrolled in this study. The dual energy mode (80 kVp and Sn140 kVp) was only applied in the late arterial phase scanning. A paired t-test was used to compare the lesion-to-liver contrast-to-noise ratio (CNR) and the image noise between the two blending images. Lesion conspicuity, image sharpness, image noise and the overall image quality between the two blending images were compared using the Wilcoxon matched-pair signed-ranks test. The lesion-to-liver CNR was significantly higher on the moidal blending image (5.6 ± 3.2) than on the linear blending image (2.7 ± 1.6) (p < 0.001). The image noise was significantly lower on the moidal blending image (10.9 ± 3.5) than on the linear blending image (17.5 ± 5.5) (p < 0.001). The lesion conspicuity and overall image quality were significantly better on the moidal blending image for both reviewers (p < 0.001). However, with respect to image sharpness, the linear blending image was significantly better for both reviewers (p < 0.01). The nonlinear moidal blending image of dual energy CT showed an increased lesion-to-liver CNR, decreased noise and improved overall image quality for the evaluation of the viable portion of HCC after TACE.

  12. Synthetic CT: Simulating low dose single and dual energy protocols from a dual energy scan

    International Nuclear Information System (INIS)

    Wang, Adam S.; Pelc, Norbert J.

    2011-01-01

    decompositions. The aforementioned noise constraint also allows us to compute feasible mAs values that can be synthesized for each kVp. Results: The single energy synthesized and actual reconstructed images exhibit identical signal and noise properties at 100 kVp and at 120 kVp, and across a range of mAs values. For example, the noise in both the synthesized and actual images at 100 kVp increases by √(2) when the mAs is halved. The synthesized and actual material decompositions of a dual energy protocol show excellent agreement when the decomposition images are linearly weighted to form monoenergetic images at energies from 40 to 100 keV. For simulated single energy protocols with kVp between 80 and 140, the highest feasible mAs exceeds that of either initial scan. Conclusions: This work describes and validates the synthetic CT theory and algorithm by comparing its results to actual scans. Synthetic CT is a powerful new tool that allows users to realistically see how protocol selection affects CT images and enables radiologists to retrospectively identify the lowest dose protocol achievable that provides diagnostic quality images on real patients.

  13. Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients.

    Science.gov (United States)

    Lee, Sang Min; Seo, Joon Beom; Hwang, Hye Jeon; Kim, Namkug; Oh, Sang Young; Lee, Jae Seung; Lee, Sei Won; Oh, Yeon-Mok; Kim, Tae Hoon

    2017-07-01

    To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p emphysema. • The xenon ventilation change correlates with the parenchymal attenuation change. • The xenon ventilation change shows the difference between three lung areas. • The combination of attenuation and xenon can predict more accurate PFTs.

  14. Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients

    International Nuclear Information System (INIS)

    Lee, Sang Min; Seo, Joon Beom; Kim, Namkug; Oh, Sang Young; Hwang, Hye Jeon; Lee, Jae Seung; Lee, Sei Won; Oh, Yeon-Mok; Kim, Tae Hoon

    2017-01-01

    To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p < 0.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p < 0.01). The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema. (orig.)

  15. Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Min [University of Ulsan College of Medicine, Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Yonsei University College of Medicine, Gangnam Severance Hospital, Department of Radiology, Research Istitute of Radiological Science, Seoul (Korea, Republic of); Seo, Joon Beom; Kim, Namkug; Oh, Sang Young [University of Ulsan College of Medicine, Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Hwang, Hye Jeon [University of Ulsan College of Medicine, Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Hallym University Sacred Heart Hospital, Department of Radiology, Hallym University College of Medicine, Anyang-si, Gyeonggi-do (Korea, Republic of); Lee, Jae Seung; Lee, Sei Won; Oh, Yeon-Mok [University of Ulsan College of Medicine, Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, Seoul (Korea, Republic of); Kim, Tae Hoon [Yonsei University College of Medicine, Gangnam Severance Hospital, Department of Radiology, Research Istitute of Radiological Science, Seoul (Korea, Republic of)

    2017-07-15

    To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p < 0.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p < 0.01). The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema. (orig.)

  16. Comparison study of noise reduction algorithms in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, D.; Kim, Y.-S.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.

    2018-04-01

    Dual energy chest digital tomosynthesis (CDT) is a recently developed medical technique that takes advantage of both tomosynthesis and dual energy X-ray images. However, quantum noise, which occurs in dual energy X-ray images, strongly interferes with diagnosis in various clinical situations. Therefore, noise reduction is necessary in dual energy CDT. In this study, noise-compensating algorithms, including a simple smoothing of high-energy images (SSH) and anti-correlated noise reduction (ACNR), were evaluated in a CDT system. We used a newly developed prototype CDT system and anthropomorphic chest phantom for experimental studies. The resulting images demonstrated that dual energy CDT can selectively image anatomical structures, such as bone and soft tissue. Among the resulting images, those acquired with ACNR showed the best image quality. Both coefficient of variation and contrast to noise ratio (CNR) were the highest in ACNR among the three different dual energy techniques, and the CNR of bone was significantly improved compared to the reconstructed images acquired at a single energy. This study demonstrated the clinical value of dual energy CDT and quantitatively showed that ACNR is the most suitable among the three developed dual energy techniques, including standard log subtraction, SSH, and ACNR.

  17. Acute vertebral fracture after spinal fusion: a case report illustrating the added value of single-source dual-energy computed tomography to magnetic resonance imaging in a patient with spinal Instrumentation

    International Nuclear Information System (INIS)

    Fuchs, M.; Putzier, M.; Pumberger, M.; Hermann, K.G.; Diekhoff, T.

    2016-01-01

    Magnetic resonance imaging (MRI) is degraded by metal-implant-induced artifacts when used for the diagnostic assessment of vertebral compression fractures in patients with instrumented spinal fusion. Dual-energy computed tomography (DECT) offers a promising supplementary imaging tool in these patients. This case report describes an 85-year-old woman who presented with a suspected acute vertebral fracture after long posterior lumbar interbody fusion. This is the first report of a vertebral fracture that showed bone marrow edema on DECT; however, edema was missed by an MRI STIR sequence owing to metal artifacts. Bone marrow assessment using DECT is less susceptible to metal artifacts than MRI, resulting in improved visualization of vertebral edema in the vicinity of fused vertebral bodies. (orig.)

  18. Quantification of iron in the presence of calcium with dual-energy computed tomography (DECT) in an ex vivo porcine plaque model

    International Nuclear Information System (INIS)

    Wang Jia; Duan Xinhui; Leng Shuai; Yu Lifeng; McCollough, Cynthia H; Garg, Nitin; Liu Yu; Kantor, Birgit; Ritman, Erik L

    2011-01-01

    Iron deposits secondary to microbleeds often co-exist with calcium in coronary plaques. The purpose of this study was to quantify iron in the presence of calcium in an ex vivo porcine arterial plaque model using a clinical dual-energy CT (DECT) scanner. A material decomposition method to quantify the mass fractions of iron and calcium within a mixture using DECT was developed. Mixture solutions of known iron and calcium concentrations were prepared to calibrate and validate the DECT-based algorithm. Simulated plaques with co-existing iron and calcium were created by injecting the mixture solutions into the vessel wall of porcine carotid arteries and aortas. These vessel regions were harvested and scanned using a clinical DECT system and iron mass fraction was calculated for each sample. Iron- and calcium-specific staining was conducted on 5 µm thick histological sections of vessel samples to confirm the co-existence of iron and calcium in the simulated plaques. The proposed algorithm accurately quantified iron and calcium amounts in mixture solutions. Maps of iron mass fraction of 60 artery segments were obtained from CT images at two energies. The sensitivity for detecting the presence of iron was 83% and the specificity was 92% using a threshold at an iron mass fraction of 0.25%. Histological analysis confirmed the co-localization of iron and calcium within the simulated plaques. Iron quantification in the presence of calcium was feasible in excised arteries at an iron mass fraction of around 1.5% or higher using current clinical DECT scanners.

  19. Optimisation of window settings for traditional and noise-optimised virtual monoenergetic imaging in dual-energy computed tomography pulmonary angiography

    International Nuclear Information System (INIS)

    D'Angelo, Tommaso; ''G. Martino'' University Hospital, Messina; Bucher, Andreas M.; Lenga, Lukas; Arendt, Christophe T.; Peterke, Julia L.; Martin, Simon S.; Leithner, Doris; Vogl, Thomas J.; Wichmann, Julian L.; Caruso, Damiano; University Hospital, Latina; Mazziotti, Silvio; Blandino, Alfredo; Ascenti, Giorgio; University Hospital, Messina; Othman, Ahmed E.

    2018-01-01

    To define optimal window settings for displaying virtual monoenergetic images (VMI) of dual-energy CT pulmonary angiography (DE-CTPA). Forty-five patients who underwent clinically-indicated third-generation dual-source DE-CTPA were retrospectively evaluated. Standard linearly-blended (M 0 .6), 70-keV traditional VMI (M70), and 40-keV noise-optimised VMI (M40+) reconstructions were analysed. For M70 and M40+ datasets, the subjectively best window setting (width and level, B-W/L) was independently determined by two observers and subsequently related with pulmonary artery attenuation to calculate separate optimised values (O-W/L) using linear regression. Subjective evaluation of image quality (IQ) between W/L settings were assessed by two additional readers. Repeated measures of variance were performed to compare W/L settings and IQ indices between M 0 .6, M70, and M40+. B-W/L and O-W/L for M70 were 460/140 and 450/140, and were 1100/380 and 1070/380 for M40+, respectively, differing from standard DE-CTPA W/L settings (450/100). Highest subjective scores were observed for M40+ regarding vascular contrast, embolism demarcation, and overall IQ (all p<0.001). Application of O-W/L settings is beneficial to optimise subjective IQ of VMI reconstructions of DE-CTPA. A width slightly less than two times the pulmonary trunk attenuation and a level approximately of overall pulmonary vessel attenuation are recommended. (orig.)

  20. MO-AB-BRA-04: Correct Identification of Low-Attenuation Intracranial Hemorrhage and Calcification Using Dual-Energy Computed Tomography in a Phantom System

    Energy Technology Data Exchange (ETDEWEB)

    Nute, J; Jacobsen, M; Popnoe, D [UT MD Anderson Cancer Center, Department of Imaging Physics, Houston, TX (United States); UT Graduate School of Biomedical Sciences at Houston, Houston, TX (United States); Wei, W [UT MD Anderson Cancer Center, Department of Biostatistics, Houston, TX (United States); Baiu, C [Gammex Inc., Middleton, WI (United States); Schellingerhout, D [MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, TX (United States); Cody, D [UT MD Anderson Cancer Center, Department of Imaging Physics, Houston, TX (United States)

    2015-06-15

    Purpose: Intracranial hemorrhage and calcification with Single-Energy CT (SECT) attenuation below 100HU cannot be reliably identified using currently clinically available means. Calcification is typically benign but hemorrhage can carry a risk of intracranial bleeding and contraindicate use of anticoagulant therapies. A biologically-relevant phantom was used to investigate identification of unknown intracranial lesions using dual-energy CT (DECT) as a verification of prior lesion differentiation results. Methods: Prior phantom work investigating calcification and hemorrhage differentiation resulted in 3D-DECT raw data (water density, calcium density, 68keV) for a range of DECT protocol variations: image thicknesses (1.25, 2.5, 3.75, 5mm), CTDIvol (36.7 to 132.6mGy) and reconstruction algorithms (Soft, Standard, Detail). Acquisition-specific raw data were used to create a plane of optimal differentiation based on the geometric bisector of 3D-linear regression of the two lesion distributions. Verification hemorrhage and calcification lesions, ranging in size from 0.5 to 1.5cm, were created at varying attenuation from 50 to 100HU. Lesions were inserted into a biologically-relevant brain phantom and scanned using SECT (3.75mm images, Standard, 67mGy) and a range of DECT protocols (3.75mm images, Standard, [67, 105.6, 132.6mGy]). 3D-DECT data were collected and blinded for analysis. The 3D-DECT distribution of the lesion was then compared to the acquisition-matched geometric bisector plane and the mean lesion value’s position relative to the plane, indicating lesion identity, and the percentage of voxels on the identified side of the plane, indicating identification confidence, were derived. Results: 98% of the 120 lesions investigated were identified correctly as hemorrhage or calcification. 74% were identified with greater than 80% confidence. Increases in CTDIvol and lesion diameter were associated with increased identification confidence. Conclusion: Intracranial

  1. Measurement of bone mineral density in the tunnel regions for anterior cruciate ligament reconstruction by dual-energy X-ray absorptiometry, computed tomography scan, and the immersion technique based on Archimedes' principle.

    Science.gov (United States)

    Tie, Kai; Wang, Hua; Wang, Xin; Chen, Liaobin

    2012-10-01

    To determine, for anterior cruciate ligament (ACL) reconstruction, whether the bone mineral density (BMD) of the femoral tunnel was higher than that of the tibial tunnel, to provide objective evidence for choosing the appropriate diameter of interference screws. Two groups were enrolled. One group comprised 30 normal volunteers, and the other comprised 9 patients with ACL rupture. Dual-energy X-ray absorptiometry was used to measure the BMD of the femoral and tibial tunnel regions of the volunteers' right knees by choosing a circular area covering the screw fixation region. The knees were also scanned by spiral computed tomography (CT), and the 3-dimensional reconstruction technique was used to determine the circular sections passing through the longitudinal axis of the femoral and tibial tunnels. Grayscale CT values of the cross-sectional area were measured. Cylindrical cancellous bone blocks were removed from the femoral and tibial tunnels during the ACL reconstruction for the patients. The volumetric BMD of the bone blocks was measured using a standardized immersion technique according to Archimedes' principle. As measured by dual-energy X-ray absorptiometry, the BMD of the femoral and tibial tunnel regions was 1.162 ± 0.034 g/cm(2) and 0.814 ± 0.038 g/cm(2), respectively (P difference in both femoral and tibial tunnel regions. For ACL reconstruction, the BMD of the femoral tunnel is higher than that of the tibial tunnel. This implies that a proportionally larger-diameter interference screw should be used for fixation in the proximal tibia than that used for fixation in the distal femur. Level IV, therapeutic case series. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  2. Advanced virtual monochromatic reconstruction of dual-energy unenhanced brain computed tomography in children: comparison of image quality against standard mono-energetic images and conventional polychromatic computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Juil [Seoul National University Children' s Hospital, Department of Radiology, Seoul (Korea, Republic of); Choi, Young Hun [Seoul National University Children' s Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One [Seoul National University Children' s Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Pak, Seong Yong [Siemens Healthineers, Seoul (Korea, Republic of); Krauss, Bernhard [Siemens Healthineers, Forchheim (Germany)

    2017-11-15

    Advanced virtual monochromatic reconstruction from dual-energy brain CT has not been evaluated in children. To determine the most effective advanced virtual monochromatic imaging energy level for maximizing pediatric brain parenchymal image quality in dual-energy unenhanced brain CT and to compare this technique with conventional monochromatic reconstruction and polychromatic scanning. Using both conventional (Mono) and advanced monochromatic reconstruction (Mono+) techniques, we retrospectively reconstructed 13 virtual monochromatic imaging energy levels from 40 keV to 100 keV in 5-keV increments from dual-source, dual-energy unenhanced brain CT scans obtained in 23 children. We analyzed gray and white matter noise ratios, signal-to-noise ratios and contrast-to-noise ratio, and posterior fossa artifact. We chose the optimal mono-energetic levels and compared them with conventional CT. For Mono+maximum optima were observed at 60 keV, and minimum posterior fossa artifact at 70 keV. For Mono, optima were at 65-70 keV, with minimum posterior fossa artifact at 75 keV. Mono+ was superior to Mono and to polychromatic CT for image-quality measures. Subjective analysis rated Mono+superior to other image sets. Optimal virtual monochromatic imaging using Mono+ algorithm demonstrated better image quality for gray-white matter differentiation and reduction of the artifact in the posterior fossa. (orig.)

  3. Image fusion in dual energy computed tomography for detection of various anatomic structures - Effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Jijo, E-mail: jijopaul1980@gmail.com [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Department of Biophysics, Goethe University, Max von Laue-Str.1, 60438 Frankfurt am Main (Germany); Bauer, Ralf W. [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Maentele, Werner [Department of Biophysics, Goethe University, Max von Laue-Str.1, 60438 Frankfurt am Main (Germany); Vogl, Thomas J. [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)

    2011-11-15

    Objective: The purpose of this study was to evaluate image fusion in dual energy computed tomography for detecting various anatomic structures based on the effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality. Material and methods: Forty patients underwent a CT neck with dual energy mode (DECT under a Somatom Definition flash Dual Source CT scanner (Siemens, Forchheim, Germany)). Tube voltage: 80-kV and Sn140-kV; tube current: 110 and 290 mA s; collimation-2 x 32 x 0.6 mm. Raw data were reconstructed using a soft convolution kernel (D30f). Fused images were calculated using a spectrum of weighting factors (0.0, 0.3, 0.6 0.8 and 1.0) generating different ratios between the 80- and Sn140-kV images (e.g. factor 0.6 corresponds to 60% of their information from the 80-kV image, and 40% from the Sn140-kV image). CT values and SNRs measured in the ascending aorta, thyroid gland, fat, muscle, CSF, spinal cord, bone marrow and brain. In addition, CNR values calculated for aorta, thyroid, muscle and brain. Subjective image quality evaluated using a 5-point grading scale. Results compared using paired t-tests and nonparametric-paired Wilcoxon-Wilcox-test. Results: Statistically significant increases in mean CT values noted in anatomic structures when increasing weighting factors used (all P {<=} 0.001). For example, mean CT values derived from the contrast enhanced aorta were 149.2 {+-} 12.8 Hounsfield Units (HU), 204.8 {+-} 14.4 HU, 267.5 {+-} 18.6 HU, 311.9 {+-} 22.3 HU, 347.3 {+-} 24.7 HU, when the weighting factors 0.0, 0.3, 0.6, 0.8 and 1.0 were used. The highest SNR and CNR values were found in materials when the weighting factor 0.6 used. The difference CNR between the weighting factors 0.6 and 0.3 was statistically significant in the contrast enhanced aorta and thyroid gland (P = 0.012 and P = 0.016, respectively). Visual image assessment for image quality showed the highest score for the data reconstructed using the

  4. Image fusion in dual energy computed tomography for detection of various anatomic structures - Effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality

    International Nuclear Information System (INIS)

    Paul, Jijo; Bauer, Ralf W.; Maentele, Werner; Vogl, Thomas J.

    2011-01-01

    Objective: The purpose of this study was to evaluate image fusion in dual energy computed tomography for detecting various anatomic structures based on the effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality. Material and methods: Forty patients underwent a CT neck with dual energy mode (DECT under a Somatom Definition flash Dual Source CT scanner (Siemens, Forchheim, Germany)). Tube voltage: 80-kV and Sn140-kV; tube current: 110 and 290 mA s; collimation-2 x 32 x 0.6 mm. Raw data were reconstructed using a soft convolution kernel (D30f). Fused images were calculated using a spectrum of weighting factors (0.0, 0.3, 0.6 0.8 and 1.0) generating different ratios between the 80- and Sn140-kV images (e.g. factor 0.6 corresponds to 60% of their information from the 80-kV image, and 40% from the Sn140-kV image). CT values and SNRs measured in the ascending aorta, thyroid gland, fat, muscle, CSF, spinal cord, bone marrow and brain. In addition, CNR values calculated for aorta, thyroid, muscle and brain. Subjective image quality evaluated using a 5-point grading scale. Results compared using paired t-tests and nonparametric-paired Wilcoxon-Wilcox-test. Results: Statistically significant increases in mean CT values noted in anatomic structures when increasing weighting factors used (all P ≤ 0.001). For example, mean CT values derived from the contrast enhanced aorta were 149.2 ± 12.8 Hounsfield Units (HU), 204.8 ± 14.4 HU, 267.5 ± 18.6 HU, 311.9 ± 22.3 HU, 347.3 ± 24.7 HU, when the weighting factors 0.0, 0.3, 0.6, 0.8 and 1.0 were used. The highest SNR and CNR values were found in materials when the weighting factor 0.6 used. The difference CNR between the weighting factors 0.6 and 0.3 was statistically significant in the contrast enhanced aorta and thyroid gland (P = 0.012 and P = 0.016, respectively). Visual image assessment for image quality showed the highest score for the data reconstructed using the weighting factor 0

  5. Dual-energy contrast-enhanced spectral mammography (CESM).

    Science.gov (United States)

    Daniaux, Martin; De Zordo, Tobias; Santner, Wolfram; Amort, Birgit; Koppelstätter, Florian; Jaschke, Werner; Dromain, Clarisse; Oberaigner, Willi; Hubalek, Michael; Marth, Christian

    2015-10-01

    Dual-energy contrast-enhanced mammography is one of the latest developments in breast care. Imaging with contrast agents in breast cancer was already known from previous magnetic resonance imaging and computed tomography studies. However, high costs, limited availability-or high radiation dose-led to the development of contrast-enhanced spectral mammography (CESM). We reviewed the current literature, present our experience, discuss the advantages and drawbacks of CESM and look at the future of this innovative technique.

  6. Diagnostic performance of coronary CT angiography, stress dual-energy CT perfusion, and stress perfusion single-photon emission computed tomography for coronary artery disease: Comparison with combined invasive coronary angiography and stress perfusion cardiac MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hyun Woo; Ko, Sung Min; Hwang, Hweung Kon; So, Young; Yi, Jeong Geun [Konkuk University Medical Center, Research Institute of Biomedical Science, Konkuk University School of Medicine, Seoul (Korea, Republic of); Lee, Eun Jeong [Dept. of Nuclear Medicine, Seoul Medical Center, Seoul (Korea, Republic of)

    2017-06-15

    To investigate the diagnostic performance of coronary computed tomography angiography (CCTA), stress dual-energy computed tomography perfusion (DE-CTP), stress perfusion single-photon emission computed tomography (SPECT), and the combinations of CCTA with myocardial perfusion imaging (CCTA + DE-CTP and CCTA + SPECT) for identifying coronary artery stenosis that causes myocardial hypoperfusion. Combined invasive coronary angiography (ICA) and stress perfusion cardiac magnetic resonance (SP-CMR) imaging are used as the reference standard. We retrospectively reviewed the records of 25 patients with suspected coronary artery disease, who underwent CCTA, DE-CTP, SPECT, SP-CMR, and ICA. The reference standard was defined as ≥ 50% stenosis by ICA, with a corresponding myocardial hypoperfusion on SP-CMR. For per-vascular territory analysis, the sensitivities of CCTA, DE-CTP, SPECT, CCTA + DE-CTP, and CCTA + SPECT were 96, 96, 68, 93, and 68%, respectively, and specificities were 72, 75, 89, 85, and 94%, respectively. The areas under the receiver operating characteristic curve (AUCs) were 0.84 ± 0.05, 0.85 ± 0.05, 0.79 ± 0.06, 0.89 ± 0.04, and 0.81 ± 0.06, respectively. For per-patient analysis, the sensitivities of CCTA, DE-CTP, SPECT, CCTA + DE-CTP, and CCTA + SPECT were 100, 100, 89, 100, and 83%, respectively; the specificities were 14, 43, 57, 43, and 57%, respectively; and the AUCs were 0.57 ± 0.13, 0.71 ± 0.11, 0.73 ± 0.11, 0.71 ± 0.11, and 0.70 ± 0.11, respectively. The combination of CCTA and DE-CTP enhances specificity without a loss of sensitivity for detecting hemodynamically significant coronary artery stenosis, as defined by combined ICA and SP-CMR.

  7. A prototype computer network service for occupational therapists.

    Science.gov (United States)

    Hallberg, N; Johansson, M; Timpka, T

    1999-04-01

    Due to recent reforms, the demands on the people working in community-oriented health care service are increasing. The individual providers need professional knowledge and skills to perform their tasks quickly and safely. The individuals are also confronted with new tasks and situations of which they lack experience. At the same time, the resources for education and development are decreasing. The aim of this paper is to describe the implementation of a prototype computer network service to support occupational therapists in their daily work. A customized Quality Function Deployment (QFD) model, including participatory design elements, was used for: (a) identification of the occupational therapists' needs; and (b) for the transformation of these needs to prioritized design attributes. The main purpose of the prototype was to improve the visualization of the design attributes that were found to support the occupational therapists. An additional purpose was to be able to evaluate the design attributes and further improve them. The specific aim of this article is to describe the initial prototype with respect both to the tools and the information content.

  8. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review.

    Science.gov (United States)

    Scholz, A M; Bünger, L; Kongsro, J; Baulain, U; Mitchell, A D

    2015-07-01

    The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound - US), 'photon' radiation (X-ray-computed tomography - CT, dual-energy X-ray absorptiometry - DXA) or radio frequency waves (magnetic resonance imaging - MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach.

  9. WE-FG-207B-08: Dual-Energy CT Iodine Accuracy Across Vendors and Platforms

    International Nuclear Information System (INIS)

    Jacobsen, M; Wood, C; Cody, D

    2016-01-01

    Purpose: Although a major benefit of dual-energy CT is its quantitative capabilities, it is critical to understand how results vary by scanner manufacturer and/or model before making clinical patient management decisions. Each manufacturer utilizes a specific dual-energy CT approach; cross-calibration may be required for facilities with more than one dual-energy CT scanner type. Methods: A solid dual-energy quality control phantom (Gammex, Inc.; Appleton, WI) representing a large body cross-section containing three Iodine inserts (2mg/ml, 5mg/ml, 15 mg/ml) was scanned on these CT systems: GE HD-750 (80/140kVp), prototype GE Revolution CT with GSI (80/140kVp), Siemens Flash (80/140kVp and 100/140kVp), and Philips IQon (120kVp and 140kVp). Iodine content was measured in units of concentration (mg/ml) from a single 5mm-thick central image. Three to five acquisitions were performed on each scanner platform in order to compute standard deviation. Scan acquisitions were approximately dose-matched (∼25mGy CTDIvol) and image parameters were as consistent as possible (thickness, kernel, no noise reduction applied). Results: Iodine measurement error ranges were −0.24-0.16 mg/ml for the 2mg/ml insert (−12.0 − 8.0%), −0.28–0.26 mg/ml for the 5mg/ml insert (−5.6 − 5.2%), and −1.16−0.99 mg/ml for the 15mg/ml insert (−7.7 − 6.6%). Standard deviations ranged from 0 to 0.19 mg/ml for the repeated acquisitions from each scanner. The average iodine measurement error and standard deviation across all systems and inserts was −0.21 ± 0.48 mg/ml (−1.5 ± 6.48%). The largest absolute measurement error was found in the 15mg/ml iodine insert. Conclusion: There was generally good agreement in Iodine quantification across 3 dual-energy CT manufacturers and 4 scanner models. This was unexpected given the widely different underlying dual-energy CT mechanisms employed. Future work will include additional scanner platforms, independent verification of the Iodine

  10. Process computer system for the prototype ATR 'Fugen'

    International Nuclear Information System (INIS)

    Oteru, Shigeru

    1979-01-01

    In recent nuclear power plants, computers are regarded as one of component equipments, and data processing, plant monitoring and performance calculation tend to be carried out with one on-line computer. As plants become large and complex, and the operational conditions become strict, the system having the function of performance calculation and reflecting the results immediately to operation is introduced. In the process computer for the prototype ATR ''Fugen'', the function of prediction to simulate the state after operation before the operation accompanied by the change of reactivity in a core, such as the operation of control rods and the control of liquid poison during operation, was given in addition to the functions of data processing, plant monitoring and detailed performance calculation. Core periodic monitoring program, core operational aid program, core any time data collecting program, and core periodic data collecting program, and their application programs are explained. Core performance calculation is the calculation of thermal output distribution in the core and the various accompanying characteristics and the monitoring of thermal limiting values. The computer used is a Hitachi control computer HIDIC-500, and typewriters, a process colored display, an operating console and other peripheral equipments are connected to it. (Kako, I.)

  11. Dual-energy X-ray analysis using synchrotron computed tomography at 35 and 60 keV for the estimation of photon interaction coefficients describing attenuation and energy absorption.

    Science.gov (United States)

    Midgley, Stewart; Schleich, Nanette

    2015-05-01

    A novel method for dual-energy X-ray analysis (DEXA) is tested using measurements of the X-ray linear attenuation coefficient μ. The key is a mathematical model that describes elemental cross sections using a polynomial in atomic number. The model is combined with the mixture rule to describe μ for materials, using the same polynomial coefficients. Materials are characterized by their electron density Ne and statistical moments Rk describing their distribution of elements, analogous to the concept of effective atomic number. In an experiment with materials of known density and composition, measurements of μ are written as a system of linear simultaneous equations, which is solved for the polynomial coefficients. DEXA itself involves computed tomography (CT) scans at two energies to provide a system of non-linear simultaneous equations that are solved for Ne and the fourth statistical moment R4. Results are presented for phantoms containing dilute salt solutions and for a biological specimen. The experiment identifies 1% systematic errors in the CT measurements, arising from third-harmonic radiation, and 20-30% noise, which is reduced to 3-5% by pre-processing with the median filter and careful choice of reconstruction parameters. DEXA accuracy is quantified for the phantom as the mean absolute differences for Ne and R4: 0.8% and 1.0% for soft tissue and 1.2% and 0.8% for bone-like samples, respectively. The DEXA results for the biological specimen are combined with model coefficients obtained from the tabulations to predict μ and the mass energy absorption coefficient at energies of 10 keV to 20 MeV.

  12. Dual-energy computed tomography for the assessment of early treatment effects of regorafenib in a preclinical tumor model: comparison with dynamic contrast-enhanced CT and conventional contrast-enhanced single-energy CT

    International Nuclear Information System (INIS)

    Knobloch, Gesine; Hamm, Bernd; Jost, Gregor; Pietsch, Hubertus; Huppertz, Alexander

    2014-01-01

    The potential diagnostic value of dual-energy computed tomography (DE-CT) compared to dynamic contrast-enhanced CT (DCE-CT) and conventional contrast-enhanced CT (CE-CT) in the assessment of early regorafenib treatment effects was evaluated in a preclinical setting. A rat GS9L glioma model was examined with contrast-enhanced dynamic DE-CT measurements (80 kV/140 kV) for 4 min before and on days 1 and 4 after the start of daily regorafenib or placebo treatment. Tumour time-density curves (0-240 s, 80 kV), DE-CT (60 s) derived iodine maps and the DCE-CT (0-30 s, 80 kV) based parameters blood flow (BF), blood volume (BV) and permeability (PMB) were calculated and compared to conventional CE-CT (60 s, 80 kV). The regorafenib group showed a marked decrease in the tumour time-density curve, a significantly lower iodine concentration and a significantly lower PMB on day 1 and 4 compared to baseline, which was not observed for the placebo group. CE-CT showed a significant decrease in tumour density on day 4 but not on day 1. The DE-CT-derived iodine concentrations correlated with PMB and BV but not with BF. DE-CT allows early treatment monitoring, which correlates with DCE-CT. Superior performance was observed compared to single-energy CE-CT. circle Regorafenib treatment response was evaluated by CT in a rat tumour model. (orig.)

  13. Dual-energy computed tomography for the assessment of early treatment effects of regorafenib in a preclinical tumor model: comparison with dynamic contrast-enhanced CT and conventional contrast-enhanced single-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Knobloch, Gesine; Hamm, Bernd [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Jost, Gregor; Pietsch, Hubertus [Bayer Healthcare, MR and CT Contrast Media Research, Berlin (Germany); Huppertz, Alexander [Imaging Science Institute Charite - Siemens, Berlin (Germany)

    2014-08-15

    The potential diagnostic value of dual-energy computed tomography (DE-CT) compared to dynamic contrast-enhanced CT (DCE-CT) and conventional contrast-enhanced CT (CE-CT) in the assessment of early regorafenib treatment effects was evaluated in a preclinical setting. A rat GS9L glioma model was examined with contrast-enhanced dynamic DE-CT measurements (80 kV/140 kV) for 4 min before and on days 1 and 4 after the start of daily regorafenib or placebo treatment. Tumour time-density curves (0-240 s, 80 kV), DE-CT (60 s) derived iodine maps and the DCE-CT (0-30 s, 80 kV) based parameters blood flow (BF), blood volume (BV) and permeability (PMB) were calculated and compared to conventional CE-CT (60 s, 80 kV). The regorafenib group showed a marked decrease in the tumour time-density curve, a significantly lower iodine concentration and a significantly lower PMB on day 1 and 4 compared to baseline, which was not observed for the placebo group. CE-CT showed a significant decrease in tumour density on day 4 but not on day 1. The DE-CT-derived iodine concentrations correlated with PMB and BV but not with BF. DE-CT allows early treatment monitoring, which correlates with DCE-CT. Superior performance was observed compared to single-energy CE-CT. circle Regorafenib treatment response was evaluated by CT in a rat tumour model. (orig.)

  14. Building a Prototype of LHC Analysis Oriented Computing Centers

    Science.gov (United States)

    Bagliesi, G.; Boccali, T.; Della Ricca, G.; Donvito, G.; Paganoni, M.

    2012-12-01

    A Consortium between four LHC Computing Centers (Bari, Milano, Pisa and Trieste) has been formed in 2010 to prototype Analysis-oriented facilities for CMS data analysis, profiting from a grant from the Italian Ministry of Research. The Consortium aims to realize an ad-hoc infrastructure to ease the analysis activities on the huge data set collected at the LHC Collider. While “Tier2” Computing Centres, specialized in organized processing tasks like Monte Carlo simulation, are nowadays a well established concept, with years of running experience, site specialized towards end user chaotic analysis activities do not yet have a defacto standard implementation. In our effort, we focus on all the aspects that can make the analysis tasks easier for a physics user not expert in computing. On the storage side, we are experimenting on storage techniques allowing for remote data access and on storage optimization on the typical analysis access patterns. On the networking side, we are studying the differences between flat and tiered LAN architecture, also using virtual partitioning of the same physical networking for the different use patterns. Finally, on the user side, we are developing tools and instruments to allow for an exhaustive monitoring of their processes at the site, and for an efficient support system in case of problems. We will report about the results of the test executed on different subsystem and give a description of the layout of the infrastructure in place at the site participating to the consortium.

  15. Building a Prototype of LHC Analysis Oriented Computing Centers

    International Nuclear Information System (INIS)

    Bagliesi, G; Boccali, T; Della Ricca, G; Donvito, G; Paganoni, M

    2012-01-01

    A Consortium between four LHC Computing Centers (Bari, Milano, Pisa and Trieste) has been formed in 2010 to prototype Analysis-oriented facilities for CMS data analysis, profiting from a grant from the Italian Ministry of Research. The Consortium aims to realize an ad-hoc infrastructure to ease the analysis activities on the huge data set collected at the LHC Collider. While “Tier2” Computing Centres, specialized in organized processing tasks like Monte Carlo simulation, are nowadays a well established concept, with years of running experience, site specialized towards end user chaotic analysis activities do not yet have a defacto standard implementation. In our effort, we focus on all the aspects that can make the analysis tasks easier for a physics user not expert in computing. On the storage side, we are experimenting on storage techniques allowing for remote data access and on storage optimization on the typical analysis access patterns. On the networking side, we are studying the differences between flat and tiered LAN architecture, also using virtual partitioning of the same physical networking for the different use patterns. Finally, on the user side, we are developing tools and instruments to allow for an exhaustive monitoring of their processes at the site, and for an efficient support system in case of problems. We will report about the results of the test executed on different subsystem and give a description of the layout of the infrastructure in place at the site participating to the consortium.

  16. Computer-Aided Prototyping Systems (CAPS) within the software acquisition process: a case study

    OpenAIRE

    Ellis, Mary Kay

    1993-01-01

    Approved for public release; distribution is unlimited This thesis provides a case study which examines the benefits derived from the practice of computer-aided prototyping within the software acquisition process. An experimental prototyping systems currently in research is the Computer Aided Prototyping System (CAPS) managed under the Computer Science department of the Naval Postgraduate School, Monterey, California. This thesis determines the qualitative value which may be realized by ...

  17. Evaluation of Computer-Based Procedure System Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Johanna Oxstrand; Katya Le Blanc; Seth Hays

    2012-09-01

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE), performed in close collaboration with industry R&D programs, to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The introduction of advanced technology in existing nuclear power plants may help to manage the effects of aging systems, structures, and components. In addition, the incorporation of advanced technology in the existing LWR fleet may entice the future workforce, who will be familiar with advanced technology, to work for these utilities rather than more newly built nuclear power plants. Advantages are being sought by developing and deploying technologies that will increase safety and efficiency. One significant opportunity for existing plants to increase efficiency is to phase out the paper-based procedures (PBPs) currently used at most nuclear power plants and replace them, where feasible, with computer-based procedures (CBPs). PBPs have ensured safe operation of plants for decades, but limitations in paper-based systems do not allow them to reach the full potential for procedures to prevent human errors. The environment in a nuclear power plant is constantly changing depending on current plant status and operating mode. PBPs, which are static by nature, are being applied to a constantly changing context. This constraint often results in PBPs that are written in a manner that is intended to cover many potential operating scenarios. Hence, the procedure layout forces the operator to search through a large amount of irrelevant information to locate the pieces of information

  18. PVAL breast phantom for dual energy calcification detection

    International Nuclear Information System (INIS)

    Koukou, V; Martini, N; Velissarakos, K; Gkremos, D; Michail, C; Kandarakis, I; Fountos, G; Fountzoula, C; Bakas, A

    2015-01-01

    Microcalcifications are the main indicator for breast cancer. Dual energy imaging can enhance the detectability of calcifications by suppressing the tissue background. Two digital images are obtained using two different spectra, for the low- and high-energy respectively, and a weighted subtracted image is produced. In this study, a dual energy method for the detection of the minimum breast microcalcification thickness was developed. The used integrated prototype system consisted of a modified tungsten anode X-ray tube combined with a high resolution CMOS sensor. The breast equivalent phantom used was an elastically compressible gel of polyvinyl alcohol (PVAL). Hydroxyapatite was used to simulate microcalcifications with thicknesses ranging from 50 to 500 μm. The custom made phantom was irradiated with 40kVp and 70kVp. Tungsten (W) anode spectra filtered with 100μm Cadmium and 1000pm Copper, for the low- and high-energy, respectively. Microcalcifications with thicknesses 300μm or higher can be detected with mean glandular dose (MGD) of 1.62mGy. (paper)

  19. Decomposition recovery extension to the Computer Aided Prototyping System (CAPS) change-merge tool.

    OpenAIRE

    Keesling, William Ronald

    1997-01-01

    Approved for public release; distribution is unlimited A promising use of Computer Aided Prototyping System (CAPS) is to support concurrent design. Key to success in this context is the ability to automatically and reliably combine and integrate the prototypes produced in concurrent efforts. Thus, to be of practical use in this as well as most prototyping contexts, a CAPS tool must have a fast, automated, reliable prototype integration capability. The current CAPS Change Merge Tool is fast...

  20. A Computer-based 21st Century Prototype

    Directory of Open Access Journals (Sweden)

    Pannathon Sangarun

    2015-01-01

    Full Text Available Abstract This paper describes a prototype computer-based reading comprehension program. It begins with a short description, at a general level, of theoretical issues relating to the learning of comprehension skills in a foreign/second language learning. These issues cover such areas as personal meaning-making on the basis of individual differences and the need for individualized intervention to maximize the comprehension process. Modern technology facilitates this process and enables simultaneous support of large numbers of students. Specifically, from a learning perspective, the program focuses on students’ personal understandings while, from a reading perspective, the construction of meaning is based on an interactive model where both high-level (global, inferential structures are elicited/studied as well as low-level structures (e.g. vocabulary, grammar. These principles are strengthened with research findings from studies in awareness and language processing based on eye-movement analysis. As part of its reading comprehensions focus, the system also has a strong commitment to the development of critical thinking skills, recognized as one of the most important 21st Century skills. The program is then described in detail, including its ability to store students’ responses and to be administered through standard learning management systems. Finally, an outline of planned future developments and enhancements is presented.

  1. A New Language Design for Prototyping Numerical Computation

    Directory of Open Access Journals (Sweden)

    Thomas Derby

    1996-01-01

    Full Text Available To naturally and conveniently express numerical algorithms, considerable expressive power is needed in the languages in which they are implemented. The language Matlab is widely used by numerical analysts for this reason. Expressiveness or ease-of-use can also result in a loss of efficiency, as is the case with Matlab. In particular, because numerical analysts are highly interested in the performance of their algorithms, prototypes are still often implemented in languages such as Fortran. In this article we describe a language design that is intended to both provide expressiveness for numerical computation, and at the same time provide performance guarantees. In our language, EQ, we attempt to include both syntactic and semantic features that correspond closely to the programmer's model of the problem, including unordered equations, large-granularity state transitions, and matrix notation. The resulting language does not fit into standard language categories such as functional or imperative but has features of both paradigms. We also introduce the notion of language dependability, which is the idea that a language should guarantee that certain program transformations are performed by all implementations. We first describe the interesting features of EQ, and then present three examples of algorithms written using it. We also provide encouraging performance results from an initial implementation of our language.

  2. Acquisition and manipulation of computed tomography images of the maxillofacial region for biomedical prototyping

    International Nuclear Information System (INIS)

    Meurer, Maria Ines; Silva, Jorge Vicente Lopes da; Santa Barbara, Ailton; Nobre, Luiz Felipe; Oliveira, Marilia Gerhardt de; Silva, Daniela Nascimento

    2008-01-01

    Biomedical prototyping has resulted from a merger of rapid prototyping and imaging diagnosis technologies. However, this process is complex, considering the necessity of interaction between biomedical sciences and engineering. Good results are highly dependent on the acquisition of computed tomography images and their subsequent manipulation by means of specific software. The present study describes the experience of a multidisciplinary group of researchers in the acquisition and manipulation of computed tomography images of the maxillofacial region aiming at biomedical prototyping for surgical purposes. (author)

  3. Machine learning-based dual-energy CT parametric mapping.

    Science.gov (United States)

    Su, Kuan-Hao; Kuo, Jung-Wen; Jordan, David W; Van Hedent, Steven; Klahr, Paul; Wei, Zhouping; Al Helo, Rose; Liang, Fan; Qian, Pengjiang; Pereira, Gisele C; Rassouli, Negin; Gilkeson, Robert C; Traughber, Bryan J; Cheng, Chee-Wai; Muzic, Raymond F

    2018-05-22

    The aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Zeff), relative electron density (ρe), mean excitation energy (Ix), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes. After training and model selection steps, the machine learning predictors were used to generate parametric maps from independent phantom and patient input data. Precision and accuracy were evaluated using the ideal maps. This process was repeated for a range of exposure doses, and performance was compared to that of the clinically-used dual-energy, physics-based method which served as the reference. The machine learning methods generated more accurate and precise parametric maps than those obtained using the reference method. Their performance advantage was particularly evident when using data from the lowest exposure, one-fifth of a typical clinical abdomen CT acquisition. The RF method achieved the greatest accuracy. In comparison, the ANN method was only 1% less accurate but had much better computational efficiency than RF, being able to produce parametric maps in 15 seconds. Machine learning methods outperformed the reference method in terms of accuracy and noise tolerance when generating parametric maps, encouraging further exploration of the techniques. Among the methods we evaluated, ANN is the most suitable for clinical use due to its combination of accuracy, excellent low-noise performance, and computational efficiency. . © 2018 Institute of Physics and Engineering in

  4. Dual-energy contrast-enhanced mammography.

    Science.gov (United States)

    Travieso Aja, M M; Rodríguez Rodríguez, M; Alayón Hernández, S; Vega Benítez, V; Luzardo, O P

    2014-01-01

    The degree of vascularization in breast lesions is related to their malignancy. For this reason, functional diagnostic imaging techniques have become important in recent years. Dual-energy contrast-enhanced mammography is a new, apparently promising technique in breast cancer that provides information about the degree of vascularization of the lesion in addition to the morphological information provided by conventional mammography. This article describes the state of the art for dual-energy contrast-enhanced mammography. Based on 15 months' clinical experience, we illustrate this review with clinical cases that allow us to discuss the advantages and limitations of this technique. Copyright © 2014 SERAM. Published by Elsevier Espana. All rights reserved.

  5. Optimization of breast cancer detection in Dual Energy X-ray Mammography using a CMOS imaging detector

    International Nuclear Information System (INIS)

    Koukou, V; Martini, N; Sotiropoulou, P; Nikiforidis, G; Fountos, G; Michail, C; Kalyvas, N; Valais, I; Kandarakis, I; Bakas, A; Kounadi, E

    2015-01-01

    Dual energy mammography has the ability to improve the detection of microcalcifications leading to early diagnosis of breast cancer. In this simulation study, a prototype dual energy mammography system, using a CMOS based imaging detector with different X-ray spectra, was modeled. The device consists of a 33.91 mg/cm 2 Gd 2 O 2 S:Tb scintillator screen, placed in direct contact with the sensor, with a pixel size of 22.5 μm. Various filter materials and tube voltages of a Tungsten (W) anode for both the low and high energy were examined. The selection of the filters applied to W spectra was based on their K- edges (K-edge filtering). Hydroxyapatite (HAp) was used to simulate microcalcifications. Calcification signal-to-noise ratio (SNR tc ) was calculated for entrance surface dose within the acceptable levels of conventional mammography. Optimization was based on the maximization of SNR tc while minimizing the entrance dose. The best compromise between SNR tc value and dose was provided by a 35kVp X-ray spectrum with added beam filtration of 100μm Pd and a 70kVp Yb filtered spectrum of 800 μm for the low and high energy, respectively. Computer simulation results show that a SNR tc value of 3.6 can be achieved for a calcification size of 200 μm. Compared with previous studies, this method can improve detectability of microcalcifications

  6. Dual energy CT of the chest: how about the dose?

    Science.gov (United States)

    Schenzle, Jan C; Sommer, Wieland H; Neumaier, Klement; Michalski, Gisela; Lechel, Ursula; Nikolaou, Konstantin; Becker, Christoph R; Reiser, Maximilian F; Johnson, Thorsten R C

    2010-06-01

    New generation Dual Source computed tomography (CT) scanners offer different x-ray spectra for Dual Energy imaging. Yet, an objective, manufacturer independent verification of the dose required for the different spectral combinations is lacking. The aim of this study was to assess dose and image noise of 2 different Dual Energy CT settings with reference to a standard chest scan and to compare image noise and contrast to noise ratios (CNR). Also, exact effective dose length products (E/DLP) conversion factors were to be established based on the objectively measured dose. An anthropomorphic Alderson phantom was assembled with thermoluminescent detectors (TLD) and its chest was scanned on a Dual Source CT (Siemens Somatom Definition) in dual energy mode at 140 and 80 kVp with 14 x 1.2 mm collimation. The same was performed on another Dual Source CT (Siemens Somatom Definition Flash) at 140 kVp with 0.8 mm tin filter (Sn) and 100 kVp at 128 x 0.6 mm collimation. Reference scans were obtained at 120 kVp with 64 x 0.6 mm collimation at equivalent CT dose index of 5.4 mGy*cm. Syringes filled with water and 17.5 mg iodine/mL were scanned with the same settings. Dose was calculated from the TLD measurements and the dose length products of the scanner. Image noise was measured in the phantom scans and CNR and spectral contrast were determined in the iodine and water samples. E/DLP conversion factors were calculated as ratio between the measured dose form the TLDs and the dose length product given in the patient protocol. The effective dose measured with TLDs was 2.61, 2.69, and 2.70 mSv, respectively, for the 140/80 kVp, the 140 Sn/100 kVp, and the standard 120 kVp scans. Image noise measured in the average images of the phantom scans was 11.0, 10.7, and 9.9 HU (P > 0.05). The CNR of iodine with optimized image blending was 33.4 at 140/80 kVp, 30.7 at 140Sn/100 kVp and 14.6 at 120 kVp. E/DLP conversion factors were 0.0161 mSv/mGy*cm for the 140/80 kVp protocol, 0.0181 m

  7. Dual-energy CT can detect malignant lymph nodes in rectal cancer.

    Science.gov (United States)

    Al-Najami, I; Lahaye, M J; Beets-Tan, R G H; Baatrup, G

    2017-05-01

    There is a need for an accurate and operator independent method to assess the lymph node status to provide the most optimal personalized treatment for rectal cancer patients. This study evaluates whether Dual Energy Computed Tomography (DECT) could contribute to the preoperative lymph node assessment, and compared it to Magnetic Resonance Imaging (MRI). The objective of this prospective observational feasibility study was to determine the clinical value of the DECT for the detection of metastases in the pelvic lymph nodes of rectal cancer patients and compare the findings to MRI and histopathology. The patients were referred to total mesorectal excision (TME) without any neoadjuvant oncological treatment. After surgery the rectum specimen was scanned, and lymph nodes were matched to the pathology report. Fifty-four histology proven rectal cancer patients received a pelvic DECT scan and a standard MRI. The Dual Energy CT quantitative parameters were analyzed: Water and Iodine concentration, Dual-Energy Ratio, Dual Energy Index, and Effective Z value, for the benign and malignant lymph node differentiation. DECT scanning showed statistical difference between malignant and benign lymph nodes in the measurements of iodine concentration, Dual-Energy Ratio, Dual Energy Index, and Effective Z value. Dual energy CT classified 42% of the cases correctly according to N-stage compared to 40% for MRI. This study showed statistical difference in several quantitative parameters between benign and malignant lymph nodes. There were no difference in the accuracy of lymph node staging between DECT and MRI. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A Flexible Method for Multi-Material Decomposition of Dual-Energy CT Images.

    Science.gov (United States)

    Mendonca, Paulo R S; Lamb, Peter; Sahani, Dushyant V

    2014-01-01

    The ability of dual-energy computed-tomographic (CT) systems to determine the concentration of constituent materials in a mixture, known as material decomposition, is the basis for many of dual-energy CT's clinical applications. However, the complex composition of tissues and organs in the human body poses a challenge for many material decomposition methods, which assume the presence of only two, or at most three, materials in the mixture. We developed a flexible, model-based method that extends dual-energy CT's core material decomposition capability to handle more complex situations, in which it is necessary to disambiguate among and quantify the concentration of a larger number of materials. The proposed method, named multi-material decomposition (MMD), was used to develop two image analysis algorithms. The first was virtual unenhancement (VUE), which digitally removes the effect of contrast agents from contrast-enhanced dual-energy CT exams. VUE has the ability to reduce patient dose and improve clinical workflow, and can be used in a number of clinical applications such as CT urography and CT angiography. The second algorithm developed was liver-fat quantification (LFQ), which accurately quantifies the fat concentration in the liver from dual-energy CT exams. LFQ can form the basis of a clinical application targeting the diagnosis and treatment of fatty liver disease. Using image data collected from a cohort consisting of 50 patients and from phantoms, the application of MMD to VUE and LFQ yielded quantitatively accurate results when compared against gold standards. Furthermore, consistent results were obtained across all phases of imaging (contrast-free and contrast-enhanced). This is of particular importance since most clinical protocols for abdominal imaging with CT call for multi-phase imaging. We conclude that MMD can successfully form the basis of a number of dual-energy CT image analysis algorithms, and has the potential to improve the clinical utility

  9. Recent developments of dual-energy CT in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Simons, David; Schlemmer, Heinz-Peter [Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg (Germany); Kachelriess, Marc [Department of Medical Physics in Radiology, Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2014-04-15

    Dual-energy computed tomography (DECT) can amply contribute to support oncological imaging: the DECT technique offers promising clinical applications in oncological imaging for tumour detection and characterisation while concurrently reducing the radiation dose. Fast image acquisition at two different X-ray energies enables the determination of tissue- or material-specific features, the calculation of virtual unenhanced images and the quantification of contrast medium uptake; thus, tissue can be characterised and subsequently monitored for any changes during treatment. DECT is already widely used, but its potential in the context of oncological imaging has not been fully exploited yet. The technology is the subject of ongoing innovation and increasingly with respect to its clinical potential, particularly in oncology. This review highlights recent state-of-the-art DECT techniques with a strong emphasis on ongoing DECT developments relevant to oncologic imaging, and then focuses on clinical DECT applications, especially its prospective uses in areas of oncological imaging. circle Dual-energy CT (DECT) offers fast, robust, quantitative and functional whole-body imaging. (orig.)

  10. Residential dual energy programs: Tariffs and incentives

    International Nuclear Information System (INIS)

    Doucet, J.A.

    1992-01-01

    The problem of efficiently pricing electricity has been of concern to economists and policy makers for some time. A natural solution to variable demand is tariffs to smooth demand and reduce the need for excessive reserve margins. An alternative approach is dual energy programs whereby electric space heating systems are equipped with a secondary system (usually oil) which is used during periods of peak demand. Comments are presented on two previous papers (Bergeron and Bernard, 1991; Sollows et al., 1991) published in Energy Studies Review, applying them to Hydro Quebec tariff structure and dual energy programs. The role of tariffs in demand-side management needs to be considered more fully. Hydro-Quebec's bi-energy tariff structure could be modified by using positive incentives to make use of bi-energy attractive below -12 C to give the following benefits. The modified tariff would be easier for consumers to understand, corrects the misallocation problem due to differential pricing in the current tariff, transfers the risk related to price fluctuations of the alternative energy source from the consumer to the utility, and corrects the potential avoidance problem due to the negative incentive of the current tariff. 21 refs

  11. Dual Energy Tomosynthesis breast phantom imaging

    Science.gov (United States)

    Koukou, V.; Martini, N.; Fountos, G.; Messaris, G.; Michail, C.; Kandarakis, I.; Nikiforidis, G.

    2017-12-01

    Dual energy (DE) imaging technique has been applied to many theoretical and experimental studies. The aim of the current study is to evaluate dual energy in breast tomosynthesis using commercial tomosynthesis system in terms of its potential to better visualize microcalcifications (μCs). The system uses a tungsten target X-ray tube and a selenium direct conversion detector. Low-energy (LE) images were acquired at different tube voltages (28, 30, 32 kV), while high-energy images at 49 kV. Fifteen projections, for the low- and high-energy respectively, were acquired without grid while tube scanned continuously. Log-subtraction algorithm was used in order to obtain the DE images with the weighting factor, w, derived empirically. The subtraction was applied to each pair of LE and HE slices after reconstruction. The TORMAM phantom was imaged with the different settings. Four regions-of-interest including μCs were identified in the inhomogeneous part of the phantom. The μCs in DE images were more clearly visible compared to the low-energy images. Initial results showed that DE tomosynthesis imaging is a promising modality, however more work is required.

  12. Dual energy CT inspection of a carbon fibre reinforced plastic composite combined with metal components

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Jakůbek, J.; Kumpová, Ivana; Pichotka, M.

    6, Part B, November (2016), s. 47-55 ISSN 2214-6571 R&D Projects: GA MŠk(CZ) LO1219; GA ČR(CZ) GA15-07210S Keywords : dual energy computed tomography * carbon fibre reinforced plastic composite * metal artefact suppression Subject RIV: JI - Composite Material s http://www.sciencedirect.com/science/article/pii/S2214657116300107

  13. Uranus: a rapid prototyping tool for FPGA embedded computer vision

    Science.gov (United States)

    Rosales-Hernández, Victor; Castillo-Jimenez, Liz; Viveros-Velez, Gilberto; Zuñiga-Grajeda, Virgilio; Treviño Torres, Abel; Arias-Estrada, M.

    2007-01-01

    The starting point for all successful system development is the simulation. Performing high level simulation of a system can help to identify, insolate and fix design problems. This work presents Uranus, a software tool for simulation and evaluation of image processing algorithms with support to migrate them to an FPGA environment for algorithm acceleration and embedded processes purposes. The tool includes an integrated library of previous coded operators in software and provides the necessary support to read and display image sequences as well as video files. The user can use the previous compiled soft-operators in a high level process chain, and code his own operators. Additional to the prototyping tool, Uranus offers FPGA-based hardware architecture with the same organization as the software prototyping part. The hardware architecture contains a library of FPGA IP cores for image processing that are connected with a PowerPC based system. The Uranus environment is intended for rapid prototyping of machine vision and the migration to FPGA accelerator platform, and it is distributed for academic purposes.

  14. Ceramic Prototypes – Design, Computation, and Digital Fabrication

    Directory of Open Access Journals (Sweden)

    M. Bechthold

    2016-12-01

    Full Text Available Research in ceramic material systems at Harvard University has introduced a range of novel applications which combine digital manufacturing technologies and robotics with imaginative design and engineering methods. Prototypes showcase the new performative qualities of ceramics and the integration of this material in today’s construction culture. Work ranges from daylight control systems to structural applications and a robotic tile placement system. Emphasis is on integrating novel technologies with tried and true manufacturing methods. The paper describes two distinct studies – one on 3D print-ing of ceramics, the other on structural use of large format thin tiles.

  15. Implementation of dual energy CT scanning

    International Nuclear Information System (INIS)

    Marshall, W.; Hall, E.; Doost-Hoseini, A.; Alvarez, R.; Macovski, A.; Cassel, D.

    1984-01-01

    A prereconstruction method for dual energy (PREDECT) analysis of CT scans is described. In theory, this method can (a) eliminate beam hardening and produce an accuracy comparable with monoenergetic scans and (b) provide the effective atomic number and electron density of any voxel scanned. The implementation proves these statements and eliminates some of the objectionable noise. A phantom was constructed with a cylindrical sleeve-like compartment containing known amounts of high atomic number material simulating a removable skull. Conventional scans, with and without this beam hardener, were done of a water bath containing tubes of high electron and high atomic number material. Dual energy scans were then done for PREDECT. To increase the effective separation of the low and high energy beams by using more appropriate tube filtration, a beam filter changer was fabricated containing erbium, tungsten, aluminum, and steel. Erbium, tungsten, and steel were used at high energy and aluminum, steel, and erbium at low energy for data acquisition. The reconstructions were compared visually and numerically for noise levels with the original steel only filtration. A decrease was found in noise down to approximately one-half the prior level when erbium/aluminum or tungsten/aluminum replaced the steel/steel filter. Erbium and tungsten were equally effective. Steel/erbium and steel/aluminum also significantly reduced image noise. The noise in the photoelectric (P) and Compton (C) images is negatively correlated. At any pixel, if the noise is positive in the P image, it is most probably negative in the C. Using this fact, the noise was reduced by postreconstruction processing

  16. Comments on shielding for dual energy accelerators

    International Nuclear Information System (INIS)

    Rossi, M. C.; Lincoln, H. M.; Quarin, D. J.; Zwicker, R. D.

    2008-01-01

    Determination of shielding requirements for medical linear accelerators has been greatly facilitated by the publication of the National Council on Radiation Protection and Measurements (NCRP) latest guidelines on this subject in NCRP Report No. 151. In the present report the authors review their own recent experience with patient treatments on conventional dual energy linear accelerators to examine the various input parameters needed to follow the NCRP guidelines. Some discussion is included of workloads, occupancy, use factors, and field size, with the effects of intensity modulated radiotherapy (IMRT) treatments included. Studies of collimator settings showed average values of 13.1x16.2 cm 2 for 6 MV and 14.1x16.8 cm 2 for 18 MV conventional ports, and corresponding average unblocked areas of 228 and 254 cm 2 , respectively. With an average of 77% of the field area unblocked, this gives a mean irradiated area of 196 cm 2 for the 18 MV beam, which dominates shielding considerations for most dual energy machines. Assuming conservatively small room dimensions, a gantry bin angle of 18 deg. was found to represent a reasonable unit for tabulation of use factors. For conventional 18 MV treatments it was found that the usual treatment angles of 0, 90, 180, and 270 deg. were still favored, and use factors of 0.25 represent reasonable estimates for these beams. As expected, the IMRT fields (all at 6 MV) showed a high degree of gantry angle randomization, with no bin having a use factor in excess of 0.10. It is concluded that unless a significant number of patients are treated with high energy IMRT, the traditional use factors of 0.25 are appropriate for the dominant high energy beam

  17. Comments on shielding for dual energy accelerators.

    Science.gov (United States)

    Rossi, M C; Lincoln, H M; Quarin, D J; Zwicker, R D

    2008-06-01

    Determination of shielding requirements for medical linear accelerators has been greatly facilitated by the publication of the National Council on Radiation Protection and Measurements (NCRP) latest guidelines on this subject in NCRP Report No. 151. In the present report the authors review their own recent experience with patient treatments on conventional dual energy linear accelerators to examine the various input parameters needed to follow the NCRP guidelines. Some discussion is included of workloads, occupancy, use factors, and field size, with the effects of intensity modulated radiotherapy (IMRT) treatments included. Studies of collimator settings showed average values of 13.1 x 16.2 cm2 for 6 MV and 14.1 x 16.8 cm2 for 18 MV conventional ports, and corresponding average unblocked areas of 228 and 254 cm2, respectively. With an average of 77% of the field area unblocked, this gives a mean irradiated area of 196 cm2 for the 18 MV beam, which dominates shielding considerations for most dual energy machines. Assuming conservatively small room dimensions, a gantry bin angle of 18 degrees was found to represent a reasonable unit for tabulation of use factors. For conventional 18 MV treatments it was found that the usual treatment angles of 0, 90, 180, and 270 degrees were still favored, and use factors of 0.25 represent reasonable estimates for these beams. As expected, the IMRT fields (all at 6 MV) showed a high degree of gantry angle randomization, with no bin having a use factor in excess of 0.10. It is concluded that unless a significant number of patients are treated with high energy IMRT, the traditional use factors of 0.25 are appropriate for the dominant high energy beam.

  18. Do Gender Differences in Perceived Prototypical Computer Scientists and Engineers Contribute to Gender Gaps in Computer Science and Engineering?

    Science.gov (United States)

    Ehrlinger, Joyce; Plant, E Ashby; Hartwig, Marissa K; Vossen, Jordan J; Columb, Corey J; Brewer, Lauren E

    2018-01-01

    Women are vastly underrepresented in the fields of computer science and engineering (CS&E). We examined whether women might view the intellectual characteristics of prototypical individuals in CS&E in more stereotype-consistent ways than men might and, consequently, show less interest in CS&E. We asked 269 U.S. college students (187, 69.5% women) to describe the prototypical computer scientist (Study 1) or engineer (Study 2) through open-ended descriptions as well as through a set of trait ratings. Participants also rated themselves on the same set of traits and rated their similarity to the prototype. Finally, participants in both studies were asked to describe their likelihood of pursuing future college courses and careers in computer science (Study 1) or engineering (Study 2). Across both studies, we found that women offered more stereotype-consistent ratings than did men of the intellectual characteristics of prototypes in CS (Study 1) and engineering (Study 2). Women also perceived themselves as less similar to the prototype than men did. Further, the observed gender differences in prototype perceptions mediated the tendency for women to report lower interest in CS&E fields relative to men. Our work highlights the importance of prototype perceptions for understanding the gender gap in CS&E and suggests avenues for interventions that may increase women's representation in these vital fields.

  19. Dual energy CT: New horizon in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Goo, Jin Mo [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-08-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  20. Dual-Energy CT: New Horizon in Medical Imaging.

    Science.gov (United States)

    Goo, Hyun Woo; Goo, Jin Mo

    2017-01-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  1. Perfusion- and pattern-based quantitative CT indexes using contrast-enhanced dual-energy computed tomography in diffuse interstitial lung disease: relationships with physiologic impairment and prediction of prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jung Won [Sungkyunkwan University School of Medicine, Department of Radiology, Kangbuk Samsung Hospital, Seoul (Korea, Republic of); Bae, Jang Pyo; Kim, Namkug; Chang, Yongjun; Seo, Joon Beom [University of Ulsan College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Lee, Ho Yun; Lee, Kyung Soo [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of); Chung, Man Pyo; Park, Hye Yun [Sungkyunkwan University School of Medicine, Department of Pulmonology, Samsung Medical Center, Seoul (Korea, Republic of)

    2016-05-15

    To evaluate automated texture-based segmentation of dual-energy CT (DECT) images in diffuse interstitial lung disease (DILD) patients and prognostic stratification by overlapping morphologic and perfusion information of total lung. Suspected DILD patients scheduled for surgical biopsy were prospectively included. Texture patterns included ground-glass opacity (GGO), reticulation and consolidation. Pattern- and perfusion-based CT measurements were assessed to extract quantitative parameters. Accuracy of texture-based segmentation was analysed. Correlations between CT measurements and pulmonary function test or 6-minute walk test (6MWT) were calculated. Parameters of idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP) and non-IPF/UIP were compared. Survival analysis was performed. Overall accuracy was 90.47 % for whole lung segmentation. Correlations between mean iodine values of total lung, 50-97.5th (%) attenuation and forced vital capacity or 6MWT were significant. Volume of GGO, reticulation and consolidation had significant correlation with DLco or SpO{sub 2} on 6MWT. Significant differences were noted between IPF/UIP and non-IPF/UIP in 6MWT distance, mean iodine value of total lung, 25-75th (%) attenuation and entropy. IPF/UIP diagnosis, GGO ratio, DILD extent, 25-75th (%) attenuation and SpO{sub 2} on 6MWT showed significant correlations with survival. DECT combined with pattern analysis is useful for analysing DILD and predicting survival by provision of morphology and enhancement. (orig.)

  2. Dual-Energy CT of Rectal Cancer Specimens

    DEFF Research Database (Denmark)

    Al-Najami, Issam; Beets-Tan, Regina G H; Madsen, Gunvor

    2016-01-01

    is represented by a certain effective Z value, which allows for information on its composition. OBJECTIVE: We wanted to standardize a method for dual-energy scanning of rectal specimens to evaluate the sensitivity and specificity of benign versus malignant lymph node differentiation. Histopathological evaluation...... cancer. MAIN OUTCOME MEASURES: We measured accuracy of differentiating benign from malignant lymph nodes by investigating the following: 1) gadolinium, iodine, and water concentrations in lymph nodes; 2) dual-energy ratio; 3) dual-energy index; and 4) effective Z value. RESULTS: Optimal discriminations...... between benign and malignant lymph nodes were obtained using the following cutoff values: 1) effective Z at 7.58 (sensitivity, 100%; specificity, 90%; and accuracy, 93%), 2) dual-energy ratio at 1.0 × 10 (sensitivity, 96%; specificity, 87%; and accuracy, 90%), 3) dual-energy index at 0.03 (sensitivity, 97...

  3. Detection of occult, undisplaced hip fractures with a dual-energy CT algorithm targeted to detection of bone marrow edema.

    Science.gov (United States)

    Reddy, T; McLaughlin, P D; Mallinson, P I; Reagan, A C; Munk, P L; Nicolaou, S; Ouellette, H A

    2015-02-01

    The purpose of this study is to describe our initial clinical experience with dual-energy computed tomography (DECT) virtual non-calcium (VNC) images for the detection of bone marrow (BM) edema in patients with suspected hip fracture following trauma. Twenty-five patients presented to the emergency department at a level 1 trauma center between January 1, 2011 and January 1, 2013 with clinical suspicion of hip fracture and normal radiographs were included. All CT scans were performed on a dual-source, dual-energy CT system. VNC images were generated using prototype software and were compared to regular bone reconstructions by two musculoskeletal radiologists in consensus. Radiological and/or clinical diagnosis of fracture at 30-day follow-up was used as the reference standard. Twenty-one patients were found to have DECT-VNC signs of bone marrow edema. Eighteen of these 21 patients were true positive and three were false positive. A concordant fracture was clearly seen on bone reconstruction images in 15 of the 18 true positive cases. In three cases, DECT-VNC was positive for bone marrow edema where bone reconstruction CT images were negative. Four patients demonstrated no DECT-VNC signs of bone marrow edema: two cases were true negative, two cases were false negative. When compared with the gold standard of hip fracture determined at retrospective follow-up, the sensitivity of DECT-VNC images of the hip was 90 %, specificity was 40 %, positive predictive value was 86 %, and negative predictive value was 50 %. Our initial experience would suggest that DECT-VNC is highly sensitive but poorly specific in the diagnosis of hip fractures in patients with normal radiographs. The value of DECT-VNC primarily lies in its ability to help detect fractures which may be subtle or undetectable on bone reconstruction CT images.

  4. Dual-energy mammography: simulation studies

    International Nuclear Information System (INIS)

    Bliznakova, K; Kolitsi, Z; Pallikarakis, N

    2006-01-01

    This paper presents a mammography simulator and demonstrates its applicability in feasibility studies in dual-energy (DE) subtraction mammography. This mammography simulator is an evolution of a previously presented x-ray imaging simulation system, which has been extended with new functionalities that are specific for DE simulations. The new features include incident exposure and dose calculations, the implementation of a DE subtraction algorithm as well as amendments to the detector and source modelling. The system was then verified by simulating experiments and comparing their results against published data. The simulator was used to carry out a feasibility study of the applicability of DE techniques in mammography, and more precisely to examine whether this modality could result in better visualization and detection of microcalcifications. Investigations were carried out using a 3D breast software phantom of average thickness, monoenergetic and polyenergetic beam spectra and various detector configurations. Dual-shot techniques were simulated. Results showed the advantage of using monoenergetic in comparison with polyenergetic beams. Optimization studies with monochromatic sources were carried out to obtain the optimal low and high incident energies, based on the assessment of the figure of merit of the simulated microcalcifications in the subtracted images. The results of the simulation study with the optimal energies demonstrated that the use of the DE technique can improve visualization and increase detectability, allowing identification of microcalcifications of sizes as small as 200 μm. The quantitative results are also verified by means of a visual inspection of the synthetic images

  5. Simultaneous dual-energy X-ray stereo imaging

    Czech Academy of Sciences Publication Activity Database

    Mokso, R.; Oberta, Peter

    2015-01-01

    Roč. 22, Jul (2015), 1078-1082 ISSN 0909-0495 Institutional support: RVO:68378271 Keywords : optics * crystal * imaging * dual-energy Subject RIV: BH - Optics , Masers, Lasers Impact factor: 2.736, year: 2014

  6. Virginia Power's computer-based interactive videodisc training: a prototype for the future

    International Nuclear Information System (INIS)

    Seigler, G.G.; Adams, R.H.

    1987-01-01

    Virginia Power has developed a system and internally produced a prototype for computer-based interactive videodisc (CBIV) training. Two programs have been developed using the CBIV instructional methodology: Fire Team Retraining and General Employee Training (practical factors). In addition, the company developed a related program for conducting a videodisc tour of their nuclear power stations using a videodisc information management system (VIMS)

  7. Designing of analog computer prototype for linear differential equation. Pt. 2

    International Nuclear Information System (INIS)

    Tiyono Wijoyo.

    1978-01-01

    In this second report, the circuits of the system in the analog computer prototype have been modified and the system of the electromagnetic switches is used to replace the system of the manual switches which was used previously, so that the higher reliability could be achieved. (author)

  8. A Solar Powered Wireless Computer Mouse: Design, Assembly and Preliminary Testing of 15 Prototypes

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.; Reich, N.H.; Alsema, E.A.; Netten, M.P.; Veefkind, M.; Silvester, S.; Elzen, B.; Verwaal, M.

    2007-01-01

    The concept and design of a solar powered wireless computer mouse has been completed, and 15 prototypes have been successfully assembled. After necessary cutting, the crystalline silicon cells show satisfactory efficiency: up to 14% when implemented into the mouse device. The implemented voltage

  9. Postmortem validation of breast density using dual-energy mammography

    Energy Technology Data Exchange (ETDEWEB)

    Molloi, Sabee, E-mail: symolloi@uci.edu; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A. [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2014-08-15

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.

  10. Postmortem validation of breast density using dual-energy mammography

    International Nuclear Information System (INIS)

    Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-01-01

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer

  11. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle–Pock algorithm

    DEFF Research Database (Denmark)

    Sidky, Emil Y.; Jørgensen, Jakob Heide; Pan, Xiaochuan

    2012-01-01

    The primal–dual optimization algorithm developed in Chambolle and Pock (CP) (2011 J. Math. Imag. Vis. 40 1–26) is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems...... for the purpose of designing iterative image reconstruction algorithms for CT. The primal–dual algorithm is briefly summarized in this paper, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application...

  12. Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner

    OpenAIRE

    Kakinuma, Ryutaro; Moriyama, Noriyuki; Muramatsu, Yukio; Gomi, Shiho; Suzuki, Masahiro; Nagasawa, Hirobumi; Kusumoto, Masahiko; Aso, Tomohiko; Muramatsu, Yoshihisa; Tsuchida, Takaaki; Tsuta, Koji; Maeshima, Akiko Miyagi; Tochigi, Naobumi; Watanabe, Shun-ichi; Sugihara, Naoki

    2015-01-01

    Purpose: The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners. Materials and Methods: This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm × 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm × 16 or 0.5 mm × 64 detector-row CT scanner operating at 150 mAs. Images fr...

  13. A novel technique for presurgical nasoalveolar molding using computer-aided reverse engineering and rapid prototyping.

    Science.gov (United States)

    Yu, Quan; Gong, Xin; Wang, Guo-Min; Yu, Zhe-Yuan; Qian, Yu-Fen; Shen, Gang

    2011-01-01

    To establish a new method of presurgical nasoalveolar molding (NAM) using computer-aided reverse engineering and rapid prototyping technique in infants with unilateral cleft lip and palate (UCLP). Five infants (2 males and 3 females with mean age of 1.2 w) with complete UCLP were recruited. All patients were subjected to NAM before the cleft lip repair. The upper denture casts were recorded using a three-dimensional laser scanner within 2 weeks after birth in UCLP infants. A digital model was constructed and analyzed to simulate the NAM procedure with reverse engineering software. The digital geometrical data were exported to print the solid model with rapid prototyping system. The whole set of appliances was fabricated based on these solid models. Laser scanning and digital model construction simplified the NAM procedure and estimated the treatment objective. The appliances were fabricated based on the rapid prototyping technique, and for each patient, the complete set of appliances could be obtained at one time. By the end of presurgical NAM treatment, the cleft was narrowed, and the malformation of nasoalveolar segments was aligned normally. We have developed a novel technique of presurgical NAM based on a computer-aided design. The accurate digital denture model of UCLP infants could be obtained with laser scanning. The treatment design and appliance fabrication could be simplified with a computer-aided reverse engineering and rapid prototyping technique.

  14. Early small-bowel ischemia: dual-energy CT improves conspicuity compared with conventional CT in a swine model.

    Science.gov (United States)

    Potretzke, Theodora A; Brace, Christopher L; Lubner, Meghan G; Sampson, Lisa A; Willey, Bridgett J; Lee, Fred T

    2015-04-01

    To compare dual-energy computed tomography (CT) with conventional CT for the detection of small-bowel ischemia in an experimental animal model. The study was approved by the animal care and use committee and was performed in accordance with the Guide for Care and Use of Laboratory Animals issued by the National Research Council. Ischemic bowel segments (n = 8) were created in swine (n = 4) by means of surgical occlusion of distal mesenteric arteries and veins. Contrast material-enhanced dual-energy CT and conventional single-energy CT (120 kVp) sequences were performed during the portal venous phase with a single-source fast-switching dual-energy CT scanner. Attenuation values and contrast-to-noise ratios of ischemic and perfused segments on iodine material-density, monospectral dual-energy CT (51 keV, 65 keV, and 70 keV), and conventional 120-kVp CT images were compared. Linear mixed-effects models were used for comparisons. The attenuation difference between ischemic and perfused segments was significantly greater on dual-energy 51-keV CT images than on conventional 120-kVp CT images (mean difference, 91.7 HU vs 47.6 HU; P conventional CT by increasing attenuation differences between ischemic and perfused segments on low-kiloelectron volt and iodine material density images. © RSNA, 2014.

  15. Algorithm-enabled partial-angular-scan configurations for dual-energy CT.

    Science.gov (United States)

    Chen, Buxin; Zhang, Zheng; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan

    2018-05-01

    We seek to investigate an optimization-based one-step method for image reconstruction that explicitly compensates for nonlinear spectral response (i.e., the beam-hardening effect) in dual-energy CT, to investigate the feasibility of the one-step method for enabling two dual-energy partial-angular-scan configurations, referred to as the short- and half-scan configurations, on standard CT scanners without involving additional hardware, and to investigate the potential of the short- and half-scan configurations in reducing imaging dose and scan time in a single-kVp-switch full-scan configuration in which two full rotations are made for collection of dual-energy data. We use the one-step method to reconstruct images directly from dual-energy data through solving a nonconvex optimization program that specifies the images to be reconstructed in dual-energy CT. Dual-energy full-scan data are generated from numerical phantoms and collected from physical phantoms with the standard single-kVp-switch full-scan configuration, whereas dual-energy short- and half-scan data are extracted from the corresponding full-scan data. Besides visual inspection and profile-plot comparison, the reconstructed images are analyzed also in quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation. Following the performance of a computer-simulation study to verify that the one-step method can reconstruct numerically accurately basis and monochromatic images of numerical phantoms, we reconstruct basis and monochromatic images by using the one-step method from real data of physical phantoms collected with the full-, short-, and half-scan configurations. Subjective inspection based upon visualization and profile-plot comparison reveals that monochromatic images, which are used often in practical applications, reconstructed from the full-, short-, and half-scan data are largely visually comparable except for some

  16. Determination of liquid's molecular interference function based on X-ray diffraction and dual-energy CT in security screening

    International Nuclear Information System (INIS)

    Zhang, Li; YangDai, Tianyi

    2016-01-01

    A method for deriving the molecular interference function (MIF) of an unknown liquid for security screening is presented. Based on the effective atomic number reconstructed from dual-energy computed tomography (CT), equivalent molecular formula of the liquid is estimated. After a series of optimizations, the MIF and a new effective atomic number are finally obtained from the X-ray diffraction (XRD) profile. The proposed method generates more accurate results with less sensitivity to the noise and data deficiency of the XRD profile. - Highlights: • EDXRD combined with dual-energy CT has been utilized for deriving the molecular interference function of an unknown liquid. • The liquid's equivalent molecular formula is estimated based on the effective atomic number reconstructed from dual-energy CT. • The proposed method provides two ways to estimate the molecular interference function: the simplified way and accurate way. • A new effective atomic number of the liquid could be obtained.

  17. Dual energy x-ray microtomography for development and inspection of advanced aerospace materials

    International Nuclear Information System (INIS)

    Alvarez, R.E.; Cao, Q.

    1990-01-01

    A key step in development of advanced composite materials is to characterize their internal structure and composition in a quantitative manner. In this paper, the authors describe a technique and an instrument that allows the measurements of the interior volume of the material. It has several key advantages over conventional computed tomography. The technique quantitatively measures the mass density and effective atomic number throughout the volume. Further, these measurements are made with microscopic (20 micrometer or better) spatial resolution. The technique is based on ARACOR's Tomoscope computed tomography instrument and on dual energy computed tomography. The authors describe the theory of the technique and show experimental measurements of metal matrix composite materials

  18. Theory and applications of the dual energy technique

    International Nuclear Information System (INIS)

    Chuang, K.S.K.

    1986-01-01

    Three important principles in the dual energy technique applied to radiography are studied in this dissertation: the decomposition method, x-ray scatter consideration, and the selection of an optimal energy pair. First, two new methods namely, iso-transmission lines and sub-region direct approximation methods, are proposed for dual energy decomposition calculation. These two methods are compared with two other conventional techniques, i.e. nonlinear equations and direct approximation. The accuracy, efficiency, and smoothness are used as indices for comparison. The authors conclude that the two new proposed methods, iso-transmission lines and sub-region, are superior than the nonlinear equations and direct approximation methods. In this dissertation, a method to perform scatter correction based on the knowledge of scatter primary ratio is presented. First, the relation between scatter primary ratio and attenuation coefficient is determined by a Monte Carlo simulation. The selection of an optimal energy pair for a dual energy system is described in this dissertation. The selection is based on the calculation of an optimum factor which takes into consideration of the noise in the high and low energy images, the radiation dose to the patient, as well as the error produced during the dual energy decomposition process. The calculation of this optimum factor is obtained using monoenergetic radiation sources on various sizes of water phantom. In addition to these three aspects, this dissertation also addresses some clinical applications of the dual energy techniques and shows some of the results

  19. Dual-energy subtraction radiography of the breast

    International Nuclear Information System (INIS)

    Asaga, Taro; Masuzawa, Chihiro; Kawahara, Satoru; Motohashi, Hisahiko; Okamoto, Takashi; Tamura, Nobuo

    1988-01-01

    Dual-energy projection radiography was applied to breast examination. To perform the dual-energy subtraction radiography using a digital radiography unit, high and low-energy exposures were made at an appropriate time interval under differing X-ray exposure conditions. Dual-energy subtraction radiography was performed in 41 cancer patients in whom the tumor shadow was equivocal or the border of cancer infiltration was not clearly demonstrated by compression mammography, and 15 patients with benign diseases such as fibrocystic disease, cyst and fibroadenoma. In 21 cases out of the 41 cancer patients, the dual-energy subtraction radiography clearly visualized the malignant tumor shadows and the border of cancer infiltration and the daughter nodules by removing the shadows of normal mammary gland. On the other hand, beign diseases such as fibrocystic disease and cyst could be diagnosed as such, because the tumor shadow and the irregularly concentrated image of mammary gland disappeared by the dual-energy subtraction. These results suggest that this new technique will be useful in examination of breast masses. (author)

  20. Dual-energy subtraction radiography of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Asaga, Taro; Masuzawa, Chihiro; Kawahara, Satoru; Motohashi, Hisahiko; Okamoto, Takashi; Tamura, Nobuo

    1988-06-01

    Dual-energy projection radiography was applied to breast examination. To perform the dual-energy subtraction radiography using a digital radiography unit, high and low-energy exposures were made at an appropriate time interval under differing X-ray exposure conditions. Dual-energy subtraction radiography was performed in 41 cancer patients in whom the tumor shadow was equivocal or the border of cancer infiltration was not clearly demonstrated by compression mammography, and 15 patients with benign diseases such as fibrocystic disease, cyst and fibroadenoma. In 21 cases out of the 41 cancer patients, the dual-energy subtraction radiography clearly visualized the malignant tumor shadows and the border of cancer infiltration and the daughter nodules by removing the shadows of normal mammary gland. On the other hand, beign diseases such as fibrocystic disease and cyst could be diagnosed as such, because the tumor shadow and the irregularly concentrated image of mammary gland disappeared by the dual-energy subtraction. These results suggest that this new technique will be useful in examination of breast masses.

  1. The manual of a computer software 'FBR Plant Planning Design Prototype System'

    International Nuclear Information System (INIS)

    2003-10-01

    This is a manual of a computer software 'FBR Plant Planning Design Prototype System', which enables users to conduct case studies of deviated FBR design concepts based on 'MONJU'. The calculations simply proceed as the user clicks displayed buttons, therefore step-by-step explanation is supposed not be necessary. The following pages introduce only particular features of this software, i.e, each interactive screens, functions of buttons and consequences after clicks, and the quitting procedure. (author)

  2. Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT

    NARCIS (Netherlands)

    Pelgrim, Gert Jan; van Hamersvelt, Robbert W; Willemink, Martin J; Schmidt, Bernhard T; Flohr, Thomas; Schilham, Arnold; Milles, Julien; Oudkerk, Matthijs; Leiner, Tim; Vliegenthart, Rozemarijn

    OBJECTIVE: To determine the accuracy of iodine quantification with dual energy computed tomography (DECT) in two high-end CT systems with different spectral imaging techniques. METHODS: Five tubes with different iodine concentrations (0, 5, 10, 15, 20 mg/ml) were analysed in an anthropomorphic

  3. Optimization of dual-energy CT acquisitions for proton therapy using projection-based decomposition.

    Science.gov (United States)

    Vilches-Freixas, Gloria; Létang, Jean Michel; Ducros, Nicolas; Rit, Simon

    2017-09-01

    Dual-energy computed tomography (DECT) has been presented as a valid alternative to single-energy CT to reduce the uncertainty of the conversion of patient CT numbers to proton stopping power ratio (SPR) of tissues relative to water. The aim of this work was to optimize DECT acquisition protocols from simulations of X-ray images for the treatment planning of proton therapy using a projection-based dual-energy decomposition algorithm. We have investigated the effect of various voltages and tin filtration combinations on the SPR map accuracy and precision, and the influence of the dose allocation between the low-energy (LE) and the high-energy (HE) acquisitions. For all spectra combinations, virtual CT projections of the Gammex phantom were simulated with a realistic energy-integrating detector response model. Two situations were simulated: an ideal case without noise (infinite dose) and a realistic situation with Poisson noise corresponding to a 20 mGy total central dose. To determine the optimal dose balance, the proportion of LE-dose with respect to the total dose was varied from 10% to 90% while keeping the central dose constant, for four dual-energy spectra. SPR images were derived using a two-step projection-based decomposition approach. The ranges of 70 MeV, 90 MeV, and 100 MeV proton beams onto the adult female (AF) reference computational phantom of the ICRP were analytically determined from the reconstructed SPR maps. The energy separation between the incident spectra had a strong impact on the SPR precision. Maximizing the incident energy gap reduced image noise. However, the energy gap was not a good metric to evaluate the accuracy of the SPR. In terms of SPR accuracy, a large variability of the optimal spectra was observed when studying each phantom material separately. The SPR accuracy was almost flat in the 30-70% LE-dose range, while the precision showed a minimum slightly shifted in favor of lower LE-dose. Photon noise in the SPR images (20 mGy dose

  4. Customer loyalty program for the dual-energy clientele

    International Nuclear Information System (INIS)

    Lagace, C.

    1997-01-01

    Hydro-Quebec''s plans to provide a dual energy residential heating program, combining a main electric heating system and a fossil fuel back-up system, were described as an example of a customer loyalty program. It provides a portfolio of products and services answering to the different needs of customers. Dual-energy heating systems were first offered in Quebec as far back as the 1980s. Currently there are 115,000 Quebec households making use of this service. Some 35,000 of them have heat pumps and subscribe to Hydro-Quebec''s DT rate which is based on fuel mode usage being determined by exterior temperatures. The dual-energy system permits a peak-saving of some 600 MW, while maintaining electricity sales of 1,000 GWh in off-peak periods. Experiences with this system and some of the important lessons learned, especially in terms of consumer relations, were summarized. 2 refs., 1 tab

  5. In Vivo Differentiation of Complementary Contrast Media at Dual-Energy CT

    Science.gov (United States)

    Mongan, John; Rathnayake, Samira; Fu, Yanjun; Wang, Runtang; Jones, Ella F.; Gao, Dong-Wei

    2012-01-01

    Purpose: To evaluate the feasibility of using a commercially available clinical dual-energy computed tomographic (CT) scanner to differentiate the in vivo enhancement due to two simultaneously administered contrast media with complementary x-ray attenuation ratios. Materials and Methods: Approval from the institutional animal care and use committee was obtained, and National Institutes of Health guidelines for the care and use of laboratory animals were observed. Dual-energy CT was performed in a set of iodine and tungsten solution phantoms and in a rabbit in which iodinated intravenous and bismuth subsalicylate oral contrast media were administered. In addition, a second rabbit was studied after intravenous administration of iodinated and tungsten cluster contrast media. Images were processed to produce virtual monochromatic images that simulated the appearance of conventional single-energy scans, as well as material decomposition images that separate the attenuation due to each contrast medium. Results: Clear separation of each of the contrast media pairs was seen in the phantom and in both in vivo animal models. Separation of bowel lumen from vascular contrast medium allowed visualization of bowel wall enhancement that was obscured by intraluminal bowel contrast medium on conventional CT scans. Separation of two vascular contrast media in different vascular phases enabled acquisition of a perfectly coregistered CT angiogram and venous phase–enhanced CT scan simultaneously in a single examination. Conclusion: Commercially available clinical dual-energy CT scanners can help differentiate the enhancement of selected pairs of complementary contrast media in vivo. © RSNA, 2012 PMID:22778447

  6. Dual-energy CT for the evaluation of urinary calculi: Image interpretation, pitfalls and stone mimics

    International Nuclear Information System (INIS)

    Jepperson, M.A.; Cernigliaro, J.G.; Sella, D.; Ibrahim, E.; Thiel, D.D.; Leng, S.; Haley, W.E.

    2013-01-01

    Urolithiasis is a common disease with a reported prevalence between 4% and 20% in developed countries. Determination of urinary calculi composition is a key factor in preoperative evaluation, treatment, and stone recurrence prevention. Prior to the introduction of dual-energy computed tomography (DECT), available methods for determining urinary stone composition were only available after stone extraction, and thereby unable to aid in optimized stone management prior to intervention. DECT utilizes the attenuation difference produced by two different x-ray energy spectra to quantify urinary calculi composition as uric acid or non-uric acid (with likely further classification in the future) while still providing the information attained with a conventional CT. Knowledge of DECT imaging pitfalls and stone mimics is important, as the added benefit of dual-energy analysis is the determination of stone composition, which in turn affects all aspects of stone management. This review briefly describes DECT principles, scanner types and acquisition protocols for the evaluation of urinary calculi as they relate to imaging pitfalls (inconsistent characterization of small stones, small dual-energy field of view, and mischaracterization from surrounding material) and stone mimics (drainage devices) that may adversely impact clinical decisions. We utilize our clinical experience from scanning over 1200 patients with this new imaging technique to present clinically relevant examples of imaging pitfalls and possible mechanisms for resolution

  7. Quantification of coronary artery calcium on the basis of dual-energy coronary CT angiography.

    Science.gov (United States)

    Schwarz, Florian; Nance, John W; Ruzsics, Balazs; Bastarrika, Gorka; Sterzik, Alexander; Schoepf, U Joseph

    2012-09-01

    To evaluate the feasibility of using virtual noncontrast material-enhanced (VNC) computed tomographic (CT) series derived from dual-energy CT imaging studies for coronary artery calcium quantification. This HIPAA-compliant study was institutional review board approved; all patients provided written informed consent. Thirty-six patients prospectively underwent noncontrast-enhanced CT calcium scoring followed by coronary CT angiography performed in dual-energy mode. By using different reconstruction algorithms, three VNC series were generated and evaluated for noise and efficiency of virtual iodine removal. Two readers independently quantified calcium on VNC images and true noncontrast-enhanced conventional calcium scoring series. A leave-one-out cross validation was used to assess the accuracy of calcium score prediction from VNC series by means of linear regression. CT value histograms of the VNC series closely resembled the profile in the true noncontrast-enhanced series. There was excellent correlation between calcium volumes on the VNC series and true noncontrast-enhanced series on a per-patient (r = 0.94, P VNC series was excellent (r = 0.82). Multiethnic Study of Atherosclerosis rankings that were derived from the predicted calcium scores also showed excellent agreement (intraclass correlation coefficient = 0.909). Coronary artery calcium identification and quantification based on dual-energy coronary CT angiographic studies may obviate the need for dedicated CT calcium scoring studies. © RSNA, 2012

  8. Optimal design of detector thickness for dual-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Woon; Kim, Ho Kyung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The projection of three-dimensional (3D) human body on a two-dimensional (2D) radiograph results in the superimposition of normal tissue that can obscure abnormalities and in some common cases be misread as abnormalities. To reduce or eliminate this effect, 3D depth-discrimination techniques such as computed tomography can be used. Another method for improving conspicuity of abnormalities is an energy discrimination technique such as dual-energy imaging (DEI). The DEI discriminates, or enhances, material content (e.g. bone or soft tissue) within a 2D radiograph by combining images obtained at separte low and high energies. A commercial DEI system uses the fast kilovoltage (kVp) switching technique, which acquires low and highkVp projections in successive x-ray exposure. To obtain better quality in DE images, a large energy separation between the low and high-kVp setups is typically used for chest (e.g. 60/120 kVp). The optimal CsI thickness for dual-energy chest imaging has been theoretically investigated by evaluating prewhitening observer model detectability indexes. To evaluate the PW and PWE detectability indexes, dual-energy fluence and MTF have reviewed compared to the conventional descriptions.

  9. Quantification of breast density using dual-energy mammography with liquid phantom calibration

    International Nuclear Information System (INIS)

    Lam, Alfonso R; Ding, Huanjun; Molloi, Sabee

    2014-01-01

    Breast density is a widely recognized potential risk factor for breast cancer. However, accurate quantification of breast density is a challenging task in mammography. The current use of plastic breast-equivalent phantoms for calibration provides limited accuracy in dual-energy mammography due to the chemical composition of the phantom. We implemented a breast-equivalent liquid phantom for dual-energy calibration in order to improve the accuracy of breast density measurement. To design these phantoms, three liquid compounds were chosen: water, isopropyl alcohol, and glycerol. Chemical compositions of glandular and adipose tissues, obtained from NIST database, were used as reference materials. Dual-energy signal of the liquid phantom at different breast densities (0% to 100%) and thicknesses (1 to 8 cm) were simulated. Glandular and adipose tissue thicknesses were estimated from a higher order polynomial of the signals. Our results indicated that the linear attenuation coefficients of the breast-equivalent liquid phantoms match those of the target material. Comparison between measured and known breast density data shows a linear correlation with a slope close to 1 and a non-zero intercept of 7%, while plastic phantoms showed a slope of 0.6 and a non-zero intercept of 8%. Breast density results derived from the liquid calibration phantoms showed higher accuracy than those derived from the plastic phantoms for different breast thicknesses and various tube voltages. We performed experimental phantom studies using liquid phantoms and then compared the computed breast density with those obtained using a bovine tissue model. The experimental data and the known values were in good correlation with a slope close to 1 (∼1.1). In conclusion, our results indicate that liquid phantoms are a reliable alternative for calibration in dual-energy mammography and better reproduce the chemical properties of the target material. (paper)

  10. Virtual environment and computer-aided technologies used for system prototyping and requirements development

    Science.gov (United States)

    Logan, Cory; Maida, James; Goldsby, Michael; Clark, Jim; Wu, Liew; Prenger, Henk

    1993-01-01

    The Space Station Freedom (SSF) Data Management System (DMS) consists of distributed hardware and software which monitor and control the many onboard systems. Virtual environment and off-the-shelf computer technologies can be used at critical points in project development to aid in objectives and requirements development. Geometric models (images) coupled with off-the-shelf hardware and software technologies were used in The Space Station Mockup and Trainer Facility (SSMTF) Crew Operational Assessment Project. Rapid prototyping is shown to be a valuable tool for operational procedure and system hardware and software requirements development. The project objectives, hardware and software technologies used, data gained, current activities, future development and training objectives shall be discussed. The importance of defining prototyping objectives and staying focused while maintaining schedules are discussed along with project pitfalls.

  11. Investigational Clinical Trial of a Prototype Optoelectronic Computer-Aided Navigation Device for Dental Implant Surgery.

    Science.gov (United States)

    Jokstad, Asbjørn; Winnett, Brenton; Fava, Joseph; Powell, David; Somogyi-Ganss, Eszter

    New digital technologies enable real-time computer-aided (CA) three-dimensional (3D) guidance during dental implant surgery. The aim of this investigational clinical trial was to demonstrate the safety and effectiveness of a prototype optoelectronic CA-navigation device in comparison with the conventional approach for planning and effecting dental implant surgery. Study participants with up to four missing teeth were recruited from the pool of patients referred to the University of Toronto Graduate Prosthodontics clinic. The first 10 participants were allocated to either a conventional or a prototype device study arm in a randomized trial. The next 10 participants received implants using the prototype device. All study participants were restored with fixed dental prostheses after 3 (mandible) or 6 (maxilla) months healing, and monitored over 12 months. The primary outcome was the incidence of any surgical, biologic, or prosthetic adverse events or device-related complications. Secondary outcomes were the incidence of positioning of implants not considered suitable for straightforward prosthetic restoration (yes/no); the perception of the ease of use of the prototype device by the two oral surgeons, recorded by use of a Likert-type questionnaire; and the clinical performance of the implant and superstructure after 1 year in function. Positioning of the implants was appraised on periapical radiographs and clinical photographs by four independent blinded examiners. Peri-implant bone loss was measured on periapical radiographs by a blinded examiner. No adverse events occurred related to placing any implants. Four device-related complications led to a switch from using the prototype device to the conventional method. All implants placed by use of the prototype device were in a position considered suitable for straightforward prosthetic restoration (n = 21). The qualitative evaluation by the surgeons was generally positive, although ergonomic challenges were identified

  12. Agreement and precision of periprosthetic bone density measurements in micro-CT, single and dual energy CT.

    Science.gov (United States)

    Mussmann, Bo; Overgaard, Søren; Torfing, Trine; Traise, Peter; Gerke, Oke; Andersen, Poul Erik

    2017-07-01

    The objective of this study was to test the precision and agreement between bone mineral density measurements performed in micro CT, single and dual energy computed tomography, to determine how the keV level influences density measurements and to assess the usefulness of quantitative dual energy computed tomography as a research tool for longitudinal studies aiming to measure bone loss adjacent to total hip replacements. Samples from 10 fresh-frozen porcine femoral heads were placed in a Perspex phantom and computed tomography was performed with two acquisition modes. Bone mineral density was calculated and compared with measurements derived from micro CT. Repeated scans and dual measurements were performed in order to measure between- and within-scan precision. Mean density difference between micro CT and single energy computed tomography was 72 mg HA/cm 3 . For dual energy CT, the mean difference at 100 keV was 128 mg HA/cm 3 while the mean difference at 110-140 keV ranged from -84 to -67 mg HA/cm 3 compared with micro CT. Rescanning the samples resulted in a non-significant overall between-scan difference of 13 mg HA/cm 3 . Bland-Altman limits of agreement were wide and intraclass correlation coefficients ranged from 0.29 to 0.72, while 95% confidence intervals covered almost the full possible range. Repeating the density measurements for within-scan precision resulted in ICCs >0.99 and narrow limits of agreement. Single and dual energy quantitative CT showed excellent within-scan precision, but poor between-scan precision. No significant density differences were found in dual energy quantitative CT at keV-levels above 110 keV. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1470-1477, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Technical Note: Insertion of digital lesions in the projection domain for dual-source, dual-energy CT.

    Science.gov (United States)

    Ferrero, Andrea; Chen, Baiyu; Li, Zhoubo; Yu, Lifeng; McCollough, Cynthia

    2017-05-01

    To compare algorithms performing material decomposition and classification in dual-energy CT, it is desirable to know the ground truth of the lesion to be analyzed in real patient data. In this work, we developed and validated a framework to insert digital lesions of arbitrary chemical composition into patient projection data acquired on a dual-source, dual-energy CT system. A model that takes into account beam-hardening effects was developed to predict the CT number of objects with known chemical composition. The model utilizes information about the x-ray energy spectra, the patient/phantom attenuation, and the x-ray detector energy response. The beam-hardening model was validated on samples of iodine (I) and calcium (Ca) for a second-generation dual-source, dual-energy CT scanner for all tube potentials available and a wide range of patient sizes. The seven most prevalent mineral components of renal stones were modeled and digital stones were created with CT numbers computed for each patient/phantom size and x-ray energy spectra using the developed beam-hardening model. Each digital stone was inserted in the dual-energy projection data of a water phantom scanned on a dual-source scanner and reconstructed with the routine algorithms in use in our practice. The geometry of the forward projection for dual-energy data was validated by comparing CT number accuracy and high-contrast resolution of simulated dual-energy CT data of the ACR phantom with experimentally acquired data. The beam-hardening model and forward projection method accurately predicted the CT number of I and Ca over a wide range of tube potentials and phantom sizes. The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner, and the CT number ratios for different kidney stone types were consistent with data in the literature. A sample application of the proposed tool was also demonstrated. A framework was developed and validated

  14. Temporal subtraction of dual-energy chest radiographs

    International Nuclear Information System (INIS)

    Armato, Samuel G. III; Doshi, Devang J.; Engelmann, Roger; Caligiuri, Philip; MacMahon, Heber

    2006-01-01

    Temporal subtraction and dual-energy imaging are two enhanced radiography techniques that are receiving increased attention in chest radiography. Temporal subtraction is an image processing technique that facilitates the visualization of pathologic change across serial chest radiographic images acquired from the same patient; dual-energy imaging exploits the differential relative attenuation of x-ray photons exhibited by soft-tissue and bony structures at different x-ray energies to generate a pair of images that accentuate those structures. Although temporal subtraction images provide a powerful mechanism for enhancing visualization of subtle change, misregistration artifacts in these images can mimic or obscure abnormalities. The purpose of this study was to evaluate whether dual-energy imaging could improve the quality of temporal subtraction images. Temporal subtraction images were generated from 100 pairs of temporally sequential standard radiographic chest images and from the corresponding 100 pairs of dual-energy, soft-tissue radiographic images. The registration accuracy demonstrated in the resulting temporal subtraction images was evaluated subjectively by two radiologists. The registration accuracy of the soft-tissue-based temporal subtraction images was rated superior to that of the conventional temporal subtraction images. Registration accuracy also was evaluated objectively through an automated method, which achieved an area-under-the-ROC-curve value of 0.92 in the distinction between temporal subtraction images that demonstrated clinically acceptable and clinically unacceptable registration accuracy. By combining dual-energy soft-tissue images with temporal subtraction, misregistration artifacts can be reduced and superior image quality can be obtained

  15. Advanced virtual monoenergetic images: improving the contrast of dual-energy CT pulmonary angiography

    International Nuclear Information System (INIS)

    Meier, A.; Wurnig, M.; Desbiolles, L.; Leschka, S.; Frauenfelder, T.; Alkadhi, H.

    2015-01-01

    Aim: To investigate the value of advanced virtual monoenergetic image reconstruction (mono-plus) from dual-energy computed tomography (CT) for improving the contrast of CT pulmonary angiography (CTPA). Materials and methods: Forty consecutive patients (25 women, mean 62.5 years, range 28–87 years) underwent 192-section dual-source CTPA with dual-energy CT (90/150 SnkVp) after the administration of 60 ml contrast media (300 mg iodine/ml). Conventional virtual monochromatic images at 60 keV and 17 mono-plus image datasets from 40–190 keV (in 10 keV steps) were reconstructed. Subjective image quality (artefacts, subjective noise) was rated. Attenuation was measured in the pulmonary trunk and in the right lower lobe pulmonary artery; noise was measured in the periscapular musculature. The signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were calculated for each patient and dataset. Comparisons between monochromatic images and mono-plus images were performed by repeated measures analysis of variance (ANOVA) with post-hoc Bonferroni correction. Results: Interreader agreement was good to excellent for subjective image quality (ICC: 0.616–0.889). As compared to conventional 60 keV images, artefacts occurred less (p=0.001) and subjective noise was rated lower (p<0.001) in mono-plus 40 keV images. Noise was lower (p<0.001), and the SNR and CNR in the pulmonary trunk and right lower lobe pulmonary artery were higher (both, p<0.001) in mono-plus 40 keV images compared to conventional monoenergetic 60 keV images. Transient interruption of contrast (TIC) was found in 14/40 (35%) of patients, with subjective contrast being similar 8/40 (20%) or higher 32/40 (80%) in mono-plus 40 keV as compared to conventional monoenergetic 60 keV images. Conclusions: Compared to conventional virtual monoenergetic imaging, mono-plus images at 40 keV improve the contrast of dual-energy CTPA. - Highlights: • Advanced monoenergetic image reconstruction from dual-energy CT

  16. Initial results from a prototype whole-body photon-counting computed tomography system.

    Science.gov (United States)

    Yu, Z; Leng, S; Jorgensen, S M; Li, Z; Gutjahr, R; Chen, B; Duan, X; Halaweish, A F; Yu, L; Ritman, E L; McCollough, C H

    X-ray computed tomography (CT) with energy-discriminating capabilities presents exciting opportunities for increased dose efficiency and improved material decomposition analyses. However, due to constraints imposed by the inability of photon-counting detectors (PCD) to respond accurately at high photon flux, to date there has been no clinical application of PCD-CT. Recently, our lab installed a research prototype system consisting of two x-ray sources and two corresponding detectors, one using an energy-integrating detector (EID) and the other using a PCD. In this work, we report the first third-party evaluation of this prototype CT system using both phantoms and a cadaver head. The phantom studies demonstrated several promising characteristics of the PCD sub-system, including improved longitudinal spatial resolution and reduced beam hardening artifacts, relative to the EID sub-system. More importantly, we found that the PCD sub-system offers excellent pulse pileup control in cases of x-ray flux up to 550 mA at 140 kV, which corresponds to approximately 2.5×10 11 photons per cm 2 per second. In an anthropomorphic phantom and a cadaver head, the PCD sub-system provided image quality comparable to the EID sub-system for the same dose level. Our results demonstrate the potential of the prototype system to produce clinically-acceptable images in vivo .

  17. Visual interaction: models, systems, prototypes. The Pictorial Computing Laboratory at the University of Rome La Sapienza.

    Science.gov (United States)

    Bottoni, Paolo; Cinque, Luigi; De Marsico, Maria; Levialdi, Stefano; Panizzi, Emanuele

    2006-06-01

    This paper reports on the research activities performed by the Pictorial Computing Laboratory at the University of Rome, La Sapienza, during the last 5 years. Such work, essentially is based on the study of humancomputer interaction, spans from metamodels of interaction down to prototypes of interactive systems for both synchronous multimedia communication and groupwork, annotation systems for web pages, also encompassing theoretical and practical issues of visual languages and environments also including pattern recognition algorithms. Some applications are also considered like e-learning and collaborative work.

  18. Computer system for the beam line data processing at JT-60 prototype neutral beam injector

    International Nuclear Information System (INIS)

    Horiike, Hiroshi; Kawai, Mikito; Ohara, Yoshihiro

    1987-08-01

    The present report describes the hard and soft wares of the data acquisition computer system for the prototype neutral injector unit for JT-60. In order to operate the unit, more than hundreds of signals of the beam line components have to be measured. These are mainly differential thermometers for the coolant waters and thermocouples for the beam dump components but not include those for the cryo system. Since the unit operates in a series of pulses, the measurement should be conducted very quickly in order to ensure the simultaneity of large number of the measured data. The present system actualize fast data acquisition using a small computer of 128 kB and measuring instruments connected through the bus. The system is connected to the JAERI computer center since the data capacity is fairly large to completely process them by the small computer. Therefore the measured data can be transferred to the computer center to calculate there, and the results can be received. After the system was completed the computer quickly print out the power flow data, which needed much work to calculate with hands. This system was very useful. It enhanced the experiments at the unit and reduced the labor. It enables us to early demonstrate the rated operation of the unit and to accurately estimate such operation data of the JT-60 NBI as the injection power. (author)

  19. Dual energy CT iodine map for delineating inflammation of inflammatory arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Takeshi; Fukuda, Kunihiko [The Jikei University School of Medicine, Department of Radiology, Tokyo (Japan); Umezawa, Yoshinori; Asahina, Akihiko; Nakagawa, Hidemi [The Jikei University School of Medicine, Department of Dermatology, Tokyo (Japan); Furuya, Kazuhiro [The Jikei University School of Medicine, Division of Rheumatology Department of Internal Medicine, Tokyo (Japan)

    2017-12-15

    Iodine mapping is an image-processing technique used with dual-energy computed tomography (DECT) to improve iodine contrast resolution. CT, because of its high spatial resolution and thin slice reconstruction, is well suited to the evaluation of the peripheral joints. Recent developments in the treatment of inflammatory arthritis that require early diagnosis and precise therapeutic assessment encourage radiological evaluation. To facilitate such assessment, we describe DECT iodine mapping as a novel modality for evaluating rheumatoid arthritis and psoriatic arthritis of the hands and feet. (orig.)

  20. Dual-energy perfusion-CT of pancreatic adenocarcinoma

    International Nuclear Information System (INIS)

    Klauß, M.; Stiller, W.; Pahn, G.; Fritz, F.; Kieser, M.; Werner, J.; Kauczor, H.U.; Grenacher, L.

    2013-01-01

    Purpose: To evaluate the feasibility of dual-energy CT (DECT)-perfusion of pancreatic carcinomas for assessing the differences in perfusion, permeability and blood volume of healthy pancreatic tissue and histopathologically confirmed solid pancreatic carcinoma. Materials and methods: 24 patients with histologically proven pancreatic carcinoma were examined prospectively with a 64-slice dual source CT using a dynamic sequence of 34 dual-energy (DE) acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). 80 kV p , 140 kV p , and weighted average (linearly blended M0.3) 120 kV p -equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool (Body-PCT, Siemens Medical Solutions, Erlangen, Germany) for estimating perfusion, permeability, and blood volume values. Color-coded parameter maps were generated. Results: In all 24 patients dual-energy CT-perfusion was. All carcinomas could be identified in the color-coded perfusion maps. Calculated perfusion, permeability and blood volume values were significantly lower in pancreatic carcinomas compared to healthy pancreatic tissue. Weighted average 120 kV p -equivalent perfusion-, permeability- and blood volume-values determined from DE image data were 0.27 ± 0.04 min −1 vs. 0.91 ± 0.04 min −1 (p −1 vs. 0.67 ± 0.05 *0.5 min −1 (p = 0.06) and 0.49 ± 0.07 min −1 vs. 1.28 ± 0.11 min −1 (p p the standard deviations of the kV p 120 kV p -equivalent values were manifestly smaller. Conclusion: Dual-energy CT-perfusion of the pancreas is feasible. The use of DECT improves the accuracy of CT-perfusion of the pancreas by fully exploiting the advantages of enhanced iodine contrast at 80 kV p in combination with the noise reduction at 140 kV p . Therefore using dual-energy perfusion data could improve the delineation of pancreatic carcinomas

  1. Effects of cross talk on dual energy SPECT imaging between [sup 123]I-BMIPP and [sup 201]Tl

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Masato; Narita, Hitoshi; Yamamoto, Juro; Fukutake, Naoshige; Ohyanagi, Mitsumasa; Iwasaki, Tadaaki; Fukuchi, Minoru (Hyogo College of Medicine, Nishinomiya (Japan))

    1994-01-01

    The study was undertaken to determine how much cross talk influences the visual assessment of dual energy single photon emission computed tomographic (SPECT) images with iodine 123 beta-methyl-p-iodophenylpentadecanoic acid (I-123 BMIPP) and thallium-201 in 15 patients with acute myocardial infarction. After single SPECT with I-123 BMIPP was undertaken, simultaneous dual SPECT with I-123 BMIPP and Tl-201 were undertaken in all patients. Three patients also underwent single SPECT with Tl-201. I-123 BMIPP and Tl-201 uptake was graded in four-score for the comparison between single and dual SPECT images. There was good correlation between dual energy SPECT and both single I-123 BMIPP SPECT (pS=0.97) and single Tl-201 SPECT (pS=0.59). Uptake scores were increased on dual energy SPECT, compared with single I-123 SPECT (8 out of 132 segments) and single Tl-201 SPECT (12 out of 36 segments). Overall, there was a comparatively well correlation between single SEPCT with either I-123 BMIPP or Tl-201 and dual energy SPECT images. However, one tracer uptake sometimes increased in the other tracer defect areas. This was noticeable when I-123 BMIPP exerted an effect on Tl-201. (N.K.).

  2. Effects of cross talk on dual energy SPECT imaging between 123I-BMIPP and 201Tl

    International Nuclear Information System (INIS)

    Morita, Masato; Narita, Hitoshi; Yamamoto, Juro; Fukutake, Naoshige; Ohyanagi, Mitsumasa; Iwasaki, Tadaaki; Fukuchi, Minoru

    1994-01-01

    The study was undertaken to determine how much cross talk influences the visual assessment of dual energy single photon emission computed tomographic (SPECT) images with iodine 123 beta-methyl-p-iodophenylpentadecanoic acid (I-123 BMIPP) and thallium-201 in 15 patients with acute myocardial infarction. After single SPECT with I-123 BMIPP was undertaken, simultaneous dual SPECT with I-123 BMIPP and Tl-201 were undertaken in all patients. Three patients also underwent single SPECT with Tl-201. I-123 BMIPP and Tl-201 uptake was graded in four-score for the comparison between single and dual SPECT images. There was good correlation between dual energy SPECT and both single I-123 BMIPP SPECT (pS=0.97) and single Tl-201 SPECT (pS=0.59). Uptake scores were increased on dual energy SPECT, compared with single I-123 SPECT (8 out of 132 segments) and single Tl-201 SPECT (12 out of 36 segments). Overall, there was a comparatively well correlation between single SEPCT with either I-123 BMIPP or Tl-201 and dual energy SPECT images. However, one tracer uptake sometimes increased in the other tracer defect areas. This was noticeable when I-123 BMIPP exerted an effect on Tl-201. (N.K.)

  3. Computer Aided Analysis and Prototype Testing of an Improved Biogas Reactor For Biomass System

    Directory of Open Access Journals (Sweden)

    Jeremy (Zheng Li

    2015-05-01

    Full Text Available The alternative fuel resources substituting for conventional fuels are required due to less availability of fuel resources than demand in the market. A large amount of crude oil and petroleum products are required to be imported in many countries over the world. Also the environmental pollution is another serious problem when use petroleum products. Biogas, with the composition of 54.5% CH4, 39.5% CO2, and 6% other elements (i.e., H2, N2, H2S, and O2, is a clear green fuel that can substitute the regular petroleum fuels to reduce the pollutant elements. Biogas can be produced by performing enriching, scrubbing, and bottling processes. The purification process can be further applied to take away the pollutants in biogas. The pure biogas process analyzed in this research is compressed to 2950 psi while being filled into gas cylinder. The daily produced biogas capacity is around 5480 ft3 and the processing efficacy is affected by surrounding environment and other factors. The design and development of this biogas system is assisted through mathematical analysis, 3D modeling, computational simulation, and prototype testing. Both computer aided analysis and prototype testing show close results which validate the feasibility of this biogas system in biomass applications.

  4. Rapid prototyping of an EEG-based brain-computer interface (BCI).

    Science.gov (United States)

    Guger, C; Schlögl, A; Neuper, C; Walterspacher, D; Strein, T; Pfurtscheller, G

    2001-03-01

    The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional digital signal processor (DSP) board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive (AAR) model and linear discriminant analysis (LDA).

  5. Dual energy MDCT assessment of renal lesions: an overview

    International Nuclear Information System (INIS)

    Mileto, Achille; Marin, Daniele; Nelson, Rendon C.; Boll, Daniel T.; Ascenti, Giorgio

    2014-01-01

    With the expansion of cross-sectional imaging, the number of renal lesions that are incidentally discovered has increased. Multidetector CT (MDCT) is the investigation of choice for characterising and staging renal lesions. Although a definitive diagnosis can be confidently posed for most of them, a number of renal lesions remain indeterminate following MDCT. Further imaging tests are therefore needed, with subsequent increase of healthcare costs, radiation exposure, and patient anxiety. By addressing most of the issues with conventional MDCT imaging, dual-energy MDCT can improve the diagnosis of renal lesions and, potentially, may represent a paradigm shift from a merely attenuation-based to a material-specific spectral imaging investigation. The purpose of this review is to provide an overview of current clinical applications of dual-energy CT in the evaluation of renal lesions. Key Points. (orig.)

  6. Pulmonary ventilation and perfusion imaging with dual-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany); Klinikum Grosshadern, Institut fuer Klinische Radiologie, LMU Muenchen, Muenchen (Germany); Hoegl, Sandra; Fisahn, Juergen; Irlbeck, Michael [Klinikum Grosshadern, Department of Anesthesiology, Ludwig Maximilians University, Muenchen (Germany); Nikolaou, Konstantin; Maxien, Daniel; Reiser, Maximilian F.; Becker, Christoph R.; Johnson, Thorsten R.C. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany)

    2010-12-15

    To evaluate the feasibility of dual-energy CT (DECT) ventilation imaging in combination with DE perfusion mapping for a comprehensive assessment of ventilation, perfusion, morphology and structure of the pulmonary parenchyma. Two dual-energy CT acquisitions for xenon-enhanced ventilation and iodine-enhanced perfusion mapping were performed in patients under artificial respiration. Parenchymal xenon and iodine distribution were mapped and correlated with structural or vascular abnormalities. In all datasets, image quality was sufficient for a comprehensive image reading of the pulmonary CTA images, lung window images and pulmonary functional parameter maps and led to expedient results in each patient. With dual-source CT systems, DECT of the lung with iodine or xenon administration is technically feasible and makes it possible to depict the regional iodine or xenon distribution representing the local perfusion and ventilation. (orig.)

  7. Dual energy MDCT assessment of renal lesions: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Mileto, Achille [Duke University Medical Center, Department of Radiology, Durham, NC (United States); University of Messina, Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico ' ' G. Martino' ' , Messina (Italy); Marin, Daniele; Nelson, Rendon C.; Boll, Daniel T. [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Ascenti, Giorgio [University of Messina, Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico ' ' G. Martino' ' , Messina (Italy)

    2014-02-15

    With the expansion of cross-sectional imaging, the number of renal lesions that are incidentally discovered has increased. Multidetector CT (MDCT) is the investigation of choice for characterising and staging renal lesions. Although a definitive diagnosis can be confidently posed for most of them, a number of renal lesions remain indeterminate following MDCT. Further imaging tests are therefore needed, with subsequent increase of healthcare costs, radiation exposure, and patient anxiety. By addressing most of the issues with conventional MDCT imaging, dual-energy MDCT can improve the diagnosis of renal lesions and, potentially, may represent a paradigm shift from a merely attenuation-based to a material-specific spectral imaging investigation. The purpose of this review is to provide an overview of current clinical applications of dual-energy CT in the evaluation of renal lesions. Key Points. (orig.)

  8. Postmortem validation of breast density using dual-energy mammography

    OpenAIRE

    Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-01-01

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dua...

  9. Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner

    Science.gov (United States)

    Kakinuma, Ryutaro; Moriyama, Noriyuki; Muramatsu, Yukio; Gomi, Shiho; Suzuki, Masahiro; Nagasawa, Hirobumi; Kusumoto, Masahiko; Aso, Tomohiko; Muramatsu, Yoshihisa; Tsuchida, Takaaki; Tsuta, Koji; Maeshima, Akiko Miyagi; Tochigi, Naobumi; Watanabe, Shun-ichi; Sugihara, Naoki; Tsukagoshi, Shinsuke; Saito, Yasuo; Kazama, Masahiro; Ashizawa, Kazuto; Awai, Kazuo; Honda, Osamu; Ishikawa, Hiroyuki; Koizumi, Naoya; Komoto, Daisuke; Moriya, Hiroshi; Oda, Seitaro; Oshiro, Yasuji; Yanagawa, Masahiro; Tomiyama, Noriyuki; Asamura, Hisao

    2015-01-01

    Purpose The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners. Materials and Methods This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm x 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm x 16 or 0.5 mm x 64 detector-row CT scanner operating at 150 mAs. Images from both scanners were reconstructed at 0.1-mm intervals; the slice thickness was 0.25 mm for the U-HRCT scanner and 0.5 mm for the C-HRCT scanners. For both scanners, the display field of view was 80 mm. The image noise of each scanner was evaluated using a phantom. U-HRCT and C-HRCT images of 53 images selected from 37 lung nodules were then observed and graded using a 5-point score by 10 board-certified thoracic radiologists. The images were presented to the observers randomly and in a blinded manner. Results The image noise for U-HRCT (100.87 ± 0.51 Hounsfield units [HU]) was greater than that for C-HRCT (40.41 ± 0.52 HU; P < .0001). The image quality of U-HRCT was graded as superior to that of C-HRCT (P < .0001) for all of the following parameters that were examined: margins of subsolid and solid nodules, edges of solid components and pulmonary vessels in subsolid nodules, air bronchograms, pleural indentations, margins of pulmonary vessels, edges of bronchi, and interlobar fissures. Conclusion Despite a larger image noise, the prototype U-HRCT scanner had a significantly better image quality than the C-HRCT scanners. PMID:26352144

  10. Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner.

    Directory of Open Access Journals (Sweden)

    Ryutaro Kakinuma

    Full Text Available The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT scanners.This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm x 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm x 16 or 0.5 mm x 64 detector-row CT scanner operating at 150 mAs. Images from both scanners were reconstructed at 0.1-mm intervals; the slice thickness was 0.25 mm for the U-HRCT scanner and 0.5 mm for the C-HRCT scanners. For both scanners, the display field of view was 80 mm. The image noise of each scanner was evaluated using a phantom. U-HRCT and C-HRCT images of 53 images selected from 37 lung nodules were then observed and graded using a 5-point score by 10 board-certified thoracic radiologists. The images were presented to the observers randomly and in a blinded manner.The image noise for U-HRCT (100.87 ± 0.51 Hounsfield units [HU] was greater than that for C-HRCT (40.41 ± 0.52 HU; P < .0001. The image quality of U-HRCT was graded as superior to that of C-HRCT (P < .0001 for all of the following parameters that were examined: margins of subsolid and solid nodules, edges of solid components and pulmonary vessels in subsolid nodules, air bronchograms, pleural indentations, margins of pulmonary vessels, edges of bronchi, and interlobar fissures.Despite a larger image noise, the prototype U-HRCT scanner had a significantly better image quality than the C-HRCT scanners.

  11. Brain-muscle-computer interface: mobile-phone prototype development and testing.

    Science.gov (United States)

    Vernon, Scott; Joshi, Sanjay S

    2011-07-01

    We report prototype development and testing of a new mobile-phone-based brain-muscle-computer interface for severely paralyzed persons, based on previous results from our group showing that humans may actively create specified power levels in two separate frequency bands of a single surface electromyography (sEMG) signal. EMG activity on the surface of a single face muscle site (auricularis superior) is recorded with a standard electrode. This analog electrical signal is imported into an Android-based mobile phone and digitized via an internal A/D converter. The digital signal is split, and then simultaneously filtered with two band-pass filters to extract total power within two separate frequency bands. The user-modulated power in each frequency band serves as two separate control channels for machine control. After signal processing, the Android phone sends commands to external devices via a Bluetooth interface. Users are trained to use the device via visually based operant conditioning, with simple cursor-to-target activities on the phone screen. The mobile-phone prototype interface is formally evaluated on a single advanced Spinal Muscle Atrophy subject, who has successfully used the interface in his home in evaluation trials and for remote control of a television. Development of this new device will not only guide future interface design for community use, but will also serve as an information technology bridge for in situ data collection to quantify human sEMG manipulation abilities for a relevant population.

  12. Dual-energy CT myelography on detection of spontaneous spinal cerebrospinal fluid leaks: initial study

    International Nuclear Information System (INIS)

    Zhang Qiaowei; Wang Dan; Zhang Jinhua; Wang Jin; Zhang Shizheng

    2011-01-01

    Objective: To assess the value of dual-energy computed tomography myelography (CTM) on detecting leaks of cerebrospinal fluid (CSF) in patients with spontaneous intracranial hypotension (SIH). Methods: Six patients with SIH underwent spinal CTM on a 2nd generation dual-source CT with tube voltage set at 100 and 140 kVp (with tin filter). The virtual non-contrast (VNC) and iodine map images were calculated from dual-energy images. The average weighted (AW) CTM images were mixed from two kVp images with mix factor of 0.5. Two radiologists evaluated CSF leak using two sets of images respectively: VNC + iodine map images and AW-CTM images. The results from two reading methods were compared. The level of CSF leaks along the nerve roots, C1-2 retrospinal CSF collections, epidural CSF collections and spinal epidural venous plexus were marked. The consensus about leak sites and CSF collections was made by two radiologists in the third session. Kappa statistics were used to measure the agreement between the two methods. Results: Forty-one leaks were detected using VNC + iodine map images. Forty-three leaks were detected on AW images. The agreement between two methods was excellent (Kappa = 0.997, P<0.01). There were no differences in the detection of C1-2 retrospinal CSF collections (n=2), epidural CSF collections (n=3) or spinal epidural venous plexus (n=1). VNC and iodine map images demonstrated superior visual effects than AW images. Conclusion: Dual-energy CTM can be used to diagnose spontaneous spinal cerebrospinal fluid leaks in SIH patient, (authors)

  13. Generation of three-dimensional prototype models based on cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, J.T.; Berndt, D.C.; Zehnder, M. [University of Basel, Department of Oral Surgery, University Hospital for Oral Surgery, Oral Radiology and Oral Medicine, Basel (Switzerland); Schumacher, R. [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Institute for Medical and Analytical Technologies, Muttenz (Switzerland)

    2009-03-15

    The purpose of this study was to generate three-dimensional models based on digital volumetric data that can be used in basic and advanced education. Four sets of digital volumetric data were established by cone beam computed tomography (CBCT) (Accuitomo, J. Morita, Kyoto, Japan). Datasets were exported as Dicom formats and imported into Mimics and Magic software programs to separate the different tissues such as nerve, tooth and bone. These data were transferred to a Polyjet 3D Printing machine (Eden 330, Object, Israel) to generate the models. Three-dimensional prototype models of certain limited anatomical structures as acquired volumetrically were fabricated. Generating three-dimensional models based on CBCT datasets is possible. Automated routine fabrication of these models, with the given infrastructure, is too time-consuming and therefore too expensive. (orig.)

  14. Generation of three-dimensional prototype models based on cone beam computed tomography

    International Nuclear Information System (INIS)

    Lambrecht, J.T.; Berndt, D.C.; Zehnder, M.; Schumacher, R.

    2009-01-01

    The purpose of this study was to generate three-dimensional models based on digital volumetric data that can be used in basic and advanced education. Four sets of digital volumetric data were established by cone beam computed tomography (CBCT) (Accuitomo, J. Morita, Kyoto, Japan). Datasets were exported as Dicom formats and imported into Mimics and Magic software programs to separate the different tissues such as nerve, tooth and bone. These data were transferred to a Polyjet 3D Printing machine (Eden 330, Object, Israel) to generate the models. Three-dimensional prototype models of certain limited anatomical structures as acquired volumetrically were fabricated. Generating three-dimensional models based on CBCT datasets is possible. Automated routine fabrication of these models, with the given infrastructure, is too time-consuming and therefore too expensive. (orig.)

  15. Unikabeton Prototype

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Dombernowsky, Per

    2011-01-01

    The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project was elabor......The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project...... of Architecture was to develop a series of optimisation experiments, concluding in the design and optimisation of a full scale prototype concrete structure....

  16. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Manimaran, M., E-mail: maran@igcar.gov.in; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2015-10-15

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored.

  17. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Manimaran, M.; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2015-01-01

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored

  18. Fault tolerant distributed real time computer systems for I and C of prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Manimaran, M., E-mail: maran@igcar.gov.in; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2014-03-15

    Highlights: • Architecture of distributed real time computer system (DRTCS) used in I and C of PFBR is explained. • Fault tolerant (hot standby) architecture, fault detection and switch over are detailed. • Scaled down model was used to study functional and performance requirements of DRTCS. • Quality of service parameters for scaled down model was critically studied. - Abstract: Prototype fast breeder reactor (PFBR) is in the advanced stage of construction at Kalpakkam, India. Three-tier architecture is adopted for instrumentation and control (I and C) of PFBR wherein bottom tier consists of real time computer (RTC) systems, middle tier consists of process computers and top tier constitutes of display stations. These RTC systems are geographically distributed and networked together with process computers and display stations. Hot standby architecture comprising of dual redundant RTC systems with switch over logic system is deployed in order to achieve fault tolerance. Fault tolerant dual redundant network connectivity is provided in each RTC system and TCP/IP protocol is selected for network communication. In order to assess the performance of distributed RTC systems, scaled down model was developed with 9 representative systems and nearly 15% of I and C signals of PFBR were connected and monitored. Functional and performance testing were carried out for each RTC system and the fault tolerant characteristics were studied by creating various faults into the system and observed the performance. Various quality of service parameters like connection establishment delay, priority parameter, transit delay, throughput, residual error ratio, etc., are critically studied for the network.

  19. The clinical determination of absolute density in bone utilizing single and dual energy compton scattering

    International Nuclear Information System (INIS)

    Huddleston, A.L.; Weaver, J.

    1980-01-01

    Several methods important in the clinical diagnosis of skeletal diseases have been proposed for the determination of bone mass, such as photon absorptiometry, computed tomography, and neutron activation. None of these present methods provides for the determination of the physical density of bone. In the Radiological Physics Research Laboratory at the University of Virginia, the principles of Compton scattering are being investigated with the intent of determining the electron density and the physical density of human bone. A Compton-scatter densitometer has been constructed for the in vivo density determination of the femoral head. This technique utilizes of collimated low energy gamma source and detector system. The method has been tested in cadavers and in known density samples and has an accuracy of 2 %. A second densitometer has been designed for the in vivo determination of electron density of the vertebrae based upon a new technique which employs dual energy Compton scattering in the spinal column. These systems will be discussed; and the principles of dual energy Compton scatter densitometry will be presented. The importance of these isotope techniques and the feasibility of in vivo density determination in the vertebrae and femoral head will be discussed as they relate to clinical diagnosis and research. (author)

  20. Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT

    Science.gov (United States)

    Xi, Yan; Cong, Wenxiang; Harrison, Daniel; Wang, Ge

    2017-12-01

    In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching.

  1. Single- and dual energy QCT around acetabular cups in total hip arthroplasty using 3-dimensional segmentation

    DEFF Research Database (Denmark)

    Mussmann, Bo Redder; Andersen, Poul Erik; Torfing, Trine

    of segmentation software and to compare bone mineral density (BMD) measurements in single- and dual energy CT (SECT and DECT) Materials and Methods: 24 male patients with total hip arthroplasty (12 cemented and 12 uncemented) were scanned and rescanned using SECT and virtual monochromatic DECT images. 3D- ROIs......Background: Bone density measurements around hip implants are challenged by artifacts and the complex anatomy of the acetabulum. We developed 3D segmentation software and used dual energy CT to reduce artifacts. Purpose / Aim of Study: To test the between-scan agreement and reliability...... the cemented cup the mean BMD for SECT was 523 mg/ccm with a between-scan difference of 14 mg/ccm, p=0.25 and 186 mg/ccm in DECT with a difference of 6 mg/ccm, p=0.15. ICC was >0.95 with more narrow limits of agreement in DECT compared with SECT. Computed tomography dose index (CTDI) was 25% higher with DECT...

  2. Can dual-energy CT replace perfusion CT for the functional evaluation of advanced hepatocellular carcinoma?

    Science.gov (United States)

    Mulé, Sébastien; Pigneur, Frédéric; Quelever, Ronan; Tenenhaus, Arthur; Baranes, Laurence; Richard, Philippe; Tacher, Vania; Herin, Edouard; Pasquier, Hugo; Ronot, Maxime; Rahmouni, Alain; Vilgrain, Valérie; Luciani, Alain

    2018-05-01

    To determine the degree of relationship between iodine concentrations derived from dual-energy CT (DECT) and perfusion CT parameters in patients with advanced HCC under treatment. In this single-centre IRB approved study, 16 patients with advanced HCC treated with sorafenib or radioembolization who underwent concurrent dynamic perfusion CT and multiphase DECT using a single source, fast kV switching DECT scanner were included. Written informed consent was obtained for all patients. HCC late-arterial and portal iodine concentrations, blood flow (BF)-related and blood volume (BV)-related perfusion parameters maps were calculated. Mixed-effects models of the relationship between iodine concentrations and perfusion parameters were computed. An adjusted p value (Bonferroni method) statistic (F)=28.52, padvanced HCC lesions, DECT-derived late-arterial iodine concentration is strongly related to both aBF and BV, while portal iodine concentration mainly reflects BV, offering DECT the ability to evaluate both morphological and perfusion changes. • Late-arterial iodine concentration is highly related to arterial BF and BV. • Portal iodine concentration mainly reflects tumour blood volume. • Dual-energy CT offers significantly decreased radiation dose compared with perfusion CT.

  3. Some practical aspects of dual-energy CT scanning

    International Nuclear Information System (INIS)

    Dunscombe, P.B.; Katz, D.E.; Stacey, A.J.

    1984-01-01

    Using the dual-energy scanning method developed by Brooks (1977), and making slow x-ray scans at 100 kVp, 35 mA and 140 kVp, 20 mA, measurements were made of electron density and effective atomic number in the lumbar spines of 36 patients aged from 22 to 87 years, and not known to be suffering from conditions which result in osteoporosis or osteomalacia. The authors discuss in detail the sources of experimental error which contributed to the large measured spread of normal values of electron density and effective atomic number. (U.K.)

  4. Some practical aspects of dual-energy CT scanning

    Energy Technology Data Exchange (ETDEWEB)

    Dunscombe, P.B.; Katz, D.E.; Stacey, A.J. (Charing Cross Group of Hospitals, London (UK))

    1984-01-01

    Using the dual-energy scanning method developed by Brooks (1977), and making slow x-ray scans at 100 kVp, 35 mA and 140 kVp, 20 mA, measurements were made of electron density and effective atomic number in the lumbar spines of 36 patients aged from 22 to 87 years, and not known to be suffering from conditions which result in osteoporosis or osteomalacia. The authors discuss in detail the sources of experimental error which contributed to the large measured spread of normal values of electron density and effective atomic number.

  5. Prototype of a computer system for managing data and video colonoscopy exams

    Directory of Open Access Journals (Sweden)

    Renato Bobsin Machado

    2012-03-01

    Full Text Available OBJECTIVE: Develop a prototype using computer resources to optimize the management process of clinical information and video colonoscopy exams. MATERIALS AND METHODS: Through meetings with medical and computer experts, the following requirements were defined: management of information about medical professionals, patients and exams; video and image captured by video colonoscopes during the exam, and the availability of these videos and images on the Web for further analysis. The technologies used were Java, Flex, JBoss, Red5, JBoss SEAM, MySQL and Flamingo. RESULTS AND DISCUSSION: The prototype contributed to the area of colonocospy by providing resources to maintain the patients' history, tests and images from video colonoscopies. The web-based application allows greater flexibility to physicians and specialists. The resources for remote analysis of data and tests can help doctors and patients in the examination and diagnosis. CONCLUSION: The implemented prototype has contributed to improve colonoscopy-related processes. Future activities include the prototype deployment in the Service of Coloproctology and the utilization of this model to allow real-time monitoring of these exams and knowledge extraction from such structured database using artificial intelligence.OBJETIVO: Desenvolver um protótipo por meio de recursos computacionais para a otimização de processos de gerenciamento de informações clínicas e de exames de videocolonoscopia. MATERIAIS E MÉTODOS: Por meio de reuniões com especialistas médicos e computacionais, definiram-se os seguintes requisitos: gestão de informações sobre profissionais médicos, pacientes e exames complementares; aquisição dos vídeos e captura de imagens a partir do videocolonoscópio durante a realização desse exame, e a disponibilidade por meio da Web para análise posterior dessas imagens. As tecnologias aplicadas foram: Java, Flex, JBOSS, Red5, JBOSS SEAM, MySQL e Flamingo. RESULTADOS E

  6. Automated bone removal in CT angiography: Comparison of methods based on single energy and dual energy scans

    International Nuclear Information System (INIS)

    Straten, Marcel van; Schaap, Michiel; Dijkshoorn, Marcel L.; Greuter, Marcel J.; Lugt, Aad van der; Krestin, Gabriel P.; Niessen, Wiro J.

    2011-01-01

    Purpose: To evaluate dual energy based methods for bone removal in computed tomography angiography (CTA) images and compare these with single energy based methods that use an additional, nonenhanced, CT scan. Methods: Four different bone removal methods were applied to CT scans of an anthropomorphic thorax phantom, acquired with a second generation dual source CT scanner. The methods differed by the way information on the presence of bone was obtained (either by using an additional, nonenhanced scan or by scanning with two tube voltages at the same time) and by the way the bone was removed from the CTA images (either by masking or subtracting the bone). The phantom contained parts which mimic vessels of various diameters in direct contact with bone. Both a quantitative and qualitative analysis of image quality after bone removal was performed. Image quality was quantified by the contrast-to-noise ratio (CNR) normalized to the square root of the dose (CNRD). At locations where vessels touch bone, the quality of the bone removal and the vessel preservation were visually assessed. The dual energy based methods were assessed with and without the addition of a 0.4 mm tin filter to the high voltage x-ray tube filtration. For each bone removal method, the dose required to obtain a certain CNR after bone removal was compared with the dose of a reference scan with the same CNR but without automated bone removal. The CNRD value of the reference scan was maximized by choosing the lowest tube voltage available. Results: All methods removed the bone completely. CNRD values were higher for the masking based methods than for the subtraction based methods. Single energy based methods had a higher CNRD value than the corresponding dual energy based methods. For the subtraction based dual energy method, tin filtration improved the CNRD value with approximately 50%. For the masking based dual energy method, it was easier to differentiate between iodine and bone when tin filtration

  7. Dual-energy chest imaging with the variable compensation technique

    International Nuclear Information System (INIS)

    Dobbins, J.T.; Powell, A.O.

    1988-01-01

    The authors reported on a new imaging algorithm, termed the variable compensation (VC) technique, that combines the signal-to-noise ratio (S/N) advantages of x-ray beam compensation with the ability to adjust retrospectively the amount of displayed image equalization. The VC technique acquires a compensated image of the patient and also an image of the modulated beam profile incident on the patient. A fraction of the beam profile image is then subtracted from the compensated image. A limitation of traditional dual-energy techniques is the significant S/N degradation in poorly penetrated regions. Their new VC technique permits improvement in image S/N before formation of the dual-energy image pair. Specifically, the authors subtract 100% of the beam image from the compensated image for both the high- and low-energy images and produce a pair of images that appear similar to the normal high- and low-energy pair, except for improved S/N in the mediastinum due to the beam compensator. S/N measurements in tissue-canceled chest phantom images show the improved S/N visualization of calcified squares in the mediastinum with our technique

  8. Dual-energy CT can detect malignant lymph nodes in rectal cancer

    DEFF Research Database (Denmark)

    Al-Najami, I.; Lahaye, M. J.; Beets-Tan, Regina G H

    2017-01-01

    a pelvic DECT scan and a standard MRI. The Dual Energy CT quantitative parameters were analyzed: Water and Iodine concentration, Dual-Energy Ratio, Dual Energy Index, and Effective Z value, for the benign and malignant lymph node differentiation. Results DECT scanning showed statistical difference between...... quantitative parameters between benign and malignant lymph nodes. There were no difference in the accuracy of lymph node staging between DECT and MRI....

  9. Real Time Computer for Plugging Indicator Control of Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Manimaran, M.; Manoj, P.; Shanmugam, A.; Murali, N.; Satya Murty, S.A.V.

    2013-06-01

    Prototype Fast Breeder Reactor (PFBR) is in the advanced stage of construction at Kalpakkam, India. Liquid sodium is used as coolant to transfer the heat produced in the reactor core to steam water circuit. Impurities present in the sodium are removed using purification circuit. Plugging indicator is a device used to measure the purity of the sodium. Versa Module Europa bus based Real Time Computer (RTC) system is used for plugging indicator control. Hot standby architecture consisting of dual redundant RTC system with switch over logic system is the configuration adopted to achieve fault tolerance. Plugging indicator can be controlled in two modes namely continuous and discontinuous mode. Software based Proportional-Integral-Derivative (PID) algorithms are developed for plugging indicator control wherein the set point changes dynamically for every scan interval of the RTC system. Set points and PID constants are kept as configurable in runtime in order to control the process in very efficient manner, which calls for reliable communication between RTC system and control station, hence TCP/IP protocol is adopted. Performance of the RTC system for plugging indicator control was thoroughly studied in the laboratory by simulating the inputs and monitored the control outputs. The control outputs were also monitored for different PID constants. Continuous and discontinuous mode plots were generated. (authors)

  10. Clinical evaluation of a computer-aided diagnosis (CAD) prototype for the detection of pulmonary embolism.

    Science.gov (United States)

    Buhmann, Sonja; Herzog, Peter; Liang, Jin; Wolf, Mathias; Salganicoff, Marcos; Kirchhoff, Chlodwig; Reiser, Maximilian; Becker, Christoph H

    2007-06-01

    To evaluate the performance of a prototype computer-aided diagnosis (CAD) tool using artificial intelligence techniques for the detection of pulmonary embolism (PE) and the possible benefit for general radiologists. Forty multidetector row computed tomography datasets (16/64- channel scanner) using 100 kVp, 100 mAs effective/slice, and 1-mm axial reformats in a low-frequency reconstruction kernel were evaluated. A total of 80 mL iodinated contrast material was injected at a flow rate of 5 mL/seconds. Primarily, six general radiologists marked any PE using a commercially available lung evaluation software with simultaneous, automatic processing by CAD in the background. An expert panel consisting of two chest radiologists analyzed all PE marks from the readers and CAD, also searching for additional finding primarily missed by both, forming the ground truth. The ground truth consisted of 212 emboli. Of these, 65 (31%) were centrally and 147 (69%) were peripherally located. The readers detected 157/212 emboli (74%) leading to a sensitivity of 97% (63/65) for central and 70% (103/147) for peripheral emboli with 9 false-positive findings. CAD detected 168/212 emboli (79%), reaching a sensitivity of 74% for central (48/65) and 82%(120/147) for peripheral emboli. A total of 154 CAD candidates were considered as false positives, yielding an average of 3.85 false positives/case. The CAD software showed a sensitivity comparable to that of the general radiologists, but with more false positives. CAD detection of findings incremental to the radiologists suggests benefit when used as a second reader. Future versions of CAD have the potential to further increase clinical benefit by improving sensitivity and reducing false marks.

  11. Compositional breast imaging using a dual-energy mammography protocol

    International Nuclear Information System (INIS)

    Laidevant, Aurelie D.; Malkov, Serghei; Flowers, Chris I.; Kerlikowske, Karla; Shepherd, John A.

    2010-01-01

    Purpose: Mammography has a low sensitivity in dense breasts due to low contrast between malignant and normal tissue confounded by the predominant water density of the breast. Water is found in both adipose and fibroglandular tissue and constitutes most of the mass of a breast. However, significant protein mass is mainly found in the fibroglandular tissue where most cancers originate. If the protein compartment in a mammogram could be imaged without the influence of water, the sensitivity and specificity of the mammogram may be improved. This article describes a novel approach to dual-energy mammography, full-field digital compositional mammography (FFDCM), which can independently image the three compositional components of breast tissue: water, lipid, and protein. Methods: Dual-energy attenuation and breast shape measures are used together to solve for the three compositional thicknesses. Dual-energy measurements were performed on breast-mimicking phantoms using a full-field digital mammography unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the compositional compartments. They were made of two main stacks of thicknesses around 2 and 4 cm. Twenty-six thickness and composition combinations were used to derive the compositional calibration using a least-squares fitting approach. Results: Very high accuracy was achieved with a simple cubic fitting function with root mean square errors of 0.023, 0.011, and 0.012 cm for the water, lipid, and protein thicknesses, respectively. The repeatability (percent coefficient of variation) of these measures was tested using sequential images and was found to be 0.5%, 0.5%, and 3.3% for water, lipid, and protein, respectively. However, swapping the location of the two stacks of the phantom on the imaging plate introduced further errors showing the need for more complete system uniformity corrections. Finally, a preliminary breast image is presented of each of the compositional

  12. Dual-energy attenuation coefficient decomposition with differential filtration and application to a microCT scanner

    International Nuclear Information System (INIS)

    Taschereau, R; Silverman, R W; Chatziioannou, A F

    2010-01-01

    Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a μ-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.

  13. Dual-energy attenuation coefficient decomposition with differential filtration and application to a microCT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Taschereau, R; Silverman, R W; Chatziioannou, A F [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States)], E-mail: rtaschereau@mednet.ucla.edu

    2010-02-21

    Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a {mu}-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.

  14. The potential of dual-energy virtual monochromatic imaging in reducing renal cyst pseudoenhancement. A phantom study

    International Nuclear Information System (INIS)

    Yamada, Sachiko; Ueguchi, Takashi; Ukai, Isao; Nagai, Yumiko; Yamakawa, Masanobu; Shimosegawa, Eku; Shimazu, Takeshi; Hatazawa, Jun

    2012-01-01

    Renal cyst pseudoenhancement, an artifactual increase of computed tomography (CT) attenuation for cysts with increased iodine concentrations in the renal parenchyma, complicates the classification of cysts and may thus lead to the mischaracterization of a benign non-enhancing lesion as an enhancing mass. The purpose of this study was to use a phantom model to assess the ability of dual-energy virtual monochromatic imaging to reduce renal pseudoenhancement. A water-filled cylindrical cyst model suspended in varying concentrations of iodine solution, to simulate varying levels of parenchymal enhancement, was scanned with a dual-energy CT scanner using the following three scanning protocols with different combinations of tube voltage: 80 and 140 kV; 80 and 140 kV with tin filter; and 100 and 140 kV with tin filter. Virtual monochromatic images were then synthesized for each dual-energy scan. Single-energy scan with a tube voltage of 120 kV was also performed to obtain polychromatic images as controls. Mean attenuation values (in Hounsfield units) of cyst proxies were measured on both polychromatic and virtual monochromatic images. Pseudoenhancement was considered to be present when the cyst attenuation level increased by more than 10 HU (Hounsfield Unit) as the background iodine concentration increased from 0.0% to 0.4%, 1.5%, or 2.5%. Our results revealed that pseudoenhancement was not observed on any of the monochromatic images, but appeared on polychromatic images at a background iodine concentration of 2.5%. We thus conclude that dual-energy virtual monochromatic images have a potential to reduce renal pseudoenhancement. (author)

  15. Composite self-expanding bioresorbable prototype stents with reinforced compression performance for congenital heart disease application: Computational and experimental investigation.

    Science.gov (United States)

    Zhao, Fan; Xue, Wen; Wang, Fujun; Liu, Laijun; Shi, Haoqin; Wang, Lu

    2018-08-01

    Stents are vital devices to treat vascular stenosis in pediatric patients with congenital heart disease. Bioresorbable stents (BRSs) have been applied to reduce challenging complications caused by permanent metal stents. However, it remains almost a total lack of BRSs with satisfactory compression performance specifically for children with congenital heart disease, leading to importantly suboptimal effects. In this work, composite bioresorbable prototype stents with superior compression resistance were designed by braiding and annealing technology, incorporating poly (p-dioxanone) (PPDO) monofilaments and polycaprolactone (PCL) multifilament. Stent prototype compression properties were investigated. The results revealed that novel composite prototype stents showed superior compression force compared to the control ones, as well as recovery ability. Furthermore, deformation mechanisms were analyzed by computational simulation, which revealed bonded interlacing points among yarns play an important role. This research presents important clinical implications in bioresorbable stent manufacture and provides further study with an innovative stent design. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. A quantitative theory of the Hounsfield unit and its application to dual energy scanning.

    Science.gov (United States)

    Brooks, R A

    1977-10-01

    A standard definition is proposed for the Hounsfield number. Any number in computed tomography can be converted to the Hounsfield scale after performing a simple calibration using air and water. The energy dependence of the Hounsfield number, H, is given by the expression H = (Hc + Hp Q)/(1 + Q), where Hc and Hp are the Compton and photoelectric coefficients of the material being measured, expressed in Hounsfield units, and Q is the "quality factor" of the scanner. Q can be measured by performing a scan of a single calibrating material, such as a potassium iodine solution. By applying this analysis to dual energy scans, the Compton and photoelectric coefficients of an unknown substance may easily be obtained. This can lead to a limited degree of chemical identification.

  17. Vertebral morphometry by dual-energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    Boyanov, M.

    2002-01-01

    Vertebral fractures are a key feature of overt osteoporosis. Different X-ray morphometric techniques have been developed for quantification of changes in vertebral body shape. In recent years, a new method was implemented based on dual-energy X-ray absorptiometry. Morphometric X-ray absorptiometry, MXA, is a source of lower radiation and there is no image distortion. Several aspects of its application are under heavy discussion: image quality, accuracy and precision, reference databases, age changes in vertebral shape. The differential diagnosis of vertebral fracture/deformity is difficult. MXA has prove its value in large epidemiological studies on prevalence of vertebral deformities, as well in assessing the effects of different diseases and medications on vertebral body architecture. MXA is a promising method for future research and clinical work. (author)

  18. Chest imaging with dual-energy substraction digital tomosynthesis

    International Nuclear Information System (INIS)

    Sone, S.; Kasuga, T.; Sakai, F.; Hirano, H.; Kubo, K.; Morimoto, M.; Takemura, K.; Hosoba, M.

    1993-01-01

    Dual-energy subtraction digital tomosynthesis with pulsed X-ray and rapid kV switching was used to examine calcifications in pulmonary lesions. The digital tomosynthesis system used included a conventional fluororadiographic TV unit with linear tomographic capabilities, a high resolution videocamera, and an image processing unit. Low-voltage, high voltage, and soft tissue subtracted or bone subtracted tomograms of any desired layer height were reconstructed from the image data acquired during a single tomographic swing. Calcifications, as well as their characteristics and distribution in pulmonary lesions, were clearly shown. The images also permitted discrimination of calcifications from dense fibrotic lesions. This technique was effective in demonstrating calcifications together with a solitary mass or disseminated nodules. (orig.)

  19. Impact of dual energy characterization of urinary calculus on management.

    Science.gov (United States)

    Habashy, David; Xia, Ryan; Ridley, William; Chan, Lewis; Ridley, Lloyd

    2016-10-01

    Dual energy CT (DECT) is a recent technique that is increasingly being used to differentiate between calcium and uric acid urinary tract calculi. The aim of this study is to determine if urinary calculi composition analysis determined by DECT scanning results in a change of patient management. All patients presenting with symptoms of renal colic, who had not previously undergone DECT scanning underwent DECT KUB. DECT data of all patients between September 2013 and July 2015 were reviewed. Urinary calculi composition based on dual energy characterization was cross-matched with patient management and outcome. A total of 585 DECT KUB were performed. 393/585 (67%) DECT scans revealed urinary tract calculi. After excluding those with isolated bladder or small asymptomatic renal stones, 303 patients were found to have symptomatic stone(s) as an explanation for their presentation. Of these 303 patients, there were 273 (90.1%) calcium calculi, 19 (6.3%) uric acid calculi and 11 (3.4%) mixed calculi. Of those with uric acid calculi, 15 were commenced on dissolution therapy. Twelve of those commenced on dissolution therapy had a successful outcome, avoiding need for surgical intervention (lithotripsy or stone retrieval). Three patients failed dissolution therapy and required operative intervention for definitive management of the stone. Predicting urinary tract calculi composition by DECT plays an important role in identifying patients who may be managed with dissolution therapy. Identification of uric acid stone composition altered management in 15 of 303 (5.0%) patients, and was successful in 12, thereby avoiding surgery and its attendant risks. © 2016 The Royal Australian and New Zealand College of Radiologists.

  20. Multimaterial Decomposition Algorithm for the Quantification of Liver Fat Content by Using Fast-Kilovolt-Peak Switching Dual-Energy CT: Experimental Validation.

    Science.gov (United States)

    Hyodo, Tomoko; Hori, Masatoshi; Lamb, Peter; Sasaki, Kosuke; Wakayama, Tetsuya; Chiba, Yasutaka; Mochizuki, Teruhito; Murakami, Takamichi

    2017-02-01

    Purpose To assess the ability of fast-kilovolt-peak switching dual-energy computed tomography (CT) by using the multimaterial decomposition (MMD) algorithm to quantify liver fat. Materials and Methods Fifteen syringes that contained various proportions of swine liver obtained from an abattoir, lard in food products, and iron (saccharated ferric oxide) were prepared. Approval of this study by the animal care and use committee was not required. Solid cylindrical phantoms that consisted of a polyurethane epoxy resin 20 and 30 cm in diameter that held the syringes were scanned with dual- and single-energy 64-section multidetector CT. CT attenuation on single-energy CT images (in Hounsfield units) and MMD-derived fat volume fraction (FVF; dual-energy CT FVF) were obtained for each syringe, as were magnetic resonance (MR) spectroscopy measurements by using a 1.5-T imager (fat fraction [FF] of MR spectroscopy). Reference values of FVF (FVF ref ) were determined by using the Soxhlet method. Iron concentrations were determined by inductively coupled plasma optical emission spectroscopy and divided into three ranges (0 mg per 100 g, 48.1-55.9 mg per 100 g, and 92.6-103.0 mg per 100 g). Statistical analysis included Spearman rank correlation and analysis of covariance. Results Both dual-energy CT FVF (ρ = 0.97; P iron. Phantom size had a significant effect on dual-energy CT FVF after controlling for FVF ref (P iron concentrations, the linear coefficients of dual-energy CT FVF decreased and those of MR spectroscopy FF increased (P iron, dual-energy CT FVF led to underestimateion of FVF ref to a lesser degree than FF of MR spectroscopy led to overestimation of FVF ref . © RSNA, 2016 Online supplemental material is available for this article.

  1. The RADTRAN 4 computational system for transportation risk assessment: A prototype for the information superhighway

    International Nuclear Information System (INIS)

    Neuhauser, K.S.

    1994-01-01

    The RADTRAN 4 computer code for transportation risk assessment is the central code in a system that contains both other codes and data libraries. Some of these codes and data libraries supply input data for RADTRAN; others perform supplemental calculations. RADTRAN 4 will be released by the IAEA in an international version known as INTERTRAN 2 in 1995. In the United States, RADTRAN 4 and its supporting system may be accessed via the INTERNET, a precursor to the Information Superhighway. Similar networks are being contemplated elsewhere in the world, and the RADTRAN System may serve as a prototype for systems on these networks. A system is desirable for the following reasons. Some classes of data and data-handling methods are country-specific and some are not -- ancillary codes and data libraries that provide the latter are not affected by national and regional borders while the former must be provided on a country-by-country basis. Making the invariant portions available to all users in an international system would simplify quality assurance (QA) and, therefore, the reliability and consistency of risk results. Among the classes of data used in RADTRAN 4 (and INTERTRAN 2) and the supplemental calculational capabilities that are essentially invariant for all countries and regions are: (1) radionuclide characteristics such as half-life, photon energy, and dose-conversion factors; (2) characteristics of radioactive-material packages found in international commerce; (3) features of highly standardized international transportation modes (primarily sea and air); and (4) uncertainty analysis. These features and their related QA benefits are discussed

  2. Diagnostic accuracy of dual energy CT angiography in patients with diabetes mellitus; Diagnostische Genauigkeit der Dual-energy-CT-Angiographie bei Patienten mit Diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Schabel, C.; Bongers, M.N.; Syha, R. [Klinikum der Eberhard-Karls-Universitaet, Abteilung fuer Diagnostische und Interventionelle Radiologie, Tuebingen (Germany); Klinikum der Eberhard-Karls-Universitaet, Sektion fuer Experimentelle Radiologie der Abteilung fuer Diagnostische und Interventionelle Radiologie, Tuebingen (Germany); Ketelsen, D.; Homann, G.; Notohamiprodjo, M.; Nikolaou, K.; Bamberg, F. [Klinikum der Eberhard-Karls-Universitaet, Abteilung fuer Diagnostische und Interventionelle Radiologie, Tuebingen (Germany); Thomas, C. [Universitaetsklinikum Duesseldorf, Abteilung fuer Diagnostische und Interventionelle Radiologie, Duesseldorf (Germany)

    2015-04-01

    Peripheral arterial disease (PAD) represents a major and highly prevalent complication in patients with diabetes mellitus. The diagnostic, non-invasive work-up by computed tomography angiography (CTA) is limited in the presence of extensive calcification. The aim of the study was to determine the diagnostic accuracy of dual energy CTA (DE-CTA) for the detection and characterization of PAD in patients with diabetes mellitus. In this study 30 diabetic patients with suspected or known PAD were retrospectively included in the analysis. All subjects underwent DE-CTA (Somatom Definition Flash, Siemens Healthcare, Erlangen, Germany) prior to invasive angiography, which served as the reference standard. Blinded analysis included assessment of the presence and degree of peripheral stenosis on curved multiplanar reformatting (MPR) and maximum intensity projections (MIP). Conventional measures of diagnostic accuracy were derived. Among the 30 subjects included in the analysis (83 % male, mean age 70.0 ± 10.5 years, 83 % diabetes type 2), the prevalence of critical stenosis in 331 evaluated vessel segments was high (30 %). Dual energy CT identified critical stenoses with a high sensitivity and good specificity using curved MPR (100 % and 93.1 %, respectively) and MIP images (99 % and 91.8 %, respectively). In stratified analysis, the diagnostic accuracy was higher for stenosis pertaining to the pelvic and thigh vessels as compared with the lower extremities (curved MPR accuracy 97.1 % vs. 99.2 vs. 90.9 %; respectively, p < 0.001). The use of DE-CTA allows reliable detection and characterization of peripheral arterial stenosis in patients with diabetes mellitus with higher accuracy in vessels in the pelvic and thigh regions compared with the vessels in the lower legs. (orig.) [German] Die periphere arterielle Verschlusskrankheit (PAVK) ist eine wesentliche Komplikation des Diabetes mellitus und stellt aufgrund ausgepraegter Gefaessverkalkungen eine diagnostische

  3. Methodology for attainment of density and effective atomic number through dual energy technique using microtomographic images

    International Nuclear Information System (INIS)

    Alves, H.; Lima, I.; Lopes, R.T.

    2014-01-01

    Dual energy technique for computerized microtomography shows itself as a promising method for identification of mineralogy on geological samples of heterogeneous composition. It can also assist with differentiating very similar objects regarding the attenuation coefficient, which are usually not separable during image processing and analysis of microtomographic data. Therefore, the development of a feasible and applicable methodology of dual energy in the analysis of microtomographic images was sought. - Highlights: • Dual energy technique is promising for identification of distribution of minerals. • A feasible methodology of dual energy in analysis of tomographic images was sought. • The dual energy technique is efficient for density and atomic number identification. • Simulation showed that the proposed methodology agrees with theoretical data. • Nondestructive characterization of distribution of density and chemical composition

  4. Single-phase dual-energy CT urography in the evaluation of haematuria.

    Science.gov (United States)

    Ascenti, G; Mileto, A; Gaeta, M; Blandino, A; Mazziotti, S; Scribano, E

    2013-02-01

    To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic-excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic-excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Single-phase DECT urography with synchronous nephrographic-excretory phase enhancement represents an accurate "all-in-one'' approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol. Copyright © 2012 The Royal College of Radiologists. All rights reserved.

  5. Single-phase dual-energy CT urography in the evaluation of haematuria

    International Nuclear Information System (INIS)

    Ascenti, G.; Mileto, A.; Gaeta, M.; Blandino, A.; Mazziotti, S.; Scribano, E.

    2013-01-01

    Aim: To assess the value of a single-phase dual-energy computed tomography (DECT) urography protocol with synchronous nephrographic–excretory phase enhancement and to calculate the potential dose reduction by omitting the unenhanced scan. Materials and methods: Eighty-four patients referred for haematuria underwent CT urography using a protocol that included single-energy unenhanced and dual-energy contrast-enhanced with synchronous nephrographic–excretory phase scans. DECT-based images [virtual unenhanced (VUE), weighted average, and colour-coded iodine overlay] were reconstructed. Opacification degree by contrast media of the upper urinary tract, and image quality of virtual unenhanced images were independently evaluated using a four-point scale. The diagnostic accuracy in detecting urothelial tumours on DECT-based images was determined. The dose of a theoretical dual-phase single-energy protocol was obtained by multiplying the effective dose of the unenhanced single-energy acquisition by two. Radiation dose saving by omitting the unenhanced scan was calculated. Results: The degree of opacification was scored as optimal or good in 86.9% of cases (k = 0.72); VUE image quality was excellent or good in 83.3% of cases (k = 0.82). Sensitivity, specificity, positive predictive value, and negative predictive value for urothelial tumours detection were 85.7, 98.6, 92.3, and 97.1%. Omission of the unenhanced scan led to a mean dose reduction of 42.7 ± 5%. Conclusion: Single-phase DECT urography with synchronous nephrographic–excretory phase enhancement represents an accurate “all-in-one’’ approach with a radiation dose saving up to 45% compared with a standard dual-phase protocol.

  6. Diagnostic accuracy of dual energy CT angiography in patients with diabetes mellitus

    International Nuclear Information System (INIS)

    Schabel, C.; Bongers, M.N.; Syha, R.; Ketelsen, D.; Homann, G.; Notohamiprodjo, M.; Nikolaou, K.; Bamberg, F.; Thomas, C.

    2015-01-01

    Peripheral arterial disease (PAD) represents a major and highly prevalent complication in patients with diabetes mellitus. The diagnostic, non-invasive work-up by computed tomography angiography (CTA) is limited in the presence of extensive calcification. The aim of the study was to determine the diagnostic accuracy of dual energy CTA (DE-CTA) for the detection and characterization of PAD in patients with diabetes mellitus. In this study 30 diabetic patients with suspected or known PAD were retrospectively included in the analysis. All subjects underwent DE-CTA (Somatom Definition Flash, Siemens Healthcare, Erlangen, Germany) prior to invasive angiography, which served as the reference standard. Blinded analysis included assessment of the presence and degree of peripheral stenosis on curved multiplanar reformatting (MPR) and maximum intensity projections (MIP). Conventional measures of diagnostic accuracy were derived. Among the 30 subjects included in the analysis (83 % male, mean age 70.0 ± 10.5 years, 83 % diabetes type 2), the prevalence of critical stenosis in 331 evaluated vessel segments was high (30 %). Dual energy CT identified critical stenoses with a high sensitivity and good specificity using curved MPR (100 % and 93.1 %, respectively) and MIP images (99 % and 91.8 %, respectively). In stratified analysis, the diagnostic accuracy was higher for stenosis pertaining to the pelvic and thigh vessels as compared with the lower extremities (curved MPR accuracy 97.1 % vs. 99.2 vs. 90.9 %; respectively, p < 0.001). The use of DE-CTA allows reliable detection and characterization of peripheral arterial stenosis in patients with diabetes mellitus with higher accuracy in vessels in the pelvic and thigh regions compared with the vessels in the lower legs. (orig.) [de

  7. SU-F-I-06: Evaluation of Imaging Dose for Modulation Layer Based Dual Energy Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Eunbin [Department of Medical Science, Ewha Womans University, Seoul (Korea, Republic of); Ahn, SoHyun; Cho, Samju; Keum, Ki Chang [Department of Radiation Oncology, School of Medicine, Yonsei Univeristy, Seoul (Korea, Republic of); Lee, Rena [Department of Radiation Oncology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: Dual energy cone beam CT system is finding a variety of promising applications in diagnostic CT, both in imaging of endogenous materials and exogenous materials across a range of body sites. Dual energy cone beam CT system to suggest in this study acquire image by rotating 360 degree with half of the X-ray window covered using copper modulation layer. In the region that covered by modulation layer absorb the low energy X-ray by modulation layer. Relative high energy X-ray passes through the layer and contributes to image reconstruction. Dose evaluation should be carried out in order to utilize such an imaging acquirement technology for clinical use. Methods: For evaluating imaging dose of modulation layer based dual energy cone beam CT system, Prototype cone beam CT that configured X-ray tube (D054SB, Toshiba, Japan) and detector (PaxScan 2520V, Varian Medical Systems, Palo Alto, CA) is used. A range of 0.5–2.0 mm thickness of modulation layer is implemented in Monte Carlo simulation (MCNPX, ver. 2.6.0, Los Alamos National Laboratory, USA) with half of X-ray window covered. In-house phantom using in this study that has 3 cylindrical phantoms configured water, Teflon air with PMMA covered for verifying the comparability the various material in human body and is implemented in Monte Carlo simulation. The actual dose with 2.0 mm copper covered half of X-ray window is measured using Gafchromic EBT3 film with 5.0 mm bolus for compared with simulative dose. Results: Dose in phantom reduced 33% by copper modulation layer of 2.0 mm. Scattering dose occurred in modulation layer by Compton scattering effect is 0.04% of overall dose. Conclusion: Modulation layer of that based dual energy cone beam CT has not influence on unnecessary scatter dose. This study was supported by the Radiation Safety Research Programs (1305033) through the Nuclear Safety and Security Commission.

  8. WE-FG-207B-10: Dual-Energy CT Monochromatic Image Consistency Across Vendors and Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, M; Wood, C; Cody, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: Although dual-energy CT provides improved sensitivity of HU for certain tissue types at lower simulated energy levels, if these values vary by scanner type they may impact clinical patient management decisions. Each manufacturer has selected a specific dual-energy CT approach (or in one case, three different approaches); understanding HU variability among low monochromatic images may be required when more than one dual-energy CT scanner type is available for use. Methods: A large elliptical dualenergy quality control phantom (Gammex Inc.; Middleton, WI) containing several standard tissue type materials was scanned at least three times on each of the following systems: GE HD750, prototype GE Revolution CT with GSI, Siemens Flash, Siemens Edge, Siemens AS 128, and Philips IQon. Images were generated at 50, 70, and 140 keV. Soft tissue and Iodine HU were measured on a single central 5mm-thick image; NIST constants were used to calculate the ideal HU for each material. Scan acquisitions were approximately dose-matched (∼25mGy CTDIvol) and image parameters were held as consistent as possible (thickness, kernel, no noise reduction). Results: Measured soft tissue (29 HU at 120 kVp) varied from 28 HU to 44 HU at 50 keV (excluding one outlier), from 21 HU to 31 HU at 70 keV, and from 19 HU to 32 HU at 140 keV. Measured iodine (5mg/ml, 106 HU at 120 kVp) varied from 246 HU to 280 HU at 50 keV, from 123 HU to 129 HU at 70 keV, and from 22 HU to 32 HU at 140 keV. Conclusion: Measured HU in standard rods across 3 dual-energy CT manufacturers and 6 scanner models varied directly with monochromatic level, with the most variability was observed at 50 keV and least variability at 70keV. Future work will include additional scanner platforms and how measurement variability impacts radiologists. This research has been supported by funds from Dr. William Murphy, Jr., the John S. Dunn, Sr. Distinguished Chair in Diagnostic Imaging at MD Anderson Cancer Center.

  9. The construction and evaluation of a prototype system for an image intensifier-based volume computed tomography imager

    International Nuclear Information System (INIS)

    Ning, R.

    1989-01-01

    A volumetric reconstruction of a three-dimensional (3-D) object has been at the forefront of exploration in medical applications for a long time. To achieve this goal, a prototype system for an image intensifier(II)-based volume computed tomography (CT) imager has been constructed. This research has been concerned with constructing and evaluating such a prototype system by phantom studies. The prototype system consists of a fixed x-ray tube, a specially designed aluminum filter that will reduce the dynamic range of projection data, an antiscatter grid, a conventional image intensifier optically coupled to a charge-coupled device (CCC) camera, a computer controlled turntable on which phantoms are placed, a digital computer including an A/D converter and a graphic station that displays the reconstructed images. In this study, three different phantoms were used: a vascular phantom, a resolution phantom and a Humanoid reg-sign chest phantom. The direct 3-D reconstruction from the projections was performed using a cone beam algorithm and vascular reconstruction algorithms. The image performance of the system for the direct 3-D reconstruction was evaluated. The spatial resolution limits of the system were estimated through observing the reconstructed images of the resolution phantom. By observing the images reconstructed from the projections, it can be determined that the image performance of the prototype system for a direct 3-D reconstruction is reasonably good and that the vascular reconstruction algorithms work very well. The results also indicate that the 3-D reconstructions obtained with the 11-based volume CT imager have nearly equally good resolution in x, y and z directions and are superior to a conventional CT in the resolution of the z direction

  10. Automated materials discrimination using 3D dual energy X ray images

    International Nuclear Information System (INIS)

    Wang, Ta Wee

    2002-01-01

    The ability of a human observer to identify an explosive device concealed in complex arrangements of objects routinely encountered in the 2D x-ray screening of passenger baggage at airports is often problematic. Standard dual-energy x-ray techniques enable colour encoding of the resultant images in terms of organic, inorganic and metal substances. This transmission imaging technique produces colour information computed from a high-energy x-ray signal and a low energy x-ray signal (80keV eff ≤ 13) to be automatically discriminated from many layers of overlapping substances. This is achieved by applying a basis materials subtraction technique to the data provided by a wavelet image segmentation algorithm. This imaging technique is reliant upon the image data for the masking substances to be discriminated independently of the target material. Further work investigated the extraction of depth data from stereoscopic images to estimate the mass density of the target material. A binocular stereoscopic dual-energy x-ray machine previously developed by the Vision Systems Group at The Nottingham Trent University in collaboration with The Home Office Science and Technology Group provided the image data for the empirical investigation. This machine utilises a novel linear castellated dual-energy x-ray detector recently developed by the Vision Systems Group. This detector array employs half the number of scintillator-photodiode sensors in comparison to a conventional linear dual-energy sensor. The castellated sensor required the development of an image enhancement algorithm to remove the spatial interlace effect in the resultant images prior to the calibration of the system for materials discrimination. To automate the basis materials subtraction technique a wavelet image segmentation and classification algorithm was developed. This enabled overlapping image structures in the x-rayed baggage to be partitioned. A series of experiments was conducted to investigate the

  11. Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa

    DEFF Research Database (Denmark)

    Weihe, Johan Petur; Birger Morillon, Melanie; Lambrechtsen, Jess

    Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa......Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa...

  12. Dual energy scanning beam laminographic x-radiography

    Science.gov (United States)

    Majewski, S.; Wojcik, R.F.

    1998-04-21

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

  13. Megavoltage cargo radiography with dual energy material decomposition

    Science.gov (United States)

    Shikhaliev, Polad M.

    2018-02-01

    Megavoltage (MV) radiography has important applications in imaging large cargos for detecting illicit materials. A useful feature of MV radiography is the possibility of decomposing and quantifying materials with different atomic numbers. This can be achieved by imaging cargo at two different X-ray energies, or dual energy (DE) radiography. The performance of both single energy and DE radiography depends on beam energy, beam filtration, radiation dose, object size, and object content. The purpose of this work was to perform comprehensive qualitative and quantitative investigations of the image quality in MV radiography depending on the above parameters. A digital phantom was designed including Fe background with thicknesses of 2cm, 6cm, and 18cm, and materials samples of Polyethylene, Fe, Pb, and U. The single energy images were generated at x-ray beam energies 3.5MV, 6MV, and 9MV. The DE material decomposed images were generated using interlaced low and high energy beams 3.5/6MV and 6/9MV. The X-ray beams were filtered by low-Z (Polyethylene) and high-Z (Pb) filters with variable thicknesses. The radiation output of the accelerator was kept constant for all beam energies. The image quality metrics was signal-to-noise ratio (SNR) of the particular sample over a particular background. It was found that the SNR depends on the above parameters in a complex way, but can be optimized by selecting a particular set of parameters. For some imaging setups increased filter thicknesses, while strongly absorbing the beams, increased the SNR of material decomposed images. Beam hardening due to polyenergetic x-ray spectra resulted in material decomposition errors, but this could be addressed using region of interest decomposition. It was shown that it is not feasible to separate the materials with close atomic numbers using the DE method. Particularly, Pb and U were difficult to decompose, at least at the dose levels allowed by radiation source and safety requirements.

  14. Developments in dual-energy, single-exposure chest radiography

    International Nuclear Information System (INIS)

    Ho Jungtsuoe.

    1990-01-01

    Conventional chest radiography (CCR), the most commonly performed technique for the diagnosis of lung cancer, does not detect a high percentage of these tumors. One reason for errors is the overlap of tumor image with bone image in a chest radiograph. Dual-energy (DE) radiography has been suggested as the most effective method to eliminate bone contrast for better lung tumor visualization. DE radiography also provides a bone image from which benign nodules can be identified by the presence of nodule calcification. The purpose of this study is to evaluate the performance of a film-screen based DE, single exposure technique in lung nodule detection and to improve its performance by both hardware (HD) and software developments (SD) to increase the accuracy of lung cancer diagnosis. Previous implementation of the technique resulted in small residual tissue contrast and incomplete tissue subtraction due to screen selection and x-ray beam hardening, respectively. HD, including uses of a new screen pair (Y 2 O 2 S/CaWO 4 ) and a K-edge filter (europium), were studied to improve residual tissue contrast by increasing the energy separation. Successful SD included a three-dimensional interpolation algorithm and noise suppression methods to achieve complete tissue subtraction and noise reduction, respectively. The results show that the new screen pair performed better than LaOBr/CaWo 4 ; the use of K-edge filter produced more residual tissue contrast than that obtained without it. Even though the dual exposure technique performed better than the single exposure technique in a simulated lung nodule detection study, the difference between the two techniques was statistically insignificant and they both performed better than CCR. Based on these encouraging results, the author concludes that the film-screen based DE, single exposure technique, with the HD and SD holds promise for further clinical study

  15. Multimaterial Decomposition Algorithm for the Quantification of Liver Fat Content by Using Fast-Kilovolt-Peak Switching Dual-Energy CT: Clinical Evaluation.

    Science.gov (United States)

    Hyodo, Tomoko; Yada, Norihisa; Hori, Masatoshi; Maenishi, Osamu; Lamb, Peter; Sasaki, Kosuke; Onoda, Minori; Kudo, Masatoshi; Mochizuki, Teruhito; Murakami, Takamichi

    2017-04-01

    Purpose To assess the clinical accuracy and reproducibility of liver fat quantification with the multimaterial decomposition (MMD) algorithm, comparing the performance of MMD with that of magnetic resonance (MR) spectroscopy by using liver biopsy as the reference standard. Materials and Methods This prospective study was approved by the institutional ethics committee, and patients provided written informed consent. Thirty-three patients suspected of having hepatic steatosis underwent non-contrast material-enhanced and triple-phase dynamic contrast-enhanced dual-energy computed tomography (CT) (80 and 140 kVp) and single-voxel proton MR spectroscopy within 30 days before liver biopsy. Percentage fat volume fraction (FVF) images were generated by using the MMD algorithm on dual-energy CT data to measure hepatic fat content. FVFs determined by using dual-energy CT and percentage fat fractions (FFs) determined by using MR spectroscopy were compared with histologic steatosis grade (0-3, as defined by the nonalcoholic fatty liver disease activity score system) by using Jonckheere-Terpstra trend tests and were compared with each other by using Bland-Altman analysis. Real non-contrast-enhanced FVFs were compared with triple-phase contrast-enhanced FVFs to determine the reproducibility of MMD by using Bland-Altman analyses. Results Both dual-energy CT FVF and MR spectroscopy FF increased with increasing histologic steatosis grade (trend test, P algorithm quantifying hepatic fat in dual-energy CT images is accurate and reproducible across imaging phases. © RSNA, 2017 Online supplemental material is available for this article.

  16. Clinical evaluation of dual-energy bone removal in CT angiography of the head and neck: comparison with conventional bone-subtraction CT angiography

    International Nuclear Information System (INIS)

    Deng, K.; Liu, C.; Ma, R.; Sun, C.; Wang, X.-M.; Ma, Z.-T.; Sun, X.-L.

    2009-01-01

    Aim: To evaluate the bone-subtraction effect of dual-energy bone removal in computed tomography angiography (CTA) of the head and neck in comparison with conventional bone-subtraction CTA. Material and Methods: The study comprised 52 patients who were divided into two groups at random, and examined using dual-source CT for head and neck CTA. Dual-energy bone removal CTA and conventional bone-subtraction CTA were applied to each of the two groups, respectively. The bone subtraction was performed automatically in both methods. Vascular structures, as well as brain tissue remained visible. The subtracted images were further processed with maximum intensity projection (MIP) and volume-rendering technique (VRT) for image evaluation. Two experienced radiologists reviewed the resulting subtracted and non-subtracted volume data with respect to the delineation and detection of image quality and vascular pathology. Results: The means of the weighted CT dose index (CTDIvol) for bone-removal dual-energy CTA and conventional bone-subtraction CTA were 20.56 ± 0.01 mGy and 25.57 ± 0.56 mGy, respectively. There was a significant difference between them. The percentage of carotid and vertebral arteries and all other vessels that could be successfully assessed with these two methods were 87.8, 68, and 83%, and 93.5, 91.8, and 92.6%, respectively. There were no significant differences in the visualization of the carotid arteries; however, there were significant differences in the visualization of the vertebral arteries. Conclusion: Compared with conventional bone-subtraction CTA, dual-energy bone-removal CTA had a lower radiation dose. It eliminated most bones in the head and neck successfully; however, the bone subtraction effect around the vertebral artery was unsatisfactory. Dual-energy bone-removal CTA provides a new method for detecting vascular diseases in routine clinical work.

  17. Material Separation Using Dual-Energy CT: Current and Emerging Applications.

    Science.gov (United States)

    Patino, Manuel; Prochowski, Andrea; Agrawal, Mukta D; Simeone, Frank J; Gupta, Rajiv; Hahn, Peter F; Sahani, Dushyant V

    2016-01-01

    Dual-energy (DE) computed tomography (CT) offers the opportunity to generate material-specific images on the basis of the atomic number Z and the unique mass attenuation coefficient of a particular material at different x-ray energies. Material-specific images provide qualitative and quantitative information about tissue composition and contrast media distribution. The most significant contribution of DE CT-based material characterization comes from the capability to assess iodine distribution through the creation of an image that exclusively shows iodine. These iodine-specific images increase tissue contrast and amplify subtle differences in attenuation between normal and abnormal tissues, improving lesion detection and characterization in the abdomen. In addition, DE CT enables computational removal of iodine influence from a CT image, generating virtual noncontrast images. Several additional materials, including calcium, fat, and uric acid, can be separated, permitting imaging assessment of metabolic imbalances, elemental deficiencies, and abnormal deposition of materials within tissues. The ability to obtain material-specific images from a single, contrast-enhanced CT acquisition can complement the anatomic knowledge with functional information, and may be used to reduce the radiation dose by decreasing the number of phases in a multiphasic CT examination. DE CT also enables generation of energy-specific and virtual monochromatic images. Clinical applications of DE CT leverage both material-specific images and virtual monochromatic images to expand the current role of CT and overcome several limitations of single-energy CT. (©)RSNA, 2016.

  18. Computerized detection of lung nodules by means of "virtual dual-energy" radiography.

    Science.gov (United States)

    Chen, Sheng; Suzuki, Kenji

    2013-02-01

    Major challenges in current computer-aided detection (CADe) schemes for nodule detection in chest radiographs (CXRs) are to detect nodules that overlap with ribs and/or clavicles and to reduce the frequent false positives (FPs) caused by ribs. Detection of such nodules by a CADe scheme is very important, because radiologists are likely to miss such subtle nodules. Our purpose in this study was to develop a CADe scheme with improved sensitivity and specificity by use of "virtual dual-energy" (VDE) CXRs where ribs and clavicles are suppressed with massive-training artificial neural networks (MTANNs). To reduce rib-induced FPs and detect nodules overlapping with ribs, we incorporated the VDE technology in our CADe scheme. The VDE technology suppressed rib and clavicle opacities in CXRs while maintaining soft-tissue opacity by use of the MTANN technique that had been trained with real dual-energy imaging. Our scheme detected nodule candidates on VDE images by use of a morphologic filtering technique. Sixty morphologic and gray-level-based features were extracted from each candidate from both original and VDE CXRs. A nonlinear support vector classifier was employed for classification of the nodule candidates. A publicly available database containing 140 nodules in 140 CXRs and 93 normal CXRs was used for testing our CADe scheme. All nodules were confirmed by computed tomography examinations, and the average size of the nodules was 17.8 mm. Thirty percent (42/140) of the nodules were rated "extremely subtle" or "very subtle" by a radiologist. The original scheme without VDE technology achieved a sensitivity of 78.6% (110/140) with 5 (1165/233) FPs per image. By use of the VDE technology, more nodules overlapping with ribs or clavicles were detected and the sensitivity was improved substantially to 85.0% (119/140) at the same FP rate in a leave-one-out cross-validation test, whereas the FP rate was reduced to 2.5 (583/233) per image at the same sensitivity level as the

  19. Predictive value of low tube voltage and dual-energy CT for successful shock wave lithotripsy: an in vitro study.

    Science.gov (United States)

    Largo, Remo; Stolzmann, Paul; Fankhauser, Christian D; Poyet, Cédric; Wolfsgruber, Pirmin; Sulser, Tullio; Alkadhi, Hatem; Winklhofer, Sebastian

    2016-06-01

    This study investigates the capabilities of low tube voltage computed tomography (CT) and dual-energy CT (DECT) for predicting successful shock wave lithotripsy (SWL) of urinary stones in vitro. A total of 33 urinary calculi (six different chemical compositions; mean size 6 ± 3 mm) were scanned using a dual-source CT machine with single- (120 kVp) and dual-energy settings (80/150, 100/150 Sn kVp) resulting in six different datasets. The attenuation (Hounsfield Units) of calculi was measured on single-energy CT images and the dual-energy indices (DEIs) were calculated from DECT acquisitions. Calculi underwent SWL and the number of shock waves for successful disintegration was recorded. The prediction of required shock waves regarding stone attenuation/DEI was calculated using regression analysis (adjusted for stone size and composition) and the correlation between CT attenuation/DEI and the number of shock waves was assessed for all datasets. The median number of shock waves for successful stone disintegration was 72 (interquartile range 30-361). CT attenuation/DEI of stones was a significant, independent predictor (P waves with the best prediction at 80 kVp (β estimate 0.576) (P waves ranged between ρ = 0.31 and 0.68 showing the best correlation at 80 kVp (P < 0.001). The attenuation of urinary stones at low tube voltage CT is the best predictor for successful stone disintegration, being independent of stone composition and size. DECT shows no added value for predicting the success of SWL.

  20. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software

    International Nuclear Information System (INIS)

    Lee, Young Han; Song, Ho-Taek; Kim, Sungjun; Suh, Jin-Suck; Park, Kwan Kyu

    2012-01-01

    To assess the usefulness of gemstone spectral imaging (GSI) dual-energy CT (DECT) with/without metal artefact reduction software (MARs). The DECTs were performed using fast kV-switching GSI between 80 and 140 kV. The CT data were retro-reconstructed with/without MARs, by different displayed fields-of-view (DFOV), and with synthesised monochromatic energy in the range 40-140 keV. A phantom study of size and CT numbers was performed in a titanium plate and a stainless steel plate. A clinical study was performed in 26 patients with metallic hardware. All images were retrospectively reviewed in terms of the visualisation of periprosthetic regions and the severity of beam-hardening artefacts by using a five-point scale. The GSI-MARs reconstruction can markedly reduce the metal-related artefacts, and the image quality was affected by the prosthesis composition and DFOV. The spectral CT numbers of the prosthesis and periprosthetic regions showed different patterns on stainless steel and titanium plates. Dual-energy CT with GSI-MARs can reduce metal-related artefacts and improve the delineation of the prosthesis and periprosthetic region. We should be cautious when using GSI-MARs because the image quality was affected by the prosthesis composition, energy (in keV) and DFOV. The metallic composition and size should be considered in metallic imaging with GSI-MARs reconstruction. circle Metal-related artefacts can be troublesome on musculoskeletal computed tomography (CT). circle Gemstone spectral imaging (GSI) with dual-energy CT (DECT) offers a novel solution circle GSI and metallic artefact reduction software (GSI-MAR) can markedly reduce these artefacts. circle However image quality is influenced by the prosthesis composition and other parameters. circle We should be aware about potential overcorrection when using GSI-MARs. (orig.)

  1. Comparative study between rib imaging of DR dual energy subtraction technology and chest imaging

    International Nuclear Information System (INIS)

    Yu Jianming; Lei Ziqiao; Kong Xiangchuang

    2006-01-01

    Objective: To investigate the application value of DR dual energy subtraction technology in rib lesions. Methods: 200 patients were performed with chest DR dual energy subtraction, comparing the rib imaging between DR of thorax and chest imaging using ROC analysis. Results: Among the total of 200 patients, there are 50 cases of rib calcification, 7 cases of rib destruction, 22 cases of rib fracture. The calcification, destruction and fracture were displayed respectively by ribs below diaphragm and rib markings. The analytic parameter of rib imaging of DR dual energy subtraction Az is 0.9367, while that of rib imaging of chest Az is 0.6830. Conclusion: DR dual energy subtraction technology is superior to chest imaging in the displaying of rib lesion and ribs below diaphragm. (authors)

  2. The analysis of hydrocarbons by dual-energy gamma-ray densitometry

    International Nuclear Information System (INIS)

    Taylor, T.; Reynolds, P.W.; Lipsett, J.J.

    1985-11-01

    Various hydrocarbons have been analyzed noninvasively by dual-energy gamma-ray densitometry. The hydrogen/carbon atomic ratio was deduced for pure hydrocarbons while for heavy oil process samples, the ash content was inferred

  3. SU-F-T-407: Artifact Reduction with Dual Energy Or IMAR: Who’s Winning?

    International Nuclear Information System (INIS)

    Elder, E; Schreibmann, E; Dhabaan, A

    2016-01-01

    Purpose: The purpose of this abstract was to evaluate the performance of commercial strategies for artifact reduction in radiation oncology settings. The iterative metal artifact reduction (Siemens iMAR) algorithm and monoenergetic virtual datasets reconstructed from dual energy scans are compared side-by-side in their ability to image in the presence of metal inserts. Methods: A CIRS ATOM Dosimetry Verification Phantom was scanned with and without a metal insert on a SOMATOM Definition AS dual energy scanner. Images with the metal insert were reconstructed with (a) a tradition single energy CT scan with the iMAR option implemented, using different artifact reduction settings and (b) a monoenergetic scan calculated from dual energy scans by recovering differences in the energy-dependence of the attenuation coefficients of different materials and then creating a virtual monoenergetic scan from these coefficients. The iMAR and monoenergetic scans were then compared with the metal-free scan to assess changes in HU numbers and noise within a region around the metal insert. Results: Both the iMAR and dual energy scans reduced artifacts produced by the metal insert. However the iMAR results are dependent of the selected algorithm settings, with a mean HU difference ranging from 0.65 to 90.40 for different options. The mean differences without the iMAR correction were 38.74. When using the dual energy scan, the mean differences were 4.53, that is however attributed to increased noise and not artifacts, as the dual energy scan had the lowest skewness (2.52) compared to the iMAR scans (ranging from 3.90 to 4.88) and the lowest kurtosis (5.72 for dual energy, range of 18.19 to 27.36 for iMAR). Conclusion: Both approaches accurately recovered HU numbers, however the dual energy method provided smaller residual artifacts.

  4. SU-F-T-407: Artifact Reduction with Dual Energy Or IMAR: Who’s Winning?

    Energy Technology Data Exchange (ETDEWEB)

    Elder, E; Schreibmann, E; Dhabaan, A [Department of Radiation Oncology and Winship Cancer Institute of Emory University Atlanta, GA (United States)

    2016-06-15

    Purpose: The purpose of this abstract was to evaluate the performance of commercial strategies for artifact reduction in radiation oncology settings. The iterative metal artifact reduction (Siemens iMAR) algorithm and monoenergetic virtual datasets reconstructed from dual energy scans are compared side-by-side in their ability to image in the presence of metal inserts. Methods: A CIRS ATOM Dosimetry Verification Phantom was scanned with and without a metal insert on a SOMATOM Definition AS dual energy scanner. Images with the metal insert were reconstructed with (a) a tradition single energy CT scan with the iMAR option implemented, using different artifact reduction settings and (b) a monoenergetic scan calculated from dual energy scans by recovering differences in the energy-dependence of the attenuation coefficients of different materials and then creating a virtual monoenergetic scan from these coefficients. The iMAR and monoenergetic scans were then compared with the metal-free scan to assess changes in HU numbers and noise within a region around the metal insert. Results: Both the iMAR and dual energy scans reduced artifacts produced by the metal insert. However the iMAR results are dependent of the selected algorithm settings, with a mean HU difference ranging from 0.65 to 90.40 for different options. The mean differences without the iMAR correction were 38.74. When using the dual energy scan, the mean differences were 4.53, that is however attributed to increased noise and not artifacts, as the dual energy scan had the lowest skewness (2.52) compared to the iMAR scans (ranging from 3.90 to 4.88) and the lowest kurtosis (5.72 for dual energy, range of 18.19 to 27.36 for iMAR). Conclusion: Both approaches accurately recovered HU numbers, however the dual energy method provided smaller residual artifacts.

  5. A computational tool for the rapid design and prototyping of propellers for underwater vehicles

    OpenAIRE

    D'Epagnier, Kathryn Port.

    2007-01-01

    An open source, MATLAB (trademarked)-based propeller design code MPVL was improved to include rapid prototyping capabilities as well as other upgrades as part of this effort. The resulting code, OpenPVL is described in this thesis. In addition, results from the development code BasicPVL are presented. An intermediate code, BasicPVL, was created by the author while OpenPVL was under development, and it provides guidance for initial propeller designs and propeller efficiency analysis. OpenPVL i...

  6. Design of parallel dual-energy X-ray beam and its performance for security radiography

    International Nuclear Information System (INIS)

    Kim, Kwang Hyun; Myoung, Sung Min; Chung, Yong Hyun

    2011-01-01

    A new concept of dual-energy X-ray beam generation and acquisition of dual-energy security radiography is proposed. Erbium (Er) and rhodium (Rh) with a copper filter were positioned in front of X-ray tube to generate low- and high-energy X-ray spectra. Low- and high-energy X-rays were guided to separately enter into two parallel detectors. Monte Carlo code of MCNPX was used to derive an optimum thickness of each filter for improved dual X-ray image quality. It was desired to provide separation ability between organic and inorganic matters for the condition of 140 kVp/0.8 mA as used in the security application. Acquired dual-energy X-ray beams were evaluated by the dual-energy Z-map yielding enhanced performance compared with a commercial dual-energy detector. A collimator for the parallel dual-energy X-ray beam was designed to minimize X-ray beam interference between low- and high-energy parallel beams for 500 mm source-to-detector distance.

  7. Multiscale deformable registration for dual-energy x-ray imaging

    International Nuclear Information System (INIS)

    Gang, G. J.; Varon, C. A.; Kashani, H.; Richard, S.; Paul, N. S.; Van Metter, R.; Yorkston, J.; Siewerdsen, J. H.

    2009-01-01

    Dual-energy (DE) imaging of the chest improves the conspicuity of subtle lung nodules through the removal of overlying anatomical noise. Recent work has shown double-shot DE imaging (i.e., successive acquisition of low- and high-energy projections) to provide detective quantum efficiency, spectral separation (and therefore contrast), and radiation dose superior to single-shot DE imaging configurations (e.g., with a CR cassette). However, the temporal separation between high-energy (HE) and low-energy (LE) image acquisition can result in motion artifacts in the DE images, reducing image quality and diminishing diagnostic performance. This has motivated the development of a deformable registration technique that aligns the HE image onto the LE image before DE decomposition. The algorithm reported here operates in multiple passes at progressively smaller scales and increasing resolution. The first pass addresses large-scale motion by means of mutual information optimization, while successive passes (2-4) correct misregistration at finer scales by means of normalized cross correlation. Evaluation of registration performance in 129 patients imaged using an experimental DE imaging prototype demonstrated a statistically significant improvement in image alignment. Specific to the cardiac region, the registration algorithm was found to outperform a simple cardiac-gating system designed to trigger both HE and LE exposures during diastole. Modulation transfer function (MTF) analysis reveals additional advantages in DE image quality in terms of noise reduction and edge enhancement. This algorithm could offer an important tool in enhancing DE image quality and potentially improving diagnostic performance.

  8. Prototype of an auto-calibrating, context-aware, hybrid brain-computer interface.

    Science.gov (United States)

    Faller, J; Torrellas, S; Miralles, F; Holzner, C; Kapeller, C; Guger, C; Bund, J; Müller-Putz, G R; Scherer, R

    2012-01-01

    We present the prototype of a context-aware framework that allows users to control smart home devices and to access internet services via a Hybrid BCI system of an auto-calibrating sensorimotor rhythm (SMR) based BCI and another assistive device (Integra Mouse mouth joystick). While there is extensive literature that describes the merit of Hybrid BCIs, auto-calibrating and co-adaptive ERD BCI training paradigms, specialized BCI user interfaces, context-awareness and smart home control, there is up to now, no system that includes all these concepts in one integrated easy-to-use framework that can truly benefit individuals with severe functional disabilities by increasing independence and social inclusion. Here we integrate all these technologies in a prototype framework that does not require expert knowledge or excess time for calibration. In a first pilot-study, 3 healthy volunteers successfully operated the system using input signals from an ERD BCI and an Integra Mouse and reached average positive predictive values (PPV) of 72 and 98% respectively. Based on what we learned here we are planning to improve the system for a test with a larger number of healthy volunteers so we can soon bring the system to benefit individuals with severe functional disability.

  9. Development of a research prototype computer `Wearables` that one can wear on his or her body; Minitsukeru computer `Wearables` kenkyuyo shisakuki wo kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    Development has been made on a prototype of a wearable computer `Wearables` that makes the present notebook type PC still smaller in size, can be worn on human body for utilization at any time and from anywhere, and aims at realizing a social infrastructure. Using the company`s portable PC, Libretto as the base, the keyboard and the liquid crystal display panel were removed. To replace these functions, a voice inputting microphone, and various types of head mounting type displays (glasses type) mounted on a head to see images are connected. Provided as the means for information communication between the prototype computer and outside environments are infrared ray interface and data communication function using wireless (electric wave) communications. The wireless desk area network (DAN) technology that can structure dynamically a network between multiple number of computers has realized smooth communications with external environments. The voice recognition technology that can work efficiently against noise has realized keyboard-free operation that gives no neural stress to users. The `wearable computer` aims at not only users utilizing it simply wearing it, but also providing a new perception ability that could not have been seen or heard directly to date, that is realizing the digital sensation. With the computer, a society will be structured in which people can live comfortably and safely, maintaining conversations between the users and the computers, and interactions between the surrounding environment and the social infrastructures, with protection of individual privacy and information security taken into consideration. The company is working with the Massachusetts Institute of Technology (MIT) for research and development of the `wearable computer` as to how it can be utilized and basic technologies that will be required in the future. (translated by NEDO)

  10. Accuracy of using computer-aided rapid prototyping templates for mandible reconstruction with an iliac crest graft

    Science.gov (United States)

    2014-01-01

    Background This study aimed to evaluate the accuracy of surgical outcomes in free iliac crest mandibular reconstructions that were carried out with virtual surgical plans and rapid prototyping templates. Methods This study evaluated eight patients who underwent mandibular osteotomy and reconstruction with free iliac crest grafts using virtual surgical planning and designed guiding templates. Operations were performed using the prefabricated guiding templates. Postoperative three-dimensional computer models were overlaid and compared with the preoperatively designed models in the same coordinate system. Results Compared to the virtual osteotomy, the mean error of distance of the actual mandibular osteotomy was 2.06 ± 0.86 mm. When compared to the virtual harvested grafts, the mean error volume of the actual harvested grafts was 1412.22 ± 439.24 mm3 (9.12% ± 2.84%). The mean error between the volume of the actual harvested grafts and the shaped grafts was 2094.35 ± 929.12 mm3 (12.40% ± 5.50%). Conclusions The use of computer-aided rapid prototyping templates for virtual surgical planning appears to positively influence the accuracy of mandibular reconstruction. PMID:24957053

  11. Development of a dual-energy silicon X-ray diode and its application to gadolinium imaging

    International Nuclear Information System (INIS)

    Sato, Yuichi; Sato, Eiichi; Ehara, Shigeru; Oda, Yasuyuki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya

    2015-01-01

    To perform dual-energy X-ray imaging, we developed a dual-energy silicon X-ray diode (DE-Si-XD) consisting of two ceramic-substrate silicon X-ray diodes (Si-XD) and a 0.2-mm-thick copper filter. The Si-XD is a high-sensitivity Si photodiode selected for detecting X-rays. In the front Si-XD, X-ray photons from an X-ray tube are directly detected. Because low-energy photons are absorbed by the front Si-XD and the filter, the average photon energy increases when the back Si-XD is used. In the front Si-XD, the photocurrents flowing through the Si-XD are converted into voltages and amplified using current–voltage and voltage–voltage (V–V) amplifiers. The output from the V–V amplifier is input to an analog-digital converter through an integrator for smoothing the voltage. The same amplification method is also used in the back Si-XD. Dual-energy computed tomography (DE–CT) is accomplished by repeated linear scans and rotations of the object, and two projection curves of the object are obtained simultaneously by linear scanning at a tube voltage of 90 kV and a current of 1.0 mA. In the DE–CT, the exposure time for obtaining a tomogram is 10 min with scan steps of 0.5 mm and rotation steps of 1.0°. Using gadolinium-based contrast media, energy subtraction was performed. - Highlights: • Dual-energy X-ray diode consists of two Si diodes and a Cu filter. • Low and high-energy X-rays are detected using front and back diodes. • Two-different-energy tomograms were easily obtained simultaneously. • Gd-K-edge CT was accomplished using the back diode. • Energy subtraction was performed easily to image a target object

  12. Multiphase Venturi Dual Energy Gamma Ray combination performance in NUEX flow loop; Desempenho no flowloop do NUEX da medicao multifasica Venturi Dual Energy Gamma Ray

    Energy Technology Data Exchange (ETDEWEB)

    Barreiros, Claudio; Taranto, Cleber; Costa, Alcemir [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Pinguet, Bruno; Heluey, Vitor; Bessa, Fabiano; Loicq, Olivier [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Multiphase Venturi Dual Energy Gamma Ray Combination, Vx* technology, arrived in Brazil in 2000. PETROBRAS, Brazilian Oil Company, has been putting big efforts in its production business and also has demonstrated a large interest in having a multiphase meter approved by ANP for back allocation purposes. The oil industry was looking for ways to improve the back allocation process using an approved on line multiphase flow measurement device, thus replacing punctual test done today by a permanent monitoring device. Considering this scenario, a partnership project between PETROBRAS and Schlumberger was created in Brazil. The main objective of this project, which was held in NUEX flow loop, was to demonstrate to INMETRO (Brazilian Metrology Institute) that the Multiphase Venturi Dual Energy Gamma Ray Combination meter is able to be used for back allocation purpose. PETROBRAS and Schlumberger elaborated a complete methodology in the NUEX flow loop to demonstrate the results and benefits of the Multiphase Venturi Dual Energy Gamma Ray Combination meter. The test was witnessed by INMETRO and had a very good performance at the end. The results were within what was expected by Schlumberger, PETROBRAS and INMETRO. These results has been very useful to PETROBRAS in order to start using the Venturi Dual Energy Gamma Ray technology for well allocation purposes. (author)

  13. [Quantitative image of bone mineral content--dual energy subtraction in a single exposure].

    Science.gov (United States)

    Katoh, T

    1990-09-25

    A dual energy subtraction system was constructed on an experimental basis for the quantitative image of bone mineral content. The system consists of a radiography system and an image processor. Two radiograms were taken with dual x-ray energy in a single exposure using an x-ray beam dichromized by a tin filter. In this system, a film cassette was used where a low speed film-screen system, a copper filter and a high speed film-screen system were layered on top of each other. The images were read by a microdensitometer and processed by a personal computer. The image processing included the corrections of the film characteristics and heterogeneity in the x-ray field, and the dual energy subtraction in which the effect of the high energy component of the dichromized beam on the tube side image was corrected. In order to determine the accuracy of the system, experiments using wedge phantoms made of mixtures of epoxy resin and bone mineral-equivalent materials in various fractions were performed for various tube potentials and film processing conditions. The results indicated that the relative precision of the system was within +/- 4% and that the propagation of the film noise was within +/- 11 mg/cm2 for the 0.2 mm pixels. The results also indicated that the system response was independent of the tube potential and the film processing condition. The bone mineral weight in each phalanx of the freshly dissected hand of a rhesus monkey was measured by this system and compared with the ash weight. The results showed an error of +/- 10%, slightly larger than that of phantom experiments, which is probably due to the effect of fat and the variation of focus-object distance. The air kerma in free air at the object was approximately 0.5 mGy for one exposure. The results indicate that this system is applicable to clinical use and provides useful information for evaluating a time-course of localized bone disease.

  14. TH-A-18C-07: Noise Suppression in Material Decomposition for Dual-Energy CT

    International Nuclear Information System (INIS)

    Dong, X; Petrongolo, M; Wang, T; Zhu, L

    2014-01-01

    Purpose: A general problem of dual-energy CT (DECT) is that the decomposition is sensitive to noise in the two sets of dual-energy projection data, resulting in severely degraded qualities of decomposed images. We have previously proposed an iterative denoising method for DECT. Using a linear decomposition function, the method does not gain the full benefits of DECT on beam-hardening correction. In this work, we expand the framework of our iterative method to include non-linear decomposition models for noise suppression in DECT. Methods: We first obtain decomposed projections, which are free of beam-hardening artifacts, using a lookup table pre-measured on a calibration phantom. First-pass material images with high noise are reconstructed from the decomposed projections using standard filter-backprojection reconstruction. Noise on the decomposed images is then suppressed by an iterative method, which is formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, we include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Analytical formulae are derived to compute the variance-covariance matrix from the measured decomposition lookup table. Results: We have evaluated the proposed method via phantom studies. Using non-linear decomposition, our method effectively suppresses the streaking artifacts of beam-hardening and obtains more uniform images than our previous approach based on a linear model. The proposed method reduces the average noise standard deviation of two basis materials by one order of magnitude without sacrificing the spatial resolution. Conclusion: We propose a general framework of iterative denoising for material decomposition of DECT. Preliminary phantom studies have shown the proposed method improves the image uniformity and reduces noise level without resolution loss. In the future

  15. Dual Energy CT Angiography of Peripheral Arterial Disease: Feasibility of Using Lower Contrast Medium Volume.

    Directory of Open Access Journals (Sweden)

    Abdulrahman Almutairi

    Full Text Available One of the main drawbacks associated with Dual Energy Computed Tomography Angiography (DECTA is the risk of developing contrast medium-induced nephropathy (CIN. The aim of the present study was firstly, to design an optimal CT imaging protocol by determining the feasibility of using a reduced contrast medium volume in peripheral arterial DECTA, and secondly, to compare the results with those obtained from using routine contrast medium volume.Thirty four patients underwent DECTA for the diagnosis of peripheral arterial disease. They were randomly divided into two groups: Group 1 (routine contrast volume group with n = 17, injection rate 4-5 ml/s, and 1.5 ml/kg of contrast medium, and Group 2 ((low contrast volume group, with n = 17, injection rate 4-5ml/s, and contrast medium volume 0.75 ml/kg. A fast kilovoltage-switching 64-slice CT scanner in the dual-energy mode was employed for the study. A total of 6 datasets of monochromatic images at 50, 55, 60, 65, 70 and 75 keV levels were reconstructed with adaptive statistical iterative reconstruction (ASIR at 50%. A 4-point scale was the tool for qualitative analysis of results. The two groups were compared and assessed quantitatively for image quality on the basis of signal-to-noise ratio (SNR and contrast-to-noise-ratio (CNR. Radiation and contrast medium doses were also compared.The overall mean CT attenuation and mean noise for all lower extremity body parts was significantly lower for the low volume contrast group (p<0.001, and varied significantly between groups (p = 0.001, body parts (p<0.001 and keVs (p<0.001. The interaction between group body parts was significant with CT attenuation and CNR (p = 0.002 and 0.003 respectively, and marginally significant with SNR (p = 0.047, with minimal changes noticed between the two groups. Group 2 (low contrast volume group displayed the lowest image noise between 65 and 70 keV, recorded the highest SNR and CNR at 65 keV, and produced significantly lower

  16. Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner

    International Nuclear Information System (INIS)

    Müller, Mark; Yaroshenko, Andre; Velroyen, Astrid; Tapfer, Arne; Bech, Martin; Pauwels, Bart; Bruyndonckx, Peter; Sasov, Alexander; Pfeiffer, Franz

    2015-01-01

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed

  17. Gouty arthritis: the diagnostic and therapeutic impact of dual-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Finkenstaedt, Tim; Manoliou, Andrei; Higashigaito, Kai; Andreisek, Gustav; Guggenberger, Roman; Alkadhi, Hatem [University Hospital Zurich and University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Toniolo, Martin; Michel, Beat [University Hospital Zurich and University of Zurich, Department of Rheumatology, Zurich (Switzerland)

    2016-11-15

    To determine the diagnostic and therapeutic impact of dual-energy computed tomography (DECT) in gout. Forty-three patients with (n = 20) and without a history of gout (n = 23) showing non-specific soft tissue deposits underwent DECT after unrewarding arthrocentesis. Two blinded, independent readers evaluated DECT for the presence of urate crystals. Clinical diagnosis, clinically suspected urate crystal locations, diagnostic thinking and therapeutic decisions were noted before and after DECT. Clinical 1-month follow-up was obtained. DECT showed urate in 26/43 patients (60 %). After DECT, clinical diagnosis of gout was withdrawn in 17/43 (40 %) and was maintained in 16/43 patients (37 %). In 10/43 patients (23 %) the diagnosis was maintained, but DECT revealed urate in clinically unsuspected locations. In 23/43 patients (53 %), a treatment-change based on DECT occurred. Changes in diagnostic thinking occurred more frequently in patients without a history of gout (p < 0.001), changes in therapeutic decisions more frequently in patients with a history of gout (p = 0.014). Clinical follow-up indicated beneficial effects of DECT-based diagnoses in 83 % of patients. In patients with or without a history of gout and a recent suspicion for gouty arthritis with an unrewarding arthrocentesis, DECT has a marked diagnostic and therapeutic impact when hyperdense soft-tissue deposits are present. (orig.)

  18. Gouty arthritis: the diagnostic and therapeutic impact of dual-energy CT

    International Nuclear Information System (INIS)

    Finkenstaedt, Tim; Manoliou, Andrei; Higashigaito, Kai; Andreisek, Gustav; Guggenberger, Roman; Alkadhi, Hatem; Toniolo, Martin; Michel, Beat

    2016-01-01

    To determine the diagnostic and therapeutic impact of dual-energy computed tomography (DECT) in gout. Forty-three patients with (n = 20) and without a history of gout (n = 23) showing non-specific soft tissue deposits underwent DECT after unrewarding arthrocentesis. Two blinded, independent readers evaluated DECT for the presence of urate crystals. Clinical diagnosis, clinically suspected urate crystal locations, diagnostic thinking and therapeutic decisions were noted before and after DECT. Clinical 1-month follow-up was obtained. DECT showed urate in 26/43 patients (60 %). After DECT, clinical diagnosis of gout was withdrawn in 17/43 (40 %) and was maintained in 16/43 patients (37 %). In 10/43 patients (23 %) the diagnosis was maintained, but DECT revealed urate in clinically unsuspected locations. In 23/43 patients (53 %), a treatment-change based on DECT occurred. Changes in diagnostic thinking occurred more frequently in patients without a history of gout (p < 0.001), changes in therapeutic decisions more frequently in patients with a history of gout (p = 0.014). Clinical follow-up indicated beneficial effects of DECT-based diagnoses in 83 % of patients. In patients with or without a history of gout and a recent suspicion for gouty arthritis with an unrewarding arthrocentesis, DECT has a marked diagnostic and therapeutic impact when hyperdense soft-tissue deposits are present. (orig.)

  19. Dual-energy CT for detection of traumatic bone bruises in the knee joint

    International Nuclear Information System (INIS)

    Seo, Sang Hyun; Sohn, Young Jun; Lee, Chong Ho; Park, Seong Hoon; Kim, Hye Won; Juhng, Seon Kwan

    2013-01-01

    To evaluate the diagnostic performance of dual-energy computed tomography (DECT) in detecting traumatic bone marrow lesions in patients with acute knee injury. Between August 2011 and June 2012, 22 patients presenting with an acute knee injury, including 4 patients who were referred for bilateral knee trauma, underwent DECT (80 kVp and 140 kVp) and MR imaging. DECT data were postprocessed using a three-dimensional, color-coded, virtual non-calcium technique (VNC). DECT data were graded by 2 blinded independent readers using a four-point system (1 = distinct bone marrow lesion, 2 = less distinct bone marrow lesion, 3 = equivocal, 4 = none) for 6 femoral and tibial regions and 2 patellar regions. Routine MR knee imaging served as the reference standard. MR images showed bone bruises in 81 of 364 regions. The overall sensitivity, specificity, positive predictive value, and negative predictive value of DECT for bone bruises were 65.4%, 98.2%, 91.4%, and 90.8%, respectively, for Reader 1 and 70.3%, 93.6%, 76.0%, and 91.7%, respectively, for Reader 2. In particular, tibial bone bruises could be found more easily with better sensitivity (80.2%). The color-coded VNC technique with reconstructions from the DECT maybe helpful in detecting traumatic bone bruises with moderate sensitivity and excellent specificity compared to MR imaging.

  20. Dual-energy CT for detection of traumatic bone bruises in the knee joint

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Sang Hyun; Sohn, Young Jun; Lee, Chong Ho; Park, Seong Hoon; Kim, Hye Won; Juhng, Seon Kwan [Dept. of Radiology, Wonkwang University Hospital, Iksan (Korea, Republic of)

    2013-12-15

    To evaluate the diagnostic performance of dual-energy computed tomography (DECT) in detecting traumatic bone marrow lesions in patients with acute knee injury. Between August 2011 and June 2012, 22 patients presenting with an acute knee injury, including 4 patients who were referred for bilateral knee trauma, underwent DECT (80 kVp and 140 kVp) and MR imaging. DECT data were postprocessed using a three-dimensional, color-coded, virtual non-calcium technique (VNC). DECT data were graded by 2 blinded independent readers using a four-point system (1 = distinct bone marrow lesion, 2 = less distinct bone marrow lesion, 3 = equivocal, 4 = none) for 6 femoral and tibial regions and 2 patellar regions. Routine MR knee imaging served as the reference standard. MR images showed bone bruises in 81 of 364 regions. The overall sensitivity, specificity, positive predictive value, and negative predictive value of DECT for bone bruises were 65.4%, 98.2%, 91.4%, and 90.8%, respectively, for Reader 1 and 70.3%, 93.6%, 76.0%, and 91.7%, respectively, for Reader 2. In particular, tibial bone bruises could be found more easily with better sensitivity (80.2%). The color-coded VNC technique with reconstructions from the DECT maybe helpful in detecting traumatic bone bruises with moderate sensitivity and excellent specificity compared to MR imaging.

  1. Dual-energy radiography of bone tissues using ZnSe-based scintielectronic detectors

    International Nuclear Information System (INIS)

    Grinyov, B.; Ryzhikov, V.; Lecoq, P.; Naydenov, S.; Opolonin, A.; Lisetskaya, E.; Galkin, S.; Shumeiko, N.

    2007-01-01

    Detectors of the scintillator-photodiode type were obtained on the basis of CsI(Tl), CdWO 4 and ZnSe(Te) crystals, and their comparative study was carried out, aiming at their use in X-ray computer tomography (CT). Because of their low afterglow level (10 ppm after 10 ms), CWO and ZnSe crystals are preferable for this application. A drawback of CWO is its lower (by 3 times) light output as compared with CsI(Tl). ZnSe has low transparence to intrinsic radiation; however, up to energies of 60-70 keV it is superior, as for the whole complex of its parameter, to materials traditionally used for CT detectors. The use of a dual-energy receiving-detecting circuit with a detector pair ZnSe/CsI or ZnSe/CdWO allows efficient distinction between muscular and bone tissues, which supports our earlier theoretical assumptions that this method could be successfully used for separate detection of materials differing in their effective atomic number Z eff and local density (e.g., calcium contents in bone densitometry)

  2. Experimental characterization of a direct conversion amorphous selenium detector with thicker conversion layer for dual-energy contrast-enhanced breast imaging.

    Science.gov (United States)

    Scaduto, David A; Tousignant, Olivier; Zhao, Wei

    2017-08-01

    Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly

  3. Prototype metal artefact reduction algorithm in flat panel computed tomography - evaluation in patients undergoing transarterial hepatic radioembolisation.

    Science.gov (United States)

    Hamie, Qeumars Mustafa; Kobe, Adrian Raoul; Mietzsch, Leif; Manhart, Michael; Puippe, Gilbert Dominique; Pfammatter, Thomas; Guggenberger, Roman

    2018-01-01

    To investigate the effect of an on-site prototype metal artefact reduction (MAR) algorithm in cone-beam CT-catheter-arteriography (CBCT-CA) in patients undergoing transarterial radioembolisation (RE) of hepatic masses. Ethical board approved retrospective study of 29 patients (mean 63.7±13.7 years, 11 female), including 16 patients with arterial metallic coils, undergoing CBCT-CA (8s scan, 200 degrees rotation, 397 projections). Image reconstructions with and without prototype MAR algorithm were evaluated quantitatively (streak-artefact attenuation changes) and qualitatively (visibility of hepatic parenchyma and vessels) in near- (3cm) of artefact sources (metallic coils and catheters). Quantitative and qualitative measurements of uncorrected and MAR corrected images and different artefact sources were compared RESULTS: Quantitative evaluation showed significant reduction of near- and far-field streak-artefacts with MAR for both artefact sources (p0.05). Inhomogeneities of attenuation values were significantly higher for metallic coils compared to catheters (pprototype MAR algorithm improves image quality in proximity of metallic coil and catheter artefacts. • Metal objects cause artefacts in cone-beam computed tomography (CBCT) imaging. • These artefacts can be corrected by metal artefact reduction (MAR) algorithms. • Corrected images show significantly better visibility of nearby hepatic vessels and tissue. • Better visibility may facilitate image interpretation, save time and radiation exposure.

  4. SU-G-IeP2-15: Virtual Insertion of Digital Kidney Stones Into Dual-Source, Dual- Energy CT Projection Data

    International Nuclear Information System (INIS)

    Ferrero, A; Chen, B; Huang, A; Montoya, J; Yu, L; McCollough, C

    2016-01-01

    Purpose: In order to investigate novel methods to more accurately estimate the mineral composition of kidney stones using dual energy CT, it is desirable to be able to combine digital stones of known composition with actual phantom and patient scan data. In this work, we developed and validated a method to insert digital kidney stones into projection data acquired on a dual-source, dual-energy CT system. Methods: Attenuation properties of stones of different mineral composition were computed using tabulated mass attenuation coefficients, the chemical formula for each stone type, and the effective beam energy at each evaluated tube potential. A previously developed method to insert lesions into x-ray CT projection data was extended to include simultaneous dual-energy CT projections acquired on a dual-source gantry (Siemens Somatom Flash). Digital stones were forward projected onto both detectors and the resulting projections added to the physically acquired sinogram data. To validate the accuracy of the technique, digital stones were inserted into different locations in the ACR CT accreditation phantom; low and high contrast resolution, CT number accuracy and noise properties were compared before and after stone insertion. The procedure was repeated for two dual-energy tube potential pairs in clinical use on the scanner, 80/Sn140 kV and 100/Sn140 kV, respectively. Results: The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner. The largest average CT number difference for the 4 insert in the CT number accuracy module of the phantom was 3 HU. Conclusion: A framework was developed and validated for the creation of digital kidney stones of known mineral composition, and their projection-domain insertion into commercial dual-source, dual-energy CT projection data. This will allow a systematic investigation of the impact of scan and reconstruction parameters on stone attenuation and dual-energy

  5. EPCiR prototype

    DEFF Research Database (Denmark)

    2003-01-01

    A prototype of a residential pervasive computing platform based on OSGi involving among other a mock-up of an health care bandage.......A prototype of a residential pervasive computing platform based on OSGi involving among other a mock-up of an health care bandage....

  6. Estimation of bone Calcium-to-Phosphorous mass ratio using dual-energy nonlinear polynomial functions

    International Nuclear Information System (INIS)

    Sotiropoulou, P; Koukou, V; Martini, N; Nikiforidis, G; Michail, C; Kandarakis, I; Fountos, G; Kounadi, E

    2015-01-01

    In this study an analytical approximation of dual-energy inverse functions is presented for the estimation of the calcium-to-phosphorous (Ca/P) mass ratio, which is a crucial parameter in bone health. Bone quality could be examined by the X-ray dual-energy method (XDEM), in terms of bone tissue material properties. Low- and high-energy, log- intensity measurements were combined by using a nonlinear function, to cancel out the soft tissue structures and generate the dual energy bone Ca/P mass ratio. The dual-energy simulated data were obtained using variable Ca and PO 4 thicknesses on a fixed total tissue thickness. The XDEM simulations were based on a bone phantom. Inverse fitting functions with least-squares estimation were used to obtain the fitting coefficients and to calculate the thickness of each material. The examined inverse mapping functions were linear, quadratic, and cubic. For every thickness, the nonlinear quadratic function provided the optimal fitting accuracy while requiring relative few terms. The dual-energy method, simulated in this work could be used to quantify bone Ca/P mass ratio with photon-counting detectors. (paper)

  7. A prototype system for real time computer animation of slow traffic in a driving simulator

    NARCIS (Netherlands)

    Roerdink, JBTM; van Delden, MJB; Hin, AJS; van Wolffelaar, PC; Thalmann, NM; Skala,

    1997-01-01

    The Traffic Research Centre (TRC) of the University of Groningen in the Netherlands has developed a driving simulator with 'intelligent' computer-controlled traffic, consisting at the moment only of saloon cars. The range of possible applications would be greatly enhanced if other traffic

  8. A Prototype System for Real Time Computer Animation of Slow Traffic in a Driving Simulator

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.; Delden, Mattijs J.B. van; Hin, Andrea J.S.; Wolffelaar, Peter C. van

    1997-01-01

    The Traffic Research Centre (TRC) of the University of Groningen in the Netherlands has developed a driving simulator with ‘intelligent’ computer-controlled traffic, consisting at the moment only of saloon cars. The range of possible applications would be greatly enhanced if other traffic

  9. Evaluation of a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography of scaphoid fixation screws.

    Science.gov (United States)

    Filli, Lukas; Marcon, Magda; Scholz, Bernhard; Calcagni, Maurizio; Finkenstädt, Tim; Andreisek, Gustav; Guggenberger, Roman

    2014-12-01

    The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was "almost perfect" (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. Flat detector computed tomography (FDCT) is a helpful imaging tool for scaphoid fixation. The correction algorithm significantly reduces artefacts in FDCT induced by scaphoid fixation screws. This may facilitate intra

  10. Krypton ventilation imaging using dual-energy CT in chronic obstructive pulmonary disease patients: initial experience.

    Science.gov (United States)

    Hachulla, Anne-Lise; Pontana, François; Wemeau-Stervinou, Lidwine; Khung, Suonita; Faivre, Jean-Baptiste; Wallaert, Benoit; Cazaubon, Jean-François; Duhamel, Alain; Perez, Thierry; Devos, Patrick; Remy, Jacques; Remy-Jardin, Martine

    2012-04-01

    To evaluate the tolerance and level of enhancement achievable after inhalation of stable krypton. This study was approved by the institutional review board and the local ethics committee. Written informed consent was obtained from all subjects. The study was planned as a Fleming two-stage design, enabling one to assess the effectiveness of a newer treatment or technique on a small number of patients. At the end of each stage, the results are computed, and the trial can be stopped if the effectiveness is less than a minimum success rate or greater than an expected success rate. After informed consent was obtained, a total of 32 patients (ie, two successive series of 16 patients each) with severe emphysema underwent a dual-source, dual-energy chest computed tomographic (CT) examination after inhalation of a mixture of stable krypton (80%) and oxygen (20%), with reconstruction of diagnostic and ventilation images. For each patient, two regions of interest were selected on a diagnostic image, one in a region of severe emphysema (presumed to be poorly ventilated or not ventilated) and a second one in a region devoid of structural abnormalities (presumed to be normally ventilated), with measurements of attenuation values on the corresponding ventilation image. All examinations were successfully performed, without adverse effects. Differences in attenuation between normal lung and emphysematous areas were found in 28 patients (88%; 95% confidence interval: 71%, 96.5%). The maximal level of attenuation within normal lung was 18.5 HU. Krypton attenuation difference between normal and emphysematous lung was significant, with a median value of 51.8% (P krypton and its excellent clinical tolerance makes this gas eligible for ventilation CT examinations. © RSNA, 2012.

  11. Optimal Adaptive Statistical Iterative Reconstruction Percentage in Dual-energy Monochromatic CT Portal Venography.

    Science.gov (United States)

    Zhao, Liqin; Winklhofer, Sebastian; Yang, Zhenghan; Wang, Keyang; He, Wen

    2016-03-01

    The aim of this article was to study the influence of different adaptive statistical iterative reconstruction (ASIR) percentages on the image quality of dual-energy computed tomography (DECT) portal venography in portal hypertension patients. DECT scans of 40 patients with cirrhosis (mean age, 56 years) at the portal venous phase were retrospectively analyzed. Monochromatic images at 60 and 70 keV were reconstructed with four ASIR percentages: 0%, 30%, 50%, and 70%. Computed tomography (CT) numbers of the portal veins (PVs), liver parenchyma, and subcutaneous fat tissue in the abdomen were measured. The standard deviation from the region of interest of the liver parenchyma was interpreted as the objective image noise (IN). The contrast-noise ratio (CNR) between PV and liver parenchyma was calculated. The diagnostic acceptability (DA) and sharpness of PV margins were obtained using a 5-point score. The IN, CNR, DA, and sharpness of PV were compared among the eight groups with different keV + ASIR level combinations. The IN, CNR, DA, and sharpness of PV of different keV + ASIR groups were all statistically different (P ASIR and 70 keV + 0% ASIR (filtered back-projection [FBP]) combination, respectively, whereas the largest and smallest objective IN were obtained in the 60 keV + 0% ASIR (FBP) and 70 keV + 70% combination. The highest DA and sharpness values of PV were obtained at 50% ASIR for 60 keV. An optimal ASIR percentage (50%) combined with an appropriate monochromatic energy level (60 keV) provides the highest DA in portal venography imaging, whereas for the higher monochromatic energy (70 keV) images, 30% ASIR provides the highest image quality, with less IN than 60 keV with 50% ASIR. Copyright © 2015 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  12. Image Analysis via Soft Computing: Prototype Applications at NASA KSC and Product Commercialization

    Science.gov (United States)

    Dominguez, Jesus A.; Klinko, Steve

    2011-01-01

    This slide presentation reviews the use of "soft computing" which differs from "hard computing" in that it is more tolerant of imprecision, partial truth, uncertainty, and approximation and its use in image analysis. Soft computing provides flexible information processing to handle real life ambiguous situations and achieve tractability, robustness low solution cost, and a closer resemblance to human decision making. Several systems are or have been developed: Fuzzy Reasoning Edge Detection (FRED), Fuzzy Reasoning Adaptive Thresholding (FRAT), Image enhancement techniques, and visual/pattern recognition. These systems are compared with examples that show the effectiveness of each. NASA applications that are reviewed are: Real-Time (RT) Anomaly Detection, Real-Time (RT) Moving Debris Detection and the Columbia Investigation. The RT anomaly detection reviewed the case of a damaged cable for the emergency egress system. The use of these techniques is further illustrated in the Columbia investigation with the location and detection of Foam debris. There are several applications in commercial usage: image enhancement, human screening and privacy protection, visual inspection, 3D heart visualization, tumor detections and x ray image enhancement.

  13. Cloud computing geospatial application for water resources based on free and open source software and open standards - a prototype

    Science.gov (United States)

    Delipetrev, Blagoj

    2016-04-01

    Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state

  14. Diagnostic performance of calcification-suppressed coronary CT angiography using rapid kilovolt-switching dual-energy CT.

    Science.gov (United States)

    Yunaga, Hiroto; Ohta, Yasutoshi; Kaetsu, Yasuhiro; Kitao, Shinichiro; Watanabe, Tomomi; Furuse, Yoshiyuki; Yamamoto, Kazuhiro; Ogawa, Toshihide

    2017-07-01

    Multi-detector-row computed tomography angiography (MDCTA) plays an important role in the assessment of patients with suspected coronary artery disease. However, MDCTA tends to overestimate stenosis in calcified coronary artery lesions. The aim of our study was to evaluate the diagnostic performance of calcification-suppressed material density (MD) images produced by using a single-detector single-source dual-energy computed tomography (ssDECT). We enrolled 67 patients with suspected or known coronary artery disease who underwent ssDECT with rapid kilovolt-switching (80 and 140 kVp). Coronary artery stenosis was evaluated on the basis of MD images and virtual monochromatic (VM) images. The diagnostic performance of the two methods for detecting coronary artery disease was compared with that of invasive coronary angiography as a reference standard. We evaluated 239 calcified segments. In all the segments, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy for detecting significant stenosis were respectively 88%, 88%, 75%, 95% and 88% for the MD images, 91%, 71%, 56%, 95% and 77% for the VM images. PPV was significantly higher on the MD images than on the VM images (P < 0.0001). Calcification-suppressed MD images improved PPV and diagnostic performance for calcified coronary artery lesions. • Computed tomography angiography tends to overestimate stenosis in calcified coronary artery. • Dual-energy CT enables us to suppress calcification of coronary artery lesions. • Calcification-suppressed material density imaging reduces false-positive diagnosis of calcified lesion.

  15. Dual energy CT intracranial angiography: image quality, radiation dose and initial application results

    International Nuclear Information System (INIS)

    Chai Xue; Zhang Longjiang; Lu Guangming; Zhou Changsheng

    2009-01-01

    Objective: To assess the clinical value of dual-energy intracranial CT angiography (CTA). Methods: Forty-one patients suspected of intracranial vascular diseases underwent dual-energy intracranial CT angiography, and 41 patients who underwent conventional subtraction CT were enrolled as the control group. Image quality of intracranial and skull base vessels and radiation dose between dual-energy CTA and conventional subtraction CTA were compared using two independent sample nonparametric test and independent-samples t test, respectively. Prevalence and size of lesions detected by dual-energy CTA and digital subtraction CTA were compared using paired-samples t test and Spearman correlative analysis. Results: The percentage of image quality scored 5 was 70.7% (29/41) for dual-energy CTA and 75.6% (31/41) for conventional subtraction CTA. There was no significant difference between the two groups (Z= -0.455, P=0.650). Image quality of vessels at the skull base in conventional subtraction CTA was superior to that in dual-energy CTA, especially for the petrosal and syphon segment (Z=-4.087, P=0.000). Radiation exposure of dual energy CTA and conventional CTA were (396.54±17.43) and (1090.95±114.29) mGy·cm respectively. Radiation exposure was decreased by 64% (t=-38.52, P=0.000) by dual energy CTA compared with conventional subtraction CTA. Out of the 41 patients, 19 patients were diagnosed as intracranial aneurysm, 2 patients as arteriovenous malformation (AVM), 3 patients with Moya-moya's disease, and the remaining 17 patients with negative results. Nine patients with intracranial aneurysm, 2 patients with AVM, 3 patients with Moya-moya's disease, and 2 patients with negative findings underwent DSA or operation, with concordant findings from both techniques. Diameter of aneurysm neck, long axis and minor axis by dual-energy CTA was (2.90±1.61), (5.23±1.68) and (3.83±1.69) mm, respectively; Diameter of aneurysm neck, long axis and minor axis by DSA was (2.95±1

  16. Initial use of fast switched dual energy CT for coronary artery disease

    Science.gov (United States)

    Pavlicek, William; Panse, Prasad; Hara, Amy; Boltz, Thomas; Paden, Robert; Yamak, Didem; Licato, Paul; Chandra, Naveen; Okerlund, Darin; Dutta, Sandeep; Bhotika, Rahul; Langan, David

    2010-04-01

    Coronary CT Angiography (CTA) is limited in patients with calcified plaque and stents. CTA is unable to confidently differentiate fibrous from lipid plaque. Fast switched dual energy CTA offers certain advantages. Dual energy CTA removes calcium thereby improving visualization of the lumen and potentially providing a more accurate measure of stenosis. Dual energy CTA directly measures calcium burden (calcium hydroxyapatite) thereby eliminating a separate non-contrast series for Agatston Scoring. Using material basis pairs, the differentiation of fibrous and lipid plaques is also possible. Patency of a previously stented coronary artery is difficult to visualize with CTA due to resolution constraints and localized beam hardening artifacts. Monochromatic 70 keV or Iodine images coupled with Virtual Non-stent images lessen beam hardening artifact and blooming. Virtual removal of stainless steel stents improves assessment of in-stent re-stenosis. A beating heart phantom with 'cholesterol' and 'fibrous' phantom coronary plaques were imaged with dual energy CTA. Statistical classification methods (SVM, kNN, and LDA) distinguished 'cholesterol' from 'fibrous' phantom plaque tissue. Applying this classification method to 16 human soft plaques, a lipid 'burden' may be useful for characterizing risk of coronary disease. We also found that dual energy CTA is more sensitive to iodine contrast than conventional CTA which could improve the differentiation of myocardial infarct and ischemia on delayed acquisitions. These phantom and patient acquisitions show advantages with using fast switched dual energy CTA for coronary imaging and potentially extends the use of CT for addressing problem areas of non-invasive evaluation of coronary artery disease.

  17. Improvement of material decomposition and image quality in dual-energy radiography by reducing image noise

    International Nuclear Information System (INIS)

    Lee, D.; Choi, S.; Kim, H.; Kim, H.-J.; Kim, Y.-S.; Choi, S.; Lee, H.; Jo, B.D.; Jeon, P.-H.; Kim, H.; Kim, D.

    2016-01-01

    Although digital radiography has been widely used for screening human anatomical structures in clinical situations, it has several limitations due to anatomical overlapping. To resolve this problem, dual-energy imaging techniques, which provide a method for decomposing overlying anatomical structures, have been suggested as alternative imaging techniques. Previous studies have reported several dual-energy techniques, each resulting in different image qualities. In this study, we compared three dual-energy techniques: simple log subtraction (SLS), simple smoothing of a high-energy image (SSH), and anti-correlated noise reduction (ACNR) with respect to material thickness quantification and image quality. To evaluate dual-energy radiography, we conducted Monte Carlo simulation and experimental phantom studies. The Geant 4 Application for Tomographic Emission (GATE) v 6.0 and tungsten anode spectral model using interpolation polynomials (TASMIP) codes were used for simulation studies and digital radiography, and human chest phantoms were used for experimental studies. The results of the simulation study showed improved image contrast-to-noise ratio (CNR) and coefficient of variation (COV) values and bone thickness estimation accuracy by applying the ACNR and SSH methods. Furthermore, the chest phantom images showed better image quality with the SSH and ACNR methods compared to the SLS method. In particular, the bone texture characteristics were well-described by applying the SSH and ACNR methods. In conclusion, the SSH and ACNR methods improved the accuracy of material quantification and image quality in dual-energy radiography compared to SLS. Our results can contribute to better diagnostic capabilities of dual-energy images and accurate material quantification in various clinical situations.

  18. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Noise minimization

    International Nuclear Information System (INIS)

    Contillo, Adriano; Di Domenico, Giovanni; Cardarelli, Paolo; Gambaccini, Mauro; Taibi, Angelo

    2016-01-01

    Purpose: Dual-energy image subtraction represents a useful tool to improve the detectability of small lesions, especially in dense breasts. A feature it shares with all x-ray imaging techniques is the appearance of fluctuations in the texture of the background, which can obscure the visibility of interesting details. The aim of the work is to investigate the main noise sources, in order to create a better performing subtraction mechanism. In particular, the structural noise cancellation was achieved by means of a suitable extension of the dual-energy algorithm. Methods: The effect of the cancellation procedure was tested on an analytical simulation of a target with varying structural composition. Subsequently, the subtraction algorithm was also applied to a set of actual radiographs of a breast phantom exhibiting a nonuniform background pattern. The background power spectra of the outcomes were computed and compared to the ones obtained from a standard subtraction algorithm. Results: The comparison between the standard and the proposed cancellations showed an overall suppression of the magnitudes of the spectra, as well as a flattening of the frequency dependence of the structural component of the noise. Conclusions: The proposed subtraction procedure provides an effective cancellation of the residual background fluctuations. When combined with the polychromatic correction already described in a companion publication, it results in a high performing dual-energy subtraction scheme for commercial mammography units.

  19. Assessment of lobar perfusion in smokers according to the presence and severity of emphysema: preliminary experience with dual-energy CT angiography

    International Nuclear Information System (INIS)

    Pansini, Vittorio; Remy-Jardin, Martine; Faivre, Jean-Baptiste; Remy, Jacques; Schmidt, Bernhard; Dejardin-Bothelo, Alexis; Perez, Thierry; Delannoy, Valerie; Duhamel, Alain

    2009-01-01

    The purpose of the study was to assess pulmonary perfusion on a lobar level in smokers using dual-energy computed tomography (CT). Forty-seven smokers and ten non-smokers underwent a dual-energy multi-detector CT angiogram of the chest that allowed automatic quantification of emphysema and determination of the iodine content at the level of the microcirculation (i.e. ''perfusion imaging''). Emphysema was present in 37 smokers and absent in ten smokers. Smokers with an upper lobe predominance of emphysema (n = 8) had: (1) significantly lower attenuation enhancement values in the upper lobes compared with smokers without emphysema; (2) the lobes with the most severe emphysematous changes had a statistically significantly higher percentage of emphysema (p = 0.0001) and lower mean attenuation enhancement values (p = 0.0001) than the ipsilateral lobes with less severe emphysema, matching parenchymal destruction; (3) a correlation was found between the difference in percentage of emphysema between the upper and lower lobes and the difference in attenuation attenuation enhancement values in the corresponding lobes (p = 0.0355; r = -0.54). Regional alterations of lung perfusion can be depicted by dual-energy CT in smokers with predominant emphysema. (orig.)

  20. Diagnostic accuracy of virtual non-contrast enhanced dual-energy CT for diagnosis of adrenal adenoma: A systematic review and meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Michael J.; McInnes, Matthew D.F.; Schieda, Nicola [University of Ottawa Department of Radiology, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON (United States); El-Khodary, Mohamed [McMaster University Department of Radiology, Hamilton, ON (Canada); McGrath, Trevor A. [University of Ottawa, Faculty of Medicine, Ottawa, Ontario (Canada)

    2017-10-15

    To compare the diagnostic accuracy of dual-energy (DE) virtual non-contrast computed tomography (vNCT) to non-contrast CT (NCT) for the diagnosis of adrenal adenomas. Search of multiple databases and grey literature was performed. Two reviewers independently applied inclusion criteria and extracted data. Risk of bias was assessed using QUADAS-2. Summary estimates of diagnostic accuracy were generated and sources of heterogeneity were assessed. Five studies (170 patients; 192 adrenal masses) were included for diagnostic accuracy assessment; all used dual-source dual-energy CT. Pooled sensitivity for adrenal adenoma on vNCT was 54% (95% CI: 47-62%). Pooled sensitivity for NCT was 57% (95% CI: 45-69%). Pooling of specificity was not performed since no false positives were reported. There was a trend for overestimation of HU density on vNCT as compared to NCT which appeared related to contrast timing. Potential sources of bias were seen regarding the index test and reference standard for the included studies. Potential sources of heterogeneity between studies were seen in adenoma prevalence and intravenous contrast timing. vNCT images generated from dual-energy CT demonstrated comparable sensitivity to NCT for the diagnosis of adenomas; however the included studies are heterogeneous and at high risk for some types of bias. (orig.)

  1. Imaging the renal lesion with dual-energy multidetector CT and multi-energy applications in clinical practice: what can it truly do for you?

    Energy Technology Data Exchange (ETDEWEB)

    Mileto, Achille; Marin, Daniele [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Sofue, Keitaro [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Kobe University School of Medicine, Department of Radiology, Kobe (Japan)

    2016-10-15

    Many fortuitously detected renal lesions are incompletely characterised at traditional MDCT imaging, thus posing daily challenges to radiologists and referring physicians. There is burgeoning evidence that dual-energy MDCT and multi-energy applications provide an added value over traditional MDCT imaging in renal lesion characterisation and throughput. This special report gives a vendor-neutral outlook on technical essentials, recommended protocols, high-yield clinical opportunities and reviews radiation dose aspects of dual-energy MDCT imaging and multi-energy applications in renal lesions. In addition to a guide on interpretative traps and emerging problems, we provide an update on new, potential imaging horizons. Dual-energy MDCT and multi-energy applications can facilitate the imaging interpretation and throughput of renal lesions. Conjointly with capitalisation on the benefits, familiarity with dual- and multi-energy data sets as well as continuous scrutiny of interpretative traps can be the keys to the successful implementation and enhanced clinical acceptance of this powerful technique in the imaging community. Continuous advances in hardware and computer interfaces are expected to pave the way for the further expansion of the application spectrum. (orig.)

  2. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Noise minimization

    Energy Technology Data Exchange (ETDEWEB)

    Contillo, Adriano, E-mail: contillo@fe.infn.it; Di Domenico, Giovanni; Cardarelli, Paolo; Gambaccini, Mauro; Taibi, Angelo [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, I-44122 Ferrara (Italy)

    2016-06-15

    Purpose: Dual-energy image subtraction represents a useful tool to improve the detectability of small lesions, especially in dense breasts. A feature it shares with all x-ray imaging techniques is the appearance of fluctuations in the texture of the background, which can obscure the visibility of interesting details. The aim of the work is to investigate the main noise sources, in order to create a better performing subtraction mechanism. In particular, the structural noise cancellation was achieved by means of a suitable extension of the dual-energy algorithm. Methods: The effect of the cancellation procedure was tested on an analytical simulation of a target with varying structural composition. Subsequently, the subtraction algorithm was also applied to a set of actual radiographs of a breast phantom exhibiting a nonuniform background pattern. The background power spectra of the outcomes were computed and compared to the ones obtained from a standard subtraction algorithm. Results: The comparison between the standard and the proposed cancellations showed an overall suppression of the magnitudes of the spectra, as well as a flattening of the frequency dependence of the structural component of the noise. Conclusions: The proposed subtraction procedure provides an effective cancellation of the residual background fluctuations. When combined with the polychromatic correction already described in a companion publication, it results in a high performing dual-energy subtraction scheme for commercial mammography units.

  3. Differentiation of urinary calculi with dual energy CT: effect of spectral shaping by high energy tin filtration.

    Science.gov (United States)

    Thomas, Christoph; Krauss, Bernhard; Ketelsen, Dominik; Tsiflikas, Ilias; Reimann, Anja; Werner, Matthias; Schilling, David; Hennenlotter, Jörg; Claussen, Claus D; Schlemmer, Heinz-Peter; Heuschmid, Martin

    2010-07-01

    In dual energy (DE) computed tomography (CT), spectral shaping by additional filtration of the high energy spectrum can theoretically improve dual energy contrast. The aim of this in vitro study was to examine the influence of an additional tin filter for the differentiation of human urinary calculi by dual energy CT. A total of 36 pure human urinary calculi (uric acid, cystine, calciumoxalate monohydrate, calciumoxalate dihydrate, carbonatapatite, brushite, average diameter 10.5 mm) were placed in a phantom and imaged with 2 dual source CT scanners. One scanner was equipped with an additional tin (Sn) filter. Different combinations of tube voltages (140/80 kV, 140/100 kV, Sn140/100 kV, Sn140/80 kV, with Sn140 referring to 140 kV with the tin filter) were applied. Tube currents were adapted to yield comparable dose indices. Low- and high energy images were reconstructed. The calculi were segmented semiautomatically in the datasets and DE ratios (attenuation@low_kV/attenuation@high_kV) and were calculated for each calculus. DE contrasts (DE-ratio_material1/DE-ratio_material2) were computed for uric acid, cystine and calcified calculi and compared between the combinations of tube voltages. Using exclusively DE ratios, all uric acid, cystine and calcified calculi (as a group) could be differentiated in all protocols; the calcified calculi could not be differentiated among each other in any examination protocol. The highest DE ratios and DE contrasts were measured for the Sn140/80 protocol (53%-62% higher DE contrast than in the 140/80 kV protocol without additional filtration). The DE ratios and DE contrasts of the 80/140 kV and 100/Sn140 kV protocols were comparable. Uric acid, cystine and calcified calculi could be reliably differentiated by any of the protocols. A dose-neutral gain of DE contrast was found in the Sn-filter protocols, which might improve the differentiation of smaller calculi (Sn140/80 kV) and improve image quality and calculi differentiation in

  4. Urinary calculi composed of uric acid, cystine, and mineral salts: differentiation with dual-energy CT at a radiation dose comparable to that of intravenous pyelography.

    Science.gov (United States)

    Thomas, Christoph; Heuschmid, Martin; Schilling, David; Ketelsen, Dominik; Tsiflikas, Ilias; Stenzl, Arnulf; Claussen, Claus D; Schlemmer, Heinz-Peter

    2010-11-01

    To retrospectively evaluate radiation dose, image quality, and the ability to differentiate urinary calculi of differing compositions by using low-dose dual-energy computed tomography (CT). The institutional review board approved this retrospective study; informed consent was waived. A low-dose dual-energy CT protocol (tube voltage and reference effective tube current-time product, 140 kV and 23 mAs and 80 kV and 105 mAs; collimation, 64 × 0.6 mm; pitch, 0.7) for the detection of urinary calculi was implemented into routine clinical care. All patients (n = 112) who were examined with this protocol from July 2008 to August 2009 were included. The composition of urinary calculi was assessed by using commercially available postprocessing software and was compared with results of the reference standard (ex vivo infrared spectroscopy) in 40 patients for whom the reference standard was available. Effective doses were calculated. Image quality was rated subjectively and objectively and was correlated with patient size expressed as body cross-sectional area at the level of acquisition by using Spearman correlation coefficients. One calcified concrement in the distal ureter of an obese patient was mistakenly interpreted as mixed calcified and uric acid. One struvite calculus was falsely interpreted as cystine. All other uric acid, cystine, and calcium-containing calculi were correctly identified by using dual-energy CT. The mean radiation dose was 2.7 mSv. The average image quality was rated as acceptable, with a decrease in image quality in larger patients. Low-dose unenhanced dual-source dual-energy CT can help differentiate between calcified, uric acid, and cystine calculi at a radiation dose comparable to that of conventional intravenous pyelography. Because of decreased image quality in obese patients, only nonobese patients should be examined with this protocol. © RSNA, 2010.

  5. Architectural prototyping

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2004-01-01

    A major part of software architecture design is learning how specific architectural designs balance the concerns of stakeholders. We explore the notion of "architectural prototypes", correspondingly architectural prototyping, as a means of using executable prototypes to investigate stakeholders...

  6. New layer-based imaging and rapid prototyping techniques for computer-aided design and manufacture of custom dental restoration.

    Science.gov (United States)

    Lee, M-Y; Chang, C-C; Ku, Y C

    2008-01-01

    Fixed dental restoration by conventional methods greatly relies on the skill and experience of the dental technician. The quality and accuracy of the final product depends mostly on the technician's subjective judgment. In addition, the traditional manual operation involves many complex procedures, and is a time-consuming and labour-intensive job. Most importantly, no quantitative design and manufacturing information is preserved for future retrieval. In this paper, a new device for scanning the dental profile and reconstructing 3D digital information of a dental model based on a layer-based imaging technique, called abrasive computer tomography (ACT) was designed in-house and proposed for the design of custom dental restoration. The fixed partial dental restoration was then produced by rapid prototyping (RP) and computer numerical control (CNC) machining methods based on the ACT scanned digital information. A force feedback sculptor (FreeForm system, Sensible Technologies, Inc., Cambridge MA, USA), which comprises 3D Touch technology, was applied to modify the morphology and design of the fixed dental restoration. In addition, a comparison of conventional manual operation and digital manufacture using both RP and CNC machining technologies for fixed dental restoration production is presented. Finally, a digital custom fixed restoration manufacturing protocol integrating proposed layer-based dental profile scanning, computer-aided design, 3D force feedback feature modification and advanced fixed restoration manufacturing techniques is illustrated. The proposed method provides solid evidence that computer-aided design and manufacturing technologies may become a new avenue for custom-made fixed restoration design, analysis, and production in the 21st century.

  7. Developing a Computational Environment for Coupling MOR Data, Maps, and Models: The Virtual Research Vessel (VRV) Prototype

    Science.gov (United States)

    Wright, D. J.; O'Dea, E.; Cushing, J. B.; Cuny, J. E.; Toomey, D. R.; Hackett, K.; Tikekar, R.

    2001-12-01

    The East Pacific Rise (EPR) from 9-10deg. N is currently our best-studied section of fast-spreading mid-ocean ridge. During several decades of investigation it has been explored by the full spectrum of ridge investigators, including chemists, biologists, geologists and geophysicists. These studies, and those that are ongoing, provide a wealth of observational data, results and data-driven theoretical (often numerical) studies that have not yet been fully utilized either by research scientists or by professional educators. While the situation is improving, a large amount of data, results, and related theoretical models still exist either in an inert, non-interactive form (e.g., journal publications) or as unlinked and currently incompatible computer data or algorithms. Infrastructure is needed not just for ready access to data, but linkage of disparate data sets (data to data) as well as data to models in order quantitatively evaluate hypotheses, refine numerical simulations, and explore new relations between observables. The prototype of a computational environment and toolset, called the Virtual Research Vessel (VRV), is being developed to provide scientists and educators with ready access to data, results and numerical models. While this effort is focused on the EPR 9N region, the resulting software tools and infrastructure should be helpful in establishing similar systems for other sections of the global mid-ocean ridge. Work in progress includes efforts to develop: (1) virtual database to incorporate diverse data types with domain-specific metadata into a global schema that allows web-query across different marine geology data sets, and an analogous declarative (database available) description of tools and models; (2) the ability to move data between GIS and the above DBMS, and tools to encourage data submission to archivesl (3) tools for finding and viewing archives, and translating between formats; (4) support for "computational steering" (tool composition

  8. [COMPUTER ASSISTED DESIGN AND ELECTRON BEAMMELTING RAPID PROTOTYPING METAL THREE-DIMENSIONAL PRINTING TECHNOLOGY FOR PREPARATION OF INDIVIDUALIZED FEMORAL PROSTHESIS].

    Science.gov (United States)

    Liu, Hongwei; Weng, Yiping; Zhang, Yunkun; Xu, Nanwei; Tong, Jing; Wang, Caimei

    2015-09-01

    To study the feasibility of preparation of the individualized femoral prosthesis through computer assisted design and electron beammelting rapid prototyping (EBM-RP) metal three-dimensional (3D) printing technology. One adult male left femur specimen was used for scanning with 64-slice spiral CT; tomographic image data were imported into Mimics15.0 software to reconstruct femoral 3D model, then the 3D model of individualized femoral prosthesis was designed through UG8.0 software. Finally the 3D model data were imported into EBM-RP metal 3D printer to print the individualized sleeve. According to the 3D model of individualized prosthesis, customized sleeve was successfully prepared through the EBM-RP metal 3D printing technology, assembled with the standard handle component of SR modular femoral prosthesis to make the individualized femoral prosthesis. Customized femoral prosthesis accurately matching with metaphyseal cavity can be designed through the thin slice CT scanning and computer assisted design technology. Titanium alloy personalized prosthesis with complex 3D shape, pore surface, and good matching with metaphyseal cavity can be manufactured by the technology of EBM-RP metal 3D printing, and the technology has convenient, rapid, and accurate advantages.

  9. Evaluation of a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography of scaphoid fixation screws

    Energy Technology Data Exchange (ETDEWEB)

    Filli, Lukas; Finkenstaedt, Tim; Andreisek, Gustav; Guggenberger, Roman [University Hospital of Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); Marcon, Magda [University Hospital of Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); University of Udine, Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, Udine (Italy); Scholz, Bernhard [Imaging and Therapy Division, Siemens AG, Healthcare Sector, Forchheim (Germany); Calcagni, Maurizio [University Hospital of Zurich, Division of Plastic Surgery and Hand Surgery, Zurich (Switzerland)

    2014-12-15

    The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was ''almost perfect'' (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. (orig.)

  10. Evaluation of a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography of scaphoid fixation screws

    International Nuclear Information System (INIS)

    Filli, Lukas; Finkenstaedt, Tim; Andreisek, Gustav; Guggenberger, Roman; Marcon, Magda; Scholz, Bernhard; Calcagni, Maurizio

    2014-01-01

    The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was ''almost perfect'' (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. (orig.)

  11. Image quality comparison between single energy and dual energy CT protocols for hepatic imaging

    International Nuclear Information System (INIS)

    Yao, Yuan; Pelc, Norbert J.; Ng, Joshua M.; Megibow, Alec J.

    2016-01-01

    Purpose: Multi-detector computed tomography (MDCT) enables volumetric scans in a single breath hold and is clinically useful for hepatic imaging. For simple tasks, conventional single energy (SE) computed tomography (CT) images acquired at the optimal tube potential are known to have better quality than dual energy (DE) blended images. However, liver imaging is complex and often requires imaging of both structures containing iodinated contrast media, where atomic number differences are the primary contrast mechanism, and other structures, where density differences are the primary contrast mechanism. Hence it is conceivable that the broad spectrum used in a dual energy acquisition may be an advantage. In this work we are interested in comparing these two imaging strategies at equal-dose and more complex settings. Methods: We developed numerical anthropomorphic phantoms to mimic realistic clinical CT scans for medium size and large size patients. MDCT images based on the defined phantoms were simulated using various SE and DE protocols at pre- and post-contrast stages. For SE CT, images from 60 kVp through 140 with 10 kVp steps were considered; for DE CT, both 80/140 and 100/140 kVp scans were simulated and linearly blended at the optimal weights. To make a fair comparison, the mAs of each scan was adjusted to match the reference radiation dose (120 kVp, 200 mAs for medium size patients and 140 kVp, 400 mAs for large size patients). Contrast-to-noise ratio (CNR) of liver against other soft tissues was used to evaluate and compare the SE and DE protocols, and multiple pre- and post-contrasted liver-tissue pairs were used to define a composite CNR. To help validate the simulation results, we conducted a small clinical study. Eighty-five 120 kVp images and 81 blended 80/140 kVp images were collected and compared through both quantitative image quality analysis and an observer study. Results: In the simulation study, we found that the CNR of pre-contrast SE image mostly

  12. Dual energy CTA of the supraaortic arteries: Technical improvements with a novel dual source CT system

    International Nuclear Information System (INIS)

    Lell, Michael M.; Hinkmann, Fabian; Nkenke, Emeka; Schmidt, Bernhard; Seidensticker, Peter; Kalender, Willi A.; Uder, Michael; Achenbach, Stephan

    2010-01-01

    Objectives: Computed tomography angiography (CTA) is a well-accepted imaging modality to evaluate the supraaortic vessels. Initial reports have suggested that dual energy CTA (DE-CTA) can enhance diagnosis by creating bone-free data sets, which can be visualized in 3D, but a number of limitations of this technique have also been addressed. We sought to describe the performance of DE-CTA of the supraaortic vessels with a novel dual source CT system with special emphasis on image quality and post-processing related artifacts. Materials and methods: Thirty-three patients underwent carotid CT angiography on a second generation dual source CT system. Simultaneous acquisitions of 100 and 140 kV data sets in arterial phase were performed. Two examiners evaluated overall bone suppression with a 3-point scale (1 = poor; 3 = excellent) and image quality regarding integrity of the vessel lumen of different vessel segments (n = 26) with a 5-point scale (1 = poor; 5 = excellent), CTA source data served as the reference. Results: Excellent bone suppression could be achieved in the head and neck. Only minor bone remnants occurred, mean score for bone removal was 2.9. Mean score for vessel integrity was 4.3. Eight hundred fifty-seven vessel segments could be evaluated. Six hundred thirty-five segments (74%) showed no lumen alteration, 65 segments (7.6%) lumen alterations 10% resulting in a total luminal reduction 50%, and 113 segments (13.2%) showed a gap in the vessel course (100% total lumen reduction). Artificial gaps of the vessel lumen occurred in 28 vessel segments due to artifacts caused by dental hardware and in all but one (65) ophthalmic arteries. Conclusions: Excellent bone suppression could be achieved, DE imaging with 100 and 140 kV lead to improved image quality and vessel integrity in the shoulder region than previously reported. The ophthalmic artery still cannot be adequately visualized.

  13. Dual-energy CT workflow: multi-institutional consensus on standardization of abdominopelvic MDCT protocols.

    Science.gov (United States)

    Patel, Bhavik N; Alexander, Lauren; Allen, Brian; Berland, Lincoln; Borhani, Amir; Mileto, Achille; Moreno, Courtney; Morgan, Desiree; Sahani, Dushyant; Shuman, William; Tamm, Eric; Tublin, Mitchell; Yeh, Benjamin; Marin, Daniele

    2017-03-01

    To standardize workflow for dual-energy computed tomography (DECT) involving common abdominopelvic exam protocols. 9 institutions (4 rsDECT, 1 dsDECT, 4 both) with 32 participants [average # years (range) in practice and DECT experience, 12.3 (1-35) and 4.6 (1-14), respectively] filled out a single survey (n = 9). A five-point agreement scale (0, 1, 2, 3, 4-contra-, not, mildly, moderately, strongly indicated, respectively) and utilization scale (0-not performing and shouldn't; 1-performing but not clinically useful; 2-performing but not sure if clinically useful; 3-not performing it but would like to; 4-performing and clinically useful) were used. Consensus was considered with a score of ≥2.5. Survey results were discussed over three separate live webinar sessions. 5/9 (56%) institutions exclude large patients from DECT. 2 (40%) use weight, 2 (40%) use transverse dimension, and 1 (20%) uses both. 7/9 (78%) use 50 keV for low and 70 keV for medium monochromatic reconstructed images. DECT is indicated for dual liver [agreement score (AS) 3.78; utilization score (US) 3.22] and dual pancreas in the arterial phase (AS 3.78; US 3.11), mesenteric ischemia/gastrointestinal bleeding in both the arterial and venous phases (AS 2.89; US 2.79), RCC exams in the arterial phase (AS 3.33; US 2.78), and CT urography in the nephrographic phase (AS 3.11; US 2.89). DECT for renal stone and certain single-phase exams is indicated (AS 3.00). DECT is indicated during the arterial phase for multiphasic abdominal exams, nephrographic phase for CTU, and for certain single-phase and renal stone exams.

  14. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, The Perelman School of Medicine, Philadelphia, PA (United States); McCullough, William P. [University of Virginia Health System, Department of Radiology and Medical Imaging, Charlottesville, VA (United States); Mecca, Patricia [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2016-11-15

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash {sup registered} CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI{sub vol}) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality by

  15. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    International Nuclear Information System (INIS)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa; McCullough, William P.; Mecca, Patricia

    2016-01-01

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash "r"e"g"i"s"t"e"r"e"d CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI_v_o_l) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality

  16. Computer-aided detection in CT colonography: initial clinical experience using a prototype system

    International Nuclear Information System (INIS)

    Graser, A.; Geisbuesch, S.; Reiser, M.F.; Becker, C.R.; Kolligs, F.T.; Schaefer, C.; Mang, T.

    2007-01-01

    Computer-aided detection (CAD) algorithms help to detect colonic polyps at CT colonography (CTC). The purpose of this study was to evaluate the accuracy of CAD versus an expert reader in CTC. One hundred forty individuals (67 men, 73 women; mean age, 59 years) underwent screening 64-MDCT colonography after full cathartic bowel cleansing without fecal tagging. One expert reader interpreted supine and prone scans using a 3D workstation with integrated CAD used as ''second reader.'' The system's sensitivity for the detection of polyps, the number of false-positive findings, and its running time were evaluated. Polyps were classified as small (≤5 mm), medium (6-9 mm), and large (≥10 mm). A total of 118 polyps (small, 85; medium, 19; large, 14) were found in 56 patients. CAD detected 72 polyps (61%) with an average of 2.2 false-positives. Sensitivity was 51% (43/85) for small, 90% (17/19) for medium, and 86% (12/14) for large polyps. For all polyps, per-patient sensitivity was 89% (50/56) for the radiologist and 73% (41/56) for CAD. For large and medium polyps, per-patient sensitivity was 100% for the radiologist, and 96% for CAD. In conclusion, CAD shows high sensitivity in the detection of clinically significant polyps with acceptable false-positive rates. (orig.)

  17. Detection of Bone Marrow Edema in Nondisplaced Hip Fractures: Utility of a Virtual Noncalcium Dual-Energy CT Application.

    Science.gov (United States)

    Kellock, Trenton T; Nicolaou, Savvas; Kim, Sandra S Y; Al-Busaidi, Sultan; Louis, Luck J; O'Connell, Tim W; Ouellette, Hugue A; McLaughlin, Patrick D

    2017-09-01

    Purpose To quantify the sensitivity and specificity of dual-energy computed tomographic (CT) virtual noncalcium images in the detection of nondisplaced hip fractures and to assess whether obtaining these images as a complement to bone reconstructions alters sensitivity, specificity, or diagnostic confidence. Materials and Methods The clinical research ethics board approved chart review, and the requirement to obtain informed consent was waived. The authors retrospectively identified 118 patients who presented to a level 1 trauma center emergency department and who underwent dual-energy CT for suspicion of a nondisplaced traumatic hip fracture. Clinical follow-up was the standard of reference. Three radiologists interpreted virtual noncalcium images for traumatic bone marrow edema. Bone reconstructions for the same cases were interpreted alone and then with virtual noncalcium images. Diagnostic confidence was rated on a scale of 1 to 10. McNemar, Fleiss κ, and Wilcoxon signed-rank tests were used for statistical analysis. Results Twenty-two patients had nondisplaced hip fractures and 96 did not have hip fractures. Sensitivity with virtual noncalcium images was 77% and 91% (17 and 20 of 22 patients), and specificity was 92%-99% (89-95 of 96 patients). Sensitivity increased by 4%-5% over that with bone reconstruction images alone for two of the three readers when both bone reconstruction and virtual noncalcium images were used. Specificity remained unchanged (99% and 100%). Diagnostic confidence in the exclusion of fracture was improved with combined bone reconstruction and virtual noncalcium images (median score: 10, 9, and 10 for readers 1, 2, and 3, respectively) compared with bone reconstruction images alone (median score: 9, 8, and 9). Conclusion When used as a supplement to standard bone reconstructions, dual-energy CT virtual noncalcium images increased sensitivity for the detection of nondisplaced traumatic hip fractures and improved diagnostic confidence in

  18. Detection of pulmonary fat embolism with dual-energy CT: an experimental study in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chun Xiang; Zhou, Chang Sheng; Zhao, Yan E.; Han, Zong Hong; Qi, Li; Zhang, Long Jiang; Lu, Guang Ming [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Schoepf, U.J. [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Mangold, Stefanie; Ball, B.D. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States)

    2017-04-15

    To evaluate the use of dual-energy CT imaging of the lung perfused blood volume (PBV) for the detection of pulmonary fat embolism (PFE). Dual-energy CT was performed in 24 rabbits before and 1 hour, 1 day, 4 days and 7 days after artificial induction of PFE via the right ear vein. CT pulmonary angiography (CTPA) and lung PBV images were evaluated by two radiologists, who recorded the presence, number, and location of PFE on a per-lobe basis. Sensitivity, specificity, and accuracy of CTPA and lung PBV for detecting PFE were calculated using histopathological evaluation as the reference standard. A total of 144 lung lobes in 24 rabbits were evaluated and 70 fat emboli were detected on histopathological analysis. The overall sensitivity, specificity and accuracy were 25.4 %, 98.6 %, and 62.5 % for CTPA, and 82.6 %, 76.0 %, and 79.2 % for lung PBV. Higher sensitivity (p < 0.001) and accuracy (p < 0.01), but lower specificity (p < 0.001), were found for lung PBV compared with CTPA. Dual-energy CT can detect PFE earlier than CTPA (all p < 0.01). Dual-energy CT provided higher sensitivity and accuracy in the detection of PFE as well as earlier detection compared with conventional CTPA in this animal model study. (orig.)

  19. Anthropometrics and body composition by dual energy X-ray in children of obese women

    DEFF Research Database (Denmark)

    Tanvig, Mette; Vinter, Christina A; Jørgensen, Jan S

    2014-01-01

    of the RCT mothers and in 97 reference group children with Body Mass Index (BMI) Z-score as a primary outcome. Body composition was estimated by Dual Energy X-ray (DEXA) in 123 successful scans out of 147 (84%). RESULTS: No differences between randomized groups were seen in mean (95% C.I.) BMI Z...

  20. Preliminary study of single contrast enhanced dual energy heart imaging using dual-source CT

    International Nuclear Information System (INIS)

    Peng Jin; Zhang Longjiang; Zhou Changsheng; Lu Guangming; Ma Yan; Gu Haifeng

    2009-01-01

    Objective: To evaluate the feasibility and preliminary applications of single contrast enhanced dual energy heart imaging using dual-source CT (DSCT). Methods: Thirty patients underwent dual energy heart imaging with DSCT, of which 6 cases underwent SPECT or DSA within one week. Two experienced radiologists assessed image quality of coronary arteries and iodine map of myocardium. and correlated the coronary artery stenosis with the perfusion distribution of iodine map. Results: l00% (300/300) segments reached diagnostic standards. The mean score of image for all patients was 4.68±0.57. Mural coronary artery was present in 10 segments in S cases, atherosclerotic plaques in 32 segments in 12 cases, of which 20 segments having ≥50% stenosis, 12 segments ≤50% stenosis; dual energy CT coronary angiography was consistent with the DSA in 3 patients. 37 segmental perfusion abnormalities on iodine map were found in 15 cases, including 28 coronary blood supply segment narrow segment and 9 no coronary stenosis (including three negative segments in SPECD. Conclusion: Single contrast enhanced dual energy heart imaging can provide good coronary artery and myocardium perfusion images in the patients with appropriate heart rate, which has a potential to be used in the clinic and further studies are needed. (authors)

  1. Research of age changes of bone tissue of dual-energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    Rizhik, V.M.; Kmetyuk, V.M.; Fed'kyiv, S.V.

    2003-01-01

    With the help of a method dual-energy x-ray absorptiometry (DEXA) mineral density bone tissue was defined in view of age, sex and individual features. Is established, that the parameters (DEXA) have precise interrelation with age changes in bone tissue, which aris with osteoporosis and have the certain clinical value

  2. Contrast-enhanced dual energy mammography with a novel anode/filter combination and artifact reduction: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Knogler, Thomas; Pinker-Domenig, Katja; Leitner, Sabine; Helbich, Thomas H. [Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Medical University of Vienna, Division of Molecular and Gender Imaging, Vienna (Austria); Homolka, Peter; Leithner, Robert [Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna (Austria); Hoernig, Mathias [Siemens AG, Healthcare, X-Ray Products, Erlangen (Germany); Langs, Georg; Waitzbauer, Martin [Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Medical University of Vienna, Computational Imaging Research Laboratory, Vienna (Austria)

    2016-06-15

    To demonstrate the feasibility of contrast-enhanced dual-energy mammography (CEDEM) using titanium (Ti) filtering at 49 kVp for high-energy images and a novel artefact reducing image-subtraction post-processing algorithm. Fifteen patients with suspicious findings (ACR BI-RADS 4 and 5) detected with digital mammography (MG) that required biopsy were included. CEDEM examinations were performed on a modified prototype machine. Acquired HE and low-energy raw data images were registered non-rigidly to compensate for possible subtle tissue motion. Subtracted CEDEM images were generated via weighted subtraction, using a fully automatic, locally adjusted tissue thickness-dependent subtraction factor to avoid over-subtraction at the breast border. Two observers evaluated the MG and CEDEM images according to ACR BI-RADS in two reading sessions. Results were correlated with histopathology. Seven patients with benign and eight with malignant findings were included. All malignant lesions showed a strong contrast enhancement. BI-RADS assessment was altered in 66.6 % through the addition of CEDEM, resulting in increased overall accuracy. With CEDEM, additional lesions were depicted and false-positive rate was reduced compared to MG. CEDEM using Ti filtering with 49 kVp for HE exposures is feasible in a clinical setting. The proposed image-processing algorithm has the potential to reduce artefacts and improve CEDEM images. (orig.)

  3. Autotransplantation of immature third molars using a computer-aided rapid prototyping model: a report of 4 cases.

    Science.gov (United States)

    Jang, Ji-Hyun; Lee, Seung-Jong; Kim, Euiseong

    2013-11-01

    Autotransplantation of immature teeth can be an option for premature tooth loss in young patients as an alternative to immediately replacing teeth with fixed or implant-supported prostheses. The present case series reports 4 successful autotransplantation cases using computer-aided rapid prototyping (CARP) models with immature third molars. The compromised upper and lower molars (n = 4) of patients aged 15-21 years old were transplanted with third molars using CARP models. Postoperatively, the pulp vitality and the development of the roots were examined clinically and radiographically. The patient follow-up period was 2-7.5 years after surgery. The long-term follow-up showed that all of the transplants were asymptomatic and functional. Radiographic examination indicated that the apices developed continuously and the root length and thickness increased. The final follow-up examination revealed that all of the transplants kept the vitality, and the apices were fully developed with normal periodontal ligaments and trabecular bony patterns. Based on long-term follow-up observations, our 4 cases of autotransplantation of immature teeth using CARP models resulted in favorable prognoses. The CARP model assisted in minimizing the extraoral time and the possible Hertwig epithelial root sheath injury of the transplanted tooth. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Innovative procedure for computer-assisted genioplasty: three-dimensional cephalometry, rapid-prototyping model and surgical splint.

    Science.gov (United States)

    Olszewski, R; Tranduy, K; Reychler, H

    2010-07-01

    The authors present a new procedure of computer-assisted genioplasty. They determined the anterior, posterior and inferior limits of the chin in relation to the skull and face with the newly developed and validated three-dimensional cephalometric planar analysis (ACRO 3D). Virtual planning of the osteotomy lines was carried out with Mimics (Materialize) software. The authors built a three-dimensional rapid-prototyping multi-position model of the chin area from a medical low-dose CT scan. The transfer of virtual information to the operating room consisted of two elements. First, the titanium plates on the 3D RP model were pre-bent. Second, a surgical guide for the transfer of the osteotomy lines and the positions of the screws to the operating room was manufactured. The authors present the first case of the use of this model on a patient. The postoperative results are promising, and the technique is fast and easy-to-use. More patients are needed for a definitive clinical validation of this procedure. Copyright 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Spatial Distribution of Iron Within the Normal Human Liver Using Dual-Source Dual-Energy CT Imaging.

    Science.gov (United States)

    Abadia, Andres F; Grant, Katharine L; Carey, Kathleen E; Bolch, Wesley E; Morin, Richard L

    2017-11-01

    Explore the potential of dual-source dual-energy (DSDE) computed tomography (CT) to retrospectively analyze the uniformity of iron distribution and establish iron concentration ranges and distribution patterns found in healthy livers. Ten mixtures consisting of an iron nitrate solution and deionized water were prepared in test tubes and scanned using a DSDE 128-slice CT system. Iron images were derived from a 3-material decomposition algorithm (optimized for the quantification of iron). A conversion factor (mg Fe/mL per Hounsfield unit) was calculated from this phantom study as the quotient of known tube concentrations and their corresponding CT values. Retrospective analysis was performed of patients who had undergone DSDE imaging for renal stones. Thirty-seven patients with normal liver function were randomly selected (mean age, 52.5 years). The examinations were processed for iron concentration. Multiple regions of interest were analyzed, and iron concentration (mg Fe/mL) and distribution was reported. The mean conversion factor obtained from the phantom study was 0.15 mg Fe/mL per Hounsfield unit. Whole-liver mean iron concentrations yielded a range of 0.0 to 2.91 mg Fe/mL, with 94.6% (35/37) of the patients exhibiting mean concentrations below 1.0 mg Fe/mL. The most important finding was that iron concentration was not uniform and patients exhibited regionally high concentrations (36/37). These regions of higher concentration were observed to be dominant in the middle-to-upper part of the liver (75%), medially (72.2%), and anteriorly (83.3%). Dual-source dual-energy CT can be used to assess the uniformity of iron distribution in healthy subjects. Applying similar techniques to unhealthy livers, future research may focus on the impact of hepatic iron content and distribution for noninvasive assessment in diseased subjects.

  6. Optimal Scanning Protocols for Dual-Energy CT Angiography in Peripheral Arterial Stents: An in Vitro Phantom Study

    Directory of Open Access Journals (Sweden)

    Abdulrahman Almutairi

    2015-05-01

    Full Text Available Objective: To identify the optimal dual-energy computed tomography (DECT scanning protocol for peripheral arterial stents while achieving a low radiation dose, while still maintaining diagnostic image quality, as determined by an in vitro phantom study. Methods: Dual-energy scans in monochromatic spectral imaging mode were performed on a peripheral arterial phantom with use of three gemstone spectral imaging (GSI protocols, three pitch values, and four kiloelectron volts (keV ranges. A total of 15 stents of different sizes, materials, and designs were deployed in the phantom. Image noise, the signal-to-noise ratio (SNR, different levels of adaptive statistical iterative reconstruction (ASIR, and the four levels of monochromatic energy for DECT imaging of peripheral arterial stents were measured and compared to determine the optimal protocols. Results: A total of 36 scans with 180 datasets were reconstructed from a combination of different protocols. There was a significant reduction of image noise with a higher SNR from monochromatic energy images between 65 and 70 keV in all investigated preset GSI protocols (p < 0.05. In addition, significant effects were found from the main effect analysis for these factors: GSI, pitch, and keV (p = 0.001. In contrast, there was significant interaction on the unstented area between GSI and ASIR (p = 0.015 and a very high significant difference between keV and ASIR (p < 0.001. A radiation dose reduction of 50% was achieved. Conclusions: The optimal scanning protocol and energy level in the phantom study were GSI-48, pitch value 0.984, and 65 keV, which resulted in lower image noise and a lower radiation dose, but with acceptable diagnostic images.

  7. Novel method of fabricating individual trays for maxillectomy patients by computer-aided design and rapid prototyping.

    Science.gov (United States)

    Huang, Zhi; Wang, Xin-zhi; Hou, Yue-Zhong

    2015-02-01

    Making impressions for maxillectomy patients is an essential but difficult task. This study developed a novel method to fabricate individual trays by computer-aided design (CAD) and rapid prototyping (RP) to simplify the process and enhance patient safety. Five unilateral maxillectomy patients were recruited for this study. For each patient, a computed tomography (CT) scan was taken. Based on the 3D surface reconstruction of the target area, an individual tray was manufactured by CAD/RP. With a conventional custom tray as control, two final impressions were made using the different types of tray for each patient. The trays were sectioned, and in each section the thickness of the material was measured at six evenly distributed points. Descriptive statistics and paired t-test were used to examine the difference of the impression thickness. SAS 9.3 was applied in the statistical analysis. Afterwards, all casts were then optically 3D scanned and compared digitally to evaluate the feasibility of this method. Impressions of all five maxillectomy patients were successfully made with individual trays fabricated by CAD/RP and traditional trays. The descriptive statistics of impression thickness measurement showed slightly more uneven results in the traditional trays, but no statistical significance was shown. A 3D digital comparison showed acceptable discrepancies within 1 mm in the majority of cast areas. The largest difference of 3 mm was observed in the buccal wall of the defective areas. Moderate deviations of 1 to 2 mm were detected in the buccal and labial vestibular groove areas. This study confirmed the feasibility of a novel method of fabricating individual trays by CAD/RP. Impressions made by individual trays manufactured using CAD/RP had a uniform thickness, with an acceptable level of accuracy compared to those made through conventional processes. © 2014 by the American College of Prosthodontists.

  8. Replacing Heavily Damaged Teeth by Third Molar Autotransplantation With the Use of Cone-Beam Computed Tomography and Rapid Prototyping.

    Science.gov (United States)

    Verweij, Jop P; Anssari Moin, David; Wismeijer, Daniel; van Merkesteyn, J P Richard

    2017-09-01

    This article describes the autotransplantation of third molars to replace heavily damaged premolars and molars. Specifically, this article reports on the use of preoperative cone-beam computed tomographic planning and 3-dimensional (3D) printed replicas of donor teeth to prepare artificial tooth sockets. In the present case, an 18-year-old patient underwent autotransplantation of 3 third molars to replace 1 premolar and 2 molars that were heavily damaged after trauma. Approximately 1 year after the traumatic incident, autotransplantation with the help of 3D planning and rapid prototyping was performed. The right maxillary third molar replaced the right maxillary first premolar. The 2 mandibular wisdom teeth replaced the left mandibular first and second molars. During the surgical procedure, artificial tooth sockets were prepared with the help of 3D printed donor tooth copies to prevent iatrogenic damage to the actual donor teeth. These replicas of the donor teeth were designed based on the preoperative cone-beam computed tomogram and manufactured with the help of 3D printing techniques. The use of a replica of the donor tooth resulted in a predictable and straightforward procedure, with extra-alveolar times shorter than 2 minutes for all transplantations. The transplanted teeth were placed in infraocclusion and fixed with a suture splint. Postoperative follow-up showed physiologic integration of the transplanted teeth and a successful outcome for all transplants. In conclusion, this technique facilitates a straightforward and predictable procedure for autotransplantation of third molars. The use of printed analogues of the donor teeth decreases the risk of iatrogenic damage and the extra-alveolar time of the transplanted tooth is minimized. This facilitates a successful outcome. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Optimization of a flat-panel based real time dual-energy system for cardiac imaging

    International Nuclear Information System (INIS)

    Ducote, Justin L.; Xu Tong; Molloi, Sabee

    2006-01-01

    A simulation study was conducted to evaluate the effects of high-energy beam filtration, dual-gain operation and noise reduction on dual-energy images using a digital flat-panel detector. High-energy beam filtration increases image contrast through greater beam separation and tends to reduce total radiation exposure and dose per image pair. It is also possible to reduce dual-energy image noise by acquiring low and high-energy images at two different detector gains. In addition, dual-energy noise reduction algorithms can further reduce image noise. The cumulative effect of these techniques applied in series was investigated in this study. The contrast from a small thickness of calcium was simulated over a step phantom of tissue equivalent material with a CsI phosphor as the image detector. The dual-energy contrast-to-noise ratio was calculated using values of energy absorption and energy variance. A figure-of-merit (FOM) was calculated from dual-energy contrast-to-noise ratio (CNR) and patient effective dose estimated from values of entrance exposure. Filter atomic numbers in the range of 1-100 were considered with thicknesses ranging from 0-2500 mg/cm 2 . The simulation examined combinations of the above techniques which maximized the FOM. The application of a filter increased image contrast by as much as 45%. Near maximal increases were seen for filter atomic numbers in the range of 40-60 and 85-100 with masses above 750 mg/cm 2 . Increasing filter thickness beyond 1000 mg/cm 2 increased tube loading without further significant contrast enhancement. No additional FOM improvements were seen with dual gain before or after the application of any noise reduction algorithm. Narrow beam experiments were carried out to verify predictions. The measured FOM increased by more than a factor of 3.5 for a silver filter thickness of 800 μm, equal energy weighting and application of a noise clipping algorithm. The main limitation of dynamic high-energy filtration is increased

  10. Collaborative Prototyping

    DEFF Research Database (Denmark)

    Bogers, Marcel; Horst, Willem

    2014-01-01

    of the prototyping process, the actual prototype was used as a tool for communication or development, thus serving as a platform for the cross-fertilization of knowledge. In this way, collaborative prototyping leads to a better balance between functionality and usability; it translates usability problems into design......This paper presents an inductive study that shows how collaborative prototyping across functional, hierarchical, and organizational boundaries can improve the overall prototyping process. Our combined action research and case study approach provides new insights into how collaborative prototyping...... can provide a platform for prototype-driven problem solving in early new product development (NPD). Our findings have important implications for how to facilitate multistakeholder collaboration in prototyping and problem solving, and more generally for how to organize collaborative and open innovation...

  11. Dual-energy CT for detection of endoleaks after endovascular abdominal aneurysm repair: usefulness of colored iodine overlay.

    Science.gov (United States)

    Ascenti, Giorgio; Mazziotti, Silvio; Lamberto, Salvatore; Bottari, Antonio; Caloggero, Simona; Racchiusa, Sergio; Mileto, Achille; Scribano, Emanuele

    2011-06-01

    The purpose of our study was to evaluate the value of dual-source dual-energy CT with colored iodine overlay for detection of endoleaks after endovascular abdominal aortic aneurysm repair. We also calculated the potential dose reduction by using a dual-energy CT single-phase protocol. From November 2007 to November 2009, 74 patients underwent CT angiography 2-7 days after endovascular repair during single-energy unenhanced and dual-energy venous phases. By using dual-energy software, the iodine overlay was superimposed on venous phase images with different percentages ranging between 0 (virtual unenhanced images) and 50-75% to show the iodine in an orange color. Two blinded readers evaluated the data for diagnosis of endoleaks during standard unenhanced and venous phase images (session 1, standard of reference) and virtual unenhanced and venous phase images with colored iodine overlay images (session 2). We compared the effective dose radiation of a single-energy biphasic protocol with that of a single-phase dual-energy protocol. The diagnostic accuracy of session 2 was calculated. The mean dual-energy effective dose was 7.27 mSv. By using a dual-energy single-phase protocol, we obtained a mean dose reduction of 28% with respect to a single-energy biphasic protocol. The diagnostic accuracy of session 2 was: 100% sensitivity, 100% specificity, 100% negative predictive value, and 100% positive predictive value. Statistically significant differences in the level of confidence for endoleak detection between the two sessions were found by reviewers for scores 3-5. Dual-energy CT with colored iodine overlay is a useful diagnostic tool in endoleak detection. The use of a dual-energy single-phase study protocol will lower radiation exposure to patients.

  12. Dual energy CTA of the supraaortic arteries: Technical improvements with a novel dual source CT system

    Energy Technology Data Exchange (ETDEWEB)

    Lell, Michael M., E-mail: Michael.lell@uk-erlangen.de [Department of Radiology, University Erlangen, Maximiliansplatz 1, 91054 Erlangen (Germany); Hinkmann, Fabian [Department of Radiology, University Erlangen, Maximiliansplatz 1, 91054 Erlangen (Germany); Nkenke, Emeka [Department of Maxillofacial Surgery, University Erlangen (Germany); Schmidt, Bernhard [Bayer-Schering Healthcare, Berlin (Germany); Seidensticker, Peter [Siemens Healthcare, CT-Division, Forchheim (Germany); Kalender, Willi A. [Institute of Medical Physics, University Erlangen (Germany); Uder, Michael [Department of Radiology, University Erlangen, Maximiliansplatz 1, 91054 Erlangen (Germany); Achenbach, Stephan [Department of Cardiology, University Erlangen (Germany)

    2010-11-15

    Objectives: Computed tomography angiography (CTA) is a well-accepted imaging modality to evaluate the supraaortic vessels. Initial reports have suggested that dual energy CTA (DE-CTA) can enhance diagnosis by creating bone-free data sets, which can be visualized in 3D, but a number of limitations of this technique have also been addressed. We sought to describe the performance of DE-CTA of the supraaortic vessels with a novel dual source CT system with special emphasis on image quality and post-processing related artifacts. Materials and methods: Thirty-three patients underwent carotid CT angiography on a second generation dual source CT system. Simultaneous acquisitions of 100 and 140 kV data sets in arterial phase were performed. Two examiners evaluated overall bone suppression with a 3-point scale (1 = poor; 3 = excellent) and image quality regarding integrity of the vessel lumen of different vessel segments (n = 26) with a 5-point scale (1 = poor; 5 = excellent), CTA source data served as the reference. Results: Excellent bone suppression could be achieved in the head and neck. Only minor bone remnants occurred, mean score for bone removal was 2.9. Mean score for vessel integrity was 4.3. Eight hundred fifty-seven vessel segments could be evaluated. Six hundred thirty-five segments (74%) showed no lumen alteration, 65 segments (7.6%) lumen alterations <10%, 27 segments (3.1%) lumen alterations >10% resulting in a total luminal reduction <50%, 17 segments (2%) lumen alterations of more than 10% resulting in a total luminal reduction >50%, and 113 segments (13.2%) showed a gap in the vessel course (100% total lumen reduction). Artificial gaps of the vessel lumen occurred in 28 vessel segments due to artifacts caused by dental hardware and in all but one (65) ophthalmic arteries. Conclusions: Excellent bone suppression could be achieved, DE imaging with 100 and 140 kV lead to improved image quality and vessel integrity in the shoulder region than previously

  13. Feasibility of generating quantitative composition images in dual energy mammography: a simulation study

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Breast cancer is one of the most common malignancies in women. For years, mammography has been used as the gold standard for localizing breast cancer, despite its limitation in determining cancer composition. Therefore, the purpose of this simulation study is to confirm the feasibility of obtaining tumor composition using dual energy digital mammography. To generate X-ray sources for dual energy mammography, 26 kVp and 39 kVp voltages were generated for low and high energy beams, respectively. Additionally, the energy subtraction and inverse mapping functions were applied to provide compositional images. The resultant images showed that the breast composition obtained by the inverse mapping function with cubic fitting achieved the highest accuracy and least noise. Furthermore, breast density analysis with cubic fitting showed less than 10% error compare to true values. In conclusion, this study demonstrated the feasibility of creating individual compositional images and capability of analyzing breast density effectively.

  14. Radiation Detection and Dual-Energy X-Ray Imaging for Port Security

    Energy Technology Data Exchange (ETDEWEB)

    Pashby, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glenn, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Divin, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-09

    Millions of cargo containers are transported across the United States border annually and are inspected for illicit radioactive material and contraband using a combination of passive radiation portal monitors (RPM) and high energy X-ray non-intrusive inspection (NII) systems. As detection performance is expected to vary with the material composition of cargo, characterizing the types of material present in cargo is important to national security. This work analyzes the passive radiation and dual energy radiography signatures from on RPM and two NII system, respectively. First, the cargos were analyzed to determine their ability to attenuate emissions from an embedded radioactive source. Secondly, dual-energy X-ray discrimination was used to determine the material composition and density of the cargos.

  15. Research on Matching Method of Power Supply Parameters for Dual Energy Source Electric Vehicles

    Science.gov (United States)

    Jiang, Q.; Luo, M. J.; Zhang, S. K.; Liao, M. W.

    2018-03-01

    A new type of power source is proposed, which is based on the traffic signal matching method of the dual energy source power supply composed of the batteries and the supercapacitors. First, analyzing the power characteristics is required to meet the excellent dynamic characteristics of EV, studying the energy characteristics is required to meet the mileage requirements and researching the physical boundary characteristics is required to meet the physical conditions of the power supply. Secondly, the parameter matching design with the highest energy efficiency is adopted to select the optimal parameter group with the method of matching deviation. Finally, the simulation analysis of the vehicle is carried out in MATLABSimulink, The mileage and energy efficiency of dual energy sources are analyzed in different parameter models, and the rationality of the matching method is verified.

  16. Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates

    Science.gov (United States)

    Farace, Paolo

    2014-11-01

    A two-steps procedure is presented to convert dual-energy CT data to stopping power ratio (SPR), relative to water. In the first step the relative electron density (RED) is calculated from dual-energy CT-numbers by means of a bi-linear relationship: RED = a HUscH + b HUscL + c, where HUscH and HUscL are scaled units (HUsc = HU + 1000) acquired at high and low energy respectively, and the three parameters a, b and c has to be determined for each CT scanner. In the second step the RED values were converted into SPR by means of published poly-line functions, which are invariant as they do not depend on a specific CT scanner. The comparison with other methods provides encouraging results, with residual SPR error on human tissue within 1%. The distinctive features of the proposed method are its simplicity and the generality of the conversion functions.

  17. WE-A-BRF-01: Dual-Energy CT Imaging in Diagnostic Imaging and Radiation Therapy

    International Nuclear Information System (INIS)

    Molloi, S; Li, B; Yin, F; Chen, H

    2014-01-01

    The quantification accuracy of dual-energy imaging is influenced by the fundamentals of x-ray physics, system geometry, data acquisition hardware/protocol, system calibration, and image processing technique. This symposium will provide updates on the following advanced application areas: Mammography. Volumetric breast density techniques based on standard mammograms require estimation of breast thickness, which is difficult to accurately measure. By comparison, calculation of breast density using dual energy mammography does not require measurement of breast thickness. Dual energy mammography has been implemented using both energy integrating flat panel detectors in conjunction with beam energy switching and energy resolved photon counting detectors. These techniques have been optimized using simulation studies and validated using physical phantoms and postmortem breasts. Chemical decomposition was used as the gold standard for volumetric breast density measurement in postmortem breasts. Breast density measurements have also been compared with results from four-category BI-RADS density rankings, standard image thresholding and Fuzzy k-mean clustering techniques. These studies indicate that dual energy mammography can be used to accurately measure volumetric breast density. Cardiovascular CT. The predicative accuracy of risk models for recurrent stroke and cardiac arrest depends heavily on accurate differentiation of thrombus or calcium from iodine in left atrial appendage or coronary arteries. The amount of energy separation is constrained by image noise; therefore, optimal kVp, beam filtration, and balanced flux are essential for the quantification accuracy of iodine and calcium. The basis materials are combined linearly to generate monochromatic energy images, where CT# accuracy and CNR are energy dependent. With optimal monochromatic energy, the mean iodine concentration for the thrombus, circulatory stasis, and control groups are significantly different. Risk

  18. Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates.

    Science.gov (United States)

    Farace, Paolo

    2014-11-21

    A two-steps procedure is presented to convert dual-energy CT data to stopping power ratio (SPR), relative to water. In the first step the relative electron density (RED) is calculated from dual-energy CT-numbers by means of a bi-linear relationship: RED=a HUscH+b HUscL+c, where HUscH and HUscL are scaled units (HUsc=HU+1000) acquired at high and low energy respectively, and the three parameters a, b and c has to be determined for each CT scanner. In the second step the RED values were converted into SPR by means of published poly-line functions, which are invariant as they do not depend on a specific CT scanner. The comparison with other methods provides encouraging results, with residual SPR error on human tissue within 1%. The distinctive features of the proposed method are its simplicity and the generality of the conversion functions.

  19. Dual-energy imaging in full-field digital mammography: a phantom study

    International Nuclear Information System (INIS)

    Taibi, A; Fabbri, S; Baldelli, P; Maggio, C di; Gennaro, G; Marziani, M; Tuffanelli, A; Gambaccini, M

    2003-01-01

    A dual-energy technique which employs the basis decomposition method is being investigated for application to digital mammography. A three-component phantom, made up of plexiglas, polyethylene and water, was doubly exposed with the full-field digital mammography system manufactured by General Electric. The 'low' and 'high' energy images were recorded with a Mo/Mo anode-filter combination and a Rh/Rh combination, respectively. The total dose was kept within the acceptable levels of conventional mammography. The first hybrid images obtained with the dual-energy algorithm are presented in comparison with a conventional radiograph of the phantom. Image-quality characteristics at contrast cancellation angles between plexiglas and water are discussed. Preliminary results show that a combination of a standard Mo-anode 28 kV radiograph with a Rh-anode 49 kV radiograph provides the best compromise between image-quality and dose in the hybrid image

  20. Dual-energy x-ray image decomposition by independent component analysis

    Science.gov (United States)

    Jiang, Yifeng; Jiang, Dazong; Zhang, Feng; Zhang, Dengfu; Lin, Gang

    2001-09-01

    The spatial distributions of bone and soft tissue in human body are separated by independent component analysis (ICA) of dual-energy x-ray images. It is because of the dual energy imaging modelí-s conformity to the ICA model that we can apply this method: (1) the absorption in body is mainly caused by photoelectric absorption and Compton scattering; (2) they take place simultaneously but are mutually independent; and (3) for monochromatic x-ray sources the total attenuation is achieved by linear combination of these two absorption. Compared with the conventional method, the proposed one needs no priori information about the accurate x-ray energy magnitude for imaging, while the results of the separation agree well with the conventional one.

  1. Spectral and dual-energy X-ray imaging for medical applications

    Science.gov (United States)

    Fredenberg, Erik

    2018-01-01

    Spectral imaging is an umbrella term for energy-resolved X-ray imaging in medicine. The technique makes use of the energy dependence of X-ray attenuation to either increase the contrast-to-noise ratio, or to provide quantitative image data and reduce image artefacts by so-called material decomposition. Spectral imaging is not new, but has gained interest in recent years because of rapidly increasing availability of spectral and dual-energy CT and the dawn of energy-resolved photon-counting detectors. This review examines the current technological status of spectral and dual-energy imaging and a number of practical applications of the technology in medicine.

  2. Single- and dual-energy quantitative CT adjacent to acetabular prosthetic components

    DEFF Research Database (Denmark)

    Mussmann, Bo Redder; Andersen, Poul Erik; Torfing, Trine

    2017-01-01

    and to compare BMD measurements in single and dual energy CT (SECT and DECT). Methods and Materials: 10 male patients with uncemented hip prosthetics were scanned and rescanned using 120 kVp SECT and DECT with virtual monochromatic images reconstructed at 130 keV. Hemispherical ROIs were defined slice...... that the intraobserver agreement of the scan modes is equal. BMD cannot be measured interchangeably with SECT and DECT....

  3. Variation of beam characteristics for physical and enhanced dynamic wedge from a dual energy accelerator

    International Nuclear Information System (INIS)

    Varatharaj, C.; Ravikumar, M.; Sathiyan, S.; Supe, Sanjay S.

    2008-01-01

    The use of Megavoltage X-ray sources of radiation, with their skin-sparing qualities in radiation therapy has been a boon in relieving patient discomfort and allowing higher tumor doses to be given with fewer restrictions due to radiation effects in the skin. The aim of this study was to compare few of the dosimetric characteristics of a physical and enhanced dynamic wedge from a dual energy (6-18 MV) linear accelerator

  4. Dual-energy X-ray radiography for automatic high-Z material detection

    International Nuclear Information System (INIS)

    Chen Gongyin; Bennett, Gordon; Perticone, David

    2007-01-01

    There is an urgent need for high-Z material detection in cargo. Materials with Z > 74 can indicate the presence of fissile materials or radiation shielding. Dual (high) energy X-ray material discrimination is based on the fact that different materials have different energy dependence in X-ray attenuation coefficients. This paper introduces the basic physics and analyzes the factors that affect dual-energy material discrimination performance. A detection algorithm is also discussed

  5. Dual-energy X-ray absorptiometry predicts bone formation in lower limb callotasis lengthening.

    OpenAIRE

    Maffulli, N.; Cheng, J. C.; Sher, A.; Lam, T. P.

    1997-01-01

    The rate of regenerate bone mineral content (BMC) acceleration was studied using dual-energy X-ray absorptiometry (DEXA) in callotasis lengthening of the lower limb. Eleven youngsters (age range 5-17 years) undergoing callotasis lengthening for congenital, post-traumatic or post-infective conditions were studied longitudinally. Patients were initially scanned once a week until completion of the lengthening phase, and at 2-week intervals thereafter until removal of the fixator. They were subse...

  6. Preliminary research on dual-energy X-ray phase-contrast imaging

    Science.gov (United States)

    Han, Hua-Jie; Wang, Sheng-Hao; Gao, Kun; Wang, Zhi-Li; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Pei-Ping

    2016-04-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure the bone mineral density (BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method aims to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretical ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for a future precise and low-dose area density calculation method for low-Z materials. Supported by Major State Basic Research Development Program (2012CB825800), Science Fund for Creative Research Groups (11321503) and National Natural Science Foundation of China (11179004, 10979055, 11205189, 11205157)

  7. Dual energy CT for the assessment of lung perfusion-Correlation to scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F.; Becker, Christoph R. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany); Hacker, Marcus [Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich (Germany); Nikolaou, Konstantin; Reiser, Maximilian F. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany); Johnson, Thorsten R.C. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany)], E-mail: thorsten.johnson@med.uni-muenchen.de

    2008-12-15

    Purpose of this study was to determine the diagnostic value of dual energy CT in the assessment of pulmonary perfusion with reference to pulmonary perfusion scintigraphy. Thirteen patients received both dual energy CT (DECT) angiography (Somatom Definition, Siemens) and ventilation/perfusion scintigraphy. Median time between scans was 3 days (range, 0-90). DECT perfusion maps were generated based on the spectral properties of iodine. Two blinded observes assessed DECT angiograms, perfusion maps and scintigrams for presence and location of perfusion defects. The results were compared by patient and by segment, and diagnostic accuracy of DECT perfusion imaging was calculated regarding scintigraphy as standard of reference. Diagnostic accuracy per patient showed 75% sensitivity, 80% specificity and a negative predictive value of 66%. Sensitivity per segment amounted to 83% with 99% specificity, with 93% negative predictive value. Peripheral parts of the lungs were not completely covered by the 80 kVp detector in 85% of patients. CTA identified corresponding emboli in 66% of patients with concordant perfusion defects in DECT and scintigraphy. Dual energy CT perfusion imaging is able to display pulmonary perfusion defects with good agreement to scintigraphic findings. DECT can provide a pulmonary CT angiogram, high-resolution morphology of the lung parenchyma and perfusion information in one single exam.

  8. Dual energy CT for the assessment of lung perfusion-Correlation to scintigraphy

    International Nuclear Information System (INIS)

    Thieme, Sven F.; Becker, Christoph R.; Hacker, Marcus; Nikolaou, Konstantin; Reiser, Maximilian F.; Johnson, Thorsten R.C.

    2008-01-01

    Purpose of this study was to determine the diagnostic value of dual energy CT in the assessment of pulmonary perfusion with reference to pulmonary perfusion scintigraphy. Thirteen patients received both dual energy CT (DECT) angiography (Somatom Definition, Siemens) and ventilation/perfusion scintigraphy. Median time between scans was 3 days (range, 0-90). DECT perfusion maps were generated based on the spectral properties of iodine. Two blinded observes assessed DECT angiograms, perfusion maps and scintigrams for presence and location of perfusion defects. The results were compared by patient and by segment, and diagnostic accuracy of DECT perfusion imaging was calculated regarding scintigraphy as standard of reference. Diagnostic accuracy per patient showed 75% sensitivity, 80% specificity and a negative predictive value of 66%. Sensitivity per segment amounted to 83% with 99% specificity, with 93% negative predictive value. Peripheral parts of the lungs were not completely covered by the 80 kVp detector in 85% of patients. CTA identified corresponding emboli in 66% of patients with concordant perfusion defects in DECT and scintigraphy. Dual energy CT perfusion imaging is able to display pulmonary perfusion defects with good agreement to scintigraphic findings. DECT can provide a pulmonary CT angiogram, high-resolution morphology of the lung parenchyma and perfusion information in one single exam

  9. Calcium scoring with dual-energy CT in men and women: an anthropomorphic phantom study

    Science.gov (United States)

    Li, Qin; Liu, Songtao; Myers, Kyle; Gavrielides, Marios A.; Zeng, Rongping; Sahiner, Berkman; Petrick, Nicholas

    2016-03-01

    This work aimed to quantify and compare the potential impact of gender differences on coronary artery calcium scoring with dual-energy CT. An anthropomorphic thorax phantom with four synthetic heart vessels (diameter 3-4.5 mm: female/male left main and left circumflex artery) were scanned with and without female breast plates. Ten repeat scans were acquired in both single- and dual-energy modes and reconstructed at six reconstruction settings: two slice thicknesses (3 mm, 0.6 mm) and three reconstruction algorithms (FBP, IR3, IR5). Agatston and calcium volume scores were estimated from the reconstructed data using a segmentation-based approach. Total calcium score (summation of four vessels), and male/female calcium scores (summation of male/female vessels scanned in phantom without/with breast plates) were calculated accordingly. Both Agatston and calcium volume scores were found comparable between single- and dual-energy scans (Pearson r= 0.99, pwomen and men in calcium scoring, and for standardizing imaging protocols for improved gender-specific calcium scoring.

  10. Quantitative evaluation of dual-energy digital mammography for calcification imaging

    International Nuclear Information System (INIS)

    Kappadath, S Cheenu; Shaw, Chris C

    2004-01-01

    Dual-energy digital mammography (DEDM), where separate low- and high-energy images are acquired and synthesized to cancel the tissue structures, may improve the ability to detect and visualize microcalcifications. Under ideal imaging conditions, when the mammography image data are free of scatter and other biases, DEDM could be used to determine the thicknesses of the imaged calcifications. We present quantitative evaluation of a DEDM technique for calcification imaging. The phantoms used in the evaluation were constructed by placing aluminium strips of known thicknesses (to simulate calcifications) across breast-tissue-equivalent materials of different glandular-tissue compositions. The images were acquired under narrow-beam geometry and high exposures to suppress the detrimental effects of scatter and random noise. The measured aluminium thicknesses were found to be approximately linear with the true aluminium thicknesses and independent of the underlying glandular-tissue composition. However, the dual-energy images underestimated the true aluminium thickness due to the presence of scatter from adjacent regions. Regions in the DEDM image that contained no aluminium yielded very low aluminium thicknesses (<0.07 mm). The aluminium contrast-to-noise ratio in the dual-energy images increased with the aluminium thickness and decreased with the glandular-tissue composition. The changes to the aluminium contrast-to-noise ratio and the contrast of the tissue structures between the low-energy and DEDM images are also presented

  11. Dual-energy digital radiography for the assessment of bone mineral density

    Energy Technology Data Exchange (ETDEWEB)

    Tahvanainen, Paeivi S.; Lammentausta, Eveliina; Tervonen, Osmo; Jaemsae, Timo; Nieminen, Miika T. (Dept. of Diagnostic Radiology, Univ. of Oulu, Oulu (Finland)), e-mail: paivi.tahvanainen@oulu.fi; Pulkkinen, Pasi (Dept. of Medical Technology, Univ. of Oulu, Oulu (Finland))

    2010-06-15

    Background: Bone mineral density (BMD) is usually determined by dual-energy X-ray absorptiometry (DXA). Digital radiography (DR) has enabled the application of dual-energy techniques for separating bone and soft tissue, but it is not clear yet whether BMD information can reliably be obtained using DR. Purpose: To determine the ability of dual-energy digital radiography (DEDR) to predict BMD as determined by DXA. Material and Methods: Reindeer femora (n=15) were imaged in a water bath at a typical clinical imaging voltage of 79 kVp and additionally at 100 kVp on a DR system. BMD was determined in four segmented regions (femoral neck, trochanter, inter-trochanter, Ward's triangle) from these images using the DXA calculation principle. BMD results as determined by DEDR were compared with BMD values as determined by DXA. Results: Significant moderate to high linear correlations (0.66-0.76) were observed at the femoral neck, Ward's triangle, and trochanter between BMD values as determined by the two techniques. The coefficient of variation (CVRMS) ranged between 2.2 and 4.7% and 0.2 and 1.8% for DEDR and DXA analyses, respectively. Conclusion: DXA-based BMD information can be obtained with moderate precision and accuracy using DEDR. In future, combining BMD measurements using DEDR with structural and geometrical information available on digital radiographs could enable a more comprehensive assessment of bone . Keywords: BMD, DXA, bone assessment

  12. Comparison between lighting performance of a virtual natural lighting solutions prototype and a real window based on computer simulation

    Directory of Open Access Journals (Sweden)

    R.A. Mangkuto

    2014-12-01

    Full Text Available This article discusses the measurement and simulation of a first generation prototype of Virtual Natural Lighting Solutions (VNLS, which are systems that can artificially provide natural lighting as well as a realistic outside view, with properties comparable to those of real windows and skylights. Examples of employing Radiance as a simulation tool to predict the lighting performance of such solutions are shown, for a particular case study of a VNLS prototype displaying variations of a simplified view of overcast, clear, and partly cloudy skies. Measurement and simulation were conducted to evaluate the illuminance distribution on workplane level. The key point of this study is to show that simulations can be used to compare an actual VNLS prototype with a hypothetical real window under the same sky scenes, which was physically not possible, since the test room was not located at the building׳s façade. It is found that the investigated prototype yields a less rapidly drop illuminance distribution and a larger average illuminance than the corresponding real window, under the overcast (52 lx compared to 28 lx and partly cloudy (102 lx compared to 80 lx sky scenes. Under the clear sky scene, the real window yields a larger average illuminance (97 lx compared to the prototype (71 lx, due to the influence of direct sunlight.

  13. In vitro differentiation of renal stone composition using dual-source, dual-energy CT

    International Nuclear Information System (INIS)

    Zhou Changsheng; Zhang Longjiang; Xu Feng; Qi Li; Zhao Yan'e; Zheng Ling; Huang Wei; Liu Youhuang; Lu Guangming

    2012-01-01

    Objective: To evaluate the ability of dual-source. dual-energy CT in differentiating uric acid stones from non-uric acid stones with infrared spectroscopy as reference standard. Materials and Methods: Urinary calculus from 308 patients were scanned in first generation dual-source CT with dual-energy mode between July 2011 and June 2012. Renal Stone application was used to analyze their composition. The uric acid stones color were coded red and non-uric acid stones were blue. CT values were measured in 60 selective urinary calculus including 30 uric acid stones and 30 non-uric acid stones. The accuracy of dual energy CT to differentiate uric acid and no-uric acid stones was calculated. Results: Of 308 patients, 60 patients had uric acid stones and 248 non-uric acid stones. No difference was found for uric acid stone at 80 kV and 140 kV (375.8±69.2 HU vs. 374.1±69.4 HU; t=-0.217, P=0.830), while CT values of non-uric acid stones were higher at 80 kV than those at 140 kV (1455.1±312.4 HU vs. 1039.6±194.4 HU; t=-12.16. P<0.001). CT values of non-uric acid stones at 80 kV, 140 kV, and average weighted images (1455.1±312.4 HU, 1 039.6±194.4 HU, and 882.0±176.4 HU, respectively) were higher than those of uric acid stones (375.8±69.2 HU, 374.1±69.4 HU, and 366.3±80.1 HU, respectively; P<0.001). With infrared spectrum findings as reference standard, the accuracy of dual energy CT in differentiating uric acid stones from non-uric acid stones was 100%. Conclusions: Dual-source, dual-energy CT can accurately differentiate uric acid stones from non-uric acid stones, and plays an important role in treatment planning of renal stones. (authors)

  14. Diagnostic performance of calcification-suppressed coronary CT angiography using rapid kilovolt-switching dual-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Yunaga, Hiroto; Ohta, Yasutoshi; Kitao, Shinichiro; Ogawa, Toshihide [Tottori University, Division of Radiology, Department of Pathophysiological Therapeutic Science, Faculty of Medicine, Yonago City, Tottori (Japan); Kaetsu, Yasuhiro [Kakogawa Higashi Hospital, Department of Cardiology, Kakogawa (Japan); Watanabe, Tomomi; Furuse, Yoshiyuki; Yamamoto, Kazuhiro [Tottori University, Division of Cardiology, Department of Molecular Medicine and Therapeutics, Faculty of Medicine, Yonago (Japan)

    2017-07-15

    Multi-detector-row computed tomography angiography (MDCTA) plays an important role in the assessment of patients with suspected coronary artery disease. However, MDCTA tends to overestimate stenosis in calcified coronary artery lesions. The aim of our study was to evaluate the diagnostic performance of calcification-suppressed material density (MD) images produced by using a single-detector single-source dual-energy computed tomography (ssDECT). We enrolled 67 patients with suspected or known coronary artery disease who underwent ssDECT with rapid kilovolt-switching (80 and 140 kVp). Coronary artery stenosis was evaluated on the basis of MD images and virtual monochromatic (VM) images. The diagnostic performance of the two methods for detecting coronary artery disease was compared with that of invasive coronary angiography as a reference standard. We evaluated 239 calcified segments. In all the segments, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy for detecting significant stenosis were respectively 88%, 88%, 75%, 95% and 88% for the MD images, 91%, 71%, 56%, 95% and 77% for the VM images. PPV was significantly higher on the MD images than on the VM images (P < 0.0001). Calcification-suppressed MD images improved PPV and diagnostic performance for calcified coronary artery lesions. (orig.)

  15. Feasibility of Single Scan for Simultaneous Evaluation of Regional Krypton and Iodine Concentrations with Dual-Energy CT: An Experimental Study.

    Science.gov (United States)

    Hong, Sae Rom; Chang, Suyon; Im, Dong Jin; Suh, Young Joo; Hong, Yoo Jin; Hur, Jin; Kim, Young Jin; Choi, Byoung Wook; Lee, Hye-Jeong

    2016-11-01

    Purpose To evaluate the feasibility of a simultaneous single scan of regional krypton and iodine concentrations by using dual-energy computed tomography (CT). Materials and Methods The study was approved by the institutional animal experimental committee. An airway obstruction model was first made in 10 beagle dogs, and a pulmonary arterial occlusion was induced in each animal after 1 week. For each model, three sessions of dual-energy CT (80% krypton ventilation [krypton CT], 80% krypton ventilation with iodine enhancement [mixed-contrast agent CT], and iodine enhancement [iodine CT]) were performed. Krypton maps were made from krypton and mixed-contrast agent CT, and iodine maps were made from iodine and mixed-contrast agent CT. Observers measured overlay Hounsfield units of the diseased and contralateral segments on each map. Values were compared by using the Wilcoxon signed-rank test. Results In krypton maps of airway obstruction, overlay Hounsfield units of diseased segments were significantly decreased compared with those of contralateral segments in both krypton and mixed-contrast agent CT (P = .005 for both). However, the values of mixed-contrast agent CT were significantly higher than those of krypton CT for both segments (P = .005 and .007, respectively). In iodine maps of pulmonary arterial occlusion, values were significantly lower in diseased segments than in contralateral segments for both iodine and mixed-contrast agent CT (P = .005 for both), without significant difference between iodine and mixed-contrast agent CT for both segments (P = .126 and .307, respectively). Conclusion Although some limitations may exist, it might be feasible to analyze regional krypton and iodine concentrations simultaneously by using dual-energy CT. © RSNA, 2016.

  16. TH-C-18A-02: Machine Learning and STAPLE Based Simultaneous Longitudinal Segmentation of Bone and Marrow Structures From Dual Energy CT

    International Nuclear Information System (INIS)

    Fehr, D; Schmidtlein, C; Hwang, S; Deasy, J; Veeraraghavan, H

    2014-01-01

    Purpose: To develop a fully-automatic longitudinal bone and marrow segmentation method in the pelvic region from dual energy computed tomography (DECT). Methods: We developed a two-step automatic bone and marrow segmentation method for simultaneous longitudinal evaluation of patients with metastatic bone disease using dual energy CT (DECT). Our approach transforms the DECT images into a multi-material decomposition (MMD) model that represents the voxels as a mixture of multiple materials. A support vector machine (SVM) was trained using a single scan. In the first step of the longitudinal segmentation the trained SVM model detects bone and marrow structures on all available longitudinal scans. Segmentation is further refined through active contour segmentation. In the second step, the segmentations from the individual scans are merged by employing the simultaneous truth and performance level estimation (STAPLE) algorithm. The scans are registered using affine and deformable registration. We found that our approach improves the segmentation in all the scans under reliable registration performance between the same scans. Improving registration was not under the scope of this work. Results: We applied our approach to segment bone and marrow in DECT scans in the pelvic regions for multiple patients. Each patient had three to five follow up scans. All the patients in the analysis had artificial metal prostheses which introduced challenges for the registration. Our algorithm achieved reasonable accurate segmentation despite the presence of metal artifacts and high-density oral contrast in neighboring structures. Our approach obtained an overall segmentation accuracy of 80% using DICE metric. Conclusion: We developed a two-step automatic longitudinal segmentation technique for bone and marrow region structures in the pelvic areas from dual energy CT. Our approach achieves robust segmentation despite the presence of confounding structures with similar intensities as the

  17. Automatic intensity-based 3D-to-2D registration of CT volume and dual-energy digital radiography for the detection of cardiac calcification

    Science.gov (United States)

    Chen, Xiang; Gilkeson, Robert; Fei, Baowei

    2007-03-01

    We are investigating three-dimensional (3D) to two-dimensional (2D) registration methods for computed tomography (CT) and dual-energy digital radiography (DR) for the detection of coronary artery calcification. CT is an established tool for the diagnosis of coronary artery diseases (CADs). Dual-energy digital radiography could be a cost-effective alternative for screening coronary artery calcification. In order to utilize CT as the "gold standard" to evaluate the ability of DR images for the detection and localization of calcium, we developed an automatic intensity-based 3D-to-2D registration method for 3D CT volumes and 2D DR images. To generate digital rendering radiographs (DRR) from the CT volumes, we developed three projection methods, i.e. Gaussian-weighted projection, threshold-based projection, and average-based projection. We tested normalized cross correlation (NCC) and normalized mutual information (NMI) as similarity measurement. We used the Downhill Simplex method as the search strategy. Simulated projection images from CT were fused with the corresponding DR images to evaluate the localization of cardiac calcification. The registration method was evaluated by digital phantoms, physical phantoms, and clinical data sets. The results from the digital phantoms show that the success rate is 100% with mean errors of less 0.8 mm and 0.2 degree for both NCC and NMI. The registration accuracy of the physical phantoms is 0.34 +/- 0.27 mm. Color overlay and 3D visualization of the clinical data show that the two images are registered well. This is consistent with the improvement of the NMI values from 0.20 +/- 0.03 to 0.25 +/- 0.03 after registration. The automatic 3D-to-2D registration method is accurate and robust and may provide a useful tool to evaluate the dual-energy DR images for the detection of coronary artery calcification.

  18. Osteitis: a retrospective feasibility study comparing single-source dual-energy CT to MRI in selected patients with suspected acute gout

    Energy Technology Data Exchange (ETDEWEB)

    Diekhoff, Torsten [Humboldt-Universitaet zu Berlin, Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Department of Radiology (CCM), Berlin (Germany); Scheel, Michael; Hamm, Bernd; Hermann, Kay-Geert A. [Humboldt-Universitaet zu Berlin, Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Berlin (Germany); Hermann, Sandra [Charite - Universitaetsmedizin Berlin Campus Mitte, Department of Rheumatology and Clinical Immunology, Berlin (Germany); Mews, Juergen [Toshiba Medical Systems Europe, BV, Zoetermeer (Netherlands)

    2017-02-15

    Dual-energy computed tomography detects tophi in patients with chronic gout. However, other information that can be obtained from the same scan is not the focus of the current research, e.g., the detection of bone marrow edema (BME) using virtual bone marrow imaging (VBMI). The aim of this study was to evaluate if BME in patients with acute arthritis can be detected with VBMI using magnetic resonance imaging (MRI) as the standard of reference. This retrospective study included 11 patients who underwent both MRI and dual-energy computed tomography (mean interval of 40 days). BME in MRI (standard of reference) and VBMI was judged independently by two different blinded readers. φ-correlation coefficient and Cohen's κ were performed for statistical analysis. Approval was waived by the IRB. Two patients with a final diagnosis of RA and one with septic arthritis showed osteitis on MRI and VBMI. However, in each case, there were individual bones identified with osteitis on MRI but not VBMI. Three additional patients with the final diagnosis of RA were identified correctly as negative for BME. There was a good correlation between both modalities (φ = 0.8; κ = 0.8). Inter-rater reliability was excellent for both modalities (κ = 0.9). We have shown that detecting osteitis using VBMI is feasible in patients with inflammatory arthritis. Further studies are needed on larger, more-targeted populations to better define the indications, accuracy, and added value of this technique. (orig.)

  19. The role of dual energy CT in differentiating between brain haemorrhage and contrast medium after mechanical revascularisation in acute ischaemic stroke

    International Nuclear Information System (INIS)

    Tijssen, M.P.M.; Stadler, A.A.R.; Zwam, W. van; Graaf, R. de; Postma, A.A.; Hofman, P.A.M.; Oostenbrugge, R.J. van; Klotz, E.; Wildberger, J.E.

    2014-01-01

    To assess the feasibility of dual energy computed tomography (DE-CT) in intra-arterially treated acute ischaemic stroke patients to discriminate between contrast extravasation and intracerebral haemorrhage. Thirty consecutive acute ischaemic stroke patients following intra-arterial treatment were examined with DE-CT. Simultaneous imaging at 80 kV and 140 kV was employed with calculation of mixed images. Virtual unenhanced non-contrast (VNC) images and iodine overlay maps (IOM) were calculated using a dedicated brain haemorrhage algorithm. Mixed images alone, as ''conventional CT'', and DE-CT interpretations were evaluated and compared with follow-up CT. Eight patients were excluded owing to a lack of follow-up or loss of data. Mixed images showed intracerebral hyperdense areas in 19/22 patients. Both haemorrhage and residual contrast material were present in 1/22. IOM suggested contrast extravasation in 18/22 patients; in 16/18 patients this was confirmed at follow-up. The positive predictive value (PPV) of mixed imaging alone was 25 %, with a negative predictive value (NPV) of 91 % and accuracy of 63 %. The PPV for detection of haemorrhage with DE-CT was 100 %, with an NPV of 89 % and accuracy improved to 89 %. Dual energy computed tomography improves accuracy and diagnostic confidence in early differentiation between intracranial haemorrhage and contrast medium extravasation in acute stroke patients following intra-arterial revascularisation. (orig.)

  20. Osteitis: a retrospective feasibility study comparing single-source dual-energy CT to MRI in selected patients with suspected acute gout

    International Nuclear Information System (INIS)

    Diekhoff, Torsten; Scheel, Michael; Hamm, Bernd; Hermann, Kay-Geert A.; Hermann, Sandra; Mews, Juergen

    2017-01-01

    Dual-energy computed tomography detects tophi in patients with chronic gout. However, other information that can be obtained from the same scan is not the focus of the current research, e.g., the detection of bone marrow edema (BME) using virtual bone marrow imaging (VBMI). The aim of this study was to evaluate if BME in patients with acute arthritis can be detected with VBMI using magnetic resonance imaging (MRI) as the standard of reference. This retrospective study included 11 patients who underwent both MRI and dual-energy computed tomography (mean interval of 40 days). BME in MRI (standard of reference) and VBMI was judged independently by two different blinded readers. φ-correlation coefficient and Cohen's κ were performed for statistical analysis. Approval was waived by the IRB. Two patients with a final diagnosis of RA and one with septic arthritis showed osteitis on MRI and VBMI. However, in each case, there were individual bones identified with osteitis on MRI but not VBMI. Three additional patients with the final diagnosis of RA were identified correctly as negative for BME. There was a good correlation between both modalities (φ = 0.8; κ = 0.8). Inter-rater reliability was excellent for both modalities (κ = 0.9). We have shown that detecting osteitis using VBMI is feasible in patients with inflammatory arthritis. Further studies are needed on larger, more-targeted populations to better define the indications, accuracy, and added value of this technique. (orig.)

  1. The role of dual energy CT in differentiating between brain haemorrhage and contrast medium after mechanical revascularisation in acute ischaemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Tijssen, M.P.M.; Stadler, A.A.R.; Zwam, W. van; Graaf, R. de; Postma, A.A. [Maastricht University Medical Centre, Department of Radiology, P.O. Box 5800, Maastricht (Netherlands); Hofman, P.A.M. [Maastricht University Medical Centre, Department of Radiology, P.O. Box 5800, Maastricht (Netherlands); Maastricht University, MhENS School for Mental Health and Neuroscience, Maastricht (Netherlands); Oostenbrugge, R.J. van [Maastricht University Medical Centre, Department of Neurology, P.O. Box 5800, Maastricht (Netherlands); Maastricht University, CARIM School for Cardiovascular Diseases, P.O. Box 616, Maastricht (Netherlands); Klotz, E. [Siemens Healthcare Sector, Computed Tomography, Forchheim (Germany); Wildberger, J.E. [Maastricht University Medical Centre, Department of Radiology, P.O. Box 5800, Maastricht (Netherlands); Maastricht University, CARIM School for Cardiovascular Diseases, P.O. Box 616, Maastricht (Netherlands)

    2014-04-15

    To assess the feasibility of dual energy computed tomography (DE-CT) in intra-arterially treated acute ischaemic stroke patients to discriminate between contrast extravasation and intracerebral haemorrhage. Thirty consecutive acute ischaemic stroke patients following intra-arterial treatment were examined with DE-CT. Simultaneous imaging at 80 kV and 140 kV was employed with calculation of mixed images. Virtual unenhanced non-contrast (VNC) images and iodine overlay maps (IOM) were calculated using a dedicated brain haemorrhage algorithm. Mixed images alone, as ''conventional CT'', and DE-CT interpretations were evaluated and compared with follow-up CT. Eight patients were excluded owing to a lack of follow-up or loss of data. Mixed images showed intracerebral hyperdense areas in 19/22 patients. Both haemorrhage and residual contrast material were present in 1/22. IOM suggested contrast extravasation in 18/22 patients; in 16/18 patients this was confirmed at follow-up. The positive predictive value (PPV) of mixed imaging alone was 25 %, with a negative predictive value (NPV) of 91 % and accuracy of 63 %. The PPV for detection of haemorrhage with DE-CT was 100 %, with an NPV of 89 % and accuracy improved to 89 %. Dual energy computed tomography improves accuracy and diagnostic confidence in early differentiation between intracranial haemorrhage and contrast medium extravasation in acute stroke patients following intra-arterial revascularisation. (orig.)

  2. Cooperative Prototyping Experiments

    DEFF Research Database (Denmark)

    Bødker, Susanne; Grønbæk, Kaj

    1989-01-01

    This paper describes experiments with a design technique that we denote cooperative prototyping. The experiments consider design of a patient case record system for municipal dental clinics in which we used HyperCard, an off the shelf programming environment for the Macintosh. In the ecperiments we...... tried to achieve a fluent work-like evaluation of prototypes where users envisioned future work with a computer tool, at the same time as we made on-line modifications of prototypes in cooperation with the users when breakdown occur in their work-like evaluation. The experiments showed...... that it was possible to make a number of direct manipulation changes of prototypes in cooperation with the users, in interplay with their fluent work-like evaluation of these. However, breakdown occurred in the prototyping process when we reached the limits of the direct manipulation support for modification. From...

  3. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Menten, Martin J., E-mail: martin.menten@icr.ac.uk; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe, E-mail: uwe.oelfke@icr.ac.uk [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2015-12-15

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  4. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    International Nuclear Information System (INIS)

    Menten, Martin J.; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2015-01-01

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  5. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy.

    Science.gov (United States)

    Menten, Martin J; Fast, Martin F; Nill, Simeon; Oelfke, Uwe

    2015-12-01

    Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Regular dual-energy imaging was able to increase tracking accuracy in left-right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. This study has highlighted the influence of patient anatomy on the success rate of real

  6. Feasibility study analysis for multi-function dual energy oven (case study: tapioca crackers small medium enterprise)

    Science.gov (United States)

    Soraya, N. W.; El Hadi, R. M.; Chumaidiyah, E.; Tripiawan, W.

    2017-12-01

    Conventional drying process is constrained by weather (cloudy / rainy), and requires wide drying area, and provides low-quality product. Multi-function dual energy oven is the appropriate technology to solve these problems. The oven uses solar thermal or gas heat for drying various type of products, including tapioca crackers. Investment analysis in technical, operational, and financial aspects show that the multi-function dual energy oven is feasible to be implemented for small medium enterprise (SME) processing tapioca crackers.

  7. Collateral Ventilation to Congenital Hyperlucent Lung Lesions Assessed on Xenon-Enhanced Dynamic Dual-Energy CT: an Initial Experience

    OpenAIRE

    Goo, Hyun Woo; Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    Objective We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Materials and Methods Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a ...

  8. Iteration and Prototyping in Creating Technical Specifications.

    Science.gov (United States)

    Flynt, John P.

    1994-01-01

    Claims that the development process for computer software can be greatly aided by the writers of specifications if they employ basic iteration and prototyping techniques. Asserts that computer software configuration management practices provide ready models for iteration and prototyping. (HB)

  9. Prototyping Practice

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin

    2015-01-01

    This paper examines the role of the prototyping in digital architecture. During the past decade, a new research field has emerged exploring the digital technology’s impact on the way we think, design and build our environment. In this practice the prototype, the pavilion, installation or demonstr......This paper examines the role of the prototyping in digital architecture. During the past decade, a new research field has emerged exploring the digital technology’s impact on the way we think, design and build our environment. In this practice the prototype, the pavilion, installation...

  10. Usefulness of Computed Tomography in pre-surgical evaluation of maxillo-facial pathology with rapid prototyping and surgical pre-planning by virtual reality

    International Nuclear Information System (INIS)

    Toso, Francesco; Zuiani, Chiara; Vergendo, Maurizio; Bazzocchi, Massimo; Salvo, Iolanda; Robiony, Massimo; Politi, Massimo

    2005-01-01

    Purpose. To validate a protocol for creating virtual models to be used in the construction of solid prototypes useful for the planning-simulation of maxillo-facial surgery, in particular for very complex anatomical and pathologic problems. To optimize communications between the radiology, engineering and surgical laboratories. Methods and materials. We studied 16 patients with different clinical problems of the maxillo-facial district. Exams were performed with multidetector computed tomography (MDCT) and single slice computed tomography (SDCT) with axial scans and collimation of 0.5-2 mm, and reconstruction interval of 1 mm. Subsequently we performed 2D multiplanar reconstructions and 3D volume-rendering reconstructions. We exported the DICOM images to the engineering laboratory, to recognize and isolate the bony structures by software. With these data the solid prototypes were generated using stereolitography. To date, surgery has been preformed on 12 patients after simulation of the procedure on the stereolitography model. Results. The solid prototypes constructed in the difficult cases were sufficiently detailed despite problems related to the artefacts generated by dental fillings and prostheses. In the remaining cases the MPR/3D images were sufficiently detailed for surgical planning. The surgical results were excellent in all patients who underwent surgery, and the surgeons were satisfied with the improvement in quality and the reduction in time required for the procedure. Conclusions. MDCT enables rapid prototyping using solid replication, which was very helpful in maxillofacial surgery, despite problems related to artifacts due to dental fillings and prosthesis within the acquisition field; solutions for this problem are work in progress. The protocol used for communication between the different laboratories was valid and reproducible [it

  11. Technical Note: Improved CT number stability across patient size using dual-energy CT virtual monoenergetic imaging

    International Nuclear Information System (INIS)

    Michalak, Gregory; Grimes, Joshua; Fletcher, Joel; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia; Halaweish, Ahmed

    2016-01-01

    Purpose: The purpose of this study was to evaluate, over a wide range of phantom sizes, CT number stability achieved using two techniques for generating dual-energy computed tomography (DECT) virtual monoenergetic images. Methods: Water phantoms ranging in lateral diameter from 15 to 50 cm and containing a CT number test object were scanned on a DSCT scanner using both single-energy (SE) and dual-energy (DE) techniques. The SE tube potentials were 70, 80, 90, 100, 110, 120, 130, 140, and 150 kV; the DE tube potential pairs were 80/140, 70/150Sn, 80/150Sn, 90/150Sn, and 100/150Sn kV (Sn denotes that the 150 kV beam was filtered with a 0.6 mm tin filter). Virtual monoenergetic images at energies ranging from 40 to 140 keV were produced from the DECT data using two algorithms, monoenergetic (mono) and monoenergetic plus (mono+). Particularly in large phantoms, water CT number errors and/or artifacts were observed; thus, datasets with water CT numbers outside ±10 HU or with noticeable artifacts were excluded from the study. CT numbers were measured to determine CT number stability across all phantom sizes. Results: Data exclusions were generally limited to cases when a SE or DE technique with a tube potential of less than 90 kV was used to scan a phantom larger than 30 cm. The 90/150Sn DE technique provided the most accurate water background over the large range of phantom sizes evaluated. Mono and mono+ provided equally improved CT number stability as a function of phantom size compared to SE; the average deviation in CT number was only 1.4% using 40 keV and 1.8% using 70 keV, while SE had an average deviation of 11.8%. Conclusions: The authors’ report demonstrates, across all phantom sizes, the improvement in CT number stability achieved with mono and mono+ relative to SE

  12. Tomography of atomic number and density of materials using dual-energy imaging and the Alvarez and Macovski attenuation model

    Energy Technology Data Exchange (ETDEWEB)

    Paziresh, M.; Kingston, A. M., E-mail: andrew.kingston@anu.edu.au; Latham, S. J.; Fullagar, W. K.; Myers, G. M. [Department of Applied Mathematics, Research School of physics and Engineering, The Australian National University, Canberra 2601 (Australia)

    2016-06-07

    Dual-energy computed tomography and the Alvarez and Macovski [Phys. Med. Biol. 21, 733 (1976)] transmitted intensity (AMTI) model were used in this study to estimate the maps of density (ρ) and atomic number (Z) of mineralogical samples. In this method, the attenuation coefficients are represented [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)] in the form of the two most important interactions of X-rays with atoms that is, photoelectric absorption (PE) and Compton scattering (CS). This enables material discrimination as PE and CS are, respectively, dependent on the atomic number (Z) and density (ρ) of materials [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)]. Dual-energy imaging is able to identify sample materials even if the materials have similar attenuation coefficients at single-energy spectrum. We use the full model rather than applying one of several applied simplified forms [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976); Siddiqui et al., SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2004); Derzhi, U.S. patent application 13/527,660 (2012); Heismann et al., J. Appl. Phys. 94, 2073–2079 (2003); Park and Kim, J. Korean Phys. Soc. 59, 2709 (2011); Abudurexiti et al., Radiol. Phys. Technol. 3, 127–135 (2010); and Kaewkhao et al., J. Quant. Spectrosc. Radiat. Transfer 109, 1260–1265 (2008)]. This paper describes the tomographic reconstruction of ρ and Z maps of mineralogical samples using the AMTI model. The full model requires precise knowledge of the X-ray energy spectra and calibration of PE and CS constants and exponents of atomic number and energy that were estimated based on fits to simulations and calibration measurements. The estimated ρ and Z images of the samples used in this paper yield average relative errors of 2.62% and 1.19% and maximum relative errors of 2.64% and 7.85%, respectively. Furthermore, we demonstrate that the method accounts for the beam hardening effect in density (

  13. Technical Note: Improved CT number stability across patient size using dual-energy CT virtual monoenergetic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Gregory; Grimes, Joshua; Fletcher, Joel; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia, E-mail: mccollough.cynthia@mayo.edu [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Halaweish, Ahmed [Siemens Medical Solutions, Malvern, Pennsylvania 19355 (United States)

    2016-01-15

    Purpose: The purpose of this study was to evaluate, over a wide range of phantom sizes, CT number stability achieved using two techniques for generating dual-energy computed tomography (DECT) virtual monoenergetic images. Methods: Water phantoms ranging in lateral diameter from 15 to 50 cm and containing a CT number test object were scanned on a DSCT scanner using both single-energy (SE) and dual-energy (DE) techniques. The SE tube potentials were 70, 80, 90, 100, 110, 120, 130, 140, and 150 kV; the DE tube potential pairs were 80/140, 70/150Sn, 80/150Sn, 90/150Sn, and 100/150Sn kV (Sn denotes that the 150 kV beam was filtered with a 0.6 mm tin filter). Virtual monoenergetic images at energies ranging from 40 to 140 keV were produced from the DECT data using two algorithms, monoenergetic (mono) and monoenergetic plus (mono+). Particularly in large phantoms, water CT number errors and/or artifacts were observed; thus, datasets with water CT numbers outside ±10 HU or with noticeable artifacts were excluded from the study. CT numbers were measured to determine CT number stability across all phantom sizes. Results: Data exclusions were generally limited to cases when a SE or DE technique with a tube potential of less than 90 kV was used to scan a phantom larger than 30 cm. The 90/150Sn DE technique provided the most accurate water background over the large range of phantom sizes evaluated. Mono and mono+ provided equally improved CT number stability as a function of phantom size compared to SE; the average deviation in CT number was only 1.4% using 40 keV and 1.8% using 70 keV, while SE had an average deviation of 11.8%. Conclusions: The authors’ report demonstrates, across all phantom sizes, the improvement in CT number stability achieved with mono and mono+ relative to SE.

  14. Role of digital tomosynthesis and dual energy subtraction digital radiography in detection of parenchymal lesions in active pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Sharma, Madhurima; Sandhu, Manavjit Singh; Gorsi, Ujjwal; Gupta, Dheeraj; Khandelwal, Niranjan

    2015-01-01

    Highlights: • Digital tomosynthesis and dual energy subtraction digital radiography are modifications of digital radiography. • These modalities perform better than digital radiography in detection of parenchymal lesions in active pulmonary tuberculosis. • Digital tomosynthesis has a sensitivity of 100% in detection of cavities. • Centrilobular nodules seen on CT in active pulmonary tuberculosis, were also demonstrated on digital tomosynthesis in our study. • Digital tomosynthesis can be used for diagnosis and follow up of patients in pulmonary tuberculosis, thereby reducing the number of CT examinations. - Abstract: Objective: To assess the role of digital tomosynthesis (DTS) and dual energy subtraction digital radiography (DES-DR) in detection of parenchymal lesions in active pulmonary tuberculosis (TB) and to compare them with digital radiography (DR). Materials and methods: This prospective study was approved by our institutional review committee. DTS and DES-DR were performed in 62 patients with active pulmonary TB within one week of multidetector computed tomography (MDCT) study. Findings of active pulmonary TB, that is consolidation, cavitation and nodules were noted on digital radiography (DR), DTS and DES-DR in all patients. Sensitivity, specificity, positive and negative predictive values of all 3 modalities was calculated with MDCT as reference standard. In addition presence of centrilobular nodules was also noted on DTS. Results: Our study comprised of 62 patients (33 males, 29 females with age range 18–82 years). Sensitivity and specificity of DTS for detection of nodules and cavitation was better than DR and DES-DR. Sensitivity and specificity of DTS for detection of consolidation was comparable to DR and DES-DR. DES-DR performed better than DR in detection of nodules and cavitation. DTS was also able to detect centrilobular nodules with sensitivity and specificity of 57.4% and 86.5% respectively. Conclusion: DTS and DES-DR perform better

  15. Role of digital tomosynthesis and dual energy subtraction digital radiography in detection of parenchymal lesions in active pulmonary tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Madhurima, E-mail: madhurimashrm88@gmail.com [Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh 160012 (India); Sandhu, Manavjit Singh, E-mail: manavjitsandhu@yahoo.com [Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh 160012 (India); Gorsi, Ujjwal, E-mail: ujjwalgorsi@gmail.com [Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh 160012 (India); Gupta, Dheeraj, E-mail: dheeraj1910@gmail.com [Department of Pulmonary Medicine, PGIMER, Chandigarh 160012 (India); Khandelwal, Niranjan, E-mail: khandelwaln@hotmail.com [Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh 160012 (India)

    2015-09-15

    Highlights: • Digital tomosynthesis and dual energy subtraction digital radiography are modifications of digital radiography. • These modalities perform better than digital radiography in detection of parenchymal lesions in active pulmonary tuberculosis. • Digital tomosynthesis has a sensitivity of 100% in detection of cavities. • Centrilobular nodules seen on CT in active pulmonary tuberculosis, were also demonstrated on digital tomosynthesis in our study. • Digital tomosynthesis can be used for diagnosis and follow up of patients in pulmonary tuberculosis, thereby reducing the number of CT examinations. - Abstract: Objective: To assess the role of digital tomosynthesis (DTS) and dual energy subtraction digital radiography (DES-DR) in detection of parenchymal lesions in active pulmonary tuberculosis (TB) and to compare them with digital radiography (DR). Materials and methods: This prospective study was approved by our institutional review committee. DTS and DES-DR were performed in 62 patients with active pulmonary TB within one week of multidetector computed tomography (MDCT) study. Findings of active pulmonary TB, that is consolidation, cavitation and nodules were noted on digital radiography (DR), DTS and DES-DR in all patients. Sensitivity, specificity, positive and negative predictive values of all 3 modalities was calculated with MDCT as reference standard. In addition presence of centrilobular nodules was also noted on DTS. Results: Our study comprised of 62 patients (33 males, 29 females with age range 18–82 years). Sensitivity and specificity of DTS for detection of nodules and cavitation was better than DR and DES-DR. Sensitivity and specificity of DTS for detection of consolidation was comparable to DR and DES-DR. DES-DR performed better than DR in detection of nodules and cavitation. DTS was also able to detect centrilobular nodules with sensitivity and specificity of 57.4% and 86.5% respectively. Conclusion: DTS and DES-DR perform better

  16. Dual-source dual-energy CT for the differentiation of urinary stone composition: preliminary study

    International Nuclear Information System (INIS)

    Yang Qifang; Zhang Wanshi; Meng Limin; Shi Huiping; Wang Dong; Bi Yongmin; Li Xiangsheng; Fang Hong; Guo Heqing; Yan Jingmin

    2011-01-01

    Objective: To evaluate dual-source dual-energy CT (DSCT) for the differentiation of' urinary stone composition in vitro. Methods: Ninety-seven urinary stones were obtained by endoscopic lithotripsy and scanned using dual-source dual-energy CT. The stones were divided into six groups according to infrared spectroscopy stone analysis: uric acid (UA) stones (n=10), cystine stones (n=5), struvite stones (n=6), calcium oxalate (CaOx) stones (n=22), mixed UA stones (n=7) and mixed calcium stones (n=47). Hounsfield units (HU) of each stone were recorded for the 80 kV and the 140 kV datasets by hand-drawing method. HU difference, HU ratio and dual energy index (DEI) were calculated and compared among the stone groups with one-way ANOVA. Using dual energy software to determine the composition of all stones, results were compared to infrared spectroscopy analysis. Results: There were statistical differences in HU difference [(-17±13), (229±34), (309±45), (512±97), (201±64) and (530±71) HU respectively], in HU ratio (0.96±0.03, 1.34±0.04, 1.41±0.03, 1.47±0.03, 1.30±0.07, and 1.49±0.03 respectively), and DEI (-0.006±0.004, 0.064±0.007, 0.080± 0.007, 0.108±0.011, 0.055±0.014 and 0.112±0.008 respectively) among different stone groups (F= 124.894, 407.028, 322.864 respectively, P<0.01). There were statistical differences in HU difference, HU ratio and DEI between UA stones and the other groups (P<0.01). There were statistical differences in HU difference, HU ratio and DEI between CaOx or mixed calcium stones and the other four groups (P< 0.01). There was statistical difference in HU ratio between cystine and struvite stones (P<0.01). There were statistical differences in HU difference, HU ratio and DEI between struvite and mixed UA stones (P< 0.05). Dual energy software correctly characterized 10 UA stones, 4 cystine stones, 22 CaOx stones and 6 mixed UA stones. Two struvite stones were considered to contain cystine. One cystine stone, 1 mixed UA stone, 4

  17. Errors in dual-energy X-ray scanning of the hip because of nonuniform fat distribution.

    Science.gov (United States)

    Tothill, Peter; Weir, Nicholas; Loveland, John

    2014-01-01

    The variable proportion of fat in overlying soft tissue is a potential source of error in dual-energy X-ray absorptiometry (DXA) measurements of bone mineral. The effect on spine scanning has previously been assessed from cadaver studies and from computed tomography (CT) scans of soft tissue distribution. We have now applied the latter technique to DXA hip scanning. The CT scans performed for clinical purposes were used to derive mean adipose tissue thicknesses over bone and background areas for total hip and femoral neck. The former was always lower. More importantly, the fat thickness differences varied among subjects. Errors because of bone marrow fat were deduced from CT measurements of marrow thickness and assumed fat proportions of marrow. The effect of these differences on measured bone mineral density was deduced from phantom measurements of the bone equivalence of fat. Uncertainties of around 0.06g/cm(2) are similar to those previously reported for spine scanning and the results from cadaver measurements. They should be considered in assessing the diagnostic accuracy of DXA scanning. Copyright © 2014 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  18. Prediction of postoperative pulmonary function. Preliminary comparison of single-breath dual-energy xenon CT with three conventional methods

    International Nuclear Information System (INIS)

    Yanagita, Hisami; Honda, Norinari; Nakayama, Mitsuo

    2013-01-01

    The purpose of this study was to assess the use of xenon ventilation maps (Xe-images) for predicting postoperative pulmonary function. After study approval by the institutional review board, written informed consent was obtained from 30 patients with lung tumors who underwent pre- and postoperative spirometry, pulmonary perfusion single photon emission computed tomography (SPECT) and dual-energy CT (80 kV and 140 kV/Sn) after single-breath inspiration of 35% xenon. Xe-images were calculated by three-material decomposition. Sum of pixel values of the part to be resected (A) and of the whole lung (B) on Xe-images or lung perfusion SPECT, and volumes or the number of segments of the part to be resected (A) and of the whole lung (B) on Xe-images were enumerated, respectively. We multiplied (1-A/B) by each preoperative value from spirometry for prediction. Predictions by each of the four methods were compared with postoperative values. Predicted values for vital capacity (VC), forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV 1 ) by the four methods regressed significantly with measured values (R 2 =0.56-0.77, p 1 with accuracy comparable to that of CT volumetry. (author)

  19. Dual-energy CT perfusion and angiography in chronic thromboembolic pulmonary hypertension: diagnostic accuracy and concordance with radionuclide scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Dournes, Gael; Verdier, Damien; Montaudon, Michel; Laurent, Francois; Lederlin, Mathieu [Hopital Haut-Leveque, CHU Bordeaux, Department of Medical Imaging, Pessac (France); University Bordeaux Segalen, Bordeaux Cedex (France); Bullier, Eric; Riviere, Annalisa [Hopital Haut-Leveque, CHU Bordeaux, Department of Nuclear Medicine, Pessac (France); Dromer, Claire [Hopital Haut-Leveque, CHU Bordeaux, Department of Respiratory Diseases, Pessac (France); Picard, Francois [Hopital Haut-Leveque, CHU Bordeaux, Department of Cardiology, Pessac (France); Billes, Marc-Alain [Hopital Haut-Leveque, CHU Bordeaux, Department of Cardiac Surgery, Pessac (France); Corneloup, Olivier [Hopital Haut-Leveque, CHU Bordeaux, Department of Medical Imaging, Pessac (France)

    2014-01-15

    To evaluate the diagnostic accuracy of dual-energy computed tomography (DECT) perfusion and angiography versus ventilation/perfusion (V/Q) scintigraphy in chronic thromboembolic pulmonary hypertension (CTEPH), and to assess the per-segment concordance rate of DECT and scintigraphy. Forty consecutive patients with proven pulmonary hypertension underwent V/Q scintigraphy and DECT perfusion and angiography. Each imaging technique was assessed for the location of segmental defects. Diagnosis of CTEPH was established when at least one segmental perfusion defect was detected by scintigraphy. Diagnostic accuracy of DECT perfusion and angiography was assessed and compared with scintigraphy. In CTEPH patients, the per-segment concordance between scintigraphy and DECT perfusion/angiography was calculated. Fourteen patients were diagnosed with CTEPH and 26 with other aetiologies. DECT perfusion and angiography correctly identified all CTEPH patients with sensitivity/specificity values of 1/0.92 and 1/0.93, respectively. At a segmental level, DECT perfusion showed moderate agreement (κ = 0.44) with scintigraphy. Agreement between CT angiography and scintigraphy ranged from fair (κ = 0.31) to slight (κ = 0.09) depending on whether completely or partially occlusive patterns were considered, respectively. Both DECT perfusion and angiography show satisfactory performance for the diagnosis of CTEPH. DECT perfusion is more accurate than angiography at identifying the segmental location of abnormalities. (orig.)

  20. A comparative analysis of meta-heuristic methods for power management of a dual energy storage system for electric vehicles

    International Nuclear Information System (INIS)

    Trovão, João P.; Antunes, Carlos Henggeler

    2015-01-01

    Highlights: • Two meta-heuristic approaches are evaluated for multi-ESS management in electric vehicles. • An online global energy management strategy with two different layers is studied. • Meta-heuristic techniques are used to define optimized energy sharing mechanisms. • A comparative analysis for ARTEMIS driving cycle is addressed. • The effectiveness of the double-layer management with meta-heuristic is presented. - Abstract: This work is focused on the performance evaluation of two meta-heuristic approaches, simulated annealing and particle swarm optimization, to deal with power management of a dual energy storage system for electric vehicles. The proposed strategy is based on a global energy management system with two layers: long-term (energy) and short-term (power) management. A rule-based system deals with the long-term (strategic) layer and for the short-term (action) layer meta-heuristic techniques are developed to define optimized online energy sharing mechanisms. Simulations have been made for several driving cycles to validate the proposed strategy. A comparative analysis for ARTEMIS driving cycle is presented evaluating three performance indicators (computation time, final value of battery state of charge, and minimum value of supercapacitors state of charge) as a function of input parameters. The results show the effectiveness of an implementation based on a double-layer management system using meta-heuristic methods for online power management supported by a rule set that restricts the search space

  1. Assessment of pancreatic adenocarcinoma: use of low-dose whole pancreatic CT perfusion and individualized dual-energy CT scanning

    International Nuclear Information System (INIS)

    Li, Hai-ou; Guo, Jun; Li, Xiao; Qi, Yao-dong; Wang, Xi-ming; Xu, Zhuo-dong; Liu, Cheng; Chen, Jiu-hong

    2015-01-01

    The objective of this study was to investigate the value of low-dose whole pancreatic computed tomography (CT) perfusion integrated with individualized dual-energy CT (DECT) scanning in the diagnosis of pancreatic adenocarcinoma. Twenty patients with pancreatic adenocarcinoma underwent pancreatic CT perfusion as well as individualized dual-phase DECT pancreatic scans. Perfusion characteristics of non-tumourous pancreatic parenchyma and pancreatic adenocarcinoma were analysed. Weighted-average 120 kVp images and the optimal monoenergetic images in dual phase were reconstructed and the contrast noise ratio (CNR) of pancreas-to-tumour were compared. There were significant difference on blood flow as well as blood volume between pancreatic adenocarcinoma and the non-tumourous pancreatic parenchyma (P < 0.05), whereas no difference on permeability (P > 0.05). CNRs of pancreas-to-tumour in individualized pancreatic phase were significantly higher than those in venous phase (P < 0.05), and CNRs of optimal monoenergetic images were higher than those on weighted-average 120 kVp images (P < 0.05) in both phase. Total effective radiation dose of CT examination was around 9.32–13.75 mSv. Low-dose whole pancreatic CT perfusion can provide functional information, and the individualized pancreatic phase DECT scan is the optimal method for detecting pancreatic adenocarcinomas. The integration of the two techniques has great value in clinical application.

  2. Influence of vascular enhancement, age and gender on pulmonary perfused blood volume quantified by dual-energy-CTPA

    International Nuclear Information System (INIS)

    Meinel, Felix G.; Graef, Anita; Sommer, Wieland H.; Thierfelder, Kolja M.; Reiser, Maximilian F.; Johnson, Thorsten R.C.

    2013-01-01

    Objectives: To determine the influence of technical and demographic parameters on quantification of pulmonary perfused blood volume (PBV) in dual energy computed tomography pulmonary angiography (DE-CTPA). Materials and methods: Pulmonary PBV was quantified in 142 patients who underwent DE-CTPA for suspected pulmonary embolism but in whom no thoracic pathologies were detected. Multivariate linear regression analysis was performed to calculate the influence of age, gender, enhancement of pulmonary trunk and enhancement difference between pulmonary trunk and left atrium (as a measure of timing) on PBV values. The resulting regression coefficients were used to calculate age-specific ranges of normal for PBV values adjusted for vascular enhancement and timing. Results: Enhancement of the pulmonary trunk (β = −0.29, p = 0.001) and enhancement difference between pulmonary trunk and left atrium (β = −0.24, p = 0.003) were found to significantly influence PBV values. Age (β = −0.33, p < 0.001) but not gender (β = 0.14, p = 0.05) had a significant negative influence on pulmonary PBV values. There was a 20% relative decrease of pulmonary PBV from patients aged <30 to patients over 80 years of age. Conclusions: DE-CTPA derived PBV values need to be corrected for age, vascular enhancement and timing but not for gender. The age-specific ranges of normal derived from this study can be used as a reference in future studies of PBV in pulmonary pathologies

  3. Urinary stone detection and characterisation with dual-energy CT urography after furosemide intravenous injection: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Botsikas, Diomidis; Hansen, Catrina; Stefanelli, Salvatore; Becker, Christoph D.; Montet, Xavier [Geneva University Hospital, Radiology Department, Geneva (Switzerland)

    2014-03-15

    To investigate the added advantage of IV furosemide injection and the subsequent urine dilution in the detection of urinary calculi in the excretory phase of dual-source dual-energy (DE) computed tomography (CT) urography, and to investigate the feasibility of characterising the calculi through diluted urine. Twenty-three urinary calculi were detected in 116 patients who underwent DECT urography for macroscopic haematuria with a split bolus two- or three-acquisition protocol, including a true unenhanced series and at least a mixed nephrographic excretory phase. Virtual unenhanced images were reconstructed from contrast-enhanced DE data. Calculi were recorded on all series and characterised based on their X-ray absorption characteristics at 100 kVp and 140 kVp in both true unenhanced and nephrographic excretory phase series. All calculi with a diameter more than 2 mm were detected in the virtual unenhanced phase and in the nephrographic excretory phase. Thirteen of these calculi could be characterised in the true unenhanced phase and in the mixed nephrographic excretory phase. The results were strictly identical for both phases, six of them being recognised as non-uric acid calculi and seven as uric acid calculi. Mixed nephrographic excretory phase DECT after furosemide administration allows both detection and characterisation of clinically significant calculi, through the diluted urine. (orig.)

  4. Monte Carlo simulation studies for the determination of microcalcification thickness and glandular ratio through dual-energy mammography

    Science.gov (United States)

    Del Lama, L. S.; Godeli, J.; Poletti, M. E.

    2017-08-01

    The majority of breast carcinomas can be associated to the presence of calcifications before the development of a mass. However, the overlapping tissues can obscure the visualization of microcalcification clusters due to the reduced contrast-noise ratio (CNR). In order to overcome this complication, one potential solution is the use of the dual-energy (DE) technique, in which two different images are acquired at low (LE) and high (HE) energies or kVp to highlight specific lesions or cancel out tissue background. In this work, the DE features were computationally studied considering simulated acquisitions from a modified PENELOPE Monte Carlo code. The employed irradiation geometry considered typical distances used in digital mammography, a CsI detection system and an updated breast model composed of skin, microcalcifications and glandular and adipose tissues. The breast thickness ranged from 2 to 6 cm with glandularities of 25%, 50% and 75%, where microcalcifications with dimensions from 100 up to 600 μm were positioned. In general, results pointed an efficiency index better than 87% for the microcalcification thicknesses and better than 95% for the glandular ratio. The simulations evaluated in this work can be used to optimize the elements from the DE imaging chain, in order to become a complementary tool for the conventional single-exposure images, especially for the visualization and estimation of calcification thicknesses and glandular ratios.

  5. The distribution of urate deposition within the extremities in gout: a review of 148 dual-energy CT cases

    International Nuclear Information System (INIS)

    Mallinson, Paul I.; Reagan, Adrian C.; Munk, Peter L.; Ouellette, Hugue; Nicolaou, Savvas; Coupal, Tyler

    2014-01-01

    Clinical detection of gout can be difficult due to co-existent and mimicking arthropathies and asymptomatic disease. Understanding of the distribution of urate within the body can aid clinical diagnosis and further understanding of the resulting pathology. Our aim was to determine this distribution of urate within the extremities in patients with gout. All patients who underwent a four-limb dual-energy computed tomography (DECT) scan for suspected gout over a 2-year period were identified (n = 148, 121 male, 27 female, age range, 16-92 years, mean = 61.3 years, median = 63 years). The reports of the positive cases were retrospectively analyzed and the locations of all urate deposition recorded and classified by anatomical location. A total of 241 cases met the inclusion criteria, of which 148 cases were positive. Of these, 101 (68.2 %) patients had gout in the foot, 81 (56.1 %) in the knee, 79 (53.4 %) in the ankle, 41 (27.7 %) in the elbow, 25 (16.9 %) in the hand, and 25 (16.9 %) in the wrist. The distribution was further subcategorized for each body part into specific bone and soft tissue structures. In this observational study, we provide for the first time a detailed analysis of extremity urate distribution in gout, which both supports and augments to the current understanding based on clinical and microscopic findings. (orig.)

  6. The distribution of urate deposition within the extremities in gout: a review of 148 dual-energy CT cases

    Energy Technology Data Exchange (ETDEWEB)

    Mallinson, Paul I. [Vancouver General Hospital, Radiology Department, Vancouver (Canada); Vancouver General Hospital, Clinical Fellow in Musculoskeletal Radiology, Vancouver, BC (Canada); Reagan, Adrian C.; Munk, Peter L.; Ouellette, Hugue; Nicolaou, Savvas [Vancouver General Hospital, Radiology Department, Vancouver (Canada); Coupal, Tyler [McMaster University, De Groote School of Medicine, Hamilton, Ontario (Canada)

    2014-03-15

    Clinical detection of gout can be difficult due to co-existent and mimicking arthropathies and asymptomatic disease. Understanding of the distribution of urate within the body can aid clinical diagnosis and further understanding of the resulting pathology. Our aim was to determine this distribution of urate within the extremities in patients with gout. All patients who underwent a four-limb dual-energy computed tomography (DECT) scan for suspected gout over a 2-year period were identified (n = 148, 121 male, 27 female, age range, 16-92 years, mean = 61.3 years, median = 63 years). The reports of the positive cases were retrospectively analyzed and the locations of all urate deposition recorded and classified by anatomical location. A total of 241 cases met the inclusion criteria, of which 148 cases were positive. Of these, 101 (68.2 %) patients had gout in the foot, 81 (56.1 %) in the knee, 79 (53.4 %) in the ankle, 41 (27.7 %) in the elbow, 25 (16.9 %) in the hand, and 25 (16.9 %) in the wrist. The distribution was further subcategorized for each body part into specific bone and soft tissue structures. In this observational study, we provide for the first time a detailed analysis of extremity urate distribution in gout, which both supports and augments to the current understanding based on clinical and microscopic findings. (orig.)

  7. Dual-energy CT characteristics of colon and rectal cancer allows differentiation from stool by dual-source CT.

    Science.gov (United States)

    Özdeniz, İlknur; İdilman, İlkay S; Köklü, Seyfettin; Hamaloğlu, Erhan; Özmen, Mustafa; Akata, Deniz; Karçaaltıncaba, Muşturay

    2017-01-01

    We aimed to determine dual-energy computed tomography (DECT) characteristics of colorectal cancer and investigate effectiveness of DECT method in differentiating tumor from stool in patients with colorectal cancer. Fifty consecutive patients with colorectal tumors were enrolled. Staging was performed by DECT (80-140 kV) using dual-source CT after rectal air insufflation and without bowel preparation. Both visual and quantitative analyses were performed at 80 kV and 140 kV, on iodine map and virtual noncontrast (VNC) images. All colorectal tumors had homogeneous pattern on iodine map. Stools demonstrated heterogeneous pattern in 86% (43/50) and homogeneous pattern in 14% (7/50) on iodine maps and were less visible on VNC images. Median density of tumors was 54 HU (18-100 HU) on iodine map and 28 HU (11-56 HU) on VNC images. Median density of stool was 36.5 HU (8-165 HU) on iodine map and -135.5 HU (-438 HU to -13 HU) on VNC images. The density of stools was significantly lower than tumors on both iodine map and VNC images (P VNC images was -1 HU with area under the curve of 1 and a sensitivity and specificity of 100%. Density or visual analysis of iodine map and VNC DECT images allow accurate differentiation of tumor from stool.

  8. Dual-energy CT perfusion and angiography in chronic thromboembolic pulmonary hypertension: diagnostic accuracy and concordance with radionuclide scintigraphy

    International Nuclear Information System (INIS)

    Dournes, Gael; Verdier, Damien; Montaudon, Michel; Laurent, Francois; Lederlin, Mathieu; Bullier, Eric; Riviere, Annalisa; Dromer, Claire; Picard, Francois; Billes, Marc-Alain; Corneloup, Olivier

    2014-01-01

    To evaluate the diagnostic accuracy of dual-energy computed tomography (DECT) perfusion and angiography versus ventilation/perfusion (V/Q) scintigraphy in chronic thromboembolic pulmonary hypertension (CTEPH), and to assess the per-segment concordance rate of DECT and scintigraphy. Forty consecutive patients with proven pulmonary hypertension underwent V/Q scintigraphy and DECT perfusion and angiography. Each imaging technique was assessed for the location of segmental defects. Diagnosis of CTEPH was established when at least one segmental perfusion defect was detected by scintigraphy. Diagnostic accuracy of DECT perfusion and angiography was assessed and compared with scintigraphy. In CTEPH patients, the per-segment concordance between scintigraphy and DECT perfusion/angiography was calculated. Fourteen patients were diagnosed with CTEPH and 26 with other aetiologies. DECT perfusion and angiography correctly identified all CTEPH patients with sensitivity/specificity values of 1/0.92 and 1/0.93, respectively. At a segmental level, DECT perfusion showed moderate agreement (κ = 0.44) with scintigraphy. Agreement between CT angiography and scintigraphy ranged from fair (κ = 0.31) to slight (κ = 0.09) depending on whether completely or partially occlusive patterns were considered, respectively. Both DECT perfusion and angiography show satisfactory performance for the diagnosis of CTEPH. DECT perfusion is more accurate than angiography at identifying the segmental location of abnormalities. (orig.)

  9. Scatter correction method with primary modulator for dual energy digital radiography: a preliminary study

    Science.gov (United States)

    Jo, Byung-Du; Lee, Young-Jin; Kim, Dae-Hong; Jeon, Pil-Hyun; Kim, Hee-Joung

    2014-03-01

    In conventional digital radiography (DR) using a dual energy subtraction technique, a significant fraction of the detected photons are scattered within the body, resulting in the scatter component. Scattered radiation can significantly deteriorate image quality in diagnostic X-ray imaging systems. Various methods of scatter correction, including both measurement and non-measurement-based methods have been proposed in the past. Both methods can reduce scatter artifacts in images. However, non-measurement-based methods require a homogeneous object and have insufficient scatter component correction. Therefore, we employed a measurement-based method to correct for the scatter component of inhomogeneous objects from dual energy DR (DEDR) images. We performed a simulation study using a Monte Carlo simulation with a primary modulator, which is a measurement-based method for the DEDR system. The primary modulator, which has a checkerboard pattern, was used to modulate primary radiation. Cylindrical phantoms of variable size were used to quantify imaging performance. For scatter estimation, we used Discrete Fourier Transform filtering. The primary modulation method was evaluated using a cylindrical phantom in the DEDR system. The scatter components were accurately removed using a primary modulator. When the results acquired with scatter correction and without correction were compared, the average contrast-to-noise ratio (CNR) with the correction was 1.35 times higher than that obtained without correction, and the average root mean square error (RMSE) with the correction was 38.00% better than that without correction. In the subtraction study, the average CNR with correction was 2.04 (aluminum subtraction) and 1.38 (polymethyl methacrylate (PMMA) subtraction) times higher than that obtained without the correction. The analysis demonstrated the accuracy of scatter correction and the improvement of image quality using a primary modulator and showed the feasibility of

  10. Effects of dual-energy CT with non-linear blending on abdominal CT angiography

    International Nuclear Information System (INIS)

    Li, Sulan; Wang, Chaoqin; Jiang, Xiao Chen; Xu, Ge

    2014-01-01

    To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning.

  11. Effects of dual-energy CT with non-linear blending on abdominal CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sulan; Wang, Chaoqin; Jiang, Xiao Chen; Xu, Ge [Dept. of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2014-08-15

    To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning.

  12. Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels.

    Science.gov (United States)

    Guggenberger, R; Winklhofer, S; Osterhoff, G; Wanner, G A; Fortunati, M; Andreisek, G; Alkadhi, H; Stolzmann, P

    2012-11-01

    To evaluate optimal monoenergetic dual-energy computed tomography (DECT) settings for artefact reduction of posterior spinal fusion implants of various vendors and spine levels. Posterior spinal fusion implants of five vendors for cervical, thoracic and lumbar spine were examined ex vivo with single-energy (SE) CT (120 kVp) and DECT (140/100 kVp). Extrapolated monoenergetic DECT images at 64, 69, 88, 105 keV and individually adjusted monoenergy for optimised image quality (OPTkeV) were generated. Two independent radiologists assessed quantitative and qualitative image parameters for each device and spine level. Inter-reader agreements of quantitative and qualitative parameters were high (ICC = 0.81-1.00, κ = 0.54-0.77). HU values of spinal fusion implants were significantly different among vendors (P metallic artefacts from implants than SECT. Use of individual keV values for vendor and spine level is recommended. • Artefacts pose problems for CT following posterior spinal fusion implants. • CT images are interpreted better with monoenergetic extrapolation using dual-energy (DE) CT. • DECT extrapolation improves image quality and reduces metallic artefacts over SECT. • There were considerable differences in monoenergy values among vendors and spine levels. • Use of individualised monoenergy values is indicated for different metallic hardware devices.

  13. Dual-energy CT for detection of contrast enhancement or leakage within high-density haematomas in patients with intracranial haemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoshiyuki; Tsukabe, Akio; Kunitomi, Yuki; Nishizawa, Mitsuo; Arisawa, Atsuko; Tanaka, Hisashi; Tomiyama, Noriyuki [Osaka University Graduate School of Medicine, Department of Diagnostic and Interventional Radiology, Suita, Osaka (Japan); Yoshiya, Kazuhisa; Shimazu, Takeshi [Osaka University Graduate School of Medicine, Department of Traumatology and Acute Critical Medicine, Osaka (Japan)

    2014-04-15

    Our study aimed to elucidate the diagnostic performance of dual-energy CT (DECT) in the detection of contrast enhancement in intracranial haematomas (ICrH) with early phase dual-energy computed tomography angiography (CTA) and compare the results with those obtained by delayed CT enhancement. Thirty-six patients with ICrH were retrospectively included in this study. All patients had undergone single-energy non-contrast CT and contrast-enhanced dual-source DECT. DECT images were post-processed with commercial software, followed by obtaining iodine images and virtual non-contrast images and generating combined images that created the impression of 120-kVp images. Two neuroradiologists, blinded to the patients' data, reviewed two reading sessions: session A (non-contrast CT and combined CT) and session B (non-contrast CT, combined CT, and iodine images) for detection of contrast enhancement in the haematomas. Contrast leakage or enhancement was detected in 23 (57.5 %) out of 40 haemorrhagic lesions in 36 patients on delayed CT. Three enhanced lesions were depicted only in the DECT iodine images. The sensitivity, specificity, positive predictive value, and negative predictive value of session A were 82.6, 94.1, 95.0, and 80.0 %, respectively, and those of session B were 95.7, 94.1, 95.7, and 94.1 %, respectively. DECT emphasised the iodine enhancement and facilitated the detection of contrast enhancement or leakage. (orig.)

  14. Dual-energy CT for detection of contrast enhancement or leakage within high-density haematomas in patients with intracranial haemorrhage.

    Science.gov (United States)

    Watanabe, Yoshiyuki; Tsukabe, Akio; Kunitomi, Yuki; Nishizawa, Mitsuo; Arisawa, Atsuko; Tanaka, Hisashi; Yoshiya, Kazuhisa; Shimazu, Takeshi; Tomiyama, Noriyuki

    2014-04-01

    Our study aimed to elucidate the diagnostic performance of dual-energy CT (DECT) in the detection of contrast enhancement in intracranial haematomas (ICrH) with early phase dual-energy computed tomography angiography (CTA) and compare the results with those obtained by delayed CT enhancement. Thirty-six patients with ICrH were retrospectively included in this study. All patients had undergone single-energy non-contrast CT and contrast-enhanced dual-source DECT. DECT images were post-processed with commercial software, followed by obtaining iodine images and virtual non-contrast images and generating combined images that created the impression of 120-kVp images. Two neuroradiologists, blinded to the patients' data, reviewed two reading sessions: session A (non-contrast CT and combined CT) and session B (non-contrast CT, combined CT, and iodine images) for detection of contrast enhancement in the haematomas. Contrast leakage or enhancement was detected in 23 (57.5 %) out of 40 haemorrhagic lesions in 36 patients on delayed CT. Three enhanced lesions were depicted only in the DECT iodine images. The sensitivity, specificity, positive predictive value, and negative predictive value of session A were 82.6, 94.1, 95.0, and 80.0 %, respectively, and those of session B were 95.7, 94.1, 95.7, and 94.1 %, respectively. DECT emphasised the iodine enhancement and facilitated the detection of contrast enhancement or leakage.

  15. Dual-energy CT for detection of contrast enhancement or leakage within high-density haematomas in patients with intracranial haemorrhage

    International Nuclear Information System (INIS)

    Watanabe, Yoshiyuki; Tsukabe, Akio; Kunitomi, Yuki; Nishizawa, Mitsuo; Arisawa, Atsuko; Tanaka, Hisashi; Tomiyama, Noriyuki; Yoshiya, Kazuhisa; Shimazu, Takeshi

    2014-01-01

    Our study aimed to elucidate the diagnostic performance of dual-energy CT (DECT) in the detection of contrast enhancement in intracranial haematomas (ICrH) with early phase dual-energy computed tomography angiography (CTA) and compare the results with those obtained by delayed CT enhancement. Thirty-six patients with ICrH were retrospectively included in this study. All patients had undergone single-energy non-contrast CT and contrast-enhanced dual-source DECT. DECT images were post-processed with commercial software, followed by obtaining iodine images and virtual non-contrast images and generating combined images that created the impression of 120-kVp images. Two neuroradiologists, blinded to the patients' data, reviewed two reading sessions: session A (non-contrast CT and combined CT) and session B (non-contrast CT, combined CT, and iodine images) for detection of contrast enhancement in the haematomas. Contrast leakage or enhancement was detected in 23 (57.5 %) out of 40 haemorrhagic lesions in 36 patients on delayed CT. Three enhanced lesions were depicted only in the DECT iodine images. The sensitivity, specificity, positive predictive value, and negative predictive value of session A were 82.6, 94.1, 95.0, and 80.0 %, respectively, and those of session B were 95.7, 94.1, 95.7, and 94.1 %, respectively. DECT emphasised the iodine enhancement and facilitated the detection of contrast enhancement or leakage. (orig.)

  16. Reference Values for Assessment of Unilateral Limb Lymphedema with Dual-Energy X-Ray Absorptiometry

    DEFF Research Database (Denmark)

    Gjorup, Caroline A; Hendel, Helle W; Klausen, Tobias W

    2018-01-01

    INTRODUCTION: The clinical assessment of unilateral limb lymphedema is commonly based on measurements of interlimb volume differences. Reference values for interlimb percentage differences of the volume, fat mass, and lean mass measured with dual-energy X-ray absorptiometry (DXA) scan are, however...... is calculated as follows: ("Limb-of-interest"-contralateral)/contralateral × 100. The interlimb percentage differences for the limb-of-interest were stratified to upper (according to handedness) and lower limbs and categorized as none/mild, moderate, or severe, respectively, based on whether the value is below...

  17. Body composition in hemodialysis patients measured by dual-energy X-ray absorptiometry

    DEFF Research Database (Denmark)

    Stenver, Doris Irene; Gotfredsen, Arne; Hilsted, J

    1995-01-01

    Dual-energy X-ray absorptiometry (DXA) measures three of the principal components of the body: fat mass, lean soft-tissue mass (comprising muscle, inner organs, and the body water), and the bone mineral content. The purpose of this study was to test the estimation capacity of DXA when it is applied...... and reduction in fat-free mass (lean soft-tissue mass plus bone mineral content) was observed by DXA. The estimation of the fat-free mass was independent of the amount of fluid loss. No significant differences in variance between the data obtained before and after the dialysis were observed. We conclude...

  18. Application of dual-energy scanning technique with dual-source CT in pulmonary mass lesions

    International Nuclear Information System (INIS)

    Jiang Jie; Xu Yiming; He Bo; Xie Xiaojie; Han Dan

    2012-01-01

    Objective: To explore the feasibility of DSCT dual-energy technique in pulmonary mass lesions. Methods: A total of 100 patients with pulmonary masses underwent conventional plain CT scan and dual-energy enhanced CT scan. The virtual non-contrast (VNC) images were obtained at post-processing workstation.The mean CT value,enhancement value,signal to noise ratio (SNR), image quality and radiation dose of pulmonary masses were compared between the two scan techniques using F or t test and the detectability of lesions was compared using Wilcoxon test. Results: There was no statistically significant difference among VNC (A) (32.89 ± 12.58) HU,VNC (S) (30.86 ± 9.60) HU and conventional plain images (35.89 ± 9.99) HU in mean CT value of mass (F =2.08, P>0.05). There was statistically significant difference among VNC (A) (3.29 ± 1.45), VNC (S) (3.93 ± 1.49) and conventional plain image (4.61 ± 1.50) in SNR (F =6.01, P<0.05), which of conventional plain scan was higher than that of VNC.The enhancement value of mass in conventional enhanced scan (60.74 ± 13.9) HU and distribution of iodine from VNC (A) (58.26 ± 31.99) HU was no statistically significant difference (t=0.48, P>0.05), but there was a significant difference between conventional enhanced scan (56.51 ± 17.94) HU and distribution of iodine from VNC (S) (52.65 ± 16.78) HU (t=4.45, P<0.05). There was no statistically significant difference among conventional plain scan (4.69 ± 0.06) and VNC (A) (4.60 ± 0.09), VNC (S) (4.61 ±0.11) in image quality at mediastinal window (F=3.014, P>0.05). The appearance, size, internal features of mass (such as necrosis, calcification and cavity) were showed the same in conventional plain scan, VNC (A) and VNC (S). Of 41 patients with hilar mass, 18 patients were found to have lobular and segmental perfusion decrease or defect. Perfusion defect area was found in 59 patients with peripheral lung mass. The radiation dose of dual-energy enhanced scan was lower than that of

  19. Prototype metal artefact reduction algorithm in flat panel computed tomography - evaluation in patients undergoing transarterial hepatic radioembolisation

    International Nuclear Information System (INIS)

    Hamie, Qeumars Mustafa; Kobe, Adrian Raoul; Mietzsch, Leif; Puippe, Gilbert Dominique; Pfammatter, Thomas; Guggenberger, Roman; Manhart, Michael

    2018-01-01

    To investigate the effect of an on-site prototype metal artefact reduction (MAR) algorithm in cone-beam CT-catheter-arteriography (CBCT-CA) in patients undergoing transarterial radioembolisation (RE) of hepatic masses. Ethical board approved retrospective study of 29 patients (mean 63.7±13.7 years, 11 female), including 16 patients with arterial metallic coils, undergoing CBCT-CA (8s scan, 200 degrees rotation, 397 projections). Image reconstructions with and without prototype MAR algorithm were evaluated quantitatively (streak-artefact attenuation changes) and qualitatively (visibility of hepatic parenchyma and vessels) in near- (<1cm) and far-field (>3cm) of artefact sources (metallic coils and catheters). Quantitative and qualitative measurements of uncorrected and MAR corrected images and different artefact sources were compared Quantitative evaluation showed significant reduction of near- and far-field streak-artefacts with MAR for both artefact sources (p<0.001), while remaining stable for unaffected organs (all p>0.05). Inhomogeneities of attenuation values were significantly higher for metallic coils compared to catheters (p<0.001) and decreased significantly for both after MAR (p<0.001). Qualitative image scores were significantly improved after MAR (all p<0.003) with by trend higher artefact degrees for metallic coils compared to catheters. In patients undergoing CBCT-CA for transarterial RE, prototype MAR algorithm improves image quality in proximity of metallic coil and catheter artefacts. (orig.)

  20. Prototype metal artefact reduction algorithm in flat panel computed tomography - evaluation in patients undergoing transarterial hepatic radioembolisation

    Energy Technology Data Exchange (ETDEWEB)

    Hamie, Qeumars Mustafa; Kobe, Adrian Raoul; Mietzsch, Leif; Puippe, Gilbert Dominique; Pfammatter, Thomas; Guggenberger, Roman [University Hospital Zurich, Department of Radiology, Zurich (Switzerland); Manhart, Michael [Imaging Concepts, HC AT IN IMC, Siemens Healthcare GmbH, Advanced Therapies, Innovation, Forchheim (Germany)

    2018-01-15

    To investigate the effect of an on-site prototype metal artefact reduction (MAR) algorithm in cone-beam CT-catheter-arteriography (CBCT-CA) in patients undergoing transarterial radioembolisation (RE) of hepatic masses. Ethical board approved retrospective study of 29 patients (mean 63.7±13.7 years, 11 female), including 16 patients with arterial metallic coils, undergoing CBCT-CA (8s scan, 200 degrees rotation, 397 projections). Image reconstructions with and without prototype MAR algorithm were evaluated quantitatively (streak-artefact attenuation changes) and qualitatively (visibility of hepatic parenchyma and vessels) in near- (<1cm) and far-field (>3cm) of artefact sources (metallic coils and catheters). Quantitative and qualitative measurements of uncorrected and MAR corrected images and different artefact sources were compared Quantitative evaluation showed significant reduction of near- and far-field streak-artefacts with MAR for both artefact sources (p<0.001), while remaining stable for unaffected organs (all p>0.05). Inhomogeneities of attenuation values were significantly higher for metallic coils compared to catheters (p<0.001) and decreased significantly for both after MAR (p<0.001). Qualitative image scores were significantly improved after MAR (all p<0.003) with by trend higher artefact degrees for metallic coils compared to catheters. In patients undergoing CBCT-CA for transarterial RE, prototype MAR algorithm improves image quality in proximity of metallic coil and catheter artefacts. (orig.)

  1. Dual energy exposure control (DEEC) for computed tomography: Algorithm and simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, Philip; Kachelriess, Marc [Institute of Medical Physics, University of Erlangen-Nuernberg, Henkestr. 91, Erlangen 91052 (Germany)

    2008-11-15

    DECT means acquiring the same object at two different energies, respectively two different tube voltages U{sub 1} and U{sub 2}. The raw data q{sub 1} and q{sub 2} undergo a decomposition process of type p=p(q{sub 1},q{sub 2}). The raw data p are reconstructed to obtain monochromatic images of the attenuation {mu}, of the object density {rho}, or of a specific material distribution. Recent advances in DECT focus on noise reduction techniques [S. Richard and J. H. Siewerdsen, Med. Phys. 35(2), 586-600 (2008)] and enable high performance DECT such as lung nodule detection [Shkumat et al., Med. Phys. 35(2), 629-632 (2008)]. Given p and a raw data-based projection-wise patient dose estimation D({alpha}) the authors determine the optimal tube current curves I{sub 1}({alpha}) and I{sub 2}({alpha}), with {alpha} being the view angle, which minimizes image noise for a given patient dose level. DEEC can perform online; I{sub 1}({alpha}) and I{sub 2}({alpha}) can be determined during the scan. Simulation studies using semianthropomorphic phantom data were carried out. In particular, functions p that generate {mu}-images and density images were evaluated. Image quality was compared to standard scans at U{sub 0}=120 kV (clinical CT) and U{sub 0}=45 kV (micro-CT) that were taken at the same dose level (D{sub 0}=D{sub 1}+D{sub 2}) and identical spatial resolution. Appropriate choice of p(q{sub 1},q{sub 2}) allows to obtain {mu}-images that show fewer artifacts and yield image noise levels comparable to the noise of the standard scan. The authors compared the standard scan to {mu}-images at 70 keV, which is the effective energy used in clinical CT, and found optimal results with {mu}-images at 25 keV for micro-CT. Nonoptimal choice of the decomposition function will, however, significantly increase image noise. In particular {mu}-images at 511 keV, as needed for PET/CT attenuation correction, exhibit more than twice as much image noise as the standard scan. With DEEC, which guarantees best dose usage possible, monochromatic images are generated with only slightly increased noise levels at the same dose compared to a standard scan. The benefit of significantly decreased artifacts appears to allow using DEEC-generated monochromatic images in daily routine. Furthermore, DEEC is not restricted to DECT and the inherent tube current modulation algorithm may also be applied to single energy CT.

  2. Dual energy exposure control (DEEC) for computed tomography: Algorithm and simulation study

    International Nuclear Information System (INIS)

    Stenner, Philip; Kachelriess, Marc

    2008-01-01

    DECT means acquiring the same object at two different energies, respectively two different tube voltages U 1 and U 2 . The raw data q 1 and q 2 undergo a decomposition process of type p=p(q 1 ,q 2 ). The raw data p are reconstructed to obtain monochromatic images of the attenuation μ, of the object density ρ, or of a specific material distribution. Recent advances in DECT focus on noise reduction techniques [S. Richard and J. H. Siewerdsen, Med. Phys. 35(2), 586-600 (2008)] and enable high performance DECT such as lung nodule detection [Shkumat et al., Med. Phys. 35(2), 629-632 (2008)]. Given p and a raw data-based projection-wise patient dose estimation D(α) the authors determine the optimal tube current curves I 1 (α) and I 2 (α), with α being the view angle, which minimizes image noise for a given patient dose level. DEEC can perform online; I 1 (α) and I 2 (α) can be determined during the scan. Simulation studies using semianthropomorphic phantom data were carried out. In particular, functions p that generate μ-images and density images were evaluated. Image quality was compared to standard scans at U 0 =120 kV (clinical CT) and U 0 =45 kV (micro-CT) that were taken at the same dose level (D 0 =D 1 +D 2 ) and identical spatial resolution. Appropriate choice of p(q 1 ,q 2 ) allows to obtain μ-images that show fewer artifacts and yield image noise levels comparable to the noise of the standard scan. The authors compared the standard scan to μ-images at 70 keV, which is the effective energy used in clinical CT, and found optimal results with μ-images at 25 keV for micro-CT. Nonoptimal choice of the decomposition function will, however, significantly increase image noise. In particular μ-images at 511 keV, as needed for PET/CT attenuation correction, exhibit more than twice as much image noise as the standard scan. With DEEC, which guarantees best dose usage possible, monochromatic images are generated with only slightly increased noise levels at the same dose compared to a standard scan. The benefit of significantly decreased artifacts appears to allow using DEEC-generated monochromatic images in daily routine. Furthermore, DEEC is not restricted to DECT and the inherent tube current modulation algorithm may also be applied to single energy CT.

  3. Dual energy exposure control (DEEC) for computed tomography: algorithm and simulation study.

    Science.gov (United States)

    Stenner, Philip; Kachelriess, Marc

    2008-11-01

    DECT means acquiring the same object at two different energies, respectively two different tube voltages U1 and U2. The raw data q1 and q2 undergo a decomposition process of type p = p(q1,q2). The raw data p are reconstructed to obtain monochromatic images of the attenuation mu, of the object density rho, or of a specific material distribution. Recent advances in DECT focus on noise reduction techniques [S. Richard and J. H. Siewerdsen, Med. Phys. 35(2), 586-600 (2008)] and enable high performance DECT such as lung nodule detection [Shkumat et al., Med. Phys. 35(2), 629-632 (2008)]. Given p and a raw data-based projection-wise patient dose estimation D(alpha) the authors determine the optimal tube current curves I1(alpha) and I2(alpha), with alpha being the view angle, which minimizes image noise for a given patient dose level. DEEC can perform online; I1(alpha) and I2(alpha) can be determined during the scan. Simulation studies using semianthropomorphic phantom data were carried out. In particular, functions p that generate mu-images and density images were evaluated. Image quality was compared to standard scans at U0=120 kV (clinical CT) and U0=45 kV (micro-CT) that were taken at the same dose level (D0=D1 + D2) and identical spatial resolution. Appropriate choice of p(q1, q2) allows to obtain mu-images that show fewer artifacts and yield image noise levels comparable to the noise of the standard scan. The authors compared the standard scan to mu-images at 70 keV, which is the effective energy used in clinical CT, and found optimal results with mu-images at 25 keV for micro-CT. Nonoptimal choice of the decomposition function will, however, significantly increase image noise. In particular mu-images at 511 keV, as needed for PET/CT attenuation correction, exhibit more than twice as much image noise as the standard scan. With DEEC, which guarantees best dose usage possible, monochromatic images are generated with only slightly increased noise levels at the same dose compared to a standard scan. The benefit of significantly decreased artifacts appears to allow using DEEC-generated monochromatic images in daily routine. Furthermore, DEEC is not restricted to DECT and the inherent tube current modulation algorithm may also be applied to single energy CT.

  4. Dual energy virtual CT colonoscopy with dual source computed tomography. Initial experience

    International Nuclear Information System (INIS)

    Karcaaltincaba, M.; Karaosmanoglu, D.; Akata, D.; Sentuerk, S.; Oezmen, M.; Alibek, S.

    2009-01-01

    Purpose: To describe the technique of DE MDCT colonoscopy and to assess its feasibility. Materials and Methods: 8 patients were scanned with DSCT with a DE scan protocol and dose modulation software. Analysis was performed using dedicated DE software. Prone non-contrast images and DE supine images after contrast injection were obtained. Results: DE colonoscopic images were successfully obtained in 7 patients, but the FOV did not cover all colonic segments in 1 patient, thus resulting in a technical success rate was 87.5%. Streak artifacts were present in the pelvic region in 2 patients. Virtual unenhanced images and iodine map images were obtained for all patients. In 1 patient a polypoid non-enhancing structure was noted on the iodine map, and conventional colonoscopy revealed impacted stool. Enhancing rectal cancer in 1 patient was correctly shown on the iodine map. Iodine maps helped to differentiate stool fragments/retained fluid by the absence of enhancement when compared to prone CT images. The major advantage of DE colonoscopy was the lack of misregistration. Conclusion: DE MDCT colonoscopy is technically feasible and may obviate the need for unenhanced prone images. It may be possible to perform noncathartic DECT colonoscopy. The major limitation is the limited FOV of tube B. The dose should be optimized to reduce streak artifacts in the pelvic region. (orig.)

  5. Measurement of body composition in cats using computed tomography and dual energy X-ray absorptiometry

    DEFF Research Database (Denmark)

    Buelund, Lene E; Nielsen, Dorte H; McEvoy, Fintan

    2011-01-01

    compared CT and DEXA data from 73 healthy adult neutered domestic cats. Three approaches for measuring adipose tissue percentage from full-body CT scans were explored. By examining the frequency distribution of voxels by Hounsfield unit (HU) value, it is possible to calculate a fat index (Fat...

  6. Is Contrast Enhanced Ultrasonography a useful tool in a beginner's hand? How much can a Computer Assisted Diagnosis prototype help in characterizing the malignancy of focal liver lesions?

    Science.gov (United States)

    Moga, Tudor Voicu; Popescu, Alina; Sporea, Ioan; Danila, Mirela; David, Ciprian; Gui, Vasile; Iacob, Nicoleta; Miclaus, Gratian; Sirli, Roxana

    2017-08-23

    Contrast enhanced ultrasound (CEUS) improved the characterization of focal liver lesions (FLLs), but is an operatordependent method. The goal of this paper was to test a computer assisted diagnosis (CAD) prototype and to see its benefit in assisting a beginner in the evaluation of FLLs. Our cohort included 97 good quality CEUS videos[34% hepatocellular carcinomas (HCC), 12.3% hypervascular metastases (HiperM), 11.3% hypovascular metastases (HipoM), 24.7% hemangiomas (HMG), 17.5% focal nodular hyperplasia (FNH)] that were used to develop a CAD prototype based on an algorithm that tested a binary decision based classifier. Two young medical doctors (1 year CEUS experience), two experts and the CAD prototype, reevaluated 50 FLLs CEUS videos (diagnosis of benign vs. malignant) first blinded to clinical data, in order to evaluate the diagnostic gap beginner vs. expert. The CAD classifier managed a 75.2% overall (benign vs. malignant) correct classification rate. The overall classification rates for the evaluators, before and after clinical data were: first beginner-78%; 94%; second beginner-82%; 96%; first expert-94%; 100%; second expert-96%; 98%. For both beginners, the malignant vs. benign diagnosis significantly improved after knowing the clinical data (p=0.005; p=0,008). The expert was better than the beginner (p=0.04) and better than the CAD (p=0.001). CAD in addition to the beginner can reach the expert diagnosis. The most frequent lesions misdiagnosed at CEUS were FNH and HCC. The CAD prototype is a good comparing tool for a beginner operator that can be developed to assist the diagnosis. In order to increase the classification rate, the CAD system for FLL in CEUS must integrate the clinical data.

  7. Bone images from dual-energy subtraction chest radiography in the detection of rib fractures.

    Science.gov (United States)

    Szucs-Farkas, Zsolt; Lautenschlager, Katrin; Flach, Patricia M; Ott, Daniel; Strautz, Tamara; Vock, Peter; Ruder, Thomas D

    2011-08-01

    To assess the sensitivity and image quality of chest radiography (CXR) with or without dual-energy subtracted (ES) bone images in the detection of rib fractures. In this retrospective study, 39 patients with 204 rib fractures and 24 subjects with no fractures were examined with a single exposure dual-energy subtraction digital radiography system. Three blinded readers first evaluated the non-subtracted posteroanterior and lateral chest radiographs alone, and 3 months later they evaluated the non-subtracted images together with the subtracted posteroanterior bone images. The locations of rib fractures were registered with confidence levels on a 3-grade scale. Image quality was rated on a 5-point scale. Marks by readers were compared with fracture localizations in CT as a standard of reference. The sensivity for fracture detection using both methods was very similar (34.3% with standard CXR and 33.5% with ES-CXR, p=0.92). At the patient level, both sensitivity (71.8%) and specificity (92.9%) with or without ES were identical. Diagnostic confidence was not significantly different (2.61 with CXR and 2.75 with ES-CXR, p=0.063). Image quality with ES was rated higher than that on standard CXR (4.08 vs. 3.74, prib fractures. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Design of dual energy x-ray detector for conveyor belt with steel wire ropes

    Science.gov (United States)

    Dai, Yue; Miao, Changyun; Rong, Feng

    2009-07-01

    A dual energy X-ray detector for conveyor belt with steel wire ropes is researched in the paper. Conveyor belt with steel wire ropes is one of primary transfer equipments in modern production. The traditional test methods like electromagnetic induction principle could not display inner image of steel wire ropes directly. So X-ray detection technology has used to detect the conveyor belt. However the image was not so clear by the interference of the rubber belt. Therefore, the dualenergy X-ray detection technology with subtraction method is developed to numerically remove the rubber belt from radiograph, thus improving the definition of the ropes image. The purpose of this research is to design a dual energy Xray detector that could make the operator easier to found the faulty of the belt. This detection system is composed of Xray source, detector controlled by FPGA chip, PC for running image processing system and so on. With the result of the simulating, this design really improved the capability of the staff to test the conveyor belt.

  9. Analysis of multiphase flows using dual-energy gamma densitometry and neural networks

    International Nuclear Information System (INIS)

    Bishop, C.M.; James, G.D.

    1993-01-01

    Dual-energy gamma densitometry offers a powerful technique for the non-intrusive analysis of multiphase flows. By employing multiple beam lines, information on the phase configuration can be obtained. Once the configuration is known, it then becomes possible in principle to determine the phase fractions. In practice, however, the extraction of the phase fractions from the densitometer data is complicated by the wide variety of phase configurations which can arise, and by the considerable difficulties of modelling multiphase flows. In this paper we show that neural network techniques provide a powerful approach to the analysis of data from dual-energy ga