WorldWideScience

Sample records for prototype detector based

  1. Multichannel prototype of coordinate detector based on segmented straws

    International Nuclear Information System (INIS)

    Gusakov, Yu.V.; Davkov, V.I.; Davkov, K.I.; Zhukov, I.A.; Lutsenko, V.M.; Myalkovskij, V.V.; Peshekhonov, V.D.; Savenkov, A.A.

    2010-01-01

    The design and assembly technology of a detector prototype based on segmented straws is considered. The granularity of the prototype is 4 cm 2 . The prototype has a sensitive area of 400 x 200 mm, and contains two straw planes displaced against each other by 2 mm. The number of registration channels is 360. Preliminary results of the bench study of the prototype are presented

  2. First Compton telescope prototype based on continuous LaBr3-SiPM detectors

    International Nuclear Information System (INIS)

    Llosá, G.; Cabello, J.; Callier, S.; Gillam, J.E.; Lacasta, C.; Rafecas, M.; Raux, L.; Solaz, C.; Stankova, V.; La Taille, C. de; Trovato, M.; Barrio, J.

    2013-01-01

    A first prototype of a Compton camera based on continuous scintillator crystals coupled to silicon photomultiplier (SiPM) arrays has been successfully developed and operated. The prototype is made of two detector planes. The first detector is made of a continuous 16×18×5 mm 3 LaBr 3 crystal coupled to a 16-elements SiPM array. The elements have a size of 3×3 mm 3 in a 4.5×4.05 mm 2 pitch. The second detector, selected by availability, consists of a continuous 16×18×5 mm 3 LYSO crystal coupled to a similar SiPM array. The SPIROC1 ASIC is employed in the readout electronics. Data have been taken with a 22 Na source placed at different positions and images have been reconstructed with the simulated one-pass list-mode (SOPL) algorithm. Detector development for the construction of a second prototype with three detector planes is underway. LaBr 3 crystals of 32×36 mm 2 size and 5/10 mm thickness have been acquired and tested with a PMT. The resolution obtained is 3.5% FWHM at 511 keV. Each crystal will be coupled to four MPPC arrays. Different options are being tested for the prototype readout

  3. Detector evaluation of a prototype amorphous selenium-based full field digital mammography system

    Science.gov (United States)

    Jesneck, Jonathan L.; Saunders, Robert S.; Samei, Ehsan; Xia, Jessie Q.; Lo, Joseph Y.

    2005-04-01

    This study evaluated the physical performance of a selenium-based direct full-field digital mammography prototype detector (Siemens Mammomat NovationDR), including the pixel value vs. exposure linearity, the modulation transfer function (MTF), the normalized noise power spectrum (NNPS), and the detective quantum efficiency (DQE). The current detector is the same model which received an approvable letter from FDA for release to the US market. The results of the current prototype are compared to those of an earlier prototype. Two IEC standard beam qualities (RQA-M2: Mo/Mo, 28 kVp, 2 mm Al; RQA-M4: Mo/Mo, 35 kVp, 2 mm Al) and two additional beam qualities (MW2: W/Rh, 28 kVp, 2 mm Al; MW4: W/Rh, 35 kVp, 2 mm Al) were investigated. To calculate the modulation transfer function (MTF), a 0.1 mm Pt-Ir edge was imaged at each beam quality. Detector pixel values responded linearly against exposure values (R2 0.999). As before, above 6 cycles/mm Mo/Mo MTF was slightly higher along the chest-nipple axis compared to the left-right axis. MTF was comparable to the previously reported prototype, with slightly reduced resolution. The DQE peaks ranged from 0.71 for 3.31 μC/kg (12.83 mR) to 0.4 for 0.48 μC/kg (1.86 mR) at 1.75 cycles/mm for Mo/Mo at 28 kVp. The DQE range for W/Rh at 28 kVP was 0.81 at 2.03 μC/kg (7.87 mR) to 0.50 at 0.50 μC/kg (1.94 mR) at 1 cycle/mm. NNPS tended to increase with greater exposures, while all exposures had a significant low-frequency component. Bloom and detector edge artifacts observed previously were no longer present in this prototype. The new detector shows marked noise improvement, with slightly reduced resolution. There remain artifacts due to imperfect gain calibration, but at a reduced magnitude compared to a prototype detector.

  4. Performance of a prototype water Cherenkov detector for LHAASO project

    International Nuclear Information System (INIS)

    An, Q.; Bai, Y.X.; Bi, X.J.; Cao, Z.; Cao, Zhe; Chang, J.F.; Chen, G.; Chen, L.H.; Chen, M.J.; Chen, T.L.; Chen, Y.T.; Cui, S.W.; Dai, B.Z.; Danzengluobu; Feng, C.F.; Gao, B.; Gu, M.H.; Hao, X.J.; He, H.H.; Hu, H.B.

    2011-01-01

    A large high-altitude air shower observatory is to be built at Yang-Ba-Jing, Tibet, China. One of its main purposes is to survey the northern sky for very-high-energy (above 100 GeV) gamma ray sources via its ground-based water Cherenkov detector array. To gain full knowledge of water Cherenkov technique in detecting air showers, a prototype water Cherenkov detector is built at the Institute of High Energy Physics, Beijing. The performance of the prototype water Cherenkov detector is studied by measuring its response to cosmic muons. The results are compared with those from a full Monte Carlo simulation to provide a series of information regarding the prototype detector in guiding electronics design and detector optimization.

  5. The OPAL vertex detector prototype

    International Nuclear Information System (INIS)

    Roney, J.M.; Armitage, J.C.; Carnegie, R.K.; Giles, G.L.; Hemingway, R.J.; McPherson, A.C.; Pinfold, J.L.; Waterhouse, J.; Godfrey, L.; Hargrove, C.K.

    1989-01-01

    The prototype test results of a high resolution charged particle tracking detector are reported. The detector is designed to measure vertex topologies of particles produced in the e + e - collisions of the OPAL experiment at LEP. The OPAL vertex detector is a 1 m long, 0.46 m diameter cylindrical drift chamber consisting of an axial and stereo layer each of which is divided into 36 jet cells. A prototype chamber containing four axial and two stereo cells was studied using a pion test beam at CERN. The studies examined the prototype under a variety of operating conditions. An r-Φ resolution of 60 μm was obtained when the chamber was operated with argon (50%)-ethane (50%) at 3.75 bar, and when CO 2 (80%)-isobutane (20%) at 2.5 bar was used a 25 μm resolution was achieved. A z measurement using end-to-end time difference has a resolution of 3.5 cm. The details of these prototype studies are discussed in this paper. (orig.)

  6. The signal shape from the LHCb vertex locator prototype detectors

    International Nuclear Information System (INIS)

    Charles, M.

    2003-01-01

    Measurements of the SCT128A ASIC pulse shape, when reading out non-irradiated and irradiated prototype detectors for the LHCb VELO, are presented. The detectors studied were two n-on-n prototype detectors fabricated by Hamamatsu, and a p-on-n prototype detector fabricated by MICRON

  7. Design and Construction of Prototype Dark Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Peter Fisher

    2012-03-23

    The Lepton Quark Studies (LQS) group is engaged in searching for dark matter using the Dark Matter Time Projection Chamber (DMTPC) at the Waste Isolation Pilot Plant (WIPP) (Carlsbad, NM). DMTPC is a direction-sensitive dark matter detector designed to measure the recoil direction and energy deposited by fluorine nuclei recoiling from the interaction with incident WIMPs. In the past year, the major areas of progress have been: to publish the first dark matter search results from a surface run of the DMTPC prototype detector, to build and install the 10L prototype in the underground laboratory at WIPP which will house the 1 m{sup 3} detector, and to demonstrate charge and PMT readout of the TPC using prototype detectors, which allow triggering and {Delta}z measurement to be used in the 1 m{sup 3} detector under development.

  8. Small-Scale Readout System Prototype for the STAR PIXEL Detector

    International Nuclear Information System (INIS)

    Szelezniak, Michal; Anderssen, Eric; Greiner, Leo; Matis, Howard; Ritter, Hans Georg; Stezelberger, Thorsten; Sun, Xiangming; Thomas, James; Vu, Chinh; Wieman, Howard

    2008-01-01

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed

  9. Evaluation of prototype silicon drift detectors

    International Nuclear Information System (INIS)

    Ellison, J.; Hall, G.; Roe, S.; Lucas, A.

    1988-01-01

    Operating characteristics of several prototypes of silicon drift detectors are investigated. Detectors are made of unpolished silicon produced by the zone melting method and characterized by n-type conductivity and specific resistance of 3.6-4.6 kOhmxcm. The detectors comprise 40 parallel bands of 200 μm width and 1 cm length separated by 50 μm intervals. Data characterizing the potential distribution near anodes under the operating bias voltage, dependences of capacities and leakage as well as the detector space resolution

  10. A silicon pixel detector prototype for the CLIC vertex detector

    CERN Multimedia

    AUTHOR|(INSPIRE)INSPIRE-00714258

    2017-01-01

    A silicon pixel detector prototype for CLIC, currently under study for the innermost detector surrounding the collision point. The detector is made of a High-Voltage CMOS sensor (top) and a CLICpix2 readout chip (bottom) that are glued to each other. Both parts have a size of 3.3 x 4.0 $mm^2$ and consist of an array of 128 x 128 pixels of 25 x 25 $\\micro m^2$ size.

  11. Prototyping and tests for an MRPC-based time-of-flight detector for 1 GeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Yakorev, D. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Aumann, T. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany); Bemmerer, D., E-mail: d.bemmerer@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Boretzky, K. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Caesar, C. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany); Ciobanu, M. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Cowan, T.; Elekes, Z. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Elvers, M. [Universitaet zu Koeln (Germany); Gonzalez Diaz, D. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany); Tsinghua University, Beijing (China); Hannaske, R. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Hehner, J.; Heil, M. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Kempe, M. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Maroussov, V. [Universitaet zu Koeln (Germany); Nusair, O. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Al Balqa' Applied University, Salt (Jordan); Simon, H. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Sobiella, M.; Stach, D.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); and others

    2011-10-21

    The NeuLAND detector at the R{sup 3}B experiment at the future FAIR facility in Darmstadt aims to detect fast neutrons (0.2-1.0 GeV) with high time and spatial resolutions ({sigma}{sub t}<100ps,{sigma}{sub x,y,z}<1cm). This task can be performed either with a scintillator or based on the multigap resistive plate chamber (MRPC) technology. Here, prototyping and test for an MRPC-based solution are discussed. In order to reach 90% detection efficiency, the final detector must consist of 50 consecutive MRPC stacks. Each stack contains a 4 mm thick anode made of iron converter material, with an additional 4 mm of converter material between two stacks. The secondary charged particles stemming from hadronic interactions of the high energetic neutrons in the converter will be detected in the MRPCs. As part of the ongoing development effort, a number of prototypes for this detector have been developed and built. They have been tested in experiments with a single-electron beam with picosecond resolution at the superconducting linac ELBE (Dresden, Germany). The results of the tests are presented here, and an outlook is given.

  12. Results from prototypes of environmental and health alarm devices based on gaseous detectors operating in air in counting mode

    CERN Document Server

    Martinengo, P; Peskov, V; Benaben, P; Charpak, G; Breuil, P

    2011-01-01

    We have developed and successfully tested two prototypes of detectors of dangerous gases based on wire-type counters operating in air in avalanche mode: one is for radon (Rn) detection whereas the other one is for the detection of gases with an ionization potential less than the air components. Due to the operation in pulse counting mode these prototypes have sensitivities comparable to (in the case of the Rn detector) or much higher than (in the case of the detector for low ionization gases) the best commercial devices currently available on the market. We believe that due to their high sensitivity, simplicity and low cost such new detectors will find massive applications. One of them, discussed in this paper, could be the on-line monitoring of Rn for the prediction of earthquakes. (C) 2010 Elsevier B.V. All rights reserved.

  13. Concept of data storage prototype for Super-C-Tau factory detector

    International Nuclear Information System (INIS)

    Maximov, D.A.

    2017-01-01

    The physics program of experiments at the Super- c τ factory with a peak luminosity of 10 35 cm −2 s −1 leads to high requrements for Data Acquisition and Data Storage systems. Detector data storage is one of the key component of the detector infrastructure, so it must be reliable, highly available and fault tolerant shared storage. It is mostly oriented (from end user point of view) for sequential but mixed read and write operations and is planed to store large data blocks (files). According to CDR of Super-C-Tau factory detector data storage must have very high performance (up to 1 Tbps in both directions simultaneously) and have significant volume (tens and hundreds of Petabytes). It is decided to build a series of prototypes with growing capabilities to investigate storage and neighboring technologies. First prototype of data storage is aimed to develop and test basic components of detector data storage system such as storage devices, networks and software. This prototype is designed to be capable to work with data rate of order 10 Gbps. It is estimated that about 5 modern computers with about 50 disks in total should be enough to archive required performance. The prototype will be based on Ceph storage technology. Ceph is a distributed storage system which allows to create storage solutions with very flexible design, high availability and scalability.

  14. Study of a high spatial resolution {sup 10}B-based thermal neutron detector for application in neutron reflectometry: the Multi-Blade prototype

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, F; Buffet, J C; Clergeau, J F; Cuccaro, S; Guérard, B; Khaplanov, A; Manna, Q La; Rigal, J M; Esch, P Van, E-mail: piscitelli@ill.fr [Institut Laue-Langevin (ILL), 6, Jules Horowitz, 38042, Grenoble (France)

    2014-03-01

    Although for large area detectors it is crucial to find an alternative to detect thermal neutrons because of the {sup 3}He shortage, this is not the case for small area detectors. Neutron scattering science is still growing its instruments' power and the neutron flux a detector must tolerate is increasing. For small area detectors the main effort is to expand the detectors' performances. At Institut Laue-Langevin (ILL) we developed the Multi-Blade detector which wants to increase the spatial resolution of {sup 3}He-based detectors for high flux applications. We developed a high spatial resolution prototype suitable for neutron reflectometry instruments. It exploits solid {sup 10}B-films employed in a proportional gas chamber. Two prototypes have been constructed at ILL and the results obtained on our monochromatic test beam line are presented here.

  15. Characterizing X-ray detectors for prototype digital breast tomosynthesis systems

    International Nuclear Information System (INIS)

    Kim, Y.-S.; Park, H.-S.; Park, S.-J.; Choi, S.; Lee, H.; Kim, H.-J.; Lee, D.; Choi, Y.-W.

    2016-01-01

    The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R 2 >0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types

  16. Study on a prototype and by simulation of an antineutrino detector based on a lithium 6 scintillator

    International Nuclear Information System (INIS)

    Ait-Boubker, S.

    1989-01-01

    A detector based on Lithium-6 loaded liquid scintillator has been developed by the BUGEY collaboration in order to study neutrino's fundamental properties. This thesis reports on a study concerning a prototype cell of size 85x8.5x8.5 cm 3 , of the discrimination properties between neutrons and gammas and thermal neutron identification. Monte-Carlo simulation has allowed us to precise the light collection features in the cell. The last part of this memorandum deals with a cosmic detector presenting 2.5 m 2 active surface. We have obtained for this detector a very good homogenization of light response [fr

  17. Fabrication of prototypes of Ge(li) semiconductor detector

    International Nuclear Information System (INIS)

    Santos, W.M.S.; Marti, G.V.; Rizzo, P.; Barros, S. de.

    1987-01-01

    The fabrication process of Ge(Li) semiconductor detector prototypes, from specific chemical treatments of doped monocrystal with receptor impurities (p + semicondutor) is presented. The detector characteristics, such as resulotion and operation tension are shown. (M.C.K.) [pt

  18. Characterisation of an AGATA symmetric prototype detector

    International Nuclear Information System (INIS)

    Nelson, L.; Dimmock, M.R.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Nolan, P.J.; Lazarus, I.; Simpson, J.; Medina, P.; Santos, C.; Parisel, C.

    2007-01-01

    The Advanced GAmma Tracking Array (AGATA) symmetric prototype detector has been tested at University of Liverpool. A 137 Ce source, collimated to a 2 mm diameter, was scanned across the front face of the detector and data were acquired utilising digital electronics. Pulse shapes from a selection of well-defined photon interaction positions have been analysed to investigate the position sensitivity of the detector. Furthermore, the application of the electric field simulation software, Multi Geometry Simulation (MGS) to generate theoretical pulse shapes for AGATA detectors has been presented

  19. Characterisation of an AGATA symmetric prototype detector

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: ln@ns.ph.liv.ac.uk; Dimmock, M.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: mrd@ns.ph.liv.ac.uk; Boston, A.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: ajb@ns.ph.liv.ac.uk; Boston, H.C. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Cresswell, J.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Nolan, P.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Lazarus, I. [CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Simpson, J. [CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Medina, P. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Santos, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Parisel, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France)

    2007-04-01

    The Advanced GAmma Tracking Array (AGATA) symmetric prototype detector has been tested at University of Liverpool. A {sup 137}Ce source, collimated to a 2 mm diameter, was scanned across the front face of the detector and data were acquired utilising digital electronics. Pulse shapes from a selection of well-defined photon interaction positions have been analysed to investigate the position sensitivity of the detector. Furthermore, the application of the electric field simulation software, Multi Geometry Simulation (MGS) to generate theoretical pulse shapes for AGATA detectors has been presented.

  20. Development of a 3D CZT detector prototype for Laue Lens telescope

    DEFF Research Database (Denmark)

    Caroli, Ezio; Auricchio, Natalia; Del Sordo, Stefano

    2010-01-01

    We report on the development of a 3D position sensitive prototype suitable as focal plane detector for Laue lens telescope. The basic sensitive unit is a drift strip detector based on a CZT crystal, (~19×8 mm2 area, 2.4 mm thick), irradiated transversally to the electric field direction. The anode...

  1. Performance of hybrid photon detector prototypes with encapsulated silicon pixel detector and readout for the RICH counters of LHCb

    International Nuclear Information System (INIS)

    Campbell, M.; George, K.A.; Girone, M.; Gys, T.; Jolly, S.; Piedigrossi, D.; Riedler, P.; Rozema, P.; Snoeys, W.; Wyllie, K.

    2003-01-01

    These proceedings report on the performance of the latest prototype pixel hybrid photon detector in preparation for the LHCb Ring Imaging Cherenkov detectors. The prototype encapsulates a silicon pixel detector bump-bonded to a binary read-out chip with short (25 ns) peaking time and low ( - ) detection threshold. A brief description of the prototype is given, followed by the preliminary results of the characterisation of the prototype behaviour when tested using a low intensity pulsed light emitting diode. The results obtained are in good agreement with those obtained using previous prototypes. The proceedings conclude with a summary of the current status and future plans

  2. Fabrication of ATLAS pixel detector prototypes at IRST

    International Nuclear Information System (INIS)

    Boscardin, M.; Betta, G.-F. Dalla; Gregori, P.; Zen, M.; Zorzi, N.

    2001-01-01

    We report on the development of a fabrication technology for n-on-n silicon pixel detectors oriented to the ATLAS experiment at LHC. The main processing issues and some selected results from the electrical characterization of detector prototypes and related test structures are presented and discussed

  3. A profile-based gaseous detector with capacitive pad readout as the prototype of the shower maximum detector for the end-cap electromagnetic calorimeter for the STAR experiment

    International Nuclear Information System (INIS)

    Averichev, G.; Chernenko, S.; Matyushevskij, E.

    1997-01-01

    The results of testing the full-scale prototype of a profile-based shower maximum detector with external pick-up pads for the end-cap electromagnetic calorimeter (EMC) for the STAR experiment at RHIC are presented. It is shown that the plastic streamer tubes with coverless profile operating in the proportional mode with low gain are a suitable basic unit for the shower maximum detector

  4. UA1 prototype detector

    CERN Multimedia

    1980-01-01

    Prototype of UA1 central detector inside a plexi tube. The UA1 experiment ran at CERN's Super Proton Synchrotron and made the Nobel Prize winning discovery of W and Z particles in 1983. The UA1 central detector was crucial to understanding the complex topology of proton-antiproton events. It played a most important role in identifying a handful of Ws and Zs among billions of collisions. The detector was essentially a wire chamber - a 6-chamber cylindrical assembly 5.8 m long and 2.3 m in diameter, the largest imaging drift chamber of its day. It recorded the tracks of charged particles curving in a 0.7 Tesla magnetic field, measuring their momentum, the sign of their electric charge and their rate of energy loss (dE/dx). Atoms in the argon-ethane gas mixture filling the chambers were ionised by the passage of charged particles. The electrons which were released drifted along an electric field shaped by field wires and were collected on sense wires. The geometrical arrangement of the 17000 field wires and 6...

  5. The performance of prototype position-sensitive neutron detectors on SXD at ISIS

    International Nuclear Information System (INIS)

    Wilson, C.C.

    1989-02-01

    The performance of two position-sensitive neutron detector designed for use on the single crystal diffractometer (SXD) at ISIS is assessed. The two detectors examined were the Anger camera 6 Li-glass scintillator PSD and a prototype fibre-optic encoded PSD based on 6 Li-doped ZnS plastic scintillator. The latter detector is found to be both simpler to fabricate and to produce better results on the evidence to date. A summary of some of the expected science from SXD and the performance of the detectors with respect to this is also given. (author)

  6. Test beam results of Silicon Drift Detector prototypes for the ALICE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nouais, D.; Bonvicini, V.; Busso, L.; Cerello, P.; Giubellino, P.; Gregorio, A.; Hernandez-Montoya, R.; Idzik, M.; Kolojvari, A.; Mazza, G.; Montano, L. M.; Nilsen, B.S.; Petta, C.; Randazzo, N.; Rashevsky, A.; Reito, S.; Rivetti, A.; Tosello, F.; Trzaska, W.H.; Vacchi, A

    1999-08-01

    We report preliminary beam test results of linear Silicon Drift Detector prototypes for the ALICE experiment. Linearity, resolution, charge transport and collection, and efficiency have been studied using a minimum ionizing particle beam for a very large area detector prototype read out with the OLA preamplifier/shaper and for another detector read out using a new transimpedance amplifier with a non linear response.

  7. Test beam results of silicon drift detector prototypes for the ALICE experiment

    CERN Document Server

    Nouais, D; Busso, L; Cerello, P G; Giubellino, P; Gregorio, A; Hernández-Montoya, R; Idzik, M; Kolojvari, A A; Mazza, G; Montaño-Zetina, L M; Nilsson, B S; Petta, C; Randazzo, N; Rashevsky, A; Reito, S; Rivetti, A; Tosello, F; Trzaska, W H; Vacchi, A

    1999-01-01

    We report preliminary beam test results of linear silicon drift detector prototypes for the ALICE experiment. Linearity, resolution, charge transport and collection, and efficiency have been studied using a minimum ionizing particle beam for a very large area detector prototype read out with the OLA preamplifier/shaper and for another detector read out using a new transimpedance amplifier with a nonlinear response. (14 refs).

  8. Study of a prototype detector for the Daya Bay neutrino experiment

    International Nuclear Information System (INIS)

    Wang Zhimin; Yang Changgen; Guan Mengyun; Zhong Weili; Liu Jinchang; Zhang Zhiyong; Ding Yayun; Wang Ruiguang; Cao Jun; Wang Yifang; Lu Haoqi

    2009-01-01

    The Daya Bay reactor neutrino experiment is designed to precisely measure the neutrino mixing angle θ 13 . In order to study the details of the detector response and finalize the detector design, a prototype neutrino detector with a scale of 1/3 in diameter is constructed at the Institute of High Energy Physics (IHEP), Beijing. The detector is viewed by 45 8'' photomultipliers, which are calibrated by LED light pulse. The energy response of the detector, including the resolution, linearity, spatial uniformity, etc., is studied by radioactive sources 133 Ba, 137 Cs, 60 Co, and 22 Na at various locations of the detector. The measurement shows that the detector, particularly the specially designed optical reflectors, works as expected. A Monte Carlo simulation based on the Geant4 package shows a good agreement with the experimental data.

  9. Mobile robot prototype detector of gamma radiation

    International Nuclear Information System (INIS)

    Vazquez C, R.M.; Duran V, M. D.; Jardon M, C. I.

    2014-10-01

    In this paper the technological development of a mobile robot prototype detector of gamma radiation is shown. This prototype has been developed for the purpose of algorithms implementation for the applications of terrestrial radiation monitoring of exposed sources, search for missing radioactive sources, identification and delineation of radioactive contamination areas and distribution maps generating of radioactive exposure. Mobile robot detector of radiation is an experimental technology development platform to operate in laboratory environment or flat floor facilities. The prototype integrates a driving section of differential configuration robot on wheels, a support mechanism and rotation of shielded detector, actuator controller cards, acquisition and processing of sensor data, detection algorithms programming and control actuators, data recording (Data Logger) and data transmission in wireless way. The robot in this first phase is remotely operated in wireless way with a range of approximately 150 m line of sight and can extend that range to 300 m or more with the use of signal repeaters. The gamma radiation detection is performed using a Geiger detector shielded. Scan detection is performed at various time sampling periods and diverse positions of discrete or continuous angular orientation on the horizon. The captured data are geographical coordinates of robot GPS (latitude and longitude), orientation angle of shield, counting by sampling time, date, hours, minutes and seconds. The data is saved in a file in the Micro Sd memory on the robot. They are also sent in wireless way by an X Bee card to a remote station that receives for their online monitoring on a laptop through an acquisition program by serial port on Mat Lab. Additionally a voice synthesizing card with a horn, both in the robot, periodically pronounced in Spanish, data length, latitude, orientation angle of shield and detected accounts. (Author)

  10. Prototype of the stacked CdZnTe semiconductor detector for 16N measurement

    International Nuclear Information System (INIS)

    Nishizawa, Hiroshi; Inujima, Hiroshi; Fujiwara, Hirotsugu; Nakamura, Hiroaki

    2001-01-01

    Prototype of the Stacked CdZnTe Semiconductor Detector for Measurement The prototype model of the stacked CdZnTe semiconductor detector, which is able to measure the 6.13 MeV γ-ray from 16 N, was fabricated. The prototype's response calculation was carried out by Monte-Carlo method. The result of the response calculation agreed with the experiment data of check sources of 137 Cs and 60 Co, and 16 N which was measured at vicinity of the primary cooling water pipe of the nuclear reactor. The source spectra were unfolded with detector's response function obtained by simulation, and it is indicated that the incident γ-ray energy and its intensity ratio was identified and that the energy of 6 MeV γ-ray could be measured by the prototype of the stacked detector. (author)

  11. Construction and performance of a prototype detector for the ATLAS new small wheel

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tai-Hua; Schott, Matthias; Valderanis, Chrysostomos; Duedder, Andreas [Johannes Gutenberg-Universitaet Mainz (Germany); Collaboration: ATLAS-Collaboration

    2015-07-01

    One of the upgrades of ATLAS detector for its phase II of operation is the replacement of the inner part of end cap muon spectrometer with resistive micromegas detectors. In this talk we discuss the very first working prototype, a quadruplets detector with an area of 0.5 m{sup 2} per plane in a trapezoid shape. The detailed construction of the prototype which includes the drift and readout layers gluing, gas flowing system mounting and etc. ls presented. The prototype was tested at the Mainz Microtron and with cosmic rays and results are presented. Finally we report on its installation of the prototype to the ATLAS cavern and on the plans for future measurements with it.

  12. Study of the Quasi-Elastic Scattering in the NOvA Detector Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt, Minerba [Univ. of Minnesota, Minneapolis, MN (United States)

    2013-06-01

    NOvA is a 810 km long base-line neutrino oscillation experiment with two detectors (far 14 KTon and near detector 300 Ton) currently being installed in the NUMI o -axis neutrino beam produced at Fermilab. A 222 Ton prototype NOvA detector (NDOS) was built and operated in the neutrino beam for over a year to understand the response of the detector and its construction. The goal of this thesis is to study the muon neutrino interaction data collected in this test, specifically the identification of quasi-elastic charged-current interactions and measure the behavior of the quasi-elastic muon neutrino cross section.

  13. Prototype Performance of Novel Muon Telescope Detector at STAR

    International Nuclear Information System (INIS)

    Ruan, L.

    2008-01-01

    Research on a large-area, cost-effective Muon Telescope Detector (MTD) has been carried out for RHIC and for next generation detectors at future QCD Lab. We utilize state-of-the-art multi-gap resistive plate chambers with large modules and long readout strips in detector design. The results from cosmic ray and beam test will be presented to address intrinsic timing and spatial resolution for a Long-MRPC. The prototype performance of a novel muon telescope detector at STAR will be reported, including muon identification capability, timing and spatial resolution

  14. Prototype performance of novel muon telescope detector at STAR

    International Nuclear Information System (INIS)

    Ruan, L.; Ames, V.

    2011-01-01

    Research on a large-area, cost-effective Muon Telescope Detector has been carried out for RHIC and for next generation detectors at future QCD Lab. We utilize state-of-the-art multi-gap resistive plate chambers with large modules and long readout strips in detector design. The results from cosmic ray and beam test will be presented to address intrinsic timing and spatial resolution for a Long-MRPC. The prototype performance of a novel muon telescope detector at STAR will be reported, including muon identification capability, timing and spatial resolution. (author)

  15. The 150 ns detector project: Prototype preamplifier results

    Science.gov (United States)

    Warburton, W. K.; Russell, S. R.; Kleinfelder, Stuart A.

    1994-08-01

    The long-term goal of the 150 ns detector project is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1×256 1D and 8×8 2D detectors, 256×256 2D detectors and, finally, 1024 × 1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front-end preamplifiers are integrated first, since their design and performance are the most unusual and also critical to the project's success. Similarly, our early work is concentrated on devising and perfecting detector structures. In this paper we demonstrate the performance of prototypes of our integrated preamplifiers. While the final design will have 64 preamps to a chip, including a switchable gain stage, the prototypes were integrated 8 channels to a "Tiny Chip" and tested in 4 configurations (feedback capacitor Cf equal 2.5 or 4.0 pF, output directly or through a source follower). These devices have been tested thoroughly for reset settling times, gain, linearity, and electronic noise. They generally work as designed, being fast enough to easily integrate detector charge, settle, and reset in 150 ns. Gain and linearity appear to be acceptable. Current values of electronic noise, in double-sampling mode, are about twice the design goal of {2}/{3} of a single photon at 6 keV. We expect this figure to improve with the addition of the onboard amplifier stage and improved packaging. Our next test chip will include these improvements and allow testing with our first detector samples, which will be 1×256 (50 μm wide pixels) and 8×8 (1 mm 2 pixels) element detector on 1 mm thick silicon.

  16. Studies on the prototype of the transition-radiation detector for the Zeus experiment

    International Nuclear Information System (INIS)

    Munde, A.

    1991-04-01

    The Zeus detector is currently being built for HERA at Hamburg. One part of the inner detector is the transition radiation detector (TRD). It will identify single electrons inside hadronic jets of deep inelastic ep-collisions. To test the chamber performance and to improve mechanical tools, a prototype of the smallest detector modul (TRD-1) was built. The gasgain of this prototype was measured under several high voltage conditions. The gasgain is about 1.5x10 3 up to 8x10 3 in Argon/Methane 90/10. To test the function of this prototype, the test beam facility at the Bonn 2.5 GeV electron synchrotron was used. The same relative amplification was measured by comparing the beam results with those obtained with a Fe 55 -source. (orig.) [de

  17. Luminosity Measurement at ATLAS Development, Construction and Test of Scintillating Fibre Prototype Detectors

    CERN Document Server

    Ask, S; Braem, André; Cheiklali, C; Efthymiopoulos, I; Fournier, D; de La Taille, C; Di Girolamo, B; Grafström, P; Joram, C; Haguenauer, Maurice; Hedberg, V; Lavigne, B; Maio, A; Mapelli, A; Mjörnmark, U; Puzo, P; Rijssenbeek, M; Santos, J; Saraiva, J G; Stenzel, H; Thioye, M; Valladolid, E; Vorobel, V

    2006-01-01

    We are reporting about a scintillating fibre tracking detector which is proposed for the precise determination of the absolute luminosity of the CERN LHC at interaction point 1 where the ATLAS experiment is located. The detector needs to track protons elastically scattered under $\\mu$rad angles in direct vicinity to the LHC beam. It is based on square shaped scintillating plastic fibres read out by multi-anode photomultiplier tubes and is housed in Roman Pots. We describe the design and construction of prototype detectors and the results of a beam test experiment at DESY. The excellent detector performance established in this test validates the detector design and supports the feasibility of the proposed challenging method of luminosity measurement.

  18. NeuRad detector prototype pulse shape study

    Science.gov (United States)

    Muzalevsky, I.; Chudoba, V.; Belogurov, S.; Kiselev, O.; Bezbakh, A.; Fomichev, A.; Krupko, S.; Slepnev, R.; Kostyleva, D.; Gorshkov, A.; Ovcharenko, E.; Schetinin, V.

    2018-04-01

    The EXPERT setup located at the Super-FRS facility, the part of the FAIR complex in Darmstadt, Germany, is intended for investigation of properties of light exotic nuclei. One of its modules, the high granularity neutron detector NeuRad assembled from a large number of the scintillating fiber is intended for registration of neutrons emitted by investigated nuclei in low-energy decays. Feasibility of the detector strongly depends on its timing properties defined by the spatial distribution of ionization, light propagation inside the fibers, light emission kinetics and transition time jitter in the multi-anode photomultiplier tube. The first attempt of understanding the pulse formation in the prototype of the NeuRad detector by comparing experimental results and Monte Carlo (MC) simulations is reported in this paper.

  19. A prototype detector using the neutron image intensifier and multi-anode type photomultiplier tube for pulsed neutron imaging

    International Nuclear Information System (INIS)

    Ishikawa, Hirotaku; Sato, Hirotaka; Hara, Kaoru Y.; Kamiyama, Takashi

    2016-01-01

    We developed a neutron two-dimensional (2-D) detector for pulsed neutron imaging as a prototype detector, which was composed of a neutron image intensifier and a multi-anode type photomultiplier tube. A neutron transmission spectrum of α-Fe plate was measured by the prototype detector, and compared with the one measured by a typical neutron 2-D detector. The spectrum was in reasonable agreement with the one measured by the typical detector in the neutron wavelength region above 0.15 nm. In addition, a neutron transmission image of a cadmium indicator was obtained by the prototype detector. The usefulness of the prototype detector for pulsed neutron imaging was demonstrated. (author)

  20. First results with prototype ISIS devices for ILC vertex detector

    International Nuclear Information System (INIS)

    Damerell, C.; Zhang, Z.; Gao, R.; John John, Jaya; Li, Y.; Nomerotski, A.; Holland, A.; Seabroke, G.; Havranek, M.; Stefanov, K.; Kar-Roy, A.; Bell, R.; Burt, D.; Pool, P.

    2010-01-01

    The vertex detectors at the International Linear Collider (ILC) (there will be two of them, one for each of two general purpose detectors) will certainly be built with silicon pixel detectors, either monolithic or perhaps vertically integrated. However, beyond this general statement, there is a wide range of options supported by active R and D programmes all over the world. Pixel-based vertex detectors build on the experience at the SLAC large detector (SLD) operating at the SLAC linear collider (SLC), where a 307 Mpixel detector permitted the highest physics performance at LEP or SLC. For ILC, machine conditions demand much faster readout than at SLC, something like 20 time slices during the 1 ms bunch train. The approach of the image sensor with in-situ storage (ISIS) is unique in offering this capability while avoiding the undesirable requirement of 'pulsed power'. First results from a prototype device that approaches the pixel size of 20 μm square, needed for physics, are reported. The dimensional challenge is met by using a 0.18 μm imaging CMOS process, instead of a conventional CCD process.

  1. First results with prototype ISIS devices for ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Damerell, C., E-mail: c.damerell@rl.ac.u [RAL, Oxon OX11 0QX (United Kingdom); Zhang, Z. [RAL, Oxon OX11 0QX (United Kingdom); Gao, R.; John John, Jaya; Li, Y.; Nomerotski, A. [Oxford U (United Kingdom); Holland, A.; Seabroke, G. [Centre for Electronic Imaging, Open U (United Kingdom); Havranek, M. [Czech Technical University in Prague (Czech Republic); Stefanov, K. [Sentec Ltd, Cambridge (United Kingdom); Kar-Roy, A. [Jazz Semiconductors, California (United States); Bell, R.; Burt, D.; Pool, P. [e2V Technologies, Chelmsford (United Kingdom)

    2010-12-11

    The vertex detectors at the International Linear Collider (ILC) (there will be two of them, one for each of two general purpose detectors) will certainly be built with silicon pixel detectors, either monolithic or perhaps vertically integrated. However, beyond this general statement, there is a wide range of options supported by active R and D programmes all over the world. Pixel-based vertex detectors build on the experience at the SLAC large detector (SLD) operating at the SLAC linear collider (SLC), where a 307 Mpixel detector permitted the highest physics performance at LEP or SLC. For ILC, machine conditions demand much faster readout than at SLC, something like 20 time slices during the 1 ms bunch train. The approach of the image sensor with in-situ storage (ISIS) is unique in offering this capability while avoiding the undesirable requirement of 'pulsed power'. First results from a prototype device that approaches the pixel size of 20 {mu}m square, needed for physics, are reported. The dimensional challenge is met by using a 0.18 {mu}m imaging CMOS process, instead of a conventional CCD process.

  2. A prototype of wireless power and data acquisition system for large detectors

    International Nuclear Information System (INIS)

    De Lurgio, P.; Djurcic, Z.; Drake, G.; Hashemian, R.; Kreps, A.; Oberling, M.; Pearson, T.; Sahoo, H.

    2015-01-01

    We have developed a prototype detector and data acquisition module that incorporates wireless power and wireless data transmission techniques. The module has no electrical connections. It receives power using photovoltaic devices, and communicates control, timing, trigger, and data using the 802.11n wireless communication standard. The work is part of a study for building a large detector having many readout channels, where it is desirable to reduce the cable plant and infrastructure. The system could also be deployed in smaller detectors that require mobility or are difficult to cable due to extreme conditions. We describe the design and operation of the prototype module, including benchmark performance measurements, and discuss aspect and issues in extrapolating to a large detector system

  3. A prototype of wireless power and data acquisition system for large detectors

    Energy Technology Data Exchange (ETDEWEB)

    De Lurgio, P. [Argonne National Laboratory, Argonne, IL 60439 (United States); Djurcic, Z., E-mail: zdjurcic@anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Drake, G. [Argonne National Laboratory, Argonne, IL 60439 (United States); Hashemian, R. [Northern Illinois University, Dekalb, IL 60115 (United States); Kreps, A.; Oberling, M. [Argonne National Laboratory, Argonne, IL 60439 (United States); Pearson, T. [Northern Illinois University, Dekalb, IL 60115 (United States); Sahoo, H. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-06-11

    We have developed a prototype detector and data acquisition module that incorporates wireless power and wireless data transmission techniques. The module has no electrical connections. It receives power using photovoltaic devices, and communicates control, timing, trigger, and data using the 802.11n wireless communication standard. The work is part of a study for building a large detector having many readout channels, where it is desirable to reduce the cable plant and infrastructure. The system could also be deployed in smaller detectors that require mobility or are difficult to cable due to extreme conditions. We describe the design and operation of the prototype module, including benchmark performance measurements, and discuss aspect and issues in extrapolating to a large detector system.

  4. Evaluation of Position Resolution for a Prototype Whole-Body PET Detector Based on Suppressing Backgrounds by Compton Scattering

    Science.gov (United States)

    Fujihara, Kento; Emoto, Yusaku; Ito, Hiroshi; Kaneko, Naomi; Kaneko, Hideyuki; Kawai, Hideyuki; Kobayashi, Atsushi; Mizuno, Takahiro

    2018-01-01

    Existing PET (Positron Emission Tomography) systems make clear images in demonstration (measuring small PET reagent in pure water), however images in real diagnosis become unclear. The authors suspected that this problem was caused by Compton scattering in a detector. When PET systems observe plural photomultiplier tube outputs, an original emission point is regarded as centroid of the outputs. However, even if plural emission in Compton scattering occur, these systems calculate original point in the same way as single emission. Therefore, the authors considered that rejecting Compton scattering events makes PET systems much better, and made prototype counter. Main components of the prototype counter are plate-like high-growth-rate (HGR) La-GPS scintillators and wavelength shifting fibers (WLSF). HGR crystals grow 10 times as fast as a mono-crystal (a normal mono-crystal grows at 2 - 3 mm an hour). Thus, it includes microbubble and its transparency get worth. Consequently, HGR crystals usually are not used in radiation measuring instruments. However, this time they are used on the purpose. Because of their low transparency, scintillation lights come out right above and right under of emission position. Therefore, Compton scattering events is rejected easily. The prototype detector has an effective area of 300 by 300 square mm. The detector consists of 24 layers. One layer consists of HGR La-GPS scintillator of 1 mm thickness. Top and bottom surface of scintillator were covered by dual sheets of WLSF with a diameter of 0.2 mm. Sheets of WLSF on top and bottom of the scintillator make a right angle with each other, and measure X- and Y-components. Z-component is measured by difference of WLSF outputs between top and bottom. If plural layers output signals, this counter regards the event as Compton scattering event, and reject the event. Even if only a layer output signals, the event is rejected when number output signals from WLSF is more than 1.5 times of single

  5. Test-beam and laboratory characterisation of the TORCH prototype detector

    CERN Document Server

    Ros, A; Castillo-Garcia, L; Conneely, T; Cussans, D; Foehl, K; Forty, R; Frei, C; Gao, R; Gys, T; Harnew, N; Milnes, J; Piedigrossi, D; Rademacker, J; Van Dijk, M

    2017-01-01

    The TORCH time-of-flight (TOF) detector is being developed to provide particle identification up to a momentum of 10 GeV/c over a flight distance of 10 m. It has a DIRC-like construction with View the MathML source10mm thick synthetic amorphous fused-silica plates as a Cherenkov radiator. Photons propagate by total internal reflection to the plate periphery where they are focused onto an array of customised position-sensitive micro-channel plate (MCP) detectors. The goal is to achieve a 15 ps time-of-flight resolution per incident particle by combining arrival times from multiple photons. The MCPs have pixels of effective size 0.4 mm×6.6 mm2 in the vertical and horizontal directions, respectively, by incorporating a novel charge-sharing technique to improve the spatial resolution to better than the pitch of the readout anodes. Prototype photon detectors and readout electronics have been tested and calibrated in the laboratory. Preliminary results from testbeam measurements of a prototype TORCH detector are a...

  6. A new prototype for the PANDA disc DIRC detector

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, Julian; Dueren, Michael; Hayrapetyan, Avetik; Foehl, Klaus; Kroeck, Benno; Merle, Oliver; Etzelmueller, Erik; Biguenko, Klim [Justus Liebig Universitaet, Giessen (Germany); Collaboration: PANDA-Collaboration

    2014-07-01

    The PANDA experiment at the future FAIR facility needs excellent particle identification to do precision studies of antiproton-proton reactions in the 1.5-15 GeV/c momentum range. To fulfill this need, two Cherenkov detectors will be installed in the PANDA target spectrometer, both based on the DIRC concept that uses internally reflected Cherenkov light to perform particle identification, with a focus on the separation of pions and kaons. The Disc-DIRC is designed to cap the forward region of theta angles between 5 and 22 degrees. It will be the first time that a 3D-Disc-DIRC is used for PID in a real physics experiment beyond prototyping. A new prototyping Disc-DIRC apparatus has been constructed at the JLU Giessen. Unlike previous prototypes, this one features a radiator as well as focusing elements made out of fused silica. The Cherenkov light is detected with 22 multi-anode-phototubes and 4 MCP-PMTs, totalling 608 individual pixels. Timing information for each of the latter is generated using the novel TRB3 system developed at GSI. The entire prototype was tested with an electron beam of several GeV/c provided by DESY in Hamburg. The components, their setup and a first analysis of the recorded data will be presented.

  7. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko; Tashima, Hideaki [National Institute of Radiological Sciences, Chiba (Japan); Suga, Mikio [Chiba University, Chiba (Japan); Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga [National Institute of Radiological Sciences, Chiba (Japan)

    2015-05-18

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  8. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Tashima, Hideaki; Suga, Mikio; Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga

    2015-01-01

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  9. Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gnanvo, Kondo, E-mail: kgnanvo@fit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Grasso, Leonard V.; Hohlmann, Marcus; Locke, Judson B.; Quintero, Amilkar [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Mitra, Debasis [Department of Computer Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States)

    2011-10-01

    Muon Tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons in matter is a promising technique for detecting heavily shielded high-Z radioactive materials (U, Pu) in cargo or vehicles. The technique uses the deflection of cosmic ray muons in matter to perform tomographic imaging of high-Z material inside a probed volume. A Muon Tomography Station (MTS) requires position-sensitive detectors with high spatial resolution for optimal tracking of incoming and outgoing cosmic ray muons. Micro Pattern Gaseous Detector (MPGD) technologies such as Gas Electron Multiplier (GEM) detectors are excellent candidates for this application. We have built and operated a minimal MTS prototype based on 30 cmx30 cm GEM detectors for probing targets with various Z values inside the MTS volume. We report the first successful detection and imaging of medium-Z and high-Z targets of small volumes ({approx}0.03 L) using GEM-based Muon Tomography.

  10. Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors

    International Nuclear Information System (INIS)

    Gnanvo, Kondo; Grasso, Leonard V.; Hohlmann, Marcus; Locke, Judson B.; Quintero, Amilkar; Mitra, Debasis

    2011-01-01

    Muon Tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons in matter is a promising technique for detecting heavily shielded high-Z radioactive materials (U, Pu) in cargo or vehicles. The technique uses the deflection of cosmic ray muons in matter to perform tomographic imaging of high-Z material inside a probed volume. A Muon Tomography Station (MTS) requires position-sensitive detectors with high spatial resolution for optimal tracking of incoming and outgoing cosmic ray muons. Micro Pattern Gaseous Detector (MPGD) technologies such as Gas Electron Multiplier (GEM) detectors are excellent candidates for this application. We have built and operated a minimal MTS prototype based on 30 cmx30 cm GEM detectors for probing targets with various Z values inside the MTS volume. We report the first successful detection and imaging of medium-Z and high-Z targets of small volumes (∼0.03 L) using GEM-based Muon Tomography.

  11. An X-ray scanner prototype based on a novel hybrid gaseous detector

    CERN Document Server

    Iacobaeus, C; Lund-Jensen, B; Peskov, Vladimir

    2007-01-01

    We have developed a prototype of a new type of hybrid X-ray detector. It contains a thin wall (few μm) edge- illuminated lead glass capillary plate (acting as a converter of X-rays photons to primary electrons) combined with a microgap parallel-plate avalanche chamber operating in various gas mixtures at 1 atm. The operation of these converters was studied in a wide range of X-ray energies (from 6 to 60 keV) at incident angles varying from 0° to 90°. The detection efficiency, depending on the geometry, photon's energy, incident angle and the mode of operation, was between a few and 40%. The position resolution achieved was 50 μm in digital form and was practically independent of the photon's energy or gas mixture. The developed detector may open new possibilities for medical imaging, for example in mammography, portal imaging, radiography (including security devices), crystallography and many other applications.

  12. New prototype scintillator detector for the Tibet ASγ experiment

    Science.gov (United States)

    Zhang, Y.; Gou, Q.-B.; Cai, H.; Chen, T.-L.; Danzengluobu; Feng, C.-F.; Feng, Y.-L.; Feng, Z.-Y.; Gao, Q.; Gao, X.-J.; Guo, Y.-Q.; Guo, Y.-Y.; Hou, Y.-Y.; Hu, H.-B.; Jin, C.; Li, H.-J.; Liu, C.; Liu, M.-Y.; Qian, X.-L.; Tian, Z.; Wang, Z.; Xue, L.; Zhang, X.-Y.; Zhang, Xi-Ying

    2017-11-01

    The hybrid Tibet AS array was successfully constructed in 2014. It has 4500 m2 underground water Cherenkov pools used as the muon detector (MD) and 789 scintillator detectors covering 36900 m2 as the surface array. At 100 TeV, cosmic-ray background events can be rejected by approximately 99.99%, according to the full Monte Carlo (MC) simulation for γ-ray observations. In order to use the muon detector efficiently, we propose to extend the surface array area to 72900 m2 by adding 120 scintillator detectors around the current array to increase the effective detection area. A new prototype scintillator detector is developed via optimizing the detector geometry and its optical surface, by selecting the reflective material and adopting dynode readout. {This detector can meet our physics requirements with a positional non-uniformity of the output charge within 10% (with reference to the center of the scintillator), time resolution FWHM of ~2.2 ns, and dynamic range from 1 to 500 minimum ionization particles}.

  13. First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout

    International Nuclear Information System (INIS)

    Alemi, M.; Campbell, M.; Gys, T.; Mikulec, B.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R.; Snoeys, W.; Wyllie, K.

    2000-01-01

    We report on the first operation of a hybrid photon detector prototype with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The prototype has been characterized using a low-intensity light-emitting diode operated in pulsed mode. Its performance in terms of single-photoelectron detection efficiency and imaging properties is presented. A model of photoelectron detection is proposed, and is shown to be in good agreement with the experimental data. It includes an estimate of the charge signal generated in the silicon detector, and the combined effects of the comparator threshold spread of the pixel readout chip, charge sharing at the pixel boundaries and back-scattering of the photoelectrons at the silicon detector surface

  14. First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout

    Energy Technology Data Exchange (ETDEWEB)

    Alemi, M.; Campbell, M.; Gys, T. E-mail: thierry.gys@cern.ch; Mikulec, B.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R.; Snoeys, W.; Wyllie, K

    2000-07-11

    We report on the first operation of a hybrid photon detector prototype with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The prototype has been characterized using a low-intensity light-emitting diode operated in pulsed mode. Its performance in terms of single-photoelectron detection efficiency and imaging properties is presented. A model of photoelectron detection is proposed, and is shown to be in good agreement with the experimental data. It includes an estimate of the charge signal generated in the silicon detector, and the combined effects of the comparator threshold spread of the pixel readout chip, charge sharing at the pixel boundaries and back-scattering of the photoelectrons at the silicon detector surface.

  15. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    Trimpl, M.

    2005-12-01

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  16. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Trimpl, M.

    2005-12-15

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  17. CERN-built prototype RICH detector back from the USA

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    In summer 1999, a ring-imaging Cherenkov detector (RICH) developed, constructed and tested at CERN was dismantled and sent to the Brookhaven National Laboratory (BNL) where it was used to extend the particle identification range of the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The RICH was a prototype of part of the ALICE-HMPID detector. Here we see members of the STAR-RICH team from ALICE-HMPID group with the detector, still in its shipping crates, back from BNL. L. to r.: A.Braem, E. Schyns, D. Fraissard, C. David, A. Di Mauro, J. van Beelen, G. Paic, Y. Lesenechal, F. Piuz, P. Martinengo, D. Di Bari, G. De Cataldo, Y. Andres, M. Davenport, V. Barozier, E. Nappi, T. D. Williams.

  18. Test-beam results of a SOI pixel detector prototype

    CERN Document Server

    Bugiel, Roma; Dannheim, Dominik; Fiergolski, Adrian; Hynds, Daniel; Idzik, Marek; Kapusta, P; Kucewicz, Wojciech; Munker, Ruth Magdalena; Nurnberg, Andreas Matthias

    2018-01-01

    This paper presents the test-beam results of a monolithic pixel-detector prototype fabricated in 200 nm Silicon-On-Insulator (SOI) CMOS technology. The SOI detector was tested at the CERN SPS H6 beam line. The detector is fabricated on a 500 μm thick high-resistivity float- zone n-type (FZ-n) wafer. The pixel size is 30 μm × 30 μm and its readout uses a source- follower configuration. The test-beam data are analysed in order to compute the spatial resolution and detector efficiency. The analysis chain includes pedestal and noise calculation, cluster reconstruction, as well as alignment and η-correction for non-linear charge sharing. The results show a spatial resolution of about 4.3 μm.

  19. Development of high quantum efficiency, flat panel, thick detectors for megavoltage x-ray imaging: An experimental study of a single-pixel prototype

    International Nuclear Information System (INIS)

    Mei, X.; Pang, G.

    2005-01-01

    Our overall goal is to develop a new generation of electronic portal imaging devices (EPIDs) with a quantum efficiency (QE) more than an order of magnitude higher and a spatial resolution equivalent to that of EPIDs currently used for portal imaging. A novel design of such a high QE flat-panel based EPID was introduced recently and its feasibility was investigated theoretically [see Pang and Rowlands, Med. Phys. 31, 3004 (2004)]. In this work, we constructed a prototype single-pixel detector based on the novel design. Some fundamental imaging properties including the QE, spatial resolution, and sensitivity of the prototype detector were measured with a 6 MV beam. It has been shown that the experimental results agree well with theoretical predictions and further development based on the novel design including the construction of a prototype area detector is warranted

  20. Compton suppression tests on Ge and BGO prototype detectors for GAMMASPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, A M [Australian National Univ., Canberra, ACT (Australia); Khoo, T L; Bleich, M E; Carpenter, M P; Ahmad, I; Janssens, R V.F.; Moore, E F [Argonne National Lab., IL (United States); Bearden, I G [Purdue Univ., Lafayette, IN (United States); Beene, J R; Lee, I Y [Oak Ridge National Lab., TN (United States)

    1992-08-01

    In this paper, we report on measurements of the Compton suppression and overall P/T ratio of two Ge detectors in a BGO shield of the honeycomb pattern. These were the first prototype CSG detector assemblies for GAMMASPHERE. A more detailed description of these results will be published later. (author). 4 refs., 3 figs.

  1. A low-energy antiproton detector prototype for AFIS

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Lingxin; Greenwald, Daniel; Hahn, Alexander; Hauptmann, Philipp; Konorov, Igor; Losekamm, Martin; Paul, Stephan; Poeschl, Thomas; Renker, Dieter [Technische Universitaet Muenchen (Germany)

    2014-07-01

    Antiprotons are produced in interactions of primary cosmic rays with earth's exosphere, where a fraction of them will be confined in the geomagnetic field in the inner van Allen Belt. The antiproton-to-proton flux ratio predicted by theory is in good agreement with recent results from the South Atlantic Anomaly (SAA) published by the PAMELA collaboration. We have designed the AFIS (Antiproton Flux in Space) project in order to extend the measurable range of antiprotons towards the low-energy region. In scope of this project a small antiproton detector consisting of scintillating fibers and silicon photomultipliers is being developed as payload for a CubeSat traversing the SAA in Low Earth Orbit. For the proof of concept we have built a prototype called ''CubeZero'' which completed its first test using pion and proton beams at PSI, Switzerland. Our primary goal was to investigate on the performance of tracking and Bragg peak identification in hardware and software. Analysis of detector performance based on data taken during this beam test is presented in this talk.

  2. Mobile robot prototype detector of gamma radiation; Prototipo de robot movil detector de radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez C, R.M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Duran V, M. D.; Jardon M, C. I., E-mail: raulmario.vazquez@inin.gob.mx [Tecnologico de Estudios Superiores de Villa Guerrero, Carretera Federal Toluca-Ixtapan de la Sal Km. 64.5, La Finca Villa Guerrero, Estado de Mexico (Mexico)

    2014-10-15

    In this paper the technological development of a mobile robot prototype detector of gamma radiation is shown. This prototype has been developed for the purpose of algorithms implementation for the applications of terrestrial radiation monitoring of exposed sources, search for missing radioactive sources, identification and delineation of radioactive contamination areas and distribution maps generating of radioactive exposure. Mobile robot detector of radiation is an experimental technology development platform to operate in laboratory environment or flat floor facilities. The prototype integrates a driving section of differential configuration robot on wheels, a support mechanism and rotation of shielded detector, actuator controller cards, acquisition and processing of sensor data, detection algorithms programming and control actuators, data recording (Data Logger) and data transmission in wireless way. The robot in this first phase is remotely operated in wireless way with a range of approximately 150 m line of sight and can extend that range to 300 m or more with the use of signal repeaters. The gamma radiation detection is performed using a Geiger detector shielded. Scan detection is performed at various time sampling periods and diverse positions of discrete or continuous angular orientation on the horizon. The captured data are geographical coordinates of robot GPS (latitude and longitude), orientation angle of shield, counting by sampling time, date, hours, minutes and seconds. The data is saved in a file in the Micro Sd memory on the robot. They are also sent in wireless way by an X Bee card to a remote station that receives for their online monitoring on a laptop through an acquisition program by serial port on Mat Lab. Additionally a voice synthesizing card with a horn, both in the robot, periodically pronounced in Spanish, data length, latitude, orientation angle of shield and detected accounts. (Author)

  3. Microcalcification detectability using a bench-top prototype photon-counting breast CT based on a Si strip detector.

    Science.gov (United States)

    Cho, Hyo-Min; Ding, Huanjun; Barber, William C; Iwanczyk, Jan S; Molloi, Sabee

    2015-07-01

    To investigate the feasibility of detecting breast microcalcification (μCa) with a dedicated breast computed tomography (CT) system based on energy-resolved photon-counting silicon (Si) strip detectors. The proposed photon-counting breast CT system and a bench-top prototype photon-counting breast CT system were simulated using a simulation package written in matlab to determine the smallest detectable μCa. A 14 cm diameter cylindrical phantom made of breast tissue with 20% glandularity was used to simulate an average-sized breast. Five different size groups of calcium carbonate grains, from 100 to 180 μm in diameter, were simulated inside of the cylindrical phantom. The images were acquired with a mean glandular dose (MGD) in the range of 0.7-8 mGy. A total of 400 images was used to perform a reader study. Another simulation study was performed using a 1.6 cm diameter cylindrical phantom to validate the experimental results from a bench-top prototype breast CT system. In the experimental study, a bench-top prototype CT system was constructed using a tungsten anode x-ray source and a single line 256-pixels Si strip photon-counting detector with a pixel pitch of 100 μm. Calcium carbonate grains, with diameter in the range of 105-215 μm, were embedded in a cylindrical plastic resin phantom to simulate μCas. The physical phantoms were imaged at 65 kVp with an entrance exposure in the range of 0.6-8 mGy. A total of 500 images was used to perform another reader study. The images were displayed in random order to three blinded observers, who were asked to give a 4-point confidence rating on each image regarding the presence of μCa. The μCa detectability for each image was evaluated by using the average area under the receiver operating characteristic curve (AUC) across the readers. The simulation results using a 14 cm diameter breast phantom showed that the proposed photon-counting breast CT system can achieve high detection accuracy with an average AUC greater

  4. Proto-2, an ALICE detector prototype, went to the United States (during transport)

    CERN Multimedia

    2002-01-01

    Proto-2, an ALICE detector prototype, overcame its prototype status to become a real part of the STAR experiment at the US Brookhaven National Laboratory.After more than two years across the ocean, it has just arrived back at CERN

  5. Beam Test Results for Single- and Double-Sided Silicon Detector Prototypes of the CMS Central Detector

    CERN Document Server

    Adriani, O

    1997-01-01

    We report the results of two beam tests performed in July and September 1995 at CERN using silicon microstrip detectors of various types: single sided, double sided with small angle stereo strips, double sided with orthogonal strips, double sided with pads. For the read-out electronics use was made of Preshape32, Premux128 and VA1 chips. The signal to noise ratio and the resolution of the detectors was studied for different incident angles of the incoming particles and for different values of the detector bias voltage. The goal of these tests was to check and improve the performances of the prototypes for the CMS Central Detector.

  6. BJT detector with FPGA-based read-out for alpha particle monitoring

    International Nuclear Information System (INIS)

    Tyzhnevyi, V; Dalla Betta, G-F; Rovati, L; Verzellesi, G; Zorzi, N

    2011-01-01

    In this work we introduce a new prototype of readout electronics (ALPHADET), which was designed for an α-particle detection system based on a bipolar junction transistor (BJT) detector. The system uses an FPGA, which provides many advantages at the stage of prototyping and testing the detector. The main design and electrical features of the board are discussed in this paper, along with selected results from the characterization of ALPHADET coupled to BJT detectors.

  7. BJT detector with FPGA-based read-out for alpha particle monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Tyzhnevyi, V; Dalla Betta, G-F [Universita di Trento, via Sommarive, 14, 38123 Trento (Italy); Rovati, L [Universita di Modena e Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Verzellesi, G [Universita di Modena e Reggio Emilia, via Amendola 2, Pad. Morselli, 42100 Reggio Emilia (Italy); Zorzi, N, E-mail: tyzhnevyi@disi.unitn.it [Fondazione Bruno Kessler, via Sommarive, 18, 38123 Trento (Italy)

    2011-01-15

    In this work we introduce a new prototype of readout electronics (ALPHADET), which was designed for an {alpha}-particle detection system based on a bipolar junction transistor (BJT) detector. The system uses an FPGA, which provides many advantages at the stage of prototyping and testing the detector. The main design and electrical features of the board are discussed in this paper, along with selected results from the characterization of ALPHADET coupled to BJT detectors.

  8. Digital and Analog Electronics for an autonomous, deep-sea, Gamma Ray Burst Neutrino prototype detector

    Directory of Open Access Journals (Sweden)

    Manolopoulos K.

    2016-01-01

    Full Text Available GRBNeT is a Gamma Ray Burst Neutrino Telescope made of autonomously operated arrays of deep-sea light detectors, anchored to the sea-bed without any cabled connection to the shore. This paper presents the digital and analog electronics that we have designed and developed for the GRBNeT prototype. We describe the requirements for these electronics and present their design and functionality. We present low-power analog electronics for the PMTs utilized in the GRBNeT prototype and the FPGA based digital system for data selection and storage. We conclude with preliminary performance measurements of the electronics systems for the GRBNeT prototype.

  9. WIMP search and a Cherenkov detector prototype for ILC polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Christoph

    2011-10-15

    The planned International Linear Collider (ILC) will be an essential experiment to precisely determine the properties and structure of physics at the TeV scale. An important feature of the ILC is the possibility to use polarized electrons and positrons. In part 1 of this thesis, a model independent search for Weakly Interacting Massive Particles (WIMPs) at ILC is presented. The signal channel under study is direct WIMP pair production with associated Initial State Radiation (ISR), e{sup +}e{sup -} {yields} {chi}{chi}{gamma}, where the WIMPs leave the detector without any further interaction, and only the emitted photon is detected. From the energy spectrum of the detected photons the coupling structure, cross sections, masses and the quantum number of the dominant partial wave in the production process can be inferred. The analysis includes the dominant SM, as well as machine-induced backgrounds, and is performed using a full simulation of the ILD detector concept. For an integrated luminosity of L=500 fb{sup -1}, the signal cross sections can be measured to a precision of 3%, dominated by systematic uncertainties on the polarization measurement of the initial electrons and positrons. Masses can be measured to a precision of up to 2% by a comparison of the data photon spectrum to parametrized template spectra. In part 2 of this thesis, a Cherenkov detector prototype for Compton polarimetry at ILC is presented. For the polarization measurement a systematic uncertainty of {delta} P/P = 0.25% or better is envisioned. To achieve this goal, the Cherenkov detector has to be precisely aligned with the fan of Compton scattered electrons and its signal response needs to be highly linear. For the detector prototype data driven alignment strategies have been developed by comparing data recorded at the Elsa accelerator in Bonn, Germany, with detailed Geant4 simulations. With the use of multi-anode photomultipliers, data driven alignment strategies promise to provide the

  10. WIMP search and a Cherenkov detector prototype for ILC polarimetry

    International Nuclear Information System (INIS)

    Bartels, Christoph

    2011-10-01

    The planned International Linear Collider (ILC) will be an essential experiment to precisely determine the properties and structure of physics at the TeV scale. An important feature of the ILC is the possibility to use polarized electrons and positrons. In part 1 of this thesis, a model independent search for Weakly Interacting Massive Particles (WIMPs) at ILC is presented. The signal channel under study is direct WIMP pair production with associated Initial State Radiation (ISR), e + e - → χχγ, where the WIMPs leave the detector without any further interaction, and only the emitted photon is detected. From the energy spectrum of the detected photons the coupling structure, cross sections, masses and the quantum number of the dominant partial wave in the production process can be inferred. The analysis includes the dominant SM, as well as machine-induced backgrounds, and is performed using a full simulation of the ILD detector concept. For an integrated luminosity of L=500 fb -1 , the signal cross sections can be measured to a precision of 3%, dominated by systematic uncertainties on the polarization measurement of the initial electrons and positrons. Masses can be measured to a precision of up to 2% by a comparison of the data photon spectrum to parametrized template spectra. In part 2 of this thesis, a Cherenkov detector prototype for Compton polarimetry at ILC is presented. For the polarization measurement a systematic uncertainty of δ P/P = 0.25% or better is envisioned. To achieve this goal, the Cherenkov detector has to be precisely aligned with the fan of Compton scattered electrons and its signal response needs to be highly linear. For the detector prototype data driven alignment strategies have been developed by comparing data recorded at the Elsa accelerator in Bonn, Germany, with detailed Geant4 simulations. With the use of multi-anode photomultipliers, data driven alignment strategies promise to provide the required precision. At ILC, these

  11. Design and performance of a modularized NaI(Tl) detector (the crystal ball prototype)

    International Nuclear Information System (INIS)

    Chan, Y.; Partridge, R.A.; Peck, C.W.

    1977-01-01

    A prototype NaI(Tl) detector (the Cluster of 54) of spherical geometry subtending a solid angle of 7.5 percent of 4π at its center, has recently been assembled and tested. This detector consisted of 54 close-packed but optically isolated NaI(Tl) modules and the associated electronic circuitry. The Cluster of 54 is the predecessor of an almost complete spherical detector, the Crystal Ball, which will cover 94 percent of 4π. The latter detector is now under construction and is especially designed for the study of γ-rays produced in electron-positron collisions at colliding beam facilities. The mechanical, optical, and electronic assembly of the prototype system is outlined. Cluster of 54 test data will be presented

  12. Prototype of high resolution PET using resistive electrode position sensitive CdTe detectors

    International Nuclear Information System (INIS)

    Kikuchi, Yohei; Ishii, Keizo; Matsuyama, Shigeo; Yamazaki, Hiromichi

    2008-01-01

    Downsizing detector elements makes it possible that spatial resolutions of positron emission tomography (PET) cameras are improved very much. From this point of view, semiconductor detectors are preferable. To obtain high resolution, the pixel type or the multi strip type of semiconductor detectors can be used. However, in this case, there is a low packing ratio problem, because a dead area between detector arrays cannot be neglected. Here, we propose the use of position sensitive semiconductor detectors with resistive electrode. The CdTe detector is promising as a detector for PET camera because of its high sensitivity. In this paper, we report development of prototype of high resolution PET using resistive electrode position sensitive CdTe detectors. We made 1-dimensional position sensitive CdTe detectors experimentally by changing the electrode thickness. We obtained 750 A as an appropriate thickness of position sensitive detectors, and evaluated the performance of the detector using a collimated 241 Am source. A good position resolution of 1.2 mm full width half maximum (FWHM) was obtained. On the basis of the fundamental development of resistive electrode position sensitive detectors, we constructed a prototype of high resolution PET which was a dual head type and was consisted of thirty-two 1-dimensional position sensitive detectors. In conclusion, we obtained high resolutions which are 0.75 mm (FWHM) in transaxial, and 1.5 mm (FWHM) in axial. (author)

  13. Gas filled prototype of a CdZnTe pixel detector

    International Nuclear Information System (INIS)

    Ramsey, B.; Sharma, D.; Sipila, H.; Gostilo, V.; Loupilov, A.

    2001-01-01

    CdZnTe pixel structures are currently the most promising detectors for the focal planes of hard X-ray telescopes, for astronomical observation in the range 5-100 keV. In Sharma et al. (Proc. SPIE 3765 (1999) 822) and Ramsey et al. (Nucl. Instrum. Methods A 458 (2001) 55) we presented preliminary results on the development of prototype 4x4 CdZnTe imaging detectors operated under vacuum. These pixel detectors were installed inside vacuum chambers on three-stage Peltier coolers providing detector temperatures down to -40 deg. C. A miniature sputter ion pump inside each chamber maintained the necessary vacuum of 10 -5 Torr. At a temperature of -20 deg. C we achieved an FWHM energy resolution of between 2% and 3% at 60 keV and ∼15% at 5.9 keV; however, the dependency on temperature was weak and at +20 deg. C the respective resolutions were 3% and 20%. As the detectors could be operated at room temperature without loss of their good characteristics it was possible to exclude the sputter ion pump and fill the chamber with dry nitrogen instead. We have tested a nitrogen-filled CdZnTe (5x5x1 mm 3 ) prototype having 0.65x0.65 mm 2 readout pads on a 0.75 mm pitch. The interpixel resistance at an applied voltage of 10 V was higher than 50 GΩ and the pixel leakage currents at room temperature with a bias of 200 V between each pad and the common electrode did not exceed 0.8 nA. The pixel detector inside the microassembly, which also contained the input stages of the preamplifiers, was installed on a Peltier cooler to maintain the detector temperature at +20 deg. C. To define real leakage currents of the pixels in their switched-on state we have checked the voltage on the preamplifiers feedback resistors. The resulting currents were 10-50 pA at a detector bias of 500 V. Under test, the typical energy resolution per pixel at +20 deg. C was ∼3% at energy 59.6 keV and ∼20% at energy 5.9 keV, which are similar to the values obtained in the vacuum prototype at room temperature

  14. The ZEUS vertex detector: Design and prototype

    International Nuclear Information System (INIS)

    Alvisi, C.; Anzivino, G.; Arzarello, F.; Barbagli, G.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, G.; Bruni, P.; Camerini, U.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; Costa, M.; D'Auria, S.; Del Papa, C.; De Pasquale, S.; Fiori, F.; Forte, A.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Lisowski, B.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; O'Shea, V.; Palmonari, F.; Pelfer, P.; Pilastrini, R.; Qian, S.; Sartorelli, G.; Schioppa, M.; Susinno, G.; Timellini, R.; Zichichi, A.; Bologna Univ.; Cosenza Univ.; Florence Univ.; Istituto Nazionale di Fisica Nucleare, Bologna; Istituto Nazionale di Fisica Nucleare, Florence; Istituto Nazionale di Fisica Nucleare, Frascati; Consiglio Nazionale delle Ricerche, Florence

    1991-01-01

    A gas vertex detector, operated with dimethylether (DME) at atmospheric pressure, is presently being built for the ZEUS experiment at HERA. Its main design features, together with the performances of a prototype measured at various operating voltages, particle rates and geometrical conditions on a CERN Proton Synchrotron test beam, are presented. A spatial resolution down to 35 μm and an average wire efficiency of 96% have been achieved, for a 3 mm gas gap relative to each sense wire. (orig.)

  15. Beam test performance and simulation of prototypes for the ALICE silicon pixel detector

    International Nuclear Information System (INIS)

    Conrad, J.; Anelli, G.; Antinori, F.

    2007-01-01

    The silicon pixel detector (SPD) of the ALICE experiment in preparation at the Large Hadron Collider (LHC) at CERN is designed to provide the precise vertex reconstruction needed for measuring heavy flavor production in heavy ion collisions at very high energies and high multiplicity. The SPD forms the innermost part of the Inner Tracking System (ITS) which also includes silicon drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD have been tested at the CERN SPS using high energy proton/pion beams in 2002 and 2003. We report on the experimental determination of the spatial precision. We also report on the first combined beam test with prototypes of the other ITS silicon detector technologies at the CERN SPS in November 2004. The issue of SPD simulation is briefly discussed

  16. A SiPM-based scintillator prototype for the upgrade of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Johannes; Bretz, Thomas; Hebbeker, Thomas; Kemp, Julian; Meissner, Rebecca; Middendorf, Lukas; Niggemann, Tim; Peters, Christine [III. Physikalisches Institut A, RWTH Aachen University (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    Plastic scintillator-based detectors are simple and yet powerful instruments, commonly used in particle physics experiments. These detectors are also planned to be installed at the Pierre Auger Observatory as part of the upgrade called AugerPrime. Here, a single detector module will consist of several large-sized scintillator bars. Embedded wavelength shifting fibres read out the scintillation light and are coupled to a single photo-sensitive device. We investigate the application of silicon photomultipliers (SiPMs) in this scope, which benefits from high photon detection efficiency and stability. We show the performance of a SiPM-based prototype device installed in the 2 m{sup 2} detector ASCII - an early prototype of the scintillating detector planned for AugerPrime. We focus on the electronics, the optical coupling and the in situ calibration. As ASCII has been operating with SiPMs for several months now, we also highlight first high-energy events seen in coincidence with the Surface Detector of the Pierre Auger Observatory.

  17. Test-beam Results from a RICH Detector Prototype Using Aerogel Radiator and Pixel Hybrid Photon Detectors

    CERN Document Server

    Aglieri-Rinella, G; Van Lysebetten, A; Piedigrossi, D; Wyllie, K; Bellunato, T F; Calvi, M; Matteuzzi, C; Musy, M; Perego, D L; Somerville, L P; Newby, C; Easo, S; Wotton, S

    2006-01-01

    A test-beam study was performed at CERN with a Ring Imaging Cherenkov (RICH) prototype using three pixel Hybrid Photon Detectors. Results on the photon yield and Cherenkov angle resolution are presented here, for the Aerogel radiator and also for reference runs taken with Nitrogen radiator.

  18. Petalet prototype for the ATLAS silicon strip detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Sperlich, Dennis [Humboldt-Universitaet zu Berlin (Germany); Gregor, Ingrid-Maria; Bloch, Ingo; Keller, John Stakely; Lohwasser, Kristin; Poley, Louise; Zakharchuk, Nataliia; Diez Cornell, Sergio [DESY (Germany); Hauser, Marc Manuel; Mori, Riccardo; Kuehl, Susanne; Parzefall, Ulrich [Albert-Ludwigs Universitaet Freiburg (Germany)

    2015-07-01

    To achieve more precise measurements and to search new physics phenomena, the luminosity at the LHC is expected to be increased during a series of upgrades in the next years. The latest scheduled upgrade, called the High Luminosity LHC (HL-LHC) is proposed to provide instantaneous luminosity of 5 x 10{sup 34} cm{sup 2}s{sup -1}. The increased luminosity and the radiation damage will affect the current Inner Tracker. In order to cope with the higher radiation dose and occupancy, the ATLAS experiment plans to replace the current Inner Detector with a new all-silicon tracker consisting of ∝8 m{sup 2} pixel and ∝192 m{sup 2} strip detectors. In response to the needs, highly modular structures will be used for the strip system, called Staves for the barrel region and Petals for the end-caps region. A small-scaled prototype for the Petal, the Petalet, is built to study some specialties of this complex wedge-shaped structures. The Petalet consists of one large and two small sized sensors. This report focuses on the recent progress in the prototyping of the Petalet and their electrical performances.

  19. arXiv Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment

    CERN Document Server

    Abreu, Y.; Arnold, L.; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Castle, B.C.; Clark, K.; Coupé, B.; Cussans, D.; De Roeck, A.; D'Hondt, J.; Durand, D.; Fallot, M.; Ghys, L.; Giot, L.; Guillon, B.; Ihantola, S.; Janssen, X.; Kalcheva, S.; Kalousis, L.N.; Koonen, E.; Labare, M.; Lehaut, G.; Manzanillas, L.; Mermans, J.; Michiels, I.; Moortgat, C.; Newbold, D.; Park, J.; Pestel, V.; Petridis, K.; Piñera, I.; Pommery, G.; Popescu, L.; Pronost, G.; Rademacker, J.; Ryckbosch, D.; Ryder, N.; Saunders, D.; Schune, M.-H.; Simard, L.; Vacheret, A.; Van Dyck, S.; Van Mulders, P.; van Remortel, N.; Vercaemer, S.; Verstraeten, M.; Weber, A.; Yermia, F.

    2018-05-03

    The SoLid collaboration has developed a new detector technology to detect electron anti-neutrinos at close proximity to the Belgian BR2 reactor at surface level. A 288 kg prototype detector was deployed in 2015 and collected data during the operational period of the reactor and during reactor shut-down. Dedicated calibration campaigns were also performed with gamma and neutron sources. This paper describes the construction of the prototype detector with a high control on its proton content and the stability of its operation over a period of several months after deployment at the BR2 reactor site. All detector cells provide sufficient light yields to achieve a target energy resolution of better than 20%/√E(MeV). The capability of the detector to track muons is exploited to equalize the light response of a large number of channels to a precision of 3% and to demonstrate the stability of the energy scale over time. Particle identification based on pulse-shape discrimination is demonstrated with calibration so...

  20. The Belle II DEPFET pixel vertex detector. Development of a full-scale module prototype

    International Nuclear Information System (INIS)

    Lemarenko, Mikhail

    2013-11-01

    The Belle II experiment, which will start after 2015 at the SuperKEKB accelerator in Japan, will focus on the precision measurement of the CP-violation mechanism and on the search for physics beyond the Standard Model. A new detection system with an excellent spatial resolution and capable of coping with considerably increased background is required. To address this challenge, a pixel detector based on DEPFET technology has been proposed. A new all silicon integrated circuit, called Data Handling Processor (DHP), is implemented in 65 nm CMOS technology. It is designed to steer the detector and preprocess the generated data. The scope of this thesis covers DHP tests and optimization as well the development of its test environment, which is the first Full-Scale Module Prototype of the DEPFET Pixel Vertex detector.

  1. Proposal for SPS beam time for the baby MIND and TASD neutrino detector prototypes

    CERN Document Server

    Asfandiyarov, R.; Blondel, A.; Bogomilov, M.; Bross, A.; Cadoux, F.; Cervera, A.; Izmaylov, A.; Karadzhov, Y.; Karpikov, I.; Khabibulin, M.; Khotyantsev, A.; Kopylov, A.; Kudenko, Y.; Matev, R.; Mineev, O.; Musienko, Y.; Nessi, M.; Noah, E.; Rubbia, A.; Shaykiev, A.; Soler, P.; Tsenov, R.; Vankova-Kirilova, G.; Yershov, N.

    2015-01-01

    The design, construction and testing of neutrino detector prototypes at CERN are ongoing activities. This document reports on the design of solid state baby MIND and TASD detector prototypes and outlines requirements for a test beam at CERN to test these, tentatively planned on the H8 beamline in the North Area, which is equipped with a large aperture magnet. It is hoped that this will allow for the current proposal to be considered in light of the recently approved projects related to neutrino activities with the SPS in the North Area in the medium term 2015-2020.

  2. Prototypes of Self-Powered Radiation Detectors Employing Intrinsic High-Energy Current (HEC) (POSTPRINT)

    Science.gov (United States)

    2016-01-01

    neutron sensi- tivities of a Pt self - powered detector ,” IEEE Trans. Nucl. Sci. 25, 292–295 (1978). 6T. A. Dellin, R. E. Huddleston, and C. J...Gamma-sensitive self - powered detectors and their use for in-core flux -mapping,” IEEE Trans. Nucl. Sci. 28, 752–757 (1981). 9E. A. Burke and J. Wall...AFCEC-CX-TY-TP-2016-0006 PROTOTYPES OF SELF - POWERED RADIATION DETECTORS EMPLOYING INTRINSIC HIGH-ENERGY CURRENT (HEC) (POSTPRINT) Piotr

  3. EUSO-TA prototype telescope

    Energy Technology Data Exchange (ETDEWEB)

    Bisconti, Francesca, E-mail: francesca.bisconti@kit.edu

    2016-07-11

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  4. EUSO-TA prototype telescope

    Science.gov (United States)

    Bisconti, Francesca; JEM-EUSO Collaboration

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  5. Design and test of a prototype silicon detector module for ATLAS Semiconductor Tracker endcaps

    International Nuclear Information System (INIS)

    Clark, A.G.; Donega, M.; D'Onofrio, M.

    2005-01-01

    The ATLAS Semiconductor Tracker (SCT) will be a central part of the tracking system of the ATLAS experiment. The SCT consists of four concentric barrels of silicon detectors as well as two silicon endcap detectors formed by nine disks each. The layout of the forward silicon detector module presented in this paper is based on the approved layout of the silicon detectors of the SCT, their geometry and arrangement in disks, but uses otherwise components identical to the barrel modules of the SCT. The module layout is optimized for excellent thermal management and electrical performance, while keeping the assembly simple and adequate for a large scale module production. This paper summarizes the design and layout of the module and present results of a limited prototype production, which has been extensively tested in the laboratory and testbeam. The module design was not finally adopted for series production because a dedicated forward hybrid layout was pursued

  6. Gamma-ray tracking: Characterisation of the AGATA symmetric prototype detectors

    International Nuclear Information System (INIS)

    Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Dimmock, M.R.; Nelson, L.; Nolan, P.J.; Rigby, S.; Lazarus, I.; Simpson, J.; Medina, P.; Santos, C.; Parisel, C.

    2007-01-01

    Each major technical advance in gamma-ray detection devices has resulted in significant new insights into the structure of atomic nuclei. The next major step in gamma-ray spectroscopy involves achieving the goal of a 4pi ball of Germanium detectors by using the technique of gamma-ray energy tracking in electrically segmented Germanium crystals. The resulting spectrometer will have an unparalleled level of detection power for nuclear electromagnetic radiation. Collaborations have been established in Europe (AGATA) [J. Simpson, Acta Phys. Pol. B 36 (2005) 1383. ] and the USA (GRETA/GRETINA) to build gamma-ray tracking spectrometers. This paper discusses the performance of the AGATA (Advanced Gamma Tracking Array) symmetric prototype detectors that have been tested at University of Liverpool. The use of a fully digital data acquisition system has allowed detector charge pulse shapes from a selection of well defined photon interaction positions to be analysed, yielding important information on the position sensitivity of the detector

  7. Gamma-ray tracking: Characterisation of the AGATA symmetric prototype detectors

    Energy Technology Data Exchange (ETDEWEB)

    Boston, A.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: ajboston@liv.ac.uk; Boston, H.C. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Cresswell, J.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Dimmock, M.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Nelson, L. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Nolan, P.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Rigby, S. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Lazarus, I. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Medina, P. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Santos, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Parisel, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France)

    2007-08-15

    Each major technical advance in gamma-ray detection devices has resulted in significant new insights into the structure of atomic nuclei. The next major step in gamma-ray spectroscopy involves achieving the goal of a 4pi ball of Germanium detectors by using the technique of gamma-ray energy tracking in electrically segmented Germanium crystals. The resulting spectrometer will have an unparalleled level of detection power for nuclear electromagnetic radiation. Collaborations have been established in Europe (AGATA) [J. Simpson, Acta Phys. Pol. B 36 (2005) 1383. ] and the USA (GRETA/GRETINA) to build gamma-ray tracking spectrometers. This paper discusses the performance of the AGATA (Advanced Gamma Tracking Array) symmetric prototype detectors that have been tested at University of Liverpool. The use of a fully digital data acquisition system has allowed detector charge pulse shapes from a selection of well defined photon interaction positions to be analysed, yielding important information on the position sensitivity of the detector.

  8. Beam tests of prototype fiber detectors for the H1 forward proton spectrometer

    International Nuclear Information System (INIS)

    Baehr, J.; Hiller, K.; Hoffmann, B.; Luedecke, H.; Menchikov, A.; Nahnhauer, R.; Roloff, H.E.; Tonisch, F.; Voelkert, R.

    1994-07-01

    Different prototypes of fiber detectors with an internal trigger system were tested in a 5 GeV electron beam at DESY. A silicon microstrip telescope was used for an external reference measurement of the beam to study the spatial resolution of the fiber detectors. On average 75% of all crossing electron tracks could be reconstructed with a precision better than 150 μm. These successful methodical investigations led to the installation of similar detectors in the proton beamline 81 m downstream of the central H1-detector at HERA as part of a forward proton spectrometer in spring 1994. (orig.)

  9. Beam tests of prototype fiber detectors for the H1 forward proton spectrometer

    International Nuclear Information System (INIS)

    Baehr, J.; Hiller, K.; Hoffmann, B.; Luedecke, H.; Menchikov, A.; Nahnhauer, R.; Roloff, H.E.; Tonisch, F.; Voelkert, R.

    1995-01-01

    Different prototypes of fiber detectors with an internal trigger system were tested in a 5 GeV electron beam at DESY. A silicon microstrip telescope was used for an external reference measurement of the beam to study the spatial resolution of the fiber detectors. On average 75% of all crossing electron tracks could be reconstructed with a precision better than 150 μm. These successful methodical investigations led to the installation of similar detectors in the proton beamline 81 m downstream of the central H1-detector at HERA as part of a forward proton spectrometer in spring 1994. (orig.)

  10. Proto-2, an ALICE detector prototype, part of the STAR experiment at the Brookhaven National Laboratory

    CERN Multimedia

    2002-01-01

    Proto-2, an LAICE detector prototype, overcame its prototype status to become a real part of the SDTAR, epxeriment at the US Brookhaven National Laboratory. After more than two years across the ocean, it has just arrived back at CERN.

  11. A Prototype RICH Detector Using Multi-Anode Photo Multiplier Tubes and Hybrid Photo-Diodes

    CERN Document Server

    Albrecht, E; Bibby, J H; Brook, N H; Doucas, G; Duane, A; Easo, S; Eklund, L; French, M; Gibson, V; Gys, Thierry; Halley, A W; Harnew, N; John, M; Piedigrossi, D; Rademacker, J; Simmons, B; Smale, N J; Teixeira-Dias, P; Toudup, L W; Websdale, David M; Wilkinson, G R; Wotton, S A

    2001-01-01

    The performance of a prototype Ring Imaging Cherenkov Detector is studied using a charged particle beam. The detector performance, using CF4 and air as radiators, is described. Cherenkov angle precision and photoelectron yield using hybrid photo-diodes and multi-anode PMTs agree with simulations and are assessed in terms of the requirements of the LHCb experiment.

  12. Test beam performance of a tracking TRD [Transition Radiation Detector] prototype

    International Nuclear Information System (INIS)

    Shank, J.T.; Whitaker, J.S.; Polychronakos, V.A.; Radeka, V.; Stephani, D.; Beker, H.; Bock, R.K.; Botlo, M.; Fabjan, C.W.; Pfennig, J.; Price, M.J.; Willis, W.J.; Akesson, T.; Chernyatin, V.; Dolgoshein, B.; Nevsky, P.; Potekhin, M.; Romanjuk, A.; Sosnovtsev, V.; Gavrilenko, I.; Muravjev, S.; Shmeleva, A.

    1990-01-01

    A Tracking Transition Radiation Detector prototype has been constructed and tested. It consists of 240 straw tubes, 4 mm in diameter, imbedded in a polyethylene block acting as the radiator. Its performance as an electron identifier as well as a tracking device for minimum ionizing particles has been determined. 2 refs., 6 figs

  13. Performance of an LPD prototype detector at MHz frame rates under Synchrotron and FEL radiation

    Science.gov (United States)

    Koch, A.; Hart, M.; Nicholls, T.; Angelsen, C.; Coughlan, J.; French, M.; Hauf, S.; Kuster, M.; Sztuk-Dambietz, J.; Turcato, M.; Carini, G. A.; Chollet, M.; Herrmann, S. C.; Lemke, H. T.; Nelson, S.; Song, S.; Weaver, M.; Zhu, D.; Meents, A.; Fischer, P.

    2013-11-01

    A MHz frame rate X-ray area detector (LPD — Large Pixel Detector) is under development by the Rutherford Appleton Laboratory for the European XFEL. The detector will have 1 million pixels and allows analogue storage of 512 images taken at 4.5 MHz in the detector front end. The LPD detector has 500 μm thick silicon sensor tiles that are bump bonded to a readout ASIC. The ASIC's preamplifier provides relatively low noise at high speed which results in a high dynamic range of 105 photons over an energy range of 5-20 keV. Small scale prototypes of 32 × 256 pixels (LPD 2-Tile detector) and 256 × 256 pixels (LPD supermodule detector) are now available for X-ray tests. The performance of prototypes of the detector is reported for first tests under synchrotron radiation (PETRA III at DESY) and Free-Electron-Laser radiation (LCLS at SLAC). The initial performance of the detector in terms of signal range and noise, radiation hardness and spatial and temporal response are reported. The main result is that the 4.5 MHz sampling detection chain is reliably working, including the analogue on-chip memory concept. The detector is at least radiation hard up to 5 MGy at 12 keV. In addition the multiple gain concept has been demonstrated over a dynamic range to 104 at 12 keV with a readout noise equivalent to < 1 photon rms in its most sensitive mode.

  14. Development and analysis of silicon based detectors for low energy nuclear radiation

    International Nuclear Information System (INIS)

    Johansen, G.A.

    1990-11-01

    The design and assembly of a prototype silicon based detector especially for the detection of auroral X-rays is presented. The theoretical fundamentals are shown and the adoption of the detector for applications in future satellite experiments are described. 136 refs

  15. Prototype tests for a highly granular scintillator-based hadronic calorimeter

    OpenAIRE

    Liu, Yong; Collaboration, for the CALICE

    2017-01-01

    Within the CALICE collaboration, several concepts for the hadronic calorimeter of a future lepton collider detector are studied. After having demonstrated the capabilities of the measurement methods in "physics prototypes", the focus now lies on improving their implementation in "technological prototypes", that are scalable to the full linear collider detector. The Analogue Hadronic Calorimeter (AHCAL) concept is a sampling calorimeter of tungsten or steel absorber plates and plastic scintill...

  16. Prototype readout system for a multi Mpixels UV single-photon imaging detector capable of space flight operation

    Science.gov (United States)

    Seljak, A.; Cumming, H. S.; Varner, G.; Vallerga, J.; Raffanti, R.; Virta, V.

    2018-02-01

    Our collaboration works on the development of a large aperture, high resolution, UV single-photon imaging detector, funded through NASA's Strategic Astrophysics Technology (SAT) program. The detector uses a microchannel plate for charge multiplication, and orthogonal cross strip (XS) anodes for charge readout. Our target is to make an advancement in the technology readiness level (TRL), which enables real scale prototypes to be tested for future NASA missions. The baseline detector has an aperture of 50×50 mm and requires 160 low-noise charge-sensitive channels, in order to extrapolate the incoming photon position with a spatial resolution of about 20 μm FWHM. Technologies involving space flight require highly integrated electronic systems operating at very low power. We have designed two ASICs which enable the construction of such readout system. First, a charge sensitive amplifier (CSAv3) ASIC provides an equivalent noise charge (ENC) of around 600 e-, and a baseline gain of 10 mV/fC. The second, a Giga Sample per Second (GSPS) ASIC, called HalfGRAPH, is a 12-bit analog to digital converter. Its architecture is based on waveform sampling capacitor arrays and has about 8 μs of analog storage memory per channel. Both chips encapsulate 16 measurement channels. Using these chips, a small scale prototype readout system has been constructed on a FPGA Mezzanine Board (FMC), equipped with 32 measurement channels for system evaluation. We describe the construction of HalfGRAPH ASIC, detector's readout system concept and obtained results from the prototype system. As part of the space flight qualification, these chips were irradiated with a Cobalt gamma-ray source, to verify functional operation under ionizing radiation exposure.

  17. Performance of hybrid photon detector prototypes with 80% active area for the rich counters of LHCB

    International Nuclear Information System (INIS)

    Albrecht, E.; Alemi, M.; Barber, G.; Bibby, J.; Campbell, M.; Duane, A.; Gys, T.; Montenegro, J.; Piedigrossi, D.; Schomaker, R.; Snoeys, W.; Wotton, S.; Wyllie, K.

    2000-01-01

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based on an electrostatically focussed image intensifier tube geometry where the image is de-magnified by a factor of ∼5. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The performance of full-scale prototypes equipped with 61-pixel anodes and external analogue readout is presented. The average signal-to-noise ratio is ∼11 with a peaking time of 1.2 μs. The tube active-to-total surface ratio is 81.7%, which meets the LHCb requirements. The spatial precision is measured to be better than 90 μm. A cluster of three such tubes has been installed in the LHCb RICH 1 prototype where Cherenkov gas rings have been successfully detected. Progress towards the encapsulation of new pixel electronics into a tube is also reported. In particular, the status of the development of a binary readout chip with a peaking time of 25 ns and a low and uniform detection threshold is summarized

  18. Performance of hybrid photon detector prototypes with 80% active area for the rich counters of LHCB

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, E.; Alemi, M.; Barber, G.; Bibby, J.; Campbell, M.; Duane, A.; Gys, T. E-mail: thierry.gys@cern.ch; Montenegro, J.; Piedigrossi, D.; Schomaker, R.; Snoeys, W.; Wotton, S.; Wyllie, K

    2000-03-11

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based on an electrostatically focussed image intensifier tube geometry where the image is de-magnified by a factor of {approx}5. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The performance of full-scale prototypes equipped with 61-pixel anodes and external analogue readout is presented. The average signal-to-noise ratio is {approx}11 with a peaking time of 1.2 {mu}s. The tube active-to-total surface ratio is 81.7%, which meets the LHCb requirements. The spatial precision is measured to be better than 90 {mu}m. A cluster of three such tubes has been installed in the LHCb RICH 1 prototype where Cherenkov gas rings have been successfully detected. Progress towards the encapsulation of new pixel electronics into a tube is also reported. In particular, the status of the development of a binary readout chip with a peaking time of 25 ns and a low and uniform detection threshold is summarized.

  19. Development of a Geant4 application to characterise a prototype neutron detector based on three orthogonal 3He tubes inside an HDPE sphere.

    Science.gov (United States)

    Gracanin, V; Guatelli, S; Prokopovich, D; Rosenfeld, A B; Berry, A

    2017-01-01

    The Bonner Sphere Spectrometer (BSS) system is a well-established technique for neutron dosimetry that involves detection of thermal neutrons within a range of hydrogenous moderators. BSS detectors are often used to perform neutron field surveys in order to determine the ambient dose equivalent H*(10) and estimate health risk to personnel. There is a potential limitation of existing neutron survey techniques, since some detectors do not consider the direction of the neutron field, which can result in overly conservative estimates of dose in neutron fields. This paper shows the development of a Geant4 simulation application to characterise a prototype neutron detector based on three orthogonal 3 He tubes inside a single HDPE sphere built at the Australian Nuclear Science and Technology Organisation (ANSTO). The Geant4 simulation has been validated with respect to experimental measurements performed with an Am-Be source. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  20. Evaluation of FOXFET biased ac-coupled silicon strip detector prototypes for CDF SVX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M. (Fermi National Accelerator Lab., Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinki (Finland))

    1992-03-01

    Silicon microstrip detectors for high-precision charged particle position measurements have been used in nuclear and particle physics for years. The detectors have evolved from simple surface barrier strip detectors with metal strips to highly complicated double-sided AC-coupled junction detectors. The feature of AC-coupling the readout electrodes from the diode strips necessitates the manufacture of a separate biasing structure for the strips, which comprises a common bias line together with a means for preventing the signal from one strip from spreading to its neighbors through the bias line. The obvious solution to this is to bias the strips through individual high value resistors. These resistors can be integrated on the detector wafer by depositing a layer of resistive polycrystalline silicon and patterning it to form the individual resistors. To circumvent the extra processing step required for polysilicon resistor processing and the rather difficult tuning of the process to obtain uniform and high enough resistance values throughout the large detector area, alternative methods for strip biasing have been devised. These include the usage of electron accumulation layer resistance for N{sup +}{minus} strips or the usage of the phenomenon known as the punch-through effect for P{sup +}{minus} strips. In this paper we present measurement results about the operation and radiation resistance of detectors with a punch-through effect based biasing structure known as a Field OXide Field-Effect Transistor (FOXFET), and present a model describing the FOXFET behavior. The studied detectors were prototypes for detectors to be used in the CDF silicon vertex detector upgrade.

  1. Evaluation of FOXFET biased ac-coupled silicon strip detector prototypes for CDF SVX upgrade

    International Nuclear Information System (INIS)

    Laakso, M.

    1992-03-01

    Silicon microstrip detectors for high-precision charged particle position measurements have been used in nuclear and particle physics for years. The detectors have evolved from simple surface barrier strip detectors with metal strips to highly complicated double-sided AC-coupled junction detectors. The feature of AC-coupling the readout electrodes from the diode strips necessitates the manufacture of a separate biasing structure for the strips, which comprises a common bias line together with a means for preventing the signal from one strip from spreading to its neighbors through the bias line. The obvious solution to this is to bias the strips through individual high value resistors. These resistors can be integrated on the detector wafer by depositing a layer of resistive polycrystalline silicon and patterning it to form the individual resistors. To circumvent the extra processing step required for polysilicon resistor processing and the rather difficult tuning of the process to obtain uniform and high enough resistance values throughout the large detector area, alternative methods for strip biasing have been devised. These include the usage of electron accumulation layer resistance for N + - strips or the usage of the phenomenon known as the punch-through effect for P + - strips. In this paper we present measurement results about the operation and radiation resistance of detectors with a punch-through effect based biasing structure known as a Field OXide Field-Effect Transistor (FOXFET), and present a model describing the FOXFET behavior. The studied detectors were prototypes for detectors to be used in the CDF silicon vertex detector upgrade

  2. Detector, collimator and real-time reconstructor for a new scanning-beam digital x-ray (SBDX) prototype.

    Science.gov (United States)

    Speidel, Michael A; Tomkowiak, Michael T; Raval, Amish N; Dunkerley, David A P; Slagowski, Jordan M; Kahn, Paul; Ku, Jamie; Funk, Tobias

    Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system for low dose cardiac imaging. The use of a narrow scanned x-ray beam in SBDX reduces detected x-ray scatter and improves dose efficiency, however the tight beam collimation also limits the maximum achievable x-ray fluence. To increase the fluence available for imaging, we have constructed a new SBDX prototype with a wider x-ray beam, larger-area detector, and new real-time image reconstructor. Imaging is performed with a scanning source that generates 40,328 narrow overlapping projections from 71 × 71 focal spot positions for every 1/15 s scan period. A high speed 2-mm thick CdTe photon counting detector was constructed with 320×160 elements and 10.6 cm × 5.3 cm area (full readout every 1.28 μs), providing an 86% increase in area over the previous SBDX prototype. A matching multihole collimator was fabricated from layers of tungsten, brass, and lead, and a multi-GPU reconstructor was assembled to reconstruct the stream of captured detector images into full field-of-view images in real time. Thirty-two tomosynthetic planes spaced by 5 mm plus a multiplane composite image are produced for each scan frame. Noise equivalent quanta on the new SBDX prototype measured 63%-71% higher than the previous prototype. X-ray scatter fraction was 3.9-7.8% when imaging 23.3-32.6 cm acrylic phantoms, versus 2.3-4.2% with the previous prototype. Coronary angiographic imaging at 15 frame/s was successfully performed on the new SBDX prototype, with live display of either a multiplane composite or single plane image.

  3. Measurement of integrated flux of cosmic ray muons at sea level using the INO-ICAL prototype detector

    International Nuclear Information System (INIS)

    Pal, S.; Acharya, B.S.; Majumder, G.; Mondal, N.K.; Samuel, D.; Satyanarayana, B.

    2012-01-01

    The India-based Neutrino Observatory (INO) collaboration is planning to set-up a magnetized Iron-CALorimeter (ICAL) to study atmospheric neutrino oscillations with precise measurements of oscillations parameters. The ICAL uses 50 kton iron as target mass and about 28800 Resistive Plate Chambers (RPC) of 2 m × 2 m in area as active detector elements. As part of its R and D program, a prototype detector stack comprising 12 layers of RPCs of 1 m × 1 m in area has been set-up at Tata Institute of Fundamental Research (TIFR) to study the detector parameters using cosmic ray muons. We present here a study of muon flux measurement at sea level and lower latitude. (Site latitude: 18°54'N, longitude: 72°48'E.)

  4. Beam tests of an integrated prototype of the ATLAS Forward Proton detector

    CERN Document Server

    INSPIRE-00397348

    2016-09-19

    The ATLAS Forward Proton (AFP) detector is intended to measure protons scattered at small angles from the ATLAS interaction point. To this end, a combination of 3D Silicon pixel tracking modules and Quartz-Cherenkov time-of-flight (ToF) detectors is installed 210m away from the interaction point at both sides of ATLAS. Beam tests with an AFP prototype detector combining tracking and timing sub-detectors and a common readout have been performed at the CERN-SPS test-beam facility in November 2014 and September 2015 to complete the system integration and to study the detector performance. The successful tracking-timing integration was demonstrated. Good tracker hit efficiencies above 99.9% at a sensor tilt of 14{\\deg}, as foreseen for AFP, were observed. Spatial resolutions in the short pixel direction with 50 {\\mu}m pitch of 5.5 +/- 0.5 {\\mu}m per pixel plane and of 2.8 +/- 0.5 {\\mu}m for the full four-plane tracker at 14{\\deg} were found, largely surpassing the AFP requirement of 10 {\\mu}m. The timing detector...

  5. Neutron irradiation test of depleted CMOS pixel detector prototypes

    International Nuclear Information System (INIS)

    Mandić, I.; Cindro, V.; Gorišek, A.; Hiti, B.; Kramberger, G.; Mikuž, M.; Zavrtanik, M.; Hemperek, T.; Daas, M.; Hügging, F.; Krüger, H.; Pohl, D.-L.; Wermes, N.; Gonella, L.

    2017-01-01

    Charge collection properties of depleted CMOS pixel detector prototypes produced on p-type substrate of 2 kΩ cm initial resistivity (by LFoundry 150 nm process) were studied using Edge-TCT method before and after neutron irradiation. The test structures were produced for investigation of CMOS technology in tracking detectors for experiments at HL-LHC upgrade. Measurements were made with passive detector structures in which current pulses induced on charge collecting electrodes could be directly observed. Thickness of depleted layer was estimated and studied as function of neutron irradiation fluence. An increase of depletion thickness was observed after first two irradiation steps to 1 · 10 13 n/cm 2 and 5 · 10 13 n/cm 2 and attributed to initial acceptor removal. At higher fluences the depletion thickness at given voltage decreases with increasing fluence because of radiation induced defects contributing to the effective space charge concentration. The behaviour is consistent with that of high resistivity silicon used for standard particle detectors. The measured thickness of the depleted layer after irradiation with 1 · 10 15 n/cm 2 is more than 50 μm at 100 V bias. This is sufficient to guarantee satisfactory signal/noise performance on outer layers of pixel trackers in HL-LHC experiments.

  6. Design and construction of the prototype synchrotron radiation detector

    CERN Document Server

    Anderhub, H; Baetzner, D; Baumgartner, S; Biland, A; Camps, C; Capell, M; Commichau, V; Djambazov, L; Fanchiang, Y J; Flügge, G; Fritschi, M; Grimm, O; Hangarter, K; Hofer, H; Horisberger, Urs; Kan, R; Kaestli, W; Kenney, G P; Kim, G N; Kim, K S; Koutsenko, V F; Kraeber, M; Kuipers, J; Lebedev, A; Lee, M W; Lee, S C; Lewis, R; Lustermann, W; Pauss, Felicitas; Rauber, T; Ren, D; Ren, Z L; Röser, U; Son, D; Ting, Samuel C C; Tiwari, A N; Viertel, Gert M; Gunten, H V; Wicki, S W; Wang, T S; Yang, J; Zimmermann, B

    2002-01-01

    The Prototype Synchrotron Radiation Detector (PSRD) is a small-scale experiment designed to measure the rate of low-energy charged particles and photons in near the Earth's orbit. It is a precursor to the Synchrotron Radiation Detector (SRD), a proposed addition to the upgraded version of the Alpha Magnetic Spectrometer (AMS-02). The SRD will use the Earth's magnetic field to identify the charge sign of electrons and positrons with energies above 1 TeV by detecting the synchrotron radiation they emit in this field. The differential energy spectrum of these particles is astrophysically interesting and not well covered by the remaining components of AMS-02. Precise measurements of this spectrum offer the possibility to gain information on the acceleration mechanism and characteristics of all cosmic rays in our galactic neighbourhood. The SRD will discriminate against protons as they radiate only weakly. Both the number and energy of the synchrotron photons that the SRD needs to detect are small. The identificat...

  7. Development of a large area thermal neutron detector based on a scintillator

    International Nuclear Information System (INIS)

    Engels, Ralf

    2012-01-01

    In the present work, the development and construction of a detector prototype based on wavelength shifting fiber in combination with a scintillator has been investigated and optimized. This development aims at an alternative for large area neutron detectors based on "3He detectors, which was the main construction in the past. After the study of the components and assemblies, such as: the scintillator, the wavelength-shifting-fibers and available photomultiplier tubes, the construction of the first prototype module begun. The neutron converter was selected as a "6LiF/ZnS scintillator, which produces a big light yield per absorbed neutron. The prototype itself is square and has an edge length of 30 cm in combination with two orthogonal layers of crossed wavelength-shifting-fibers. The top fiber layer, which is closer to the "6LiF/ZnS top scintillator produces the x-coordinates and the lower layer produces the y-coordinates for each event. In the prototype, MSJ-fibers from the company Kuraray were used with 1 mm diameter and spacing in the top layer of 1.5 mm and 1 mm in the lower layer. Due to the orthogonal arrangement of the wires in the two layers, one may identify where the neutron was absorbed in the scintillator and produced the light yield. In order to reduce the light loss of the absorbed photons inside the fibers, a bending radius of greater than 20 mm was used and achieved by warming up the fibers to 80 C during the bending process. The increased temperature reduces the crack formation in the fibers which increases the light loss. At this time it is expected that a photomultiplier from Hamamatsu with 256 individual pixels for readout will be used. This H9500 flat panel photomultiplier has the advantage of readout of all fibers of the prototype in one photomultiplier housing. In combination with integrated readout electronics one can minimize the homogeneity/gain differences of the photocathode pixels, the different light loss in each fiber, and the gain

  8. Silicon Drift Detectors - A Novel Technology for Vertex Detectors

    Science.gov (United States)

    Lynn, D.

    1996-10-01

    Silicon Drift Detectors (SDD) are novel position sensing silicon detectors which operate in a manner analogous to gas drift detectors. Single SDD's were shown in the CERN NA45 experiment to permit excellent spatial resolution (pseudo-rapidity. Over the last three years we undertook a concentrated R+D effort to optimize the performance of the detector by minimizing the inactive area, the operating voltage and the data volume. We will present test results from several wafer prototypes. The charge produced by the passage of ionizing particles through the bulk of the detectors is collected on segmented anodes, with a pitch of 250 μm, on the far edges of the detector. The anodes are wire-bonded to a thick film multi-chip module which contains preamplifier/shaper chips and CMOS based switched capacitor arrays used as an analog memory pipeline. The ADC is located off-detector. The complete readout chain from the wafer to the DAQ will be presented. Finally we will show physics performance simulations based on the resolution achieved by the SVT prototypes.

  9. Observation of Muon Neutrino Charged Current Events in an Off-Axis Horn-Focused Neutrino Beam Using the NOvA Prototype Detector

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Enrique Arrieta [Michigan State Univ., East Lansing, MI (United States)

    2014-01-01

    The NOνA is a long base-line neutrino oscillation experiment. It will study the oscillations between muon and electron neutrinos through the Earth. NOνA consists of two detectors separated by 810 km. Each detector will measure the electron neutrino content of the neutrino (NuMI) beam. Differences between the measurements will reveal details about the oscillation channel. The NOνA collaboration built a prototype detector on the surface at Fermilab in order to develop calibration, simulation, and reconstruction tools, using real data. This 220 ton detector is 110 mrad off the NuMI beam axis. This off-axis location allows the observation of neutrino interactions with energies around 2 GeV, where neutrinos come predominantly from charged kaon decays. During the period between October 2011 and April 2012, the prototype detector collected neutrino data from 1.67 × 1020 protons on target delivered by the NuMI beam. This analysis selected a number of candidate charged current muon neutrino events from the prototype data, which is 30% lower than predicted by the NOνA Monte Carlo simulation. The analysis suggests that the discrepancy comes from an over estimation of the neutrino flux in the Monte Carlo simulation, and in particular, from neutrinos generated in charged kaon decays. The ratio of measured divided by the simulated flux of muon neutrinos coming from charged kaon decays is: 0.70+0.108 -0.094. The NOνA collaboration may use the findings of this analysis to introduce a more accurate prediction of the neutrino flux produced by the NuMI beam in future Monte Carlo simulations.

  10. New neutron detector based on micromegas technology for ADS projects

    International Nuclear Information System (INIS)

    Andriamonje, Samuel; Andriamonje, Gregory; Aune, Stephan; Ban, Gilles; Breaud, Stephane; Blandin, Christophe; Ferrer, Esther; Geslot, Benoit; Giganon, Arnaud; Giomataris, Ioannis; Jammes, Christian; Kadi, Yacine; Laborie, Philippe; Lecolley, Jean Francois; Pancin, Julien; Riallot, Marc; Rosa, Roberto; Sarchiapone, Lucia; Steckmeyer, Jean Claude; Tillier, Joel

    2006-01-01

    A new neutron detector based on Micromegas technology has been developed for the measurement of the simulated neutron spectrum in the ADS project. After the presentation of simulated neutron spectra obtained in the interaction of 140 MeV protons with the spallation target inside the TRIGA core, a full description of the new detector configuration is given. The advantage of this detector compared to conventional neutron flux detectors and the results obtained with the first prototype at the CELINA 14 MeV neutron source facility at CEA-Cadarache are presented. The future developments of operational Piccolo-Micromegas for fast neutron reactors are also described

  11. New neutron detector based on micromegas technology for ADS projects

    Energy Technology Data Exchange (ETDEWEB)

    Andriamonje, Samuel [CEA-Saclay, DSM/DAPNIA, F-91191 Gif-sur-Yvette (France)]. E-mail: sandriamonje@cea.fr; Andriamonje, Gregory [IXL-Universite Bordeaux 1-BAT. A31-351 cours de la Liberation-F-33405 Talence Cedex (France); Aune, Stephan [CEA-Saclay, DSM/DAPNIA, F-91191 Gif-sur-Yvette (France); Ban, Gilles [CNRS/IN2P3 LPC Caen, 6 Boulevard Marechal Juin, F-14050 Caen Cedex (France); Breaud, Stephane [CEA/DEN/Cadarache, 13108 Saint-Paul Lez Durance (France); Blandin, Christophe [CEA/DEN/Cadarache, 13108 Saint-Paul Lez Durance (France); Ferrer, Esther [CEA-Saclay, DSM/DAPNIA, F-91191 Gif-sur-Yvette (France); Geslot, Benoit [CEA/DEN/Cadarache, 13108 Saint-Paul Lez Durance (France); Giganon, Arnaud [CEA-Saclay, DSM/DAPNIA, F-91191 Gif-sur-Yvette (France); Giomataris, Ioannis [CEA-Saclay, DSM/DAPNIA, F-91191 Gif-sur-Yvette (France); Jammes, Christian [CEA/DEN/Cadarache, 13108 Saint-Paul Lez Durance (France); Kadi, Yacine [CERN CH 1211 Geneva (Switzerland); Laborie, Philippe [CNRS/IN2P3 LPC Caen, 6 Boulevard Marechal Juin, F-14050 Caen Cedex (France); Lecolley, Jean Francois [CNRS/IN2P3 LPC Caen, 6 Boulevard Marechal Juin, F-14050 Caen Cedex (France); Pancin, Julien [CEA-Saclay, DSM/DAPNIA, F-91191 Gif-sur-Yvette (France); Riallot, Marc [CEA-Saclay, DSM/DAPNIA, F-91191 Gif-sur-Yvette (France); Rosa, Roberto [ENEA-Casaccia, Via Anguillarese, 00060 Rome (Italy); Sarchiapone, Lucia [CERN CH 1211 Geneva (Switzerland); Steckmeyer, Jean Claude [CNRS/IN2P3 LPC Caen, 6 Boulevard Marechal Juin, F-14050 Caen Cedex (France); Tillier, Joel [CNRS/IN2P3 LPC Caen, 6 Boulevard Marechal Juin, F-14050 Caen Cedex (France)

    2006-06-23

    A new neutron detector based on Micromegas technology has been developed for the measurement of the simulated neutron spectrum in the ADS project. After the presentation of simulated neutron spectra obtained in the interaction of 140 MeV protons with the spallation target inside the TRIGA core, a full description of the new detector configuration is given. The advantage of this detector compared to conventional neutron flux detectors and the results obtained with the first prototype at the CELINA 14 MeV neutron source facility at CEA-Cadarache are presented. The future developments of operational Piccolo-Micromegas for fast neutron reactors are also described.

  12. Design and analysis of a 1-ton prototype of the Jinping Neutrino Experiment

    International Nuclear Information System (INIS)

    Wang, Zongyi; Wang, Yuanqing; Wang, Zhe; Chen, Shaomin; Du, Xinxi; Zhang, Tianxiong; Guo, Ziyi; Yuan, Huanxin

    2017-01-01

    The Jinping Neutrino Experiment will perform an in-depth research on solar neutrinos and geo-neutrinos. Two structural options (i.e., cylindrical and spherical schemes) are proposed for the Jinping detector based on other successful underground neutrino detectors. Several key factors in the design are also discussed in detail. A 1-ton prototype of the Jinping experiment is proposed based on physics requirements. Subsequently, the structural design, installation procedure, and mechanical analysis of the neutrino detector prototype are discussed. The results show that the maximum Mises stresses on the acrylic vessel, stainless steel truss, and the tank are all lower than the design values of the strengths. The stability requirement of the stainless steel truss in the detector prototype is satisfied. Consequently, the structural scheme for the 1-ton prototype is safe and reliable.

  13. Design and analysis of a 1-ton prototype of the Jinping Neutrino Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zongyi, E-mail: wangzongyi1990@outlook.com [School of Civil Engineering, Wuhan University, Wuhan 430072 (China); Wang, Yuanqing [Key Laboratory of Civil Engineering Safety and Durability of Education Ministry, Tsinghua University, Beijing 100084 (China); Wang, Zhe; Chen, Shaomin [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Du, Xinxi [School of Civil Engineering, Wuhan University, Wuhan 430072 (China); Zhang, Tianxiong [School of Civil Engineering, Tianjin University, Tianjin 300072 (China); Guo, Ziyi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Yuan, Huanxin [School of Civil Engineering, Wuhan University, Wuhan 430072 (China)

    2017-05-21

    The Jinping Neutrino Experiment will perform an in-depth research on solar neutrinos and geo-neutrinos. Two structural options (i.e., cylindrical and spherical schemes) are proposed for the Jinping detector based on other successful underground neutrino detectors. Several key factors in the design are also discussed in detail. A 1-ton prototype of the Jinping experiment is proposed based on physics requirements. Subsequently, the structural design, installation procedure, and mechanical analysis of the neutrino detector prototype are discussed. The results show that the maximum Mises stresses on the acrylic vessel, stainless steel truss, and the tank are all lower than the design values of the strengths. The stability requirement of the stainless steel truss in the detector prototype is satisfied. Consequently, the structural scheme for the 1-ton prototype is safe and reliable.

  14. A beam monitor based on MPGD detectors for hadron therapy

    Directory of Open Access Journals (Sweden)

    Altieri P. R.

    2018-01-01

    Full Text Available Remarkable scientific and technological progress during the last years has led to the construction of accelerator based facilities dedicated to hadron therapy. This kind of technology requires precise and continuous control of position, intensity and shape of the ions or protons used to irradiate cancers. Patient safety, accelerator operation and dose delivery should be optimized by a real time monitoring of beam intensity and profile during the treatment, by using non-destructive, high spatial resolution detectors. In the framework of AMIDERHA (AMIDERHA - Enhanced Radiotherapy with HAdron project funded by the Ministero dell’Istruzione, dell’Università e della Ricerca (Italian Ministry of Education and Research the authors are studying and developing an innovative beam monitor based on Micro Pattern Gaseous Detectors (MPDGs characterized by a high spatial resolution and rate capability. The Monte Carlo simulation of the beam monitor prototype was carried out to optimize the geometrical set up and to predict the behavior of the detector. A first prototype has been constructed and successfully tested using 55Fe, 90Sr and also an X-ray tube. Preliminary results on both simulations and tests will be presented.

  15. Development of prototype luminosity detector modules for future experiments on linear colliders

    CERN Document Server

    AUTHOR|(CDS)2081248; Idzik, Marek

    The main objective of this dissertation is to develop and validate the prototype module of the LumiCal luminosity detector. The dissertation presents the works executed from the first detector concept, through all subsequent R&D stages, ending with the test beam results obtained using the complete detector module. Firstly, the linear electron positron colliders and planned experiments are introduced, together with their role in our understanding of the basis of matter and sensing for the New Physics. The signal extraction from radiation sensors and further signal processing techniques are discussed in chapter 2. Besides the commonly accepted techniques of amplitude and time measurements, a novel readout implementation, utilizing digital signal processing and deconvolution principle, is proposed, and its properties are analyzed in details. The architecture, design, and measurements of the LumiCal readout chain components are presented in chapter 3. A dedicated test setups prepared for their parameterizatio...

  16. Development, simulation and test of transition radiation detector prototypes for the compressed baryonic matter experiment at the facility for antiproton and ion research

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Cyrano S.H.

    2014-07-01

    variation due to deformation of the entrance window. Both radiator and detector prototypes have been designed and built in our institute in Muenster with support of the detector laboratory at GSI. The performance of two identical MWPC prototypes has been investigated using a {sup 55}Fe-source emitting 5.9 keV X-ray photons in laboratory and with mixed electron, pion beams with momenta between 2 and 8 GeV/c at CERN PS. The position resolution was determined using an external position reference system of two identical fiber-hodoscopes with a measured internal position resolution of 5.4mm in x- and 5.7mm in y-direction at 8 GeV/c. Based on a straight line tracking algorithm the position resolution of the TRD prototypes was estimated to be momentum dependent between 0.7 and 1.9 mm in anode wire direction. Even at 8 GeV/c this position resolution is at least a factor of 2 above the design value. The rather large impact of the particle momentum on the position resolution can be explained by multiple scattering within the detector material in front of the TRD prototypes. Based on this material budget it was shown that the position resolution of the presented prototypes is compatible with an upper limit of 290 μm over the full momentum range within the evaluated systematic uncertainties due to beam scattering. The prototypes reach an energy resolution of 10-11% in radioactive source tests, using Ar/CO{sub 2} (82/18) in laboratory. All measurements have been performed with (SPADIC) read-out electronic, which was designed at the same time for this application. The latest TRD design (3.5 3.5 5 mm) has shown a total signal collection time of the order of 200 ns in simulations at 100 V/mm drift voltage using a Xe/CO{sub 2} (80/20) gas mixture. Particle identification based on the pulse shape, like performed in ALICE, was tested based on a simulation and seems not feasible using a second order shaper with a shaping time of 90 ns (SPADIC) on our current detector design. The radiator

  17. Development, simulation and test of transition radiation detector prototypes for the compressed baryonic matter experiment at the facility for antiproton and ion research

    International Nuclear Information System (INIS)

    Bergmann, Cyrano S.H.

    2014-01-01

    deformation of the entrance window. Both radiator and detector prototypes have been designed and built in our institute in Muenster with support of the detector laboratory at GSI. The performance of two identical MWPC prototypes has been investigated using a 55 Fe-source emitting 5.9 keV X-ray photons in laboratory and with mixed electron, pion beams with momenta between 2 and 8 GeV/c at CERN PS. The position resolution was determined using an external position reference system of two identical fiber-hodoscopes with a measured internal position resolution of 5.4mm in x- and 5.7mm in y-direction at 8 GeV/c. Based on a straight line tracking algorithm the position resolution of the TRD prototypes was estimated to be momentum dependent between 0.7 and 1.9 mm in anode wire direction. Even at 8 GeV/c this position resolution is at least a factor of 2 above the design value. The rather large impact of the particle momentum on the position resolution can be explained by multiple scattering within the detector material in front of the TRD prototypes. Based on this material budget it was shown that the position resolution of the presented prototypes is compatible with an upper limit of 290 μm over the full momentum range within the evaluated systematic uncertainties due to beam scattering. The prototypes reach an energy resolution of 10-11% in radioactive source tests, using Ar/CO 2 (82/18) in laboratory. All measurements have been performed with (SPADIC) read-out electronic, which was designed at the same time for this application. The latest TRD design (3.5 3.5 5 mm) has shown a total signal collection time of the order of 200 ns in simulations at 100 V/mm drift voltage using a Xe/CO 2 (80/20) gas mixture. Particle identification based on the pulse shape, like performed in ALICE, was tested based on a simulation and seems not feasible using a second order shaper with a shaping time of 90 ns (SPADIC) on our current detector design. The radiator prototype materials were chosen with

  18. Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment

    CERN Document Server

    Sokolov, Oleksiy

    2006-01-01

    The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5∼TeV per nucleon. Particle tracking around the interaction region at radii r<45 cm is done by the Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors. The outer two layers of the ITS use double-sided silicon strip detectors. This thesis focuses on testing of these detectors and performance studies of the detector module prototypes at the beam test. Silicon strip detector layers will require about 20 thousand HAL25 front-end readout chips and about 3.5 thousand hybrids each containing 6 HAL25 chips. During the assembly procedure, chips are bonded on a patterned TAB aluminium microcables which connect to all the chip input and output pads, and then the chips are assembled on the hybrids. Bonding failures at the chip or hybrid level may either render the component non-functional or deteriorate its the performance such that it can not be used for the module production. After each bond...

  19. Tests of prototype magnets and study on a MCP based proton detector for the neutron lifetime experiment PENeLOPE

    International Nuclear Information System (INIS)

    Materne, Stefan

    2013-01-01

    The precision experiment PENeLOPE will store ultra-cold neutrons in a magnetic trap and determine the neutron lifetime via the time-resolved counting of the decay-protons. The thesis reports on training and performance tests of prototypes of the superconducting coils. Additionally, a magnetic field mapper for PENeLOPE was characterized. In the second part of the thesis, microchannel plates (MCPs) were studied with alpha particles and protons as a possible candidate for the decay particle detector in PENeLOPE.

  20. The prototype detection unit of the KM3NeT detector

    Science.gov (United States)

    Adrián-Martínez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E. G.; Androulakis, G. C.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Avgitas, T.; Balasi, K.; Band, H.; Barbarino, G.; Barbarito, E.; Barbato, F.; Baret, B.; Baron, S.; Barrios, J.; Belias, A.; Berbee, E.; van den Berg, A. M.; Berkien, A.; Bertin, V.; Beurthey, S.; van Beveren, V.; Beverini, N.; Biagi, S.; Biagioni, A.; Bianucci, S.; Billault, M.; Birbas, A.; Boer Rookhuizen, H.; Bormuth, R.; Bouché, V.; Bouhadef, B.; Bourlis, G.; Boutonnet, C.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Caruso, F.; Cecchini, S.; Ceres, A.; Cereseto, R.; Champion, C.; Château, F.; Chiarusi, T.; Christopoulou, B.; Circella, M.; Classen, L.; Cocimano, R.; Coleiro, A.; Colonges, S.; Coniglione, R.; Cosquer, A.; Costa, M.; Coyle, P.; Creusot, A.; Cuttone, G.; D'Amato, C.; D'Amico, A.; De Bonis, G.; De Rosa, G.; Deniskina, N.; Destelle, J.-J.; Distefano, C.; Di Capua, F.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drakopoulou, E.; Drouhin, D.; Drury, L.; Durand, D.; Eberl, T.; Elsaesser, D.; Enzenhöfer, A.; Fermani, P.; Fusco, L. A.; Gajanana, D.; Gal, T.; Galatà, S.; Garufi, F.; Gebyehu, M.; Giordano, V.; Gizani, N.; Gracia Ruiz, R.; Graf, K.; Grasso, R.; Grella, G.; Grmek, A.; Habel, R.; van Haren, H.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernández-Rey, J. J.; Herold, B.; Hevinga, M. A.; van der Hoek, M.; Hofestädt, J.; Hogenbirk, J.; Hugon, C.; Hößl, J.; Imbesi, M.; James, C. W.; Jansweijer, P.; Jochum, J.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Kappos, E.; Katz, U.; Kavatsyuk, O.; Keller, P.; Kieft, G.; Koffeman, E.; Kok, H.; Kooijman, P.; Koopstra, J.; Korporaal, A.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Le Provost, H.; Leismüller, K. P.; Leisos, A.; Lenis, D.; Leonora, E.; Lindsey Clark, M.; Llorens Alvarez, C. D.; Löhner, H.; Lonardo, A.; Loucatos, S.; Louis, F.; Maccioni, E.; Mannheim, K.; Manolopoulos, K.; Margiotta, A.; Mariş, O.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Masullo, R.; Melis, K. W.; Michael, T.; Migliozzi, P.; Migneco, E.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Mos, S.; Moudden, Y.; Musico, P.; Musumeci, M.; Nicolaou, C.; Nicolau, C. A.; Orlando, A.; Orzelli, A.; Papaikonomou, A.; Papaleo, R.; Păvălaş, G. E.; Peek, H.; Pellegrino, C.; Pellegriti, M. G.; Perrina, C.; Piattelli, P.; Pikounis, K.; Popa, V.; Pradier, Th.; Priede, M.; Pühlhofer, G.; Pulvirenti, S.; Racca, C.; Raffaelli, F.; Randazzo, N.; Rapidis, P. A.; Razis, P.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rovelli, A.; Saldaña, M.; Samtleben, D. F. E.; Sanguineti, M.; Santangelo, A.; Sapienza, P.; Schmelling, J.; Schnabel, J.; Sciacca, V.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Sipala, V.; Spitaleri, A.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stolarczyk, T.; Stransky, D.; Taiuti, M.; Terreni, G.; Tézier, D.; Théraube, S.; Thompson, L. F.; Timmer, P.; Trasatti, L.; Trovato, A.; Tselengidou, M.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Vernin, P.; Vicini, P.; Viola, S.; Vivolo, D.; Werneke, P.; Wiggers, L.; Wilms, J.; de Wolf, E.; van Wooning, R. H. L.; Zonca, E.; Zornoza, J. D.; Zúñiga, J.; Zwart, A.

    2016-02-01

    A prototype detection unit of the KM3NeT deep-sea neutrino telescope has been installed at 3500m depth 80 km offshore the Italian coast. KM3NeT in its final configuration will contain several hundreds of detection units. Each detection unit is a mechanical structure anchored to the sea floor, held vertical by a submerged buoy and supporting optical modules for the detection of Cherenkov light emitted by charged secondary particles emerging from neutrino interactions. This prototype string implements three optical modules with 31 photomultiplier tubes each. These optical modules were developed by the KM3NeT Collaboration to enhance the detection capability of neutrino interactions. The prototype detection unit was operated since its deployment in May 2014 until its decommissioning in July 2015. Reconstruction of the particle trajectories from the data requires a nanosecond accuracy in the time calibration. A procedure for relative time calibration of the photomultiplier tubes contained in each optical module is described. This procedure is based on the measured coincidences produced in the sea by the ^{40}K background light and can easily be expanded to a detector with several thousands of optical modules. The time offsets between the different optical modules are obtained using LED nanobeacons mounted inside them. A set of data corresponding to 600 h of livetime was analysed. The results show good agreement with Monte Carlo simulations of the expected optical background and the signal from atmospheric muons. An almost background-free sample of muons was selected by filtering the time correlated signals on all the three optical modules. The zenith angle of the selected muons was reconstructed with a precision of about 3°.

  1. Characterization of the first true coaxial 18-fold segmented n-type prototype HPGe detector for the gerda project

    International Nuclear Information System (INIS)

    Abt, I.; Caldwell, A.; Gutknecht, D.; Kroeninger, K.; Lampert, M.; Liu, X.; Majorovits, B.; Quirion, D.; Stelzer, F.; Wendling, P.

    2007-01-01

    The first true coaxial 18-fold segmented n-type HPGe prototype detector produced by Canberra-France for the GERDA neutrinoless double beta-decay project was tested both at Canberra-France and at the Max-Planck-Institut fur Physik in Munich. The main characteristics of the detector are given and measurements concerning detector properties are described. A novel method to establish contacts between the crystal and a Kapton cable is presented

  2. A prototype station for ARIANNA: A detector for cosmic neutrinos

    International Nuclear Information System (INIS)

    Gerhardt, Lisa; Klein, Spencer; Stezelberger, Thorsten; Barwick, Steve; Dookayka, Kamlesh; Hanson, Jordan; Nichol, Ryan

    2010-01-01

    The Antarctic Ross Ice Shelf Antenna Neutrino Array (ARIANNA) is a proposed detector for ultra-high energy astrophysical neutrinos. It will detect coherent radio Cherenkov emission from the particle showers produced by neutrinos with energies above about 10 17 eV. ARIANNA will be built on the Ross Ice Shelf just off the coast of Antarctica, where it will eventually cover about 900 km 2 in surface area. There, the ice-water interface below the shelf reflects radio waves, giving ARIANNA sensitivity to downward-going neutrinos and improving its sensitivity to horizontally incident neutrinos. ARIANNA detector stations each will contain 4-8 antennas, which search for pulses of 50 MHz to 1 GHz radio emission from neutrino interactions. We describe a prototype station for ARIANNA, which was deployed in Moore's Bay on the Ross Ice Shelf in December 2009, discuss the design and deployment, and present some initial figures on performance. The ice shelf thickness was measured to be 572±6 m at the deployment site.

  3. Development of long-life neutron detectors for the prototype heavy water reactor 'Fugen'

    International Nuclear Information System (INIS)

    Ohteru, Shigeru; Shirayama, Shimpey.

    1981-01-01

    The development of long-life neutron detectors as the flux monitors for the prototype heavy water reactor has been made. Three kinds of neutron monitors, namely start-up monitor (SUM), power up monitor (PUM) and local power monitor (LPM), are provided. The LPM consists of 4 ion chamber type neutron detectors and a guide tube of power calibration monitor (PCM). This is useful for reactor control and fuel soundness monitor. The improvement of the neutron detectors was made for the operation under high neutron flux and gamma-ray heating. For the long-life operation, U-234 was mixed into U-235 for the conversion in the detectors. The ratio of U-234 to U-235 is 3 to 1. The PCM is also an ion chamber type detector with U-235. The mixing ratio of U-234 to U-235 was determined by a test with the JMTR. The characteristic performance was also investigated by the JMTR. After the completion of Fugen, various tests on the long-life detectors were performed with Fugen. It was hard to test the output linearity of the detectors with a large scale reactor. Therefore, it was tested that the operation range of the detectors is within the linear region of detector output. The voltage-current characteristics and the correlation of output current and saturation current were measured. The variation of the neutron sensitivity of the detectors with the cumulative dose was also studied. (Kato, T.)

  4. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    Science.gov (United States)

    An, Q.; Bai, Y. X.; Bi, X. J.; Cao, Z.; Chang, J. F.; Chen, G.; Chen, M. J.; Chen, S. M.; Chen, S. Z.; Chen, T. L.; Chen, X.; Chen, Y. T.; Cui, S. W.; Dai, B. Z.; Du, Q.; Danzengluobu; Feng, C. F.; Feng, S. H.; Gao, B.; Gao, S. Q.; Ge, M. M.; Gu, M. H.; Hao, X. J.; He, H. H.; Hou, C.; Hu, H. B.; Hu, X. B.; Huang, J.; Huang, W. P.; Jia, H. Y.; Jiang, K.; Liu, J.; Liu, J. L.; Liu, J. S.; Liu, S. B.; Liu, Y.; Liu, Y. N.; Li, Q. J.; Li, C.; Li, F.; Li, H. C.; Li, X. R.; Lu, H.; Lv, H. K.; Mao, Y. J.; Ma, L. L.; Ma, X. H.; Shao, J.; Shao, M.; Sheng, X. D.; Sun, G. X.; Sun, Z. B.; Tang, Z. B.; Wu, C. Y.; Wu, H. R.; Wu, Q.; Xiao, G.; Xu, Y.; Yang, Q. Y.; Yang, R.; Yao, Z. G.; You, X. H.; Yuan, A. F.; Zhang, B. K.; Zhang, H. M.; Zhang, S. R.; Zhang, S. S.; Zhang, X. Y.; Zhang, Y.; Zhang, L.; Zhai, L. M.; Zhao, J.; Zhao, L.; Zhao, Z. G.; Zha, M.; Zhou, B.; Zhu, F. R.; Zhu, K. J.; Zhuang, J.; Zuo, X.

    2013-10-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given.

  5. Characterization of BJT-based particle detectors

    International Nuclear Information System (INIS)

    Piemonte, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Boscardin, M.; Bosisio, L.; Dalla Betta, G.-F.; Dittongo, S.; Forti, F.; Giorgi, M.; Gregori, P.; Rachevskaia, I.; Ronchin, S.; Zorzi, N.

    2004-01-01

    We report on the static and dynamic behavior of BJT-based particle detectors realized on high-resistivity silicon. Several prototypes, featuring different doping profiles and geometries, have been fabricated at ITC-irst (Trento, Italy). These devices have been thoroughly characterized from the electrical viewpoint, and, in order to understand the fundamental parameters of the structure, device simulations have been performed, whose results are in very good agreement with experimental data. Preliminary functional measurements have been carried out by using a 109Cd source excitation

  6. Further studies on a DTBX prototype for the CMS muon detector at LHC

    International Nuclear Information System (INIS)

    Barichello, G.; Benvenuti, A.; Cavanna, F.; Cuffiani, M.; Fanin, C.; De Giorgi, M.; Gasparini, F.; Giantin, R.; Martinelli, R.; Piano Mortari, G.; Pitacco, G.; Rossi, A.; Sartori, P.; Verdecchia, M.; Wulz, C.E.; Zanchettin, F.; Zumerle, G.

    1995-01-01

    The performance of a small prototype chamber of the baseline project for the muon barrel detector for CMS has been studied in a muon beam. Its efficiency with different gases and wire diameters, the trigger possibilities and the response in presence of a large number of electromagnetic secondaries associated to the muon are evaluated. The results are compared with a full Monte Carlo simulation. (orig.)

  7. Gravitational-wave detector realized by a superconductor

    International Nuclear Information System (INIS)

    Ishidoshiro, K.; Ando, M.; Takamori, A.; Okada, K.; Tsubono, K.

    2010-01-01

    In this article, we present a new gravitational-wave detector based on superconducting magnetic levitation and results of its prototype test. Our detector is composed of the suspended test mass that is rotated by gravitational waves. Gravitational wave signals are readout by monitoring its angular motion. Superconducting magnetic levitation is used for the suspension of the test mass, since it has many advantages, such as zero mechanical loss and resonant frequency around its suspension axis in an ideal situation. For the study of actual performance of such gravitational-wave detector, a prototype detector has been developed. Using the prototype detector, the actual loss factor and resonant frequency are measured as 1.2 x 10 -8 Nms/rad and 5 mHz respectively. A detector noise is also evaluated. The current noise level is determined by the magnetic coupling with external magnetic field and mechanical coupling between translation and angular motion. The prototype detector has already one of the lowest noise levels for gravitational waves at 0.1 Hz among current gravitational-wave detectors. We have succeeded at the demonstration of the advantages of our torsion gravitational-wave detector.

  8. The prototype detection unit of the KM3NeT detector

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Llorens Alvarez, C.D.; Martinez-Mora, J.A.; Saldana, M. [Universitat Politecnica de Valencia, Instituto de Investigacion para la Gestion Integrada de las Zonas Costeras, Gandia (Spain); Ageron, M.; Bertin, V.; Beurthey, S.; Billault, M.; Brunner, J.; Caillat, L.; Cosquer, A.; Coyle, P.; Destelle, J.J.; Dornic, D.; Henry, S.; Keller, P.; Lamare, P.; Tezier, D.; Theraube, S. [Aix Marseille Universite CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Aharonian, F.; Drury, L. [DIAS, Dublin (Ireland); Aiello, S.; Giordano, V.; Leonora, E.; Randazzo, N.; Sipala, V. [INFN, Sezione di Catania, Catania (Italy); Albert, A.; Drouhin, D.; Racca, C. [GRPHE, Universite de Haute Alsace, IUT de Colmar, Colmar (France); Ameli, F.; Biagioni, A.; De Bonis, G.; Lonardo, A.; Nicolau, C.A.; Simeone, F.; Vicini, P. [INFN, Sezione di Roma, Rome (Italy); Anassontzis, E.G.; Resvanis, L. [National and Kapodistrian University of Athens, Deparment of Physics, Athens (Greece); Androulakis, G.C.; Balasi, K.; Belias, A.; Drakopoulou, E.; Kappos, E.; Manolopoulos, K.; Markou, C.; Pikounis, K.; Rapidis, P.A.; Stavropoulos, G.; Tzamariudaki, E. [Institute of Nuclear Physics, NCSR ' ' Demokritos' ' , Athens (Greece); Anghinolfi, M.; Cereseto, R.; Hugon, C.; Musico, P.; Orzelli, A. [INFN, Sezione di Genova, Genova (Italy); Anton, G.; Classen, L.; Eberl, T.; Gal, T.; Graf, K.; Heid, T.; Herold, B.; Hofestaedt, J.; Hoessl, J.; James, C.W.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Reubelt, J.; Schnabel, J.; Seitz, T.; Stransky, D.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anvar, S.; Chateau, F.; Durand, D.; Le Provost, H.; Louis, F.; Moudden, Y.; Zonca, E. [CEA, Irfu/Sedi, Centre de Saclay, Gif-sur-Yvette (France); Avgitas, T.; Baret, B.; Baron, S.; Boutonnet, C.; Champion, C.; Coleiro, A.; Colonges, S.; Creusot, A.; Galata, S.; Gracia Ruiz, R.; Kouchner, A.; Lindsey Clark, M.; Loucatos, S.; Van Elewyck, V. [APC,Universite Paris Diderot, CNRS/IN2P3 CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Band, H.; Berbee, E.; Berkien, A.; Beveren, V. van; Boer Rookhuizen, H.; Bouwhuis, M.; D' Amico, A.; Gajanana, D.; Gebyehu, M.; Heijboer, A.; Heine, E.; Hoek, M. van der; Hogenbirk, J.; Jansweijer, P.; Jongen, M.; Kieft, G.; Kok, H.; Koopstra, J.; Korporaal, A.; Melis, K.W.; Michael, T.; Mos, S.; Peek, H.; Schmelling, J.; Steijger, J.; Timmer, P.; Vermeulen, J.; Werneke, P.; Wiggers, L.; Zwart, A. [Nikhef, Amsterdam (Netherlands); Barbarino, G.; Barbato, F.; De Rosa, G.; Di Capua, F.; Garufi, F.; Vivolo, D. [INFN, Sezione di Napoli, Naples (Italy); Universita ' Federico II' , Dipartimento di Fisica, Naples (Italy); Barbarito, E.; Ceres, A.; Circella, M.; Mongelli, M.; Sgura, I. [INFN, Sezione di Bari, Bari (Italy); Barrios, J.; Calvo, D.; Hernandez-Rey, J.J.; Real, D.; Zornoza, J.D.; Zuniga, J. [CSIC-Universitat de Valencia, IFIC-Instituto de Fisica Corpuscular, Valencia (Spain); Berg, A.M. van den; Dorosti-Hasankiadeh, Q.; Hevinga, M.A.; Kavatsyuk, O.; Loehner, H.; Wooning, R.H.L. van [KVI-CART, University of Groningen, Groningen (Netherlands); Beverini, N. [INFN, Sezione di Pisa, Pisa (Italy); Universita di Pisa, Dipartimento di Fisica, Pisa (Italy); Biagi, S. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Bianucci, S.; Bouhadef, B.; Calamai, M.; Maccioni, E.; Morganti, M.; Raffaelli, F.; Terreni, G. [Universita di Pisa, Dipartimento di Fisica, Pisa (Italy); Birbas, A.; Bourlis, G.; Christopoulou, B.; Gizani, N.; Leisos, A.; Lenis, D.; Tsirigotis, A.; Tzamarias, S. [Hellenic Open University, School of Science and Technology, Patras (Greece); Bormuth, R.; Jong, M. de; Samtleben, D.F.E. [Nikhef, Amsterdam (Netherlands); Leiden University, Leiden Institute of Physics, Leiden (Netherlands); Bouche, V.; Capone, A.; Fermani, P.; Masullo, R.; Perrina, C. [INFN, Sezione di Roma, Rome (Italy); Universita di Roma La Sapienza, Dipartimento di Fisica, Rome (Italy); Bozza, C.; Grella, G. [Universita ' Federico II' , Dipartimento di Fisica, Naples (Italy); Universita di Salerno, Dipartimento di Fisica, Fisciano (Italy); Bruijn, R.; Koffeman, E.; Wolf, E. de [Nikhef, Amsterdam (Netherlands); University of Amsterdam, Institute of Physics, Amsterdam (Netherlands); Cacopardo, G.; Caruso, F.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D' Amato, C.; Distefano, C.; Grasso, R.; Grmek, A.; Imbesi, M.; Kulikovskiy, V.; Larosa, G.; Lattuada, D.; Leismueller, K.P.; Migneco, E.; Miraglia, A.; Musumeci, M.; Orlando, A.; Papaleo, R.; Pellegriti, M.G.; Collaboration: KM3NeT Collaboration; and others

    2016-02-15

    A prototype detection unit of the KM3NeT deep-sea neutrino telescope has been installed at 3500m depth 80 km offshore the Italian coast. KM3NeT in its final configuration will contain several hundreds of detection units. Each detection unit is a mechanical structure anchored to the sea floor, held vertical by a submerged buoy and supporting optical modules for the detection of Cherenkov light emitted by charged secondary particles emerging from neutrino interactions. This prototype string implements three optical modules with 31 photomultiplier tubes each. These optical modules were developed by the KM3NeT Collaboration to enhance the detection capability of neutrino interactions. The prototype detection unit was operated since its deployment in May 2014 until its decommissioning in July 2015. Reconstruction of the particle trajectories from the data requires a nanosecond accuracy in the time calibration. A procedure for relative time calibration of the photomultiplier tubes contained in each optical module is described. This procedure is based on the measured coincidences produced in the sea by the {sup 40}K background light and can easily be expanded to a detector with several thousands of optical modules. The time offsets between the different optical modules are obtained using LED nanobeacons mounted inside them. A set of data corresponding to 600 h of livetime was analysed. The results show good agreement with Monte Carlo simulations of the expected optical background and the signal from atmospheric muons. An almost background-free sample of muons was selected by filtering the time correlated signals on all the three optical modules. The zenith angle of the selected muons was reconstructed with a precision of about 3 {sup circle}. (orig.)

  9. The prototype detection unit of the KM3NeT detector

    International Nuclear Information System (INIS)

    Adrian-Martinez, S.; Ardid, M.; Llorens Alvarez, C.D.; Martinez-Mora, J.A.; Saldana, M.; Ageron, M.; Bertin, V.; Beurthey, S.; Billault, M.; Brunner, J.; Caillat, L.; Cosquer, A.; Coyle, P.; Destelle, J.J.; Dornic, D.; Henry, S.; Keller, P.; Lamare, P.; Tezier, D.; Theraube, S.; Aharonian, F.; Drury, L.; Aiello, S.; Giordano, V.; Leonora, E.; Randazzo, N.; Sipala, V.; Albert, A.; Drouhin, D.; Racca, C.; Ameli, F.; Biagioni, A.; De Bonis, G.; Lonardo, A.; Nicolau, C.A.; Simeone, F.; Vicini, P.; Anassontzis, E.G.; Resvanis, L.; Androulakis, G.C.; Balasi, K.; Belias, A.; Drakopoulou, E.; Kappos, E.; Manolopoulos, K.; Markou, C.; Pikounis, K.; Rapidis, P.A.; Stavropoulos, G.; Tzamariudaki, E.; Anghinolfi, M.; Cereseto, R.; Hugon, C.; Musico, P.; Orzelli, A.; Anton, G.; Classen, L.; Eberl, T.; Gal, T.; Graf, K.; Heid, T.; Herold, B.; Hofestaedt, J.; Hoessl, J.; James, C.W.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Reubelt, J.; Schnabel, J.; Seitz, T.; Stransky, D.; Tselengidou, M.; Anvar, S.; Chateau, F.; Durand, D.; Le Provost, H.; Louis, F.; Moudden, Y.; Zonca, E.; Avgitas, T.; Baret, B.; Baron, S.; Boutonnet, C.; Champion, C.; Coleiro, A.; Colonges, S.; Creusot, A.; Galata, S.; Gracia Ruiz, R.; Kouchner, A.; Lindsey Clark, M.; Loucatos, S.; Van Elewyck, V.; Band, H.; Berbee, E.; Berkien, A.; Beveren, V. van; Boer Rookhuizen, H.; Bouwhuis, M.; D'Amico, A.; Gajanana, D.; Gebyehu, M.; Heijboer, A.; Heine, E.; Hoek, M. van der; Hogenbirk, J.; Jansweijer, P.; Jongen, M.; Kieft, G.; Kok, H.; Koopstra, J.; Korporaal, A.; Melis, K.W.; Michael, T.; Mos, S.; Peek, H.; Schmelling, J.; Steijger, J.; Timmer, P.; Vermeulen, J.; Werneke, P.; Wiggers, L.; Zwart, A.; Barbarino, G.; Barbato, F.; De Rosa, G.; Di Capua, F.; Garufi, F.; Vivolo, D.; Barbarito, E.; Ceres, A.; Circella, M.; Mongelli, M.; Sgura, I.; Barrios, J.; Calvo, D.; Hernandez-Rey, J.J.; Real, D.; Zornoza, J.D.; Zuniga, J.; Berg, A.M. van den; Dorosti-Hasankiadeh, Q.; Hevinga, M.A.; Kavatsyuk, O.; Loehner, H.; Wooning, R.H.L. van; Beverini, N.; Biagi, S.; Bianucci, S.; Bouhadef, B.; Calamai, M.; Maccioni, E.; Morganti, M.; Raffaelli, F.; Terreni, G.; Birbas, A.; Bourlis, G.; Christopoulou, B.; Gizani, N.; Leisos, A.; Lenis, D.; Tsirigotis, A.; Tzamarias, S.; Bormuth, R.; Jong, M. de; Samtleben, D.F.E.; Bouche, V.; Capone, A.; Fermani, P.; Masullo, R.; Perrina, C.; Bozza, C.; Grella, G.; Bruijn, R.; Koffeman, E.; Wolf, E. de; Cacopardo, G.; Caruso, F.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D'Amato, C.; Distefano, C.; Grasso, R.; Grmek, A.; Imbesi, M.; Kulikovskiy, V.; Larosa, G.; Lattuada, D.; Leismueller, K.P.; Migneco, E.; Miraglia, A.; Musumeci, M.; Orlando, A.; Papaleo, R.; Pellegriti, M.G.

    2016-01-01

    A prototype detection unit of the KM3NeT deep-sea neutrino telescope has been installed at 3500m depth 80 km offshore the Italian coast. KM3NeT in its final configuration will contain several hundreds of detection units. Each detection unit is a mechanical structure anchored to the sea floor, held vertical by a submerged buoy and supporting optical modules for the detection of Cherenkov light emitted by charged secondary particles emerging from neutrino interactions. This prototype string implements three optical modules with 31 photomultiplier tubes each. These optical modules were developed by the KM3NeT Collaboration to enhance the detection capability of neutrino interactions. The prototype detection unit was operated since its deployment in May 2014 until its decommissioning in July 2015. Reconstruction of the particle trajectories from the data requires a nanosecond accuracy in the time calibration. A procedure for relative time calibration of the photomultiplier tubes contained in each optical module is described. This procedure is based on the measured coincidences produced in the sea by the 40 K background light and can easily be expanded to a detector with several thousands of optical modules. The time offsets between the different optical modules are obtained using LED nanobeacons mounted inside them. A set of data corresponding to 600 h of livetime was analysed. The results show good agreement with Monte Carlo simulations of the expected optical background and the signal from atmospheric muons. An almost background-free sample of muons was selected by filtering the time correlated signals on all the three optical modules. The zenith angle of the selected muons was reconstructed with a precision of about 3 circle . (orig.)

  10. Laser and alpha particle characterization of floating-base BJT detector

    International Nuclear Information System (INIS)

    Tyzhnevyi, V.; Batignani, G.; Bosisio, L.; Dalla Betta, G.-F.; Verzellesi, G.; Zorzi, N.

    2010-01-01

    In this work, we investigate the detection properties of existing prototypes of BJT detectors operated with floating base. We report about results of two functional tests. The charge-collection properties of BJT detectors were evaluated by means of a pulsed laser setup. The response to α-particles emitted from radioactive 241 Am source are also presented. Experimental results show that current gains of about 450 with response times in the order of 50 μs are preserved even in this non-standard operation mode, in spite of a non-optimized structure.

  11. Laser and alpha particle characterization of floating-base BJT detector

    Energy Technology Data Exchange (ETDEWEB)

    Tyzhnevyi, V., E-mail: tyzhnevyi@disi.unitn.i [Universita di Trento and INFN Trento, Trento (Italy); Batignani, G. [Dipartimento di Fisica, Universita di Pisa and INFN Pisa, Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Universita di Trieste and INFN Trieste, Trieste (Italy); Dalla Betta, G.-F. [Universita di Trento and INFN Trento, Trento (Italy); Verzellesi, G. [Universita di Modena e Reggio Emilia and INFN Trento, Reggio Emilia (Italy); Zorzi, N. [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2010-05-21

    In this work, we investigate the detection properties of existing prototypes of BJT detectors operated with floating base. We report about results of two functional tests. The charge-collection properties of BJT detectors were evaluated by means of a pulsed laser setup. The response to {alpha}-particles emitted from radioactive {sup 241}Am source are also presented. Experimental results show that current gains of about 450 with response times in the order of 50 {mu}s are preserved even in this non-standard operation mode, in spite of a non-optimized structure.

  12. Prototyping of petalets for the Phase-II upgrade of the silicon strip tracking detector of the ATLAS experiment

    Science.gov (United States)

    Kuehn, S.; Benítez, V.; Fernández-Tejero, J.; Fleta, C.; Lozano, M.; Ullán, M.; Lacker, H.; Rehnisch, L.; Sperlich, D.; Ariza, D.; Bloch, I.; Díez, S.; Gregor, I.; Keller, J.; Lohwasser, K.; Poley, L.; Prahl, V.; Zakharchuk, N.; Hauser, M.; Jakobs, K.; Mahboubi, K.; Mori, R.; Parzefall, U.; Bernabéu, J.; Lacasta, C.; Marco-Hernandez, R.; Rodriguez Rodriguez, D.; Santoyo, D.; Solaz Contell, C.; Soldevila Serrano, U.; Affolder, T.; Greenall, A.; Gallop, B.; Phillips, P. W.; Cindro, V.

    2018-03-01

    In the high luminosity era of the Large Hadron Collider, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and exploits the concept of modularity. Prototyping and testing of various strip detector components has been carried out. This paper presents the developments and results obtained with reduced-size structures equivalent to those foreseen to be used in the forward region of the silicon strip detector. Referred to as petalets, these structures are built around a composite sandwich with embedded cooling pipes and electrical tapes for routing the signals and power. Detector modules built using electronic flex boards and silicon strip sensors are glued on both the front and back side surfaces of the carbon structure. Details are given on the assembly, testing and evaluation of several petalets. Measurement results of both mechanical and electrical quantities are shown. Moreover, an outlook is given for improved prototyping plans for large structures.

  13. Prototyping the read-out chain of the CBM Microvertex Detector

    International Nuclear Information System (INIS)

    Klaus, P.; Wiebusch, M.; Amar-Youcef, S.; Deveaux, M.; Koziel, M.; Michel, J.; Milanovic, B.; Müntz, C.; Tischler, T.; Stroth, J.

    2016-01-01

    The Compressed Baryonic Matter (CBM) Experiment at the future FAIR (Darmstadt/Germany) will study the phase diagram of hadronic matter in the regime of highest net-baryon densities. The fixed target experiment will explore the nuclear fireballs created in violent heavy ion reactions with a rich number of probes. To reconstruct the decay topologies of open-charm particles as well as to track low-momentum particles, an ultra-light and precise Microvertex Detector (MVD) is required. The necessary performance in terms of spatial resolution, material budget and rate capability will be reached by equipping the MVD with highly granular, radiation-hard CMOS Monolithic Active Pixel Sensors (CPS) developped at IPHC Strasbourg, which are operated in the target vacuum of the experiment. This contribution introduces the concept of the MVD and puts a focus on the latest results obtained from the R and D of the electronics and read-out chain of the device. Moreover, we briefly introduce the PRESTO project, which realises a prototype of a full size quadrant of an MVD detector station

  14. Eight plane IPND [Integration Prototype Near Detector] mechanical testing

    International Nuclear Information System (INIS)

    Zhao, A.; Guarino, V.; Wood, K.; Nephew, T.; Ayres, D.

    2008-01-01

    A mechanical test of an 8 plane IPND mechanical prototype, which was constructed using extrusions from the testing/tryout of the 16 cell prototype extrusion die in Argonne National Laboratory, was conducted. There were 4 vertical and 4 horizontal planes in this 8 plane IPND prototype. Each vertical plane had four 16 cell extrusions, while each horizontal plane had six 16 cell extrusions. Each plane was glued together using the formulation of Devcon adhesive, Devcon 60. The vertical extrusions used in the vertical planes shares the same dimensions as the horizontal extrusions in the horizontal planes with the average web thickness of 2.1 mm and the average wall thickness of 3.1 mm. This mechanical prototype was constructed with end-seals on the both ends of the vertical extrusions. The gaps were filled with epoxy between extrusions and end-seals. The overall dimension of IPND is 154.8 by 103.1 by 21.7 inches with the weight of approximately 1200 kg, as shown in a figure. Two similar mechanical tests of 3 layer and 11 layer prototypes have been done in order to evaluate the strength of the adhesive joint between extrusions in the NOvA detector. The test showed that the IPND prototype was able to sustain under the loading of weight of itself and scintillator. Two FEA models were built to verify the measurement data from the test. The prediction from FEA slice model seems correlated reasonably well to the test result, even under a 'rough' estimated condition for the wall thickness (from an untuned die) and an unknown property of 'garage type' extrusion. A full size of FEA 3-D model also agrees very well with the test data from strain gage readings. It is worthy to point out that the stress distribution of the structure is predominantly determined by the internal pressure, while the buckling stability relies more on the loading weight from the extrusions themselves and scintillate. Results of conducted internal pressure tests, including 3- cell, 11-cell and the IPND

  15. Special Nuclear Material Detection with a Water Cherenkov based Detector

    International Nuclear Information System (INIS)

    Sweany, M.; Bernstein, A.; Bowden, N.; Dazeley, S.; Svoboda, R.

    2008-01-01

    Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, produce a number of neutrons and high energy gamma-rays. Assuming the neutron multiplicity is approximately Poissonian with an average of 2 to 3, the observation of time correlations between these particles from a cargo container would constitute a robust signature of the presence of SNM inside. However, in order to be sensitive to the multiplicity, one would require a high total efficiency. There are two approaches to maximize the total efficiency; maximizing the detector efficiency or maximizing the detector solid angle coverage. The advanced detector group at LLNL is investigating one way to maximize the detector size. We are designing and building a water Cerenkov based gamma and neutron detector for the purpose of developing an efficient and cost effective way to deploy a large solid angle car wash style detector. We report on our progress in constructing a larger detector and also present preliminary results from our prototype detector that indicates detection of neutrons

  16. Design and Construction of a First Prototype Muon Tomography System with GEM Detectors for the Detection of Nuclear Contraband

    CERN Document Server

    AUTHOR|(CDS)2074269; Grasso, L; Locke, J B; Quintero, A; Mitra, D

    2009-01-01

    Current radiation portal monitors at sea ports and international borders that employ standard radiation detection techniques are not very sensitive to nuclear contraband that is well shielded to absorb emanating radiation. Muon Tomography (MT) based on the measurement of multiple scattering of atmospheric cosmic ray muons traversing cargo or vehicles that contain high-Z material is a promising passive interrogation technique for solving this problem. We report on the design and construction of compact Micro-Pattern Gas Detectors for a small prototype MT station. This station will employ 10 tracking stations based on 30cm x 30cm low-mass triple-GEM detectors with 2D readout. Due to the excellent spatial resolution of GEMs it is sufficient to use a gap of only a few cm between tracking stations. Together with the compact size of the GEM detectors this allows the GEM MT station to be an order of magnitude more compact than MT stations using traditional drift tubes. We present details of the production and assemb...

  17. Geometric optimization of a neutron detector based on a lithium glass–polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M., E-mail: mike.f.mayer@gmail.com [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Nattress, J. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Trivelpiece, C. [Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Jovanovic, I. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2015-06-01

    We report on the simulation and optimization of a neutron detector based on a glass–polymer composite that achieves high gamma rejection. Lithium glass is embedded in polyvinyltoluene in three geometric forms: disks, rods, and spheres. Optimal shape, geometric configuration, and size of the lithium glass fragments are determined using Geant4 simulations. All geometrical configurations maintain an approximate 7% glass to polymer mass ratio. Results indicate a 125-mm diameter as the optimal detector size for initial prototype design achieving a 10% efficiency for the thermalization of incident fission neutrons from {sup 252}Cf. The geometrical features of a composite detector are shown to have little effect on the intrinsic neutron efficiency, but a significant effect on the gamma rejection is observed. The sphere geometry showed the best overall performance with an intrinsic neutron efficiency of approximately 6% with a gamma rejection better than 10{sup −7} for 280-μm diameter spheres. These promising results provide a motivation for prototype composite detector development based on the simulated designs. - Highlights: • Composite polymer–lithium glass scintillation detector is simulated. • Polymer is considered to be non-scintillating in the simulation. • Three forms of lithium glass are considered: disks, rods, and spheres. • Glass shape has a small effect on neutron efficiency. • Glass shape has a significant effect on gamma rejection.

  18. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area ∼18 m2, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8 TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb−1. No magnetic charge exceeding 0.5gD (where gD is ...

  19. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

    CERN Document Server

    Acharya, B.

    2016-08-10

    The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area $\\sim$18 m$^2$, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8 TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb$^{-1}$. No magnetic charge exceeding $0.5g_{\\rm...

  20. Study of the neutrino electromagnetic properties with prototype of Borexino detector

    International Nuclear Information System (INIS)

    Back, H.O.; Balata, M.; Bari, A. de

    2002-01-01

    Results of background measurements with the prototype of the Borexino detector have been used to obtain upper bound on neutrino magnetic moment μ ν and lifetime of radiative neutrino decay ν H → ν L + γ. The new upper limit for μ ν of pp and 7 Be neutrino is 5.5 · 10 -10 μ B and lifetime τ c.m. (ν H → ν L + γ)/m ν ≥ 1.5 · 10 3 s · eV -1 . The latter result is an order of magnitude more restrictive than obtained in previous laboratory experiments

  1. Latest developments on the highly granular Silicon-Tungsten Electromagnetic Calorimeter technological prototype for the International Large Detector

    CERN Document Server

    Irles, Adrián

    2017-01-01

    High precision physics at future colliders requires unprecedented highly granular calorimeters for the application of the Particle Flow (PF) algorithm. The physical proof of concept was given in the previous campaign of beam tests of physic prototypes within the CALICE collaboration. We present here the latest beam and laboratory test results and R&D developments for the Silicon-Tungsten Electromagnetic Calorimeter technological prototype with fully embedded very front-end (VFE) electronics for the International Large Detector at the International Linear Collider project.

  2. Aging measurements on triple-GEM detectors operated with $CF_{4}$-based gas mixtures

    CERN Document Server

    Alfonsi, M; De Simone, P; Murtas, F; Poli Lener, M P; Bonivento, W; Cardini, A; Raspino, D; Saitta, B; Pinci, D; Baccaro, S; 10.1016/j.nuclphysbps.2005.03.054

    2006-01-01

    We present the results of a global irradiation test of full size triple-GEM detectors operated with CF/sub 4/-based gas mixtures. This study has been performed in the framework of an R&D activity on detectors for the innermost region of the first muon station of the LHCb experiment. The prototypes have been irradiated at the Calliope facility of the ENEA-Casaccia with a high intensity 1.25 MeV detectors performances have been measured with X-rays and with a 3 Ge V pion beam at CERN. A SEM analysis on several samples of the detectors has been performed to complete the understanding of the physical processes occurring in a GEM detector during a strong irradiation.

  3. Silicon drift detectors coupled to CsI(Tl) scintillators for spaceborne gamma-ray detectors

    International Nuclear Information System (INIS)

    Marisaldi, M.; Fiorini, C.; Labanti, C.; Longoni, A.; Perotti, F.; Rossi, E.; Soltau, H.

    2006-01-01

    Silicon Drift Detectors (SDDs), thanks to their peculiar low noise characteristics, have proven to be excellent photodetectors for CsI(Tl) scintillation light detection. Two basic detector configurations have been developed: either a single SDD or a monolithic array of SDDs coupled to a single CsI(Tl) crystal. A 16 independent detectors prototype is under construction, designed to work in conjunction with the MEGA Compton telescope prototype under development at MPE, Garching, Germany. A single SDD coupled to a CsI(Tl) crystal has also been tested as a monolithic detector with an extended energy range between 1.5 keV and 1 MeV. The SDD is used as a direct X-ray detector for low energy photons interacting in silicon and as a scintillation light photodetector for photons interacting in the crystal. The type of interaction is identified by means of pulse shape discrimination technique. Detectors based on an array of SDDs coupled to a single CsI(Tl) crystal have also been built. The readout of these detectors is based on the Anger camera technique, and submillimeter spatial resolution can be achieved. The two detectors' approaches and their applications will be described

  4. STAR Vertex Detector Upgrade Development

    International Nuclear Information System (INIS)

    Greiner, Leo C.; Matis, Howard S.; Stezelberger, Thorsten; Vu, Chinh Q.; Wieman, Howard; Szelezniak, Michal; Sun, Xiangming

    2008-01-01

    We report on the development and prototyping efforts undertaken with the goal of producing a micro-vertex detector for the STAR experiment at the RHIC accelerator at BNL. We present the basic detector requirements and show a sensor development path, conceptual mechanical design candidates and readout architecture. Prototyping and beam test results with current generation MimoSTAR-2 sensors and a readout system featuring FPGA based on-the-fly hit finding and data sparsification are also presented

  5. Monitoring the Thermal Power of Nuclear Reactors with a Prototype Cubic Meter Antineutrino Detector

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, A; Bowden, N; Misner, A; Palmer, T

    2007-06-27

    In this paper, we estimate how quickly and how precisely a reactor's operational status and thermal power can be monitored over hour to month time scales, using the antineutrino rate as measured by a cubic meter scale detector. Our results are obtained from a detector we have deployed and operated at 25 meter standoff from a reactor core. This prototype can detect a prompt reactor shutdown within five hours, and monitor relative thermal power to 3.5% within 7 days. Monitoring of short-term power changes in this way may be useful in the context of International Atomic Energy Agency's (IAEA) Reactor Safeguards Regime, or other cooperative monitoring regimes.

  6. Characterization of silicon microstrip sensors, front-end electronics, and prototype tracking detectors for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Sorokin, Iurii

    2013-01-01

    The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryonic densities. The matter at the extreme conditions will be studied in collisions of a heavy ion beam with a fixed heavy element target. The present work is devoted to the development of the main component of the CBM experiment - the Silicon Tracking System (STS). The STS has to enable reconstruction of up to 1000 charged particle tracks per nucleus-nucleus interaction at the rate of up to 10 MHz, provide a momentum resolution Δp/p of 1 %, and withstand the radiation load of up to 10 14 n eq /cm 2 (n eq -neutron equivalent). The STS will be based on double-sided silicon microstrip sensors, that will be arranged in 8 planes in the aperture of the dipole magnet. Selftriggering readout electronics will be located on the periphery of the detecting planes, and connected to the sensors with low mass microcables. In the stage of R and D, as well as in the stages of pre-series and series production, characterization of the sensors, of the front-end electronics, and of the complete detector modules has to be performed. In the present work the required techniques were developed, and the performance of the latest detector prototypes was evaluated. A particular attention is paid to evaluation of the signal amplitude, as it is one of the most important detector characteristics. Techniques for measuring the passive electrical characteristics of the sensors were developed. These include: the coupling and the interstrip capacitances, the interstrip resistance, the bias resistance, the strip leakage current, the bulk capacitance, and the bulk leakage current. The techniques will be applied for the quality assurance of the sensors during the pre-series and the series production. Extensive characterization of the prototype readout chip, n-XYTER, was performed. The register settings were optimized, and the dependence of the amplitude response on

  7. The performance of silicon detectors for the SiliPET project: A small animal PET scanner based on stacks of silicon detectors

    International Nuclear Information System (INIS)

    Auricchio, Natalia; Domenico, Giovanni di; Zavattini, Guido; Milano, Luciano; Malaguti, Roberto

    2011-01-01

    We propose a new scanner for small animal Positron Emission Tomography (PET) based on stacks of double sided silicon detectors. Each stack is made of 40 planar detectors with dimension 60x60x1 mm 3 and 128 orthogonal strips on both sides to read the two coordinates of interaction, the third being the detector number in the stack. Multiple interactions in a stack are discarded by an exclusive OR applied between each detector plane of a stack. In this way we achieve a precise determination of the interaction point of the two 511 keV photons. The reduced dimensions of the scanner also improve the solid angle coverage resulting in a high sensitivity. Preliminary results were obtained with MEGA prototype tracker (11 double sided Si detector layers), divided into two stacks 2 cm apart made of, respectively, 5 and 6 prototype layers, placing a small spherical 22 Na source in different positions. We report on the results, spatial resolution, imaging and timing performances obtained with double sided silicon detectors, manufactured by ITC-FBK, having an active area of 3x3 cm 2 , thickness of 1 mm and a strip pitch of 500μm. Two different strip widths of 300 and 200μm equipped with 64 orthogonal p and n strips on opposite sides were read out with the VATAGP2.5 ASIC, a 128-channel 'general purpose' charge sensitive amplifier.

  8. Search for electron decay mode e- → γ + νe with prototype of Borexino detector

    International Nuclear Information System (INIS)

    Back, H.O.; Balata, M.; Bari, A. de.

    2002-01-01

    The prototype of the Borexino detector Counting Test Facility, located in the Gran Sasso laboratory, has been used to obtain a bound on the stability of the electron. The new lower limit on the mean lifetime defined on 32.1 days of data set is τ(e - → γ + ν e ) ≥ 4.6 · 10 26 years (90 % C.L.)

  9. Investigation of Sn-Pb solder bumps of prototype photo detectors for the LHCb experiment

    CERN Document Server

    Delsante, M L; Arnau-Izquierdo, G

    2004-01-01

    The Large Hadron Collider (LHC) is now under construction at the European Organization for Nuclear Research (CERN). LHCb is one of the dedicated LHC experiments, allowing high energy proton-proton collisions to be exploited. This paper presents the results of the metallurgic studies carried out on Sn-Pb solder bumps of prototype vacuum photo detectors under development for LHCb, and in particular for the ring imaging Cherenkov-hybrid photo diode (RICH-HPD) project. These detectors encapsulate, in a vacuum tube, an assembly made of two silicon chips bonded together by a matrix of solder bumps. Each bump lies on a suitable system of under-bump metallic layers ensuring mechanical and electrical transition between the chip pad and the solder alloy. During manufacturing of the detector, bump-bonded (BB) assemblies are exposed to severe heat cycles up to 400 degree C inducing, in the present fabrication process, a clear degradation of electrical connectivity. Several investigations such as microstructural observati...

  10. Performance of a Highly Granular Scintillator-SiPM Based Hadron Calorimeter Prototype in Strong Magnetic Fields

    OpenAIRE

    Graf, Christian; collaboration, for the CALICE

    2017-01-01

    Within the CALICE collaboration, several concepts for the hadronic calorimeter of a future linear collider detector are studied. After having demonstrated the capabilities of the measurement methods in "physics prototypes", the focus now lies on improving their implementation in "engineering prototypes", that are scalable to the full linear collider detector. The Analog Hadron Calorimeter (AHCAL) concept is a sampling calorimeter of tungsten or steel absorber plates and plastic scintillator t...

  11. Fabrication of prototype imaging arrays for SCUBA-2

    International Nuclear Information System (INIS)

    Hilton, G.C.; Beall, J.A.; Doriese, W.B.; Duncan, W.D.; Ferreira, L.S.; Irwin, K.D.; Reintsema, C.D.; Ullom, J.N.; Vale, L.R.; Xu, Y.; Zink, B.L.; Parkes, W.; Bunting, A.S.; Dunare, C.C.; Gundlach, A.M.; Stevenson, J.T.M.; Walton, A.J.; Schulte, E.; Corrales, E.; Sienicki, J.P.; Bintley, Dan; Ade, P.A.R.; Sudiwala, Rashmi V.; Woodcraft, Adam L.; Halpern, Mark; Holland, W.; Audley, M.D.; MacIntosh, M.

    2006-01-01

    Prototype imaging subarrays for SCUBA-2 (the Submillimeter Common-User Bolometer Array) have been fabricated and tested. The pixel count (1280) of these wafer-scale imagers is significantly larger than any other low-temperature detectors produced to date, and represents a major step forward for the low-temperature detector community. These transition-edge-sensor (TES) based imagers utilize several innovations including in-focal-plane superconducting quantum intereference device (SQUID) multiplexers, micromachined Si block absorbers, and superconducting wafer hybridization. In this paper, we review the fabrication processes developed for these imagers and present recent optical data from a prototype imaging subarray

  12. A FPGA-based signal processing unit for a GEM array detector

    International Nuclear Information System (INIS)

    Yen, W.W.; Chou, H.P.

    2013-06-01

    in the present study, a signal processing unit for a GEM one-dimensional array detector is presented to measure the trajectory of photoelectrons produced by cosmic X-rays. The present GEM array detector system has 16 signal channels. The front-end unit provides timing signals from trigger units and energy signals from charge sensitive amplifies. The prototype of the processing unit is implemented using commercial field programmable gate array circuit boards. The FPGA based system is linked to a personal computer for testing and data analysis. Tests using simulated signals indicated that the FPGA-based signal processing unit has a good linearity and is flexible for parameter adjustment for various experimental conditions (authors)

  13. Design and Test of a Signal Packet Router Prototype for the ATLAS NSW sTGC Detector

    CERN Document Server

    Hu, Xueye; The ATLAS collaboration

    2016-01-01

    Abstract– The New Small Wheel (NSW) small-strip thin-gap chambers (sTGC) detector will be installed in Large Hadron Collider (LHC) during ATLAS Phase-I upgrade. For sTGC detector, it requires very high-speed electronic triggering of signal events. On detecting a signal peak, sTGC front-end trigger logic will send out serialized track information on twinax fast serial copper wires to the signal packet Router on the periphery of the new small wheel. The signal packet Router boards handle all incoming traffic from the TDS chips (4.8 Gbps), serving as a very fast switching-yard between incoming active TDS signals and a limited number of optoelectronic outputs. There are several design requirements on router: radiation-hard (9kRad), high-speed serial link and low fixed latency in FPGA (field-programmable gate array) data processing. To meet those requirements, a router prototype has been developed for demonstration purpose. The components used in router prototype have been tested in radiation environment to m...

  14. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    Energy Technology Data Exchange (ETDEWEB)

    An, Q. [University of Science and Technology of China, Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Bai, Y.X.; Bi, X.J.; Cao, Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chang, J.F. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Chen, G.; Chen, M.J. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, S.M. [Tsinghua University, Beijing 100084 (China); Chen, S.Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, T.L. [University of Tibet, Lhasa 851600 (China); Chen, X. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Y.T. [University of Yunnan, Kunming 650091 (China); Cui, S.W. [Normal University of Hebei, Shijiazhuang 050016 (China); Dai, B.Z. [University of Yunnan, Kunming 650091 (China); Du, Q. [Tsinghua University, Beijing 100084 (China); Danzengluobu [University of Tibet, Lhasa 851600 (China); Feng, C.F. [University of Shandong, Jinan 250100 (China); Feng, S.H.; Gao, B. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Gao, S.Q. [National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); and others

    2013-10-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given. -- Highlights: • The technique of the water Cherenkov array is studied. • Engineering issues of the water Cherenkov array are investigated. • The PMTs and electronics of the water Cherenkov array are tested. • Some key parameters of the water Cherenkov array are measured.

  15. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    International Nuclear Information System (INIS)

    An, Q.; Bai, Y.X.; Bi, X.J.; Cao, Z.; Chang, J.F.; Chen, G.; Chen, M.J.; Chen, S.M.; Chen, S.Z.; Chen, T.L.; Chen, X.; Chen, Y.T.; Cui, S.W.; Dai, B.Z.; Du, Q.; Danzengluobu; Feng, C.F.; Feng, S.H.; Gao, B.; Gao, S.Q.

    2013-01-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given. -- Highlights: • The technique of the water Cherenkov array is studied. • Engineering issues of the water Cherenkov array are investigated. • The PMTs and electronics of the water Cherenkov array are tested. • Some key parameters of the water Cherenkov array are measured

  16. Development and test of a prototype for the PANDA barrel DIRC detector at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kalicy, Grzegorz

    2014-07-01

    The PANDA experiment at FAIR will perform world class physics studies using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. A rich physics program requires very good particle identification (PID). Charged hadron PID for the barrel section of the target spectrometer has to cover the angular range of 22-140 and separate pions from kaons for momenta up to 3.5 GeV/c with a separation power of at least 3 standard deviations. The system that will provide it has to be thin and operate in a strong magnetic field. A ring imaging Cherenkov detector using the DIRC principle meets those requirements. The design of the PANDA Barrel DIRC is based on the successful BABAR DIRC counter with several important changes to improve the performance and optimize the costs. The design options are being studied in detailed Monte Carlo simulation, and implemented in increasingly complex system prototypes and tested in particle beams. Before building the full system prototypes the radiator bars and lenses are measured on the test benches. The performance of the DIRC prototype was quantified in terms of the single photon Cherenkov angle resolution and the photon yield. Results for two full system prototypes will be presented. The prototype in 2011 aimed at investigating the full size expansion volume. It was found that the resolution for this configuration is at the level of in good agreement with ray tracing simulation results. A more complex prototype, tested in 2012, provided the first experience with a compact fused silica prism expansion volume, a wide radiator plate, and several advanced lens options for the focusing system. The performance of the baseline configuration of the prototype with a standard lens and an air gap met the requirements for the PANDA PID for most of the polar angle range but failed at polar angles around 90 due to photon loss at the air gap. Measurements with a prototype high-refractive index compound lens without an air gap at a polar

  17. Development and test of a prototype for the PANDA barrel DIRC detector at FAIR

    International Nuclear Information System (INIS)

    Kalicy, Grzegorz

    2014-01-01

    The PANDA experiment at FAIR will perform world class physics studies using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. A rich physics program requires very good particle identification (PID). Charged hadron PID for the barrel section of the target spectrometer has to cover the angular range of 22-140 and separate pions from kaons for momenta up to 3.5 GeV/c with a separation power of at least 3 standard deviations. The system that will provide it has to be thin and operate in a strong magnetic field. A ring imaging Cherenkov detector using the DIRC principle meets those requirements. The design of the PANDA Barrel DIRC is based on the successful BABAR DIRC counter with several important changes to improve the performance and optimize the costs. The design options are being studied in detailed Monte Carlo simulation, and implemented in increasingly complex system prototypes and tested in particle beams. Before building the full system prototypes the radiator bars and lenses are measured on the test benches. The performance of the DIRC prototype was quantified in terms of the single photon Cherenkov angle resolution and the photon yield. Results for two full system prototypes will be presented. The prototype in 2011 aimed at investigating the full size expansion volume. It was found that the resolution for this configuration is at the level of in good agreement with ray tracing simulation results. A more complex prototype, tested in 2012, provided the first experience with a compact fused silica prism expansion volume, a wide radiator plate, and several advanced lens options for the focusing system. The performance of the baseline configuration of the prototype with a standard lens and an air gap met the requirements for the PANDA PID for most of the polar angle range but failed at polar angles around 90 due to photon loss at the air gap. Measurements with a prototype high-refractive index compound lens without an air gap at a polar

  18. Computational steering of GEM based detector simulations

    Science.gov (United States)

    Sheharyar, Ali; Bouhali, Othmane

    2017-10-01

    Gas based detector R&D relies heavily on full simulation of detectors and their optimization before final prototypes can be built and tested. These simulations in particular those with complex scenarios such as those involving high detector voltages or gas with larger gains are computationally intensive may take several days or weeks to complete. These long-running simulations usually run on the high-performance computers in batch mode. If the results lead to unexpected behavior, then the simulation might be rerun with different parameters. However, the simulations (or jobs) may have to wait in a queue until they get a chance to run again because the supercomputer is a shared resource that maintains a queue of other user programs as well and executes them as time and priorities permit. It may result in inefficient resource utilization and increase in the turnaround time for the scientific experiment. To overcome this issue, the monitoring of the behavior of a simulation, while it is running (or live), is essential. In this work, we employ the computational steering technique by coupling the detector simulations with a visualization package named VisIt to enable the exploration of the live data as it is produced by the simulation.

  19. Measurements on irradiated L1 sensor prototypes for the D0 Run IIb silicon detector project

    International Nuclear Information System (INIS)

    Ahsan, M.; Bolton, T.; Carnes, K.; Demarteau, M.; Demina, R.; Gray, T.; Korjenevski, S.; Lehner, F.; Lipton, R.; Mao, H.S.; McCarthy, R.

    2010-01-01

    We report on irradiation studies of Hamamatsu prototype silicon microstrip detectors for layer 1 of the D0 upgrade project for Run IIb. The irradiation was carried out with 10 MeV protons up to proton fluence of 10 14 p/cm 2 at the J.R. Macdonald Laboratory, Manhatten, KS. The flux calibration was carefully checked using different dose normalization techniques. The results based on the obtained sensor leakage currents after irradiation show that the NIEL scaling hypothesis for low energy protons has to be applied with great care. We observe 30-40% less radiation damage in silicon for 10 MeV proton exposure than is expected from the predicted NIEL scaling.

  20. Measurements on irradiated L1 sensor prototypes for the D0 Run IIb silicon detector project

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan, M.; Bolton, T.; Carnes, K.; /Kansas State U.; Demarteau, M.; /Fermilab; Demina, R.; /Rochester U.; Gray, T.; /Kansas State U.; Korjenevski, S.; /Rochester U.; Lehner, F.; /Zurich U.; Lipton, R.; Mao, H.S.; /Fermilab; McCarthy, R.; /SUNY, Stony Brook /Kansas State U. /Fermilab

    2010-01-01

    We report on irradiation studies of Hamamatsu prototype silicon microstrip detectors for layer 1 of the D0 upgrade project for Run IIb. The irradiation was carried out with 10 MeV protons up to proton fluence of 10{sup 14} p/cm{sup 2} at the J.R. Macdonald Laboratory, Manhatten, KS. The flux calibration was carefully checked using different dose normalization techniques. The results based on the obtained sensor leakage currents after irradiation show that the NIEL scaling hypothesis for low energy protons has to be applied with great care. We observe 30-40% less radiation damage in silicon for 10 MeV proton exposure than is expected from the predicted NIEL scaling.

  1. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    Püllen, Lukas; Boek, Jennifer; Kersten, Susanne; Kind, Peter; Mättig, Peter; Zeitnitz, Christian

    2013-01-01

    In the years around 2020 an upgrade of the LHC to the HL-LHC is scheduled, which will increase the accelerator's instantaneous luminosity by a factor of 5 and the integrated luminosity by a factor of 10. In the context of this upgrade, the inner detector (including the pixel detector) of the ATLAS experiment will be replaced. This new pixel detector requires a specific control system which complies with strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University of Wuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4×4 DCS chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub-micron technology. We present results from reliability measurements under irradiation from new prototypes of components for the DCS network.

  2. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    Boek, J; Kersten, S; Kind, P; Mättig, P; Püllen, L; Zeitnitz, C

    2013-01-01

    In the years around 2020 an upgrade of the LHC to the HL-LHC is scheduled, which will increase the accelerators luminosity by a factor of 10. In the context of this upgrade, the inner detector of the ATLAS experiment will be replaced entirely including the pixel detector. This new pixel detector requires a specific control system which complies with the strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University of Wuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS Chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4x4 DCS Chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub micron technology. We present results from measurements from new prototypes of components for the DCS network.

  3. An asynchronous data-driven readout prototype for CEPC vertex detector

    Science.gov (United States)

    Yang, Ping; Sun, Xiangming; Huang, Guangming; Xiao, Le; Gao, Chaosong; Huang, Xing; Zhou, Wei; Ren, Weiping; Li, Yashu; Liu, Jianchao; You, Bihui; Zhang, Li

    2017-12-01

    The Circular Electron Positron Collider (CEPC) is proposed as a Higgs boson and/or Z boson factory for high-precision measurements on the Higgs boson. The precision of secondary vertex impact parameter plays an important role in such measurements which typically rely on flavor-tagging. Thus silicon CMOS Pixel Sensors (CPS) are the most promising technology candidate for a CEPC vertex detector, which can most likely feature a high position resolution, a low power consumption and a fast readout simultaneously. For the R&D of the CEPC vertex detector, we have developed a prototype MIC4 in the Towerjazz 180 nm CMOS Image Sensor (CIS) process. We have proposed and implemented a new architecture of asynchronous zero-suppression data-driven readout inside the matrix combined with a binary front-end inside the pixel. The matrix contains 128 rows and 64 columns with a small pixel pitch of 25 μm. The readout architecture has implemented the traditional OR-gate chain inside a super pixel combined with a priority arbiter tree between the super pixels, only reading out relevant pixels. The MIC4 architecture will be introduced in more detail in this paper. It will be taped out in May and will be characterized when the chip comes back.

  4. Aging measurements on triple-GEM detectors operated with $CF_{4}$- based gas mixtures

    CERN Document Server

    Alfonsi, M; Bencivenni, G; Bonivento, W; Cardini, A; Lener, M P; Murtas, F; Pinci, D; Raspino, D; Saitta, B; De Simone, P

    2004-01-01

    We present the results of a global irradiation test of full size triple-GEM detectors operated with CF/sub 4/-based gas mixtures. This study has been performed in the framework of an R&D activity on detectors for the innermost region of the first muon station of the LHCb experiment. The prototypes have been irradiated at the Calliope facility of the ENEA-Casaccia with a high intensity 1.25 MeV gamma from a /sup 60/Co source. After the irradiation test the detectors performances have been measured with X-rays and with a 3 GeV pion beam at CERN. A SEM analysis on several samples of the detectors has been performed to complete the understanding of the physical processes occurring in the GEM detector during the strong irradiation.

  5. The read-out electronics of the AMS prototype RICH detector

    International Nuclear Information System (INIS)

    Gallin-Martel, L.; Eraud, L.; Pouxe, J.; Aguayo de Hoyos, P.; Marin Munoz, J.; Martinez Botella, G.

    2003-01-01

    A Ring Imaging Cherenkov (RICH) counter dedicated to the AMS experiment is under development. An integrated circuit has been designed with the Austriamicrosystems 0.6 πm CMOS technology to process the signals of the 16 anode PMTs used in the photon detection. To improve the detector compactness, the read out electronics is placed very close to the PMTs. This lead to the design of a detection cell that comprises: a light guide, a PMT, a high voltage divider, an analog front end chip and an analog to digital converter. The analog front-end chips were extensively and successfully tested in a laboratory environment, 96 of them are now mounted on the RICH prototype. Tests with cosmic rays have started. Ion beam tests are planed in a near future. (authors)

  6. Noise behavior of the Garching 30-meter prototype gravitational-wave detector

    International Nuclear Information System (INIS)

    Shoemaker, D.; Schilling, R.; Schnupp, L.; Winkler, W.; Maischberger, K.; Ruediger, A.

    1988-01-01

    The prototype gravitational-wave detector at Garching is described: in a laser-illuminated Michelson interferometer having arms 30 m in length, a folded optical path of 3 km is realized. The origin, action, and magnitude of possible noise sources are given. The agreement between the expected and measured noise is good. For a band of astrophysical interest, extending from 1 to 6 kHz, the quantum shot noise corresponding to a light power of P = 0.23 W is dominant. In terms of the dimensionless strain h the best sensitivity in a 1-kHz bandwidth is h = 3 x 10/sup -18/, comparable to the most sensitive Weber-bar-type antennas

  7. BPM Electronics based on Compensated Diode Detectors – Results from development Systems

    CERN Document Server

    Gasior, M; Steinhagen, RJ

    2012-01-01

    High resolution beam position monitor (BPM) electronics based on diode peak detectors is being developed for processing signals from button BPMs embedded into future LHC collimators. Its prototypes were measured in a laboratory as well as with beam signals from the collimator BPM installed on the SPS and with LHC BPMs. Results from these measurements are presented and discussed.

  8. Prototyping of larger structures for the Phase-II upgrade of the pixel detector of the ATLAS experiment

    CERN Document Server

    Alvarez Feito, Diego; The ATLAS collaboration

    2017-01-01

    For the high luminosity era of the Large Hadron Collider (HL-LHC) it is forseen to replace the current inner tracker of the ATLAS experiment with a new detector to cope with the occuring increase in occupancy, bandwidth and radiation damage. It will consist of an inner pixel and outer strip detector aiming to provide tracking coverage up to |η|<4. The layout of the pixel detector is foreseen to consist of five layers of pixel silicon sensor modules in the central region and several ring-shaped layers in the forward region. It results in up to 14 m² of silicon depending on the selected layout. Beside the challenge of radiation hardness and high-rate capable silicon sensors and readout electronics many system aspects have to be considered for a fully functional detector. Both stable and low mass mechanical structures and services are important. Within the collaboration a large effort is started to prototype larger detector structures for both the central and forward region of the detector. The aspect of sy...

  9. Development of SiPM-based scintillator tile detectors for a multi-layer fast neutron tracker

    Directory of Open Access Journals (Sweden)

    Jakubek J.

    2012-10-01

    Full Text Available We are developing thin tile scintillator detectors with silicon photomultiplier (SiPM readout for use in a multi-layer fast-neutron tracker. The tracker is based on interleaved Timepix and plastic scintillator layers. The thin 15 × 15 × 2 mm plastic scintillators require suitable optical readout in order to detect and measure the energy lost by energetic protons that have been recoiled by fast neutrons. Our first prototype used dual SiPMs, coupled to opposite edges of the scintillator tile using light-guides. An alternative readout geometry was designed in an effort to increase the fraction of scintillation light detected by the SiPMs. The new prototype uses a larger SiPM array to cover the entire top face of the tile. This paper details the comparative performance of the two prototype designs. A deuterium-tritium (DT fast-neutron source was used to compare the relative light collection efficiency of the two designs. A collimated UV light source was scanned across the detector face to map the uniformity. The new prototype was found to have 9.5 times better light collection efficiency over the original design. Both prototypes exhibit spatial non-uniformity in their response. Methods of correcting this non-uniformity are discussed.

  10. Characterization of silicon microstrip sensors, front-end electronics, and prototype tracking detectors for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, Iurii

    2013-07-01

    The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryonic densities. The matter at the extreme conditions will be studied in collisions of a heavy ion beam with a fixed heavy element target. The present work is devoted to the development of the main component of the CBM experiment - the Silicon Tracking System (STS). The STS has to enable reconstruction of up to 1000 charged particle tracks per nucleus-nucleus interaction at the rate of up to 10 MHz, provide a momentum resolution Δp/p of 1 %, and withstand the radiation load of up to 10{sup 14} n{sub eq}/cm{sup 2} (n{sub eq}-neutron equivalent). The STS will be based on double-sided silicon microstrip sensors, that will be arranged in 8 planes in the aperture of the dipole magnet. Selftriggering readout electronics will be located on the periphery of the detecting planes, and connected to the sensors with low mass microcables. In the stage of R and D, as well as in the stages of pre-series and series production, characterization of the sensors, of the front-end electronics, and of the complete detector modules has to be performed. In the present work the required techniques were developed, and the performance of the latest detector prototypes was evaluated. A particular attention is paid to evaluation of the signal amplitude, as it is one of the most important detector characteristics. Techniques for measuring the passive electrical characteristics of the sensors were developed. These include: the coupling and the interstrip capacitances, the interstrip resistance, the bias resistance, the strip leakage current, the bulk capacitance, and the bulk leakage current. The techniques will be applied for the quality assurance of the sensors during the pre-series and the series production. Extensive characterization of the prototype readout chip, n-XYTER, was performed. The register settings were optimized, and the dependence of the

  11. arXiv Photon detector system performance in the DUNE 35-ton prototype liquid argon time projection chamber

    CERN Document Server

    Adams, D.L.; Anderson, J.T.; Bagby, L.; Baird, M.; Barr, G.; Barros, N.; Biery, K.; Blake, A.; Blaufuss, E.; Boone, T.; Booth, A.; Brailsford, D.; Buchanan, N.; Chatterjee, A.; Convery, M.; Davies, J.; Dealtry, T.; DeLurgio, P.; Deuerling, G.; Dharmapalan, R.; Djurcic, Z.; Drake, G.; Eberly, B.; Freeman, J.; Glavin, S.; Gomes, R.A.; Goodman, M.C.; Graham, M.; Hahn, A.; Haigh, J.T.; Hartnell, J.; Higuera, A.; Himmel, A.; Insler, J.; Jacobsen, J.; Junk, T.; Kirby, B.; Klein, J.; Kudryavtsev, V.A.; Kutter, T.; Li, Y.; Li, X.; Lin, S.; Martin-Albo, J.; McConkey, N.; Moura, C.A.; Mufson, S.; Nicholls, T.C.; Nowak, J.; Oberling, M.; Paley, J.; Qian, X.; Raaf, J.L.; Rivera, D.; Santucci, G.; Sinev, G.; Spooner, N.J. C.; Stancari, M.; Stancu, I.; Stefan, D.; Stewart, J.; Stock, J.; Strauss, T.; Sulej, R.; Sun, Y.; Thiesse, M.; Thompson, L.F.; Tsai, Y.T.; Wallbank, M.; Warburton, T.K.; Warner, D.; Whittington, D.; Wilson, R.J.; Worcester, M.; Worcester, E.; Yang, T.; Zhang, C.

    The 35-ton prototype for the Deep Underground Neutrino Experiment far detector was a single-phase liquid argon time projection chamber with an integrated photon detector system, all situated inside a membrane cryostat. The detector took cosmic-ray data for six weeks during the period of February 1, 2016 to March 12, 2016. The performance of the photon detection system was checked with these data. An installed photon detector was demonstrated to measure the arrival times of cosmic-ray muons with a resolution better than 32 ns, limited by the timing of the trigger system. A measurement of the timing resolution using closely-spaced calibration pulses yielded a resolution of 15 ns for pulses at a level of 6 photo-electrons. Scintillation light from cosmic-ray muons was observed to be attenuated with increasing distance with a characteristic length of $155 \\pm 28$ cm.

  12. Development and construction of a large TPC prototype for the ILC and study of τ polarisation in τ decays with the ILD detector

    International Nuclear Information System (INIS)

    Schade, Peter

    2009-11-01

    This thesis presents two studies which have been made in the framework of the detector development for the International Large Detector (ILD). In the preparation phase for the ILD, prototype studies are performed to develop and optimise the sub-detector technologies which will come into operation. Complementary to these hardware studies, expected physics scenarios are being investigated in full detector simulations. These simulations demonstrate the physics potential of the detector concept and are a benchmark for the detector and the accelerator design. The first part of this thesis gives an introduction to the physics questions addressed to the ILC. Also, the machine and the ILD detector concept are presented. The second part is dedicated to the development and the construction to a large Time Projection Chamber (TPC) prototype (LP). A TPC is foreseen as one of ILD's sub-detectors and shall measure the trajectories of charged particles with an accuracy unprecedented by TPCs operated before. The new prototype offers an infrastructure for the development of modern TPC readout structures which can fulfil the required criteria. Before construction, the design plans of the LP have been optimised for a low material budget of the structure and a very homogeneous drift field. During the manufacturing of the LP, experience with construction techniques has been gained for the construction of the ILD TPC. The third part deals with a simulation study for a polarisation measurement of τ leptons in the process e + e - → τ 1 τ 1 → χ 1 0 χ 1 0 ττ. Here, the τ 1 is the supersymmetric partner of the τ lepton. This simulation study shows the feasibility of the measurement in the chosen SUSY scenario and estimates the accuracy to be expected. Both studies address in particular the track reconstruction capabilities of the ILD detector. Conclusions of the discussed studies and an outlook are presented in part IV. (orig.)

  13. To Test a Prototype of a Proton Lifetime Detector in a Neutrino Beam at the PS

    CERN Multimedia

    2002-01-01

    In order to test the performances of the calorimeter method in a nucleon lifetime experiment, a 3 ton prototype calorimeter made of iron and polystyrene scintillator sandwiches and of fine-grain counters has been designed by our collaboration. The energy and angular resolution will be tested by exposing this prototype to charged particles ($e, \\mu , \\pi$) in the 0.5 GeV/c range at Orsay and at CERN in Summer 1980. Since an unavoidable background to any experiment on nucleon decay consists of atmospheric neutrino events, which could in some cases simulate a nucleon decay, the knowledge of the configuration of such events in our detector is essential. It has been shown that the energy distribution of the $\

  14. VHMPID RICH prototype using pressurized C{sub 4}F{sub 8}O radiator gas and VUV photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Acconcia, T.V. [UNICAMP, University of Campinas, Campinas (Brazil); Agócs, A.G. [Wigner RCP of the HAS, Budapest (Hungary); Barile, F. [INFN Sezione di Bari and Universitá degli Studi di Bari, Dipartimento Interateneo di Fisica M. Merlin, Bari (Italy); Barnaföldi, G.G. [Wigner RCP of the HAS, Budapest (Hungary); Bellwied, R. [University of Houston, Houston (United States); Bencédi, G. [Wigner RCP of the HAS, Budapest (Hungary); Bencze, G., E-mail: Gyorgy.Bencze@cern.ch [Wigner RCP of the HAS, Budapest (Hungary); Berényi, D.; Boldizsár, L. [Wigner RCP of the HAS, Budapest (Hungary); Chattopadhyay, S. [Saha Institute, Kolkata (India); Chinellato, D.D. [University of Houston, Houston (United States); Cindolo, F. [University of Salerno, Salerno (Italy); Cossyleon, K. [Chicago State University, Chicago, IL (United States); Das, D.; Das, K.; Das-Bose, L. [Saha Institute, Kolkata (India); Dash, A.K. [UNICAMP, University of Campinas, Campinas (Brazil); D' Ambrosio, S. [University of Salerno, Salerno (Italy); De Cataldo, G. [INFN Sezione di Bari and Universitá degli Studi di Bari, Dipartimento Interateneo di Fisica M. Merlin, Bari (Italy); De Pasquale, S. [University of Salerno, Salerno (Italy); and others

    2014-12-11

    A small-size prototype of a new Ring Imaging Cherenkov (RICH) detector using for the first time pressurized C4F8O radiator gas and a photon detector consisting of MWPC equipped with a CsI photocathode has been built and tested at the PS accelerator at CERN. It contained all the functional elements of the detector proposed as Very High Momentum Particle Identification (VHMPID) upgrade for the ALICE experiment at LHC to provide charged hadron track-by-track identification in the momentum range starting from 5 potentially up to 25 GeV/c. In the paper the equipment and its elements are described and some characteristic test results are shown.

  15. A Prototype Combination TPC Cherenkov Detector with GEM Readout for Tracking and Particle Identification and its Potential Use at an Electron Ion Collider

    Directory of Open Access Journals (Sweden)

    Woody Craig

    2018-01-01

    Full Text Available A prototype detector is being developed which combines the functions of a Time Projection Chamber for charged particle tracking and a Cherenkov detector for particle identification. The TPC consists of a 10×10×10 cm3 drift volume where the charge is drifted to a 10×10 cm2 triple GEM detector. The charge is measured on a readout plane consisting of 2×10 mm2 chevron pads which provide a spatial resolution ∼ 100 μm per point in the chevron direction along with dE/dx information. The Cherenkov portion of the detector consists of a second 10×10 cm2 triple GEM with a photosensitive CsI photocathode on the top layer. This detector measures Cherenkov light produced in the drift gas of the TPC by high velocity particles which are above threshold. CF4 or CF4 mixtures will be used as the drift gas which are highly transparent to UV light and can provide excellent efficiency for detecting Cherenkov photons. The drift gas is also used as the operating gas for both GEM detectors. The prototype detector has been constructed and is currently being tested in the lab with sources and cosmic rays, and additional tests are planned in the future to study the detector in a test beam.

  16. A Prototype Combination TPC Cherenkov Detector with GEM Readout for Tracking and Particle Identification and its Potential Use at an Electron Ion Collider

    Science.gov (United States)

    Woody, Craig; Azmoun, Babak; Majka, Richard; Phipps, Michael; Purschke, Martin; Smirnov, Nikolai

    2018-02-01

    A prototype detector is being developed which combines the functions of a Time Projection Chamber for charged particle tracking and a Cherenkov detector for particle identification. The TPC consists of a 10×10×10 cm3 drift volume where the charge is drifted to a 10×10 cm2 triple GEM detector. The charge is measured on a readout plane consisting of 2×10 mm2 chevron pads which provide a spatial resolution ˜ 100 μm per point in the chevron direction along with dE/dx information. The Cherenkov portion of the detector consists of a second 10×10 cm2 triple GEM with a photosensitive CsI photocathode on the top layer. This detector measures Cherenkov light produced in the drift gas of the TPC by high velocity particles which are above threshold. CF4 or CF4 mixtures will be used as the drift gas which are highly transparent to UV light and can provide excellent efficiency for detecting Cherenkov photons. The drift gas is also used as the operating gas for both GEM detectors. The prototype detector has been constructed and is currently being tested in the lab with sources and cosmic rays, and additional tests are planned in the future to study the detector in a test beam.

  17. Results from the NA62 Gigatracker Prototype: A Low-Mass and sub-ns Time Resolution Silicon Pixel Detector

    Science.gov (United States)

    Fiorini, M.; Rinella, G. Aglieri; Carassiti, V.; Ceccucci, A.; Gil, E. Cortina; Ramusino, A. Cotta; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petagna, P.; Petrucci, F.; Perktold, L.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    The Gigatracker (GTK) is a hybrid silicon pixel detector developed for NA62, the experiment aimed at studying ultra-rare kaon decays at the CERN SPS. Three GTK stations will provide precise momentum and angular measurements on every track of the high intensity NA62 hadron beam with a time-tagging resolution of 150 ps. Multiple scattering and hadronic interactions of beam particles in the GTK have to be minimized to keep background events at acceptable levels, hence the total material budget is fixed to 0.5% X0 per station. In addition the calculated fluence for 100 days of running is 2×1014 1 MeV neq/cm2, comparable to the one expected for the inner trackers of LHC detectors in 10 years of operation. These requirements pose challenges for the development of an efficient and low-mass cooling system, to be operated in vacuum, and on the thinning of read-out chips to 100 μm or less. The most challenging requirement is represented by the time resolution, which can be achieved by carefully compensating for the discriminator time-walk. For this purpose, two complementary read-out architectures have been designed and produced as small-scale prototypes: the first is based on the use of a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other uses a constant-fraction discriminator followed by an on-pixel TDC. The readout pixel ASICs are produced in 130 nm IBM CMOS technology and bump-bonded to 200 μm thick silicon sensors. The Gigatracker detector system is described with particular emphasis on recent experimental results obtained from laboratory and beam tests of prototype bump-bonded assemblies, which show a time resolution of less than 200 ps for single hits.

  18. A lightweight field cage for a large TPC prototype for the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Ties; Dehmelt, Klaus; Diener, Ralf; Hallermann, Lea; Matsuda, Takeshi; Prahl, Volker; Schade, Peter

    2010-06-15

    We have developed and constructed the field cage of a prototype Time Projection Chamber for research and development studies for a detector at the International Linear Collider. This prototype has an inner diameter of 72 cm and a length of 61 cm. The design of the field cage wall was optimized for a low material budget of 1.21% of a radiation length and a drift field homogeneity of {delta}E/E prototype has been part of a comprehensive test beam setup at DESY and used as a test chamber for the development of Micro Pattern Gas Detector based readout devices. (orig.)

  19. A lightweight field cage for a large TPC prototype for the ILC

    International Nuclear Information System (INIS)

    Behnke, Ties; Dehmelt, Klaus; Diener, Ralf; Hallermann, Lea; Matsuda, Takeshi; Prahl, Volker; Schade, Peter

    2010-06-01

    We have developed and constructed the field cage of a prototype Time Projection Chamber for research and development studies for a detector at the International Linear Collider. This prototype has an inner diameter of 72 cm and a length of 61 cm. The design of the field cage wall was optimized for a low material budget of 1.21% of a radiation length and a drift field homogeneity of ΔE/E -4 . Since November 2008 the prototype has been part of a comprehensive test beam setup at DESY and used as a test chamber for the development of Micro Pattern Gas Detector based readout devices. (orig.)

  20. MPACT Fast Neutron Multiplicity System Prototype Development

    Energy Technology Data Exchange (ETDEWEB)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  1. Design and implementation of an XML based object-oriented detector description database for CMS

    International Nuclear Information System (INIS)

    Liendl, M.

    2003-04-01

    This thesis deals with the development of a detector description database (DDD) for the compact muon solenoid (CMS) experiment at the large hadron collider (LHC) located at the European organization for nuclear research (CERN). DDD is a fundamental part of the CMS offline software with its main applications, simulation and reconstruction. Both are in need of different models of the detector in order to efficiently solve their specific tasks. In the thesis the requirements to a detector description database are analyzed and the chosen solution is described in detail. It comprises the following components: an XML based detector description language, a runtime system that implements an object-oriented transient representation of the detector, and an application programming interface to be used by client applications. One of the main aspects of the development is the design of the DDD components. The starting point is a domain model capturing concisely the characteristics of the problem domain. The domain model is transformed into several implementation models according to the guidelines of the model driven architecture (MDA). Implementation models and appropriate refinements thereof are foundation for adequate implementations. Using the MDA approach, a fully functional prototype was realized in C++ and XML. The prototype was successfully tested through seamless integration into both the simulation and the reconstruction framework of CMS. (author)

  2. Musculoskeletal imaging with a prototype photon-counting detector.

    Science.gov (United States)

    Gruber, M; Homolka, P; Chmeissani, M; Uffmann, M; Pretterklieber, M; Kainberger, F

    2012-01-01

    To test a digital imaging X-ray device based on the direct capture of X-ray photons with pixel detectors, which are coupled with photon-counting readout electronics. The chip consists of a matrix of 256 × 256 pixels with a pixel pitch of 55 μm. A monolithic image of 11.2 cm × 7 cm was obtained by the consecutive displacement approach. Images of embalmed anatomical specimens of eight human hands were obtained at four different dose levels (skin dose 2.4, 6, 12, 25 μGy) with the new detector, as well as with a flat-panel detector. The overall rating scores for the evaluated anatomical regions ranged from 5.23 at the lowest dose level, 6.32 at approximately 6 μGy, 6.70 at 12 μGy, to 6.99 at the highest dose level with the photon-counting system. The corresponding rating scores for the flat-panel detector were 3.84, 5.39, 6.64, and 7.34. When images obtained at the same dose were compared, the new system outperformed the conventional DR system at the two lowest dose levels. At the higher dose levels, there were no significant differences between the two systems. The photon-counting detector has great potential to obtain musculoskeletal images of excellent quality at very low dose levels.

  3. NeuLAND MRPC-based detector prototypes tested with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Caesar, C., E-mail: c.caesar@gsi.de [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Aumann, T. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Bemmerer, D. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Boretzky, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Elekes, Z. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); ATOMKI, Debrecen (Hungary); Gonzalez-Diaz, D.; Hehner, J.; Heil, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Kempe, M. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Maroussov, V. [Universitaet zu Koeln, Koeln (Germany); Nusair, O. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Al-Balqa Applied University, Salt (Jordan); Reifarth, R.; Rossi, D.; Simon, H. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Stach, D.; Wagner, A.; Yakorev, D. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Zilges, A. [ATOMKI, Debrecen (Hungary)

    2012-01-01

    Recent results from a first irradiation of multi-gap resistive plate chambers with fast neutrons are presented. The counters have been built at GSI and FZD. The experiment was performed at the 'The Svedberg Laboratory' (TSL) in Uppsala, Sweden, utilizing a quasi-monoenergetic neutron beam with an energy E{sub n}=175 MeV. For a 2 Multiplication-Sign 4 gap prototype operated at E=100 kV/cm, an efficiency of (0.77 {+-}0.33)% was measured.

  4. Test-Beam Results on <100> Silicon Prototype Detectors with APV6 Front-End Chip Readout

    CERN Document Server

    Winkler, Matthias

    2000-01-01

    Results are presented using data collected during the X5 test-beam performed in August 1999. To achieve a good estimate of signal and noise values, the raw data are processed off-line by a dedicated reconstruction program. In particular, an efficient algorithm for pedestal, noise and common mode calculation was developed and tested. The intrinsic performances of an AC-coupled CMS silicon micro-strip multi-geometry prototype detector, with a <100> crystal orientation and a low resistivity ( 1~k Omega cm), are investigated. This detector was exposed to an irradiation fluence of 3 imes10^{14} p/cm ^2 , equivalent to 10 years of operation at LHC. The signal-to-noise ratio and the ghost rates per strip and per cm ^2 are presented, as a function of the bias voltage.

  5. Performance of a cryogenic system prototype for the XENON1T detector

    International Nuclear Information System (INIS)

    Aprile, E; Budnik, R; Choi, B; Contreras, H A; Giboni, K L; Goetzke, L W; Lang, R F; Lim, K E; Melgarejo, A J; Plante, G; Rizzo, A; Shagin, P

    2012-01-01

    We have developed an efficient cryogenic system with heat exchange and associated gas purification system as a prototype for the XENON1T experiment. The XENON1T detector will use about 3 tons of liquid xenon (LXe) at a temperature of 175K as target and detection medium for a dark matter search. In this paper we report results on the cryogenic system performance focusing on the dynamics of the gas circulation-purification through a heated getter, at flow rates above 50 Standard Liter per Minute (SLPM). A maximum flow of 114 SLPM has been achieved, and using two heat exchangers in series, a heat exchange efficiency better than 96% has been measured.

  6. Measurements on a prototype segmented Clover detector

    CERN Document Server

    Shepherd, S L; Cullen, D M; Appelbe, D E; Simpson, J; Gerl, J; Kaspar, M; Kleinböhl, A; Peter, I; Rejmund, M; Schaffner, H; Schlegel, C; France, G D

    1999-01-01

    The performance of a segmented Clover germanium detector has been measured. The segmented Clover detector is a composite germanium detector, consisting of four individual germanium crystals in the configuration of a four-leaf Clover, housed in a single cryostat. Each crystal is electrically segmented on its outer surface into four quadrants, with separate energy read-outs from nine crystal zones. Signals are also taken from the inner contact of each crystal. This effectively produces a detector with 16 active elements. One of the purposes of this segmentation is to improve the overall spectral resolution when detecting gamma radiation emitted following a nuclear reaction, by minimising Doppler broadening caused by the opening angle subtended by each detector element. Results of the tests with sources and in beam will be presented. The improved granularity of the detector also leads to an improved isolated hit probability compared with an unsegmented Clover detector. (author)

  7. Majorana Thermosyphon Prototype Experimental Results

    International Nuclear Information System (INIS)

    Fast, James E.; Reid, Douglas J.; Aguayo Navarrete, Estanislao

    2010-01-01

    The Majorana demonstrator will operate at liquid Nitrogen temperatures to ensure optimal spectrometric performance of its High Purity Germanium (HPGe) detector modules. In order to transfer the heat load of the detector module, the Majorana demonstrator requires a cooling system that will maintain a stable liquid nitrogen temperature. This cooling system is required to transport the heat from the detector chamber outside the shield. One approach is to use the two phase liquid-gas equilibrium to ensure constant temperature. This cooling technique is used in a thermosyphon. The thermosyphon can be designed so the vaporization/condensing process transfers heat through the shield while maintaining a stable operating temperature. A prototype of such system has been built at PNNL. This document presents the experimental results of the prototype and evaluates the heat transfer performance of the system. The cool down time, temperature gradient in the thermosyphon, and heat transfer analysis are studied in this document with different heat load applied to the prototype.

  8. ProtoDUNE-DP---PROTOtype for the Deep Underground Neutrino Experiment - Dual Phase detector (Electrostatic Simulations and Performance Studies)

    CERN Document Server

    Chiu, Pin-Jung

    In search of answers to the biggest missing puzzle in the field of neutrino physics, large- scale Liquid Argon Time Projection Chambers (LAr-TPCs) have been postulated to be the most attractive instruments for next generation neutrino observations. A state-of-the- art experiment, the Deep Underground Neutrino Experiment (DUNE), which will utilize this LAr-TPC technology for the studies of neutrino science and proton decay, is currently in the stage of design and prototyping. This thesis reports on the behavior studies of a 6 × 6 × 6 m^3 prototype, ProtoDUNE, in the context of DUNE from the electrostatic’s point of view. Electrostatic simulations had been performed on the whole detector in order to verify the uniformity of the electric field, and to assure that all local electric fields within the detector are below a certain value to avoid any electrical breakdown phenomena. Additionally, to characterize the performance of the 2D anode used for charge readout in the experiment, some simulations and measur...

  9. Proposal for a Full-Scale Prototype Single-Phase Liquid Argon Time Projection Chamber and Detector Beam Test at CERN

    CERN Document Server

    Kutter, T

    2015-01-01

    The Deep Underground Neutrino Experiment (DUNE) will use a large liquid argon (LAr) detector to measure the CP violating phase, determine the neutrino mass hier- archy and perform precision tests of the three-flavor paradigm in long-baseline neutrino oscillations. The detector will consist of four modules each with a fiducial mass of 10 kt of LAr and due to its unprecedented size will allow sensitive searches for proton decay and the detection and measurement of electron neutrinos from core collapse supernovae [1]. The first 10 kt module will use single-phase LAr detection technique and be itself modular in design. The successful manufacturing, installation and operation of several full-scale detector components in a suitable configuration represents a critical engineering milestone prior to the construction and operation of the first full 10 kt DUNE detector module at the SURF underground site. A charged particle beam test of a prototype detector will provide critical calibration measurements as well as inva...

  10. Prototyping and performance study of a single crystal diamond detector for operation at high temperatures

    Science.gov (United States)

    Kumar, Amit; Kumar, Arvind; Topkar, Anita; Das, D.

    2017-06-01

    Prototype single crystal diamond detectors with different types of metallization and post metallization treatment were fabricated for the applications requiring fast neutron measurements in the Indian Test Blanket Module (TBM) at the International Thermonuclear Experimental Reactor (ITER) Experiment. The detectors were characterized by leakage current measurements to ascertain that the leakage currents are low and breakdown voltages are higher than the voltage required for full charge collection. The detector response to charged particles was evaluated using a 238+239 Pu dual energy alpha source. The detectors showed an energy resolution of about 2% at 5.5 MeV. In order to study their suitability for the operation at higher temperatures, leakage current variation and alpha response were studied up to 300 °C. At 300 °C, peaks corresponding to 5.156 MeV and 5.499 MeV alphas could be separated and there was no significant degradation of energy resolution. Finally, the detector response to fast neutrons was evaluated using a Deuterium-Tritium (D-T) neutron generator. The observed spectrum showed peaks corresponding to various channels of n-C interactions with a clear isolated peak corresponding to 8.5 MeV alphas. The detectors also showed high sensitivity of 3.4×10-2 cps/n/(cm2 s)-4.5×10-2 cps/n/(cm2 s) and excellent linearity of response in terms of count rate at different neutron flux in the observed range of 3.2×105 n/(cm2 s) to 2.0×106 n/(cm2 s).

  11. Development of a super B-factory monolithic active pixel detector-the Continuous Acquisition Pixel (CAP) prototypes

    International Nuclear Information System (INIS)

    Varner, G.; Barbero, M.; Bozek, A.; Browder, T.; Fang, F.; Hazumi, M.; Igarashi, A.; Iwaida, S.; Kennedy, J.; Kent, N.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Stanic, S.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.

    2005-01-01

    Over the last few years great progress has been made in the technological development of Monolithic Active Pixel Sensors (MAPS) such that upgrades to existing vertex detectors using this technology are now actively being considered. Future vertex detection at an upgraded KEK-B factory, already the highest luminosity collider in the world, will require a detector technology capable of withstanding the increased track densities and larger radiation exposures. Near the beam pipe the current silicon strip detectors have projected occupancies in excess of 100%. Deep sub-micron MAPS look very promising to address this problem. In the context of an upgrade to the Belle vertex detector, the major obstacles to realizing such a device have been concerns about radiation hardness and readout speed. Two prototypes implemented in the TSMC 0.35 μm process have been developed to address these issues. Denoted the Continuous Acquisition Pixel, or CAP, the two variants of this architecture are distinguished in that CAP2 includes an 8-deep sampling pipeline within each 22.5 μm 2 pixel. Preliminary test results and remaining R and D issues are presented

  12. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Kohrs, Robert

    2008-09-15

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  13. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    Kohrs, Robert

    2008-09-01

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  14. CVD diamond based soft X-ray detector with fast response

    International Nuclear Information System (INIS)

    Li Fang; Hou Lifei; Su Chunxiao; Yang Guohong; Liu Shenye

    2010-01-01

    A soft X-ray detector has been made with high quality chemical vapor deposited (CVD) diamond and the electrical structure of micro-strip. Through the measurement of response time on a laser with the pulse width of 10 ps, the full width at half maximum of the data got in the oscilloscope was 115 ps. The rise time of the CVD diamond detector was calculated to be 49 ps. In the experiment on the laser prototype facility, the signal got by the CVD diamond detector was compared with that got by a soft X-ray spectrometer. Both signals coincided well. The detector is proved to be a kind of reliable soft X-ray detector with fast response and high signal-to-noise ratio. (authors)

  15. Performance of B-10 based detectors

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, Mathieu; Anderson, Tom; Johnson, Nathan; Mckinny, Kevin; Mcpheeters, Matthew [GE Measurement and Control - Reuter-Stokes, Twinsburg, Ohio (United States)

    2015-07-01

    Helium-3 gas-filled detectors have been used in nuclear safeguards applications, in homeland security neutron detection modules and in research for over 30 years. With the current shortage of {sup 3}He gas, GE's Reuter-Stokes business developed a {sup 10}B lined proportional counter and a {sup 10}B hybrid detector, in which a small amount of {sup 3}He is added to a 10B detector to enhance the neutron sensitivity. In 2010, GE's Reuter-Stokes successfully developed a commercial alternative to 3He gas-filled detectors for homeland security neutron detection modules based on 10B lined proportional counters. We will present the concept behind the {sup 10}B neutron detection modules, as drop-in replacement to existing 3He neutron detection modules deployed, and the timeline and development needed to get a fully commercial application. To ensure the highest quality, each {sup 10}B neutron detection unit is put through a series of tests: temperature cycles from -40 deg. C to +55 deg. C, vibration testing at levels up to 2.5 g from 10 Hz to 50 Hz in every direction, neutron sensitivity reaching up to 4.5 cps/(ng {sup 252}CF at 2 m), and gamma insensitivity with field reaching 1 Sv/hr. In 2013, GE's Reuter-Stokes developed the B10Plus+{sup R} detector, in which a small amount of {sup 3}He is added to a {sup 10}B lined proportional counter. Depending on the amount of {sup 3}He added, the B10Plus+{sup R} can more than double the neutron sensitivity compared to a {sup 10}B lined proportional counter. {sup 10}B lined proportional counters and B10Plus+{sup R} have excellent gamma rejection and excellent performance even at very high neutron flux. The gamma rejection and high neutron flux performance of these detectors are comparable, if not better, than traditional {sup 3}He proportional counters. GE's Reuter-Stokes business modelled, designed, built and tested prototype coincidence counters using the {sup 10}B lined detectors and the {sup 10}B hybrid

  16. NeuLAND prototype: response to fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Jaehrling, Simon; Scheit, Heiko [Technische Universitaet Darmstadt (Germany); Aumann, Thomas [Technische Universitaet Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Boretzky, Konstanze; Heil, Michael; Kresan, Dmytro; Simon, Haik [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Gasparic, Igor [Technische Universitaet Darmstadt (Germany); Rudjer Boskovic Institute, Zagreb (Croatia); Collaboration: R3B-Collaboration

    2014-07-01

    Within the R3B collaboration (Reactions with Relativistic Radioactive Beams), a new neutron detector NeuLAND (New Large Area Neutron Detector) is being developed. It will be a fully active scintillation detector consisting of 3000 scintillator bars, arranged in 30 double layers. Within a double layer 50 bars are horizontal and 50 vertical orientated. The whole detector measures 2.5 x 2.5 x 3 m{sup 3}. A prototype with 150 NeuLAND bars was tested at GSI using quasi-mono-energetic neutrons with different energies from 200 to 1500 MeV stemming from quasi-free deuteron breakup reactions on a CH{sub 2} target. The experimental setup is described, and preliminary results for the time resolution and efficiency of the NeuLAND prototype detector are presented.

  17. R&D on a new type of micropattern gaseous detector: The Fast Timing Micropattern detector

    Energy Technology Data Exchange (ETDEWEB)

    Abbaneo, D.; Abbas, M. [CERN, Geneva (Switzerland); Abbrescia, M. [INFN Bari and University of Bari, Bari (Italy); Akl, M. Abi [Texas A& M University at Qatar, Doha (Qatar); Aboamer, O. [Academy of Scientific Research and Technology, Egyptian Network of High Energy Physics, ASRT-ENHEP, Cairo (Egypt); Acosta, D. [University of Florida, Gainesville (United States); Ahmad, A. [National Center for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); Ahmed, W. [INFN Bari and University of Bari, Bari (Italy); Aleksandrov, A. [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Altieri, P. [INFN Bari and University of Bari, Bari (Italy); Asawatangtrakuldee, C. [Peking University, Beijing (China); Aspell, P. [CERN, Geneva (Switzerland); Assran, Y. [Academy of Scientific Research and Technology, Egyptian Network of High Energy Physics, ASRT-ENHEP, Cairo (Egypt); Awan, I. [National Center for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); Bally, S. [CERN, Geneva (Switzerland); Ban, Y. [Peking University, Beijing (China); Banerjee, S. [Saha Institute of Nuclear Physics, Kolkata (India); Barashko, V. [University of Florida, Gainesville (United States); Barria, P. [Universite Libre de Bruxelles, Brussels (Belgium); Bencze, G. [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest (Hungary); and others

    2017-02-11

    This contribution introduces a new type of Micropattern Gaseous Detector, the Fast Timing Micropattern (FTM) detector, utilizing fully Resistive WELL structures. The structure of the prototype will be described in detail and the results of the characterization study performed with an X-ray gun will be presented, together with the first results on time resolution based on data collected with muon/pion test beams.

  18. Prototyping and performance study of a single crystal diamond detector for operation at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit; Kumar, Arvind; Topkar, Anita, E-mail: anita@barc.gov.in; Das, D.

    2017-06-21

    Prototype single crystal diamond detectors with different types of metallization and post metallization treatment were fabricated for the applications requiring fast neutron measurements in the Indian Test Blanket Module (TBM) at the International Thermonuclear Experimental Reactor (ITER) Experiment. The detectors were characterized by leakage current measurements to ascertain that the leakage currents are low and breakdown voltages are higher than the voltage required for full charge collection. The detector response to charged particles was evaluated using a {sup 238+239} Pu dual energy alpha source. The detectors showed an energy resolution of about 2% at 5.5 MeV. In order to study their suitability for the operation at higher temperatures, leakage current variation and alpha response were studied up to 300 °C. At 300 °C, peaks corresponding to 5.156 MeV and 5.499 MeV alphas could be separated and there was no significant degradation of energy resolution. Finally, the detector response to fast neutrons was evaluated using a Deuterium-Tritium (D-T) neutron generator. The observed spectrum showed peaks corresponding to various channels of n-C interactions with a clear isolated peak corresponding to ~8.5 MeV alphas. The detectors also showed high sensitivity of 3.4×10{sup −2} cps/n/(cm{sup 2} s)–4.5×10{sup −2} cps/n/(cm{sup 2} s) and excellent linearity of response in terms of count rate at different neutron flux in the observed range of 3.2×10{sup 5} n/(cm{sup 2} s) to 2.0×10{sup 6} n/(cm{sup 2} s).

  19. MIND performance and prototyping

    International Nuclear Information System (INIS)

    Cervera-Villanueva, A.

    2008-01-01

    The performance of MIND (Magnetised Iron Neutrino Detector) at a neutrino factory has been revisited in a new analysis. In particular, the low neutrino energy region is studied, obtaining an efficiency plateau around 5 GeV for a background level below 10 -3 . A first look has been given into the detector optimisation and prototyping

  20. Prototype ATLAS straw tracker

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This is an early prototype of the straw tracking device for the ATLAS detector at CERN. This detector will be part of the LHC project, scheduled to start operation in 2008. The straw tracker will consist of thousands of gas-filled straws, each containing a wire, allowing the tracks of particles to be followed.

  1. Rule-based emergency action level monitor prototype

    International Nuclear Information System (INIS)

    Touchton, R.A.; Gunter, A.D.; Cain, D.

    1985-01-01

    In late 1983, the Electric Power Research Institute (EPRI) began a program to encourage and stimulate the development of artificial intelligence (AI) applications for the nuclear industry. Development of a rule-based emergency action level classification system prototype is discussed. The paper describes both the full prototype currently under development and the completed, simplified prototype

  2. Performance of prototype segmented CdZnTe arrays

    International Nuclear Information System (INIS)

    Parsons, A.; Palmer, D.M.; Kurczynski, P.; Barbier, L.; Barthelmy, S.; Bartlett, L.; Gehrels, N.; Krizmanic, J.; Stahle, C.M.; Tueller, J.; Teegarden, B.

    1998-01-01

    The Burst and All Sky Imaging Survey (BASIS) is a proposed mission to provide ∼3 arc second locations of approximately 90 Gamma-Ray Bursts (GRBs) per year. The BASIS coded aperture imaging system requires a segmented detector plane able to detect the interaction position of (10--150 keV) photons to less than 100 microm. To develop prototype detector arrays with such fine position resolution the authors have fabricated many 15 mm x 15 mm x 2 mm 100 microm pitch CdZnTe strip detectors. They have assembled these fine pitch CdZnTe strip detectors into prototype 2 x 2 and 6 x 6 element arrays read out by ASIC electronics. The assembly and electronics readout of the 6 x 6 flight prototype array will be discussed, and preliminary data illustrating the uniformity and efficiency of the array will be presented

  3. Test Plan for Cask Identification Detector

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-29

    This document serves to outline the testing of a Used Fuel Cask Identification Detector (CID) currently being designed under the DOE-NE MPACT Campaign. A bench-scale prototype detector will be constructed and tested using surrogate neutron sources. The testing will serve to inform the design of the full detector that is to be used as a way of fingerprinting used fuel storage casks based on the neutron signature produced by the used fuel inside the cask.

  4. Construction of a full-length prototype of the BESIII drift chamber and on-detector test for the BESIII drift chamber electronics

    International Nuclear Information System (INIS)

    Qin Zhonghua; Wu Linghui; Liu Jianbei; Chinese Academy of Sciences, Beijing; Yan Zhikang; Hunan Univ., Changsha; Chen Yuanbo; Chen Chang; Xu Meihang; Wang Lan; Ma Xiaoyan; Jin Yan; Liu Rongguang; Tang Xiao; Zhang Guifang; Zhu Qiming; Sheng Huayi; Zhu Kejun

    2007-01-01

    A full-length prototype of the BESIII drift chamber was built. The experience gained on gas sealing, high voltage supply and front-end electronics installation should be greatly beneficial to the successful construction of the BESIII drift chamber. An on-detector test of the BESIII drift chamber electronics was carried out with the constructed prototype chamber. The noise performance, drift time and charge measurements, and electronics gains were examined specifically. The final test results indicate that the electronics have a good performance and can satisfy their design requirements. (authors)

  5. Test beam results of LHCb scintillating fibre tracker prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Sebastian; Comerma, Albert; Gerick, David; Hansmann-Menzemer, Stephanie; Kecke, Matthieu; Leverington, Blake; Mazorra de Cos, Jose; Mitzel, Dominik; Neuner, Max; Uwer, Ulrich; Han, Xiaoxue [Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: LHCb-Collaboration

    2016-07-01

    During the Long Shutdown 2 of the LHC, the LHCb detector will undergo a major upgrade to meet the challenges of running at a higher luminosity. The current Inner and Outer Tracking system will not be sufficient to deal with the envisaged increased detector occupancy and higher radiation levels and will be replaced by a single tracking detector based on 0.250 mm diameter plastic scintillating fibres. The fibres are wound to multilayer ribbons 2.4 m long and read out by 128 channel silicon photomultiplier arrays. The Scintillating Fibre (SciFi) tracker will cover a total active area of 360 m{sup 2}, arranged in 12 layers. The performances of prototype modules having 6 and 8 layers of fibre have been tested at the SPS at CERN. This talk focuses on basic properties of the prototype modules such as spatial resolution, single hit efficiency and light yield measured during the test beam campaigns in 2015.

  6. Development and characterization of a neutron detector based on a lithium glass–polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M.; Nattress, J.; Kukharev, V.; Foster, A.; Meddeb, A. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Trivelpiece, C. [Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Ounaies, Z. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Jovanovic, I., E-mail: ijovanovic@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2015-06-11

    We report on the fabrication and characterization of a neutron scintillation detector based on a Li-glass–polymer composite that utilizes a combination of pulse height and pulse shape discrimination (PSD) to achieve high gamma rejection. In contrast to fast neutron detection in a PSD medium, we combine two scintillating materials that do not possess inherent neutron/gamma PSD properties to achieve effective PSD/pulse height discrimination in a composite material. Unlike recoil-based fast neutron detection, neutron/gamma discrimination can be robust even at low neutron energies due to the high Q-value neutron capture on {sup 6}Li. A cylindrical detector with a 5.05 cm diameter and 5.08 cm height was fabricated from scintillating 1 mm diameter Li-glass rods and scintillating polyvinyltoluene. The intrinsic efficiency for incident fission neutrons from {sup 252}Cf and gamma rejection of the detector were measured to be 0.33% and less than 10{sup −8}, respectively. These results demonstrate the high selectivity of the detector for neutrons and provide motivation for prototyping larger detectors optimized for specific applications, such as detection and event-by-event spectrometry of neutrons produced by fission.

  7. A prototype BPM electronics module for RHIC

    International Nuclear Information System (INIS)

    Ryan, W.A.; Shea, T.J.; Cerniglia, P.; Degen, C.M.

    1993-01-01

    Prototype components of the VXI-based Beam Position Monitor Electronics for the Relativistic Heavy Ion Collider have been constructed and tested for accuracy, resolution and linearity. The detector, designed solely for single-bunch acquisition, consists of a homodyne detector followed by a sample and hold and Analog-to-Digital Converter. In the final modules, an on-board Digital Signal Processor will provide turn by turn data correction, continuously updated closed-orbit averaging, and circular buffer maintenance. A timing processor allows synchronization of modules to enable correlated data collection

  8. Prototype system for proton beam range measurement based on gamma electron vertex imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Rim [Neutron Utilization Technology Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung Hun; Park, Jong Hoon [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of); Jung, Won Gyun [Heavy-ion Clinical Research Division, Korean Institute of Radiological & Medical Sciences, Seoul 01812 (Korea, Republic of); Lim, Hansang [Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 01897 (Korea, Republic of); Kim, Chan Hyeong, E-mail: chkim@hanyang.ac.kr [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of)

    2017-06-11

    In proton therapy, for both therapeutic effectiveness and patient safety, it is very important to accurately measure the proton dose distribution, especially the range of the proton beam. For this purpose, recently we proposed a new imaging method named gamma electron vertex imaging (GEVI), in which the prompt gammas emitting from the nuclear reactions of the proton beam in the patient are converted to electrons, and then the converted electrons are tracked to determine the vertices of the prompt gammas, thereby producing a 2D image of the vertices. In the present study, we developed a prototype GEVI system, including dedicated signal processing and data acquisition systems, which consists of a beryllium plate (= electron converter) to convert the prompt gammas to electrons, two double-sided silicon strip detectors (= hodoscopes) to determine the trajectories of those converted electrons, and a plastic scintillation detector (= calorimeter) to measure their kinetic energies. The system uses triple coincidence logic and multiple energy windows to select only the events from prompt gammas. The detectors of the prototype GEVI system were evaluated for electronic noise level, energy resolution, and time resolution. Finally, the imaging capability of the GEVI system was tested by imaging a {sup 90}Sr beta source, a {sup 60}Co gamma source, and a 45-MeV proton beam in a PMMA phantom. The overall results of the present study generally show that the prototype GEVI system can image the vertices of the prompt gammas produced by the proton nuclear interactions.

  9. First Results with the Prototype Detectors of the Si/W ECAL

    Energy Technology Data Exchange (ETDEWEB)

    Strom, D; Frey, R.; /Oregon U.; Breidenbach, M.; Deng, J.; Freytag, D.; Graf, N.; Haller, G.; /SLAC; Radeka, V.; /Brookhaven

    2005-07-12

    Measurements on the prototype silicon sensors for use with an electromagnetic calorimeter with tungsten absorber are reported. The prototype sensors are based on a hexagonal geometry that optimally utilizes the space available on 6 inch silicon wafers. The sensors are segmented into approximately 750 5mm hexagonal pixels, which are connected to a bump-bonding array located at the center of the sensors. We report on those properties of the sensors that are important for linear collider applications including depletion voltage, stray capacitance and series resistance.

  10. Large-Area Neutron Detector based on Li-6 Pulse Mode Ionization Chamber

    International Nuclear Information System (INIS)

    Chung, K.; Ianakiev, K.D.; Swinhoe, M.T.; Makela, M.F.

    2005-01-01

    Prototypes of a Li-6 Pulse Mode Ionization Chamber (LiPMIC) have been in development for the past two years for the purpose of providing large-area neutron detector. this system would be suitable for remote deployment for homeland security and counterterrorism needs at borders, ports, and nuclear facilities. A prototype of LiPMIC is expected to provide a similar level of performance to the current industry-standard, He-3 proportional counters, while keeping the initial cost of procurement down by an order of magnitude, especially where large numbers of detectors are required. The overall design aspect and the efficiency optimization process is discussed. Specifically, the MCNP simulations of a single-cell prototype were performed and benchmarked with the experimental results. MCNP simulations of a three dimensional array design show intrinsic efficiency comparable to that of an array of He-3 proportional counters. LiPMIC has shown steady progress toward fulfilling the design expectations and future design modification and optimization are discussed.

  11. CAST with its micromegas detector installed.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    The CERN Axion Solar Telescope (CAST) uses a prototype LHC dipole magnet to search for very weakly interacting neutral particles called axions, which should originate in the core of the Sun. The magnet converts the solar axions to photons which are then detected by an X-ray detector based on Micromegas technology. CAST's Micromegas detector has now been installed. Photos 01 02: General view of the CAST experiment with the Micromegas detector in place. Photo 03: Close-up of the micromegas set-up.

  12. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    A technique, the so-called Drift Strip Method (DSM), for improving the CdZnTe detector energy response to hard X-rays and gamma-rays was applied as a pixel geometry. First tests have confirmed that this detector type provides excellent energy resolution and imaging performance. We specifically...... report on the performance of 3 mm thick prototype CZT drift pixel detectors fabricated using material from eV-products. We discuss issues associated with detector module performance. Characterization results obtained from several prototype drift pixel detectors are presented. Results of position...

  13. Neutron beam imaging with GEM detectors

    International Nuclear Information System (INIS)

    Albani, G.; Cazzaniga, C.; Rebai, M.; Gorini, G.; Croci, G.; Muraro, A.; Cippo, E. Perelli; Tardocchi, M.; Cavenago, M.; Murtas, F.; Claps, G.; Pasqualotto, R.

    2015-01-01

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3 He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10 B(n,α) 7 Li reaction). GEM detectors can be realized in large area (1 m 2 ) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards

  14. OPAL Jet Chamber Prototype

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the dirfferent parts of the tracking system. This piece is a prototype of the jet chambers

  15. Measured and calculated K-fluorescence effects on the MTF of an amorphous-selenium based CCD x-ray detector.

    Science.gov (United States)

    Hunter, David M; Belev, George; Kasap, Safa; Yaffe, Martin J

    2012-02-01

    Theoretical reasoning suggests that direct conversion digital x-ray detectors based upon photoconductive amorphous-selenium (a-Se) could attain very high values of the MTF (modulation transfer function) at spatial frequencies well beyond 20 cycles mm(-1). One of the fundamental factors affecting resolution loss, particularly at x-ray energies just above the K-edge of selenium (12.66 keV), is the K-fluorescence reabsorption mechanism, wherein energy can be deposited in the detector at locations laterally displaced from the initial x-ray interaction site. This paper compares measured MTF changes above and below the Se K-edge of a CCD based a-Se x-ray detector with theoretical expectations. A prototype 25 μm sampling pitch (Nyquist frequency = 20 cycles mm(-1), 200 μm thick a-Se layer based x-ray detector, utilizing a specialized CCD readout device (200 × 400 area array), was used to make edge images with monochromatic x-rays above and below the K-edge of Se. A vacuum double crystal monochromator, exposed to polychromatic x-rays from a synchrotron, formed the monochromatic x-ray source. The monochromaticity of the x-rays was 99% or better. The presampling MTF was determined using the slanted edge method. The theory modeling the MTF performance of the detector includes the basic x-ray interaction physics in the a-Se layer as well as effects related to the operation of the CCD and charge trapping at a blocking layer present at the CCD/a-Se interface. The MTF performance of the prototype a-Se CCD was reduced from the theoretical value prescribed by the basic Se x-ray interaction physics, principally by the presence of a blocking layer. Nevertheless, the K-fluorescence reduction in the MTF was observed, approximately as predicted by theory. For the CCD prototype detector, at five cycles mm(-1), there was a 14% reduction of the MTF, from a value of 0.7 below the K-edge of Se, to 0.6 just above the K-edge. The MTF of an a-Se x-ray detector has been measured using

  16. Technical Design Report for large-scale neutrino detectors prototyping and phased performance assessment in view of a long-baseline oscillation experiment

    CERN Document Server

    De Bonis, I.; Duchesneau, D.; Pessard, H.; Bordoni, S.; Ieva, M.; Lux, T.; Sanchez, F.; Jipa, A.; Lazanu, I.; Calin, M.; Esanu, T.; Ristea, O.; Ristea, C.; Nita, L.; Efthymiopoulos, I.; Nessi, M.; Asfandiyarov, R.; Blondel, A.; Bravar, A.; Cadoux, F.; Haesler, A.; Karadzhov, Y.; Korzenev, A.; Martin, C.; Noah, E.; Ravonel, M.; Rayner, M.; Scantamburlo, E.; Bayes, R.; Soler, F.J.P.; Nuijten, G.A.; Loo, K.; Maalampi, J.; Slupecki, M.; Trzaska, W.H.; Campanelli, M.; Blebea-Apostu, A.M.; Chesneanu, D.; Gomoiu, M.C; Mitrica, B.; Margineanu, R.M.; Stanca, D.L.; Colino, N.; Gil-Botella, I.; Novella, P.; Palomares, C.; Santorelli, R.; Verdugo, A.; Karpikov, I.; Khotjantsev, A.; Kudenko, Y.; Mefodiev, A.; Mineev, O.; Ovsiannikova, T.; Yershov, N.; Enqvist, T.; Kuusiniemi, P.; De La Taille, C.; Dulucq, F.; Martin-Chassard, G.; Andrieu, B.; Dumarchez, J.; Giganti, C.; Levy, J.-M.; Popov, B.; Robert, A.; Agostino, L.; Buizza-Avanzini, M.; Dawson, J.; Franco, D.; Gorodetzky, P.; Kryn, D.; Patzak, T.; Tonazzo, A.; Vannucci, F.; Bésida, O.; Bolognesi, S.; Delbart, A.; Emery, S.; Galymov, V.; Mazzucato, E.; Vasseur, G.; Zito, M.; Bogomilov, M.; Tsenov, R.; Vankova-Kirilova, G.; Friend, M.; Hasegawa, T.; Nakadaira, T.; Sakashita, K.; Zambelli, L.; Autiero, D.; Caiulo, D.; Chaussard, L.; Déclais, Y.; Franco, D.; Marteau, J.; Pennacchio, E.; Bay, F.; Cantini, C.; Crivelli, P.; Epprecht, L.; Gendotti, A.; Di Luise, S.; Horikawa, S.; Murphy, S.; Nikolics, K.; Periale, L.; Regenfus, C.; Rubbia, A.; Sgalaberna, D.; Viant, T.; Wu, S.; Sergiampietri, F.; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2014-01-01

    In June 2012, an Expression of Interest for a long-baseline experiment (LBNO, CERN-SPSC-EOI-007) has been submitted to the CERN SPSC and is presently under review. LBNO considers three types of neutrino detector technologies: a double-phase liquid argon (LAr) TPC and a magnetised iron detector as far detectors. For the near detector, a high-pressure gas TPC embedded in a calorimeter and a magnet is the baseline design. A mandatory milestone in view of any future long baseline experiment is a concrete prototyping effort towards the envisioned large-scale detectors, and an accompanying campaign of measurements aimed at assessing the systematic errors that will be affecting their intended physics programme. Following an encouraging feedback from 108th SPSC on the technology choices, we have defined as priority the construction and operation of a $6\\times 6\\times 6$m$^3$ (active volume) double-phase liquid argon (DLAr) demonstrator, and a parallel development of the technologies necessary for large magnetised MIN...

  17. Status and first Results of the CBM TRD Prototype Development

    International Nuclear Information System (INIS)

    Arend, Andreas

    2013-01-01

    The measurement of decay products from rare particles in the CBM experiment defines the requirements for the used detector systems. This report describes the approaches for the Transition Radiation Detector to fulfil these requirements and presents the current status of the prototype development. First results from beam tests with these prototypes are discussed.

  18. Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment

    Science.gov (United States)

    Sokolov, Oleksiy

    2006-04-01

    The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5˜TeV per nucleon. Particle tracking around the interaction region at radii rrequire about 20 thousand HAL25 front-end readout chips and about 3.5 thousand hybrids each containing 6 HAL25 chips. During the assembly procedure, chips are bonded on a patterned TAB aluminium microcables which connect to all the chip input and output pads, and then the chips are assembled on the hybrids. Bonding failures at the chip or hybrid level may either render the component non-functional or deteriorate its the performance such that it can not be used for the module production. After each bonding operation, the component testing is done to reject the non-functional or poorly performing chips and hybrids. The LabView-controlled test station for this operation has been built at Utrecht University and was successfully used for mass production acceptance tests of chips and hybrids at three production labs. The functionality of the chip registers, bonding quality and analogue functionality of the chips and hybrids are addressed in the test. The test routines were optimized to minimize the testing time to make sure that testing is not a bottleneck of the mass production. For testing of complete modules the laser scanning station with 1060 nm diode laser has been assembled at Utrecht University. The testing method relies of the fact that a response of the detector module to a short collimated laser beam pulse resembles a response to a minimum ionizing particle. A small beam spot size (˜7 μm ) allows to deposit the charge in a narrow region and measure the response of individual detector channels. First several module prototypes have been studied with this setup, the strip gain and charge sharing function have been measured, the later is compared with the model predictions. It was also shown that for a laser beam of a high monochromaticity, interference in the sensor bulk significantly modulates

  19. Automatic readout system for superheated emulsion based neutron detector

    International Nuclear Information System (INIS)

    Meena, J.P.; Parihar, A.; Vaijapurkar, S.G.; Mohan, Anand

    2011-01-01

    The paper presents a microcontroller based automatic reader system for neutron measurement using indigenously developed superheated emulsion detector. The system is designed for real time counting of bubbles formed in superheated emulsion detector. A piezoelectric transducer is used for sensing bubble acoustic during the nucleation. The front end of system is mainly consisting of specially designed signal conditioning unit, piezoelectric transducer, an amplifier, a high-pass filter, a differentiator, a comparator and monostable multivibrator. The system is based on PlC 18F6520 microcontroller having large internal SRAM, 10-bit internal ADC, I 2 C interface, UART/USART modules. The paper also describes the design of following microcontroller peripheral units viz temperature monitoring, battery monitoring, LCD display, keypad and a serial communication. The reader system measures and displays neutron dose and dose rate, number of bubble and elapsed time. The developed system can be used for detecting very low neutron leakage in the accelerators, nuclear reactors and nuclear submarines. The important features of system are compact, light weight, cost effective and high neutron sensitivity. The prototype was tested and evaluated by exposing to 241 Am-Be neutron source and results have been reported. (author)

  20. 37Ar based neutron source for calibration of the iodine solar neutrino detector

    International Nuclear Information System (INIS)

    Abdurashitov, D.N.; Gavrin, V.N.; Mirmov, I.N.; Veretenkin, E.P.; Yants, V.Eh.; Cleveland, B.T.; Davis, R. Jr.; Lande, K.; Wildenhain, P.; Khomyakov, Yu.S.

    2001-01-01

    The methodology of the creation of a compact neutrino source based on the 37 Ar isotope as well as the technique of calibration of an iodine detector of solar neutrinos is described. An important overall expected result is the creation of a prototype of the source with the intensity up to 400 kCi, delivery of this source to the Baksan neutrino observatory and the test calibration of the single module of the iodine detector. Simulation shows that at least 45-70 127 Xe atoms will be detected in the irradiation of ∼40 tons of methylene iodide by the source leading to ∼19% of the error on the measured production rate. This result should be considered as a test of the developed technology and will verify overall technical readiness for the creation of a full scale neutrino source and the full scale calibration of the iodine detector

  1. Construction of a self-powered neutron detector prototype

    International Nuclear Information System (INIS)

    Pombo, J.B.S.M.; Correa, R.F.

    1986-01-01

    Description and testing of a self-powered neutron detector and related current measurement electronics, in construction at Centro de Desenvolviemnto da Tecnologia Nuclear (CDTN), are presented. The cylindrical detector has a 9-wires cobalt emitter, Inconel 600 tubing collector and sinterized alumina electrical insulation. The bifilar signal cable is plugged to the detector through a SHV connector. Preliminary testing has giving information about dielectrical properties of the set and impurities of the materials (by means of activation analysis). The main tests, done in a 100 KW Triga Reactor, allowed the verification of the detector response to the neutron flux, the stability and reproducibility of this response, and also the evaluation of sensitivity to gamma radiation. The detector performance is considered good. (Author) [pt

  2. ATLAS Detector Interface Group

    CERN Multimedia

    Mapelli, L

    Originally organised as a sub-system in the DAQ/EF-1 Prototype Project, the Detector Interface Group (DIG) was an information exchange channel between the Detector systems and the Data Acquisition to provide critical detector information for prototype design and detector integration. After the reorganisation of the Trigger/DAQ Project and of Technical Coordination, the necessity to provide an adequate context for integration of detectors with the Trigger and DAQ lead to organisation of the DIG as one of the activities of Technical Coordination. Such an organisation emphasises the ATLAS wide coordination of the Trigger and DAQ exploitation aspects, which go beyond the domain of the Trigger/DAQ project itself. As part of Technical Coordination, the DIG provides the natural environment for the common work of Trigger/DAQ and detector experts. A DIG forum for a wide discussion of all the detector and Trigger/DAQ integration issues. A more restricted DIG group for the practical organisation and implementation o...

  3. A prototype silicon detector system for space cosmic-ray charge measurement

    Science.gov (United States)

    Zhang, Fei; Fan, Rui-Rui; Peng, Wen-Xi; Dong, Yi-Fa; Gong, Ke; Liang, Xiao-Hua; Liu, Ya-Qing; Wang, Huan-Yu

    2014-06-01

    A readout electronics system used for space cosmic-ray charge measurement for multi-channel silicon detectors is introduced in this paper, including performance measurements. A 64-channel charge sensitive ASIC (VA140) from the IDEAS company is used. With its features of low power consumption, low noise, large dynamic range, and high integration, it can be used in future particle detecting experiments based on silicon detectors.

  4. Design of Object-based Information System Prototype

    OpenAIRE

    Suhyeon Yoo; Sumi Shin; Hyesun Kim

    2014-01-01

    Researchers who use science and technology information were found to ask an information service in which they can excerpt the contents they needed, rather than using the information at article level. In this study, we micronized the contents of scholarly articles into text, image, and table and then constructed a micro-content DB to design a new information system prototype based on this micro-content. After designing the prototype, we performed usability test for this prototype so as to conf...

  5. Development of a large area, curved two-dimensional detector for single-crystal neutron diffraction studies

    International Nuclear Information System (INIS)

    Moon, Myung-Kook; Lee, Chang-Hee; Kim, Shin-Ae; Noda, Yukio

    2013-01-01

    A new type of two-dimensional curved position-sensitive neutron detector has been developed for a high-throughput single-crystal neutron diffractometer, which was designed to cover 110° horizontally and 56° vertically. The prototype curved detector covering 70° horizontally and 45° vertically was first developed to test the technical feasibility of the detector parameters, the internal anode and cathode structures for the curved shape, technical difficulties in the assembly procedure, and so on. Then, based on this experience, a full-scale curved detector with twice the active area of the prototype was fabricated with newly modified anode and cathode planes and optimized design parameters in terms of mechanical and electric properties. The detector was installed in a dedicated diffractometer at the ST3 beam port of the research reactor HANARO. In this paper, the fabrication and application of the prototype and a new larger-area curved position-sensitive neutron detector for single crystal diffraction is presented

  6. Characterization of a high-energy in-line phase contrast tomosynthesis prototype.

    Science.gov (United States)

    Wu, Di; Yan, Aimin; Li, Yuhua; Wong, Molly D; Zheng, Bin; Wu, Xizeng; Liu, Hong

    2015-05-01

    In this research, a high-energy in-line phase contrast tomosynthesis prototype was developed and characterized through quantitative investigations and phantom studies. The prototype system consists of an x-ray source, a motorized rotation stage, and a CMOS detector with a pixel pitch of 0.05 mm. The x-ray source was operated at 120 kVp for this study, and the objects were mounted on the rotation stage 76.2 cm (R1) from the source and 114.3 cm (R2) from the detector. The large air gap between the object and detector guarantees sufficient phase-shift effects. The quantitative evaluation of this prototype included modulation transfer function and noise power spectrum measurements conducted under both projection mode and tomosynthesis mode. Phantom studies were performed including three custom designed phantoms with complex structures: a five-layer bubble wrap phantom, a fishbone phantom, and a chicken breast phantom with embedded fibrils and mass structures extracted from an ACR phantom. In-plane images of the phantoms were acquired to investigate their image qualities through observation, intensity profile plots, edge enhancement evaluations, and/or contrast-to-noise ratio calculations. In addition, the robust phase-attenuation duality (PAD)-based phase retrieval method was applied to tomosynthesis for the first time in this research. It was utilized as a preprocessing method to fully exhibit phase contrast on the angular projection before reconstruction. The resolution and noise characteristics of this high-energy in-line phase contrast tomosynthesis prototype were successfully investigated and demonstrated. The phantom studies demonstrated that this imaging prototype can successfully remove the structure overlapping in phantom projections, obtain delineate interfaces, and achieve better contrast-to-noise ratio after applying phase retrieval to the angular projections. This research successfully demonstrated a high-energy in-line phase contrast tomosynthesis

  7. Gamma-ray detector based on high pressure xenon for radiation and environmental safety

    International Nuclear Information System (INIS)

    Kutny, V.E.; Rybka, A.V.; Davydov, L.N.; Pudov, A.O.; Sokolov, S.A.; Kholomeyev, G.A.; Melnikov, S.I.; Turchin, A.A.

    2017-01-01

    Gamma-spectrometers based on compressed xenon gas assigned for monitoring the reactors and the radiation background at nuclear power plants, non-proliferation of radioactive materials, supervision and control over the radiation background in the environmentally disadvantaged areas, and other applications, are very promising detectors with excellent performance characteristics. This article reports on the results of the first stage of work on the creation of the portable gamma-spectrometer based on compressed xenon that is unique for Ukraine. In order to work with ultra-pure gases under pressure, the complex cryogenic installation for Xe purification and detector filling was designed and manufactured. The installation was made of specially cleaned components, equipped with a heating system for the degassing of the inner walls, and is able of maintaining high vacuum down to 2 centre dot 10"-"9 mbar. A prototype ionization chamber for the use in portable HP Xe detectors was developed and made. For the detector testing, a spectrometric channel based on high-quality electronic components was designed and manufactured. In the initial experiments, a study of the properties of the purified Xe mixed with the dopant H_2 was carried out. The assessment of the lifetime of charge carriers τ in the working gas at a pressure of 30 bar gave the value of τ > 150 μs

  8. Successful beam tests for ALICE Transition Radiation Detector

    CERN Multimedia

    2002-01-01

    Another round of beam tests of prototypes for the Transition Radiation Detector (TRD) for ALICE has been completed and there are already some good results. Mass production of the components of the detector will start early next year.   Top view of the setup for the Transition Radiation Detector prototype tests at CERN.On the left, can be seen the full-scale TRD prototype together with four smaller versions. These are busy days for the TRD (Transition Radiation Detector) team of ALICE. Twenty people - mainly from Germany, but also from Russia and Japan - were working hard during the beam tests this autumn at CERN to assess the performance of their detector prototypes. Analysis of the data shows that the TRD can achieve the desired physics goal even for the highest conceivable multiplicities in lead-lead collisions at the LHC. In its final configuration in the ALICE experiment, the TRD will greatly help in identifying high-momentum electrons, which are 'needles in a haystack' that consists mostly of...

  9. Design and Prototyping of a High Granularity Scintillator Calorimeter

    International Nuclear Information System (INIS)

    Zutshi, Vishnu

    2016-01-01

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  10. Design and Prototyping of a High Granularity Scintillator Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Zutshi, Vishnu [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Physics

    2016-03-27

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  11. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, M., E-mail: contalbrigo@fe.infn.it

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to −25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  12. Studies on GEM modules for a Large Prototype TPC for the ILC

    International Nuclear Information System (INIS)

    Tsionou, Dimitra

    2017-01-01

    The International Linear Collider (ILC) is a future electron–positron collider with centre of mass energy of 500–1000 GeV. The International Large Detector (ILD) is one of two detector concepts at the ILC. Its high precision tracking system consists of Silicon sub-detectors and a Time Projection Chamber (TPC) equipped with micro-pattern gas detectors (MPGDs). Within the framework of the LCTPC collaboration, a Large Prototype (LP) TPC has been built as a demonstrator. This prototype has been equipped with Gas Electron Multiplier (GEM) modules and studied with electron beams of energies 1–6 GeV at the DESY test beam facility. The performance of the prototype detector and the extrapolation to the ILD TPC is presented here. In addition, ongoing optimisation studies and R&D activities in order to prepare the next GEM module iteration are discussed.

  13. Studies on GEM modules for a Large Prototype TPC for the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Tsionou, Dimitra, E-mail: dimitra.tsionou@desy.de

    2017-02-11

    The International Linear Collider (ILC) is a future electron–positron collider with centre of mass energy of 500–1000 GeV. The International Large Detector (ILD) is one of two detector concepts at the ILC. Its high precision tracking system consists of Silicon sub-detectors and a Time Projection Chamber (TPC) equipped with micro-pattern gas detectors (MPGDs). Within the framework of the LCTPC collaboration, a Large Prototype (LP) TPC has been built as a demonstrator. This prototype has been equipped with Gas Electron Multiplier (GEM) modules and studied with electron beams of energies 1–6 GeV at the DESY test beam facility. The performance of the prototype detector and the extrapolation to the ILD TPC is presented here. In addition, ongoing optimisation studies and R&D activities in order to prepare the next GEM module iteration are discussed.

  14. Studies on GEM modules for a large prototype TPC for the ILC

    International Nuclear Information System (INIS)

    Tsionou, Dimitra

    2016-12-01

    The International Linear Collider (ILC) is a future electron-positron collider with centre of mass energy of 500-1000 GeV. The International Large Detector (ILD) is one of two detector concepts at the ILC. Its high precision tracking system consists of Silicon sub-detectors and a Time Projection Chamber (TPC) equipped with micro-pattern gas detectors (MPGDs). Within the framework of the LCTPC collaboration, a Large Prototype (LP) TPC has been built as a demonstrator. This prototype has been equipped with Gas Electron Multiplier (GEM) modules and studied with electron beams of energies 1-6 GeV at the DESY test beam facility. The performance of the prototype detector and the extrapolation to the ILD TPC is presented here. In addition, ongoing optimisation studies and R and D; activities in order to prepare the next GEM module iteration are discussed.

  15. Test beam measurement of the first prototype of the fast silicon pixel monolithic detector for the TT-PET project

    Science.gov (United States)

    Paolozzi, L.; Bandi, Y.; Benoit, M.; Cardarelli, R.; Débieux, S.; Forshaw, D.; Hayakawa, D.; Iacobucci, G.; Kaynak, M.; Miucci, A.; Nessi, M.; Ratib, O.; Ripiccini, E.; Rücker, H.; Valerio, P.; Weber, M.

    2018-04-01

    The TT-PET collaboration is developing a PET scanner for small animals with 30 ps time-of-flight resolution and sub-millimetre 3D detection granularity. The sensitive element of the scanner is a monolithic silicon pixel detector based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for the TT-PET was produced and tested in the laboratory and with minimum ionizing particles. The electronics exhibit an equivalent noise charge below 600 e‑ RMS and a pulse rise time of less than 2 ns , in accordance with the simulations. The pixels with a capacitance of 0.8 pF were measured to have a detection efficiency greater than 99% and, although in the absence of the post-processing, a time resolution of approximately 200 ps .

  16. The pin pixel detector--X-ray imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a soft X-ray gas pixel detector, which uses connector pins for the anodes is reported. Based on a commercial 100 pin connector block, a prototype detector of aperture 25.4 mm centre dot 25.4 mm can be economically fabricated. The individual pin anodes all show the expected characteristics of small gas detectors capable of counting rates reaching 1 MHz per pin. A 2-dimensional resistive divide readout system has been developed to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics.

  17. Event reconstruction for the RICH prototype beamtest data 2012 and 2014

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Semen [II. Physikalisches Institut, JLU Giessen (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate the QCD phase diagram at high net baryon densities and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100). Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). A real size prototype of the RICH detector was tested together with other CBM prototypes (TRD, TOF) at the CERN PS/T9 beam line in 2012 and 2014. In 2014 for the first time the data format used the FLESnet protocol from CBM delivering free streaming data. The analysis was fully performed within the CBMROOT framework. In this contribution the event reconstruction methods which were used for obtained data are discussed. Rings were reconstructed using an algorithm based on the Hough Transform method and their parameters were derived with high accuracy by circle and ellipse fitting procedures. Results of the application of the presented algorithms are also presented.

  18. UVSiPM: A light detector instrument based on a SiPM sensor working in single photon counting

    Energy Technology Data Exchange (ETDEWEB)

    Sottile, G.; Russo, F.; Agnetta, G. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Belluso, M.; Billotta, S. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Biondo, B. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Bonanno, G. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Catalano, O.; Giarrusso, S. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Grillo, A. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Impiombato, D.; La Rosa, G.; Maccarone, M.C.; Mangano, A. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Marano, D. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Mineo, T.; Segreto, A.; Strazzeri, E. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Timpanaro, M.C. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy)

    2013-06-15

    UVSiPM is a light detector designed to measure the intensity of electromagnetic radiation in the 320–900 nm wavelength range. It has been developed in the framework of the ASTRI project whose main goal is the design and construction of an end-to-end Small Size class Telescope prototype for the Cherenkov Telescope Array. The UVSiPM instrument is composed by a multipixel Silicon Photo-Multiplier detector unit coupled to an electronic chain working in single photon counting mode with 10 nanosecond double pulse resolution, and by a disk emulator interface card for computer connection. The detector unit of UVSiPM is of the same kind as the ones forming the camera at the focal plane of the ASTRI prototype. Eventually, the UVSiPM instrument can be equipped with a collimator to regulate its angular aperture. UVSiPM, with its peculiar characteristics, will permit to perform several measurements both in lab and on field, allowing the absolute calibration of the ASTRI prototype.

  19. Commissioning of the new multi-layer integration prototype of the CALICE tile hadron calorimeter

    CERN Document Server

    Ebrahimi, Aliakbar

    2016-03-14

    The basic prototype of a tile hadron calorimeter (HCAL) for the International Linear Collider (ILC) has been realised and extensively tested. A major aspect of the proposed concept is the improvement of the jet energy resolution by measuring details of the shower development and combining them with the data of the tracking system (particle flow). The prototype utilises scintillating tiles that are read out by novel Silicon Photomultipliers (SiPMs) and takes into account all design aspects that are demanded by the intended operation at the ILC. Currently, a new 12 layer prototype with about 3400 detector channels is under development. Alternative architectures for the scintillating tiles with and without wavelength-shifting fibres and tiles with individual wrapping with reflector foil is tested as well as different types of SiPMs. The new prototype was used for the first time at the CERN Proton Synchrotron test facility in fall 2014. Additionally, detector modules for the CALICE scintillator-based Electromagne...

  20. Investigations on Important Properties of the 10 cm x 10 cm GEM Prototype

    CERN Document Server

    Saenboonruang, Kiadtisak; Kulasri, Kittipong; Ritthirong, Anawat

    2015-01-01

    The Gas Electron Multiplier (GEM) detector is one of promising particle and radiation detectors that has been improved greatly from previous gas detectors. The improvement includes better spatial resolutions, higher detection rate capabilities, and flexibilities in designs. In particular, the 10 cm x 10 cm GEM prototype is designed and provided by the Gas Detectors Development group (GDD) at CERN, Switzerland. With its simplicity in operations and designs, while still maintaining high qualities, the GEM prototype is suitable for both start-up and advanced researches. This article aims to report the investigations on some important properties of the 10 cm x 10 cm GEM detector using current measurement and signal counting. Results have shown that gains of the GEM prototype exponentially increase as voltage supplied to the detector increases, while the detector reaches full efficiency (plateau region) when the voltage is greater than 4100 V. In terms of signal sharing between X and Y strips of the readout, X str...

  1. The ALICE Dimuon Trigger Overview and Electronics Prototypes

    CERN Document Server

    Arnaldi, R; Barret, V; Bastid, N; Blanchard, G; Chiavassa, E; Cortese, P; Crochet, Philippe; Dellacasa, G; De Marco, N; Drancourt, C; Dupieux, P; Espagnon, B; Fargeix, J; Ferretti, A; Gallio, M; Genoux-Lubain, A; Lamoine, L; Lefèvre, F; Luquin, Lionel; Manso, F; Métivier, V; Musso, A; Oppedisano, C; Piccotti, A; Royer, L; Roig, O; Rosnet, P; Scalas, E; Scomparin, E; Vercellin, Ermanno

    2000-01-01

    Presentation made at RPC99 and submitted to NIM ALICE is the LHC experiment (2005) dedicated to the study of heavy ion collisions. Amongst the ALICE sub-detectors, the muon spectrometer will investigate the dimuon production from heavy resonance (J/psi, Gamma) decays, which is believed to be a promising signature of the QGP (Quark Gluon Plasma) formation.For maximum efficiency of the spectrometer, a dedicated dimuon trigger is presently built. The detector partis itself based on RPCs operated in streamer mode and is the topic of another contribution to this conference. This paper gives the principle and the simulated performances of the trigger and is also focussed on the description of the electronics prototypes and future developments. The RPCs are read-out by X and Y orthogonal strips: the front-end chips are presently developed. The signals are sent to the trigger electronics which basically performs a pt cut on the tracks to reduce the background. A prototype of fast (decision time 200 ns) programmable e...

  2. Prototyping the PANDA Barrel DIRC

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, C., E-mail: C.Schwarz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Kalicy, G.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Dodokhov, V.Kh. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Britting, A.; Eyrich, W.; Lehmann, A. [Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); and others

    2014-12-01

    The design of the Barrel DIRC detector for the future PANDA experiment at FAIR contains several important improvements compared to the successful BABAR DIRC, such as focusing and fast timing. To test those improvements as well as other design options a prototype was build and successfully tested in 2012 with particle beams at CERN. The prototype comprises a radiator bar, focusing lens, mirror, and a prism shaped expansion volume made of synthetic fused silica. An array of micro-channel plate photomultiplier tubes measures the location and arrival time of the Cherenkov photons with sub-nanosecond resolution. The development of a fast reconstruction algorithm allowed to tune construction details of the detector setup with test beam data and Monte-Carlo simulations.

  3. A BODIPY-Based Fluorescent Probe to Visually Detect Phosgene: Toward the Development of a Handheld Phosgene Detector.

    Science.gov (United States)

    Sayar, Melike; Karakuş, Erman; Güner, Tuğrul; Yildiz, Busra; Yildiz, Umit Hakan; Emrullahoğlu, Mustafa

    2018-03-02

    A boron-dipyrromethene (BODIPY)-based fluorescent probe with a phosgene-specific reactive motif shows remarkable selectivity toward phosgene, in the presence of which the nonfluorescent dye rapidly transforms into a new structure and induces a fluorescent response clearly observable to the naked eye under ultraviolet light. Given that dynamic, a prototypical handheld phosgene detector with a promising sensing capability that expedites the detection of gaseous phosgene without sophisticated instrumentation was developed. The proposed method using the handheld detector involves a rapid response period suitable for issuing early warnings during emergency situations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    Science.gov (United States)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  5. Belle II silicon vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, Ti.; Baroncelli, To. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 121 16 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Università di Trieste, I-34127 Trieste (Italy); INFN Sezione di Trieste, I-34127 Trieste (Italy); and others

    2016-09-21

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.

  6. Prototype Theory Based Feature Representation for PolSAR Images

    OpenAIRE

    Huang Xiaojing; Yang Xiangli; Huang Pingping; Yang Wen

    2016-01-01

    This study presents a new feature representation approach for Polarimetric Synthetic Aperture Radar (PolSAR) image based on prototype theory. First, multiple prototype sets are generated using prototype theory. Then, regularized logistic regression is used to predict similarities between a test sample and each prototype set. Finally, the PolSAR image feature representation is obtained by ensemble projection. Experimental results of an unsupervised classification of PolSAR images show that our...

  7. A novel, SiPM-array-based, monolithic scintillator detector for PET

    International Nuclear Information System (INIS)

    Schaart, Dennis R; Dam, Herman T van; Seifert, Stefan; Beekman, Freek J; Vinke, Ruud; Dendooven, Peter; Loehner, Herbert

    2009-01-01

    Silicon photomultipliers (SiPMs) are of great interest to positron emission tomography (PET), as they enable new detector geometries, for e.g., depth-of-interaction (DOI) determination, are MR compatible, and offer faster response and higher gain than other solid-state photosensors such as avalanche photodiodes. Here we present a novel detector design with DOI correction, in which a position-sensitive SiPM array is used to read out a monolithic scintillator. Initial characterization of a prototype detector consisting of a 4 x 4 SiPM array coupled to either the front or back surface of a 13.2 mm x 13.2 mm x 10 mm LYSO:Ce 3+ crystal shows that front-side readout results in significantly better performance than conventional back-side readout. Spatial resolutions 2 detector, equals 960 ps FWHM.

  8. MMSW. A large-size micromegas quadruplet prototype. Design and construction

    Energy Technology Data Exchange (ETDEWEB)

    Kuger, Fabian; Sidiropoulou, Ourania [Julius Maximilians Universitaet, Wuerzburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Bianco, Michele; Danielsson, Hans; Degrange, Jordan; Oliveira, Rui de; Farina, Eduardo; Iengo, Paolo; Perez Gomez, Francisco; Sekhniaidze, Givi; Sforza, Federico; Vergain, Maurice; Wotschack, Joerg [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Duedder, Andreas; Lin, Tai-Hua; Schott, Matthias [Johannes Gutenberg-Universitaet, Mainz (Germany)

    2016-07-01

    Two micromegas detector quadruplets with an area of 0.5 m{sup 2} (MMSW) have been recently constructed and tested at CERN and University of Mainz. They serve as prototypes for the planned upgrade project of the ATLAS muon system. Their design is based on the resistive-strip technology and thus renders the detectors spark tolerant. The applied 'mechanically floating' mesh design allows for large area Micromegas construction and facilitates detector cleaning before assembly. Each quadruplet comprises four detection layers with 1024 readout strips and a strip pitch of 415 μm. In two out of the four layers the strips are inclined by ± 1.5 to allow for the measurement of a second coordinate. We present the detector concept and report on the experience gained during the detector construction.

  9. The Cryogenic Anti-Coincidence detector for ATHENA X-IFU: pulse analysis of the AC-S7 single pixel prototype

    Science.gov (United States)

    D'Andrea, M.; Argan, A.; Lotti, S.; Macculi, C.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Torrioli, G.

    2016-07-01

    The ATHENA observatory is the second large-class mission in ESA Cosmic Vision 2015-2025, with a launch foreseen in 2028 towards the L2 orbit. The mission addresses the science theme "The Hot and Energetic Universe", by coupling a high-performance X-ray Telescope with two complementary focal-plane instruments. One of these is the X-ray Integral Field Unit (X-IFU): it is a TES based kilo-pixel order array able to provide spatially resolved high-resolution spectroscopy (2.5 eV at 6 keV) over a 5 arcmin FoV. The X-IFU sensitivity is degraded by the particles background expected at L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the background level and enable the mission science goals, a Cryogenic Anticoincidence (CryoAC) detector is placed address the final design of the CryoAC. It will verify some representative requirements at single-pixel level, especially the detector operation at 50 mK thermal bath and the threshold energy at 20 keV. To reach the final DM design we have developed and tested the AC-S7 prototype, with 1 cm2 absorber area sensed by 65 Ir TESes. Here we will discuss the pulse analysis of this detector, which has been illuminated by the 60 keV line from a 241Am source. First, we will present the analysis performed to investigate pulses timings and spectrum, and to disentangle the athermal component of the pulses from the thermal one. Furthermore, we will show the application to our dataset of an alternative method of pulse processing, based upon Principal Component Analysis (PCA). This kind of analysis allow us to recover better energy spectra than achievable with traditional methods, improving the evaluation of the detector threshold energy, a fundamental parameter characterizing the CryoAC particle rejection efficiency.

  10. Development of FARICH detector for particle identification system at accelerators

    Science.gov (United States)

    Finogeev, D. A.; Kurepin, A. B.; Razin, V. I.; Reshetin, A. I.; Usenko, E. A.; Barnyakov, A. Yu.; Barnyakov, M. Yu.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kasyanenko, P. V.; Kononov, S. A.; Kravchenko, E. A.; Kuyanov, I. A.; Onuchin, A. P.; Ovtin, I. V.; Podgornov, N. A.; Talyshev, A. A.; Danilyuk, A. F.

    2018-01-01

    Aerogel has been successfully used as a radiator in Cherenkov detectors. In 2004, a multilayer aerogel providing Cherenkov ring focusing was proposed and produced. FARICH (Focusing Aerogel Rich Imaging CHerenkov) detectors such as ARICH for Belle-II (KEK, Japan), Forward RICH for PANDA detector (FAIR, Germany), and FARICH for the Super Charm-Tau factory project (BINP, Novosibirsk) have been developed based on this aerogel. Prototypes of FARICH detector based on MRS APD and Philips DPC photosensors were developed and tested in the framework of this project. An angular resolution for Cherenkov rings of 3.6 mrad was achieved.

  11. Prototype test for the PANDA barrel DIRC

    Energy Technology Data Exchange (ETDEWEB)

    Dzhygadlo, Roman; Gerhardt, Andreas; Kalicy, Grzegorz; Krebs, Marvin; Lehmann, Dorothe; Schwarz, Carsten; Schwiening, Jochen; Belias, Anastasios; Traxler, Michael [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Peters, Klaus [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Goethe-Universitaet Frankfurt (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    The Barrel DIRC (Detector of Internally Reflected Cherenkov light) is designed to provide particle identification (PID) for the PANDA experiment at the new Facility for Antiproton and Ion Research in Europe (FAIR) at GSI, Darmstadt. It is based on the successful BABAR DIRC detector with several key improvements, such as focusing optics, fast timing, and a compact expansion volume. A large prototype was constructed and tested in a hadronic particle beam at CERN during the summer of 2015 to test the PID performance of different design options. The prototype included a fused silica radiator (either a narrow bar or a wide plate), an optional focusing lens, and a prism-shaped fused silica expansion volume. An array of microchannel-plate photomultiplier tubes measured the location and arrival time of the Cherenkov photons on 960 pixels. Data were collected for two radiator geometries and several types of focusing lenses at different beam momenta and polar angles. Results of the analysis as well as a comparison to the Geant4 simulation are presented.

  12. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

    Science.gov (United States)

    Acharya, B.; Alexandre, J.; Bendtz, K.; Benes, P.; Bernabéu, J.; Campbell, M.; Cecchini, S.; Chwastowski, J.; Chatterjee, A.; de Montigny, M.; Derendarz, D.; De Roeck, A.; Ellis, J. R.; Fairbairn, M.; Felea, D.; Frank, M.; Frekers, D.; Garcia, C.; Giacomelli, G.; Hasegan, D.; Kalliokoski, M.; Katre, A.; Kim, D.-W.; King, M. G. L.; Kinoshita, K.; Lacarrère, D. H.; Lee, S. C.; Leroy, C.; Lionti, A.; Margiotta, A.; Mauri, N.; Mavromatos, N. E.; Mermod, P.; Milstead, D.; Mitsou, V. A.; Orava, R.; Parker, B.; Pasqualini, L.; Patrizii, L.; Păvălas, G. E.; Pinfold, J. L.; Platkevič, M.; Popa, V.; Pozzato, M.; Pospisil, S.; Rajantie, A.; Sahnoun, Z.; Sakellariadou, M.; Sarkar, S.; Semenoff, G.; Sirri, G.; Sliwa, K.; Soluk, R.; Spurio, M.; Srivastava, Y. N.; Staszewski, R.; Suk, M.; Swain, J.; Tenti, M.; Togo, V.; Trzebinski, M.; Tuszynski, J. A.; Vento, V.; Vives, O.; Vykydal, Z.; Whyntie, T.; Widom, A.; Willems, G.; Yoon, J. H.

    2016-08-01

    The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nucleartrack detectors with surface area ~18m2, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb-1. No magnetic charge exceeding 0:5 g D (where g D is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV≤ m ≤ 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for 1 g D ≤ | g| ≤ 6 g D, and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for 1 g D ≤ | g| ≤ 4 g D. Under the assumption of Drell-Yan cross sections, mass limits are derived for | g| = 2 g D and | g| = 3 g D for the first time at the LHC, surpassing the results from previous collider experiments.

  13. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, B. [Theoretical Particle Physics & Cosmology Group, Physics Dept., King’s College London (United Kingdom); International Centre for Theoretical Physics, Trieste (Italy); Alexandre, J. [Theoretical Particle Physics & Cosmology Group, Physics Dept., King’s College London (United Kingdom); Bendtz, K. [Physics Department, Stockholm University, Stockholm (Sweden); Benes, P. [IEAP, Czech Technical University in Prague (Czech Republic); Collaboration: The MoEDAL collaboration; and others

    2016-08-10

    The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area ∼18 m{sup 2}, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8 TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb{sup −1}. No magnetic charge exceeding 0.5g{sub D} (where g{sub D} is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV≤m≤ 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for 1g{sub D}≤|g|≤6g{sub D}, and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for 1g{sub D}≤|g|≤4g{sub D}. Under the assumption of Drell-Yan cross sections, mass limits are derived for |g|=2g{sub D} and |g|=3g{sub D} for the first time at the LHC, surpassing the results from previous collider experiments.

  14. The color of X-rays: Spectral X-ray computed tomography using energy sensitive pixel detectors

    NARCIS (Netherlands)

    Schioppa, E.J.

    2014-01-01

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray

  15. The pin pixel detector--neutron imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Rhodes, N J; Schooneveld, E M; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a neutron gas pixel detector intended for application in neutron diffraction studies is reported. Using standard electrical connector pins as point anodes, the detector is based on a commercial 100 pin connector block. A prototype detector of aperture 25.4 mmx25.4 mm has been fabricated, giving a pixel size of 2.54 mm which matches well to the spatial resolution typically required in a neutron diffractometer. A 2-Dimensional resistive divide readout system has been adapted to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics. The timing properties of the device match well to the requirements of the ISIS-pulsed neutron source.

  16. Hybrid circuit prototypes for the CMS Tracker upgrade front-end electronics

    International Nuclear Information System (INIS)

    Blanchot, G; Honma, A; Kovacs, M; Braga, D; Raymond, M

    2013-01-01

    New high-density interconnect hybrid circuits are under development for the CMS tracker modules at the HL-LHC. These hybrids will provide module connectivity between flip-chip front-end ASICs, strip sensors and a service board for the data transmission and powering. Rigid organic-based substrate prototypes and also a flexible hybrid design have been built, containing up to eight front-end flip chip ASICs. A description of the function of the hybrid circuit in the tracker, the first prototype designs, results of some electrical and mechanical properties from the prototypes, and examples of the integration of the hybrids into detector modules are presented

  17. The Alice dimuon trigger: overview and electronics prototypes

    International Nuclear Information System (INIS)

    Arnaldi, R.; Baldit, A.; Barret, V.; Bastid, N.

    2000-01-01

    ALICE is the LHC experiment (2005) dedicated to the study of heavy ion collisions. Amongst the ALICE sub-detectors, the muon spectrometer will investigate the dimuon production from heavy resonance (J/ψ,γ) decays, which is believed to be a promising signature of the QGP (quark Gluon Plasma) formation. For maximum efficiency of the spectrometer, a dedicated dimuon trigger is presently built. The detector part itself is based on RPCs operated in streamer mode and is the topic of another contribution to this conference. This paper gives the principle and the simulated performances of the trigger and is also focussed on the description of the electronics prototypes and future developments. The RPCs are read-out by X and Y orthogonal strips: the front-end chips are presently developed. The signals are sent to the trigger electronics which basically performs a pt cut on the tracks to reduce the background. A prototype of fast (decision time 200 ns) programmable electronics working in a pipelined mode at 40 MHz has been built and tested. This prototype handles simultaneously 160 digital information from the strips. The tests of the trigger card have required the construction of a pattern generator (160 bits at 40 MHz). (author)

  18. Study of the background neutron and gamma components of the ββ(0ν) decay in the NEMO2 prototype detector. Consequences for the NEMO3 detector

    International Nuclear Information System (INIS)

    Marquet, Christine

    1999-01-01

    Neutrinoless double beta decay ββ(0ν) is a test of physics beyond the Standard Model by involving the existence of a massive Majorana neutrino (ν = ν-bar). To try to observe such a process with a sensitivity of 0.1 eV on the neutrino effective mass ( ν >), NEMO collaboration build the NEMO3 detector, able to measure half-lives greater than 10 24 years, corresponding to a few detected events per year. For that, it is necessary to know and master all background sources. This work was first dedicated to the study of external (to the double beta source) background with crossing electrons recorded with NEMO2 prototype detector and then to the simulation of this background in NEMO3 detector. Comparison between NEMO2 data and results of gamma and neutron simulations for different shieldings, with and without neutron source, has allowed to determine background contributions of radon, thoron, 208 Tl contaminations in materials, photon flux produced in laboratory and neutrons. This study, which has required improvements in the MICAP neutron simulation code by developing a photon generator, proved that radiative capture of fast neutrons thermalized in the detector was the source of events in the energy domain of the ββ(0ν) signal. In order to reach the required sensitivity on ν > mass, it has been shown that both a neutron shielding and magnetic field are necessary for NEMO3 detector. (author) [fr

  19. The cosmic ray muon tomography facility based on large scale MRPC detectors

    Science.gov (United States)

    Wang, Xuewu; Zeng, Ming; Zeng, Zhi; Wang, Yi; Zhao, Ziran; Yue, Xiaoguang; Luo, Zhifei; Yi, Hengguan; Yu, Baihui; Cheng, Jianping

    2015-06-01

    Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm×73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been tested and image is reconstructed using MAP algorithm. The reconstruction results show that the prototype is working well and the objects with complex structure and small size (20 mm) can be imaged on it, while the high-Z material is distinguishable from the low-Z one. This prototype provides a good platform for our further studies of the physical characteristics and the performances of cosmic ray muon tomography.

  20. CCD-based vertex detectors

    CERN Document Server

    Damerell, C J S

    2005-01-01

    Over the past 20 years, CCD-based vertex detectors have been used to construct some of the most precise 'tracking microscopes' in particle physics. They were initially used by the ACCMOR collaboration for fixed target experiments in CERN, where they enabled the lifetimes of some of the shortest-lived charm particles to be measured precisely. The migration to collider experiments was accomplished in the SLD experiment, where the original 120 Mpixel detector was later upgraded to one with 307 Mpixels. This detector was used in a range of physics studies which exceeded the capability of the LEP detectors, including the most precise limit to date on the Bs mixing parameter. This success, and the high background hit densities that will inevitably be encountered at the future TeV-scale linear collider, have established the need for a silicon pixel-based vertex detector at this machine. The technical options have now been broadened to include a wide range of possible silicon imaging technologies as well as CCDs (mon...

  1. Radiation-hard Active Pixel Sensors for HL-LHC Detector Upgrades based on HV-CMOS Technology

    International Nuclear Information System (INIS)

    Miucci, A; Gonzalez-Sevilla, S; Ferrere, D; Iacobucci, G; Rosa, A La; Muenstermann, D; Gonella, L; Hemperek, T; Hügging, F; Krüger, H; Obermann, T; Wermes, N; Garcia-Sciveres, M; Backhaus, M; Capeans, M; Feigl, S; Nessi, M; Pernegger, H; Ristic, B; George, M

    2014-01-01

    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation at room temperature. A traditional readout chip is still needed to receive and organize the data from the active sensor and to handle high-level functionality such as trigger management. HV-CMOS has been designed to be compatible with both pixel and strip readout. In this paper an overview of HV2FEI4, a HV-CMOS prototype in 180 nm AMS technology, will be given. Preliminary results after neutron and X-ray irradiation are shown

  2. OPAL jet chamber full scale prototype

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H M; Hauschild, M; Hartmann, H; Hegerath, A; Boerner, H; Burckhart, H J; Dittmar, M; Hammarstroem, R; Heuer, R D; Mazzone, L

    1986-12-01

    The concept of a jet chamber for the central detector of OPAL has been tested with a full scale prototype. The design of this prototype, its mechanical and electrical structure and its support system for high voltage, gas, laser calibration and readout are described. Operating experience has been gathered since summer 1984. The chamber performance in terms of spatial resolution and particle identification capability is given.

  3. OPAL jet chamber full-scale prototype

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H M; Hauschild, M; Hartmann, H; Hegerath, A; Boerner, H; Burckhart, H J; Dittmar, M; Hammarstroem, R; Heuer, R D; Mazzone, L

    1986-12-01

    The concept of a jet chamber for the central detector of OPAL was tested with a full scale prototype. The design of this prototype, its mechanical and electrical structure and its support system for high voltage, gas, laser calibration, and readout are described. Operating experience was gathered since summer 1984. The chamber performance in terms of spatial resolution and particle identification capability is given.

  4. Observations of sensor bias dependent cluster centroid shifts in a prototype sensor for the LHCb Vertex Locator detector

    CERN Document Server

    Papadelis, Aras

    2006-01-01

    We present results from a recent beam test of a prototype sensor for the LHCb Vertex Locator detector, read out with the Beetle 1.3 front-end chip. We have studied the effect of the sensor bias voltage on the reconstructed cluster positions in a sensor placed in a 120GeV pion beam at a 10° incidence angle. We find an unexplained sysematic shift in the reconstructed cluster centroid when increasing the bias voltage on an already overdepleted sensor. The shift is independent of strip pitch and sensor thickness.

  5. Design, construction, prototype tests and performance of a vertex chamber for the MAC detector

    International Nuclear Information System (INIS)

    Ash, W.W.; Band, H.R.; Bloom, E.D.; Bosman, M.; Camporesi, T.; Chadwick, G.B.; Delfino, M.C.; De Sangro, R.; Ford, W.T.; Gettner, M.W.; Goderre, G.P.; Godfrey, G.L.; Groom, D.E.; Hurst, R.B.; Johnson, J.R.; Lau, K.H.; Lavine, T.L.; Leedy, R.E.; Lippi, I.; Maruyama, T.; Messner, R.L.; Moromisato, J.H.; Moss, L.J.; Muller, F.; Nelson, H.N.; Peruzzi, I.; Piccolo, M.; Prepost, R.; Pyrlik, J.; Qi, N.; Read, A.L. Jr.; Ritson, D.M.; Rosenberg, L.J.; Shambroom, W.D.; Sleeman, J.C.; Smith, J.G.; Venuti, J.P.; Verdini, P.G.; Goeler, E. von; Wald, H.B.; Weinstein, R.; Wiser, D.E.; Zdarko, R.W.; Istituto Nazionale di Fisica Nucleare, Frascati; Houston Univ., TX; Northeastern Univ., Boston, MA; Stanford Univ., CA; Stanford Linear Accelerator Center, CA; Utah Univ., Salt Lake City; Wisconsin Univ., Madison

    1987-01-01

    The design considerations, construction techniques, prototype tests and performance characteristics of a pressurized drift chamber used in the MAC detector at PEP are described. The chamber consists of 324 aluminized mylar tubes of 6.9 mm diameter with wall thickness of 100 μm. With appropriate shielding it operates successfully at 4.6 cm from the beam line. It was simple to construct and was configured to permit any malfunctioning tubes to be remotely disconnected without affecting operation. The chamber operated without problems for two years in the PEP environmental with a gas mixture of 49.5% argon, 49.5% CO 2 , 1% CH 4 , at 4 atm absolute pressure. The mean spatial resolution averaged over all tubes was 45 μm. The time to distance relation for this gas mixture, along with the geometric positioning of individual wires relative to the central tracking chamber, was obtained with data from Bhabha scattering events. We also describe resolution studies performed with a prototype chamber in a SLAC test beam. A wide range of gases, gas pressures, and electronic parameters were explored. These studies proved that resolutions in the 10-50 μm range were possible. Our experience demonstrates that chambers of this type provide high precision tracking and are particularly suited for operation in regions with difficult physical access and/or high ambient radiation levels. (orig.)

  6. Design, construction, prototype tests and performance of a vertex chamber for the MAC detector

    Science.gov (United States)

    Ash, W. W.; Band, H. R.; Bloom, E. D.; Bosman, M.; Camporesi, T.; Chadwick, G. B.; Delfino, M. C.; De Sangro, R.; Ford, W. T.; Gettner, M. W.; Goderre, G. P.; Godfrey, G. L.; Groom, D. E.; Hurst, R. B.; Johnson, J. R.; Lau, K. H.; Lavine, T. L.; Leedy, R. E.; Lippi, I.; Maruyama, T.; Messner, R. L.; Moromisato, J. H.; Moss, L. J.; Muller, F.; Nelson, H. N.; Peruzzi, I.; Piccolo, M.; Prepost, R.; Pyrlik, J.; Qi, N.; Read, A. L.; Ritson, D. M.; Rosenberg, L. J.; Shambroom, W. D.; Sleeman, J. C.; Smith, J. G.; Venuti, J. P.; Verdini, P. G.; Von Goeler, E.; Wald, H. B.; Weinstein, R.; Wiser, D. E.; Zdarko, R. W.

    1987-11-01

    The design considerations, construction techniques, prototype tests and performance characteristics of a pressurized drift chamber used in the MAC detector at PEP are described. The chamber consists of 324 aluminized mylar tubes of 6.9 mm diameter with wall thickness of 100 μm. With appropriate shielding it operates successfully at 4.6 cm from the beam line. It was simple to construct and was configured to permit any malfunctioning tubes to be remotely disconnected without affecting operation. The chamber operated without problems for two years in the PEP environment with a gas mixture of 49.5% argon, 49.5% CO 2, 1% CH 4, at 4 atm absolute pressure. The mean spatial resolution averaged over all tubes was 45 μm. The time to distance relation for this gas mixture, along with the geometric positioning of individual wires relative to the central tracking chamber, was obtained with data from Bhabha scattering events. We also describe resolution studies performed with a prototype chamber in a SLAC test beam. A wide range of gases, gas pressures, and electronic parameters were explored. These studies proved that resolutions in the 10-50 μm range were possible. Our experience demonstrates that chambers of this type provide high precision tracking and are particularly suited for operation in regions with difficult physical access and/or high ambient radiation levels.

  7. Studies on multigap resistive plate chamber prototypes for the new NeuLAND detector at the R3B experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Elvers, Michael; Endres, Janis; Zilges, Andreas [IKP, Universitaet Koeln (Germany); Aumann, Tom; Boretzky, Konstanze; Hehner, Joerg; Heil, Michael; Prokopowicz, Wawrczek; Reifarth, Rene; Schrieder, Gerhard [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Bemmerer, Daniel; Stach, Daniel; Wagner, Andreas; Yakorev, Dmitry [Forschungszentrum Dresden-Rossendorf (FZD), Dresden (Germany); Kratz, Jens Volker; Rossi, Dominic [Johannes-Gutenberg-Universitaet, Mainz (Germany)

    2009-07-01

    The NeuLAND detector is part of the R3B experiment at FAIR and will detect neutrons between 0.2 and 1 GeV. The high energy neutrons are converted to charged particles, mainly protons, which are detected by Multigap Resistive Plate Chambers (MRPC). For the detector, a time resolution of {sigma}{sub t} < 100 ps and a position resolution of {sigma}{sub x,y,z} {approx}1 cm is required for given flight paths in the range from 10 to 35 m. An active area of 2 x 2 m{sup 2} of the neutron detector at a distance of 12.5 m to the target will match the angular acceptance of {+-}80 mrad for the neutrons defined by the gap of the superconducting dipole magnet. The salient features of the prototypes are described, as well as electrical measurements and studies with cosmic rays.

  8. Detection and Imaging of High-Z Materials with a Muon Tomography Station Using GEM Detectors

    CERN Document Server

    Gnanvo, K; Bittner, W; Costa, F; Grasso, L; Hohlmann, M; Locke, J B; Martoiu, S; Muller, H; Staib, M; Tarazona, A; Toledo, J

    2010-01-01

    Muon tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons is a promising technique for detecting and imaging heavily shielded high-Z nuclear materials such as enriched uranium. This technique could complement standard radiation detection portals currently deployed at international borders and ports, which are not very sensitive to heavily shielded nuclear materials. We image small targets in 3D using $2\\times 2 \\times 2$ mm^3 voxels with a minimal muon tomography station prototype that tracks muons with Gas Electron Multiplier (GEM) detectors read out in 2D with x-y microstrips of 400 micron pitch. With preliminary electronics, the GEM detectors achieve a spatial resolution of 130 microns in both dimensions. With the next GEM-based prototype station we plan to probe an active volume of ~27 liters. We present first results on reading out all 1536 microstrips of a $30 \\times 30$ cm^2 GEM detector for the next muon tomography prototype with final frontend electronics and DAQ...

  9. Development of a composite large-size SiPM (assembled matrix) based modular detector cluster for MAGIC

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, A., E-mail: ahahn@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Mazin, D., E-mail: mazin@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277–8582 (Japan); Bangale, P., E-mail: priya@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Dettlaff, A., E-mail: todettl@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Fink, D., E-mail: fink@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Grundner, F., E-mail: grundner@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Haberer, W., E-mail: haberer@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Maier, R., E-mail: rma@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); and others

    2017-02-11

    The MAGIC collaboration operates two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) on the Canary Island of La Palma. Each of the two telescopes is currently equipped with a photomultiplier tube (PMT) based imaging camera. Due to the advances in the development of Silicon Photomultipliers (SiPMs), they are becoming a widely used alternative to PMTs in many research fields including gamma-ray astronomy. Within the Otto-Hahn group at the Max Planck Institute for Physics, Munich, we are developing a SiPM based detector module for a possible upgrade of the MAGIC cameras and also for future experiments as, e.g., the Large Size Telescopes (LST) of the Cherenkov Telescope Array (CTA). Because of the small size of individual SiPM sensors (6 mm×6 mm) with respect to the 1-inch diameter PMTs currently used in MAGIC, we use a custom-made matrix of SiPMs to cover the same detection area. We developed an electronic circuit to actively sum up and amplify the SiPM signals. Existing non-imaging hexagonal light concentrators (Winston cones) used in MAGIC have been modified for the angular acceptance of the SiPMs by using C++ based ray tracing simulations. The first prototype based detector module includes seven channels and was installed into the MAGIC camera in May 2015. We present the results of the first prototype and its performance as well as the status of the project and discuss its challenges. - Highlights: • The design of the first SiPM large-size IACT pixel is described. • The simulation of the light concentrators is presented. • The temperature stability of the detector module is demonstrated. • The calibration procedure of SiPM device in the field is described.

  10. Neutron-sensitive ZnS/10B2O3 ceramic scintillator detector as an alternative to a 3He-gas-based detector for a plutonium canister assay system

    International Nuclear Information System (INIS)

    Nakamura, T.; Ohzu, A.; Toh, K.; Sakasai, K.; Suzuki, H.; Honda, K.; Birumachi, A.; Ebine, M.; Yamagishi, H.; Takase, M.; Haruyama, M.; Kureta, M.; Soyama, K.; Nakamura, H.; Seya, M.

    2014-01-01

    A neutron-sensitive ZnS/ 10 B 2 O 3 ceramic scintillator detector was developed as an alternative to a 3 He-gas-based detector for use in a plutonium canister assay system. The detector has a modular structure, with a flat ZnS/ 10 B 2 O 3 ceramic scintillator strip that is installed diagonally inside a light-reflecting aluminium case with a square cross-section, and where the scintillation light is detected using two photomultiplier tubes attached at both ends of the case. The prototype detectors, which have a neutron-sensitive area of 30 mm×250 mm, exhibited a sensitivity of 21.7–23.4±0.1 cps/nv (mean±SD) for thermal neutrons, a 137 Cs gamma-ray sensitivity of 1.1–1.9±0.2×10 −7 and a count variation of less than 6% over the detector length. A trial experiment revealed a temperature coefficient of less than −0.24±0.05%/°C over the temperature range of 20–50 °C. The detector design and the experimental results are presented

  11. Evaluation of a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography of scaphoid fixation screws.

    Science.gov (United States)

    Filli, Lukas; Marcon, Magda; Scholz, Bernhard; Calcagni, Maurizio; Finkenstädt, Tim; Andreisek, Gustav; Guggenberger, Roman

    2014-12-01

    The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was "almost perfect" (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. Flat detector computed tomography (FDCT) is a helpful imaging tool for scaphoid fixation. The correction algorithm significantly reduces artefacts in FDCT induced by scaphoid fixation screws. This may facilitate intra

  12. A detector insert based on continuous scintillators for hybrid MR–PET imaging of the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Rato Mendes, P., E-mail: pedro.rato@ciemat.es [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain); Cuerdo, R.; Sarasola, I.; García de Acilu, P.; Navarrete, J.; Vela, O.; Oller, J.C.; Cela, J.M. [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain); Núñez, L.; Pastrana, M. [Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222 Majadahonda (Spain); Romero, L.; Willmott, C. [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain)

    2013-02-21

    We are developing a positron emission tomography (PET) insert for existing magnetic resonance (MR) equipment, aiming at hybrid MR–PET imaging. Our detector block design is based on trapezoid-shaped LYSO:Ce monolithic scintillators coupled to magnetically compatible Hamamatsu S8550-02 silicon avalanche photodiode (APD) matrices with a dedicated ASIC front-end readout from GammaMedica-Ideas (Fornebu, Norway). The detectors are position sensitive, capable of determining the incidence point of 511 keV gammas with an intrinsic spatial resolution on the order of 2 mm by means of supervised learning neural-network (NN) algorithms. These algorithms, apart from providing continuous coordinates, are also intrinsically corrected for depth of interaction effects and thus parallax-free. Recently we have implemented an advanced prototype featuring two heads with four detector blocks each and final front-end and readout electronics, improving the spatial resolution of reconstructed point source images down to 1.7 mm full width at half maximum (FWHM). Presently we are carrying out operational tests of components and systems under magnetic fields using a 3 T MR scanner. In this paper we present a description of our project, a summary of the results obtained with laboratory prototypes, and the strategy to build and install the complete system at the nuclear medicine department of a collaborating hospital.

  13. A detector insert based on continuous scintillators for hybrid MR–PET imaging of the human brain

    International Nuclear Information System (INIS)

    Rato Mendes, P.; Cuerdo, R.; Sarasola, I.; García de Acilu, P.; Navarrete, J.; Vela, O.; Oller, J.C.; Cela, J.M.; Núñez, L.; Pastrana, M.; Romero, L.; Willmott, C.

    2013-01-01

    We are developing a positron emission tomography (PET) insert for existing magnetic resonance (MR) equipment, aiming at hybrid MR–PET imaging. Our detector block design is based on trapezoid-shaped LYSO:Ce monolithic scintillators coupled to magnetically compatible Hamamatsu S8550-02 silicon avalanche photodiode (APD) matrices with a dedicated ASIC front-end readout from GammaMedica-Ideas (Fornebu, Norway). The detectors are position sensitive, capable of determining the incidence point of 511 keV gammas with an intrinsic spatial resolution on the order of 2 mm by means of supervised learning neural-network (NN) algorithms. These algorithms, apart from providing continuous coordinates, are also intrinsically corrected for depth of interaction effects and thus parallax-free. Recently we have implemented an advanced prototype featuring two heads with four detector blocks each and final front-end and readout electronics, improving the spatial resolution of reconstructed point source images down to 1.7 mm full width at half maximum (FWHM). Presently we are carrying out operational tests of components and systems under magnetic fields using a 3 T MR scanner. In this paper we present a description of our project, a summary of the results obtained with laboratory prototypes, and the strategy to build and install the complete system at the nuclear medicine department of a collaborating hospital

  14. Small Pixel Hybrid CMOS X-ray Detectors

    Science.gov (United States)

    Hull, Samuel; Bray, Evan; Burrows, David N.; Chattopadhyay, Tanmoy; Falcone, Abraham; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    Concepts for future space-based X-ray observatories call for a large effective area and high angular resolution instrument to enable precision X-ray astronomy at high redshift and low luminosity. Hybrid CMOS detectors are well suited for such high throughput instruments, and the Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors, has recently developed new small pixel hybrid CMOS X-ray detectors. These prototype 128x128 pixel devices have 12.5 micron pixel pitch, 200 micron fully depleted depth, and include crosstalk eliminating CTIA amplifiers and in-pixel correlated double sampling (CDS) capability. We report on characteristics of these new detectors, including the best read noise ever measured for an X-ray hybrid CMOS detector, 5.67 e- (RMS).

  15. Performances and long-term stability of the LHAASO-KM2A prototype array

    International Nuclear Information System (INIS)

    Liu Jia; Sheng XiangDong; He Huihai; Zhao Jing; Chang Jinfan; Gu Minhao; Hou Chao; Lu Hongkui

    2014-01-01

    A prototype array for the LHAASO-KM2A, which consists of 42 detector units and fully overlaps the ARGO-YBJ experiment, was set up at the Yangbajing cosmic ray observatory and has been in stable operation since October 2010. The resulting performances of the KM2A electromagnetic particle detector prototypes fully meet the design requirements. Through hybrid observation of cosmic ray showers with the ARGO-YBJ experiment, the performances and long-term stability of the prototype array are tested and the results are consistent with expectation. The cosmic ray moon shadow observed by the prototype array is also presented. (authors)

  16. dc readout experiment at the Caltech 40m prototype interferometer

    International Nuclear Information System (INIS)

    Ward, R L; Adhikari, R; Abbott, B; Abbott, R; Bork, R; Fricke, T; Heefner, J; Ivanov, A; Miyakawa, O; Smith, M; Taylor, R; Vass, S; Waldman, S; Weinstein, A; Barron, D; Frolov, V; McKenzie, K; Slagmolen, B

    2008-01-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) operates a 40m prototype interferometer on the Caltech campus. The primary mission of the prototype is to serve as an experimental testbed for upgrades to the LIGO interferometers and for gaining experience with advanced interferometric techniques, including detuned resonant sideband extraction (i.e. signal recycling) and dc readout (optical homodyne detection). The former technique will be employed in Advanced LIGO, and the latter in both Enhanced and Advanced LIGO. Using dc readout for gravitational wave signal extraction has several technical advantages, including reduced laser and oscillator noise couplings as well as reduced shot noise, when compared to the traditional rf readout technique (optical heterodyne detection) currently in use in large-scale ground-based interferometric gravitational wave detectors. The Caltech 40m laboratory is currently prototyping a dc readout system for a fully suspended interferometric gravitational wave detector. The system includes an optical filter cavity at the interferometer's output port, and the associated controls and optics to ensure that the filter cavity is optimally coupled to the interferometer. We present the results of measurements to characterize noise couplings in rf and dc readout using this system

  17. Tests of a Roman Pot Prototype for the TOTEM Experiment

    CERN Document Server

    Deile, M.; Anelli, G.M.; Antchev, G.A.; Ayache, M.; Caspers, F.; Dimovasili, E.; Dinapoli, R.; Drouhin, F.D.; Eggert, K.; Escourrou, L.; Fochler, O.; Gill, K.; Grabit, R.; Haug, F.; Jarron, P.; Kaplon, J.; Kroyer, T.; Luntama, T.; Macina, D.; Mattelon, E.; Mirabito, L.; Niewiadomski, H.; Noschis, E.P.; Oriunno, M.; Park, A.; Perrot, A.L.; Pirotte, O.; Quetsch, J.M.; Regnier, F.; Ruggiero, G.; Saramad, S.; Siegrist, P.; Snoeys, W.; Souissi, T.; Szczygiel, R.; Troska, J.; Vasey, F.; Verdier, A.; Avati, V.; Jarvinen, M.; Kalliokoski, M.; Kalliopuska, J.; Kurvinen, K.; Lauhakangas, R.; Oljemark, F.; Orava, R.; Palmieri, V.; Saarikko, H.; Soininen, A.; Osterberg, K.; Berardi, V.; Catanesi, M.G.; Radicioni, E.; Boccone, V.; Bozzo, M.; Buzzo, A.; Cuneo, S.; Ferro, F.; Macri, M.; Minutoli, S.; Morelli, A.; Musico, P.; Negri, M.; Santroni, A.; Sette, G.; Sobol, A.; Da Via, C.; Hasi, J.; Kok, A.; Watts, S.; Kasper, J.; Kundrat, V.; Lokajicek, M.; Smotlacha, J.

    2005-01-01

    The TOTEM collaboration has developed and tested the first prototype of its Roman Pots to be operated in the LHC. TOTEM Roman Pots contain stacks of 10 silicon detectors with strips oriented in two orthogonal directions. To measure proton scattering angles of a few microradians, the detectors will approach the beam centre to a distance of 10 sigma + 0.5 mm (= 1.3 mm). Dead space near the detector edge is minimised by using two novel "edgeless" detector technologies. The silicon detectors are used both for precise track reconstruction and for triggering. The first full-sized prototypes of both detector technologies as well as their read-out electronics have been developed, built and operated. The tests took place first in a fixed-target muon beam at CERN's SPS, and then in the proton beam-line of the SPS accelerator ring. We present the test beam results demonstrating the successful functionality of the system despite slight technical shortcomings to be improved in the near future.

  18. Tests of a Roman Pot prototype for the TOTEM experiment

    Science.gov (United States)

    Deile, M.; Alagoz, E.; Anelli, G.; Antchev, G.; Ayache, M.; Caspers, F.; Dimovasili, E.; Dinapoli, R.; Drouhin, F.; Eggert, K.; Escourrou, J.L; Fochler, O.; Gill, K.; Grabit, R.; Haung, F.; Jarron, P.; Kaplon, J.; Kroyer, T.; Luntama, T.; Macina, D.; Mattelon, E.; Niewiadomski, H.; Mirabito, L.; Noschis, E.P.; Oriunno, M.; Park, a.; Perrot, A.-L.; Pirotte, O.; Quetsch, J.M.; Regnier, F.; Ruggiero, G.; Saramad, S.; Siegrist, P.; Snoeys, W.; sSouissi, T.; Szczygiel, R.; Troska, J.; Vasey, F.; Verdier, A.; Da Vià, C.; Hasi, J.; Kok, A.; Watts, S.; Kašpar, J.; Kundrát, V.; Lokajíček, M.V.; Smotlacha, J.; Avati, V.; Järvinen, M.; Kalliokoski, M.; Kalliopuska, J.; Kurvinen, K.; Lauhakangas, R.; Oljemark, F.; Orava, R.; Österberg, K.; Palmieri, V.; Saarikko, H.; Soininen, A.; Boccone, V.; Bozzo, M.; Buzzo, A.; Cuneo, S.; Ferro, F.; Macrí, M.; Minutoli, S.; Morelli, A.; Musico, P.; Negri, M.; Santroni, A.; Sette, G.; Sobol, A.; sBerardi, V.; Catanesi, M.G.; Radicioni, E.

    The TOTEM collaboration has developed and tested the first prototype of its Roman Pots to be operated in the LHC. TOTEM Roman Pots contain stacks of 10 silicon detectors with strips oriented in two orthogonal directions. To measure proton scattering angles of a few microradians, the detectors will approach the beam centre to a distance of 10 sigma + 0.5 mm (= 1.3 mm). Dead space near the detector edge is minimised by using two novel "edgeless" detector technologies. The silicon detectors are used both for precise track reconstruction and for triggering. The first full-sized prototypes of both detector technologies as well as their read-out electronics have been developed, built and operated. The tests took place first in a fixed-target muon beam at CERN's SPS, and then in the proton beam-line of the SPS accelerator ring. We present the test beam results demonstrating the successful functionality of the system despite slight technical shortcomings to be improved in the near future.

  19. Optical performance of prototype horn-coupled TES bolometer arrays for SAFARI

    Science.gov (United States)

    Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Hijmering, Richard; Ridder, Marcel L.

    2016-07-01

    The SAFARI Detector Test Facility is an ultra-low background optical testbed for characterizing ultra-sensitive prototype horn-coupled TES bolmeters for SAFARI, the grating spectrometer on board the proposed SPICA satellite. The testbed contains internal cold and hot black-body illuminators and a light-pipe for illumination with an external source. We have added reimaging optics to facilitate array optical measurements. The system is now being used for optical testing of prototype detector arrays read out with frequency-domain multiplexing. We present our latest optical measurements of prototype arrays and discuss these in terms of the instrument performance.

  20. Linear time relational prototype based learning.

    Science.gov (United States)

    Gisbrecht, Andrej; Mokbel, Bassam; Schleif, Frank-Michael; Zhu, Xibin; Hammer, Barbara

    2012-10-01

    Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in supervised or unsupervised settings. Recently, many techniques have been extended to data described by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the Euclidean counterparts, the techniques have quadratic time complexity due to the underlying quadratic dissimilarity matrix. Thus, they are infeasible already for medium sized data sets. The contribution of this article is twofold: On the one hand we propose a novel supervised prototype based classification technique for dissimilarity data based on popular learning vector quantization (LVQ), on the other hand we transfer a linear time approximation technique, the Nyström approximation, to this algorithm and an unsupervised counterpart, the relational generative topographic mapping (GTM). This way, linear time and space methods result. We evaluate the techniques on three examples from the biomedical domain.

  1. Development of a composite large-size SiPM (assembled matrix) based modular detector cluster for MAGIC

    Science.gov (United States)

    Hahn, A.; Mazin, D.; Bangale, P.; Dettlaff, A.; Fink, D.; Grundner, F.; Haberer, W.; Maier, R.; Mirzoyan, R.; Podkladkin, S.; Teshima, M.; Wetteskind, H.

    2017-02-01

    The MAGIC collaboration operates two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) on the Canary Island of La Palma. Each of the two telescopes is currently equipped with a photomultiplier tube (PMT) based imaging camera. Due to the advances in the development of Silicon Photomultipliers (SiPMs), they are becoming a widely used alternative to PMTs in many research fields including gamma-ray astronomy. Within the Otto-Hahn group at the Max Planck Institute for Physics, Munich, we are developing a SiPM based detector module for a possible upgrade of the MAGIC cameras and also for future experiments as, e.g., the Large Size Telescopes (LST) of the Cherenkov Telescope Array (CTA). Because of the small size of individual SiPM sensors (6 mm×6 mm) with respect to the 1-inch diameter PMTs currently used in MAGIC, we use a custom-made matrix of SiPMs to cover the same detection area. We developed an electronic circuit to actively sum up and amplify the SiPM signals. Existing non-imaging hexagonal light concentrators (Winston cones) used in MAGIC have been modified for the angular acceptance of the SiPMs by using C++ based ray tracing simulations. The first prototype based detector module includes seven channels and was installed into the MAGIC camera in May 2015. We present the results of the first prototype and its performance as well as the status of the project and discuss its challenges.

  2. Performance of high-rate TRD prototypes for the CBM experiment in test beam and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Klein-Boesing, Melanie [Institut fuer Kernphysik, Muenster (Germany)

    2008-07-01

    The goal of the future Compressed Baryonic Matter (CBM) experiment is to explore the QCD phase diagram in the region of high baryon densities not covered by other experiments. Among other detectors, it will employ a Transition Radiation Detector (TRD) for tracking of charged particles and electron identification. To meet the demands for tracking and for electron identification at large particle densities and very high interaction rates, high efficiency TRD prototypes have been developed. These prototypes with double-sided pad plane electrodes based on Multiwire Proportional Chambers (MWPC) have been tested at GSI and implemented in the simulation framework of CBM. Results of the performance in a test beam and in simulations are shown. In addition, we present a study of the performance of CBM for electron identification and dilepton reconstruction with this new detector layout.

  3. OPAL jet chamber full scale prototype

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H M; Hauschild, M; Hartmann, H; Hegerath, A; Boerner, H; Burckhart, H J; Dittmar, M; Hammarstreom, R; Heuer, R D; Mazzone, L

    1986-05-22

    The concept of a jet chamber for the central detector of OPAL has been tested with a full scale prototype. The design of this prototype, its mechanical and electrical structure and its support system for high voltage, gas, laser calibration and readout are described. The operating experience gathered since the summer of 1984 and the chamber performance as measured by its spatial resolution and ability to identify particles are also given.

  4. Activity Based Startup Plan for Prototype Vertical Denitration Calciner

    International Nuclear Information System (INIS)

    SUTTER, C.S.

    1999-01-01

    Testing activation on the Prototype Vertical Denitration Calciner at PFP were suspended in January 1997 due to the hold on fissile material handling in the facility. The restart of testing activities will require a review through an activity based startup process based upon Integrated Safety Management (ISM) principles to verify readiness. The Activity Based Startup Plan for the Prototype vertical Denitration Calciner has been developed for this process

  5. Automatic read out system for superheated emulsion based neutron detector

    International Nuclear Information System (INIS)

    Meena, J.P.; Parihar, A.; Vaijapurkar, S.G.; Mohan, Anand

    2010-01-01

    Full text: Defence Laboratory, Jodhpur (DLJ) has developed superheated emulsion technology for neutron and gamma measurements. The laboratory has attempted to develop reader system to display neutron dose and dose rate based on acoustic technique. The paper presents a microcontroller based automatic reader system for neutron measurements using indigenously developed superheated emulsion detector. The system is designed for real time counting of bubbles formed in superheated emulsion detector. A piezoelectric transducer is used for sensing bubble acoustic. The front end of system is mainly consisting of specially designed signal conditioning unit consisted of piezoelectric transducer, an amplifier, a high-pass filter, a differentiator, a comparator and monostable multivibrator. The system is based on PIC 18F6520 microcontroller having large internal SRAM, 10-bit internal ADC, I 2 C interface, UART/USART modules. The paper also describes the design of following peripheral units interfaced to microcontroller temperature and battery monitoring, display, keypad and a serial communication. The reader system measures and displays neutron dose and dose rate, number of bubble and elapsed time. The developed system can be used for detecting very low neutron leakage in the accelerators, nuclear reactors and nuclear submarines. The important features of system are compact, light weight, cost effective and high neutron sensitivity. The prototype was tested and evaluated by exposing to 241 Am-Be neutron source and results have been reported

  6. MMSW. A large-size micromegas quadruplet prototype. Reconstruction efficiency and spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tai-Hua; Duedder, Andreas; Schott, Matthias; Valderanis, Chrysostomos [Johannes Gutenberg-Universitaet, Mainz (Germany); Bianco, Michele; Danielsson, Hans; Degrange, Jordan; De Oliveira, Rui; Farina, Edoardo; Kuger, Fabian; Iengo, Paolo; Perez Gomez, Francisco; Sekhniaidze, Givi; Sidiropoulou, Ourania; Vergain, Maurice; Wotschack, Joerg [CERN, Geneva (Switzerland)

    2016-07-01

    One of the upgrades of the ATLAS detector for Run III and beyond is the replacement of the inner part of end cap muon tracking spectrometer with eight layers of resistive micromegas detectors. The performance of two prototype detectors, MMSW (MicroMegas Small Wheel), that adopt the design foreseen for this upgrade was studied. The prototype detectors were tested at the Mainz Microtron for the spatial resolution, with cosmic rays for the reconstruction efficiency and for high rate tests in the new Gamma Irradiation Facility (GIF++) at CERN. These measurements with analysis methods and results will be presented. First performance results are consistent with the ATLAS New Small Wheel requirements.

  7. A GaAs pixel detectors-based digital mammographic system: Performances and imaging tests results

    International Nuclear Information System (INIS)

    Annovazzi, A.; Amendolia, S.R.; Bigongiari, A.; Bisogni, M.G.; Catarsi, F.; Cesqui, F.; Cetronio, A.; Colombo, F.; Delogu, P.; Fantacci, M.E.; Gilberti, A.; Lanzieri, C.; Lavagna, S.; Novelli, M.; Passuello, G.; Paternoster, G.; Pieracci, M.; Poletti, M.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Testa, A.; Venturelli, L.

    2007-01-01

    The prototype presented in this paper is based on GaAs pixel detectors read-out by the PCC/MEDIPIX I circuit. The active area of a sensor is about 1 cm 2 therefore to cover the typical irradiation field used in mammography (18x24 cm 2 ), 18 GaAs detection units have been organized in two staggered rows of nine chips each and moved by a stepper motor in the orthogonal direction. The system is integrated in a mammographic equipment which comprehends the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the Integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies, Alenia Marconi Systems (AMS), CAEN, Gilardoni, LABEN and Poli.Hi.Tech., in collaboration with the universities of Ferrara, Roma 'La Sapienza', Pisa and the Istituto Nazionale di Fisica Nucleare (INFN). In this paper, we report on the electrical characterization and the first imaging test results of the digital mammographic system. To assess the imaging capability of such a detector we have built a phantom, which simulates the breast tissue with malignancies. The radiographs of the phantom, obtained by delivering an entrance dose of 4.8 mGy, have shown particulars with a measured contrast below 1%

  8. A GaAs pixel detectors-based digital mammographic system: Performances and imaging tests results

    Science.gov (United States)

    Annovazzi, A.; Amendolia, S. R.; Bigongiari, A.; Bisogni, M. G.; Catarsi, F.; Cesqui, F.; Cetronio, A.; Colombo, F.; Delogu, P.; Fantacci, M. E.; Gilberti, A.; Lanzieri, C.; Lavagna, S.; Novelli, M.; Passuello, G.; Paternoster, G.; Pieracci, M.; Poletti, M.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Testa, A.; Venturelli, L.

    2007-06-01

    The prototype presented in this paper is based on GaAs pixel detectors read-out by the PCC/MEDIPIX I circuit. The active area of a sensor is about 1 cm 2 therefore to cover the typical irradiation field used in mammography (18×24 cm 2), 18 GaAs detection units have been organized in two staggered rows of nine chips each and moved by a stepper motor in the orthogonal direction. The system is integrated in a mammographic equipment which comprehends the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the Integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies, Alenia Marconi Systems (AMS), CAEN, Gilardoni, LABEN and Poli.Hi.Tech., in collaboration with the universities of Ferrara, Roma "La Sapienza", Pisa and the Istituto Nazionale di Fisica Nucleare (INFN). In this paper, we report on the electrical characterization and the first imaging test results of the digital mammographic system. To assess the imaging capability of such a detector we have built a phantom, which simulates the breast tissue with malignancies. The radiographs of the phantom, obtained by delivering an entrance dose of 4.8 mGy, have shown particulars with a measured contrast below 1%.

  9. First Results of an “Artificial Retina” Processor Prototype

    International Nuclear Information System (INIS)

    Cenci, Riccardo; Bedeschi, Franco; Marino, Pietro; Morello, Michael J.; Ninci, Daniele; Piucci, Alessio; Punzi, Giovanni; Ristori, Luciano; Spinella, Franco; Stracka, Simone; Tonelli, Diego; Walsh, John

    2016-01-01

    We report on the performance of a specialized processor capable of reconstructing charged particle tracks in a realistic LHC silicon tracker detector, at the same speed of the readout and with sub-microsecond latency. The processor is based on an innovative pattern-recognition algorithm, called “artificial retina algorithm”, inspired from the vision system of mammals. A prototype of the processor has been designed, simulated, and implemented on Tel62 boards equipped with high-bandwidth Altera Stratix III FPGA devices. The prototype is the first step towards a real-time track reconstruction device aimed at processing complex events of high-luminosity LHC experiments at 40 MHz crossing rate

  10. Results from the FDIRC prototype

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, D.A., E-mail: roberts@umd.edu [University of Maryland, College Park, MD 20742 (United States); Arnaud, N. [Laboratoire de l’Accélérateur Linéaire, Centre Scientifique d’Orsay, F-91898 Orsay Cedex (France); Dey, B. [University of California, Riverside, CA 92521 (United States); Borsato, M. [Laboratoire de l’Accélérateur Linéaire, Centre Scientifique d’Orsay, F-91898 Orsay Cedex (France); Leith, D.W.G.S.; Nishimura, K.; Ratcliff, B.N. [SLAC, Stanford University, Palo Alto, CA 94309 (United States); Varner, G. [University of Hawaii, Honolulu, HI 96822 (United States); Va’vra, J. [SLAC, Stanford University, Palo Alto, CA 94309 (United States)

    2014-12-01

    We present results from a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC). This detector was designed as a prototype of the particle identification system for the SuperB experiment, and comprises 1/12 of the SuperB barrel azimuthal coverage with partial electronics implementation. The prototype was tested in the SLAC Cosmic Ray Telescope (CRT) which provides 3-D muon tracking with an angular resolution of ∼1.5 mrad, track position resolution of 5–6 mm, start time resolution of 70 ps, and a muon low-energy cutoff of ∼2 GeV provided by an iron range stack. The quartz focusing photon camera couples to a full-size BaBar DIRC bar box and is read out by 12 Hamamatsu H8500 MaPMTs providing 768 pixels. We used IRS2 waveform digitizing electronics to read out the MaPMTs. We present several results from our on-going development activities that demonstrate that the new optics design works very well, including: (a) single photon Cherenkov angle resolutions with and without chromatic corrections, (b) S/N ratio between the Cherenkov peak and background, which consists primarily of ambiguities in possible photon paths to a given pixel, (c) dTOP=TOP{sub measured}–TOP{sub expected} resolutions, and (d) performance of the detector in the presence of high-rate backgrounds. We also describe data analysis methods and point out limits of the present performance. - Highlights: • We present results from a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC). • The prototype was tested in the SLAC Cosmic Ray Telescope (CRT) which provides 3-D muon tracking. • We present several results from our on-going development activities that demonstrate that new optics design works very well. • We describe data analysis methods and point out limits of the present performance.

  11. Modeling Charge Collection in Detector Arrays

    Science.gov (United States)

    Hardage, Donna (Technical Monitor); Pickel, J. C.

    2003-01-01

    A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

  12. Flat panel detector-based cone beam computed tomography with a circle-plus-two-arcs data acquisition orbit: Preliminary phantom study

    International Nuclear Information System (INIS)

    Ning Ruola; Tang Xiangyang; Conover, David; Yu Rongfeng

    2003-01-01

    Cone beam computed tomography (CBCT) has been investigated in the past two decades due to its potential advantages over a fan beam CT. These advantages include (a) great improvement in data acquisition efficiency, spatial resolution, and spatial resolution uniformity, (b) substantially better utilization of x-ray photons generated by the x-ray tube compared to a fan beam CT, and (c) significant advancement in clinical three-dimensional (3D) CT applications. However, most studies of CBCT in the past are focused on cone beam data acquisition theories and reconstruction algorithms. The recent development of x-ray flat panel detectors (FPD) has made CBCT imaging feasible and practical. This paper reports a newly built flat panel detector-based CBCT prototype scanner and presents the results of the preliminary evaluation of the prototype through a phantom study. The prototype consisted of an x-ray tube, a flat panel detector, a GE 8800 CT gantry, a patient table and a computer system. The prototype was constructed by modifying a GE 8800 CT gantry such that both a single-circle cone beam acquisition orbit and a circle-plus-two-arcs orbit can be achieved. With a circle-plus-two-arcs orbit, a complete set of cone beam projection data can be obtained, consisting of a set of circle projections and a set of arc projections. Using the prototype scanner, the set of circle projections were acquired by rotating the x-ray tube and the FPD together on the gantry, and the set of arc projections were obtained by tilting the gantry while the x-ray tube and detector were at the 12 and 6 o'clock positions, respectively. A filtered backprojection exact cone beam reconstruction algorithm based on a circle-plus-two-arcs orbit was used for cone beam reconstruction from both the circle and arc projections. The system was first characterized in terms of the linearity and dynamic range of the detector. Then the uniformity, spatial resolution and low contrast resolution were assessed using

  13. Measurements of the Optical Performance of Prototype TES Bolometers for SAFARI

    Science.gov (United States)

    Audley, M. D.; de Lange, G.; Ranjan, M.; Gao, J.-R.; Khosropanah, P.; Ridder, M. L.; Mauskopf, P. D.; Morozov, D.; Doherty, S.; Trappe, N.; Withington, S.

    2014-09-01

    We have measured the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays, coupled with a Fourier transform spectrometer, will provide images of a 2'×2' field of view with spectral information over the wavelength range 34-210 μm. Each horn-coupled bolometer consists of a transition edge sensor (TES), with a transition temperature close to 100 mK, and a thin-film Ta absorber on a thermally-isolated silicon nitride membrane. SAFARI requires extremely sensitive detectors ( NEP˜2×10-19 W/), with correspondingly low saturation powers (˜5 fW), to take advantage of SPICA's cooled optics. To meet the challenge of testing such sensitive detectors we have constructed an ultra-low background test facility based on a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion, shielding, and vibration isolation. For optical measurements the system contains internal cold (3-30 K) and hot (˜300 K) black-body calibration sources, as well as a light pipe for external illumination. We discuss our measurements of high optical efficiency in prototype SAFARI detectors and describe recent improvements to the test facility that will enable us to test the full SAFARI focal-plane arrays.

  14. A prototype pixel readout chip for asynchronous detection applications

    International Nuclear Information System (INIS)

    Raymond, D.M.; Hall, G.; Lewis, A.J.; Sharp, P.H.

    1991-01-01

    A two-dimensional array of amplifier cells has been fabricated as a prototype readout system for a matching array of silicon diode detectors. Each cell contains a preamplifier, shaping amplifier, comparator and analogue signal storage in an area of 300 μmx320 μm using 3 μm CMOS technology. Full size chips will be bump bonded to pixel detector arrays. Low noise and asynchronous operation are novel design features. With noise levels of less than 250 rms electrons for input capacitances up to 600 fF, pixel detectors will be suitable for autoradiography, synchrotron X-ray and high energy particle detection applications. The design of the prototype chip is presented and future developments and prospects for applications are discussed. (orig.)

  15. Second LaBr3 Compton Telescope Prototype

    International Nuclear Information System (INIS)

    Llosa, Gabriela; Cabello, Jorge; Gillam, John-E.; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Solaz, Carles; Solevi, Paola; Stankova, Vera; Torres-Espallardo, Irene; Trovato, Marco

    2013-06-01

    A Compton telescope for dose delivery monitoring in hadron therapy is under development at IFIC Valencia within the European project ENVISION. The telescope will consist of three detector planes, each one composed of a LaBr 3 continuous scintillator crystal coupled to four silicon photomultiplier (SiPM) arrays. After the development of a first prototype which served to assess the principle, a second prototype with larger crystals has been assembled and is being tested. The current version of the prototype consists of two detector layers, each one composed of a 32.5 x 35 mm 2 crystal coupled to four SiPM arrays. The VATA64HDR16 ASIC has been employed as front-end electronics. The readout system consists of a custom made data acquisition board. Tests with point-like sources have been carried out in the laboratory, assessing the correct functioning of the device. The system optimization is ongoing. (authors)

  16. Detector Control System for CMS RPC at GIF++

    CERN Document Server

    Gul, Muhammad

    2016-01-01

    In the framework of the High Luminosity LHC upgrade program, the CMS muon groupbuilt several different RPC prototypes that are now under test at the new CERN Gamma Irradiation Facility (GIF++). A dedicated Detector Control System has been developed using the WinCC-OA tool to control and monitor these prototype detectors and to store the measured parameters data.

  17. Hybrid Detectors for Neutrons Combining Phenyl- Polysiloxanes with 3D Silicon Detectors

    International Nuclear Information System (INIS)

    Dalla Palma, Matteo; Quaranta, Alberto; Collazuol, Gianmaria; Carturan, Sara; Cinausero, Marco; Gramegna, Fabiana; Marchi, Tommaso; Dalla Betta, Gian-Franco; Mendicino, Roberto; Povoli, Marco; Boscardin, Maurizio; Giacomini, Gabriele; Ronchin, Sabina; Zorzi, Nicola

    2013-06-01

    We report on the initial results of a research project aimed at the development hybrid detectors for fast neutrons by combining a phenyl-polysiloxane-based converter with a 3D silicon detector. To this purpose, new 3D sensor structures have been designed, fabricated and electrically tested, showing low depletion voltage and good leakage current. Moreover, the radiation detection capability of 3D sensors was tested by measuring the signals recorded from alpha particles, gamma rays, and pulsed lasers. The converter has been poured into the 3D cavities with excellent coupling, as confirmed by cross-section SEM analyses. Preliminary tests with neutrons have been carried out on the first hybrid detector prototypes at the CN accelerator of INFN LNL. The device design and technology are discussed, along with the first results from the electrical and functional characterization. (authors)

  18. Measurements and simulation-based optimization of TIGRESS HPGe detector array performance

    International Nuclear Information System (INIS)

    Schumaker, M.A.

    2005-01-01

    TIGRESS is a new γ-ray detector array being developed for installation at the new ISAC-II facility at TRIUMF in Vancouver. When complete, it will consist of twelve large-volume segmented HPGe clover detectors, fitted with segmented Compton suppression shields. The combined operation of prototypes of both a TIGRESS detector and a suppression shield has been tested. Peak-to-total ratios, relative photopeak efficiencies, and energy resolution functions have been determined in order to characterize the performance of TIGRESS. This information was then used to refine a GEANT4 simulation of the full detector array. Using this simulation, methods to overcome the degradation of the photopeak efficiency and peak-to-total response that occurs with high γ-ray multiplicity events were explored. These methods take advantage of the high segmentation of both the HPGe clovers and the suppression shields to suppress or sum detector interactions selectively. For a range of γ-ray energies and multiplicities, optimal analysis methods have been determined, which has resulted in significant gains in the expected performance of TIGRESS. (author)

  19. First observation of Cherenkov rings with a large area CsI-TGEM-based RICH prototype

    CERN Document Server

    Peskov, V; Di Mauro, A; Martinengo, P; Mayani, D; Molnar, L; Nappi, E; Paic, G; Smirnov, N; Anand, H; Shukla, I

    2012-01-01

    We have built a RICH detector prototype consisting of a liquid C6F14 radiator and six triple Thick Gaseous Electron Multipliers (TGEMs), each of them having an active area of 10x10 cm2. One triple TGEM has been placed behind the liquid radiator in order to detect the beam particles, whereas the other five have been positioned around the central one at a distance to collect the Cherenkov photons. The upstream electrode of each of the TGEM stacks has been coated with a 0.4 micron thick CsI layer. In this paper, we will present the results from a series of laboratory tests with this prototype carried out using UV light, 6 keV photons from 55Fe and electrons from 90Sr as well as recent results of tests with a beam of charged pions where for the first time Cherenkov Ring images have been successfully recorded with TGEM photodetectors. The achieved results prove the feasibility of building a large area Cherenkov detector consisting of a matrix of TGEMs.

  20. Track distortion in a micromegas based large prototype of a Time Projection Chamber for the International Linear Collider

    International Nuclear Information System (INIS)

    Bhattacharya, Deb Sankar; Majumdar, Nayana; Sarkar, S.; Bhattacharya, S.; Mukhopadhyay, Supratik; Bhattacharya, P.; Attie, D.; Colas, P.; Ganjour, S.; Bhattacharya, Aparajita

    2016-01-01

    The principal particle tracker at the International Linear Collider (ILC) is planned to be a large Time Projection Chamber (TPC) where different Micro Pattern Gaseous Detector (MPGDs) candidate as the gaseous amplifier. A Micromegas (MM) based TPC can meet the ILC requirement of continuous and precise pattern recognition. Seven MM modules, working as the end-plate of a Large Prototype TPC (LPTPC) installed at DESY, have been tested with a 5 GeV electron beam. Due to the grounded peripheral frame of the MM modules, at low drift, the electric field lines near the detector edge remain no longer parallel to the TPC axis. This causes signal loss along the boundaries of the MM modules as well as distortion in the reconstructed track. In presence of magnetic field, the distorted electric field introduces ExB effect

  1. Neutrino-4 experiment on search for sterile neutrino with multi-section model of detector

    Science.gov (United States)

    Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.

    2017-09-01

    In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. The prototype of a multi-section neutrino detector with liquid scintillator volume of 350 l was installed in the middle of 2015. It is a moveable inside the passive shielding detector, which can be set at distance range from 6 to 11 meters from the reactor core. Measurements of antineutrino flux at such small distances from the reactor core are carried out with moveable detector for the first time. The measurements carried out with detector prototype demonstrated a possibility of measuring a reactor antineutrino flux in difficult conditions of cosmic background at Earth surface.

  2. SiPM application for a detector for UHE neutrinos tested at Sphinx station

    Science.gov (United States)

    Iori, M.; Atakisi, I. O.; Chiodi, G.; Denizli, H.; Ferrarotto, F.; Kaya, M.; Yilmaz, A.; Recchia, L.; Russ, J.

    2014-04-01

    We present the preliminary test results of the prototype detector, working at Sphinx Observatory Center, Jungfraujoch (~3800 m a.s.l.) HFSJG - Switzerland. This prototype detector is designed to measure large zenith angle showers produced by high energy neutrino interactions in the Earth crust. This station provides us an opportunity to understand if the prototype detector works safely (or not) under hard environmental conditions (the air temperature changes between -25 °C and -5 °C). The detector prototype is using silicon photomultiplier (SiPM) produced by SensL and DRS4 chip as read-out part. Measurements at different temperature at fixed bias voltage (~29.5 V) were performed to reconstruct tracks by Time Of Flight.

  3. Shower maximum detector for SDC calorimetry

    International Nuclear Information System (INIS)

    Ernwein, J.

    1994-01-01

    A prototype for the SDC end-cap (EM) calorimeter complete with a pre-shower and a shower maximum detector was tested in beams of electrons and Π's at CERN by an SDC subsystem group. The prototype was manufactured from scintillator tiles and strips read out with 1 mm diameter wave-length shifting fibers. The design and construction of the shower maximum detector is described, and results of laboratory tests on light yield and performance of the scintillator-fiber system are given. Preliminary results on energy and position measurements with the shower max detector in the test beam are shown. (authors). 4 refs., 5 figs

  4. Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications.

    Science.gov (United States)

    Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C

    2016-09-01

    Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The Simbol-X Low Energy Detector

    International Nuclear Information System (INIS)

    Lechner, Peter

    2009-01-01

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  6. The Simbol-X Low Energy Detector

    Science.gov (United States)

    Lechner, Peter

    2009-05-01

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  7. Novel gaseous detectors for medical imaging

    International Nuclear Information System (INIS)

    Danielsson, M.; Fonte, P.; Francke, T.; Iacobaeus, C.; Ostling, J.; Peskov, V.

    2004-01-01

    We have developed and successfully tested prototypes of two new types of gaseous detectors for medical imaging purposes. The first one is called the Electronic Portal Imaging Device (EPID). It is oriented on monitoring and the precise alignment of the therapeutic cancer treatment beam (pulsed gamma radiation) with respect to the patient's tumor position. The latest will be determined from an X-ray image of the patient obtained in the time intervals between the gamma pulses. The detector is based on a 'sandwich' of hole-type gaseous detectors (GEM and glass microcapillary plates) with metallic gamma and X-ray converters coated with CsI layers. The second detector is an X-ray image scanner oriented on mammography and other radiographic applications. It is based on specially developed by us high rate RPCs that are able to operate at rates of 10 5 Hz/mm 2 with a position resolution better than 50 μm at 1 atm. The quality of the images obtained with the latest version of this device were in most cases more superior than those obtained from commercially available detectors

  8. Recent Developments in GEM-Based Neutron Detectors

    International Nuclear Information System (INIS)

    Saenboonruang, K.

    2014-01-01

    The gas electron multiplier (GEM) detector is a relatively new gaseous detector that has been used for less than 20 years. Since the discovery in 1997 by F. Sauli, the GEM detector has shown excellent properties including high rate capability, excellent resolutions, low discharge probability, and excellent radiation hardness. These promising properties have led the GEM detector to gain popularity and attention amongst physicists and researchers. In particular, the GEM detector can also be modified to be used as a neutron detector by adding appropriate neutron converters. With properties stated above and the need to replace the expensive 3 He-based neutron detectors, the GEM-based neutron detector will be one of the most powerful and affordable neutron detectors. Applications of the GEM-based neutron detectors vary from researches in nuclear and particle physics, neutron imaging, and national security. Although several promising progresses and results have been shown and published in the past few years, further improvement is still needed in order to improve the low neutron detection efficiency (only a few percent) and to widen the possibilities for other uses.

  9. Integrated double-sided silicon microstrip detectors

    Directory of Open Access Journals (Sweden)

    Perevertailo V. L.

    2011-11-01

    Full Text Available The problems of design, technology and manufacturing double-sided silicon microstrip detectors using standard equipment production line in mass production of silicon integrated circuits are considered. The design of prototype high-energy particles detector for experiment ALICE (CERN is presented. The parameters of fabricated detectors are comparable with those of similar foreign detectors, but they are distinguished by lesser cost.

  10. Reactor antineutrino detector iDREAM.

    Science.gov (United States)

    Gromov, M. B.; Lukyanchenko, G. A.; Novikova, G. J.; Obinyakov, B. A.; Oralbaev, A. Y.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2017-09-01

    Industrial Detector for Reactor Antineutrino Monitoring (iDREAM) is a compact (≈ 3.5m 2) industrial electron antineutrino spectrometer. It is dedicated for remote monitoring of PWR reactor operational modes by neutrino method in real-time. Measurements of antineutrino flux from PWR allow to estimate a fuel mixture in active zone and to check the status of the reactor campaign for non-proliferation purposes. LAB-based gadolinium doped scintillator is exploited as a target. Multizone architecture of the detector with gamma-catcher surrounding fiducial volume and plastic muon veto above and below ensure high efficiency of IBD detection and background suppression. DAQ is based on Flash ADC with PSD discrimination algorithms while digital trigger is programmable and flexible due to FPGA. The prototype detector was started up in 2014. Preliminary works on registration Cerenkov radiation produced by cosmic muons were established with distilled water inside the detector in order to test electronic and slow control systems. Also in parallel a long-term measurements with different scintillator samples were conducted.

  11. TU-H-CAMPUS-TeP2-03: High Sensitivity and High Resolution Fiber Based Micro-Detector for Sub-Millimeter Preclinical Dosimetry

    International Nuclear Information System (INIS)

    Izaguirre, E; Pokhrel, S; Knewtson, T; Hedrick, S

    2016-01-01

    Purpose: Current precision of small animal and cell micro-irradiators has continuously increased during the past years. Currently, preclinical irradiators can deliver sub-millimeter fields with micrometric precision but there are no water equivalent dosimeters to determine small field profiles and dose in the orthovoltage range of energies with micrometric resolution and precision. We have developed a fiber based micro-dosimeter with the resolution and dosimetric accuracy required for radiobiological research. Methods: We constructed two prototypes of micro-dosimeters based on different compositions of fiber scintillators to study the spatial resolution and dosimetric precision of small animal and cell micro-irradiators. The first has green output and the second has blue output. The blue output dosimeter has the highest sensitivity because it matches the spectral sensitivity of silicon photomultipliers. A blue detector with 500um cross section was built and tested respect to a CC01 ion chamber, film, and the 1500um green output detector. Orthovoltage fields from 1×1mm2 to 5×5mm2 were used for detector characteristics comparison. Results: The blue fiber dosimeter shows great agreement with films and matches dose measurements with the gold-standard ion chamber for 5×5mm2 fields. The detector has the appropriate sensitivity to measure fields from 1×1mm2 to larger sizes with a 1% dosimetric accuracy. The spatial resolution is in the sub-millimeter range and the spectral matching with the photomultiplier allows reducing the sensor cross section even further than the presented prototype. These results suggest that scintillating fibers combined with silicon photomultipliers is the appropriate technology to pursue micro-dosimetry for small animals and disperse cell samples. Conclusion: The constructed detectors establish a new landmark for the resolution and sensitivity of fiber based microdetectors. The validation of the detector in our small animal and cell

  12. Test Beam Results Obtained with the Q4 Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Benitez, M.; Alberdi, J.; Cerrada, M.; Colino, N.; Daniel, M.; Fouz, M. c.; Marin, J.; Mocholi, J.; Oller, J. C.; Puerta, J.; Romero, L.; Salicio, J. M.

    2000-07-01

    A prototype of the CMS Barrel Muon Detector incorporating all the features of the final chambers was built at CIEMAT using the mass production assembly procedures and tools. The performance of this prototype was studied in a muon test beam at CERN and the results obtained are presented here. (Author)

  13. Test beam results obtained with the Q4 prototype

    International Nuclear Information System (INIS)

    Aguilar-Benitez, M.; Alberdi, J.; Cerrada, M.; Colino, N.; Daniel, M.; Fouz, M.C.; Marin, J.; Mocholi, J.; Oller, J. C.; Puerta, J.; Romero, L.; Salicio, J. M.; Willmott, C.

    2000-10-01

    A prototype of the CMS Barrel Muon Detector incorporating all the features of the final chambers was built at CIEMAT using the mass production assembly procedures and tools. The performance of this prototype was studied in a muon test beam at CERN and the results obtained are presented here. (Author)

  14. SiPM application for a detector for UHE neutrinos tested at Sphinx station

    International Nuclear Information System (INIS)

    Iori, M.; Atakisi, I.O.; Chiodi, G.; Denizli, H.; Ferrarotto, F.; Kaya, M.; Yilmaz, A.; Recchia, L.; Russ, J.

    2014-01-01

    We present the preliminary test results of the prototype detector, working at Sphinx Observatory Center, Jungfraujoch (∼3800 m a.s.l.) HFSJG – Switzerland. This prototype detector is designed to measure large zenith angle showers produced by high energy neutrino interactions in the Earth crust. This station provides us an opportunity to understand if the prototype detector works safely (or not) under hard environmental conditions (the air temperature changes between −25 °C and −5 °C). The detector prototype is using silicon photomultiplier (SiPM) produced by SensL and DRS4 chip as read-out part. Measurements at different temperature at fixed bias voltage (∼29.5 V) were performed to reconstruct tracks by Time Of Flight

  15. SiPM application for a detector for UHE neutrinos tested at Sphinx station

    Energy Technology Data Exchange (ETDEWEB)

    Iori, M. [Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome (Italy); Atakisi, I.O. [University of Kafkas, 36100 Kars (Turkey); Chiodi, G. [INFN, Sezione Roma 1, Piazzale A. Moro 2, 00185 Rome (Italy); Denizli, H. [Abant Izzet Baysal University, 14280 Bolu (Turkey); Ferrarotto, F. [INFN, Sezione Roma 1, Piazzale A. Moro 2, 00185 Rome (Italy); Kaya, M. [University of Kafkas, 36100 Kars (Turkey); Yilmaz, A. [Abant Izzet Baysal University, 14280 Bolu (Turkey); Recchia, L. [INFN, Sezione Roma 1, Piazzale A. Moro 2, 00185 Rome (Italy); Russ, J. [Carnegie-Mellon University, Pittsburgh, PA 15213 (United States)

    2014-04-01

    We present the preliminary test results of the prototype detector, working at Sphinx Observatory Center, Jungfraujoch (∼3800 m a.s.l.) HFSJG – Switzerland. This prototype detector is designed to measure large zenith angle showers produced by high energy neutrino interactions in the Earth crust. This station provides us an opportunity to understand if the prototype detector works safely (or not) under hard environmental conditions (the air temperature changes between −25 °C and −5 °C). The detector prototype is using silicon photomultiplier (SiPM) produced by SensL and DRS4 chip as read-out part. Measurements at different temperature at fixed bias voltage (∼29.5 V) were performed to reconstruct tracks by Time Of Flight.

  16. Developments on RICH detectors

    International Nuclear Information System (INIS)

    Besson, P.; Bourgeois, P.

    1996-01-01

    The RICH (ring imaging Cherenkov) detector which is dedicated to Cherenkov radiation detection is described. An improvement made by replacing photo sensible vapor with solid photocathode is studied. A RICH detector prototype with a CsI photocathode has been built in Saclay and used with Saturne. The first results are presented. (A.C.)

  17. Open-Ended Interaction in Cooperative Pro-to-typing: A Video-based Analysis

    DEFF Research Database (Denmark)

    Bødker, Susanne; Grønbæk, Kaj; Trigg, Randal

    1991-01-01

    Cooperative Prototyping can be characterized as the use and development of prototypes as catalysts during discussions between designers and potential users – the overall intention being one of mutual learning. On the one hand, the designers learn more about the work practices of the users in ways...... that are tied concretely to some current version of the prototype. On the other hand, the users learn more about the potential for change in their work practice, whether computer-based or otherwise. This paper presents the results of a field study of the cooperative prototyping process. The study is based...... on a fine-grained video-based analysis of a single prototyping session, and focuses on the effects of an open-ended style of interaction between users and designers around a prototype. An analysis of focus shifts, initiative and storytelling during the session is brought to bear on the question of whether...

  18. Construction and testing of a large scale prototype of a silicon tungsten electromagnetic calorimeter for a future lepton collider

    International Nuclear Information System (INIS)

    Rouëné, Jérémy

    2013-01-01

    The CALICE collaboration is preparing large scale prototypes of highly granular calorimeters for detectors to be operated at a future linear electron positron collider. After several beam campaigns at DESY, CERN and FNAL, the CALICE collaboration has demonstrated the principle of highly granular electromagnetic calorimeters with a first prototype called physics prototype. The next prototype, called technological prototype, addresses the engineering challenges which come along with the realisation of highly granular calorimeters. This prototype will comprise 30 layers where each layer is composed of four 9×9 cm 2 silicon wafers. The front end electronics is integrated into the detector layers. The size of each pixel is 5×5 mm 2 . This prototype enters its construction phase. We present results of the first layers of the technological prototype obtained during beam test campaigns in spring and summer 2012. According to these results the signal over noise ratio of the detector exceeds the R and D goal of 10:1

  19. A GaAs pixel detectors-based digital mammographic system: Performances and imaging tests results

    Energy Technology Data Exchange (ETDEWEB)

    Annovazzi, A. [LABEN S.p.A., Vimodrone-Milan (Italy); Amendolia, S.R. [Str. Dip. di Matematica e Fisica dell' Universita, Sassari and Sezione I.N.F.N., Pisa (Italy); Bigongiari, A. [CAEN S.p.A., Viareggio-Lucca (Italy); Bisogni, M.G. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Catarsi, F. [CAEN S.p.A., Viareggio-Lucca (Italy); Cesqui, F. [AMS S.p.A, Rome (Italy); Cetronio, A. [AMS S.p.A, Rome (Italy); Colombo, F. [LABEN S.p.A., Vimodrone-Milan (Italy); Delogu, P. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Fantacci, M.E. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Gilberti, A. [LABEN S.p.A., Vimodrone-Milan (Italy); Lanzieri, C. [AMS S.p.A, Rome (Italy); Lavagna, S. [AMS S.p.A, Rome (Italy); Novelli, M. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Passuello, G. [CAEN S.p.A., Viareggio-Lucca (Italy); Paternoster, G. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Pieracci, M. [CAEN S.p.A., Viareggio-Lucca (Italy); Poletti, M. [LABEN S.p.A., Vimodrone-Milan (Italy); Quattrocchi, M. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Rosso, V. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Stefanini, A. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy)]. E-mail: arnaldo.stefanini@pi.infn.it; Testa, A. [CAEN S.p.A., Viareggio-Lucca (Italy); Venturelli, L. [AMS S.p.A, Rome (Italy)

    2007-06-11

    The prototype presented in this paper is based on GaAs pixel detectors read-out by the PCC/MEDIPIX I circuit. The active area of a sensor is about 1 cm{sup 2} therefore to cover the typical irradiation field used in mammography (18x24 cm{sup 2}), 18 GaAs detection units have been organized in two staggered rows of nine chips each and moved by a stepper motor in the orthogonal direction. The system is integrated in a mammographic equipment which comprehends the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the Integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies, Alenia Marconi Systems (AMS), CAEN, Gilardoni, LABEN and Poli.Hi.Tech., in collaboration with the universities of Ferrara, Roma 'La Sapienza', Pisa and the Istituto Nazionale di Fisica Nucleare (INFN). In this paper, we report on the electrical characterization and the first imaging test results of the digital mammographic system. To assess the imaging capability of such a detector we have built a phantom, which simulates the breast tissue with malignancies. The radiographs of the phantom, obtained by delivering an entrance dose of 4.8 mGy, have shown particulars with a measured contrast below 1%.

  20. Description of the SAltro-16 chip for gas detector readout

    CERN Document Server

    Aspell, P; Garcia Garcia, E; de Gaspari, M; Mager, M; Musa, L; Rehman, A; Trampitsch, G

    2010-01-01

    The S-ALTRO prototype chip is a mixed-signal integrated circuit designed to be one of the building blocks of the readout electronics for gas detectors. Its architecture is based in the ALTRO (ALICE TPC Read Out) chip, being its main difference the integration of the charge shaping amplifier in the same IC. Just like ALTRO chip, the prototype architecture and programmability make it suitable for the readout of a wider class of detectors. In one single chip, 16 analogue signals from the detector are shaped, digitised, processed, compressed and stored in a multi-acquisition memory. The Analogue-to- Digital converters embedded in the chip have a 10-bit dynamic range and a maximum sampling rate up to 40MHz. After digitisation, a pipelined Data Processor is able to remove from the input signal a wide range of perturbations, related to the non- ideal behaviour of the detector, temperature variation of the electronics, environmental noise, etc. Moreover, the Data Processor is able to suppress the pulse tail within 1�...

  1. [Calorimeter based detectors for high energy hadron colliders

    International Nuclear Information System (INIS)

    1992-01-01

    This document provides a progress report on research that has been conducted under DOE Grant DEFG0292ER40697 for the past year, and describes proposed work for the second year of this 8 year grant starting November 15, 1992. Personnel supported by the contract include 4 faculty, 1 research faculty, 4 postdocs, and 9 graduate students. The work under this grant has in the past been directed in two complementary directions -- DO at Fermilab, and the second SSC detector GEM. A major effort has been towards the construction and commissioning of the new Fermilab Collider detector DO, including design, construction, testing, the commissioning of the central tracking and the central calorimeters. The first DO run is now underway, with data taking and analysis of the first events. Trigger algorithms, data acquisition, calibration of tracking and calorimetry, data scanning and analysis, and planning for future upgrades of the DO detector with the advent of the FNAL Main Injector are all involved. The other effort supported by this grant has been towards the design of GEM, a large and general-purpose SSC detector with special emphasis on accurate muon measurement over a large solid angle. This effort will culminate this year in the presentation to the SSC laboratory of the GEM Technical Design Report. Contributions are being made to the detector design, coordination, and physics simulation studies with special emphasis on muon final states. Collaboration with the RD5 group at CERN to study muon punch through and to test cathode strip chamber prototypes was begun

  2. Evaluation of a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography of scaphoid fixation screws

    Energy Technology Data Exchange (ETDEWEB)

    Filli, Lukas; Finkenstaedt, Tim; Andreisek, Gustav; Guggenberger, Roman [University Hospital of Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); Marcon, Magda [University Hospital of Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); University of Udine, Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, Udine (Italy); Scholz, Bernhard [Imaging and Therapy Division, Siemens AG, Healthcare Sector, Forchheim (Germany); Calcagni, Maurizio [University Hospital of Zurich, Division of Plastic Surgery and Hand Surgery, Zurich (Switzerland)

    2014-12-15

    The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was ''almost perfect'' (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. (orig.)

  3. Evaluation of a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography of scaphoid fixation screws

    International Nuclear Information System (INIS)

    Filli, Lukas; Finkenstaedt, Tim; Andreisek, Gustav; Guggenberger, Roman; Marcon, Magda; Scholz, Bernhard; Calcagni, Maurizio

    2014-01-01

    The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was ''almost perfect'' (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. (orig.)

  4. Large area liquid argon detectors for interrogation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gary, Charles; Kane, Steve; Firestone, Murray I.; Smith, Gregory [Adelphi Technology LLC, Purdue Technology Center, 5225 Exploration Drive, Indianapolis, IN 46241 (United States); Gozani, Tsahi; Brown, Craig; Kwong, John; King, Michael J. [Rapiscan Laboratories, 520 Almanor Avenue, Sunnyvale, CA 94085 (United States); Nikkel, James A.; McKinsey, Dan [Physics Department, Yale University, New Haven, CT 06520 (United States)

    2013-04-19

    Measurements of the efficiency, pulse shape, and energy and time resolution of liquid argon (LAr) detectors are presented. Liquefied noble gas-based (LNbG) detectors have been developed for the detection of dark matter and neutrinoless double-beta decay. However, the same qualities that make LNbG detectors ideal for these applications, namely their size, cost, efficiency, pulse shape discrimination and resolution, make them promising for portal screening and the detection of Special Nuclear Materials (SNM). Two 18-liter prototype detectors were designed, fabricated, and tested, one with pure LAr and the other doped with liquid Xe (LArXe). The LArXe detector presented the better time and energy resolution of 3.3 ns and 20% at 662 KeV, respectively. The total efficiency of the detector was measured to be 35% with 4.5% of the total photons detected in the photopeak.

  5. Large area liquid argon detectors for interrogation systems

    International Nuclear Information System (INIS)

    Gary, Charles; Kane, Steve; Firestone, Murray I.; Smith, Gregory; Gozani, Tsahi; Brown, Craig; Kwong, John; King, Michael J.; Nikkel, James A.; McKinsey, Dan

    2013-01-01

    Measurements of the efficiency, pulse shape, and energy and time resolution of liquid argon (LAr) detectors are presented. Liquefied noble gas-based (LNbG) detectors have been developed for the detection of dark matter and neutrinoless double-beta decay. However, the same qualities that make LNbG detectors ideal for these applications, namely their size, cost, efficiency, pulse shape discrimination and resolution, make them promising for portal screening and the detection of Special Nuclear Materials (SNM). Two 18-liter prototype detectors were designed, fabricated, and tested, one with pure LAr and the other doped with liquid Xe (LArXe). The LArXe detector presented the better time and energy resolution of 3.3 ns and 20% at 662 KeV, respectively. The total efficiency of the detector was measured to be 35% with 4.5% of the total photons detected in the photopeak.

  6. Study on Silicon detectors

    International Nuclear Information System (INIS)

    Gervino, G.; Boero, M.; Manfredotti, C.; Icardi, M.; Gabutti, A.; Bagnolatti, E.; Monticone, E.

    1990-01-01

    Prototypes of Silicon microstrip detectors and Silicon large area detectors (3x2 cm 2 ), realized directly by our group, either by ion implantation or by diffusion are presented. The physical detector characteristics and their performances determined by exposing them to different radioactive sources and the results of extensive tests on passivation, where new technological ways have been investigated, are discussed. The calculation of the different terms contributing to the total dark current is reported

  7. Tests of a Roman Pot Prototype for the TOTEM Experiment

    OpenAIRE

    Deile, M.; Alagoz, E.; Anelli, G.M.; Antchev, G.A.; Ayache, M.; Caspers, F.; Dimovasili, E.; Dinapoli, R.; Drouhin, F.D.; Eggert, K.; Escourrou, L.; Fochler, O.; Gill, K.; Grabit, R.; Haug, F.

    2005-01-01

    The TOTEM collaboration has developed and tested the first prototype of its Roman Pots to be operated in the LHC. TOTEM Roman Pots contain stacks of 10 silicon detectors with strips oriented in two orthogonal directions. To measure proton scattering angles of a few microradians, the detectors will approach the beam centre to a distance of 10 sigma + 0.5 mm (= 1.3 mm). Dead space near the detector edge is minimised by using two novel "edgeless" detector technologies. The silicon detectors are ...

  8. Prototype-based models in machine learning

    NARCIS (Netherlands)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of

  9. DIRC, the internally reflecting ring imaging Cherenkov detector for BABAR

    International Nuclear Information System (INIS)

    Adam, I.; Aston, D.

    1997-11-01

    The DIRC is a new type of Cherenkov imaging device that will be used for the first time in the BABAR detector at the asymmetric B-factory, PEP-II. It is based on total internal reflection and uses long, rectangular bars made from synthetic fused silica as Cherenkov radiator and light guide. The principles of the DIRC ring imaging Cherenkov technique are explained and results from the prototype program are presented. Its choice for the BABAR detector particle identification system is motivated, followed by a discussion of the quartz radiator properties and the detector design

  10. Challenge Based Innovation @ mediterranean - final presentations & prototype expo

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Challenge Based Innovation @ mediterranean - Final presentations & prototype expo Note - presentation location has been changed to the council chamber (503-1-001) due to the large amount of signups. External participants are guided from the main reception (building 33), more information over email on Wednesday. Prototype presentations are still at IdeaSquare (3179) 18.00 - 19.30, guided walking from the presentations.  Challenge Based Innovation (CBI) is a four month project course, where multidisciplinary student teams and their instructors collaborate with researchers at CERN to discover novel solutions for the future of humankind. The projects are an elaborate mixture, where societal, human-driven needs meet research at CERN. More info about CBI from the course website, cbi-course.com The Gala on 1.12. will introduce the proof-of concept prototypes the five student teams have developed to answer a wide range of societal challenges, inspired by people and r...

  11. The DIRC, the particle identification detector of BaBar

    CERN Document Server

    Yéche, C

    1999-01-01

    A novel particle identification detector (PID) has been developed for the BABAR experiment which will operate at the PEP-II B factory at SLAC. The principles of this new concept of PID called the DIRC, based on ring imaging $9 Cherenkov techniques, are briefly described. The results obtained with a large scale prototype and pion, kaon and proton beams at CERN are presented. The performances of this prototype are compared to the Monte-Carlo simulations and $9 the BABAR requirements. (4 refs).

  12. Prototype detection unit for the CHIPS experiment

    Science.gov (United States)

    Pfützner, Maciej M.

    2017-09-01

    CHIPS (CHerenkov detectors In mine PitS) is an R&D project aiming to develop novel cost-effective neutrino detectors, focused on measuring the CP-violating neutrino mixing phase (δ CP). A single detector module, containing an enclosed volume of purified water, would be submerged in an existing lake, located in a neutrino beam. A staged approach is proposed with first detectors deployed in a flooded mine pit in Northern Minnesota, 7 mrad off-axis from the existing NuMI beam. A small proof-of-principle model (CHIPS-M) has already been tested and the first stage of a fully functional 10 kt module (CHIPS-10) is planned for 2018. One of the instruments submerged on board of CHIPS-M in autumn 2015 was a prototype detection unit, constructed at Nikhef. The unit contains hardware borrowed from the KM3NeT experiment, including 16 3 inch photomultiplier tubes and readout electronics. In addition to testing the mechanical design and data acquisition, the detector was used to record a large sample of cosmic ray muon events. The collected data is valuable for characterising the cosmic muon background and validating a Monte Carlo simulation used to optimise future designs. This paper introduces the CHIPS project, describes the design of the prototype unit, and presents the results of a preliminary data analysis.

  13. Simulations and Data analysis for the 35 ton Liquid Argon detector as a prototype for the DUNE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, Thomas Karl [Sheffield U.

    2017-01-01

    The Deep Underground Neutrino Experiment (DUNE) is a next-generation neutrino experiment which will be built at the Sanford Underground Research Facility (SURF), and will receive a wide-band neutrino beam from Fermilab, 1300~km away. At this baseline DUNE will be able to study many of the properties of neutrino mixing, including the neutrino mass hierarchy and the value of the CP-violating complex phase ($\\delta_{CP}$). DUNE will utilise Liquid Argon (LAr) Time Projection Chamber (TPC) (LArTPC) technology, and the Far Detector (FD) will consist of four modules, each containing 17.1~kt of LAr with a fiducial mass of around 10~kt. Each of these FD modules represents around an order of magnitude increase in size, when compared to existing LArTPC experiments. \\\\ The 35 ton detector is the first DUNE prototype for the single (LAr) phase design of the FD. There were two running periods, one from November 2013 to February 2014, and a second from November 2015 to March 2016. During t he second running period, a system of TPCs was installed, and cosmic-ray data were collected. A method of particle identification was developed using simulations, though this was not applied to the data due to the higher than expected noise level. A new method of determining the interaction time of a track, using the effects of longitudinal diffusion, was developed using the cosmic-ray data. A camera system was also installed in the detector for monitoring purposes, and to look for high voltage breakdowns. \\\\ Simulations concerning the muon-induced background rate to nucleon decay are performed, following the incorporation of the MUon Simulations UNderground (MUSUN) generator into the DUNE software framework. A series of cuts which are based on Monte Carlo truth information is developed, designed to reject simulated background events, whilst preserving simulated signal events in the $n \\rightarrow K^{+} + e^{-}$ decay channel. No background events are seen to survive the app lication of

  14. Construction of two large-size four-plane micromegas detectors

    CERN Document Server

    Bianco, Michele; Degrange, Jordan; De Oliveira, Rui; Düdder, Andreas; Farina, Edoardo; Kuger, Fabian; Iengo, Paolo; Gomez, Francisco Perez; Lin, Tai-Hua; Schott, Matthias; Sekhniaidze, Givi; Sforza, Federico; Sidiropoulou, Ourania; Valderanis, Chrysostomos; Vergain, Maurice; Wotschack, Jörg

    2016-01-01

    We report on the construction and initial performance studies of two micromegas detector quadruplets with an area of 0.5 m$^2$. They serve as prototypes for the planned upgrade project of the ATLAS muon system. Their design is based on the resistive-strip technology and thus renders the detectors spark tolerant. Each quadruplet comprises four detection layers with 1024 readout strips and a strip pitch of 415 $\\mu$m. In two out of the four layers the strips are inclined by $\\pm$1.5$^{\\circ}$ to allow for the measurement of a second coordinate. We present the detector concept and report on the experience gained during the detector construction. In addition an evaluation of the detector performance with cosmic rays and test-beam data is given.

  15. Supervision in the PC based prototype for the ATLAS event filter

    CERN Document Server

    Bee, C P; Etienne, F; Fede, E; Meessen, C; Nacasch, R; Qian, Z; Touchard, F

    1999-01-01

    A prototype of the ATLAS event filter based on commodity PCs linked by a Fast Ethernet switch has been developed in Marseille. The present contribution focus on the supervision aspects of the prototype based on Java and Java mobile agents technology. (5 refs).

  16. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Puellen, Lukas

    2015-02-10

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  17. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    Puellen, Lukas

    2015-01-01

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  18. Cosmic-ray-veto detector system

    International Nuclear Information System (INIS)

    Miller, D.W.; Menlove, H.O.

    1992-12-01

    To reduce the cosmic-ray-induced neutron background, we are testing a cosmic-ray veto option with a neutron detector system that uses plastic scintillator slabs mounted on the outside of a 3 He-tube detector. The scintillator slabs eliminate unwanted cosmic-ray events, enabling the detector to assay low-level plutonium samples, for which a low-background coincident signature is critical. This report describes the design and testing of the prototype cosmic-ray-veto detector system

  19. Evaluation of a wavelet-based compression algorithm applied to the silicon drift detectors data of the ALICE experiment at CERN

    International Nuclear Information System (INIS)

    Falchieri, Davide; Gandolfi, Enzo; Masotti, Matteo

    2004-01-01

    This paper evaluates the performances of a wavelet-based compression algorithm applied to the data produced by the silicon drift detectors of the ALICE experiment at CERN. This compression algorithm is a general purpose lossy technique, in other words, its application could prove useful even on a wide range of other data reduction's problems. In particular the design targets relevant for our wavelet-based compression algorithm are the following ones: a high-compression coefficient, a reconstruction error as small as possible and a very limited execution time. Interestingly, the results obtained are quite close to the ones achieved by the algorithm implemented in the first prototype of the chip CARLOS, the chip that will be used in the silicon drift detectors readout chain

  20. Development of data acquisition system for CSNS 3He detector

    International Nuclear Information System (INIS)

    Zhao Dongxu; Zhang Hongyu

    2012-01-01

    This paper introduces the research and development of data acquisition system of CSNS 3 He detector prototype. This system provides high performance data acquisition capability of CSNS 3 He detector, as well as several performance tests of electronics prototype. This data acquisition system establishes foundation for the later data acquisition development. (authors)

  1. SOLID2: an antibody array-based life-detector instrument in a Mars Drilling Simulation Experiment (MARTE).

    Science.gov (United States)

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A; Moreno-Paz, Mercedes; Rivas, Luis A; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  2. Preamplifier-shaper prototype for the Fast Transition Detector of the Compressed Baryonic Matter (CBM) experiment at FAIR

    CERN Document Server

    Soltveit, Hans Kristian

    2007-01-01

    In this work a preamplifier-shaper prototype for the Fast Transition Detector of the Compressed BaryonicMatter (CBM) experiment at FAIR fabricated using a 0.35 μm CMOS technology will be presented. The ASIC integrates 16 identical Charge Sensitive Amplifiers (CSA) followed by a Pole-Zero network, two bridged-T filters, Common-Mode FeedBack (CMFB) network and two non-inverting level shifting stages. The circuit is optimized for a detector capacitance Cd of (5-10)pF. Measurement results confirm the noise of 330 e− + 12 e−/pF obtained in simulations for a pulse with a Full Width Half Maximum (FWHM) of 71 ns. The circuit recovers to the baseline within 200 ns. The conversion gain is 12.64 mV/fC. An integral nonlinearity of 0.7% is also achieved. The maximum output swing is 2 V. The power consumption is 16 mW/channel where the main contributors are the input transistor and the level shifting stage with 5.3 mW and 6.6 mW, respectively. The total area of the chip is 12 mm2. Although the circuit was designed for...

  3. Dynamic myocardial perfusion in a porcine balloon-induced ischemia model using a prototype spectral detector CT

    Science.gov (United States)

    Fahmi, Rachid; Eck, Brendan L.; Fares, Anas; Levi, Jacob; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2015-03-01

    Myocardial CT perfusion (CTP) imaging is an application that should greatly benefit from spectral CT through the significant reduction of beam hardening (BH) artifacts using mono-energetic (monoE) image reconstructions. We used a prototype spectral detector CT (SDCT) scanner (Philips Healthcare) and developed advanced processing tools (registration, segmentation, and deconvolution-based flow estimation) for quantitative myocardial CTP in a porcine ischemia model with different degrees of coronary occlusion using a balloon catheter. The occlusion severity was adjusted with fractional flow reserve (FFR) measurements. The SDCT scanner is a single source, dual-layer detector system, which allows simultaneous acquisitions of low and high energy projections, hence enabling accurate projection-based material decomposition and effective reduction of BH-artifacts. In addition, the SDCT scanner eliminates partial scan artifacts with fast (0.27s), full gantry rotation acquisitions. We acquired CTP data under different hemodynamic conditions and reconstructed conventional 120kVp images and projection-based monoenergetic (monoE) images for energies ranging from 55keV-to-120keV. We computed and compared myocardial blood flow (MBF) between different reconstructions. With balloon completely deflated (FFR=1), we compared the mean attenuation in a myocardial region of interest before iodine arrival and at peak iodine enhancement in the left ventricle (LV), and we found that monoE images at 70keV effectively minimized the difference in attenuation, due to BH, to less than 1 HU compared to 14 HU with conventional 120kVp images. Flow maps under baseline condition (FFR=1) were more uniform throughout the myocardial wall at 70keV, whereas with 120kVp data about 12% reduction in blood flow was noticed on BH-hypoattenuated areas compared to other myocardial regions. We compared MBF maps at different keVs under an ischemic condition (FFR < 0.7), and we found that flow

  4. New pixelized Micromegas detector with low discharge rate for the COMPASS experiment

    CERN Document Server

    Neyret, D.; Anfreville, M.; Bedfer, Y.; Burtin, E.; Coquelet, C.; d'Hose, N.; Desforge, D.; Giganon, A.; Jourde, D.; Kunne, F.; Magnon, A.; Makke, N.; Marchand, C.; Paul, B.; Platchkov, S.; Thibaud, F.; Usseglio, M.; Vandenbroucke, M.

    2012-01-01

    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than for the present Micromegas detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Two solutions of reduction of discharge impact have been studied, with Micromegas detectors using resistive layers and using an additional GEM foil. Performance of such detectors has also been measured. A large size prototypes with nominal active area and pixelized read-out has been produced and installed at COMPASS in 2010. In 2011 prototypes featuring an additional GEM foil, as well as an resistive prototype, are installed at COMPASS and preliminary results from those detectors presented very go...

  5. Biomedical device prototype based on small scale hydrodynamic cavitation

    Science.gov (United States)

    Ghorbani, Morteza; Sozer, Canberk; Alcan, Gokhan; Unel, Mustafa; Ekici, Sinan; Uvet, Huseyin; Koşar, Ali

    2018-03-01

    This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH)). The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice) based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice) was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.

  6. Biomedical device prototype based on small scale hydrodynamic cavitation

    Directory of Open Access Journals (Sweden)

    Morteza Ghorbani

    2018-03-01

    Full Text Available This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH. The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.

  7. Prototype-based models in machine learning.

    Science.gov (United States)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of potentially high-dimensional, complex datasets. We discuss basic schemes of competitive vector quantization as well as the so-called neural gas approach and Kohonen's topology-preserving self-organizing map. Supervised learning in prototype systems is exemplified in terms of learning vector quantization. Most frequently, the familiar Euclidean distance serves as a dissimilarity measure. We present extensions of the framework to nonstandard measures and give an introduction to the use of adaptive distances in relevance learning. © 2016 Wiley Periodicals, Inc.

  8. Development of membrane cryostats for large liquid argon neutrino detectors

    CERN Document Server

    Montanari, D; Gendotti, A; Geynisman, M; Hentschel, S; Loew, T; Mladenov, D; Montanari, C; Murphy, S; Nessi, M; Norris, B; Noto, F; Rubbia, A; Sharma, R; Smargianaki, D; Stewart, J; Vignoli, C; Wilson, P; Wu, S

    2015-01-01

    A new collaboration is being formed to develop a multi-kiloton Long-Baseline neutrino experiment that will be located at the Surf Underground Research Facility (SURF) in Lead, SD. In the present design, the detector will be located inside cryostats filled with 68,400 ton of ultrapure liquid argon (less than 100 parts per trillion of oxygen equivalent contamination). To qualify the membrane technology for future very large-scale and underground implementations, a strong prototyping effort is ongoing: several smaller detectors of growing size with associated cryostats and cryogenic systems will be designed and built at Fermilab and CERN. They will take physics data and test different detector elements, filtration systems, design options and installation procedures. In addition, a 35 ton prototype is already operational at Fermilab and will take data with single-phase detector in early 2016. After the prototyping phase, the multi-kton detector will be constructed. After commissioning, it will detect and study ne...

  9. Simulation framework and XML detector description for the CMS experiment

    CERN Document Server

    Arce, P; Boccali, T; Case, M; de Roeck, A; Lara, V; Liendl, M; Nikitenko, A N; Schröder, M; Strässner, A; Wellisch, H P; Wenzel, H

    2003-01-01

    Currently CMS event simulation is based on GEANT3 while the detector description is built from different sources for simulation and reconstruction. A new simulation framework based on GEANT4 is under development. A full description of the detector is available, and the tuning of the GEANT4 performance and the checking of the ability of the physics processes to describe the detector response is ongoing. Its integration on the CMS mass production system and GRID is also currently under development. The Detector Description Database project aims at providing a common source of information for Simulation, Reconstruction, Analysis, and Visualisation, while allowing for different representations as well as specific information for each application. A functional prototype, based on XML, is already released. Also examples of the integration of DDD in the GEANT4 simulation and in the reconstruction applications are provided.

  10. Study on the novel neutron-to-proton convertor for improving the detection efficiency of a triple GEM based fast neutron detector

    International Nuclear Information System (INIS)

    Wang Xiaodong; Yang Lei; Zhang Chunhui; Hu Bitao; Yang Herun; Zhang Junwei; Ren Zhongguo; Ha Ri-Ba-La; An Luxing

    2015-01-01

    A high-efficiency fast neutron detector prototype based on a triple Gas Electron Multiplier (GEM) detector, which, coupled with a novel multi-layered high-density polyethylene (HDPE) as a neutron-to-proton converter for improving the neutron detection efficiency, is introduced and tested with the Am-Be neutron source in the Institute of Modern Physics (IMP) at Lanzhou in the present work. First, the developed triple GEM detector is tested by measuring its effective gain and energy resolution with "5"5Fe X-ray source to ensure that it has a good performance. The effective gain and obtained energy resolution is 5.0 × 10"4 and around 19.2%, respectively. Secondly, the novel multi-layered HDPE converter is coupled with the cathode of the triple GEM detector making it a high-efficiency fast neutron detector. Its effective neutron response is four times higher than that of the traditional single-layered conversion technique when the converter layer number is 38. (authors)

  11. A Prototype Large Area Detector Module for Muon Scattering Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Steer, C.A.; Boakes, J.; Burns, J.; Snow, S.; Stapleton, M.; Thompson, L.F.; Quillin, S. [AWE Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)

    2015-07-01

    Abstract-Shielded special nuclear materials (SNM) are of concern as some fissile isotopes have low gamma and neutron emission rates. These materials are also easily shielded to the point where their passive emissions are comparable to background. Consequently, shielded SNM is very challenging for passive radiation detection portals which scan cargo containers. One potential solution for this is to utilise the natural cosmic ray muon background and examine how these muons scatter from materials inside the container volume, terms; the muon scattering tomography (MST) technique measures the three-dimensional localised scattering at all points within a cargo container, providing a degree of material discrimination. There is the additional benefit that the MST signal increases with the presence of more high density shielding materials, in contrast to passive radiation detection. Simulations and calculations suggest that the effectiveness of the technique is sensitive to the tracking accuracy amongst other parameters, motivating the need to develop practical detector systems that are capable of tracking cosmic ray muons. To this end, we have constructed and tested a 2 m by 2 m demonstration module based on gaseous drift chambers and triggered by a large area scintillator-based detector, which is readout by wavelength shifting fibres. We discuss its design, construction, characterisation and operational challenges. (authors)

  12. Simulation results for PLATO: a prototype hybrid X-ray photon counting detector with a low energy threshold for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Habib, A.; Menouni, M.; Pangaud, P.; Morel, C.; Fenzi, C.; Colledani, G.; Moureau, G.; Escarguel, A.

    2017-01-01

    PLATO is a prototype hybrid X-ray photon counting detector that has been designed to meet the specifications for plasma diagnostics for the WEST tokamak platform (Tungsten (W) Environment in Steady-state Tokamak) in southern France, with potential perspectives for ITER. PLATO represents a customized solution that fulfills high sensitivity, low dispersion and high photon counting rate. The PLATO prototype matrix is composed of 16 × 18 pixels with a 70 μm pixel pitch. New techniques have been used in analog sensitive blocks to minimize noise coupling through supply rails and substrate, and to suppress threshold dispersion across the matrix. The PLATO ASIC is designed in CMOS 0.13 μm technology and was submitted for a fabrication run in June 2016. The chip is designed to be bump-bonded to a silicon sensor. This paper presents pixel architecture as well as simulation results while highlighting novel solutions.

  13. arXiv Test beam measurement of the first prototype of the fast silicon pixel monolithic detector for the TT-PET project

    CERN Document Server

    Paolozzi, L.; Benoit, M.; Cardarelli, R.; Débieux, S.; Forshaw, D.; Hayakawa, D.; Iacobucci, G.; Kaynak, M.; Miucci, A.; Nessi, M.; Ratib, O.; Ripiccini, E.; Rücker, H.; Valerio, P.; Weber, M.

    2018-04-12

    The TT-PET collaboration is developing a PET scanner for small animals with  30 ps  time-of-flight resolution and sub-millimetre 3D detection granularity. The sensitive element of the scanner is a monolithic silicon pixel detector based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for the TT-PET was produced and tested in the laboratory and with minimum ionizing particles. The electronics exhibit an equivalent noise charge below  600 e− RMS  and a pulse rise time of less than  2 ns , in accordance with the simulations. The pixels with a capacitance of  0.8 pF  were measured to have a detection efficiency greater than  99%  and, although in the absence of the post-processing, a time resolution of approximately  200 ps .

  14. New pixelized Micromegas detector for the COMPASS experiment

    International Nuclear Information System (INIS)

    Neyret, D; Anfreville, M; Bedfer, Y; Burtin, E; D'Hose, N; Giganon, A; Kunne, F; Magnon, A; Marchand, C; Paul, B; Platchkov, S; Vandenbroucke, M; Ketzer, B; Konorov, I

    2009-01-01

    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm 2 , 10 times larger than for the present detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Studies were done with the present detectors moved in the beam, and two first pixelized prototypes are being tested with muon and hadron beams in real conditions at COMPASS. We present here this new project and report on two series of tests, with old detectors moved into the beam and with pixelized prototypes operated in real data taking condition with both muon and hadron beams.

  15. Micro-channel plate photon detector studies for the TORCH detector

    Energy Technology Data Exchange (ETDEWEB)

    Castillo García, L., E-mail: lucia.castillo.garcia@cern.ch [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Laboratory for High Energy Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Brook, N.; Cowie, E.N.; Cussans, D. [H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Forty, R.; Frei, C. [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Gao, R. [Department of Physics, University of Oxford, Oxford OXI 3RH (United Kingdom); Gys, T. [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Harnew, N. [Department of Physics, University of Oxford, Oxford OXI 3RH (United Kingdom); Piedigrossi, D. [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Van Dijk, M. [H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom)

    2015-07-01

    The Time Of internally Reflected Cherenkov light (TORCH) detector is under development. Charged particle tracks passing through a 1 cm plate of quartz will generate the Cherenkov photons, and their arrival will be timed by an array of micro-channel plate photon detectors. As part of the TORCH R&D studies, commercial and custom-made micro-channel plate detectors are being characterized. The final photon detectors for this application are being produced in a three-phase program in collaboration with industry. Custom-made single-channel devices with extended lifetime have been manufactured and their performance is being systematically investigated in the laboratory. Optical studies for the preparation of beam and laboratory tests of a TORCH prototype are also underway.

  16. New developments on silicon drift detectors

    International Nuclear Information System (INIS)

    Rashevsky, A.

    1996-01-01

    In the frame of the project to develop large-area linear drift detectors few prototypes have been designed and produced. the function of these prototypes is to allow the evaluation of the solutions chosen for the geometry of the on-board electrodes and the production process. On these prototypes it is studied the static characteristics and measured time of-flight and charge collection injecting charges with an IR laser source. It is report the results from one of the prototypes

  17. Undepleted silicon detectors

    International Nuclear Information System (INIS)

    Rancoita, P.G.; Seidman, A.

    1985-01-01

    Large-size silicon detectors employing relatively low resistivity material can be used in electromagnetic calorimetry. They can operate in strong magnetic fields, under geometric constraints and with microstrip detectors a high resolution can be achieved. Low noise large capacitance oriented electronics was developed to enable good signal-to-noise ratio for single relativistic particles traversing large area detectors. In undepleted silicon detectors, the charge migration from the field-free region has been investigated by comparing the expected peak position (from the depleted layer only) of the energy-loss of relativistic electrons with the measured one. Furthermore, the undepleted detectors have been employed in a prototype of Si/W electromagnetic colorimeter. The sensitive layer was found to be systematically larger than the depleted one

  18. Electronics for a prototype variable field of view PET camera using the PMT-quadrant-sharing detector array

    Science.gov (United States)

    Li, H.; Wong, Wai-Hoi; Zhang, N.; Wang, J.; Uribe, J.; Baghaei, H.; Yokoyama, S.

    1999-06-01

    Electronics for a prototype high-resolution PET camera with eight position-sensitive detector modules has been developed. Each module has 16 BGO (Bi/sub 4/Ge/sub 3/O/sub 12/) blocks (each block is composed of 49 crystals). The design goals are component and space reduction. The electronics is composed of five parts: front-end analog processing, digital position decoding, fast timing, coincidence processing and master data acquisition. The front-end analog circuit is a zone-based structure (each zone has 3/spl times/3 PMTs). Nine ADCs digitize integration signals of an active zone identified by eight trigger clusters; each cluster is composed of six photomultiplier tubes (PMTs). A trigger corresponding to a gamma ray is sent to a fast timing board to obtain a time-mark, and the nine digitized signals are passed to the position decoding board, where a real block (four PMTs) can be picked out from the zone for position decoding. Lookup tables are used for energy discrimination and to identify the gamma-hit crystal location. The coincidence board opens a 70-ns initial timing window, followed by two 20-ns true/accidental time-mark lookup table windows. The data output from the coincidence board can be acquired either in sinogram mode or in list mode with a Motorola/IRONICS VME-based system.

  19. Designing a nuclear data base prototype using Oracle and Prolog

    International Nuclear Information System (INIS)

    Paviotti-Corcuera, R.; Ford, C.E.; Perez, R.B.

    1988-11-01

    An ever-increasing demand exists for easily accessible nuclear data base systems. The purpose of this work is to analyze the feasibility of using artificial intelligence methods as tools to provide the necessary functionality to extract information from nuclear data files in a user-friendly manner. For the prototype of this work, a sample of data that can be later enlarged to a complete, evaluated nuclear data base has been used. To implement this prototype, two approaches have been followed: a conventional approach using the commercially available Oracle relational data base management system; and an artificial intelligence approach using the Prolog programming language. This prototypic work shows the feasibility of applying artificial intelligence methods to data bases, and represents a first step toward development of intelligent nuclear data base systems. The characteristics of the query language from both approaches make the second one preferable from a user's point of view. 23 refs., 7 tabs

  20. Investigation of gamma-ray sensitivity of neutron detectors based on thin converter films

    Energy Technology Data Exchange (ETDEWEB)

    Khaplanov, A; Hall-Wilton, R [European Spallation Source, P.O Box 176, SE-22100 Lund (Sweden); Piscitelli, F; Buffet, J-C; Clergeau, J-F; Correa, J; Esch, P van; Ferraton, M; Guerard, B [Institute Laue Langevin, Rue Jules Horowitz, FR-38042 Grenoble (France)

    2013-10-15

    Currently, many detector technologies for thermal neutron detection are in development in order to lower the demand for the rare {sup 3}He gas. Gas detectors with solid thin film neutron converters readout by gas proportional counter method have been proposed as an appropriate choice for applications where large area coverage is necessary. In this paper, we investigate the probability for {gamma}-rays to generate a false count in a neutron measurement. Simulated results are compared to measurement with {sup 10}B thin film prototypes and a {sup 3}He detector. It is demonstrated that equal {gamma}-ray rejection to that of {sup 3}He tubes is achieved with the new technology. The arguments and results presented here are also applicable to gas detectors with converters other than solid {sup 10}B layers, such as {sup 6}Li layers and {sup 10}BF{sub 3} gas.

  1. Studies of cosmic ray events in ATLAS sTGC muon chamber prototypes

    CERN Document Server

    AUTHOR|(CDS)2097847; Warburton, Andreas

    Four years after its first long shutdown in 2015, the Large Hadron Collider (LHC) will be shut down once more for a luminosity upgrade. During that time, the ATLAS detector on the LHC ring will also follow an upgrade program, one upgrade being the replacement of the Small Muon Wheels for a New Small Wheel containing small-strip Thin Gap Chambers (sTGCs). The sTGCs built in Canada will be tested at McGill University before their installation in ATLAS. A testing facility has been constructed and a 40 × 60 cm^2 sTGC prototype has been used to deliver preliminary measurements from cosmic rays. This thesis will present the development of a robust tracking algorithm which can handle extra clusters and multiple tracks in an sTGC detector. This algorithm also categorizes events based on their number of clusters and tracks. By modifying the trigger time window of the sTGC prototype, the evolution of the distribution of events over this categorization is shown.

  2. Detector tests in a high magnetic field and muon spectrometer triggering studies on a small prototype for an LHC experiment

    CERN Document Server

    Ambrosi, G; Basile, M; Battiston, R; Bergsma, F; Castro, H; Cifarelli, Luisa; Cindolo, F; Contin, A; De Pasquale, S; Gálvez, J; Gentile, S; Giusti, P; Laurent, G; Levi, G; Lin, Q; Maccarrone, G D; Mattern, D; Nania, R; Rivera, F; Schioppa, M; Sharma, A; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    The "Large Area Devices" group of the LAA project is working on R&D for muon detection at a future super-collider. New detectors are under development and the design of a muon spectrometer for an LHC experiment is under study. Our present choice is for a compact, high field, air-core toroidal muon spectrometer. Good momentum resolution is achievable in this compact solution, with at least one plane of detection elements inside the high field region. A new detector, the Blade Chamber, making use of blades instead of wires, has been developed for the forward and backward regions of the spectrometer, where polar coordinate readings are desirable.The assembling of a CERN high energy beam line, equipped with high resolution drift chambers and a strong field magnet could give us the opportunity to test our chambers in a high magnetic field and to study the muon trigger capabilities of a spectrometer, like the one proposed, on a small prototype.

  3. Web-Based Honorarium Confirmation System Prototype

    Science.gov (United States)

    Wisswani, N. W.; Catur Bawa, I. G. N. B.

    2018-01-01

    Improving services in academic environment can be applied by regulating salary payment process for all employees. As a form of control to maintain financial transparency, employees should have information concerning salary payment process. Currently, notification process of committee honorarium will be accepted by the employees in a manual manner. The salary will be received by the employee bank account and to know its details, they should go to the accounting unit to find out further information. Though there are some employees entering the accounting unit, they still find difficulty to obtain information about detailed honor information that they received in their accounts. This can be caused by many data collected and to be managed. Based on this issue, this research will design a prototype of web-based system for accounting unit system in order to provide detailed financial transaction confirmation to employee bank accounts that have been informed through mobile banking system. This prototype will be developed with Waterfall method through testing on final users after it is developed through PHP program with MySQL as DBMS

  4. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    Science.gov (United States)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  5. The prototype triggerless data acquisition of the PANDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Milan; Reiter, Simon; Lange, Soeren; Kuehn, Wolfgang [II. Physikalisches Institut, Giessen Univ. (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    The PANDA detector will operate with a very high interaction rate of up to 20 MHz, in a free streaming mode without hardware trigger. Data filtering will be performed by complete online event reconstruction with a highly parallelized farm of FPGAs as first level and on a farm of GPUs or PCs as a second level. The requirement is a background reduction by a factor of >1000. A prototype trigger-less data acquisition (PTDAQ) system for the detector validation measurements comprises free streaming and synchronization readout, for event building and filtering has been developed. A first in beam environment test was performed at the Mainzer Mikrotron, reading out the barrel electromagnetic calorimeter prototype (Proto120).

  6. “In vitro” Implantation Technique Based on 3D Printed Prosthetic Prototypes

    Science.gov (United States)

    Tarnita, D.; Boborelu, C.; Geonea, I.; Malciu, R.; Grigorie, L.; Tarnita, D. N.

    2018-06-01

    In this paper, Rapid Prototyping ZCorp 310 system, based on high-performance composite powder and on resin-high strength infiltration system and three-dimensional printing as a manufacturing method are used to obtain physical prototypes of orthopaedic implants and prototypes of complex functional prosthetic systems directly from the 3D CAD data. These prototypes are useful for in vitro experimental tests and measurements to optimize and obtain final physical prototypes. Using a new elbow prosthesis model prototype obtained by 3D printing, the surgical technique of implantation is established. Surgical implantation was performed on male corpse elbow joint.

  7. A high rate, low noise, x-ray silicon strip detector system

    International Nuclear Information System (INIS)

    Ludewigt, B.; Jaklevic, J.; Kipnis, I.; Rossington, C.; Spieler, H.

    1993-11-01

    An x-ray detector system, based on a silicon strip detector wire-bonded to a low noise charge-senstive amplifier integrated circuit, has been developed for synchrotron radiation experiments which require very high count rates and good energy resolution. Noise measurements and x-ray spectra were taken using a 6 mm long, 55 μm pitch strip detector in conjunction with a prototype 16-channel charge-sensitive preamplifier, both fabricated using standard 1.2 μm CMOS technology. The detector system currently achieves an energy resolution of 350 eV FWHM at 5.9 key, 2 μs peaking time, when cooled to -5 degree C

  8. X-ray detectors based on image sensors

    International Nuclear Information System (INIS)

    Costa, A.P.R.

    1983-01-01

    X-ray detectors based on image sensors are described and a comparison is made between the advantages and the disadvantages of such a kind of detectors with the position sensitive detectors. (L.C.) [pt

  9. The MU-RAY detector for muon radiography of volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Anastasio, A. [INFN-Napoli (Italy); Ambrosino, F. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); Basta, D. [INFN-Napoli (Italy); Bonechi, L. [Università degli Studi di Firenze, Firenze (Italy); INFN-Firenze (Italy); Brianzi, M. [Università degli Studi di Firenze, Firenze (Italy); Bross, A. [Fermilab (United States); Callier, S. [LAL, Orsay (France); Caputo, A. [INGV Osservatorio Vesuviano, Napoli (Italy); Ciaranfi, R. [INFN-Firenze (Italy); Cimmino, L. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); D' Alessandro, R. [Università degli Studi di Firenze, Firenze (Italy); INFN-Firenze (Italy); D' Auria, L. [INGV Osservatorio Vesuviano, Napoli (Italy); La Taille, C. de [LAL, Orsay (France); Energico, S. [CNR- SPIN, Napoli (Italy); INFN-Napoli (Italy); Garufi, F. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); Giudicepietro, F. [INGV Osservatorio Vesuviano, Napoli (Italy); Lauria, A. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); Macedonio, G.; Martini, M. [INGV Osservatorio Vesuviano, Napoli (Italy); Masone, V. [Università Federico II, Napoli (Italy); and others

    2013-12-21

    The MU-RAY detector has been designed to perform muon radiography of volcanoes. The possible use on the field introduces several constraints. First the electric power consumption must be reduced to the minimum, so that the detector can be solar-powered. Moreover it must be robust and transportable, for what concerns the front-end electronics and data acquisition. A 1 m{sup 2} prototype has been constructed and is taking data at Mt. Vesuvius. The detector consists of modules of 32 scintillator bars with wave length shifting fibers and silicon photomultiplier read-out. A dedicated front-end electronics has been developed, based on the SPIROC ASIC. An introduction to muon radiography principles, the MU-RAY detector description and results obtained in laboratory will be presented.

  10. A novel muon detector for borehole density tomography

    Science.gov (United States)

    Bonneville, Alain; Kouzes, Richard T.; Yamaoka, Jared; Rowe, Charlotte; Guardincerri, Elena; Durham, J. Matthew; Morris, Christopher L.; Poulson, Daniel C.; Plaud-Ramos, Kenie; Morley, Deborah J.; Bacon, Jeffrey D.; Bynes, James; Cercillieux, Julien; Ketter, Chris; Le, Khanh; Mostafanezhad, Isar; Varner, Gary; Flygare, Joshua; Lintereur, Azaree T.

    2017-04-01

    Muons can be used to image the density of materials through which they pass, including geological structures. Subsurface applications of the technology include tracking fluid migration during injection or production, with increasing concern regarding such timely issues as induced seismicity or chemical leakage into aquifers. Current density monitoring options include gravimetric data collection and active or passive seismic surveys. One alternative, or complement, to these methods is the development of a muon detector that is sufficiently compact and robust for deployment in a borehole. Such a muon detector can enable imaging of density structure to monitor small changes in density - a proxy for fluid migration - at depths up to 1500 m. Such a detector has been developed, and Monte Carlo modeling methods applied to simulate the anticipated detector response. Testing and measurements using a prototype detector in the laboratory and shallow underground laboratory demonstrated robust response. A satisfactory comparison with a large drift tube-based muon detector is also presented.

  11. Construction of a drift chamber prototype for the CMS experiment

    International Nuclear Information System (INIS)

    Berdugo, J.; Cerrada, M.; Daniel, M.; Martin, F.; Mocholi, J.; Romero, L.

    1997-01-01

    General design features of a small size drift chamber prototype are described in this report. Prototype construction has taken place at CIEMAT and we explain in detail the assembly procedure. This activity is part of a long term project to mass produce chambers for the muon barrel detector of the CMS experiment which will be installed at CERN. (Author)

  12. A mobile antineutrino detector with plastic scintillators

    International Nuclear Information System (INIS)

    Kuroda, Y.; Oguri, S.; Kato, Y.; Nakata, R.; Inoue, Y.; Ito, C.; Minowa, M.

    2012-01-01

    We propose a new type segmented antineutrino detector made of plastic scintillators for the nuclear safeguard application. A small prototype was built and tested to measure background events. A satisfactory unmanned field operation of the detector system was demonstrated. Besides, a detailed Monte Carlo simulation code was developed to estimate the antineutrino detection efficiency of the detector.

  13. Liquid xenon detector engineering

    International Nuclear Information System (INIS)

    Chen, E.; Chen, M.; Gaudreau, M.P.J.; Montgomery, D.B.; Pelly, J.D.; Shotkin, S.; Sullivan, J.D.; Sumorok, K.; Yan, X.; Zhang, X.; Lebedenko, V.

    1991-01-01

    The design, engineering constraints and R and D status of a 15 m 3 precision liquid xenon, electromagnetic calorimeter for the Superconducting Super Collider are discussed in this paper. Several prototype liquid xenon detectors have been built, and preliminary results are described. The design of a conical 7 cell by 7 cell detector capable of measuring fully contained high energy electron showers is described in detail

  14. Efficiency studies for a tracking detector based on square 1.5 m long scintillating fibers read out by SiPM

    International Nuclear Information System (INIS)

    Sanchez Majos, S.; Achenbach, P.; Pochodzalla, J.

    2009-01-01

    A tracking detector based on 1.5 m long scintillating fibers is being developed for the electron arm of the KAOS spectrometer at the Mainz Microtron MAMI. Measurements on light attenuation, particle detection efficiencies and accidental coincidence rates with a prototype set-up using 2x2mm 2 fibers read out by silicon photomultipliers (SiPM) are presented. The highest efficiency at the lowest accidental coincidence rate was reached for high trigger thresholds at the largest SiPM bias voltages. The influence of signal attenuation and dispersion on detection efficiencies is discussed. The results are in good agreement with a Monte Carlo model that was used to predict detector characteristics for different fiber geometries.

  15. Evaluation of the Field Gradient Lattice Detector

    CERN Document Server

    AUTHOR|(CDS)2072983

    A novel Micro Pattern Gas Detector, named the Field Gradient Lattice Detector, has been implemented using technologies available to CERN’s Printed Circuit Workshop. Numerous prototypes based on various materials were constructed in different geometries and their gain performance has been studied using 55Fe and 109Cd X-ray sources in Argon-CO2 gas mixtures. Two axis (2D) prototype structures have been shown to provide stable gains of around 1000 while a 3D design, based on the same polyimide foils used in other MPGD elements, holds a gain of 5000 for 8.9 keV X-rays even at high rates of 22 kHz/mm2. At a gain of 3100, the device has been tested up to 1 MHz/mm2 and shows no signs of degradation in performance. The energy resolution of the 3D-in-polyimide is modest, around 40% for 5.9 keV X-rays and 30% if the source is collimated indicating a variation in gain over the 3x3 cm2 active area. Having the most promise for future applications, the 3D-in-polyimide design has been selected for testing with a custom-bu...

  16. The VENUS detector at TRISTAN

    International Nuclear Information System (INIS)

    Sugimoto, Shojiro

    1983-01-01

    The design of the VENUS detector is described. In this paper, emphasis is placed on the central tracking chamber and the electromagnetic shower calorimeters. Referring to computer simulations and test measurements with prototypes, the expected performance of our detector system is discussed. The contents are, for the most part, taken from the VENUS proposal /2/. (author)

  17. TORCH—a Cherenkov based time-of-flight detector

    Energy Technology Data Exchange (ETDEWEB)

    Dijk, M.W.U. van, E-mail: m.vandijk@bristol.ac.uk [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Brook, N.H. [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Castillo García, L. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Laboratory for High Energy Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Cowie, E.N.; Cussans, D. [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); D' Ambrosio, C. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Fopma, J. [Denys Wilkinson Laboratory, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Forty, R.; Frei, C. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Gao, R. [Denys Wilkinson Laboratory, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Gys, T. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Harnew, N.; Keri, T. [Denys Wilkinson Laboratory, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Piedigrossi, D. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland)

    2014-12-01

    TORCH is an innovative high-precision time-of-flight system to provide particle identification in the difficult intermediate momentum region up to 10 GeV/c. It is also suitable for large-area applications. The detector provides a time-of-flight measurement from the imaging of Cherenkov photons emitted in a 1 cm thick quartz radiator. The photons propagate by total internal reflection to the edge of the quartz plate and are then focused onto an array of photon detectors at the periphery. A time-of-flight resolution of about 10–15 ps per incident charged particle needs to be achieved to allow a three sigma kaon-pion separation up to 10 GeV/c momentum for the TORCH located 9.5 m from the interaction point. Given ∼30 detected photons per incident charged particle, this requires measuring the time-of-arrival of individual photons to about 70 ps. This paper will describe the design of a TORCH prototype involving a number of ground-breaking and challenging techniques.

  18. An interplay of fusiform gyrus and hippocampus enables prototype- and exemplar-based category learning.

    Science.gov (United States)

    Lech, Robert K; Güntürkün, Onur; Suchan, Boris

    2016-09-15

    The aim of the present study was to examine the contributions of different brain structures to prototype- and exemplar-based category learning using functional magnetic resonance imaging (fMRI). Twenty-eight subjects performed a categorization task in which they had to assign prototypes and exceptions to two different families. This test procedure usually produces different learning curves for prototype and exception stimuli. Our behavioral data replicated these previous findings by showing an initially superior performance for prototypes and typical stimuli and a switch from a prototype-based to an exemplar-based categorization for exceptions in the later learning phases. Since performance varied, we divided participants into learners and non-learners. Analysis of the functional imaging data revealed that the interaction of group (learners vs. non-learners) and block (Block 5 vs. Block 1) yielded an activation of the left fusiform gyrus for the processing of prototypes, and an activation of the right hippocampus for exceptions after learning the categories. Thus, successful prototype- and exemplar-based category learning is associated with activations of complementary neural substrates that constitute object-based processes of the ventral visual stream and their interaction with unique-cue representations, possibly based on sparse coding within the hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Direct conversion Si and CdZnTe detectors for digital mammography

    CERN Document Server

    Yin Shi Shi; Maeding, D; Mainprize, J; Mawdsley, G; Yaffe, M J; Gordon, E E; Hamilton, W J

    2000-01-01

    Hybrid pixel detector arrays that convert X-rays directly into charge signals are under development at NOVA for application to digital mammography. This technology also has wide application possibilities in other fields of radiology or in industrial imaging, nondestructive evaluation (NDE) and nondestructive inspection (NDI). These detectors have potentially superior properties compared to either emulsion-based film-screen systems which has nonlinear response to X-rays, or phosphor-based detectors in which there is an intermediate step of X-ray to light photon conversion (Feig and Yaffe, Radiol. Clinics North America 33 (1995) 1205-1230). Potential advantages of direct conversion detectors are high quantum efficiencies (QE) of 98% or higher (for 0.3 mm thick CdZnTe detector with 20 keV X-rays), improved contrast, high sensitivity and low intrinsic noise. These factors are expected to contribute to high detective quantum efficiency (DQE). The prototype hybrid pixel detector developed has 50x50 mu m pixel size,...

  20. Characterization and quality control of avalanche photodiode arrays for the Clear-PEM detector modules

    International Nuclear Information System (INIS)

    Abreu, Conceicao; Amaral, Pedro; Carrico, Bruno; Ferreira, Miguel; Luyten, Joan; Moura, Rui; Ortigao, Catarina; Rato, Pedro; Varela, Joao

    2007-01-01

    Clear-PEM is a Positron Emission Mammography (PEM) prototype being developed in the framework of the Crystal Clear Collaboration at CERN. This device is a dedicated PET camera for mammography, based on LYSO:Ce scintillator crystals, Avalanche PhotoDiodes (APD) and a fast, low-noise electronics readout system, designed to examine both the breast and the axillary lymph node areas, and aiming at the detection of tumors down to 2 mm in diameter. The prototype has two planar detector heads, each composed of 96 detector modules. The Clear-PEM detector module is composed of a matrix of 32 identical 2x2x20 mm 3 LYSO:Ce crystals read at both ends by Hamamatsu S8550 APD arrays (4x8) for Depth-of-Interaction (DoI) capability. The APD arrays were characterized by the measurement of gain and dark current as a function of bias voltage, under controlled temperature conditions. Two independent setups were used. The full set of 398 APD arrays followed a well-defined quality control (QC) protocol, aiming at the rejection of arrays not complying within defined specifications. From a total of 398 arrays, only 2 (0.5%) were rejected, reassuring the trust in these detectors for prototype assembly and future developments

  1. Silicon Detectors for PET and SPECT

    Science.gov (United States)

    Cochran, Eric R.

    Silicon detectors use state-of-the-art electronics to take advantage of the semiconductor properties of silicon to produce very high resolution radiation detectors. These detectors have been a fundamental part of high energy, nuclear, and astroparticle physics experiments for decades, and they hold great potential for significant gains in both PET and SPECT applications. Two separate prototype nuclear medicine imaging systems have been developed to explore this potential. Both devices take advantage of the unique properties of high resolution pixelated silicon detectors, designed and developed as part of the CIMA collaboration and built at The Ohio State University. The first prototype is a Compton SPECT imaging system. Compton SPECT, also referred to as electronic collimation, is a fundamentally different approach to single photon imaging from standard gamma cameras. It removes the inherent coupling of spatial resolution and sensitivity in mechanically collimated systems and provides improved performance at higher energies. As a result, Compton SPECT creates opportunities for the development of new radiopharmaceuticals based on higher energy isotopes as well as opportunities to expand the use of current isotopes such as 131I due to the increased resolution and sensitivity. The Compton SPECT prototype consists of a single high resolution silicon detector, configured in a 2D geometry, in coincidence with a standard NaI scintillator detector. Images of point sources have been taken for 99mTc (140 keV), 131I (364keV), and 22Na (511 keV), demonstrating the performance of high resolution silicon detectors in a Compton SPECT system. Filtered back projection image resolutions of 10 mm, 7.5 mm, and 6.7 mm were achieved for the three different sources respectively. The results compare well with typical SPECT resolutions of 5-15 mm and validate the claims of improved performance in Compton SPECT imaging devices at higher source energies. They also support the potential of

  2. A new method of testing space-based high-energy electron detectors with radioactive electron sources

    Science.gov (United States)

    Zhang, S. Y.; Shen, G. H.; Sun, Y.; Zhou, D. Z.; Zhang, X. X.; Li, J. W.; Huang, C.; Zhang, X. G.; Dong, Y. J.; Zhang, W. J.; Zhang, B. Q.; Shi, C. Y.

    2016-05-01

    Space-based electron detectors are commonly tested using radioactive β-sources which emit a continuous spectrum without spectral lines. Therefore, the tests are often to be considered only qualitative. This paper introduces a method, which results in more than a qualitative test even when using a β-source. The basic idea is to use the simulated response function of the instrument to invert the measured spectrum and compare this inverted spectrum with a reference spectrum obtained from the same source. Here we have used Geant4 to simulate the instrument response function (IRF) and a 3.5 mm thick Li-drifted Si detector to obtain the reference 90Sr/90Yi source spectrum to test and verify the geometric factors of the Omni-Direction Particle Detector (ODPD) on the Tiangong-1 (TG-1) and Tiangong-2 (TG-2) spacecraft. The TG spacecraft are experimental space laboratories and prototypes of the Chinese space station. The excellent agreement between the measured and reference spectra demonstrates that this test method can be used to quantitatively assess the quality of the instrument. Due to its simplicity, the method is faster and therefore more efficient than traditional full calibrations using an electron accelerator.

  3. Digital readouts for large microwave low-temperature detector arrays

    International Nuclear Information System (INIS)

    Mazin, Benjamin A.; Day, Peter K.; Irwin, Kent D.; Reintsema, Carl D.; Zmuidzinas, Jonas

    2006-01-01

    Over the last several years many different types of low-temperature detectors (LTDs) have been developed that use a microwave resonant circuit as part of their readout. These devices include microwave kinetic inductance detectors (MKID), microwave SQUID readouts for transition edge sensors (TES), and NIS bolometers. Current readout techniques for these devices use analog frequency synthesizers and IQ mixers. While these components are available as microwave integrated circuits, one set is required for each resonator. We are exploring a new readout technique for this class of detectors based on a commercial-off-the-shelf technology called software defined radio (SDR). In this method a fast digital to analog (D/A) converter creates as many tones as desired in the available bandwidth. Our prototype system employs a 100MS/s 16-bit D/A to generate an arbitrary number of tones in 50MHz of bandwidth. This signal is then mixed up to the desired detector resonant frequency (∼10GHz), sent through the detector, then mixed back down to baseband. The baseband signal is then digitized with a series of fast analog to digital converters (80MS/s, 14-bit). Next, a numerical mixer in a dedicated integrated circuit or FPGA mixes the resonant frequency of a specified detector to 0Hz, and sends the complex detector output over a computer bus for processing and storage. In this paper we will report on our results in using a prototype system to readout a MKID array, including system noise performance, X-ray pulse response, and cross-talk measurements. We will also discuss how this technique can be scaled to read out many thousands of detectors

  4. A prototype table-top inverse-geometry volumetric CT system

    International Nuclear Information System (INIS)

    Schmidt, Taly Gilat; Star-Lack, Josh; Bennett, N. Robert; Mazin, Samuel R.; Solomon, Edward G.; Fahrig, Rebecca; Pelc, Norbert J.

    2006-01-01

    A table-top volumetric CT system has been implemented that is able to image a 5-cm-thick volume in one circular scan with no cone-beam artifacts. The prototype inverse-geometry CT (IGCT) scanner consists of a large-area, scanned x-ray source and a detector array that is smaller in the transverse direction. The IGCT geometry provides sufficient volumetric sampling because the source and detector have the same axial, or slice direction, extent. This paper describes the implementation of the table-top IGCT scanner, which is based on the NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) and an investigation of the system performance. The alignment and flat-field calibration procedures are described, along with a summary of the reconstruction algorithm. The resolution and noise performance of the prototype IGCT system are studied through experiments and further supported by analytical predictions and simulations. To study the presence of cone-beam artifacts, a ''Defrise'' phantom was scanned on both the prototype IGCT scanner and a micro CT system with a ±5 deg.cone angle for a 4.5-cm volume thickness. Images of inner ear specimens are presented and compared to those from clinical CT systems. Results showed that the prototype IGCT system has a 0.25-mm isotropic resolution and that noise comparable to that from a clinical scanner with equivalent spatial resolution is achievable. The measured MTF and noise values agreed reasonably well with theoretical predictions and computer simulations. The IGCT system was able to faithfully reconstruct the laminated pattern of the Defrise phantom while the micro CT system suffered severe cone-beam artifacts for the same object. The inner ear acquisition verified that the IGCT system can image a complex anatomical object, and the resulting images exhibited more high-resolution details than the clinical CT acquisition. Overall, the successful implementation of the prototype system supports the IGCT concept for

  5. New gas electron-multiplier detectors for the endcap muon system of the CMS experiment at the high-luminosity LHC design and prototype performance

    CERN Document Server

    Gruchala, Marek Michal

    2016-01-01

    The high luminosity LHC will require new detectors in the CMS endcap muon system to suppress the trigger rate of background events, to maintain high trigger efficiency for low transverse momentum muons, to enhance the robustness of muon detection in the high-flux environment of the endcap, and to extend the geometrical acceptance. We report on the design and recent progress towards implementing a new system of large-area, triple-foil gas electron-multiplier (GEM) detectors that will be installed in the first three of five muon detector stations in each endcap, the first station being closest to the interaction point. The first station will extend the geometric acceptance in pseudo-rapidity to eta lt 3.0 from the current limit of eta lt 2.4. The second and third stations will enhance the performance in the range 1.6 lt eta lt 2.4. We describe the design of the chambers and readout electronics and report on the performance of prototype systems in tests with cosmic ray muons, high-energy particlebeams, a...

  6. Performance study of a GEM-TPC prototype using cosmic rays

    International Nuclear Information System (INIS)

    Li Yulan; Qi Huirong; Li Jin; Gao Yuanning; Li Yuanjing; Yang Zhenwei; Fujii, Keisuke; Matsuda, Takeshi

    2008-01-01

    Time projection chambers (TPCs) have been successfully used as the central tracking devices in a number of high-energy physics experiments. However, the performance requirements on TPCs for future high-energy physics experiments greatly exceed the abilities of traditional TPCs read out by multi-wire proportional chambers (MWPCs). Micro-pattern gas detectors (MPGDs), such as gas electron multipliers (GEMs) or micromegas, have great potential to improve TPC performance when used as readout detectors. In order to evaluate its feasibility, a GEM-based TPC prototype with a drift length up to 50 cm was designed. Measurements of the spatial resolution of cosmic-ray tracks without and with a magnetic field (B=1 T) are presented. A very good performance is achieved, matching the analytic formula for the spatial resolution of a MPGD-readout TPC. A dedicated study shows that the increase of GEM detector gain can improve the TPC's spatial resolution.

  7. Fuzzy prototype classifier based on items and its application in recommender system

    Directory of Open Access Journals (Sweden)

    Mei Cai

    2017-01-01

    Full Text Available Currently, recommender systems (RS are incorporating implicit information from social circle of the Internet. The implicit social information in human mind is not easy to reflect in appropriate decision making techniques. This paper consists of 2 contributions. First, we develop an item-based prototype classifier (IPC in which a prototype represents a social circlers preferences as a pattern classification technique. We assume the social circle which distinguishes with others by the items their members like. The prototype structure of the classifier is defined by two2-dimensional matrices. We use information gain and OWA aggregator to construct a feature space. The item-based classifier assigns a new item to some prototypes with different prototypicalities. We reform a typical data setmIris data set in UCI Machine Learning Repository to verify our fuzzy prototype classifier. The second proposition of this paper is to give the application of IPC in recommender system to solve new item cold-start problems. We modify the dataset of MovieLens to perform experimental demonstrations of the proposed ideas.

  8. The GlueX DIRC detector

    Science.gov (United States)

    Barbosa, F.; Bessuille, J.; Chudakov, E.; Dzhygadlo, R.; Fanelli, C.; Frye, J.; Hardin, J.; Kelsey, J.; Patsyuk, M.; Schwarz, C.; Schwiening, J.; Stevens, J.; Shepherd, M.; Whitlatch, T.; Williams, M.

    2017-12-01

    The GlueX DIRC (Detection of Internally Reflected Cherenkov light) detector is being developed to upgrade the particle identification capabilities in the forward region of the GlueX experiment at Jefferson Lab. The GlueX DIRC will utilize four existing decommissioned BaBar DIRC bar boxes, which will be oriented to form a plane roughly 4 m away from the fixed target of the experiment. A new photon camera has been designed that is based on the SuperB FDIRC prototype. The full GlueX DIRC system will consist of two such cameras, with the first planned to be built and installed in 2017. We present the current status of the design and R&D, along with the future plans of the GlueX DIRC detector.

  9. Strip detector for the ATLAS detector upgrade for the High-Luminosity LHC

    CERN Document Server

    Veloce, Laurelle Maria; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High Luminosity LHC, scheduled for 2025. The expected radiation damage at an integrated luminosity of 3000fb-1 will require the tracking detectors to withstand hadron fluencies to over 1x1016 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, the existing Inner Detector will have to be replaced by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The ITk strip detector consists of a four-layer barrel and a forward region composed of six discs on each side of the barrel. The current prototyping phase has resulted in the ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the involved institutes. In this contribution we present the design of the ITk Strip Detector and current status of R&D of various detector components.

  10. Detector Control System and Efficiency Performance for CMS RPC at GIF++

    CERN Document Server

    Gul, Muhammad; Cimmino, A; Crucy, S; Fagot, A; Rios, A A O; Tytgat, M; Zaganidis, N; Aly, S; Assran, Y; Radi, A; Sayed, A; Singh, G; Abbrescia, M; Iaselli, G; Maggi, M; Pugliese, G; Verwilligen, P; Doninck, W V; Colafranceschi, S; Sharma, A; Benussi, L; Bianco, S; Piccolo, D; Primavera, F; Bhatnagar, V; Kumari, R; Mehta, A; Singh, J; Ahmad, A; Asghar, M I; Muhammad, S; Awan, I A; Hoorani, H R; Ahmed, W; Shahzad, H; Shah, M A; Cho, S W; Choi, S Y; Hong, B; Kang, M H; Lee, K S; Lim, J H; Park, S K; Kim, M; Goutzvitz, M; Grenier, G; Lagarde, F; Estrada, C U; Pedraza, I; Severiano, C B; Carrillo Moreno, S; Vazquez Valencia, F; Pant, L M; Buontempo, S; Cavallo, N; Esposito, M; Fabozzi, F; Lanza, G; Lista, L; Meola, S; Merola, M; Orso, I; Paolucci, P; Thyssen, F; Braghieri, A; Magnani, A; Montagna, P; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Ban, Y; Qian, S J; Choi, M; Choi, Y; Goh, J; Kim, D; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Litov, L; Pavlov, B; Petkov, P; Lomidze, D; Bagaturia, I; Avila, C; Cabrera, A; Sanabria, J C; Crotty, I; Vaitkus, J

    2016-01-01

    In the framework of the High Luminosity LHC upgrade program, the CMS muon group built several different RPC prototypes that are now under test at the new CERN Gamma Irradiation Facility (GIF++). A dedicated Detector Control System has been developed using the WinCC-OA tool to control and monitor these prototype detectors and to store the measured parameters data.

  11. Small animal positron emission tomography with gas detectors. Simulations, prototyping, and quantitative image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Vernekohl, Don

    2014-04-15

    The physical background of limiting factors on spatial resolution and coincidence sensitivity were introduced, and details about the first sub-millimeter resolution preclinical PET scanner, the HIDAC, were described in this thesis. As the coincidence sensitivity of the HIDAC is rather moderate, the first subject of investigation was to study the sensitivity optimization potential of the HIDAC converter concept. The HIDAC photon converters consist of a stack of alternating conversion and insulation foils perforated with a dense matrix of holes. First, photon conversion and detection probabilities for different converter geometries were systematically explored with a Geant4 model of the HIDAC, which uses Monte-Carlo methods. Additionally, new charge transport in gas and detection models were developed, and their results for different hole dimensions were combined with the conversion probability outcomes. In a next step, it was explored whether the optimized converter hole patterns prospected by the simulations can be manufactured. In conclusion, currently only etching, screen printing, and drilling are potential methods for producing large-scale converters. Second, a test-bench was established to examine differently produced converter prototypes and to test the performance of newly developed readout electronics for the desired application. It was possible to verify that the developer version of the SPADIC works well if coupled to a MWPC/HIDAC-converter detector setup. In this combination, the setup was able to detect the majority of ionization clusters. This was validated by exploring the impact of drift thickness on the count rate. Furthermore, it was demonstrated that the test-bench is able to distinguish relative efficiency differences of converter prototypes with a precision of around 10%, if it was equipped with an extra drift layer. Additionally, single-lead-layer-converters were investigated, whereby the relative count rate difference between structured and

  12. The Clover detector

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F A; Byrski, Th; Durien, D; Duchene, G; France, G de; Kharraja, B; Wei, L [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Butler, P; Jones, G; Jones, P [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Hannachi, F [Daresbury Lab. (United Kingdom)

    1992-08-01

    The EUROGAM Phase I device is almost running for experiments and new technical developments are in progress for its second phase. For example, a composite Ge detector should enable: a very large photopeak efficiency with good energy and timing resolutions; and, the covering, with Ge, of a large portion of 4{pi}-Str. The Clover detector, proposed by the CRN, Strasbourg, is one of this new generation of Ge detectors. It is currently developed in France by the EUROGAM collaboration. The design, the technical characteristics of the counter and the first results of the prototype tests are discussed in this contribution. (author). 1 ref., 2 tabs., 2 refs.

  13. Text-Based On-Line Conferencing: A Conceptual and Empirical Analysis Using a Minimal Prototype.

    Science.gov (United States)

    McCarthy, John C.; And Others

    1993-01-01

    Analyzes requirements for text-based online conferencing through the use of a minimal prototype. Topics discussed include prototyping with a minimal system; text-based communication; the system as a message passer versus the system as a shared data structure; and three exercises that showed how users worked with the prototype. (Contains 61…

  14. A pixel detector for the protein crystallography beamline at the SLS

    CERN Document Server

    Brönnimann, C; Eikenberry, E F; Fischer, P; Florin, S; Horisberger, R P; Lindner, Manfred; Schmitt, B; Schulze, C

    2002-01-01

    At the Paul Scherrer Institute a new synchrotron light source is currently under construction, the Swiss Light Source (SLS), which will be operational in summer 2001. Among the first beamlines is a high brightness, micro-focusing protein crystallography beamline. It will be equipped with a pixel detector, which has several features of interest for the next generation of protein crystallography detectors. The point spread function and the effect of charge sharing was measured with a prototype detector in a test experiment at the European Synchrotron Radiation Facility in Grenoble. The concepts of the SLS pixel detector is presented as well as test results from radiation hard prototype chips.

  15. Prototype study of the Cherenkov imager of the AMS experiment

    International Nuclear Information System (INIS)

    Aguayo, P.; Aguilar-Benitez, M.; Arruda, L.; Barao, F.; Barreira, G.; Barrau, A.; Baret, B.; Belmont, E.; Berdugo, J.; Boudoul, G.; Borges, J.; Buenerd, M.; Casadei, D.; Casaus, J.; Delgado, C.; Diaz, C.; Derome, L.; Eraud, L.; Gallin-Martel, L.; Giovacchini, F.; Goncalves, P.; Lanciotti, E.; Laurenti, G.; Malinine, A.; Mana, C.; Marin, J.; Martinez, G.; Menchaca-Rocha, A.; Palomares, C.; Pereira, R.; Pimenta, M.; Protasov, K.; Sanchez, E.; Seo, E.-S.; Sevilla, I.; Torrento, A.; Vargas-Trevino, M.; Veziant, O.

    2006-01-01

    The AMS experiment includes a Cherenkov imager for mass and charge identification of charged cosmic rays. A second generation prototype has been constructed and its performances evaluated both with cosmic ray particles and with beam ions. In-beam tests have been performed using secondary nuclei from the fragmentation of 20GeV/c per nucleon Pb ions and 158GeV/c per nucleon In from the CERN SPS in 2002 and 2003. Partial results are reported. The performances of the prototype for the velocity and the charge measurements have been studied over the range of ion charge Z-bar 30. A sample of candidate silica aerogel radiators for the flight model of the detector has been tested. The measured velocity resolution of the detector was found to scale with Z -1 as expected, with a value σ(β)/β∼0.7-110 -3 for singly charged particles and an asymptotic limit in Z of 0.4-0.6x10 -4 . The measured charge resolution obtained for the n=1.05 aerogel radiator material selected for the flight model of the detector is σ(Z)=0.18 (statistical) -bar 0.015 (systematic), ensuring a good charge separation up to the iron element, for the prototype in the reported experimental conditions

  16. The presampler for the forward and rear calorimeter in the ZEUS detector

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, A; Bornheim, A; Crittenden, J; Grabosch, H -J; Grothe, M; Hervas, L; Hilger, E; Holm, U; Horstmann, D; Kaufmann, V; Kharchilava, A; Koetz, U; Kummerow, D; Mallik, U; Meyer, A; Nowoczyn, M; Ossowski, R; Schlenstedt, S; Tiecke, H; Verkerke, W; Vossebeld, J; Vreeswijk, M; Wang, S M; Wu, J [Bonn Univ. (Germany). Phys. Inst.; [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); [DESY-IfH Zeuthen, Zeuthen (Germany); [Fakultaet fuer Physik der Universitaet Freiburg, Freiburg i.Br. (Germany); [Hamburg University, I. Institute of Exp. Physics, Hamburg (Germany); [University of Iowa Physics and Astronomy Dept, Iowa City (United States); [Univer. Autonoma Madrid, Depto de Fisica Teorica, Madrid (Spain); [NIKHEF and University of Amsterdam, Amsterdam (Netherlands)

    1996-11-21

    The ZEUS detector at HERA has been supplemented with a presampler detector in front of the forward and rear calorimeters. It consists of a segmented scintillator array read out with wavelength-shifting fibers. We discuss its design, construction and performance. Test beam data obtained with a prototype presampler and the ZEUS prototype calorimeter demonstrate the main function of this detector, i.e. the correction for the energy lost by an electron interacting in inactive material in front of the calorimeter. (orig.).

  17. ECCE Toolkit: Prototyping Sensor-Based Interaction

    Directory of Open Access Journals (Sweden)

    Andrea Bellucci

    2017-02-01

    Full Text Available Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators. Prototyping physical interaction is hindered by the challenges of: (1 programming interactions among physical sensors/actuators and digital interfaces; (2 implementing functionality for different platforms in different programming languages; and (3 building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems, a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit.

  18. Detector performance tests for the CBM TRD

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, Martin [Institut fuer Kernphysik, WWU Muenster (Germany)

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment is a fixed target heavy-ion experiment at the future FAIR accelerator facility. The CBM Transition Radiation Detector (TRD) is one of the key detectors to provide electron identification and charged particle tracking. With the construction phase of the detector nearing, we will present results of the detector obtained with a close to final prototype. These results were achieved in measurements at CERN PS in 2014 and SPS in 2015.

  19. Test beam results of a depleted monolithic active pixel sensor (DMAPS) prototype

    Energy Technology Data Exchange (ETDEWEB)

    Obermann, Theresa; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Bonn Univ. (Germany); Schwenker, Benjamin [Goettingen Univ. (Germany); Collaboration: ATLAS Pixel-Collaboration

    2016-07-01

    New monolithic detector concepts are currently being explored for future particle physics experiments, in particular for the upgrade of the ATLAS detector. Common to monolithic pixel detectors is the integration of the front-end circuitry and the sensor on the same silicon substrate. The DMAPS concept makes use of high resistive silicon as substrate. It enables the application of a high bias voltage to create a drift field for the charge collection in the sensor part as well as the full usage of CMOS logic in the same piece of silicon. DMAPS prototypes from several foundries are available since three years and have been extensively characterized in the lab. In this talk, results of test beam campaigns, with neutron irradiated prototypes implemented in the ESPROS process, are presented.

  20. Radiation detectors based by polymer materials

    International Nuclear Information System (INIS)

    Cherestes, Margareta; Cherestes, Codrut; Constantinescu, Livia

    2004-01-01

    Scintillation counters make use of the property of certain chemical compounds to emit short light pulses after excitation produced by the passage of charged particles or photons of high energy. These flashes of light are detected by a photomultiplier tube that converts the photons into a voltage pulse. The light emitted from the detector also can be collected, focussed and dispersed by a CCD detector. The study of the evolution of the light emission and of the radiation damage under irradiation is a primary topic in the development of radiation hard polymer based scintillator. Polymer scintillator thin films are used in monitoring radiation beam intensities and simultaneous counting of different radiations. Radiation detectors have characteristics which depend on: the type of radiation, the energy of radiation, and the material of the detector. Three types of polymer thin films were studied: a polyvinyltoluene based scintillator, fluorinated polyimide and PMMA. (authors)

  1. Silicon technologies for the CLIC vertex detector

    Science.gov (United States)

    Spannagel, S.

    2017-06-01

    CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.

  2. MRPC prototypes for NeuLAND tested using the single electron mode of ELBE/Dresden

    Energy Technology Data Exchange (ETDEWEB)

    Yakorev, Dmitry; Bemmerer, Daniel; Elekes, Zoltan; Kempe, Mathias; Stach, Daniel; Wagner, Andreas [Forschungszentrum Dresden-Rossendorf (FZD), Dresden (Germany); Aumann, Tom; Boretzky, Konstanze; Caesar, Christoph; Ciobanu, Mircea; Hehner, Joerg; Heil, Michael; Nusair, Omar; Reifarth, Rene; Simon, Haik [GSI, Darmstadt (Germany); Elvers, Michael; Maroussov, Vassili; Zilges, Andreas [Universitaet Koeln (Germany); Zuber, Kai [TU Dresden (Germany)

    2010-07-01

    The NeuLAND detector at the R{sup 3}B experiment at the future FAIR facility in Darmstadt aims to detect fast neutrons (0.2-1.0 GeV) with high time and spatial resolutions ({sigma}{sub t}<100 ps, {sigma}{sub x,y,z}<1 cm). Prototypes for the NeuLAND detector have been built at FZD and GSI and then studied using the 32 MeV pulsed electron beam at the superconducting electron accelerator ELBE in Dresden, Germany. Owing to the new, single-electron per bunch mode of operation, a rapid validation of the design criteria ({>=}90% efficiency for minimum ionizing particles, {sigma} {<=} 100 ps time resolution) was possible. Tested properties of the prototypes include glass thickness, spacing of the central anode, and a comparison of single-ended and differential readout. Tested frontend electronics schemes include FOPI (single-ended), PADI-based (both single-ended and differential mode tested), and ALICE (differential).

  3. Evaluation of Irradiated Barrel Detector Modules for the Upgrade of the CMS Pixel Detector

    CERN Document Server

    Sibille, Jennifer Ann

    2013-01-01

    Prototype detector modules comprising sensors and the new readout chips were assembled and irradiated with protons at the CERN PS, and readout chips without sensors have been irradiated with protons at the Karls...

  4. Surrogates-based prototyping

    NARCIS (Netherlands)

    Du Bois, E.; Horvath, I.

    2014-01-01

    The research is situated in the system development phase of interactive software products. In this detailed design phase, we found a need for fast testable prototyping to achieve qualitative change proposals on the system design. In this paper, we discuss a literature study on current software

  5. The DEPFET Mini-matrix Particle Detector

    Directory of Open Access Journals (Sweden)

    J. Scheirich

    2010-01-01

    Full Text Available The DEPFET is new type of active pixel particle detector. A MOSFET is integrated in each pixel, providing the first amplification stage of the readout electronics. Excellent noise parameters are obtained with this layout. The DEPFET detector will be integrated as an inner detector in the BELLE II and ILC experiment. A flexible measuring system with a wide control cycle range and minimal noise was designed for testing small detector prototypes.Noise of 60 electrons of the equivalent input charge was achieved during the first measurements on the system.

  6. Test beam studies of possibilities to separate particles with gamma factors above 103 with straw based Transition Radiation Detector

    Science.gov (United States)

    Belyaev, N.; Cherry, M. L.; Doronin, S. A.; Filippov, K.; Fusco, P.; Konovalov, S.; Krasnopevtsev, D.; Kramarenko, V.; Loparco, F.; Mazziotta, M. N.; Ponomarenko, D.; Pyatiizbyantseva, D.; Radomskii, R.; Rembser, C.; Romaniouk, A.; Savchenko, A.; Shulga, E.; Smirnov, S.; Smirnov, Yu; Sosnovtsev, V.; Spinelli, P.; Teterin, P.; Tikhomirov, V.; Vorobev, K.; Zhukov, K.

    2017-12-01

    Measurements of hadron production in the TeV energy range are one of the tasks of the future studies at the Large Hadron Collider (LHC). The main goal of these experiments is a study of the fundamental QCD processes at this energy range, which is very important not only for probing of the Standard Model but also for ultrahigh-energy cosmic particle physics. One of the key elements of these experiments measurements are hadron identification. The only detector technology which has a potential ability to separate hadrons in this energy range is Transition Radiation Detector (TRD) technology. TRD prototype based on straw proportional chambers combined with a specially assembled radiator has been tested at the CERN SPS accelerator beam. The test beam results and comparison with detailed Monte Carlo simulations are presented here.

  7. Compact CsI(Tl)-PIN detectors for nuclear physics applications

    International Nuclear Information System (INIS)

    Bhattacharjee, T.; Basu, S.K.; Bhattacharyya, S.; Chanda, S.; Chowdhury, A.; Mukhopadhyay, P.; Chatterjee, M.B.; Dey, C.C.; Mukherjee, Anjali

    2005-01-01

    Prototype detector elements, based on CsI(Tl) - Si PIN diodes, have been fabricated and optimized for use in a near 4p charged particle multiplicity filter array. The important aspects of fabrication of such compact detector elements along with the off-line and on-line performance test results will be reported. An early implementation of the proposed multiplicity filter array will be described. The planned use of the array in conjunction with the Indian National Gamma Array (INGA) as a reaction filter in high spin spectroscopic studies would be stressed. (author)

  8. Laminated Amorphous Silicon Neutron Detector (pre-print)

    International Nuclear Information System (INIS)

    McHugh, Harry; Branz, Howard; Stradins, Paul; Xu, Yueqin

    2009-01-01

    An internal R and D project was conducted at the Special Technologies Laboratory (STL) of National Security Technologies, LLC (NSTec), to determine the feasibility of developing a multi-layer boron-10 based thermal neutron detector using the amorphous silicon (AS) technology currently employed in the manufacture of liquid crystal displays. The boron-10 neutron reaction produces an alpha that can be readily detected. A single layer detector, limited to an approximately 2-micron-thick layer of boron, has a theoretical sensitivity of about 3%; hence a thin multi-layer device with high sensitivity can theoretically be manufactured from single layer detectors. Working with National Renewable Energy Laboratory (NREL), an AS PiN diode alpha detector was developed and tested. The PiN diode was deposited on a boron-10 coated substrate. Testing confirmed that the neutron sensitivity was nearly equal to the theoretical value of 3%. However, adhesion problems with the boron-10 coating prevented successful development of a prototype detector. Future efforts will include boron deposition work and development of integrated AS signal processing circuitry.

  9. A new configuration of the Moxon-Rae detector based on Si detector

    International Nuclear Information System (INIS)

    Niu, H.; Hsu, J.Y.; Liang, J.H.; Yuan, L.G.

    2002-01-01

    A new Moxon-Rae detector configuration based on Si semiconductor detector was proposed in this paper. Three γ-ray sources, 137 Cs, 60 Co, and 24 Na, were employed to make actual measurements using the new Moxon-Rae detector. The measured pulse height spectra and detection efficiencies were compared with the EGS4 simulated values. The results revealed that the proposed new configuration is indeed a successful method and specially a useful technique for higher energy γ-ray measurement

  10. Review of results for the NA62 gigatracker read-out prototype

    Science.gov (United States)

    Martin, E.; Aglieri Rinella, G.; Carassiti, V.; Ceccucci, A.; Cortina Gil, E.; Cotta Ramusino, A.; Dellacasa, G.; Fiorini, M.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petagna, P.; Petrucci, F.; Perktold, L.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    2012-03-01

    The Gigatracker (GTK) is a hybrid silicon pixel detector developed for NA62, an experiment studying ultra-rare kaon decays at the CERN SPS. The main characteristics are a time-tagging resoluion of 150ps, with low material budget per station (0.5% X0) and a fluence comparable to the one expected for the inner trackers of LHC detectors in 10 years of operation. To compensate the time-walk, two read-out architectures have been designed and produced. The first architecture is based on a Constant Fraction Discriminator (CFD) followed by an on-pixel Time-to-Digital-Converter (TDC). The second architecture is based on a on-pixel group shared TDC. The GTK system developments are described: the integration steps (assembly and cooling) and the results obtained from the prototypes fabricated for the two read-out architectures.

  11. A study on characteristics of X-ray detector for CCD-based EPID

    International Nuclear Information System (INIS)

    Chung, Yong Hyun

    1999-02-01

    The combination of the metal plate/phosphor screen as a x-ray detector with a CCD camera is the most popular detector system among various electronic portal imaging devices (EPIDs). There is a need to optimize the thickness of the metal plate/phosphor screen with high detection efficiency and high spatial resolution for effective transferring of anatomical information. In this study, the thickness dependency on the detection efficiency and the spatial resolution of the metal plate/phosphor screen was investigated by calculation and measurement. The result can be used to determine the optimal thickness of the metal plate as well as of the phosphor screen for the x-ray detector design of therapeutic x-ray imaging and for any specific application. Bremsstrahlung spectrum was calculated by Monte Carlo simulation and by Schiff formula. The detection efficiency was calculated from the total absorbed energy in the phosphor screen using the Monte Carlo simulation and the light output was measured. The spatial resolution, which was defined from the spatial distribution of the absorbed energy, was also calculated and the edge spread function was measured. It was found that the detection efficiency and the spatial resolution were mainly determined by the thickness of metal plate and phosphor screen, respectively. It was also revealed that the detection efficiency and the spatial resolution have trade-off in term of the thickness of the phosphor screen. As the phosphor thickness increases, the detection efficiency increases but the spatial resolution decreases. The curve illustrating the trade-off between the detection efficiency and the spatial resolution of the metal plate/phosphor screen detector is obtained as a function of the phosphor thickness. Based on the calculations, prototype CCD-based EPID was developed and then tested by acquiring phantom images for 6 MV x-ray beam. While, among the captured images, each frame suffered from quantum noise, the frame averaging

  12. Development of a new first-aid biochemical detector

    Science.gov (United States)

    Hu, Jingfei; Liao, Haiyang; Su, Shilin; Ding, Hao; Liu, Suquan

    2016-10-01

    The traditional biochemical detector exhibits poor adaptability, inconvenient carrying and slow detection, which can't meet the needs of first-aid under field condition like natural or man-made disasters etc. Therefore a scheme of first-aid biochemical detector based on MOMES Micro Spectrometer, UV LED and Photodiode was proposed. An optical detection structure combined continuous spectrum sweep with fixed wavelength measurement was designed, which adopted mobile detection optical path consisting of Micro Spectrometer and Halogen Lamp to detect Chloride (Cl-), Creatinine (Cre), Glucose (Glu), Hemoglobin (Hb). The UV LED and Photodiode were designed to detect Potassium (K-), Carbon dioxide (CO2), Sodium (Na+). According to the field diagnosis and treatment requirements, we designed the embedded control hardware circuit and software system, the prototype of first-aid biochemical detector was developed and the clinical trials were conducted. Experimental results show that the sample's absorbance repeatability is less than 2%, the max coefficient of variation (CV) in the batch repeatability test of all 7 biochemical parameters in blood samples is 4.68%, less than the clinical requirements 10%, the correlation coefficient (R2) in the clinical contrast test with AU5800 is almost greater than 0.97. To sum up, the prototype meets the requirements of clinical application.

  13. Detector and Front-end electronics for ALICE and STAR silicon strip layers

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Higueret, S; Jundt, F; Kühn, C E; Lutz, Jean Robert; Suire, C; Tarchini, A; Berst, D; Blondé, J P; Clauss, G; Colledani, C; Deptuch, G; Dulinski, W; Hu, Y; Hébrard, L; Kucewicz, W; Boucham, A; Bouvier, S; Ravel, O; Retière, F

    1998-01-01

    Detector modules consisting of Silicon Strip Detector (SSD) and Front End Electronics (FEE) assembly have been designed in order to provide the two outer layers of the ALICE Inner Tracker System (ITS) [1] as well as the outer layer of the STAR Silicon Vertex Tracker (SVT) [2]. Several prototypes have beenproduced and tested in the SPS and PS beam at CERN to validate the final design. Double-sided, AC-coupled SSD detectors provided by two different manufacturers and also a pair of single-sided SSD have been asssociated to new low-power CMOS ALICE128C ASIC chips in a new detector module assembly. The same detectors have also been associated to current Viking electronics for reference purpose. These prototype detector modules are described and some first results are presented.

  14. Strengthened electric field technique implemented on CZT detectors

    International Nuclear Information System (INIS)

    Fu, Jianqiang; Li, Yulan; Zhang, Lan; Du, Yingshuai; Yang, Yigang; Liu, Yinong; Niu, Libo; Jiang, Hao; Liu, Yilin; Li, Jun; Zhang, Wei; Liu, Yanqing; Li, Yuanjing

    2015-01-01

    This paper presents the development of a simple electrode structure which only requires a simple readout and is suitable for a large cube CZT crystal, such as a 10×10×10 mm 3 crystal. A technique named the strengthened electric field (SEF) is investigated in detail and implemented to improve the performance of the detector. Signal processing was also studied to demonstrate its feasibility to further improve the detector’s performance. A SEF line anode (SEFLA) prototype and an SEF point anode (SEFPA) prototype were designed, fabricated and tested. Experimental results demonstrated the effectiveness of the SEF technique. The SEFLA detector achieved an energy resolution of 1.6% (FWHM)@662 keV with 4.0 keV noise (FWHM) and SEFPA 1.8% with 5.0 keV noise. Cathode signal is used to do both the rejection and the correction in the SEFLA prototype. At the cost of detection efficiency, the low energy tail is reduced, while the energy resolution and the P/C ratio are further improved. Possible improvements of the detectors are discussed

  15. Construction and test of the final CMS Barrel Drift Tube Muon Chamber prototype

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Benitez, M.; Alberdi, J.; Arneodo, M.; Banicz, K.; Benettoni, M.; Benvenuti, A.; Bethke, S.; Cerrada, M. E-mail: cerrada@ciemat.es; Cirio, R.; Colino, N.; Conti, E.; Dallavalle, M.; Daniel, M.; Dattola, D.; Daudo, F.; De Giorgi, M.; Dosselli, U.; Fanfani, A.; Fanin, C.; Fouz, M.C.; Gasparini, F.; Gasparini, U.; Giacomelli, P.; Giordano, V.; Gonella, F.; Grandi, C.; Guaita, P.; Guerzoni, M.; Lacaprara, S.; Lippi, I.; Marcellini, S.; Marin, J.; Martinelli, R.; Maselli, S.; Meneguzzo, A.; Migliore, E.; Mocholi, J.; Monaco, V.; Montanari, A.; Montanari, C.; Odorici, F.; Oller, J.C.; Paoletti, S.; Passaseo, M.; Pegoraro, M.; Peroni, C.; Puerta, J.; Reithler, H.; Romero, A.; Romero, L.; Ronchese, P.; Rossi, A.M.; Rovelli, T.; Sacchi, R.; Salicio, J.M.; Staiano, A.; Steinbeck, T.; Torassa, E.; Travaglini, R.; Ventura, L.; Ventura, S.; Vitelli, A.; Voetee, F.; Wegner, M.; Willmott, C.; Zotto, P.; Zumerle, G

    2002-03-21

    A prototype of the CMS Barrel Muon Detector incorporating all the features of the final chambers was built using the mass production assembly procedures and tools. The performance of this prototype was studied in a muon test beam at CERN and the results obtained are presented in this paper.

  16. Prototype HL-LHC magnet undergoes testing

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    A preliminary short prototype of the quadrupole magnets for the High-Luminosity LHC has passed its first tests.   The first short prototype of the quadrupole magnet for the High Luminosity LHC. (Photo: G. Ambrosio (US-LARP and Fermilab), P. Ferracin and E. Todesco (CERN TE-MSC)) Momentum is gathering behind the High-Luminosity LHC (HL-LHC) project. In laboratories on either side of the Atlantic, a host of tests are being carried out on the various magnet models. In mid-March, a short prototype of the quadrupole magnet underwent its first testing phase at the Fermilab laboratory in the United States. This magnet is a pre-prototype of the quadrupole magnets that will be installed near to the ATLAS and CMS detectors to squeeze the beams before collisions. Six quadrupole magnets will be installed on each side of each experiment, giving a total of 24 magnets, and will replace the LHC's triplet magnets. Made of superconducting niobium-tin, the magnets will be more powerful than their p...

  17. Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges.

    Science.gov (United States)

    Alayed, Mrwan; Deen, M Jamal

    2017-09-14

    Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system.

  18. Technologies for Future Vertex and Tracking Detectors at CLIC

    CERN Document Server

    Spannagel, Simon

    2018-01-01

    CLIC is a proposed linear e$^{+}$e$^{-}$ collider with center-of-mass energies of up to 3 TeV. Its main objectives are precise top quark and Higgs boson measurements, as well as searches for Beyond Standard Model physics. To meet the physics goals, the vertex and tracking detectors require not only a spatial resolution of a few micrometers and a very low material budget, but also timing capabilities with a precision of a few nanoseconds to allow suppression of beam-induced backgrounds. Different technologies using hybrid silicon detectors are explored for the vertex detectors, such as dedicated readout ASICs, small-pitch active edge sensors as well as capacitively coupled High-Voltage CMOS sensors. Monolithic sensors are considered as an option for the tracking detector, and a prototype using a CMOS process with a high-resistivity epitaxial layer is being designed. Different designs using a silicon-on-insulator process are under investigation for both vertex and tracking detector. All prototypes are evaluate...

  19. A new method of testing space-based high-energy electron detectors with radioactive electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Y. [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China); Shen, G.H., E-mail: shgh@nssc.ac.cn [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China); Sun, Y., E-mail: sunying@nssc.ac.cn [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China); Zhou, D.Z., E-mail: dazhuang.zhou@gmail.com [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China); Zhang, X.X., E-mail: xxzhang@cma.gov.cn [National Center for Space Weather, Beijing (China); Li, J.W., E-mail: lijw@cma.gov.cn [National Center for Space Weather, Beijing (China); Huang, C., E-mail: huangc@cma.gov.cn [National Center for Space Weather, Beijing (China); Zhang, X.G., E-mail: zhangxg@nssc.ac.cn [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China); Dong, Y.J., E-mail: dyj@nssc.ac.cn [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China); Zhang, W.J., E-mail: zhangreatest@163.com [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China); Zhang, B.Q., E-mail: zhangbinquan@nssc.ac.cn [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China); Shi, C.Y., E-mail: scy@nssc.ac.cn [National Space Science Center, Chinese Academy of Sciences, Beijing (China); Beijing Key Laboratory of Space Environment Exploration, Beijing (China)

    2016-05-01

    Space-based electron detectors are commonly tested using radioactive β-sources which emit a continuous spectrum without spectral lines. Therefore, the tests are often to be considered only qualitative. This paper introduces a method, which results in more than a qualitative test even when using a β-source. The basic idea is to use the simulated response function of the instrument to invert the measured spectrum and compare this inverted spectrum with a reference spectrum obtained from the same source. Here we have used Geant4 to simulate the instrument response function (IRF) and a 3.5 mm thick Li-drifted Si detector to obtain the reference {sup 90}Sr/{sup 90}Yi source spectrum to test and verify the geometric factors of the Omni-Direction Particle Detector (ODPD) on the Tiangong-1 (TG-1) and Tiangong-2 (TG-2) spacecraft. The TG spacecraft are experimental space laboratories and prototypes of the Chinese space station. The excellent agreement between the measured and reference spectra demonstrates that this test method can be used to quantitatively assess the quality of the instrument. Due to its simplicity, the method is faster and therefore more efficient than traditional full calibrations using an electron accelerator.

  20. A new method of testing space-based high-energy electron detectors with radioactive electron sources

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Shen, G.H.; Sun, Y.; Zhou, D.Z.; Zhang, X.X.; Li, J.W.; Huang, C.; Zhang, X.G.; Dong, Y.J.; Zhang, W.J.; Zhang, B.Q.; Shi, C.Y.

    2016-01-01

    Space-based electron detectors are commonly tested using radioactive β-sources which emit a continuous spectrum without spectral lines. Therefore, the tests are often to be considered only qualitative. This paper introduces a method, which results in more than a qualitative test even when using a β-source. The basic idea is to use the simulated response function of the instrument to invert the measured spectrum and compare this inverted spectrum with a reference spectrum obtained from the same source. Here we have used Geant4 to simulate the instrument response function (IRF) and a 3.5 mm thick Li-drifted Si detector to obtain the reference "9"0Sr/"9"0Yi source spectrum to test and verify the geometric factors of the Omni-Direction Particle Detector (ODPD) on the Tiangong-1 (TG-1) and Tiangong-2 (TG-2) spacecraft. The TG spacecraft are experimental space laboratories and prototypes of the Chinese space station. The excellent agreement between the measured and reference spectra demonstrates that this test method can be used to quantitatively assess the quality of the instrument. Due to its simplicity, the method is faster and therefore more efficient than traditional full calibrations using an electron accelerator.

  1. Application of Geiger-mode photosensors in Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gamal, Ahmed, E-mail: gamal.ahmed@assoc.oeaw.ac.a [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Al-Azhar University, Faculty of Science, Physics Department, Cairo (Egypt); Paul, Buehler; Michael, Cargnelli [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Roland, Hohler [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Johann, Marton [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Herbert, Orth [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Ken, Suzuki [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria)

    2011-05-21

    Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of sensors suitable for modern detector systems in subatomic physics which are usually employing magnets for momentum resolution. We are characterizing SiPMs of different manufacturers for selecting sensors and finding optimum operating conditions for given applications. Recently we designed and built a light concentrator prototype with 8x8 cells to increase the active photon detection area of an 8x8 SiPM (Hamamatsu MPPC S10931-100P) array. Monte Carlo studies, measurements of the collection efficiency, and tests with the MPPC were carried out. The status of these developments are presented.

  2. Prototype-based analysis of GAMA galaxy catalogue data

    NARCIS (Netherlands)

    Nolte, A.; Wang, L.; Biehl, M; Verleysen, Michel

    2018-01-01

    We present a prototype-based machine learning analysis of labeled galaxy catalogue data containing parameters from the Galaxy and Mass Assembly (GAMA) survey. Using both an unsupervised and supervised method, the Self-Organizing Map and Generalized Relevance Matrix Learning Vec- tor Quantization, we

  3. A Detector for Combined SPECT/CT. Final Technical Report

    International Nuclear Information System (INIS)

    Vivek Nagarkar

    2006-01-01

    The goal of the Phase I research was to demonstrate the feasibility of developing a high performance SPECT/CT detector module based on a combination of microcolumnar CsI(Tl) scintillator coupled to an EMCCD readout. We are very pleased to report that our Phase I research has demonstrated the technical feasibility of our approach with a very high degree of success. Specifically, we were able to implement a back-thinned EMCCD with a fiberoptic window which was successfully used to demonstrate the feasibility of near simultaneous radionuclide/CT using the proposed concept. Although significantly limited in imaging area (24 x 24 mm 2 ) and pixel resolution (512 x 512), this prototype has shown exceptional capabilities such as a single optical photon sensitivity, very low noise, an intrinsic resolution of 64 (micro)m for radionuclide imaging, and a resolution in excess of 10 lp/mm for x-ray imaging. Furthermore, the combination of newly developed, thick, microcolumnar CsI and an EMCCD has shown to be capable of operating in a photon counting mode, and that the position and energy information obtained from these data can be used to improve resolution in radionuclide imaging. Finally, the prototype system has successfully been employed for near simultaneous SPECT/CT imaging using both, 125 I and 99m Tc radioisotopes. The tomographic reconstruction data obtained using a mouse heart phantom and other phantoms clearly demonstrate the feasibility and efficacy of the detector in small animal research. The following were the objectives specified in the Phase I proposal: (1) In consultation with Professor Hasegawa, develop specifications for the Phase I/Phase II prototype detector; (2) Modify current vapor deposition protocols to fabricate ∼2 mm thick microcolumnar CsI(Tl) scintillators with excellent columnar structure, high light yield, and high spatial resolution; (3) Perform detailed characterization of the film morphology, light output, and spatial resolution, and use

  4. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Carey, JE; Mazur, E

    2005-05-19

    With support from this award we studied a novel silicon microtexturing process and its application in silicon-based infrared photodetectors. By irradiating the surface of a silicon wafer with intense femtosecond laser pulses in the presence of certain gases or liquids, the originally shiny, flat surface is transformed into a dark array of microstructures. The resulting microtextured surface has near-unity absorption from near-ultraviolet to infrared wavelengths well below the band gap. The high, broad absorption of microtextured silicon could enable the production of silicon-based photodiodes for use as inexpensive, room-temperature multi-spectral photodetectors. Such detectors would find use in numerous applications including environmental sensors, solar energy, and infrared imaging. The goals of this study were to learn about microtextured surfaces and then develop and test prototype silicon detectors for the visible and infrared. We were extremely successful in achieving our goals. During the first two years of this award, we learned a great deal about how microtextured surfaces form and what leads to their remarkable optical properties. We used this knowledge to build prototype detectors with high sensitivity in both the visible and in the near-infrared. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, two orders of magnitude higher than standard silicon photodiodes. For wavelengths below the band gap, we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm, close to the responsivity of InGaAs photodiodes and five orders of magnitude higher than silicon devices in this wavelength region.

  5. Micro-channel cooling for silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Flaschel, Nils

    2017-12-15

    Silicon tracking detectors employed in high-energy physics are located very close to the interaction points of the colliding particle beams. The high energetic radiation emerging from the interaction induces defects into the silicon, downgrading the efficiency to collect the charges created by passing particles and increasing the noise while data taking. Cooling the sensors to low temperatures can help to prevent defects and maintain a high efficiency and lower noise level. In order to maximize the LHC's discovery potential, the collider and its detectors will be upgraded to a higher luminosity around 2024. The conditions inside the detector will become harsher demanding that the technology must adapt to the new situation. Radiation damage is already an issue in the current ATLAS detector and therefore a huge number of parameters are constantly monitored and evaluated to ensure optimal operation. To provide the best possible settings the behavior of the sensors inside the ATLAS Inner Detector is predicted using simulations. In this work several parameters in the simulation including the depletion voltage and the crosstalk between sensor strips of the SCT detector are analyzed and compared with data. The main part of this work concerns the investigation of a novel cooling system based on microchannels etched into silicon in a generic research and development project at DESY and IMB-CNM. A channel layout is designed providing a homogeneous flow distribution across a large surface area and tested in a computational fluid simulation before its production. Two different fabrication techniques, anodic and eutectic bonding, are used to test prototypes with differing mechanical and thermal properties. Hydromechanical and thermal measurements are performed to fully characterize the flow inside the device and the thermal properties of the prototype in air and in a vacuum. The thermal behavior is analyzed by means of local measurements with thermal resistors and infrared

  6. Micro-channel cooling for silicon detectors

    International Nuclear Information System (INIS)

    Flaschel, Nils

    2017-12-01

    Silicon tracking detectors employed in high-energy physics are located very close to the interaction points of the colliding particle beams. The high energetic radiation emerging from the interaction induces defects into the silicon, downgrading the efficiency to collect the charges created by passing particles and increasing the noise while data taking. Cooling the sensors to low temperatures can help to prevent defects and maintain a high efficiency and lower noise level. In order to maximize the LHC's discovery potential, the collider and its detectors will be upgraded to a higher luminosity around 2024. The conditions inside the detector will become harsher demanding that the technology must adapt to the new situation. Radiation damage is already an issue in the current ATLAS detector and therefore a huge number of parameters are constantly monitored and evaluated to ensure optimal operation. To provide the best possible settings the behavior of the sensors inside the ATLAS Inner Detector is predicted using simulations. In this work several parameters in the simulation including the depletion voltage and the crosstalk between sensor strips of the SCT detector are analyzed and compared with data. The main part of this work concerns the investigation of a novel cooling system based on microchannels etched into silicon in a generic research and development project at DESY and IMB-CNM. A channel layout is designed providing a homogeneous flow distribution across a large surface area and tested in a computational fluid simulation before its production. Two different fabrication techniques, anodic and eutectic bonding, are used to test prototypes with differing mechanical and thermal properties. Hydromechanical and thermal measurements are performed to fully characterize the flow inside the device and the thermal properties of the prototype in air and in a vacuum. The thermal behavior is analyzed by means of local measurements with thermal resistors and infrared

  7. Prototype-based Models for the Supervised Learning of Classification Schemes

    Science.gov (United States)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2017-06-01

    An introduction is given to the use of prototype-based models in supervised machine learning. The main concept of the framework is to represent previously observed data in terms of so-called prototypes, which reflect typical properties of the data. Together with a suitable, discriminative distance or dissimilarity measure, prototypes can be used for the classification of complex, possibly high-dimensional data. We illustrate the framework in terms of the popular Learning Vector Quantization (LVQ). Most frequently, standard Euclidean distance is employed as a distance measure. We discuss how LVQ can be equipped with more general dissimilarites. Moreover, we introduce relevance learning as a tool for the data-driven optimization of parameterized distances.

  8. Prototype ALICE front-end card

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    This circuit board is a prototype 48-channel front end digitizer card for the ALICE time projection chamber (TPC), which takes electrical signals from the wire sensors in the TPC and shapes the data before converting the analogue signal to digital data. A total of 4356 cards will be required to process the data from the ALICE TPC, the largest of this type of detector in the world.

  9. A digitalising board for the prototype array of LHAASO WCDA

    International Nuclear Information System (INIS)

    Hao Xinjun; Liu Shubin; Zhao Lei; An Qi

    2011-01-01

    In this paper, a digitalising board for readout of PMT signals in the prototype array of WCDA (water Cerenkov detector array) for LHAASO (Large high altitude air shower observatory)is designed. The prototype array is composed of 9 PMTs, including the pulse time and charge measurement from the PMTs, and clock generation and trigger decision. In the digitalising board, FPGA reconfiguration and data readout via VME bus are implemented. Test results show that the performances meet well with the requirements of readout electronics. It has been installed in Yangbajing and tests with the prototype array and DAQ is ongoing. (authors)

  10. Event reconstruction in the RICH detector of the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Adamczewski, J.; Becker, K.-H.; Belogurov, S.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eom, J.; Eschke, J.; Höhne, C.; Kampert, K.-H.; Kleipa, V.; Kochenda, L.; Kolb, B.; Kopfer, J.; Kravtsov, P.; Lebedev, S.; Lebedeva, E.; Leonova, E.

    2014-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate the QCD phase diagram at high net-baryon densities and moderate temperatures. One of the key signatures will be di-leptons emitted from the hot and dense phase in heavy-ion collisions. Measuring di-electrons, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). In order to access the foreseen rare probes, the detector and the data acquisition have to handle interaction rates up to 10 MHz. Therefore, the development of fast and efficient event reconstruction algorithms is an important and challenging task in CBM. In this contribution event reconstruction and electron identification algorithms in the RICH detector are presented. So far they have been developed on simulated data but could already be tested on real data from a RICH prototype testbeam experiment at the CERN-PS. Efficient and fast ring recognition algorithms in the CBM-RICH are based on the Hough Transform method. Due to optical distortions of the rings, an ellipse fitting algorithm was elaborated to improve the ring radius resolution. An efficient algorithm based on the Artificial Neural Network was implemented for electron identification in RICH. All algorithms were significantly optimized to achieve maximum speed and minimum memory consumption. - Highlights: • Ring Imaging Cherenkov detector will serve for electron identification in CBM. • We present efficient ring recognition algorithm based on the Hough Transform method. • Developed algorithms were significantly optimized to achieve maximum speed up. • Electron identification algorithm in RICH based on the Artificial Neural Network. • Developed algorithms were successfully tested on real data from the RICH prototype

  11. Event reconstruction in the RICH detector of the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Adamczewski, J. [GSI Darmstadt (Germany); Becker, K.-H. [University Wuppertal (Germany); Belogurov, S. [ITEP Moscow (Russian Federation); Boldyreva, N. [PNPI Gatchina (Russian Federation); Chernogorov, A. [ITEP Moscow (Russian Federation); Deveaux, C. [University Gießen (Germany); Dobyrn, V. [PNPI Gatchina (Russian Federation); Dürr, M. [University Gießen (Germany); Eom, J. [Pusan National University (Korea, Republic of); Eschke, J. [GSI Darmstadt (Germany); Höhne, C. [University Gießen (Germany); Kampert, K.-H. [University Wuppertal (Germany); Kleipa, V. [GSI Darmstadt (Germany); Kochenda, L. [PNPI Gatchina (Russian Federation); Kolb, B. [GSI Darmstadt (Germany); Kopfer, J. [University Wuppertal (Germany); Kravtsov, P. [PNPI Gatchina (Russian Federation); Lebedev, S., E-mail: s.lebedev@gsi.de [University Gießen (Germany); Lebedeva, E. [University Gießen (Germany); Leonova, E. [PNPI Gatchina (Russian Federation); and others

    2014-12-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate the QCD phase diagram at high net-baryon densities and moderate temperatures. One of the key signatures will be di-leptons emitted from the hot and dense phase in heavy-ion collisions. Measuring di-electrons, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). In order to access the foreseen rare probes, the detector and the data acquisition have to handle interaction rates up to 10 MHz. Therefore, the development of fast and efficient event reconstruction algorithms is an important and challenging task in CBM. In this contribution event reconstruction and electron identification algorithms in the RICH detector are presented. So far they have been developed on simulated data but could already be tested on real data from a RICH prototype testbeam experiment at the CERN-PS. Efficient and fast ring recognition algorithms in the CBM-RICH are based on the Hough Transform method. Due to optical distortions of the rings, an ellipse fitting algorithm was elaborated to improve the ring radius resolution. An efficient algorithm based on the Artificial Neural Network was implemented for electron identification in RICH. All algorithms were significantly optimized to achieve maximum speed and minimum memory consumption. - Highlights: • Ring Imaging Cherenkov detector will serve for electron identification in CBM. • We present efficient ring recognition algorithm based on the Hough Transform method. • Developed algorithms were significantly optimized to achieve maximum speed up. • Electron identification algorithm in RICH based on the Artificial Neural Network. • Developed algorithms were successfully tested on real data from the RICH prototype.

  12. A highly accurate wireless digital sun sensor based on profile detecting and detector multiplexing technologies

    Science.gov (United States)

    Wei, Minsong; Xing, Fei; You, Zheng

    2017-01-01

    The advancing growth of micro- and nano-satellites requires miniaturized sun sensors which could be conveniently applied in the attitude determination subsystem. In this work, a profile detecting technology based high accurate wireless digital sun sensor was proposed, which could transform a two-dimensional image into two-linear profile output so that it can realize a high update rate under a very low power consumption. A multiple spots recovery approach with an asymmetric mask pattern design principle was introduced to fit the multiplexing image detector method for accuracy improvement of the sun sensor within a large Field of View (FOV). A FOV determination principle based on the concept of FOV region was also proposed to facilitate both sub-FOV analysis and the whole FOV determination. A RF MCU, together with solar cells, was utilized to achieve the wireless and self-powered functionality. The prototype of the sun sensor is approximately 10 times lower in size and weight compared with the conventional digital sun sensor (DSS). Test results indicated that the accuracy of the prototype was 0.01° within a cone FOV of 100°. Such an autonomous DSS could be equipped flexibly on a micro- or nano-satellite, especially for highly accurate remote sensing applications.

  13. Construction and test of a fine-grained liquid argon preshower prototype

    Science.gov (United States)

    Davis, R. A.; Gingrich, D. M.; Pinfold, J. L.; Rodning, N. L.; Boos, E.; Zhautykov, B. O.; Aubert, B.; Bazan, A.; Beaugiraud, B.; Boniface, J.; Colas, J.; Eynard, G.; Jezequel, S.; Leflour, T.; Linossier, O.; Nicoleau, S.; Rival, F.; Sauvage, G.; Thion, J.; VanDenPlas, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y. P.; Chmeissani, M.; Fernandez, E.; Garrido, Ll.; Martinez, M.; Padilla, C.; Gordon, H. A.; Radeka, V.; Rahm, D.; Stephani, D.; Baisin, L.; Berset, J. C.; Chevalley, J. L.; Gianotti, F.; Gildemeister, O.; Marin, C. P.; Nessi, M.; Poggioli, L.; Richter, W.; Vuillemin, V.; Baze, J. M.; Gosset, L.; Lavocat, P.; Lottin, J. P.; Mansoulié, B.; Meyer, J. P.; Renardy, J. F.; Schwindling, J.; Teiger, J.; Collot, J.; de Saintignon, P.; Dzahini, D.; Hostachy, J. Y.; Hoummada, A.; Laborie, G.; Mahout, G.; Hervas, L.; Chekhtman, A.; Cousinou, M. C.; Dargent, P.; Dinkespiller, B.; Etienne, F.; Fassnacht, P.; Fouchez, D.; Martin, L.; Miotto, A.; Monnier, E.; Nagy, E.; Olivetto, C.; Tisserant, S.; Battistoni, G.; Camin, D. V.; Cavalli, D.; Costa, G.; Cozzi, L.; Fedyakin, N.; Ferrari, A.; Mandelli, L.; Mazzanti, M.; Perini, L.; Resconi, S.; Sala, P.; Beaudoin, G.; Depommier, P.; León-Florián, E.; Leroy, C.; Roy, P.; Augé, E.; Chase, R.; Chollet, J. C.; de La Taille, C.; Fayard, L.; Fournier, D.; Hrisoho, A.; Merkel, B.; Noppe, J. M.; Parrour, G.; Pétroff, P.; Schaffer, A.; Seguin-Moreau, N.; Serin, L.; Tisserand, V.; Vichou, I.; Canton, B.; David, J.; Genat, J. F.; Imbault, D.; Le Dortz, O.; Savoy-Navarro, A.; Schwemling, P.; Eek, L. O.; Lund-Jensen, B.; Söderqvist, J.; Lefebvre, M.; Robertson, S.; RD3 Collaboration

    1997-02-01

    A separate liquid argon preshower detector consisting of two layers featuring a fine granularity of 2.5 × 10 -3 was studied by the RD3 collaboration. A prototype covering approximately 0.8 in pseudo-rapidity and 9° in azimuth was built and tested at CERN in July 94. CMOS and GaAs VLSI preamplifiers were designed and tested for this occasion. The combined response of this detector and an accordion electromagnetic calorimeter prototype to muons, electrons and photons is presented. For minimum ionizing tracks a signal-to-noise ratio of 4.5 per preshower layer was measured. Above 150 GeV the space resolution for electrons is better than 250 μm in both directions. The precision on the electromagnetic shower direction, determined together with the calorimeter, is better than 4 mrad above 50 GeV. It is concluded that the preshower detector would adequately fulfil its role for future operation at CERN Large Hadron Collider.

  14. Construction and test of a fine-grained liquid argon preshower prototype

    International Nuclear Information System (INIS)

    Davis, R.A.; Gingrich, D.M.; Pinfold, J.L.

    1997-01-01

    A separate liquid argon preshower detector consisting of two layers featuring a fine granularity of 2.5 x 10 -3 was studied by the RD3 collaboration. A prototype covering approximately 0.8 in pseudo-rapidity and 9 circle in azimuth was built and tested at CERN in July 94. CMOS and GaAs VLSI preamplifiers were designed and tested for this occasion. The combined response of this detector and an accordion electromagnetic calorimeter prototype to muons, electrons and photons is presented. For minimum ionizing tracks a signal-to-noise ratio of 4.5 per preshower layer was measured. Above 150 GeV the space resolution for electrons is better than 250 μm in both directions. The precision on the electromagnetic shower direction, determined together with the calorimeter, is better than 4 mrad above 50 GeV. It is concluded that the preshower detector would adequately fulfil its role for future operation at CERN Large Hadron Collider. (orig.)

  15. Construction and test of a fine-grained liquid argon preshower prototype

    CERN Document Server

    Davis, R; Pinfold, J L; Rodning, N L; Boos, E; Zhautykov, B O; Aubert, Bernard; Bazan, A; Beaugiraud, B; Boniface, J; Colas, Jacques; Eynard, G; Jézéquel, S; Le Flour, T; Linossier, O; Nicoleau, S; Rival, F; Sauvage, G; Thion, J; Van den Plas, D; Wingerter-Seez, I; Zitoun, R; Zolnierowski, Y; Chmeissani, M; Fernández, E; Garrido, L; Martínez, M; Padilla, C; Gordon, H A; Radeka, V; Rahm, David Charles; Stephani, D; Baisin, L; Berset, J C; Chevalley, J L; Gianotti, F; Gildemeister, O; Marin, C P; Nessi, Marzio; Poggioli, Luc; Richter, W; Vuillemin, V; Baze, J M; Gosset, L G; Lavocat, P; Lottin, J P; Mansoulié, B; Meyer, J P; Renardy, J F; Schwindling, J; Teiger, J; Collot, J; de Saintignon, P; Dzahini, D; Hostachy, J Y; Hoummada, A; Laborie, G; Mahout, G; Hervás, L; Chekhtman, A; Cousinou, M C; Dargent, P; Dinkespiler, B; Etienne, F; Fassnacht, P; Fouchez, D; Martin, L; Miotto, A; Monnier, E; Nagy, E; Olivetto, C; Tisserant, S; Battistoni, G; Camin, D V; Cavalli, D; Costa, G; Cozzi, L; Fedyakin, N N; Ferrari, A; Mandelli, L; Mazzanti, M; Perini, L; Resconi, S; Sala, P R; Beaudoin, G; Depommier, P; León-Florián, E; Leroy, C; Roy, P; Augé, E; Chase, Robert L; Chollet, J C; de La Taille, C; Fayard, Louis; Fournier, D; Hrisoho, A T; Merkel, B; Noppe, J M; Parrour, G; Pétroff, P; Schaffer, A C; Seguin-Moreau, N; Serin, L; Tisserand, V; Vichou, I; Canton, B; David, J; Genat, J F; Imbault, D; Le Dortz, O; Savoy-Navarro, Aurore; Schwemling, P; Eek, L O; Lund-Jensen, B; Söderqvist, J; Lefebvre, M; Robertson, S

    1997-01-01

    A separate liquid argon preshower detector consisting of two layers featuring a fine granularity of 2.5~10$^{\\mathrm{-3}}$ was studied by the RD3 collaboration. A prototype covering approximately 0.8 in pseudo-rapidity and 9 degrees in azimuth was built and tested at CERN in July 94. CMOS and GaAs VLSI preamplifiers were designed and tested for this occasion. The combined response of this detector and an accordion electromagnetic calorimeter prototype to muons, electrons and photons is presented. For minimum ionizing tracks a signal-to-noise ratio of 4.5 per preshower layer was measured. Above 150~GeV the space resolution for electrons is better than 250~$\\mu$m in both directions. The precision on the electromagnetic shower direction, determined together with the calorimeter, is better than 4 mrad above 50~GeV. It is concluded that the preshower detector would adequately fulfil its role for future operation at CERN Large Hadron Collider.

  16. A room-temperature liquid calorimeter prototype for the SSC

    International Nuclear Information System (INIS)

    Brandenburg, G.W.; Geer, S.H.; Oliver, J.; Sadowski, E.; Theriot, D.

    1990-01-01

    Calorimeters will be an extremely important part of SSC detectors as they have been in existing collider detectors. The main issues that need to be addressed are: (1) energy resolution of jets and electrons, (2) segmentation, (3) hermiticity, (4) response time, and (5) radiation resistance. An attractive possibility on all these counts is the use of room-temperature liquids together with uranium, as pioneered by UA1. The authors are planning a prototype calorimeter which consists of a sealed vessel containing both the radiator plates and the readout pads. This geometry has been appropriately named the swimming pool design. The general mechanical starting point is similar to the SLD liquid argon calorimeters. The points they wish to address are the following: (1) Simple and reliable modular construction techniques, (2) Satisfactory electrical connections with minimal geometric impact, (3) The necessity of isolating radiator plates and liquid to maintain purity, (4) What materials can be immersed without compromising the liquid purity. The design and construction of the swimming pool electromagnetic calorimeter prototype is being carried out at the Harvard High Energy Physics Laboratory. This is one of the first attempts to build a full-scale prototype of such a design

  17. Magnetic field map for a large TPC prototype

    International Nuclear Information System (INIS)

    Grefe, Christian

    2008-12-01

    A new e + e - linear collider with an energy of up to 1000 GeV is currently being planned: the International Linear Collider (ILC). It will allow high precision measurements of the Higgs boson and physics beyond the Standard Model. In the Large Detector Concept (LDC) -which is one of the proposed detector concepts for the ILC- a Time Projection Chamber (TPC) is intended as the main tracking device. Within the EUDET project a large TPC prototype is currently being built as an infrastructure to test different gas amplification and readout technologies. The prototype will be operated in a 1T superconducting solenoid magnet -the PCMAG- at the DESY testbeam area. In order to reach the best possible track reconstruction the magnetic field has to be known very precisely throughout the TPC volume. The magnetic field of PCMAG has been measured in July 2007. In this work the creation of a high precision field map from the measurements is presented. The magnet and modelling techniques for its magnetic field are described. A model of the magnet has been created as a best fit from the measurements and its limitations are investigated. The field map will be included in the reconstruction software for the TPC prototype. (orig.)

  18. Magnetic field map for a large TPC prototype

    Energy Technology Data Exchange (ETDEWEB)

    Grefe, Christian

    2008-12-15

    A new e{sup +}e{sup -} linear collider with an energy of up to 1000 GeV is currently being planned: the International Linear Collider (ILC). It will allow high precision measurements of the Higgs boson and physics beyond the Standard Model. In the Large Detector Concept (LDC) -which is one of the proposed detector concepts for the ILC- a Time Projection Chamber (TPC) is intended as the main tracking device. Within the EUDET project a large TPC prototype is currently being built as an infrastructure to test different gas amplification and readout technologies. The prototype will be operated in a 1T superconducting solenoid magnet -the PCMAG- at the DESY testbeam area. In order to reach the best possible track reconstruction the magnetic field has to be known very precisely throughout the TPC volume. The magnetic field of PCMAG has been measured in July 2007. In this work the creation of a high precision field map from the measurements is presented. The magnet and modelling techniques for its magnetic field are described. A model of the magnet has been created as a best fit from the measurements and its limitations are investigated. The field map will be included in the reconstruction software for the TPC prototype. (orig.)

  19. Kinetic inductance detectors for far-infrared spectroscopy

    International Nuclear Information System (INIS)

    Barlis, A.; Aguirre, J.; Stevenson, T.

    2016-01-01

    The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (at redshift of about 2.5) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation. Here, we describe a detector system suitable for a balloon-borne spectroscopic intensity mapping experiment at far-infrared wavelengths. The system uses lumped-element kinetic inductance detectors (KIDs), which have the potential to achieve high sensitivity and low noise levels. KIDs consist of separate capacitive and inductive elements, and use the inductive element as the radiation absorber. We describe the design considerations, fabrication process, and readout scheme for a prototype LEKID array of 1600 pixels. - Highlights: • We describe a concept for a balloon-borne telescope for far-IR wavelengths. • Telescope would use high-sensitivity kinetic inductance detectors. • Design considerations and fabrication process for prototype detectors.

  20. Kinetic inductance detectors for far-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barlis, A., E-mail: abarlis@physics.upenn.edu [University of Pennsylvania Department of Physics and Astronomy, Philadelphia, Pennsylvania (United States); Aguirre, J. [University of Pennsylvania Department of Physics and Astronomy, Philadelphia, Pennsylvania (United States); Stevenson, T. [NASA Goddard Space Flight Center, Greenbelt, Maryland (United States)

    2016-07-11

    The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (at redshift of about 2.5) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation. Here, we describe a detector system suitable for a balloon-borne spectroscopic intensity mapping experiment at far-infrared wavelengths. The system uses lumped-element kinetic inductance detectors (KIDs), which have the potential to achieve high sensitivity and low noise levels. KIDs consist of separate capacitive and inductive elements, and use the inductive element as the radiation absorber. We describe the design considerations, fabrication process, and readout scheme for a prototype LEKID array of 1600 pixels. - Highlights: • We describe a concept for a balloon-borne telescope for far-IR wavelengths. • Telescope would use high-sensitivity kinetic inductance detectors. • Design considerations and fabrication process for prototype detectors.

  1. A T0/Trigger detector for the External Target Experiment at CSR

    Science.gov (United States)

    Hu, D.; Shao, M.; Sun, Y.; Li, C.; Chen, H.; Tang, Z.; Zhang, Y.; Zhou, J.; Zeng, H.; Zhao, X.; You, W.; Song, G.; Deng, P.; Lu, J.; Zhao, L.

    2017-06-01

    A new T0/Trigger detector based on multi-gap resistive plate chamber (MRPC) technology has been constructed and tested for the external target experiment (ETE) at HIRFL-CSR. It measures the multiplicity and timing information of particles produced in heavy-ion collisions at the target region, providing necessary event collision time (T0) and collision centrality with high precision. Monte-Carlo simulation shows a time resolution of several tens of picosecond can be achieved at central collisions. The experimental tests have been performed for this prototype detector at the CSR-ETE. The preliminary results are shown to demonstrate the performance of the T0/Trigger detector.

  2. Challenge Based Innovation @ mediterranean - final presentations & prototype expo

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Challenge Based Innovation @ mediterranean - Final presentations & prototype expo Challenge Based Innovation (CBI) is a six-month project course, where multidisciplinary student teams and their instructors collaborate with researchers at CERN to discover novel solutions for the future of humankind. The projects are an elaborate mixture, where societal, human-driven needs meet research at CERN. More info about CBI from the course website, cbi-course.com The Gala on 10.12. will introduce the proof-of concept prototypes the four student teams have developed to answer a wide range of societal challenges, inspired by people and research at CERN.   Dress code: a suit / dress  is not required - come as you are! Register for live attendance & CERN access for external visitors. Webcast and/or recorded presentations will be available here in the Indico page for anyone interested.  The space is limited to 50 participants, so act quickly! &...

  3. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  4. A DBN based anomaly targets detector for HSI

    Science.gov (United States)

    Ma, Ning; Wang, Shaojun; Yu, Jinxiang; Peng, Yu

    2017-10-01

    Due to the assumption that Hyperspectral image (HSI) should conform to Gaussian distribution, traditional Mahalanobis distance-based anomaly targets detectors perform poor because the assumption may not always hold. In order to solve those problems, a deep learning based detector, Deep Belief Network(DBN) anomaly detector(DBN-AD), was proposed to fit the unknown distribution of HSI by energy modeling, the reconstruction errors of this encode-decode processing are used for discriminating the anomaly targets. Experiments are implemented on real and synthesized HSI dataset which collection by Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS). Comparing to classic anomaly detector, the proposed method shows better performance, it performs about 0.17 higher in Area Under ROC Curve (AUC) than that of Reed-Xiaoli detector(RXD) and Kernel-RXD (K-RXD).

  5. The in-beam tracking detectors for R3B

    Energy Technology Data Exchange (ETDEWEB)

    Paschalis, Stefanos; Johansen, Jacob; Scheit, Heiko [Institut fuer Kernphysik, Technische Universitaet, D 64289 Darmstadt (Germany); Heil, Michael [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Aumann, Thomas [Institut fuer Kernphysik, Technische Universitaet, D 64289 Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Krivshich, Anatoly [PNPI St. Petersburg, 188300 Gatchina (Russian Federation); Collaboration: R3B-Collaboration

    2015-07-01

    The R3B experiment is part of the NUSTAR pillar at FAIR. One of the great strengths of the R3B experiment is the kinematically complete measurement of reactions with exotic ions with energies of up to 1 AGeV. Key components of the R3B experiment are the neutron detector NeuLAND, the γ and charge-particle calorimeter CALIFA, the Si Tracker and the in-beam tracking detectors. A cornerstone instrument of the setup is the new dipole magnet (GLAD) which bends and momentum analyses the high-rigidity beams. A precise tracking of the charged particles through the magnetic field is crucial to resolve the masses of heavy ions and measure the momentum of the fragments with high resolution. In this contribution we present the technical design details of the in-beam tracking detectors that will be used in the R3B experiment together with recent results obtained from in-beam prototype testing. In particular, we discuss Si detectors, detectors based on plastic-scintillator fibers and paddles, straw-tube gas detectors and the overall performance of the system.

  6. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  7. A prototype ionization profile monitor for RHIC

    International Nuclear Information System (INIS)

    Connolly, R.; Cameron, P.; Ryan, W.

    1997-01-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM's). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests

  8. A prototype ionization profile monitor for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Cameron, P.; Ryan, W. [and others

    1997-07-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM`s). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests.

  9. LORINE: Neutron emission Locator by SOI detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hamrita, H.; Kondrasovs, V.; Borbotte, J. M.; Normand, S. [CEA, LIST, Laboratoire Capteurs et Architectures Electronique, F-91191 Gif-sur-Yvette Cedex (France); Saurel, N. [CEA, DAM, VALDUC, F-21120 Is sur Tille (France)

    2009-07-01

    The aim of this work is to develop a fast Neutron Emission Locator based on silicon on Insulator detector (LORINE). This locator can be used in the presence of significant flux of gamma radiation. LORINE was developed to locate areas containing a significant amount of actinide during the dismantling operations of equipment. From the results obtained in laboratory, we have proposed the prototype of neutron emission locator as follows: the developed design consists of 5 SOI (Silicon-on-insulator) detectors (1*1 cm{sup 2}) with their charge preamplifiers and their respective converters. All are installed on 5 faces of a boron polyethylene cube (5*5*5 cm{sup 3}). This cube plays the role of neutron shielding between the several detectors. The design must be so compact for use in glove boxes. An electronic card based on micro-controller has been made to control sensors and to send the necessary information to the computer. Location of fast neutron sources does not yet exist in a so compact design and it can be operated in the presence of very important gamma radiation flux

  10. Photonics-oriented data transmission network for the KM3NeT prototype detector

    International Nuclear Information System (INIS)

    Hoek, M. van der; Mos, S.; Schmelling, J.W.; Hogenbirk, J.; Heine, E.; Jansweijer, P.; Kieft, G.; Peek, H.; Timmer, P.; Wolf, E. de; Zwart, A.

    2013-01-01

    The design of the readout and data acquisition system of the future KM3NeT neutrino telescope employs 10 Gbps photonic technologies for data transmission to shore. The photonic architecture can handle standard transmission protocols. The generic scheme is based on DWDM technology using lasers on shore and optical modulators in each of the 12,800 Digital Optical Modules arranged on several hundred vertical detection units anchored to the seabed. Each module will house 31 photomultipliers together with auxiliary instrumentation and readout electronics. A 100 km electro-optical fibre cable will connect the optical modules to the store. The readout system will guarantee an individual optical connection between each optical module and the shore. A small-scale prototype of a detection unit with four optical modules is in a realization phase and will allow for in situ testing of the data transmission network. We will present results of laboratory tests of the photonics-oriented transmission layer of the network that have been realized for the prototype detection unit

  11. CALDER: High-sensitivity cryogenic light detectors

    International Nuclear Information System (INIS)

    Casali, N.; Bellini, F.; Cardani, L.

    2017-01-01

    The current bolometric experiments searching for rare processes such as neutrinoless double-beta decay or dark matter interaction demand for cryogenic light detectors with high sensitivity, large active area and excellent scalability and radio-purity in order to reduce their background budget. The CALDER project aims to develop such kind of light detectors implementing phonon-mediated Kinetic Inductance Detectors (KIDs). The goal for this project is the realization of a 5 × 5 cm"2 light detector working between 10 and 100mK with a baseline resolution RMS below 20 eV. In this work the characteristics and the performances of the prototype detectors developed in the first project phase will be shown.

  12. ALICE Transition Radiation Detector (TRD), test beam.

    CERN Multimedia

    2003-01-01

    Electrons and positrons can be discriminated from other charged particles using the emission of transition radiation - X-rays emitted when the particles cross many layers of thin materials. To develop such a Transition Radiation Detector(TRD) for ALICE many detector prototypes were tested in mixed beams of pions and electrons, as in the example shown here.

  13. Upgrading FLIR NanoRaider with the next Generation of CdZnTe Detectors. Goal - Integrate VFG detectors into FLIR R200. Advanced Virtual Grid ASIC (AVG-ASIC).

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, Aleksey [Brookhaven National Lab. (BNL), Upton, NY (United States); Cui, Yonggang [Brookhaven National Lab. (BNL), Upton, NY (United States); Vernon, Emerson [Brookhaven National Lab. (BNL), Upton, NY (United States); De Geronimo, Gianluigi [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-06-01

    This document presents motivations, goals and the current status of this project; development (fabrication, performance) of position-sensitive virtual Frisch-grid detectors proposed for nanoRaider, an instrument commonly used by nuclear inspectors; ASIC developments for CZT detectors; and the electronics development for the detector prototype..

  14. Testing prototypes of novel radiator for LHCb-RICH

    CERN Document Server

    Saini, Divya

    2017-01-01

    The LHCb experiment at CERN aims to look for signals for physics beyond the standard model in particle physics. The data from Ring Imaging Cherenkov detector (RICH) in LHCb are used to identify the hadronic particles that are produced in proton-proton collisions in different momentum ranges. The particle identification performance of the current detector in the 1-10 GeV/c range needs a significant improvement. For this an R&D project to use a new type of radiator using photonic crystals is underway. In a laboratory at CERN, prototypes of crystals will be exposed to charged particles from a source and the Cherenkov photons created will be detected using multianode photomultiplier tubes (MaPMTs). The data collected will be compared with expectations from optical simulations. These simulations use the solutions of Maxwell’s equations based on the quantum mechanical properties of the crystals. The MaPMTs and the optical components outside the crystals are simulated using GEANT4 and analysis involve using t...

  15. Experience from design, prototyping and production of a DC–DC conversion powering scheme for the CMS Phase-1 Pixel Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Lutz, E-mail: Lutz.Feld@cern.ch; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max; Schmitz, Stefan; Wlochal, Michael

    2017-02-11

    The CMS pixel detector will be replaced during the technical stop 2016/2017. To allow the new pixel detector to be powered with the legacy cable plant and power supplies, a novel powering scheme based on DC–DC conversion will be employed. After the successful conclusion of an extensive development and prototyping phase, mass production of 1800 DC–DC converters as well as motherboards and other power PCBs has now been completed. This contribution reviews the lessons learned from the development of the power system for the Phase-1 pixel detector, and summarizes the experience gained from the production phase.

  16. The Mu3e Tile Detector

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, Hans Patrick

    2015-05-06

    The Mu3e experiment is designed to search for the lepton flavour violating decay μ→e{sup +}e{sup +}e{sup -} with a sensitivity of one in 10{sup 16} decays. An observation of such a decay would be a clear sign of physics beyond the Standard Model. Achieving the targeted sensitivity requires a high precision detector with excellent momentum, vertex and time resolution. The Mu3e Tile Detector is a highly granular sub-detector system based on scintillator tiles with Silicon Photomultiplier (SiPM) readout, and aims at measuring the timing of the muon decay products with a resolution of better than 100 ps. This thesis describes the development of the Tile Detector concept and demonstrates the feasibility of the elaborated design. In this context, a comprehensive simulation framework has been developed, in order to study and optimise the detector performance. The central component of this framework is a detailed simulation of the SiPM response. The simulation model has been validated in several measurements and shows good agreement with the data. Furthermore, a 16-channel prototype of a Tile Detector module has been constructed and operated in an electron beam. In the beam tests, a time resolution up to 56 ps has been achieved, which surpasses the design goal. The simulation and measurement results demonstrate the feasibility of the developed Tile Detector design and show that the required detector performance can be achieved.

  17. A LabVIEWTM-based detector testing system

    International Nuclear Information System (INIS)

    Yang Haori; Li Yuanjing; Wang Yi; Li Yulan; Li Jin

    2003-01-01

    The construction of a LabVIEW-based detector testing system is described in this paper. In this system, the signal of detector is magnified and digitized, so amplitude or time spectrum can be obtained. The Analog-to-Digital Converter is a peak-sensitive ADC based on VME bus. The virtual instrument constructed by LabVIEW can be used to acquire data, draw spectrum and save testing results

  18. Monte Carlo simulation of a prototype photodetector used in radiotherapy

    CERN Document Server

    Kausch, C; Albers, D; Schmidt, R; Schreiber, B

    2000-01-01

    The imaging performance of prototype electronic portal imaging devices (EPID) has been investigated. Monte Carlo simulations have been applied to calculate the modulation transfer function (MTF( f )), the noise power spectrum (NPS( f )) and the detective quantum efficiency (DQE( f )) for different new type of EPIDs, which consist of a detector combination of metal or polyethylene (PE), a phosphor layer of Gd sub 2 O sub 2 S and a flat array of photodiodes. The simulated results agree well with measurements. Based on simulated results, possible optimization of these devices is discussed.

  19. Characterization of detectors of neutrons from B+ZnS (Ag) as an alternative to 3He detectors

    International Nuclear Information System (INIS)

    Gonzalez, Juan A.; Suarez, Maria J.; Pujol, Luis; Lorente, Alfredo; Gallego, Eduardo

    2013-01-01

    The objective of this paper is to present the progress made in the design of prototypes for dynamic detection of neutron detectors based on scintillation of B + ZnS (Ag), which can replace existing 3 He detectors for the detection of illicit traffic of radioactive material and special nuclear material. These detectors B + ZnS (Ag) can be used, together with gamma detectors, PVT and NaI (Tl) also developed in the UPM. Two neutron detectors of different shapes and sizes were characterized using two neutron sources of 241 Am + Be. Were determined depth, overall efficiency, intrinsic efficiency and limit of detection. The results of these tests allow to verify that: 1) two cylindrical detectors B + ZnS (Ag) of 5x68 cm, or 4x15x132 cm rectangular detector can replace the cylindrical detector of 5x180 cm 3 He currently employed in the arcades. 2) the dynamic detection limit obtained is less than 20000 neutrons per second, when the sample becomes 2 m to 2m/s, with a probability of having no false positive or negative of the 99.99% 3) digital electronics eliminates interference from gamma emissions samples when their dose rate in the neutron detector is 65 μSv/h in less than factor 10 - 8, and keeps its detection limit and 4) two cylindrical detectors with two moderators of different thickness, of 25 to 50 mm of high density polyethylene, allow to measure the average energy of the neutrons

  20. A MCM-D-type module for the ATLAS pixel detector

    CERN Document Server

    Becks, K H; Ehrmann, O; Gerlach, P; Gregor, I M; Pieters, P; Topper, M; Truzzi, C; Wolf, J

    1999-01-01

    For the ATLAS experiment at the planned Large Hadron Collider LHC at CERN hybrid pixel detectors are being built as innermost layers of the inner tracking detector system. Modules are the basic building blocks of the ATLAS pixel $9 detector. A module consists of a sensor tile with an active area of 16.4 mm*60.4 mm, 16 read out IC's, each serving 24*160 pixel unit cells, a module controller chip, an optical transceiver and the local signal interconnection and $9 power distribution busses. The dies are attached by flip-chip assembly to the sensor diodes and the local busses. In the following a module based on MCM-D technology will be discussed and prototype results will be presented.

  1. A small animal PET prototype based on Silicon Photomultipliers

    International Nuclear Information System (INIS)

    Marcatili, S; Belcari, N.; Bisogni, M.G.; Del Guerra, A.; Collazuol, G.; Pedreschi, E.; Spinella, F.; Sportelli, G.; Marzocca, C.

    2011-01-01

    Next generation PET scanners should full fill very high requirements in terms of spatial, energy and timing resolution. Modern scanner performances are inherently limited by the use of standard photomultiplier tubes. The use of Silicon Photomultiplier (Si P M) matrices is proposed for the construction of a small animal PET system consisting of two detector heads based on Lyso continuos crystals. The use of large area multi-pixel Silicon Photomultiplier (Si P M) detectors requires the development of a multichannel Digital Acquisition system (DAQ) as well as of a dedicated front-end in order not to degrade the intrinsic detector capabilities. At the University of Pisa and INFN Pisa we developed a DAQ board for the read-out of 2 64-pixel Si P M matrices in time coincidence for Positron Emission Tomography (PET) applications. The proof of principles is based on 64-pixel detectors, but the whole system has been conceived to be easily scalable to a higher number of channels. Here we describe the Group-V INFN DASi P M 2 (Development and Application of Si P M) project and related results.

  2. The color of X-rays Spectral X-ray computed tomography using energy sensitive pixel detectors

    CERN Document Server

    Schioppa, Enrico Junior

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray fluorescence. The charge transport properties of the sensor are characterized using a high energy beam of charged particles at the Super Proton Synchrotron (SPS) at the European Center for Nuclear Research (CERN). Monochromatic X-rays at the European Synchrotron Radiation Facility (ESRF) are used to determined the energy response function. These data are used to implement a physics-based CT projection operator that accounts for the transmission of the source spectrum through the sample and detector effects. Based on this projection operator, an iterative spectral CT reconstruction algorithm is developed by extending an Ordered Subset Expectation Maximization (OSEM) method. Subsequently, a maximum likelihood based algo...

  3. Prototype-based active learning for lemmatization

    CSIR Research Space (South Africa)

    Daelemans, W

    2009-09-01

    Full Text Available ] and Word Length [Long to Short] with the prototypical curves (e.g. Word Frequency [High to Low] and [Word Length Short to Long]). (With regard to the learning curves representing word frequency, refer to 4.1 for an explanation of why [High to Low... of language usage [15]. Secondly, in memory-based language processing [16] it has been argued, on the basis of com- parative machine learning experiments on natural lan- guage processing data, that exceptions are crucial for obtaining high generalization...

  4. New Prototype of Photovoltaic Solar Tracker Based on Arduino

    Directory of Open Access Journals (Sweden)

    Carlos Morón

    2017-08-01

    Full Text Available The global increase in energy demand and exponential exhaustion of fossil recourses has favored the development of new systems of electricity production. Photovoltaic solar energy is undoubtedly one that has the highest application in housings, due to its simplicity and easy implementation. In this work, a new prototype of photovoltaic solar tracker with Arduino platform was developed. Feedback control system that allows carrying out solar tracking with two axes using a stepper motor and linear actuator was established through an electronic circuit based on photodiodes. Moreover, real construction of the prototype was carried out, where the effectiveness of the design and its capacity to draw a maximum benefit of an incident radiation can be observed, placing the panel perpendicularly to the received energy and improving its performance for its application in future installations in housings. Results obtained from the comparison between the developed prototype and a static panel oriented according to the latitude of the area, show about 18% energy gain.

  5. Development of a wide-range tritium-concentration detector

    International Nuclear Information System (INIS)

    Jun, F.; Zhe, L.; Shicheng, L.; Jiangfeng, S.; Deli, L.

    2015-01-01

    According to the requirements of the tritium related systems of the TBM (Test Blanket Module) for monitoring the on-line tritium concentration, a wide-range tritium-concentration detector has been developed to measure the tritium concentration in the range of 10 4 Bq/ml - 5*10 8 Bq/ml. This detector is combined with a low-memory helium ionization chamber. The weak current signal collected in the ionization chamber is converted to the voltage signal by an I-V converter. The minimum weak current which the detector could be measured is 10 -14 A. The performance of the background current and the current response linearity of the prototype have been tested. The test result indicates that the linear response of the current signal of the prototype without connecting the ionization chamber is good. The linear correlation coefficient is R 2 = 0.998

  6. Diamond Pixel Detectors and 3D Diamond Devices

    International Nuclear Information System (INIS)

    Venturi, N.

    2016-01-01

    Results from detectors of poly-crystalline chemical vapour deposited (pCVD) diamond are presented. These include the first analysis of data of the ATLAS Diamond Beam Monitor (DBM). The DBM module consists of pCVD diamond sensors instrumented with pixellated FE-I4 front-end electronics. Six diamond telescopes, each with three modules, are placed symmetrically around the ATLAS interaction point. The DBM tracking capabilities allow it to discriminate between particles coming from the interaction point and background particles passing through the ATLAS detector. Also, analysis of test beam data of pCVD DBM modules are presented. A new low threshold tuning algorithm based on noise occupancy was developed which increases the DBM module signal to noise ratio significantly. Finally first results from prototypes of a novel detector using pCVD diamond and resistive electrodes in the bulk, forming a 3D diamond device, are discussed. 3D devices based on pCVD diamond were successfully tested with test beams at CERN. The measured charge is compared to that of a strip detector mounted on the same pCVD diamond showing that the 3D device collects significantly more charge than the planar device.

  7. A prototype imaging second harmonic interferometer

    International Nuclear Information System (INIS)

    Jobes, F.C.; Bretz, N.L.

    1997-01-01

    We have built a prototype imaging second harmonic interferometer, which is intended to test critical elements of a design for a tangential array interferometer on C-Mod 6 . The prototype uses a pulsed, 35 mJ, 10 Hz multimode, Nd:YAG laser, LiB 3 O 5 doublers, a fan beam created by a cylindrical lens, four retroreflector elements, and a CCD camera as a detector. The prototype also uses a polarization scheme in which the interference information is eventually carried by two second harmonic beams with crossed polarization. These are vector summed and differenced, and separated, by a Wollaston prism, to give two spots on the CCD. There is a pair of these spots for each retroreflector used. The phase information is directly available as the ratio of the difference to sum the intensities of the two spots. We have tested a single channel configuration of this prototype, varying the phase by changing the pressure in an air cell, and we have obtained a 5:1 light to dark ratio, and a clear sinusoidal variation of the ratio as a function of pressure change. copyright 1997 American Institute of Physics

  8. Recent progress in the development of a B-factory monolithic active pixel detector

    International Nuclear Information System (INIS)

    Stanic, S.; Aihara, H.; Barbero, M.; Bozek, A.; Browder, T.; Hazumi, M.; Kennedy, J.; Kent, N.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.; Varner, G.; Yang, Q.

    2006-01-01

    Due to the need for precise vertexing at future higher luminosity B-factories with the expectedly increasing track densities and radiation exposures, upgrade of present silicon strip detectors with thin, radiation resistant pixel detectors is highly desired. Considerable progress in the technological development of thin CMOS based Monolithic Active Pixel Sensors (MAPS) in the last years makes them a realistic upgrade option and the feasibility studies of their application in Belle are actively pursued. The most serious concerns are their radiation hardness and their read-out speed. To address them, several prototypes denoted as Continuous Acquisition Pixel (CAP) sensors have been developed and tested. The latest of the CAP sensor prototypes is CAP3, designed in the TSMC 0.25μm process with a 5-deep sample pair pipeline in each pixel. A setup with several CAP3 sensors will be used to assess the performance of a full scale pixel read-out system running at realistic read-out speed. The results and plans for the next stages of R and D towards a full Pixel Vertex Detector (PVD) are presented

  9. Progress in the development of a S RETGEM-based detector for an early forest fire warning system

    CERN Document Server

    Charpak, Georges; Breuil, P; Martinengo, P; Nappi, E; Peskov, V

    2009-01-01

    In this paper we present a prototype of a Strip Resistive Thick GEM photosensitive gaseous detector filled with Ne and ethylferrocene vapours at a total pressure of 1 atm for an early forest fire detection system. Tests show that it is one hundred times more sensitive than the best commercial ultraviolet flame detectors and therefore, it is able to reliably detect a flame of 1.5x1.5x1.5 m3 at a distance of about 1km. An additional and unique feature of this detector is its imaging capability, which in combination with other techniques, may significantly reduce false fire alarms when operating in an automatic mode. Preliminary results conducted with air filled photosensitive gaseous detectors are also presented. The approach main advantages include both the simplicity of manufacturing and affordability of construction materials such as plastics and glues specifically reducing detector production cost. The sensitivity of these air filled detectors at certain conditions may be as high as those filled with Ne and...

  10. Characterization of 3D-DDTC detectors on p-type substrates

    CERN Document Server

    Betta, G -F Dalla; Bosisio, Luciano; Darbo, Giovanni; Gabos, Paolo; Gemme, Claudia; Koehler, Michael; La Rosa, Alessandro; Parzefall, Ulrich; Pernegger, Heinz; Piemonte, Claudio; Povoli, Marco; Rachevskaia, Irina; Ronchin, Sabina; Wiik, Liv; Zoboli, Aanrea; Zorzi, Nicola

    2009-01-01

    We report on the electrical and functional characterization of 3D Double-side, Double-Type-Column (3D- DDTC) detectors fabricated on p-type substrates. Results relevant to detectors in the diode, strip and pixel configurations are presented, and demonstrate a clear improvement in the charge collection performance compared to the first prototypes of these detectors.

  11. First observation of Cherenkov ring images using hybrid photon detectors

    International Nuclear Information System (INIS)

    Albrecht, E.; Wilkinson, G.; Bibby, J.H.; Giles, R.; Harnew, N.; Smale, N.; Brook, N.H.; Halley, A.W.; O'Shea, V.; French, M.; Gibson, V.; Wotton, S.A.; Schomaker, R.

    1998-01-01

    A ring-imaging Cherenkov detector, equipped with hybrid photon detectors, has been operated in a charged-particle beam. Focussed ring images from various particle types were detected using silica aerogel, air and C 4 F 10 gas radiators. The detector, a prototype for the CERN LHC-B experiment, is described and first observations are reported. (orig.)

  12. First observation of Cherenkov ring images using hybrid photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, E.; Wilkinson, G. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Barber, G.; Duane, A.; John, M.; Miller, D.G.; Websdale, D. [Imperial College of Science Technology and Medicine, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Bibby, J.H.; Giles, R.; Harnew, N.; Smale, N. [University of Oxford, Department of Nuclear Physics, Keble Road, Oxford OX1 3RH (United Kingdom); Brook, N.H.; Halley, A.W.; O`Shea, V. [University of Glasgow, Department of Physics, Glasgow G12 8QQ (United Kingdom); French, M. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Gibson, V.; Wotton, S.A. [University of Cambridge, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom); Schomaker, R. [Delft Electronic Products BV, 9300 AB Roden (Netherlands)

    1998-07-11

    A ring-imaging Cherenkov detector, equipped with hybrid photon detectors, has been operated in a charged-particle beam. Focussed ring images from various particle types were detected using silica aerogel, air and C{sub 4}F{sub 10} gas radiators. The detector, a prototype for the CERN LHC-B experiment, is described and first observations are reported. (orig.)

  13. New 2-D dosimetric technique for radiotherapy based on planar thermoluminescent detectors

    International Nuclear Information System (INIS)

    Olko, P.; Marczewska, B.; Czopyk, L.; Czermak, M. A.; Klosowski, M.; Waligorski, M. P. R.

    2006-01-01

    At the Inst. of Nuclear Physics of the Polish Academy of Sciences (IFJ) in Krakow, a two-dimensional (2-D) thermoluminescence (TL) dosimetry system was developed within the MAESTRO (Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology) 6 Framework Programme and tested by evaluating 2-D dose distributions around radioactive sources. A thermoluminescent detector (TLD) foil was developed, of thickness 0.3 mm and diameter 60 mm, containing a mixture of highly sensitive LiF:Mg,Cu,P powder and Ethylene Tetrafluoroethylene (ETFE) polymer. Foil detectors were irradiated with 226 Ra brachytherapy sources and a 90 Sr/ 90 Y source. 2-D dose distributions were evaluated using a prototype planar (diameter 60 mm) reader, equipped with a 12 bit Charge Coupled Devices (CCD) PCO AG camera, with a resolution of 640 x 480 pixels. The new detectors, showing a spatial resolution better than 0.5 mm and a measurable dose range typical for radiotherapy, can find many applications in clinical dosimetry. Another technology applicable to clinical dosimetry, also developed at IFJ, is the Si microstrip detector of size 95 x 95 mm 2 , which may be used to evaluate the dose distribution with a spatial resolution of 120 μm along one direction, in real-time mode. The microstrip and TLD technology will be further improved, especially to develop detectors of larger area, and to make them applicable to some advanced radiotherapy modalities, such as intensity modulated radiotherapy (IMRT) or proton radiotherapy. (authors)

  14. EPCiR prototype

    DEFF Research Database (Denmark)

    2003-01-01

    A prototype of a residential pervasive computing platform based on OSGi involving among other a mock-up of an health care bandage.......A prototype of a residential pervasive computing platform based on OSGi involving among other a mock-up of an health care bandage....

  15. Scaling up graph-based semisupervised learning via prototype vector machines.

    Science.gov (United States)

    Zhang, Kai; Lan, Liang; Kwok, James T; Vucetic, Slobodan; Parvin, Bahram

    2015-03-01

    When the amount of labeled data are limited, semisupervised learning can improve the learner's performance by also using the often easily available unlabeled data. In particular, a popular approach requires the learned function to be smooth on the underlying data manifold. By approximating this manifold as a weighted graph, such graph-based techniques can often achieve state-of-the-art performance. However, their high time and space complexities make them less attractive on large data sets. In this paper, we propose to scale up graph-based semisupervised learning using a set of sparse prototypes derived from the data. These prototypes serve as a small set of data representatives, which can be used to approximate the graph-based regularizer and to control model complexity. Consequently, both training and testing become much more efficient. Moreover, when the Gaussian kernel is used to define the graph affinity, a simple and principled method to select the prototypes can be obtained. Experiments on a number of real-world data sets demonstrate encouraging performance and scaling properties of the proposed approach. It also compares favorably with models learned via l1 -regularization at the same level of model sparsity. These results demonstrate the efficacy of the proposed approach in producing highly parsimonious and accurate models for semisupervised learning.

  16. Beam Tests of a Multilayer LumiCal Prototype

    CERN Document Server

    Borysov, O

    2018-01-01

    LumiCal is a sampling electromagnetic calorimeter designed for the precise measurement of in- tegrated luminosity in electron positron linear collider experiments. The present report contains a description and results of the first beam test of a multilayer LumiCal prototype with four sili- con detector planes. A 5 GeV electron beam from the CERN PS T9 facility was used to study the performance of the LumiCal prototype. Presented results are mainly focused on the trans- verse structure of the observed electromagnetic shower and the Molière radius measurement. A comparison with MC simulation is also discussed.

  17. Pixel Detectors for Particle Physics and Imaging Applications

    CERN Document Server

    Wermes, N

    2003-01-01

    Semiconductor pixel detectors offer features for the detection of radiation which are interesting for particle physics detectors as well as for imaging e.g. in biomedical applications (radiography, autoradiography, protein crystallography) or in Xray astronomy. At the present time hybrid pixel detectors are technologically mastered to a large extent and large scale particle detectors are being built. Although the physical requirements are often quite different, imaging applications are emerging and interesting prototype results are available. Monolithic detectors, however, offer interesting features for both fields in future applications. The state of development of hybrid and monolithic pixel detectors, excluding CCDs, and their different suitability for particle detection and imaging, is reviewed.

  18. Prototype Strip Barrel Modules for the ATLAS ITk Strip Detector

    CERN Document Server

    Sawyer, Craig; The ATLAS collaboration

    2017-01-01

    The module design for the Phase II Upgrade of the new ATLAS Inner Tracker (ITk) detector at the LHC employs integrated low mass assembly using single-sided flexible circuits with readout ASICs and a powering circuit incorporating control and monitoring of HV, LV and temperature on the module. Both readout and powering circuits are glued directly onto the silicon sensor surface resulting in a fully integrated, extremely low radiation length module which simultaneously reduces the material requirements of the local support structure by allowing a reduced width stave structure to be employed. Such a module concept has now been fully demonstrated using so-called ABC130 and HCC130 ASICs fabricated in 130nm CMOS technology to readout ATLAS12 n+-in-p silicon strip sensors. Low voltage powering for these demonstrator modules has been realised by utilising a DCDC powerboard based around the CERN FEAST ASIC. This powerboard incorporates an HV multiplexing switch based on a Panasonic GaN transistor. Control and monitori...

  19. Microstrip silicon detectors in a bent crystal based collimation system: The UA9 experiment

    International Nuclear Information System (INIS)

    Bolognini, D.

    2010-01-01

    In a hadron accelerator like Lhc, a collimation system needs to be developed to protect the accelerator itself from the beam loss damage, increasing the beam luminosity. At present, a classical robust multi-stage collimation system (based on amorphous jaws) allows to protect Lhc, but limits the luminosity to the 40% of the nominal value. In order to solve this problem, a series of low-impedance collimation systems is being developed for the second Lhc collimation phase: among these, a key role could be played by bent crystals. In a bent crystal, in fact, charged particles can be deviated in a given direction with a high efficiency, reducing the impedance and increasing the luminosity. After the satisfactory results on extracted beams, it was decided to test bent crystals on a circular accelerator (the Super Proton Synchrotron Sps at CERN): the UA9 experiment was born. In order to qualify the crystal behavior, a tracking system has been developed: the system is based on microstrip silicon detectors readout by self-triggering ASICs with a spatial resolution of the order of 5 μm; the system, completely remotely controlled and based on the optical fiber transmission, would be able to measure the beam halo phase space x - x 1 . This paper, after a brief introduction of the UA9 experiment, will describe the tracking system and the first results obtained in the commissioning phase and data takings with a detector prototype.

  20. Cellular automaton-based position sensitive detector equalization

    Energy Technology Data Exchange (ETDEWEB)

    Ferrando, Nestor [Grupo de Diseno de Sistemas Digitales, Instituto de Aplicaciones de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)], E-mail: nesferjo@upvnet.upv.es; Herrero, V.; Cerda, J.; Lerche, C.W.; Colom, R.J.; Gadea, R.; Martinez, J.D.; Monzo, J.M.; Mateo, F.; Sebastia, A.; Benlloch, J.M. [Grupo de Diseno de Sistemas Digitales, Instituto de Aplicaciones de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2009-06-01

    Indirect position detectors based on scintillator crystals lack of spacial uniformity in their response. This happens due to crystal inhomogeneities and gain differences among the photomultiplier anodes. In order to solve this, PESIC, an integrated front-end for multianode photomultiplier based nuclear imaging devices was created. One of its main features is the digitally programmable gain adjustment for every photomultiplier output. On another front, cellular automata have been proved to be a useful method for dynamic system modeling. In this paper, a cellular automaton which emulates the behavior of the scintillator crystal, the photomultiplier and the front-end is introduced. Thanks to this model, an automatic energy-based calibration of the detector can be done by configuring the cellular automaton with experimental data and making it evolve up to an stable state. This can be useful as a precalibration method of the detector.

  1. Cellular automaton-based position sensitive detector equalization

    International Nuclear Information System (INIS)

    Ferrando, Nestor; Herrero, V.; Cerda, J.; Lerche, C.W.; Colom, R.J.; Gadea, R.; Martinez, J.D.; Monzo, J.M.; Mateo, F.; Sebastia, A.; Benlloch, J.M.

    2009-01-01

    Indirect position detectors based on scintillator crystals lack of spacial uniformity in their response. This happens due to crystal inhomogeneities and gain differences among the photomultiplier anodes. In order to solve this, PESIC, an integrated front-end for multianode photomultiplier based nuclear imaging devices was created. One of its main features is the digitally programmable gain adjustment for every photomultiplier output. On another front, cellular automata have been proved to be a useful method for dynamic system modeling. In this paper, a cellular automaton which emulates the behavior of the scintillator crystal, the photomultiplier and the front-end is introduced. Thanks to this model, an automatic energy-based calibration of the detector can be done by configuring the cellular automaton with experimental data and making it evolve up to an stable state. This can be useful as a precalibration method of the detector.

  2. Prototype design based on NX subdivision modeling application

    Science.gov (United States)

    Zhan, Xianghui; Li, Xiaoda

    2018-04-01

    Prototype design is an important part of the product design, through a quick and easy way to draw a three-dimensional product prototype. Combined with the actual production, the prototype could be modified several times, resulting in a highly efficient and reasonable design before the formal design. Subdivision modeling is a common method of modeling product prototypes. Through Subdivision modeling, people can in a short time with a simple operation to get the product prototype of the three-dimensional model. This paper discusses the operation method of Subdivision modeling for geometry. Take a vacuum cleaner as an example, the NX Subdivision modeling functions are applied. Finally, the development of Subdivision modeling is forecasted.

  3. Reconstruction and Analysis for the DUNE 35-ton Liquid Argon Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Wallbank, Michael James [Sheffield U.

    2018-01-01

    Neutrino physics is approaching the precision era, with current and future experiments aiming to perform highly accurate measurements of the parameters which govern the phenomenon of neutrino oscillations. The ultimate ambition with these results is to search for evidence of CP-violation in the lepton sector, currently hinted at in the world-leading analyses from present experiments, which may explain the dominance of matter over antimatter in the Universe. The Deep Underground Neutrino Experiment (DUNE) is a future long-baseline experiment based at Fermi National Accelerator Laboratory (FNAL), with a far detector at the Sanford Underground Research Facility (SURF) and a baseline of 1300 km. In order to make the required precision measurements, the far detector will consist of 40 kton liquid argon and an embedded time projection chamber. This promising technology is still in development and, since each detector module is around a factor 15 larger than any previous experiment employing this design, prototyping the detector and design choices is critical to the success of the experiment. The 35-ton experiment was constructed for this purpose and will be described in detail in this thesis. The outcomes of the 35-ton prototype are already influencing DUNE and, following the successes and lessons learned from the experiment, confidence can be taken forward to the next stage of the DUNE programme. The main oscillation signal at DUNE will be electron neutrino appearance from the muon neutrino beam. High-precision studies of these νe interactions requires advanced processing and event reconstruction techniques, particularly in the handling of showering particles such as electrons and photons. Novel methods developed for the purposes of shower reconstruction in liquid argon are presented with an aim to successfully develop a selection to use in a νe charged-current analysis, and a first-generation selection using the new techniques is presented.

  4. Construction of the TH-GEM detector components for metrology of low energy ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, N.F.; Castro, M.C.; Caldas, L.V.E., E-mail: nsilva@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Silva, T.F.; Luz, H. Natal da [Universidade de São Paulo (IF/USP), São Paulo, SP (Brazil). Instituto de Física

    2017-07-01

    The Gas Electron Multiplier (GEM) detector was originally proposed as a position sensitive detector to determine trajectories of particles prevenient from high energy collisions. In order to study the potential of TH-GEM type detectors in dosimetric applications for low energy X-rays, specifically for the mammography standard qualities, it was proposed to construct a prototype with characteristics suitable for such use. In this work the general, structural and material parameters applicable to the necessary conditions were defined, establishing the process of construction of the components of a prototype. (author)

  5. Construction of the TH-GEM detector components for metrology of low energy ionizing radiation

    International Nuclear Information System (INIS)

    Silva, N.F.; Castro, M.C.; Caldas, L.V.E.; Silva, T.F.; Luz, H. Natal da

    2017-01-01

    The Gas Electron Multiplier (GEM) detector was originally proposed as a position sensitive detector to determine trajectories of particles prevenient from high energy collisions. In order to study the potential of TH-GEM type detectors in dosimetric applications for low energy X-rays, specifically for the mammography standard qualities, it was proposed to construct a prototype with characteristics suitable for such use. In this work the general, structural and material parameters applicable to the necessary conditions were defined, establishing the process of construction of the components of a prototype. (author)

  6. Construction of the TH-GEM detector components for metrology of low energy ionizing radiation

    Science.gov (United States)

    Silva, N. F.; Silva, T. F.; Castro, M. C.; Natal da Luz, H.; Caldas, L. V. E.

    2018-03-01

    The Gas Electron Multiplier (GEM) detector was originally proposed as a position sensitive detector to determine trajectories of particles prevenient from high-energy collisions. In order to study the potential of TH-GEM type detectors in dosimetric applications for low energy X-rays, specifically for the mammography standard qualities, it was proposed to construct a prototype with characteristics suitable for such use. In this work the general, structural and material parameters applicable to the necessary conditions were defined, establishing the process of construction of the components of a prototype.

  7. Silicon microstrip detectors on 6'' technology

    CERN Document Server

    Bölla, G; Günther, M; Martignon, G; Bacchetta, N; Bisello, D; Leonardi, G L; Lucas, T; Wilburn, C

    1999-01-01

    The fabrication of microstrip detectors on 4'' high-resistivity wafers that allow for a maximum workable area of about 42 cm sup 2 has been well established. Using 6'' wafers the workable area increases up to 100 cm sup 2 (more than twice the area of a 4'' wafer) allowing a larger number of detectors to be processed at the same time on the same wafer resulting in a sizable reduction of cost. After a prototyping stage, the CDF silicon tracker upgrade is now receiving final production sensors from Micron Semiconductor Ltd. The performance of double-sided single-metal small stereo angle sensors for the CDF SVXII and ISL detectors has been studied. Results include probe station measurements and test beam results. The problems encountered from prototyping to the final devices are described. A brief overview of the response of the sensors to irradiation with gamma-rays and p sup + up to a dose of 0.5 Mrad (well above the doses expected during Run II of the Tevatron) is included. (author)

  8. Study of an on-line filtering system for the ATLAS detector

    International Nuclear Information System (INIS)

    Fede, E.

    2001-01-01

    The first chapter presents today's knowledge about particle physics and a description of the main decay channels and physical signatures associated to the Higgs boson is given. The second chapter is dedicated to the LHC accelerator with a focus on the ATLAS detector and its sub-detectors. The third chapter presents ATLAS triggering system and its data acquisition system. In the fourth chapter the functionalities required for an adequate event filtering system concerning physics issues and data managing are described. The design of a prototype based on a fleet of PC computers linked through an Ethernet network is presented in the fifth chapter

  9. Analog lightwave links for detector front-ends at the LHC

    International Nuclear Information System (INIS)

    Baird, A.; Dowell, J.; Duthie, P.

    1995-01-01

    Lightwave links are being developed for volume application in the transfer of analog signals from the tracking detector front-ends to the readout electronics. The links are based on electro-optic intensity modulators which are mounted on detectors and connected by optical fibers to remotely located transceivers (lasers and photoreceivers). The modulators are 3--5 semiconductor reflective devices based on multi-quantum well structures. The transceivers will be integrated devices of a novel design. Modulator prototypes have been fabricated and tested. Neutron and γ-ray irradiation studies have been performed on modulators and fibers. The main results achieved so far are reported and key system issues are reviewed. This work is part of the CERN DRDC project RD23 project RD23

  10. Practical prototype of a cluster-counting transition radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Fabjan, C W; Willis, W [European Organization for Nuclear Research, Geneva (Switzerland); Gavrilenko, I; Maiburov, S; Shmeleva, A; Vasiliev, P [AN SSSR, Moscow. Fizicheskij Inst.; Chernyatin, V; Dolgoshein, B; Kantserov, V; Nevski, P [Moskovskij Inzhenerno-Fizicheskij Inst. (USSR)

    1981-06-15

    A transition radiation detector using a method of cluster counting measurements has been tested. The performance is considerably better than with the usual method of total charge measurements, as well as offering advantages in simplicity of construction and operation.

  11. Desarrollo de un prototipo detector de drones cuadricópteros en espacios restringidos mediantes firmas acústicas de sus motores

    OpenAIRE

    Beltrán Eras, Joel Luis; Gaspar Soria, Daniel Eduardo

    2018-01-01

    The present technical project is to develop a prototype detector of quadrocopters, which is aimed at entities that wish to maintain privacy in their properties, and students in the field of technology, providing new knowledge about DRONES detectors. The development of the detector is based on the implementation of an algorithm in an embedded programming to classify acoustic patterns. The identification process of the motor sound in a quadcopter drone is similar to voice recognition. The objec...

  12. Characterization of active CMOS sensors for capacitively coupled pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Gonella, Laura; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn (Germany); Peric, Ivan [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2015-07-01

    Active CMOS pixel sensor is one of the most attractive candidates for detectors of upcoming particle physics experiments. In contrast to conventional sensors of hybrid detectors, signal processing circuit can be integrated in the active CMOS sensor. The characterization and optimization of the pixel circuit are indispensable to obtain a good performance from the sensors. The prototype chips of the active CMOS sensor were fabricated in the AMS 180nm and L-Foundry 150 nm CMOS processes, respectively a high voltage and high resistivity technology. Both chips have a charge sensitive amplifier and a comparator in each pixel. The chips are designed to be glued to the FEI4 pixel readout chip. The signals from 3 pixels of the prototype chips are capacitively coupled to the FEI4 input pads. We have performed lab tests and test beams to characterize the prototypes. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  13. A new timing detector for the CT-PPS project

    Energy Technology Data Exchange (ETDEWEB)

    Arcidiacono, R. [INFN – Torino (Italy); Università del Piemonte Orientale (Italy)

    2017-02-11

    The CT-PPS detector will be installed close to the beam line on both sides of CMS, 200 m downstream the interaction point. This detector will measure forward scattered protons, allowing detailed studies of diffractive hadron physics and Central Exclusive Production. The main components of the CT-PPS detector are a silicon tracking system and a timing system. In this contribution we present the proposal of an innovative solution for the timing system, based on Ultra-Fast Silicon Detectors (UFSD). UFSD are a novel concept of silicon detectors potentially able to obtain the necessary time resolution (∼20 ps on the proton arrival time). The use of UFSD has also other attractive features as its material budget is small and the pixel geometries can be tailored to the precise physics distribution of protons. UFSD prototypes for CT-PPS have been designed by CNM (Barcelona) and FBK (Trento): we will present the status of the sensor productions and of the low-noise front-end electronics currently under development and test.

  14. A detector system for two-dimensional, position-sensitive detection of neutrons and gamma quanta

    International Nuclear Information System (INIS)

    Scholz, A.

    1988-08-01

    While the well-known Anger Camera utilizes a large number of photomultiplier tubes, which are arranged in a regular array behind a scintillation crystal, the new detector system makes use of electron optics to transfer the scintillation image of a large scintillation crystal (Li-6-glass) onto a small position detector. Because of this, only few photodetectors are required for position readout, associated with only a small number of amplifier chains and a very simple position reconstruction algorithm. The reduced complexity of the readout electronics ultimately leads to an improved maintainability and reliability of the detector system. A prototype of the new detector system was built and tested. After giving an overview on already known and realized detector configurations, the basic considerations, which led to the final detector design, will be explained. Different methods of detector readout and position determination are discussed. Measurement results which were obtained with the prototype detector system are presented and explained by means of simulation calculations. (orig./HP) [de

  15. A Compton Imaging Prototype for Range Verification in Particle Therapy

    International Nuclear Information System (INIS)

    Golnik, C.; Hueso Gonzalez, F.; Kormoll, T.; Pausch, G.; Rohling, H.; Fiedler, F.; Heidel, K.; Schoene, S.; Sobiella, M.; Wagner, A.; Enghardt, W.

    2013-06-01

    During the 2012 AAPM Annual Meeting 33 percent of the delegates considered the range uncertainty in proton therapy as the main obstacle of becoming a mainstream treatment modality. Utilizing prompt gamma emission, a side product of particle tissue interaction, opens the possibility of in-beam dose verification, due to the direct correlation between prompt gamma emission and particle dose deposition. Compton imaging has proven to be a technique to measure three dimensional gamma emission profiles and opens the possibility of adaptive dose monitoring and treatment correction. We successfully built a Compton Imaging prototype, characterized the detectors and showed the imaging capability of the complete device. The major advantage of CZT detectors is the high energy resolution and the high spatial resolution, which are key parameters for Compton Imaging. However, our measurements at the proton beam accelerator facility KVI in Groningen (Netherlands) disclosed a spectrum of prompt gamma rays under proton irradiation up to 4.4 MeV. As CZT detectors of 5 mm thickness do not efficiently absorb photons in such energy ranges, another absorption, based on a Siemens LSO block detector is added behind CZT1. This setup provides a higher absorption probability of high energy photons. With a size of 5.2 cm x 5.2 cm x 2.0 cm, this scintillation detector further increases the angular acceptance of Compton scattered photons due to geometric size. (authors)

  16. A high resolution germanium detector array for hypernuclear studies at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Gerl, Juergen; Kojouharova, Jasmina; Kojouharov, Ivan [GSI Darmstadt (Germany); Iazzi, Felice [Politecnico, Torino (Italy); INFN, Torino (Italy); Pochodzalla, Josef; Rittgen, Kai; Sahin, Cihan [Institute for Nuclear Physics, JGU Mainz (Germany)

    2014-07-01

    The PANDA experiment, planned at the FAIR facility in Darmstadt, aims at the high resolution γ-spectroscopy of double Λ hypernuclei. For this purpose a devoted detector setup is required, consisting of a primary nuclear target, an active secondary target and a germanium detector array for the γ-spectroscopy. Due to the limited space within the PANDA detector a compact design is required. In particular the conventional LN{sub 2} cooling system must be replaced by an electro mechanical device and a new arrangement of the crystals is needed. This presentation shows the progress in the development of the germanium detectors. First results of in-beam measurements at COSY with a new electro mechanically cooled single crystal prototype are presented. Digital pulse shape analysis is used to disentangle pile up events due to the high event rate. This analysis technique also allows to recover the high original energy resolution in case of neutron damage. Finally the status of the new triple crystal detector prototype is given.

  17. Development of a wide-range tritium-concentration detector

    Energy Technology Data Exchange (ETDEWEB)

    Jun, F.; Zhe, L.; Shicheng, L.; Jiangfeng, S.; Deli, L. [China Academy of Engineering Physics, Mianyang (China)

    2015-03-15

    According to the requirements of the tritium related systems of the TBM (Test Blanket Module) for monitoring the on-line tritium concentration, a wide-range tritium-concentration detector has been developed to measure the tritium concentration in the range of 10{sup 4} Bq/ml - 5*10{sup 8} Bq/ml. This detector is combined with a low-memory helium ionization chamber. The weak current signal collected in the ionization chamber is converted to the voltage signal by an I-V converter. The minimum weak current which the detector could be measured is 10{sup -14} A. The performance of the background current and the current response linearity of the prototype have been tested. The test result indicates that the linear response of the current signal of the prototype without connecting the ionization chamber is good. The linear correlation coefficient is R{sup 2} = 0.998.

  18. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rovati, L; Bonaiuti, M [Dipartimento di Ingegneria dell' Informazione, Universita di Modena e Reggio Emilia, Modena (Italy); Bettarini, S [Dipartimento di Fisica, Universita di Pisa and INFN Pisa, Pisa (Italy); Bosisio, L [Dipartimento di Fisica, Universita di Trieste and INFN Trieste, Trieste (Italy); Dalla Betta, G-F; Tyzhnevyi, V [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento e INFN Trento, Trento (Italy); Verzellesi, G [Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia and INFN Trento, Reggio Emilia (Italy); Zorzi, N, E-mail: giovanni.verzellesi@unimore.i [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2009-11-15

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  19. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    International Nuclear Information System (INIS)

    Rovati, L; Bonaiuti, M; Bettarini, S; Bosisio, L; Dalla Betta, G-F; Tyzhnevyi, V; Verzellesi, G; Zorzi, N

    2009-01-01

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  20. Performance of fully instrumented detector planes of the forward calorimeter of a Linear Collider detector

    CERN Document Server

    Abramowicz, H.; Afanaciev, K.; Aguilar, J.; Alvarez, E.; Avila, D.; Benhammou, Y.; Bortko, L.; Borysov, O.; Bergholz, M.; Bozovic-Jelisavcic, I.; Castro, E.; Chelkov, G.; Coca, C.; Daniluk, W.; Dumitru, L.; Elsener, K.; Fadeyev, V.; Firlej, M.; Firu, E.; Fiutowski, T.; Ghenescu, V.; Gostkin, M.; Henschel, H.; Idzik, M.; Ishikawa, A.; Kananov, S.; Kollowa, S.; Kotov, S.; Kotula, J.; Kozhevnikov, D.; Kruchonok, V.; Krupa, B.; Kulis, Sz.; Lange, W.; Lesiak, T.; Levy, A.; Levy, I.; Lohmann, W.; Lukic, S.; Milke, C.; Moron, J.; Moszczynski, A.; Neagu, A.T.; Novgorodova, O.; Oliwa, K.; Orlandea, M.; Pandurovic, M.; Pawlik, B.; Preda, T.; Przyborowski, D.; Rosenblat, O.; Sailer, A.; Sato, Y.; Schumm, B.; Schuwalow, S.; Smiljanic, I.; Smolyanskiy, P.; Swientek, K.; Teodorescu, E.; Terlecki, P.; Wierba, W.; Wojton, T.; Yamaguchi, S.; Yamamoto, H.; Zawiejski, L.; Zgura, I.S.; Zhemchugov, A.

    2015-01-01

    Detector-plane prototypes of the very forward calorimetry of a future detector at an $e^+e^-$ collider have been built and their performance was measured in an electron beam. The detector plane comprises silicon or GaAs pad sensors, dedicated front-end and ADC ASICs, and an FPGA for data concentration. Measurements of the signal-to-noise ratio for different feedback schemes and the response as a function of the position of the sensor are presented. A deconvolution method is successfully applied, and a comparison of the measured shower shape as a function of the absorber depth with a Monte-Carlo simulation is given.