WorldWideScience

Sample records for proton spectroscopic factor

  1. Spectroscopic factor and proton formation probability for the d3/2 proton emitter 151mLu

    Directory of Open Access Journals (Sweden)

    F. Wang

    2017-07-01

    Full Text Available The quenching of the experimental spectroscopic factor for proton emission from the short-lived d3/2 isomeric state in 151mLu was a long-standing problem. In the present work, proton emission from this isomer has been reinvestigated in an experiment at the Accelerator Laboratory of the University of Jyväskylä. The proton-decay energy and half-life of this isomer were measured to be 1295(5 keV and 15.4(8 μs, respectively, in agreement with another recent study. These new experimental data can resolve the discrepancy in the spectroscopic factor calculated using the spherical WKB approximation. Using the R-matrix approach it is found that the proton formation probability indicates no significant hindrance for the proton decay of 151mLu.

  2. Proton decay: spectroscopic probe beyond the proton drip line

    International Nuclear Information System (INIS)

    Seweryniak, D; Davids, C N; Robinson, A; Woods, P J; Blank, B; Carpenter, M P; Davinson, T; Freeman, S J; Hammond, N; Hoteling, N; Janssens, R V F; Khoo, T L; Liu, Z; Mukherjee, G; Shergur, J; Sinha, S; Sonzogni, A A; Walters, W B; Woehr, A

    2005-01-01

    Proton decay has been transformed in recent years from an exotic phenomenon into a powerful spectroscopic tool. The frontiers of experimental and theoretical proton-decay studies will be reviewed. Different aspects of proton decay will be illustrated with recent results on the deformed proton emitter 135 Tb, the odd-odd deformed proton emitter 130 Eu, the complex fine structure in the odd-odd 146 Tm nucleus and on excited states in the transitional proton emitter 145 Tm

  3. Shell model and spectroscopic factors

    International Nuclear Information System (INIS)

    Poves, P.

    2007-01-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  4. Influence of isovector pairing and particle-number projection effects on spectroscopic factors for one-pair like-particle transfer reactions in proton-rich even-even nuclei

    Science.gov (United States)

    Benbouzid, Y.; Allal, N. H.; Fellah, M.; Oudih, M. R.

    2018-04-01

    Isovector neutron-proton (np) pairing and particle-number fluctuation effects on the spectroscopic factors (SF) corresponding to one-pair like-particle transfer reactions in proton-rich even-even nuclei are studied. With this aim, expressions of the SF corresponding to two-neutron stripping and two-proton pick-up reactions, which take into account the isovector np pairing effect, are established within the generalized BCS approach, using a schematic definition proposed by Chasman. Expressions of the same SF which strictly conserve the particle number are also established within the Sharp-BCS (SBCS) discrete projection method. In both cases, it is shown that these expressions generalize those obtained when only the pairing between like particles is considered. First, the formalism is tested within the Richardson schematic model. Second, it is applied to study even-even proton-rich nuclei using the single-particle energies of a Woods-Saxon mean-field. In both cases, it is shown that the np pairing effect and the particle-number projection effect on the SF values are important, particularly in N = Z nuclei, and must then be taken into account.

  5. Automated processing for proton spectroscopic imaging using water reference deconvolution.

    Science.gov (United States)

    Maudsley, A A; Wu, Z; Meyerhoff, D J; Weiner, M W

    1994-06-01

    Automated formation of MR spectroscopic images (MRSI) is necessary before routine application of these methods is possible for in vivo studies; however, this task is complicated by the presence of spatially dependent instrumental distortions and the complex nature of the MR spectrum. A data processing method is presented for completely automated formation of in vivo proton spectroscopic images, and applied for analysis of human brain metabolites. This procedure uses the water reference deconvolution method (G. A. Morris, J. Magn. Reson. 80, 547(1988)) to correct for line shape distortions caused by instrumental and sample characteristics, followed by parametric spectral analysis. Results for automated image formation were found to compare favorably with operator dependent spectral integration methods. While the water reference deconvolution processing was found to provide good correction of spatially dependent resonance frequency shifts, it was found to be susceptible to errors for correction of line shape distortions. These occur due to differences between the water reference and the metabolite distributions.

  6. Proton magnetic resonance spectroscopic imaging in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Schuff, Norbert; Vermathen, Peter; Maudsley, Andrew A.; Weiner, Michael W.

    1999-01-01

    Proton magnetic resonance spectroscopic imaging ( 1 H MRSI) was used to investigate changes in brain metabolites in Alzheimer's disease, epilepsy, and amyotrophic lateral sclerosis. Examples of results from several ongoing clinical studies are provided. Multislice 1 H MRSI of the human brain, without volume pre selection offers considerable advantage over previously available techniques. Furthermore, MRI tissue segmentation and completely automated spectral curve fitting greatly facilitate quantitative data analysis. Future efforts will be devoted to obtain full volumetric brain coverage and data acquisition at short spin-echo times (TE<30 ms) for the detection of metabolites. (author)

  7. Fatty infiltration of the liver: evaluation by proton spectroscopic imaging

    International Nuclear Information System (INIS)

    Heiken, J.P.; Lee, J.K.; Dixon, W.T.

    1985-01-01

    The reliability of proton spectroscopic imaging in evaluating fatty infiltration of the liver was investigated in 35 subjects (12 healthy volunteers and 23 patients with fatty livers). With this modified spin-echo technique, fatty liver could be separated from normal liver both visually and quantitatively. On the opposed image, normal liver had an intermediate signal intensity, greater than that of muscle, whereas fatty liver had a lower signal intensity, equal to or less than that of muscle. In normal livers, the lipid signal fraction was less than 10%, while in fatty livers it was greater than 10% and usually exceeded 20%. With this technique, nonuniform fatty infiltration of the liver can be differentiated from hepatic metastases, and the technique may prove useful in the differentiation of some hepatic disorders

  8. Proton MR spectroscopic features of chronic hepatitis and liver cirrhosis

    International Nuclear Information System (INIS)

    Cho, Soon Gu; Chung, Won Kyun; Kim, Young Soo; Choi, Won; Shin, Seok Hwan; Kim, Hyung Jin; Suh, Chang Hae

    2000-01-01

    The purpose of this study was to evaluate change in the proton MR spectroscopic ( 1 H-MRS) features of the liver according to changes in the severity of the chronic hepatitis spectrum (normal-chronic hepatitis-liver cirrhosis), and to determine the possibility of replacing liver biopsy by 1 H-MRS. Sixty profiles of 1 H-MRS features from 15 normal volunteers, 30 cases of chronic hepatitis, and 15 of liver cirrhosis were evaluated. All cases of chronic hepatitis and liver cirrhosis were confirmed by biopsy, and histopathologic disease severity was categorized according to Ludwig's classification. Using the STEAM (STimulated Echo-Aquisition Mode) sequence, 1 H-MRS was performed. The ratios of peak areas of (glutamate + glutamine)/lipid, phosphomonoesters/lipid, (glycogen + glucose)/lipid, and (3.9-4.1 ppm unknown peak)/lipid and their mean and standard deviation were calculated in normal, chronic hepatitis stages I and II, and early and late liver cirrhosis groups and the results were compared between these groups. One-way variable analysis was applied to the statistics. Mean and standard deviation of phosphomonoesters/lipid in the normal, chronic hepatitis grades I and II, and early and late liver cirrhosis groups were 0.0146±0.0090, 0.0222±0.0170, 0.0341±0.0276, 0.0698±0.0360, and 0.0881±0.0276, respectively, and (glycogen + glucose)/lipid were 0.0403±0.0267, 0.0922±0.0377, 0.1230±0.0364, 0.1853±0.0667, 0.2325±0.1071, respectively. These results implied that the ratio of the above metabolites to lipid content increased according to increasing disease severity (p less than 0.05). For (glutamate + glutamine)/lipid however, the ratios for each group were 0.0204±0.0067, 0.0117±0.0078, 0.0409±0.0167, 0.0212±0.0103, and 0.0693±0.0371, respectively, and there was no correlation with disease severity. In the chronic hepatitis grades I and II, and early and late liver cirrhosis groups, the ratios for (3.9-4.1 ppm unknown peak)/lipid were 0.0302±0.0087, 0

  9. Accurate spectroscopic characterization of protonated oxirane: a potential prebiotic species in Titan's atmosphere

    International Nuclear Information System (INIS)

    Giacomo Ciamician, Università di Bologna, Via Selmi 2, I-40126 Bologna (Italy))" data-affiliation=" (Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Selmi 2, I-40126 Bologna (Italy))" >Puzzarini, Cristina; Ali, Ashraf; Biczysko, Malgorzata; Barone, Vincenzo

    2014-01-01

    An accurate spectroscopic characterization of protonated oxirane has been carried out by means of state-of-the-art computational methods and approaches. The calculated spectroscopic parameters from our recent computational investigation of oxirane together with the corresponding experimental data available were used to assess the accuracy of our predicted rotational and IR spectra of protonated oxirane. We found an accuracy of about 10 cm –1 for vibrational transitions (fundamentals as well as overtones and combination bands) and, in relative terms, of 0.1% for rotational transitions. We are therefore confident that the spectroscopic data provided herein are a valuable support for the detection of protonated oxirane not only in Titan's atmosphere but also in the interstellar medium.

  10. Accurate spectroscopic characterization of protonated oxirane: a potential prebiotic species in Titan's atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Puzzarini, Cristina [Dipartimento di Chimica " Giacomo Ciamician," Università di Bologna, Via Selmi 2, I-40126 Bologna (Italy); Ali, Ashraf [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Biczysko, Malgorzata; Barone, Vincenzo, E-mail: cristina.puzzarini@unibo.it [Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy)

    2014-09-10

    An accurate spectroscopic characterization of protonated oxirane has been carried out by means of state-of-the-art computational methods and approaches. The calculated spectroscopic parameters from our recent computational investigation of oxirane together with the corresponding experimental data available were used to assess the accuracy of our predicted rotational and IR spectra of protonated oxirane. We found an accuracy of about 10 cm{sup –1} for vibrational transitions (fundamentals as well as overtones and combination bands) and, in relative terms, of 0.1% for rotational transitions. We are therefore confident that the spectroscopic data provided herein are a valuable support for the detection of protonated oxirane not only in Titan's atmosphere but also in the interstellar medium.

  11. Isospin asymmetry dependence of the α spectroscopic factor for heavy nuclei

    International Nuclear Information System (INIS)

    Seif, W. M.; Shalaby, M.; Alrakshy, M. F.

    2011-01-01

    Both the valence nucleons (holes) and the isospin asymmetry dependencies of the preformation probability of an α-cluster inside parents radioactive nuclei are investigated. The calculations are employed in the framework of the density-dependent cluster model of an α-decay process for the even-even spherical parents nuclei with protons number around the closed shell Z 0 = 82 and neutrons number around the closed shells Z 0 = 82 and Z 0 = 126. The microscopic α-daughter nuclear interaction potential is calculated in the framework of the Hamiltonian energy density approach based on the SLy4 Skyrme-like effective interaction. Also, the calculations based on the realistic effective M3Y-Paris nucleon-nucleon force have been used to confirm the results. The calculations then proceed to find the assault frequency and the α penetration probability within the WKB approximation. The half-lives of the different mentioned α decays are then determined and have been used in turn to find the α spectroscopic factor. We found that the spectroscopic factor increases with increasing the isospin asymmetry of the parent nuclei if they have valence protons and neutrons. When the parent nuclei have neutron or proton holes in addition to the valence protons or neutrons, then the spectroscopic factor is found to decrease with increasing isospin asymmetry. The obtained results show also that the deduced spectroscopic factors follow individual linear behaviors as a function of the multiplication of the valence proton (N p ) and neutron (N n ) numbers. These linear dependencies are correlated with the closed shells core (Z 0 ,N 0 ). The same individual linear behaviors are obtained as a function of the multiplication of N p N n and the isospin asymmetry parameter, N p N n I. Moreover, the whole deduced spectroscopic factors are found to exhibit a nearly general linear trend with the function N p N n /(Z 0 +N 0 ).

  12. Sensitivity-encoded (SENSE) proton echo-planar spectroscopic imaging (PEPSI) in the human brain.

    Science.gov (United States)

    Lin, Fa-Hsuan; Tsai, Shang-Yueh; Otazo, Ricardo; Caprihan, Arvind; Wald, Lawrence L; Belliveau, John W; Posse, Stefan

    2007-02-01

    Magnetic resonance spectroscopic imaging (MRSI) provides spatially resolved metabolite information that is invaluable for both neuroscience studies and clinical applications. However, lengthy data acquisition times, which are a result of time-consuming phase encoding, represent a major challenge for MRSI. Fast MRSI pulse sequences that use echo-planar readout gradients, such as proton echo-planar spectroscopic imaging (PEPSI), are capable of fast spectral-spatial encoding and thus enable acceleration of image acquisition times. Combining PEPSI with recent advances in parallel MRI utilizing RF coil arrays can further accelerate MRSI data acquisition. Here we investigate the feasibility of ultrafast spectroscopic imaging at high field (3T and 4T) by combining PEPSI with sensitivity-encoded (SENSE) MRI using eight-channel head coil arrays. We show that the acquisition of single-average SENSE-PEPSI data at a short TE (15 ms) can be accelerated to 32 s or less, depending on the field strength, to obtain metabolic images of choline (Cho), creatine (Cre), N-acetyl-aspartate (NAA), and J-coupled metabolites (e.g., glutamate (Glu) and inositol (Ino)) with acceptable spectral quality and localization. The experimentally measured reductions in signal-to-noise ratio (SNR) and Cramer-Rao lower bounds (CRLBs) of metabolite resonances were well explained by both the g-factor and reduced measurement times. Thus, this technology is a promising means of reducing the scan times of 3D acquisitions and time-resolved 2D measurements. Copyright (c) 2007 Wiley-Liss, Inc.

  13. Protonated Nitrous Oxide, NNOH(+): Fundamental Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields

    Science.gov (United States)

    Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.

    2013-01-01

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.

  14. Communication: Spectroscopic consequences of proton delocalization in OCHCO+

    Science.gov (United States)

    Fortenberry, Ryan C.; Yu, Qi; Mancini, John S.; Bowman, Joel M.; Lee, Timothy J.; Crawford, T. Daniel; Klemperer, William F.; Francisco, Joseph S.

    2015-08-01

    Even though quartic force fields (QFFs) and highly accurate coupled cluster computations describe the OCHCO+ cation at equilibrium as a complex between carbon monoxide and the formyl cation, two notable and typical interstellar and atmospheric molecules, the prediction from the present study is that the equilibrium C∞v structure is less relevant to observables than the saddle-point D∞h structure. This is the conclusion from diffusion Monte Carlo and vibrational self-consistent field/virtual state configuration interaction calculations utilizing a semi-global potential energy surface. These calculations demonstrate that the proton "rattle" motion (ν6) has centrosymmetric delocalization of the proton over the D∞h barrier lying only 393.6 cm-1 above the double-well OCHCO+ C∞v minima. As a result, this molecule will likely appear D∞h, and the rotational spectrum will be significantly dimmer than the computed equilibrium 2.975 D center-of-mass dipole moment indicates. However, the proton transfer fundamental, determined to be at roughly 300 cm-1, has a very strong intensity. This prediction as well as those of other fundamentals should provide useful guides for laboratory detection of this cation. Finally, it is shown that the two highest energy QFF-determined modes are actually in good agreement with their vibrational configuration interaction counterparts. These high-level quantum chemical methods provide novel insights into this fascinating and potentially common interstellar molecule.

  15. Communication: Spectroscopic consequences of proton delocalization in OCHCO+

    International Nuclear Information System (INIS)

    Fortenberry, Ryan C.; Yu, Qi; Mancini, John S.; Bowman, Joel M.; Lee, Timothy J.; Crawford, T. Daniel; Klemperer, William F.; Francisco, Joseph S.

    2015-01-01

    Even though quartic force fields (QFFs) and highly accurate coupled cluster computations describe the OCHCO + cation at equilibrium as a complex between carbon monoxide and the formyl cation, two notable and typical interstellar and atmospheric molecules, the prediction from the present study is that the equilibrium C ∞v structure is less relevant to observables than the saddle-point D ∞h structure. This is the conclusion from diffusion Monte Carlo and vibrational self-consistent field/virtual state configuration interaction calculations utilizing a semi-global potential energy surface. These calculations demonstrate that the proton “rattle” motion (ν 6 ) has centrosymmetric delocalization of the proton over the D ∞h barrier lying only 393.6 cm −1 above the double-well OCHCO + C ∞v minima. As a result, this molecule will likely appear D ∞h , and the rotational spectrum will be significantly dimmer than the computed equilibrium 2.975 D center-of-mass dipole moment indicates. However, the proton transfer fundamental, determined to be at roughly 300 cm −1 , has a very strong intensity. This prediction as well as those of other fundamentals should provide useful guides for laboratory detection of this cation. Finally, it is shown that the two highest energy QFF-determined modes are actually in good agreement with their vibrational configuration interaction counterparts. These high-level quantum chemical methods provide novel insights into this fascinating and potentially common interstellar molecule

  16. Helium-plasma heating with a powerful proton beam for spectroscopic applications

    International Nuclear Information System (INIS)

    Arteev, M.S.; Kuznetsov, A.A.; Sulakshin, S.S.

    1986-01-01

    In this work the authors consider an ion gun which was especially developed for producing a gas plasma and report on the details of an experiment on (ELLIGIBLE) plasma spectroscopy. The current density of the proton beam was measured in the experiments on the axis of the gas tube with the aid of a collimating current collector with the wave impedance of a 75 omega cable. The ion gun was tested in the excitation of a helium plasma. Extremely pure helium with a pressure P = (0.2-1).10 5 Pa was employed. The proton gun which was developed satifies the requirements of spectroscopic plasma experiments and makes it possible to excite a plasma of inert gases under atmospheric pressure over a length of up to 100 cm, with the plasma having high homogeneity and stability. They obtained first results of spectroscopic measurements of the electron concentration of a helium plasma and the results agree with the theoretical predictions

  17. Proton MR spectroscopic features of the human liver: in-vivo application to the normal condition

    International Nuclear Information System (INIS)

    Cho, Soon Gu; Kim, Mi Young; Kim, Young Soo; Choi, Won; Shin, Seok Hwan; Ok, Chul Soo; Suh, Chang Hae

    1999-01-01

    To determine the feasibility of MR spectroscopy in the living human liver, and to evaluate the corresponding proton MR spectroscopic features. In fifteen normal volunteers with neither previous nor present liver disease, the proton MR spectroscopic findings were reviewed. Twelve subjects were male and three were female ; they were aged between 28 and 32 (mean, 30) years. MR spectroscopy involved the use of a 1.5T GE Signa Horizon system with body coil(GE Medical System, Milwaukee, U.S.A). We used STEAM (Stimulated Echo-Acquisition Mode) with 3000/30 msec of TR/TE for signal acquisition, and the prone position without respiratory interruption. Mean and standard deviation of the ratios of glutamate+glutamine/lipids, phosphomonoesters/lipids, and glycogen+glucose/lipids were calculated from the area of their peaks. The proton MR spectroscopic findings of normal human livers showed four distinctive peaks, i.e. lipids, glutamate and glutamine complex, phosphomonoesters, and glycogen and glucose complex. The mean and standard deviation of the ratios of glutamate+glutamine/lipids, phosphomonoesters/lipids, and glycogen+glucose/lipids were 0.02±0.01, 0.01±0.01, and 0.04±0.03, respectively. In living normal human livers, MR spectroscopy can be successfully applied. When applied to a liver whose condition is pathologic, the findings can be used as a standard

  18. Proton MR spectroscopic changes in Parkinson's diseases after thalamotomy

    International Nuclear Information System (INIS)

    Baik, Hyun-Man; Choe, Bo-Young; Son, Byung-Chul; Jeun, Sin-Soo; Kim, Moon-Chan; Lee, Kwang-Soo; Kim, Bum-Soo; Lee, Jae-Mun; Lee, Hyoung-Koo; Suh, Tae-Suk

    2003-01-01

    To investigate whether there are significant changes in regional brain metabolism in patients with Parkinson's disease before and after thalamotomy using proton magnetic resonance spectroscopy ( 1 H MRS). Fifteen patients underwent 15 stereotactic thalamotomies for control of medically refractory parkinsonian tremor. Single-voxel 1 H MRS was carried out on a 1.5 T unit using stimulated-echo acquisition mode (STEAM) sequence (TR/TM/TE, 2000/14/20 ms). Spectra were obtained from substantia nigra, thalamus and putamen areas with volumes of interests (7-8 ml) in patients before and after the surgery. Metabolite ratios of NAA/Cho, NAA/Cr and Cho/Cr were calculated from relative peak area measurements. We evaluated alterations of metabolite ratios in brain metabolism in Parkinson's disease patients with clinical outcome following thalamotomy. NAA/Cho ratios showed generally low levels in substantia nigra and thalamus in Parkinson's disease patients with clinical improvement following thalamotomy. In 80% (12/15) patients, decreased NAA/Cho ratios were observed from the selected voxels in substantia nigra after thalamic surgery (P 1 H MRS may be a useful utility for the aid in better understanding the pathophysiologic process in Parkinson's disease patients on the basis of the variation of NAA/Cho ratio

  19. Proton MR spectroscopic features of liver cirrhosis : comparing with normal liver

    International Nuclear Information System (INIS)

    Cho, Soon Gu; Choi, Won; Kim, Young Soo; Kim, Mi Young; Jee, Keum Nahn; Lee, Kyung Hee; Suh, Chang Hae

    2000-01-01

    The purpose of this study was to determine the proton MR spectroscopic features of liver cirrhosis and the different proton MR spectroscopic features between liver cirrhosis and the normal human liver by comparing the two different conditions. The investigation involved 30 cases of in-vivo proton MR spectra obtained from 15 patients with liver cirrhosis demonstrated on the basis of radiologic and clinical findings, and from 15 normal volunteers without a past or current history of liver disease. MR spectroscopy involved the use of 1.5T GESigna Horizon system (GE Medical Systems, Milwaukee, U. S. A.) with body coil. STEAM (STimulated Echo-Acquisition Mode) with 3000/30 msec of TR/TE was used for signal acquisition; patients were in the prone position and respiration was not interrupted. Cases were assigned to either the cirrhosis or normal group, and using the proton MR spectra of cases of in each group, peak changes occurring in lipids (at 1.3 ppm), glutamate and glutamine (at 2.4-2.5 ppm), phosphomonoesters (at 3.0-3.1 ppm), and glycogen and glucose (at 3.4-3.9 ppm) were evaluated. Mean and standard deviation of the ratio of glutamate + glutamine/lipids, phosphomonoesters/lipids, glycogen + glucose/lipids were calculated from the area of their peaks. The ratio of various metabolites to lipid content was compared between the normal and cirrhosis group. The main characteristic change in proton MR spectra in cases of liver cirrhosis compared with normal liver was decreased relative intensity of lipid peak. Mean and standard deviation of ratio of glutamate + glutamine/lipids, phosphomonoesters /lipids, glycogen + glucose /lipid calculated from the area of their peaks of normal and cirrhotic liver were 0.0204 ±0.0067 and 0.0693 ±0.0371 (p less than 0.05), 0.0146 ± 0.0090 and 0.0881 ±0.0276 (p less than 0.05), 0.0403 ± 0.0267 and 0.2325 ± 0.1071 (p less than 0.05), respectively The other characteristic feature of proton MR spectra of liver cirrhosis was the peak

  20. Three-dimensional proton magnetic resonance spectroscopic imaging with and without an endorectal coil: a prostate phantom study

    NARCIS (Netherlands)

    Ma, C.; Chen, L.; Scheenen, T.W.J.; Lu, J.; Wang, J

    2015-01-01

    Proton magnetic resonance spectroscopic imaging (MRSI) of the prostate has been used with only a combination of external surface coils. The quality of spectral fitting of the (choline + creatine)/citrate ([Cho + Cr]/Cit) ratio at different field strengths and different coils is important for

  1. Raman spectroscopic study on sodium hyaluronate: an effect of proton and gamma irradiation

    Czech Academy of Sciences Publication Activity Database

    Synytsya, A.; Alexa, P.; Wagner, Richard; Davídková, Marie; Volka, K.

    2011-01-01

    Roč. 42, č. 3 (2011), s. 544-550 ISSN 0377-0486 Institutional research plan: CEZ:AV0Z10480505 Keywords : sodium hyaluronate * proton irradiation * gamma irradiation * Raman spectroscopy Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.087, year: 2011 http://onlinelibrary.wiley.com/doi/10.1002/jrs.2724/full

  2. Analysis of transfer reactions: determination of spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    Keeley, N. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA/SPhN), 91- Gif sur Yvette (France); The Andrzej So an Institute for Nuclear Studies, Dept. of Nuclear Reactions, Warsaw (Poland)

    2007-07-01

    An overview of the most popular models used for the analysis of direct reaction data is given, concentrating on practical aspects. The 4 following models (in order of increasing sophistication): the distorted wave born approximation (DWBA), the adiabatic model, the coupled channels born approximation, and the coupled reaction channels are briefly described. As a concrete example, the C{sup 12}(d,p)C{sup 13} reaction at an incident deuteron energy of 30 MeV is analysed with progressively more physically sophisticated models. The effect of the choice of the reaction model on the spectroscopic information extracted from the data is investigated and other sources of uncertainty in the derived spectroscopic factors are discussed. We have showed that the choice of the reaction model can significantly influence the nuclear structure information, particularly the spectroscopic factors or amplitudes but occasionally also the spin-parity, that we wish to extract from direct reaction data. We have also demonstrated that the DWBA can fail to give a satisfactory description of transfer data but when the tenets of the theory are fulfilled DWBA can work very well and will yield the same results as most sophisticated models. The use of global rather than fitted optical potentials can also lead to important differences in the extracted spectroscopic factors.

  3. The hippocampus in patients treated with electroconvulsive therapy: a proton magnetic resonance spectroscopic imaging study.

    Science.gov (United States)

    Ende, G; Braus, D F; Walter, S; Weber-Fahr, W; Henn, F A

    2000-10-01

    We monitored the effect of electroconvulsive therapy (ECT) on the nuclear magnetic resonance-detectable metabolites N-acetylaspartate, creatine and phosphocreatine, and choline-containing compounds in the hippocampus by means of hydrogen 1 magnetic resonance spectroscopic imaging. We hypothesized that if ECT-induced memory deterioration was associated with neuronal loss in the hippocampus, the N-acetylaspartate signal would decrease after ECT and any increased membrane turnover would result in an increase in the signal from choline-containing compounds. Seventeen patients received complete courses of ECT, during which repeated proton magnetic resonance spectroscopic imaging studies of the hippocampal region were performed. Individual changes during the course of ECT were compared with values obtained in 24 healthy control subjects and 6 patients remitted from major depression without ECT. No changes in the hippocampal N-acetylaspartate signals were detected after ECT. A significant mean increase of 16% of the signal from choline-containing compounds after 5 or more ECT treatments was observed. Despite the mostly unilateral ECT application (14 of 17 patients), the increase in the choline-containing compound signal was observed bilaterally. Lactate or elevated lipid signals were not detected. All patients showed clinical amelioration of depression after ECT. Electroconvulsive therapy is not likely to induce hippocampal atrophy or cell death, which would be reflected by a decrease in the N-acetylaspartate signal. Compared with an age-matched control group, the choline-containing compounds signal in patients with a major depressive episode was significantly lower than normal, before ECT and normalized during ECT.

  4. Localised proton spectroscopy and spectroscopic imaging in cerebral gliomas, with comparison to positron emission tomography

    International Nuclear Information System (INIS)

    Go, K.G.; Kamman, R.L.; Mooyaart, E.L.; Heesters, M.A.A.M.; Pruim, J.; Vaalburg, W.; Paans, A.M.J.

    1995-01-01

    In 32 patients with gliomas, one- and two-dimensional proton magnetic resonance spectroscopy ( 1 H-MRS) has been conducted, the latter allowing reconstruction of spectroscopic data into a spectroscopic image (MRSI), showing the distribution of the various metabolite concentrations over the cross-sectional plane. For lack of absolute concentrations, the measured concentrations of phosphocholine (CHOL), N-acetyl-L-aspartate (NAA), and lactate (LAC) were conventionally expressed in ratios relative to that of creatine (CREAT). Compared to normal brain tissue, an increased CHOL/CREAT ratio was found in all groups of tumours, in glioblastomas, high-, middle- and low-grade astrocytomas both at the margin and the core of the tumours, but in oligodendrogliomas only at the margin. This is consistent with an increased phosphocholine turnover in relation to membrane biosynthesis by the proliferating cells. The NAA/CREAT ratio was decreased in all groups of tumours, both in the centre and at the margin, reflecting replacement of functioning neurons by neoplastic cells. The LAC/CREAT ratio was elevated in the core of malignant gliomas, which may be the result of a prevailing glycolysis, characteristic of tumours, possibly in conjunction with hypoxia/ischaemia. In the perifocal oedema, there was neither elevation of the CHOL/CREAT ratio nor decrease of the NAA/CREAT ratio; an increased LAC/CREAT ratio therefore rather reflected ischaemia/hypoxia probably due to locally elevated pressure and compromised regional perfusion. In the normal brain, the metabolite ratios of grey matter did not differ from those of white matter. The frontal lobe and basal ganglia showed lower NAA/CREAT ratios than the other cerebral areas. In 7 patients positron emission tomography was also performed with [ 18 F]fluoro-2-deoxy-D-glucose ( 18 FDG) or L-[1- 11 C]-tyrosine ( 11 C-TYR); the latter demonstrated a pattern of 11 C-TYR uptake similar to that of CHOL elevation in the MRSI. (orig.)

  5. Proton magnetic spectroscopic imaging of the child's brain: the response of tumors to treatment

    International Nuclear Information System (INIS)

    Tzika, A.A.; Young Poussaint, T.; Astrakas, L.G.; Barnes, P.D.; Goumnerova, L.; Scott, R.M.; Black, P.McL.; Anthony, D.C.; Billett, A.L.; Tarbell, N.J.

    2001-01-01

    Our aim was to determine and/or predict response to treatment of brain tumors in children using proton magnetic resonance spectroscopic imaging (MRSI). We studied 24 patients aged 10 months to 24 years, using MRI and point-resolved spectroscopy (PRESS; TR 2000 TE 65 ms) with volume preselection and phase-encoding in two dimensions on a 1.5 T imager. Multiple logistic regression was used to establish independent predictors of active tumor growth. Biologically vital cell metabolites, such as N-acetyl aspartate and choline-containing compounds (Cho), were significantly different between tumor and control tissues (P<0.001). The eight brain tumors which responded to radiation or chemotherapy, exhibited lower Cho (P=0.05), higher total creatine (tCr) (P=0.02) and lower lactate and lipid (L) (P=0.04) than16 tumors which were not treated (except by surgery) or did not respond to treatment. The only significant independent predictor of active tumor growth was tCr (P<0.01). We suggest that tCr is useful in assessing response of brain tumors to treatment. (orig.)

  6. Commissioning of output factors for uniform scanning proton beams

    International Nuclear Information System (INIS)

    Zheng Yuanshui; Ramirez, Eric; Mascia, Anthony; Ding Xiaoning; Okoth, Benny; Zeidan, Omar; Hsi Wen; Harris, Ben; Schreuder, Andries N.; Keole, Sameer

    2011-01-01

    Purpose: Current commercial treatment planning systems are not able to accurately predict output factors and calculate monitor units for proton fields. Patient-specific field output factors are thus determined by either measurements or empirical modeling based on commissioning data. The objective of this study is to commission output factors for uniform scanning beams utilized at the ProCure proton therapy centers. Methods: Using water phantoms and a plane parallel ionization chamber, the authors first measured output factors with a fixed 10 cm diameter aperture as a function of proton range and modulation width for clinically available proton beams with ranges between 4 and 31.5 cm and modulation widths between 2 and 15 cm. The authors then measured the output factor as a function of collimated field size at various calibration depths for proton beams of various ranges and modulation widths. The authors further examined the dependence of the output factor on the scanning area (i.e., uncollimated proton field), snout position, and phantom material. An empirical model was developed to calculate the output factor for patient-specific fields and the model-predicted output factors were compared to measurements. Results: The output factor increased with proton range and field size, and decreased with modulation width. The scanning area and snout position have a small but non-negligible effect on the output factors. The predicted output factors based on the empirical modeling agreed within 2% of measurements for all prostate treatment fields and within 3% for 98.5% of all treatment fields. Conclusions: Comprehensive measurements at a large subset of available beam conditions are needed to commission output factors for proton therapy beams. The empirical modeling agrees well with the measured output factor data. This investigation indicates that it is possible to accurately predict output factors and thus eliminate or reduce time-consuming patient-specific output

  7. Spherical proton emitters

    International Nuclear Information System (INIS)

    Berg, S.; Semmes, P.B.; Nazarewicz, W.

    1997-01-01

    Various theoretical approaches to proton emission from spherical nuclei are investigated, and it is found that all the methods employed give very similar results. The calculated decay widths are found to be qualitatively insensitive to the parameters of the proton-nucleus potential, i.e., changing the potential parameters over a fairly large range typically changes the decay width by no more than a factor of ∼3. Proton half-lives of observed heavy proton emitters are, in general, well reproduced by spherical calculations with the spectroscopic factors calculated in the independent quasiparticle approximation. The quantitative agreement with experimental data obtained in our study requires that the parameters of the proton-nucleus potential be chosen carefully. It also suggests that deformed proton emitters will provide invaluable spectroscopic information on the angular momentum decomposition of single-proton orbitals in deformed nuclei. copyright 1997 The American Physical Society

  8. Spectroscopic factor of the 7He ground state

    International Nuclear Information System (INIS)

    Beck, F.; Frekers, D.; Neumann-Cosel, P. von; Richter, A.; Ryezayeva, N.; Thompson, I.J.

    2007-01-01

    The neutron spectroscopic factor S n of the 7 He ground state is extracted from an R-matrix analysis of a recent measurement of the 7 Li(d, 2 He) 7 He reaction with good energy resolution. The width extracted from a deconvolution of the spectrum is Γ=183(22) keV (full width at half maximum, FWHM). The result S n =0.64(9) is slightly larger than predictions of recent 'ab initio' Green's function Monte Carlo and fermionic molecular dynamics calculations

  9. Charged particle reaction studies on /sup 14/C. [Spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, F E; Shepard, J R; Anderson, R E; Peterson, R J; Kaczkowski, P [Colorado Univ., Boulder (USA). Nuclear Physics Lab.

    1975-12-22

    The reactions /sup 14/C(p,d), (d,d') and (d,p) have been measured for E/sub p/ = 27 MeV and E/sub d/ = 17 MeV. The (d,d') and (d,p) reactions were studied between theta/sub lab/ = 15/sup 0/ and 85/sup 0/; the (p,d) reactions, between theta/sub lab/ = 5/sup 0/ and 40/sup 0/. The /sup 14/C deformation parameters were deduced from the deuteron inelastic scattering and found to agree with deformations measured in nearby doubly even nuclei. The spectroscopic factors deduced from the (p,d) reaction allowed a /sup 14/C ground-state wave function to be deduced which compares favorably with a theoretically deduced wave function. The (p,d) and (d,p) spectroscopic factors are consistent. The implications of our /sup 14/C ground-state wave function regarding the problem of the /sup 14/C hindered beta decay are discussed.

  10. Short- and long-term quantitation reproducibility of brain metabolites in the medial wall using proton echo planar spectroscopic imaging.

    Science.gov (United States)

    Tsai, Shang-Yueh; Lin, Yi-Ru; Wang, Woan-Chyi; Niddam, David M

    2012-11-15

    Proton echo planar spectroscopic imaging (PEPSI) is a fast magnetic resonance spectroscopic imaging (MRSI) technique that allows mapping spatial metabolite distributions in the brain. Although the medial wall of the cortex is involved in a wide range of pathological conditions, previous MRSI studies have not focused on this region. To decide the magnitude of metabolic changes to be considered significant in this region, the reproducibility of the method needs to be established. The study aims were to establish the short- and long-term reproducibility of metabolites in the right medial wall and to compare regional differences using a constant short-echo time (TE30) and TE averaging (TEavg) optimized to yield glutamatergic information. 2D sagittal PEPSI was implemented at 3T using a 32 channel head coil. Acquisitions were repeated immediately and after approximately 2 weeks to assess the coefficients of variation (COV). COVs were obtained from eight regions-of-interest (ROIs) of varying size and location. TE30 resulted in better spectral quality and similar or lower quantitation uncertainty for all metabolites except glutamate (Glu). When Glu and glutamine (Gln) were quantified together (Glx) reduced quantitation uncertainty and increased reproducibility was observed for TE30. TEavg resulted in lowered quantitation uncertainty for Glu but in less reliable quantification of several other metabolites. TEavg did not result in a systematically improved short- or long-term reproducibility for Glu. The ROI volume was a major factor influencing reproducibility. For both short- and long-term repetitions, the Glu COVs obtained with TEavg were 5-8% for the large ROIs, 12-17% for the medium sized ROIs and 16-26% for the smaller cingulate ROIs. COVs obtained with TE30 for the less specific Glx were 3-5%, 8-10% and 10-15%. COVs for N-acetyl aspartate, creatine and choline using TE30 with long-term repetition were between 2-10%. Our results show that the cost of more specific

  11. ELECTROMAGENTIC FORM FACTORS OF THE PROTON AND NEUTRON

    Energy Technology Data Exchange (ETDEWEB)

    Griffy, T. A.; Hofstadter, R.; Hughes, E. B.; Janssens, T.; Yearian, M. R.

    1963-06-15

    Proton form factors in the four-momentum-transfer range q/sup 2/ = 4.6 to 32.0 f/sup -2/ and neutron form factors in the range q/sup 2/ = 2.5 to 10.0 f/ sup -2/ are measured by means of electron elastic scattering by protons and electron inelastic scattering by deuterons. (T.F.H.)

  12. FTIR spectroscopic studies of bacterial cellular responses to environmental factors, plant-bacterial interactions and signalling

    OpenAIRE

    Kamnev, Alexander A.

    2008-01-01

    Modern spectroscopic techniques are highly useful in studying diverse processes in microbial cells related to or incited by environmental factors. Spectroscopic data for whole cells, supramolecular structures or isolated cellular constituents can reflect structural and/or compositional changes occurring in the course of cellular metabolic responses to the effects of pollutants, environmental conditions (stress factors); nutrients, signalling molecules (communication factors), etc. This inform...

  13. On spectroscopic factors of magic and semimagic nuclei

    International Nuclear Information System (INIS)

    Saperstein, E. E.; Gnezdilov, N. V.; Tolokonnikov, S. V.

    2014-01-01

    Single-particle spectroscopic factors (SF) of magic and semimagic nuclei are analyzed within the self-consistent theory of finite Fermi systems. The the in-volume energy dependence of the mass operator Σ is taken into account in addition to the energy dependence induced by the surface-phonon coupling effects which is commonly considered. It appears due to the effect of high-lying collective and non-collective particle-hole excitations and persists in nuclear matter. The self-consistent basis of the energy density functional method by Fayans et al. is used. Both the surface and in-volume contributions to the SFs turned out to be of comparable magnitude. Results for magic 208 Pb nucleus and semimagic lead isotopes are presented

  14. Parity Violation in Elastic Electron-Proton Scattering and the Proton's Strange Magnetic Form Factor

    International Nuclear Information System (INIS)

    Spayde, D. T.; Averett, T.; Barkhuff, D.; Beck, D. H.; Beise, E. J.; Benson, C.; Breuer, H.; Carr, R.; Covrig, S.; DelCorso, J.

    2000-01-01

    We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A=-4.92±0.61±0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections. (c) 2000 The American Physical Society

  15. Three dimensional proton MR spectroscopic imaging in transition zone prostate cancer

    International Nuclear Information System (INIS)

    Yang Yi; Zhao Wenlu; Shen Junkang

    2012-01-01

    Objective: To discuss the clinical value of three dimensional proton MR spectroscopic imaging (3D 1 HMRSI) in the detection of transition zone (TZ) prorate cancer and evaluate the feasibility of 3D 1 HMRSI for determining the aggressiveness of TZ cancer by analyzing its metabolic characteristics. Methods: The 3D 1 HMRSI data of sixty patients suspected TZ cancer in conventional MR examinations were retrospectively analyzed. The values of (Cho + Cre)/Cit of TZ cancer and benign prostatic hyperplasia (BPH) voxels were recorded and compared using independent sample t' test, and the area under the ROC curve was used to evaluate the diagnostic accuracy. Based on Gleason scores, TZ cancer voxels were divided into three groups,including low-risk (Gleason score <7), intermediate-risk (Gleason score =7) and high-risk (Gleason score >7). The values of (Cho + Cre)/Cit were compared among the three groups using Kruskal-Wallis test. The correlation of the value of (Cho + Cre)/Cit and Gleason score was analyzed using rank correlation analysis. Results: Among the 60 patients, histopathology confirmed TZ cancer in 25 patients and BPH in 35 patients. The inversion of Cho and Cit peak value with increased (Cho + Cre)/Cit was detected in 160 out of 177 TZ cancer voxels. Most spectral curves of the 517 BPH voxels were similar with that of normal peripheral zone on 1 HMRSI. The mean values of (Cho + Cre)/Cit of TZ cancer and BPH voxels were 2.17 ± 1.29 and 0.77 ± 0.20, respectively, with significant difference between them (t'=14.38, P<0.01). Using (Cho + Cre)/Cit for distinguishing TZ cancer, the area under ROC curve was 0.985 (P<0.01).With the cut-off point 1.08, the sensitivity, specificity and accuracy of TZ cancer diagnosis was 92.7%, 94.2% and 93.8%, respectively. The number of low-risk, intermediate-risk and high-risk TZ cancer voxels were 57, 64 and 56 respectively, and the mean values of (Cho + Cre)/Cit of the three groups were 1.43 (1.16-1.87), 1.66 (1

  16. Localized proton MR spectroscopic detection of nonketotic hyperglycinemia in an infant

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Choong Gon; Lee, Ho Kyu; Yoon, Jong Hyun [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    2001-12-01

    Nonketotic hyperglycinemia (NKH) is a rare metabolic brain disease caused by deficient activity of the glycine cleveage system. Localized proton MR spectroscopy (echo-time 166 msec), performed in an infant with the typical clinical and biochemical features of neonatal NKH, showed a markedly increased peak intensity at 3.55 ppm, which was assigned to glycine. Serial proton MR spectrosocpic studies indicated that glycine/choline and glycine/total creatine ratios correlated closely with the patient's clinical course. Proton MR spectroscopy was useful for the non-invasive detection and monitoring of cerebral glycine levels in this infant with NKH.

  17. Spectroscopic factors measurement of the five first energy levels of lead 208 nucleus using the 208Pb(e,e'p207Tl* huge pulse transfer reaction

    International Nuclear Information System (INIS)

    Medaglia, R.

    1999-08-01

    In this work, the spectral functions and the spectroscopic factors of the first five energy levels of the lead 208 nucleus have been measured using the 208 Pb(e,e'p) 207 Tl * reaction. The aim is to characterize the effect of the nuclear environment on pulse and energy distributions of protons. In order to minimize the ejected proton-residual nucleus interactions in the final state, the measurement has been performed at 750 and 570 MeV/c pulse transfers, and thus for proton kinetic energies of 263 MeV and 161 MeV, contrarily to a previous measurement performed at 100 MeV. A kinematics with a transverse electromagnetic coupling, instead of a longitudinal one, has been used because of the important coupling dependence observed for medium nuclei. The experiment has been carried out at the NIKHEF electron accelerator and smoothing ring. The pulse distributions of the first five energy levels for a proton pulse range of 0 to 300 MeV/c have been extracted from the (e,e'p) cross sections. An integration of model-dependent distributions gives the spectroscopic factors which indicate the number of protons of each level. These data rae compared to models that include both the proton interactions in the final state and the coulomb distortions. The Pavie model reproduces well the observed distributions and the transfer dependence, while the Ohio model does not. The spectroscopic factors obtained with the Pavie model are the same for both transfers and are 20% higher as an average than the previous experiment performed at 450 MeV/c. However, they are 30% below the shell model. The uncertain estimation of the reaction mechanisms does not allow to consider this reduction as being due exclusively to nuclear structure effects. (J.S.)

  18. Spectroscopic factors of the alpha decay of isoscalar giant resonances

    International Nuclear Information System (INIS)

    Smirnov, Yu.F.; Chuvil'skij, Yu.M.

    1983-01-01

    A system which enables to connect Ssub(α) spectroscopic factors (SF) for α-decay of the isoscalar giant resonance (GR) states E0 and E2 with SF values for ground and low lying nucleus states has been developed. This method permits to consider initial nucleus GR decay with a transition to the residual nucleus-GR. It is necessary to know only SF for GR decay to the daughter nucleus ground state with the emission of an excited cluster in the common case. The above method is based on properties of infinitesimal operators of Sp(2, R), Sp(6, R) groups and uses SU(3)-symmetry of wave functions of initial nucleus, cluster and residual nucleus, Values of ratios of α-particle SF are presented for 8 Be, HH2C, 16 O, 20 Ne, 24 Mg, 28 Si, 40 Ca, 44 Ti nuclei and Ssub(α) transitions to GR states of residual nucleus for 16 O, 20 Ne and 40 Ca nuclei. Noticeable Ssub(α) values for virtual α-decay of an initial nucleus ground state to residual nucleus GR poins out that α-particle knock out processes may be also accompanied by the final nucleus GR excitation

  19. Physical and biological factors determining the effective proton range

    International Nuclear Information System (INIS)

    Grün, Rebecca; Friedrich, Thomas; Krämer, Michael; Scholz, Michael; Zink, Klemens; Durante, Marco; Engenhart-Cabillic, Rita

    2013-01-01

    Purpose: Proton radiotherapy is rapidly becoming a standard treatment option for cancer. However, even though experimental data show an increase of the relative biological effectiveness (RBE) with depth, particularly at the distal end of the treatment field, a generic RBE of 1.1 is currently used in proton radiotherapy. This discrepancy might affect the effective penetration depth of the proton beam and thus the dose to the surrounding tissue and organs at risk. The purpose of this study was thus to analyze the impact of a tissue and dose dependent RBE of protons on the effective range of the proton beam in comparison to the range based on a generic RBE of 1.1.Methods: Factors influencing the biologically effective proton range were systematically analyzed by means of treatment planning studies using the Local Effect Model (LEM IV) and the treatment planning software TRiP98. Special emphasis was put on the comparison of passive and active range modulation techniques.Results: Beam energy, tissue type, and dose level significantly affected the biological extension of the treatment field at the distal edge. Up to 4 mm increased penetration depth as compared to the depth based on a constant RBE of 1.1. The extension of the biologically effective range strongly depends on the initial proton energy used for the most distal layer of the field and correlates with the width of the distal penumbra. Thus, the range extension, in general, was more pronounced for passive as compared to active range modulation systems, whereas the maximum RBE was higher for active systems.Conclusions: The analysis showed that the physical characteristics of the proton beam in terms of the width of the distal penumbra have a great impact on the RBE gradient and thus also the biologically effective penetration depth of the beam

  20. In vivo measurement of regional brain metabolic response to hyperventilation using magnetic resonance: proton echo planar spectroscopic imaging (PEPSI).

    Science.gov (United States)

    Posse, S; Dager, S R; Richards, T L; Yuan, C; Ogg, R; Artru, A A; Müller-Gärtner, H W; Hayes, C

    1997-06-01

    A new rapid spectroscopic imaging technique with improved sensitivity and lipid suppression, referred to as Proton Echo Planar Spectroscopic Imaging (PEPSI), has been developed to measure the 2-dimensional distribution of brain lactate increases during hyperventilation on a conventional clinical scanner equipped with a head surface coil phased array. PEPSI images (nominal voxel size: 1.125 cm3) in five healthy subjects from an axial section approximately 20 mm inferior to the intercommissural line were obtained during an 8.5-min baseline period of normocapnia and during the final 8.5 min of a 10-min period of capnometry-controlled hyperventilation (end-tidal PCO2 of 20 mmHg). The lactate/N-acetyl aspartate signal increased significantly from baseline during hyperventilation for the insular cortex, temporal cortex, and occipital regions of both the right and left hemisphere, but not in the basal ganglia. Regional or hemispheric right-to-left differences were not found. The study extends previous work using single-voxel MR spectroscopy to dynamically study hyperventilation effects on brain metabolism.

  1. New Insight into the Observation of Spectroscopic Strength Reduction in Atomic Nuclei: Implication for the Physical Meaning of Spectroscopic Factors

    International Nuclear Information System (INIS)

    Timofeyuk, N. K.

    2009-01-01

    Experimental studies of one-nucleon knockout from magic nuclei suggest that their nucleon orbits are not fully occupied. This conflicts a commonly accepted view of the shell closure associated with such nuclei. The conflict can be reconciled if the overlap between initial and final nuclear states in a knockout reaction are calculated by a nonstandard method. The method employs an inhomogeneous equation based on correlation-dependent effective nucleon-nucleon interactions and allows the simplest wave functions, in which all nucleons occupy only the lowest nuclear orbits, to be used. The method also reproduces the recently established relation between reduction of spectroscopic strength, observed in knockout reactions on other nuclei, and nucleon binding energies. The implication of the inhomogeneous equation method for the physical meaning of spectroscopic factors is discussed.

  2. Cerebral metabolic changes in neurologically presymptomatic patients undergoing haemodialysis: in vivo proton MR spectroscopic findings

    International Nuclear Information System (INIS)

    Chiu, Ming-Lun; Chiang, I. Chan; Li, Chun-Wei; Chang, Jer-Ming; Ko, Chih-Hung; Chuang, Hung-Yi; Sheu, Reu-Sheng; Lee, Chen-Chang; Hsieh, Tsyh-Jyi

    2010-01-01

    To prospectively investigate and detect early cerebral metabolic changes in patients with end-stage renal disease (ESRD) by using in vivo proton MR spectroscopy (MRS). We enrolled 32 patients with ESRD and 32 healthy controls between the ages of 26 and 50 years. Short echo time single-voxel proton MRS was acquired from volumes of interest (VOIs) located in the frontal grey and white matter, temporal white matter and basal ganglia. The choline/phospatidylcholine (Cho), myo-inositol (mI), N-acetylaspartate (NAA) and total creatine (tCr) peaks were measured and the metabolic ratios with respect to tCr were calculated. In the ESRD group, significant elevations of the Cho/tCr and mI/tCr ratios were observed for the frontal grey matter, frontal white matter, temporal white matter and basal ganglia as compared with controls. There was no significant difference in the NAA/tCr ratios at all VOIs between the ESRD patients and the healthy controls. Proton MRS is a useful and non-invasive imaging tool for the detection of early cerebral metabolic changes in neurologically presymptomatic ESRD patients. (orig.)

  3. Cerebral metabolic changes in neurologically presymptomatic patients undergoing haemodialysis: in vivo proton MR spectroscopic findings

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Ming-Lun; Chiang, I. Chan [Kaohsiung Medical University Hospital, Department of Medical Imaging (China); Li, Chun-Wei [Kaohsiung Medical University, Department of Medical Imaging and Radiological Sciences, College of Health Science (China); Chang, Jer-Ming [Kaohsiung Medical University, Department of Internal Medicine, Kaohsiung Hsiao-Kang Municipal Hospital (China); Kaohsiung Medical University, Department of Nephrology, School of Medicine, College of Medicine (China); Ko, Chih-Hung [Kaohsiung Medical University, Department of Psychiatry, School of Medicine, College of Medicine (China); Kaohsiung Medical University Hospital, Department of Psychiatry (China); Chuang, Hung-Yi [Kaohsiung Medical University, Faculty of Public Health, College of Health Science (China); Kaohsiung Medical University Hospital, Department of Environmental and Occupational Medicine (China); Sheu, Reu-Sheng [Kaohsiung Medical University, Department of Radiology, Kaohsiung Municipal Hsiao-Kang Hospital (China); Kaohsiung Medical University, Department of Radiology, Faculty of Medicine, College of Medicine (China); Lee, Chen-Chang [Kaohsiung Medical University, Department of Medical Imaging and Radiological Sciences, College of Health Science (China); Kaohsiung Medical Centre, Department of Radiology, Chang Gung Memorial Hospital (China); Hsieh, Tsyh-Jyi [Kaohsiung Medical University Hospital, Department of Medical Imaging (China); Kaohsiung Medical University, Department of Radiology, Faculty of Medicine, College of Medicine (China); Kaohsiung Municipal Ta-Tung Hospital, Department of Medical Imaging (China)

    2010-06-15

    To prospectively investigate and detect early cerebral metabolic changes in patients with end-stage renal disease (ESRD) by using in vivo proton MR spectroscopy (MRS). We enrolled 32 patients with ESRD and 32 healthy controls between the ages of 26 and 50 years. Short echo time single-voxel proton MRS was acquired from volumes of interest (VOIs) located in the frontal grey and white matter, temporal white matter and basal ganglia. The choline/phospatidylcholine (Cho), myo-inositol (mI), N-acetylaspartate (NAA) and total creatine (tCr) peaks were measured and the metabolic ratios with respect to tCr were calculated. In the ESRD group, significant elevations of the Cho/tCr and mI/tCr ratios were observed for the frontal grey matter, frontal white matter, temporal white matter and basal ganglia as compared with controls. There was no significant difference in the NAA/tCr ratios at all VOIs between the ESRD patients and the healthy controls. Proton MRS is a useful and non-invasive imaging tool for the detection of early cerebral metabolic changes in neurologically presymptomatic ESRD patients. (orig.)

  4. Utilization of glutamate/creatine ratios for proton spectroscopic diagnosis of meningiomas

    International Nuclear Information System (INIS)

    Hazany, Saman; Hesselink, John R.; Healy, John F.; Imbesi, Steven G.

    2007-01-01

    Our purpose was to determine the potential of metabolites other than alanine to diagnose intracranial meningiomas on proton magnetic resonance spectroscopy (MRS). Using a 1.5-T MR system the lesions were initially identified on FLAIR, and T1- and T2-weighted images. Employing standard point-resolved spectroscopy (PRESS) for single voxel proton MRS (TR 1500 ms, TE 30 ms, 128 acquisitions, voxel size 2 x 2 x 2 cm, acquisition time 3.12 min), MR spectra were obtained from 5 patients with meningiomas, from 20 with other intracranial lesions, and from 4 normal controls. Peak heights of nine resonances, including lipid, lactate, alanine, NAA (N-acetylaspartate), β/γ-Glx (glutamate + glutamine), creatine, choline, myo-inositol, and α-Glx/glutathione, were measured in all spectra. The relative quantity of each metabolite was measured as the ratio of its peak height to the peak height of creatine. Relative quantities of α-Glx/glutathione, β/γ-Glx, and total Glx/glutathione were significantly elevated in meningiomas compared to the 20 other intracranial lesions and the normal control brains. Alanine was found in four of five meningiomas, but lactate partially masked the alanine in three meningiomas. None of the other lesions or control brains showed an alanine peak. The one meningioma with no alanine and the three others with lactate had elevated Glx. While alanine is a relatively unique marker for meningioma, our results support the hypothesis that the combination of glutamate/creatine ratios and alanine on proton MRS is more specific and reliable for the diagnosis of meningiomas than alanine alone. (orig.)

  5. Utilization of glutamate/creatine ratios for proton spectroscopic diagnosis of meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Hazany, Saman [University of California, School of Medicine, San Diego, CA (United States); Hesselink, John R.; Healy, John F.; Imbesi, Steven G. [UCSD Medical Center, Department of Radiology, San Diego, CA (United States)

    2007-02-15

    Our purpose was to determine the potential of metabolites other than alanine to diagnose intracranial meningiomas on proton magnetic resonance spectroscopy (MRS). Using a 1.5-T MR system the lesions were initially identified on FLAIR, and T1- and T2-weighted images. Employing standard point-resolved spectroscopy (PRESS) for single voxel proton MRS (TR 1500 ms, TE 30 ms, 128 acquisitions, voxel size 2 x 2 x 2 cm, acquisition time 3.12 min), MR spectra were obtained from 5 patients with meningiomas, from 20 with other intracranial lesions, and from 4 normal controls. Peak heights of nine resonances, including lipid, lactate, alanine, NAA (N-acetylaspartate), {beta}/{gamma}-Glx (glutamate + glutamine), creatine, choline, myo-inositol, and {alpha}-Glx/glutathione, were measured in all spectra. The relative quantity of each metabolite was measured as the ratio of its peak height to the peak height of creatine. Relative quantities of {alpha}-Glx/glutathione, {beta}/{gamma}-Glx, and total Glx/glutathione were significantly elevated in meningiomas compared to the 20 other intracranial lesions and the normal control brains. Alanine was found in four of five meningiomas, but lactate partially masked the alanine in three meningiomas. None of the other lesions or control brains showed an alanine peak. The one meningioma with no alanine and the three others with lactate had elevated Glx. While alanine is a relatively unique marker for meningioma, our results support the hypothesis that the combination of glutamate/creatine ratios and alanine on proton MRS is more specific and reliable for the diagnosis of meningiomas than alanine alone. (orig.)

  6. Quantitative mapping of total choline in healthy human breast using proton echo planar spectroscopic imaging (PEPSI) at 3 Tesla.

    Science.gov (United States)

    Zhao, Chenguang; Bolan, Patrick J; Royce, Melanie; Lakkadi, Navneeth; Eberhardt, Steven; Sillerud, Laurel; Lee, Sang-Joon; Posse, Stefan

    2012-11-01

    To quantitatively measure tCho levels in healthy breasts using Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI). The two-dimensional mapping of tCho at 3 Tesla across an entire breast slice using PEPSI and a hybrid spectral quantification method based on LCModel fitting and integration of tCho using the fitted spectrum were developed. This method was validated in 19 healthy females and compared with single voxel spectroscopy (SVS) and with PRESS prelocalized conventional Magnetic Resonance Spectroscopic Imaging (MRSI) using identical voxel size (8 cc) and similar scan times (∼7 min). A tCho peak with a signal to noise ratio larger than 2 was detected in 10 subjects using both PEPSI and SVS. The average tCho concentration in these subjects was 0.45 ± 0.2 mmol/kg using PEPSI and 0.48 ± 0.3 mmol/kg using SVS. Comparable results were obtained in two subjects using conventional MRSI. High lipid content in the spectra of nine tCho negative subjects was associated with spectral line broadening of more than 26 Hz, which made tCho detection impossible. Conventional MRSI with PRESS prelocalization in glandular tissue in two of these subjects yielded tCho concentrations comparable to PEPSI. The detection sensitivity of PEPSI is comparable to SVS and conventional PRESS-MRSI. PEPSI can be potentially used in the evaluation of tCho in breast cancer. A tCho threshold concentration value of ∼0.7 mmol/kg might be used to differentiate between cancerous and healthy (or benign) breast tissues based on this work and previous studies. Copyright © 2012 Wiley Periodicals, Inc.

  7. Accelerated proton echo planar spectroscopic imaging (PEPSI) using GRAPPA with a 32-channel phased-array coil.

    Science.gov (United States)

    Tsai, Shang-Yueh; Otazo, Ricardo; Posse, Stefan; Lin, Yi-Ru; Chung, Hsiao-Wen; Wald, Lawrence L; Wiggins, Graham C; Lin, Fa-Hsuan

    2008-05-01

    Parallel imaging has been demonstrated to reduce the encoding time of MR spectroscopic imaging (MRSI). Here we investigate up to 5-fold acceleration of 2D proton echo planar spectroscopic imaging (PEPSI) at 3T using generalized autocalibrating partial parallel acquisition (GRAPPA) with a 32-channel coil array, 1.5 cm(3) voxel size, TR/TE of 15/2000 ms, and 2.1 Hz spectral resolution. Compared to an 8-channel array, the smaller RF coil elements in this 32-channel array provided a 3.1-fold and 2.8-fold increase in signal-to-noise ratio (SNR) in the peripheral region and the central region, respectively, and more spatial modulated information. Comparison of sensitivity-encoding (SENSE) and GRAPPA reconstruction using an 8-channel array showed that both methods yielded similar quantitative metabolite measures (P > 0.1). Concentration values of N-acetyl-aspartate (NAA), total creatine (tCr), choline (Cho), myo-inositol (mI), and the sum of glutamate and glutamine (Glx) for both methods were consistent with previous studies. Using the 32-channel array coil the mean Cramer-Rao lower bounds (CRLB) were less than 8% for NAA, tCr, and Cho and less than 15% for mI and Glx at 2-fold acceleration. At 4-fold acceleration the mean CRLB for NAA, tCr, and Cho was less than 11%. In conclusion, the use of a 32-channel coil array and GRAPPA reconstruction can significantly reduce the measurement time for mapping brain metabolites. (c) 2008 Wiley-Liss, Inc.

  8. Proton spectroscopic imaging of polyacrylamide gel dosimeters for absolute radiation dosimetry

    International Nuclear Information System (INIS)

    Murphy, P.S.; Schwarz, A.J.; Leach, M.O.

    2000-01-01

    Proton spectroscopy has been evaluated as a method for quantifying radiation induced changes in polyacrylamide gel dosimeters. A calibration was first performed using BANG-type gel samples receiving uniform doses of 6 MV photons from 0 to 9 Gy in 1 Gy intervals. The peak integral of the acrylic protons belonging to acrylamide and methylenebisacrylamide normalized to the water signal was plotted against absorbed dose. Response was approximately linear within the range 0-7 Gy. A large gel phantom irradiated with three, coplanar 3x3cm square fields to 5.74 Gy at isocentre was then imaged with an echo-filter technique to map the distribution of monomers directly. The image, normalized to the water signal, was converted into an absolute dose map. At the isocentre the measured dose was 5.69 Gy (SD = 0.09) which was in good agreement with the planned dose. The measured dose distribution elsewhere in the sample shows greater errors. A T 2 derived dose map demonstrated a better relative distribution but gave an overestimate of the dose at isocentre of 18%. The data indicate that MR measurements of monomer concentration can complement T 2 -based measurements and can be used to verify absolute dose. Compared with the more usual T 2 measurements for assessing gel polymerization, monomer concentration analysis is less sensitive to parameters such as gel pH and temperature, which can cause ambiguous relaxation time measurements and erroneous absolute dose calculations. (author)

  9. 7 Tesla proton magnetic resonance spectroscopic imaging in adult X-linked adrenoleukodystrophy

    Science.gov (United States)

    Ratai, Eva; Kok, Trina; Wiggins, Christopher; Wiggins, Graham; Grant, Ellen; Gagoski, Borjan; O'Neill, Gilmore; Adalsteinsson, Elfar; Eichler, Florian

    2010-01-01

    Background Adult patients with X-linked adrenoleukodystrophy (X-ALD) remain at risk for progressive neurological deterioration. Phenotypes vary in their pathology, ranging from axonal degeneration to inflammatory demyelination. The severity of symptoms is poorly explained by conventional imaging. Objective To test the hypothesis that neurochemistry in normal appearing brain differs among adult phenotypes of X-ALD, and that neurochemical changes correlate with the severity of symptoms. Patients and Methods Using a 7 Tesla scanner we performed structural and proton MRSI in 13 adult patients with X-ALD, including 4 patients with adult cerebral ALD (ACALD), 5 with adrenomyeloneuropathy (AMN) and 4 female heterozygotes. Studies were also performed in nine healthy controls. Results Among adult X-ALD phenotypes, MI/Cr was 46% higher and Cho/Cr 21% higher in normal appearing white matter of ACALD compared to AMN (p Tesla proton MRSI reveals differences in the neurochemistry of ACALD but is unable to distinguish AMN from female heterozygotes. MI/Cr correlates with the severity of the symptoms and may be a meaningful biomarker in adult X-ALD. PMID:19001168

  10. Helicity non-conserving form factor of the proton

    Energy Technology Data Exchange (ETDEWEB)

    Voutier, E.; Furget, C.; Knox, S. [Universite Joseph Fourier, Grenoble (France)] [and others

    1994-04-01

    The study of the hadron structure in the high Q{sup 2} range contributes to the understanding of the mechanisms responsible for the confinement of quarks and gluons. Among the numerous experimental candidates sensitive to these mechanisms, the helicity non-conserving form factor of the proton is a privileged observable since it is controlled by non-perturbative effects. The authors investigate here the feasibility of high Q{sup 2} measurements of this form factor by means of the recoil polarization method in the context of the CEBAF 8 GeV facility. For that purpose, they discuss the development of a high energy proton polarimeter, based on the H({rvec p},pp) elastic scattering, to be placed at the focal plane of a new hadron spectrometer. It is shown that this experimental method significantly improves the knowledge of the helicity non-conserving form factor of the proton up to 10 GeV{sup 2}/c{sup 2}.

  11. The role of gray and white matter segmentation in quantitative proton MR spectroscopic imaging.

    Science.gov (United States)

    Tal, Assaf; Kirov, Ivan I; Grossman, Robert I; Gonen, Oded

    2012-12-01

    Since the brain's gray matter (GM) and white matter (WM) metabolite concentrations differ, their partial volumes can vary the voxel's ¹H MR spectroscopy (¹H-MRS) signal, reducing sensitivity to changes. While single-voxel ¹H-MRS cannot differentiate between WM and GM signals, partial volume correction is feasible by MR spectroscopic imaging (MRSI) using segmentation of the MRI acquired for VOI placement. To determine the magnitude of this effect on metabolic quantification, we segmented a 1-mm³ resolution MRI into GM, WM and CSF masks that were co-registered with the MRSI grid to yield their partial volumes in approximately every 1 cm³ spectroscopic voxel. Each voxel then provided one equation with two unknowns: its i- metabolite's GM and WM concentrations C(i) (GM) , C(i) (WM) . With the voxels' GM and WM volumes as independent coefficients, the over-determined system of equations was solved for the global averaged C(i) (GM) and C(i) (WM) . Trading off local concentration differences offers three advantages: (i) higher sensitivity due to combined data from many voxels; (ii) improved specificity to WM versus GM changes; and (iii) reduced susceptibility to partial volume effects. These improvements made no additional demands on the protocol, measurement time or hardware. Applying this approach to 18 volunteered 3D MRSI sets of 480 voxels each yielded N-acetylaspartate, creatine, choline and myo-inositol C(i) (GM) concentrations of 8.5 ± 0.7, 6.9 ± 0.6, 1.2 ± 0.2, 5.3 ± 0.6 mM, respectively, and C(i) (WM) concentrations of 7.7 ± 0.6, 4.9 ± 0.5, 1.4 ± 0.1 and 4.4 ± 0.6mM, respectively. We showed that unaccounted voxel WM or GM partial volume can vary absolute quantification by 5-10% (more for ratios), which can often double the sample size required to establish statistical significance. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Fast mapping of the T2 relaxation time of cerebral metabolites using proton echo-planar spectroscopic imaging (PEPSI).

    Science.gov (United States)

    Tsai, Shang-Yueh; Posse, Stefan; Lin, Yi-Ru; Ko, Cheng-Wen; Otazo, Ricardo; Chung, Hsiao-Wen; Lin, Fa-Hsuan

    2007-05-01

    Metabolite T2 is necessary for accurate quantification of the absolute concentration of metabolites using long-echo-time (TE) acquisition schemes. However, lengthy data acquisition times pose a major challenge to mapping metabolite T2. In this study we used proton echo-planar spectroscopic imaging (PEPSI) at 3T to obtain fast T2 maps of three major cerebral metabolites: N-acetyl-aspartate (NAA), creatine (Cre), and choline (Cho). We showed that PEPSI spectra matched T2 values obtained using single-voxel spectroscopy (SVS). Data acquisition for 2D metabolite maps with a voxel volume of 0.95 ml (32 x 32 image matrix) can be completed in 25 min using five TEs and eight averages. A sufficient spectral signal-to-noise ratio (SNR) for T2 estimation was validated by high Pearson's correlation coefficients between logarithmic MR signals and TEs (R2 = 0.98, 0.97, and 0.95 for NAA, Cre, and Cho, respectively). In agreement with previous studies, we found that the T2 values of NAA, but not Cre and Cho, were significantly different between gray matter (GM) and white matter (WM; P PEPSI and SVS scans was less than 9%. Consistent spatial distributions of T2 were found in six healthy subjects, and disagreement among subjects was less than 10%. In summary, the PEPSI technique is a robust method to obtain fast mapping of metabolite T2. (c) 2007 Wiley-Liss, Inc.

  13. Proton MR spectroscopic features according to change of hepatic parenchymal iron content after SPIO injection

    International Nuclear Information System (INIS)

    Suh, Chang Hae; Cho, Soon Gu; Lim, Myung Kwan; Kim, Mi Young; Lee, Kyung Hee; Kim, Hyung Jin

    2001-01-01

    To determine the effect of iron on proton MR spectra ( 1 H-MRS) by evaluating changes in 1 H-MRS of the liver according to changes in hepatic parenchymal iron content. We evaluated serial changes in 1 H-MRS of the liver after intravenous infusion of SPIO in 40 rabbits. These were divided into eight groups of five, and in each group, respectively, 1 H-MRS and T2WI MR images were acquired prior to SPIO infusion, just after infusion, and at 15 minutes and 1, 2, 4, 24 and 96 hours after infusion. MR spectra were evaluated with particular attention ot the curve pattern observed at specific times after the infusion of SPIO, and the results were correlated with the signal intensity observed on T2WI images and the histologic giade of iron content of samples of resected liver parenchyma. As observed on T2WI, the mean signal intensity of rabbit liver in tis pre-SPIO infusion state, just after infusion, at 15 minutes, and at 1, 2, 4 and 96 hours after SPIO infusion was 121.3±15.5, 41.5±12.7, 30.3±7.9, 31.3±3.5, 33.6±9.4, 45.5±10.9, 80.3±15.7 and 110.4±22.9, respectively (p<0.05). Mean standard deviation of the ratio of the area of the peak (3.9-4.1 ppm)/lipid peak (1.3 ppm) peak at each of the above times except for the pre-infusion state was 1.10±0.13, 1.86±0.21, 1.80±0.30, 1.76±0.27, 1.74±0.20, 0.07±0.02 and 0.03±0.01, respectively (p<0.05). The hepatic parenchymal iron content increased rapidly from just after SPIO infusion, reaching its maximal level (as revealed by histologic specimens) at 15 minutes, sustaining this for up to 4 hours, and then decreasing gradually over periods of 24 and 96 hours. These results show that serial changes in patterns of MR spectra and the signal intensity seen on T2WI images correlate closely with changes in hepatic parenchymal iron content. Elevated hepatic parenchymal iron content leads to increases in the relative intensity of unknown peaks at around 4.0 ppm and decreases in the relative intensity of lipid peaks

  14. Combining parallel detection of proton echo planar spectroscopic imaging (PEPSI) measurements with a data-consistency constraint improves SNR.

    Science.gov (United States)

    Tsai, Shang-Yueh; Hsu, Yi-Cheng; Chu, Ying-Hua; Kuo, Wen-Jui; Lin, Fa-Hsuan

    2015-12-01

    One major challenge of MRSI is the poor signal-to-noise ratio (SNR), which can be improved by using a surface coil array. Here we propose to exploit the spatial sensitivity of different channels of a coil array to enforce the k-space data consistency (DC) in order to suppress noise and consequently to improve MRSI SNR. MRSI data were collected using a proton echo planar spectroscopic imaging (PEPSI) sequence at 3 T using a 32-channel coil array and were averaged with one, two and eight measurements (avg-1, avg-2 and avg-8). The DC constraint was applied using a regularization parameter λ of 1, 2, 3, 5 or 10. Metabolite concentrations were quantified using LCModel. Our results show that the suppression of noise by applying the DC constraint to PEPSI reconstruction yields up to 32% and 27% SNR gain for avg-1 and avg-2 data with λ = 5, respectively. According to the reported Cramer-Rao lower bounds, the improvement in metabolic fitting was significant (p < 0.01) when the DC constraint was applied with λ ≥ 2. Using the DC constraint with λ = 3 or 5 can minimize both root-mean-square errors and spatial variation for all subjects using the avg-8 data set as reference values. Our results suggest that MRSI reconstructed with a DC constraint can save around 70% of scanning time to obtain images and spectra with similar SNRs using λ = 5. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Charge symmetry violation in the electromagnetic form factors of the proton

    International Nuclear Information System (INIS)

    Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M.; Pleiter, D.; Stueben, H.

    2015-03-01

    Experimental tests of QCD through its predictions for the strange-quark content of the proton have been drastically restricted by our lack of knowledge of the violation of charge symmetry (CSV). We find unexpectedly tiny CSV in the proton's electromagnetic form factors by performing the first extraction of these quantities based on an analysis of lattice QCD data. The resulting values are an order of magnitude smaller than current bounds on proton strangeness from parity violating electron-proton scattering experiments. This result paves the way for a new generation of experimental measurements of the proton's strange form factors to challenge the predictions of QCD.

  16. Electric form factor of the proton through recoil polarization

    International Nuclear Information System (INIS)

    Punjabi, V.

    2000-01-01

    The electromagnetic form factors of the nucleon, G E and G M , describe the charge and current distribution inside the nucleon and thus are quite intimately related to its structure. Jefferson Lab experiment 93-027 measured P l and Pt, the longitudinal and transverse recoil proton polarization, respectively, for the 1 H(e-vector,e'p-vector) reaction in the four-momentum transfer squared range of 0.5 to 3.5 GeV 2 , using the Hall A facility with two high resolution spectrometers and a Focal Plane Polarimeter. The ratio G Ep /G Mp is directly proportional to the ratio P t /P l . These data have unprecedented precision, and show for the first time that the Q 2 dependence of G Ep and G Mp is very different. (author)

  17. Multimodality imaging using proton magnetic resonance spectroscopic imaging and 18F-fluorodeoxyglucose-positron emission tomography in local prostate cancer

    Science.gov (United States)

    Shukla-Dave, Amita; Wassberg, Cecilia; Pucar, Darko; Schöder, Heiko; Goldman, Debra A; Mazaheri, Yousef; Reuter, Victor E; Eastham, James; Scardino, Peter T; Hricak, Hedvig

    2017-01-01

    AIM To assess the relationship using multimodality imaging between intermediary citrate/choline metabolism as seen on proton magnetic resonance spectroscopic imaging (1H-MRSI) and glycolysis as observed on 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) in prostate cancer (PCa) patients. METHODS The study included 22 patients with local PCa who were referred for endorectal magnetic resonance imaging/1H-MRSI (April 2002 to July 2007) and 18F-FDG-PET/CT and then underwent prostatectomy as primary or salvage treatment. Whole-mount step-section pathology was used as the standard of reference. We assessed the relationships between PET parameters [standardized uptake value (SUVmax and SUVmean)] and MRSI parameters [choline + creatine/citrate (CC/Cmax and CC/Cmean) and total number of suspicious voxels] using spearman’s rank correlation, and the relationships of PET and 1H-MRSI index lesion parameters to surgical Gleason score. RESULTS Abnormal intermediary metabolism on 1H-MRSI was present in 21/22 patients, while abnormal glycolysis on 18F-FDG-PET/CT was detected in only 3/22 patients. Specifically, index tumor localization rates were 0.95 (95%CI: 0.77-1.00) for 1H-MRSI and 0.14 (95%CI: 0.03-0.35) for 18F-FDG-PET/CT. Spearman rank correlations indicated little relationship (ρ = -0.36-0.28) between 1H-MRSI parameters and 18F-FDG-PET/CT parameters. Both the total number of suspicious voxels (ρ = 0.55, P = 0.0099) and the SUVmax (ρ = 0.46, P = 0.0366) correlated weakly with the Gleason score. No significant relationship was found between the CC/Cmax, CC/Cmean or SUVmean and the Gleason score (P = 0.15-0.79). CONCLUSION The concentration of intermediary metabolites detected by 1H MRSI and glycolytic flux measured 18F-FDG PET show little correlation. Furthermore, only few tumors were FDG avid on PET, possibly because increased glycolysis represents a late and rather ominous event in the progression of PCa. PMID:28396727

  18. High duty factor plasma generator for CERN's Superconducting Proton Linac.

    Science.gov (United States)

    Lettry, J; Kronberger, M; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, J-M; Küchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D

    2010-02-01

    CERN's Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN's PS-Booster. Its ion source is a noncesiated rf driven H(-) volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H(-) during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the Large Hadron Collider. It consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H(-) during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H(-) plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the required heat dissipation and maintains the original functionality. Materials with higher thermal conductivity are selected and, wherever possible, thermal barriers resulting from low pressure contacts are removed by brazing metals on insulators. The AlN plasma chamber cooling circuit is inspired from the approach chosen for the cesiated high duty factor rf H(-) source operating at SNS.

  19. Analytical expressions for two-nucleon transfer spectroscopic factors in sdg interacting boson model

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1991-01-01

    Analytical expressions for two-nucleon (l = 0,2 and 4) transfer spectroscopic factors are derived in the SU sdg (3) limit of the sdg interacting boson model. In addition, large N (boson number) limit expressions for the ratio of summed l = 0 transfer strength to excited 0 + states to that of ground state are derived in all the symmetry limits of the sdg model. Some comparisons with data are made. (author)

  20. Analytical expressions for two-nucleon transfer spectroscopic factors in sdg interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Devi, Y.D.; Kota, V.K.B. (Physical Research Lab., Ahmedabad (India))

    1991-11-01

    Analytical expressions for two-nucleon (l = 0,2 and 4) transfer spectroscopic factors are derived in the SU{sub sdg}(3) limit of the sdg interacting boson model. In addition, large N (boson number) limit expressions for the ratio of summed l = 0 transfer strength to excited 0{sup +} states to that of ground state are derived in all the symmetry limits of the sdg model. Some comparisons with data are made. (author).

  1. Proton Nuclear Magnetic Resonance-Spectroscopic Discrimination of Wines Reflects Genetic Homology of Several Different Grape (V. vinifera L.) Cultivars

    Science.gov (United States)

    Zhu, Yong; Wen, Wen; Zhang, Fengmin; Hardie, Jim W.

    2015-01-01

    Background and Aims Proton nuclear magnetic resonance spectroscopy coupled multivariate analysis (1H NMR-PCA/PLS-DA) is an important tool for the discrimination of wine products. Although 1H NMR has been shown to discriminate wines of different cultivars, a grape genetic component of the discrimination has been inferred only from discrimination of cultivars of undefined genetic homology and in the presence of many confounding environmental factors. We aimed to confirm the influence of grape genotypes in the absence of those factors. Methods and Results We applied 1H NMR-PCA/PLS-DA and hierarchical cluster analysis (HCA) to wines from five, variously genetically-related grapevine (V. vinifera) cultivars; all grown similarly on the same site and vinified similarly. We also compared the semi-quantitative profiles of the discriminant metabolites of each cultivar with previously reported chemical analyses. The cultivars were clearly distinguishable and there was a general correlation between their grouping and their genetic homology as revealed by recent genomic studies. Between cultivars, the relative amounts of several of the cultivar-related discriminant metabolites conformed closely with reported chemical analyses. Conclusions Differences in grape-derived metabolites associated with genetic differences alone are a major source of 1H NMR-based discrimination of wines and 1H NMR has the capacity to discriminate between very closely related cultivars. Significance of the Study The study confirms that genetic variation among grape cultivars alone can account for the discrimination of wine by 1H NMR-PCA/PLS and indicates that 1H NMR spectra of wine of single grape cultivars may in future be used in tandem with hierarchical cluster analysis to elucidate genetic lineages and metabolomic relations of grapevine cultivars. In the absence of genetic information, for example, where predecessor varieties are no longer extant, this may be a particularly useful approach. PMID

  2. In vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI) : [3,4-(CH2)-C-13] glutamate/glutamine tomography in rat brain

    NARCIS (Netherlands)

    Hyder, F; Renken, R; Rothman, DL

    1999-01-01

    A method for in vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI) is described. This method is composed of an echo-planar based acquisition implemented with C-13-H-1 J editing spectroscopy and is intended for high temporal and spatial resolution in vivo

  3. Proton MR spectroscopic imaging of basal ganglia and thalamus in neurofibromatosis type 1: correlation with T2 hyperintensities

    International Nuclear Information System (INIS)

    Barbier, Charlotte; Barantin, Laurent; Chabernaud, Camille; Bertrand, Philippe; Sembely, Catherine; Sirinelli, Dominique; Castelnau, Pierre; Cottier, Jean-Philippe

    2011-01-01

    Neurofibromatosis type 1 (NF1) is frequently associated with hyperintense lesions on T2-weighted images called ''unidentified bright objects'' (UBO). To better characterize the functional significance of UBO, we investigate the basal ganglia and thalamus using spectroscopic imaging in children with NF1 and compare the results to anomalies observed on T2-weighted images. Magnetic resonance (MR) data of 25 children with NF1 were analyzed. On the basis of T2-weighted images analysis, two groups were identified: one with normal MR imaging (UBO- group; n = 10) and one with UBO (UBO+ group; n = 15). Within the UBO+ group, a subpopulation of patients (n = 5) only had lesions of the basal ganglia. We analyzed herein seven regions of interest (ROIs) for each side: caudate nucleus, capsulo-lenticular region, lateral and posterior thalamus, thalamus (lateral and posterior voxels combined), putamen, and striatum. For each ROI, a spectrum of the metabolites and their ratio was obtained. Patients with abnormalities on T2-weighted images had significantly lower NAA/Cr, NAA/Cho, and NAA/mI ratios in the lateral right thalamus compared with patients with normal T2. These abnormal spectroscopic findings were not observed in capsulo-lenticular regions that had UBO but in the thalamus region that was devoid of UBO. Multivoxel spectroscopic imaging using short-time echo showed spectroscopic abnormalities in the right thalamus of NF1 patients harboring UBO, which were mainly located in the basal ganglia. This finding could reflect the anatomical and functional interactions of these regions. (orig.)

  4. N-acetylated metabolites in urine: proton nuclear magnetic resonance spectroscopic study on patients with inborn errors of metabolism.

    NARCIS (Netherlands)

    Engelke, U.F.H.; Liebrand-van Sambeek, M.L.F.; Jong, J.G.N. de; Leroy, J.G.; Morava, E.; Smeitink, J.A.M.; Wevers, R.A.

    2004-01-01

    BACKGROUND: There is no comprehensive analytical technique to analyze N-acetylated metabolites in urine. Many of these compounds are involved in inborn errors of metabolism. In the present study, we examined the potential of proton nuclear magnetic resonance ((1)H-NMR) spectroscopy as a tool to

  5. Single-Spin Polarization Effects and the Determination of Timelike Proton Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S

    2003-10-24

    We show that measurements of the proton's polarization in e{sup +}e{sup -} {yields} p{bar p} strongly discriminate between analytic forms of models which fit the proton form factors in the spacelike region. In particular, the single-spin asymmetry normal to the scattering plane measures the relative phase difference between the timelike G{sub E} and G{sub M} form factors. The expected proton polarization in the timelike region is large, of order of several tens of percent.

  6. Test of the combined method for extracting spectroscopic factors in N =50 nuclei

    Science.gov (United States)

    Walter, David; Cizewski, J. A.; Baugher, T.; Ratkiewicz, A.; Pain, S. D.; Nunes, F. M.; Ahn, S.; Cerizza, G.; Jones, K. L.; Manning, B.; Thornsberry, C.

    2017-09-01

    The single-particle properties of nuclei near shell closures and r-process waiting points can be observed using single-nucleon transfer reactions with beams of rare isotopes. However, approximations have to be made about the final bound state to extract spectroscopic information. An approach to constrain the bound state potential has been proposed by Mukhamedzhanov and Nunes. At peripheral reaction energies ( 5 MeV/u), the ANC for the nucleus can be extracted, and is combined with the same reaction at higher energies ( 40 MeV/u). These combined measurements can constrain the shape of the bound state potential, and the spectroscopic factor can be reliably extracted. To test this method, the 86Kr(d , p) reaction was performed in inverse kinematics with a 35 MeV/u beam at the National Superconducting Cyclotron Laboratory (NSCL) with the ORRUBA and SIDAR arrays of silicon strip detectors coupled to the S800 spectrometer. Successful results supported the measurement of a radioactive ion beam of 84Se at 45 MeV/u at the NSCL to be measured at the end of 2017. Results from the 86Kr(d , p) measurement will be presented as well as preparations for the upcoming 84Se(d , p) measurement. This work is supported in part by the National Science Foundation and U.S. D.O.E.

  7. In vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI): [3,4-(13)CH(2)]glutamate/glutamine tomography in rat brain.

    Science.gov (United States)

    Hyder, F; Renken, R; Rothman, D L

    1999-12-01

    A method for in vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI) is described. This method is composed of an echo-planar based acquisition implemented with (13)C-(1)H J editing spectroscopy and is intended for high temporal and spatial resolution in vivo spectroscopic imaging of (13)C turnover, from D-[1,6-(13)C]glucose to glutamate and glutamine, in the brain. At a static magnetic field strength of 7 T, both in vitro and in vivo chemical shift imaging data are presented with a spatial resolution of 8 microL (i.e., 1.25 x 1.25 x 5.00 mm(3)) and a maximum spectral bandwidth of 5.2 ppm in (1)H. Chemical shift imaging data acquired every 11 minutes allowed detection of regional [4-(13)CH(2)]glutamate turnover in rat brain. The [4-(13)CH(2)]glutamate turnover curves, which can be converted to tricarboxylic acid cycle fluxes, showed that the tricarboxylic acid cycle flux (V(TCA)) in pure gray and white matter can range from 1.2 +/- 0.2 to 0.5 +/- 0.1 micromol/g/min, respectively, for morphine-anesthetized rats. The mean cortical V(TCA) from 32 voxels of 1.0 +/- 0.3 micromol/g/min (N = 3) is in excellent agreement with previous localized measurements that have demonstrated that V(TCA) can range from 0.9-1.1 micromol/g/min under identical anesthetized conditions. Magn Reson Med 42:997-1003, 1999. Copyright 1999 Wiley-Liss, Inc.

  8. Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas

    International Nuclear Information System (INIS)

    Server, Andres; Kulle, Bettina; Gadmar, Oystein B.; Josefsen, Roger; Kumar, Theresa; Nakstad, Per H.

    2011-01-01

    Purpose: Tumor grading is very important both in treatment decision and evaluation of prognosis. While tissue samples are obtained as part of most therapeutic approaches, factors that may result in inaccurate grading due to sampling error (namely, heterogeneity in tissue sampling, as well as tumor-grade heterogeneity within the same tumor specimen), have led to a desire to use imaging better to ascertain tumor grade. The purpose in our study was to evaluate the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), area under the curve (AUC), and accuracy of diffusion-weighted MR imaging (DWI), proton MR spectroscopic imaging (MRSI) or both in grading primary cerebral gliomas. Materials and methods: We performed conventional MR imaging (MR), DWI, and MRSI in 74 patients with newly diagnosed brain gliomas: 59 patients had histologically verified high-grade gliomas: 37 glioblastomas multiform (GBM) and 22 anaplastic astrocytomas (AA), and 15 patients had low-grade gliomas. Apparent diffusion coefficient (ADC) values of tumor and peritumoral edema, and ADC ratios (ADC in tumor or peritumoral edema to ADC of contralateral white matter, as well as ADC in tumor to ADC in peritumoral edema) were determined from three regions of interest. The average of the mean, maximum, and minimum for ADC variables was calculated for each patient. The metabolite ratios of Cho/Cr and Cho/NAA at intermediate TE were assessed from spectral maps in the solid portion of tumor, peritumoral edema and contralateral normal-appearing white matter. Tumor grade determined with the two methods was then compared with that from histopathologic grading. Logistic regression and receiver operating characteristic (ROC) curve analysis were performed to determine optimum thresholds for tumor grading. Measures of diagnostic examination performance, such as sensitivity, specificity, PPV, NPV, AUC, and accuracy for identifying high-grade gliomas were also calculated

  9. Spectroscopic factors with coupled-cluster connecting ab initio nuclear structure to reactions

    International Nuclear Information System (INIS)

    Jensen, Oeyvind

    2011-02-01

    This thesis has two parts. Tools and theory are presented in the first part, and papers with specific applications to nuclear physics are collected in the second part. A synopsis of theoretical foundations and basic techniques for many body quantum physics is presented in the context of a computer implementation of Wick's theorem for the symbolic algebra system SymPy. A pedagogical introduction to the implemented Python module is presented, and non-trivial aspects of the implemented simplification algorithms are discussed. Computer aided manipulations of second quantization expressions relieves practitioners of laborious and error-prone hand calculations necessary for the derivation of programmable equations. Theoretical developments of the Coupled-Cluster method (CCM) at Singles- and-Doubles level (CCSD) for the calculation of spectroscopic factors (SF) and radial overlap functions are presented. Algebraic expressions are derived from novel diagram techniques. CCM is one of the most successful methods for accurate numerical quantum mechanical simulations of medium sized many-body systems studied within Chemistry and Nuclear Physics. The recently developed spherical formulation of CCM is presented and alternative coupling schemes of quantum mechanical angular momentum are discussed in the context of a computer implementation for Racah algebra with SymPy. A pedagogical introduction to this functionality is given and it is used to derive angular momentum coupled expressions for efficient calculation of the spectroscopic factor diagrams. The first research paper presents a calculation of spectroscopic factors with CCSD. Details of the calculation is presented and convergence properties, as well as the dependence on various model parameters are discussed. Interactions with different cut-offs are employed and the dependence of the SF on the interactions are studied. In the second paper we employ the angular momentum coupled SF expressions and the spherical formulation

  10. Feasibility studies of time-like proton electromagnetic form factors at PANDA-FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Dbeyssi, Alaa; Capozza, Luigi; Deiseroth, Malte; Froehlich, Bertold; Khaneft, Dmitry; Mora Espi, Maria Carmen; Noll, Oliver; Rodriguez Pineiro, David; Valente, Roserio; Zambrana, Manuel; Zimmermann, Iris [Helmholtz-Institut Mainz, Mainz (Germany); Maas, Frank [Helmholtz-Institut Mainz, Mainz (Germany); Institute of Nuclear Physics, Mainz (Germany); PRISMA Cluster of Excellence, Mainz (Germany); Marchand, Dominique; Tomasi-Gustafsson, Egle; Wang, Ying [Institut de Physique Nucleaire, Orsay (France); Collaboration: PANDA-Collaboration

    2015-07-01

    Electromagnetic form factors are fundamental quantities which describe the intrinsic electric and magnetic distributions of hadrons. Time-like proton form factors are experimentally accessible through the annihilation processes anti p+p <-> e{sup +}+e{sup -}. Their measurement in the time-like region had been limited by the low statistics achieved by the experiments. This contribution reports on the results of Monte Carlo simulations for future measurements of electromagnetic proton form factors at PANDA (antiProton ANnihilation at DArmstadt). In frame of the PANDARoot software, the statistical precision at which the proton form factors will be determined is estimated. The signal (anti p+p → e{sup +}+e{sup -}) identification and the suppression of the main background process (anti p+p → π{sup +}+π{sup -}) are studied. Different methods have been used and/or developed to generate and analyse the processes of interest. The results show that time-like proton form factors will be measured at PANDA with unprecedented statistical accuracy.

  11. Feasibility studies of time-like proton electromagnetic form factors at overlinePANDA at FAIR

    Science.gov (United States)

    Singh, B.; Erni, W.; Krusche, B.; Steinacher, M.; Walford, N.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Erlen, T.; Fink, M.; Heinsius, F.; Held, T.; Holtmann, T.; Jasper, S.; Keshk, I.; Koch, H.; Kopf, B.; Kuhlmann, M.; Kümmel, M.; Leiber, S.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Ball, M.; Beck, R.; Hammann, C.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Urban, M.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Patel, B.; Czyzycki, W.; Domagala, M.; Filo, G.; Jaworowski, J.; Krawczyk, M.; Lisowski, F.; Lisowski, E.; Michałek, M.; Poznański, P.; Płażek, J.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Pysz, K.; Schäfer, W.; Szczurek, A.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Biernat, J.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Pyszniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wronska, A.; Augustin, I.; Böhm, R.; Lehmann, I.; Nicmorus Marinescu, D.; Schmitt, L.; Varentsov, V.; Al-Turany, M.; Belias, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Gromliuk, A.; Gruber, L.; Karabowicz, R.; Kliemt, R.; Krebs, M.; Kurilla, U.; Lehmann, D.; Löchner, S.; Lühning, J.; Lynen, U.; Orth, H.; Patsyuk, M.; Peters, K.; Saito, T.; Schepers, G.; Schmidt, C. J.; Schwarz, C.; Schwiening, J.; Täschner, A.; Traxler, M.; Ugur, C.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V.; Alexeev, G.; Arefiev, V. A.; Astakhov, V.; Barabanov, M. Yu.; Batyunya, B. V.; Davydov, Y.; Dodokhov, V. Kh.; Efremov, A.; Fechtchenko, A.; Fedunov, A. G.; Galoyan, A.; Grigoryan, S.; Koshurnikov, E. K.; Lobanov, Y. Yu.; Lobanov, V. I.; Makarov, A. F.; Malinina, L. V.; Malyshev, V.; Olshevskiy, A. G.; Perevalova, E.; Piskun, A. A.; Pocheptsov, T.; Pontecorvo, G.; Rodionov, V.; Rogov, Y.; Salmin, R.; Samartsev, A.; Sapozhnikov, M. G.; Shabratova, G.; Skachkov, N. B.; Skachkova, A. N.; Strokovsky, E. A.; Suleimanov, M.; Teshev, R.; Tokmenin, V.; Uzhinsky, V.; Vodopianov, A.; Zaporozhets, S. A.; Zhuravlev, N. I.; Zorin, A. G.; Branford, D.; Glazier, D.; Watts, D.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savrie, M.; Akishina, V.; Kisel, I.; Kozlov, G.; Pugach, M.; Zyzak, M.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R. F.; Biguenko, K.; Brinkmann, K.; Di Pietro, V.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Etzelmüller, E.; Galuska, M.; Gutz, E.; Hahn, C.; Hayrapetyan, A.; Kesselkaul, M.; Kühn, W.; Kuske, T.; Lange, J. S.; Liang, Y.; Metag, V.; Nanova, M.; Nazarenko, S.; Novotny, R.; Quagli, T.; Reiter, S.; Rieke, J.; Rosenbaum, C.; Schmidt, M.; Schnell, R.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wagner, M. N.; Wasem, T.; Wohlfahrt, B.; Zaunick, H.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P. N.; Kulkarni, A.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P. J.; Lindemulder, M.; Loehner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; Tiemens, M.; van der Weele, J. C.; Veenstra, R.; Vejdani, S.; Dutta, K.; Kalita, K.; Kumar, A.; Roy, A.; Sohlbach, H.; Bai, M.; Bianchi, L.; Büscher, M.; Cao, L.; Cebulla, A.; Dosdall, R.; Gillitzer, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Lehrach, A.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Pütz, J.; Ritman, J.; Schadmand, S.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Zambanini, A.; Li, S.; Li, Z.; Sun, Z.; Xu, H.; Rigato, V.; Isaksson, L.; Achenbach, P.; Corell, O.; Denig, A.; Distler, M.; Hoek, M.; Karavdina, A.; Lauth, W.; Liu, Z.; Merkel, H.; Müller, U.; Pochodzalla, J.; Sanchez, S.; Schlimme, S.; Sfienti, C.; Thiel, M.; Ahmadi, H.; Ahmed, S.; Bleser, S.; Capozza, L.; Cardinali, M.; Dbeyssi, A.; Deiseroth, M.; Feldbauer, F.; Fritsch, M.; Fröhlich, B.; Jasinski, P.; Kang, D.; Khaneft, D.; Klasen, R.; Leithoff, H. H.; Lin, D.; Maas, F.; Maldaner, S.; Martínez, M.; Michel, M.; Mora Espí, M. C.; Morales Morales, C.; Motzko, C.; Nerling, F.; Noll, O.; Pflüger, S.; Pitka, A.; Rodríguez Piñeiro, D.; Sanchez-Lorente, A.; Steinen, M.; Valente, R.; Weber, T.; Zambrana, M.; Zimmermann, I.; Fedorov, A.; Korjik, M.; Missevitch, O.; Boukharov, A.; Malyshev, O.; Marishev, I.; Balanutsa, V.; Balanutsa, P.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Chandratre, V.; Datar, V.; Dutta, D.; Jha, V.; Kumawat, H.; Mohanty, A. K.; Parmar, A.; Roy, B.; Sonika, G.; Fritzsch, C.; Grieser, S.; Hergemöller, A.; Hetz, B.; Hüsken, N.; Khoukaz, A.; Wessels, J. P.; Khosonthongkee, K.; Kobdaj, C.; Limphirat, A.; Srisawad, P.; Yan, Y.; Barnyakov, M.; Barnyakov, A. Yu.; Beloborodov, K.; Blinov, A. E.; Blinov, V. E.; Bobrovnikov, V. S.; Kononov, S.; Kravchenko, E. A.; Kuyanov, I. A.; Martin, K.; Onuchin, A. P.; Serednyakov, S.; Sokolov, A.; Tikhonov, Y.; Atomssa, E.; Kunne, R.; Marchand, D.; Ramstein, B.; van de Wiele, J.; Wang, Y.; Boca, G.; Costanza, S.; Genova, P.; Montagna, P.; Rotondi, A.; Abramov, V.; Belikov, N.; Bukreeva, S.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Grishin, V.; Kachanov, V.; Kormilitsin, V.; Levin, A.; Melnik, Y.; Minaev, N.; Mochalov, V.; Morozov, D.; Nogach, L.; Poslavskiy, S.; Ryazantsev, A.; Ryzhikov, S.; Semenov, P.; Shein, I.; Uzunian, A.; Vasiliev, A.; Yakutin, A.; Tomasi-Gustafsson, E.; Roy, U.; Yabsley, B.; Belostotski, S.; Gavrilov, G.; Izotov, A.; Manaenkov, S.; Miklukho, O.; Veretennikov, D.; Zhdanov, A.; Makonyi, K.; Preston, M.; Tegner, P.; Wölbing, D.; Bäck, T.; Cederwall, B.; Rai, A. K.; Godre, S.; Calvo, D.; Coli, S.; De Remigis, P.; Filippi, A.; Giraudo, G.; Lusso, S.; Mazza, G.; Mignone, M.; Rivetti, A.; Wheadon, R.; Balestra, F.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Olave, J.; Amoroso, A.; Bussa, M. P.; Busso, L.; De Mori, F.; Destefanis, M.; Fava, L.; Ferrero, L.; Greco, M.; Hu, J.; Lavezzi, L.; Maggiora, M.; Maniscalco, G.; Marcello, S.; Sosio, S.; Spataro, S.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Calen, H.; Ikegami Andersson, W.; Johansson, T.; Kupsc, A.; Marciniewski, P.; Papenbrock, M.; Pettersson, J.; Schönning, K.; Wolke, M.; Galnander, B.; Diaz, J.; Pothodi Chackara, V.; Chlopik, A.; Kesik, G.; Melnychuk, D.; Slowinski, B.; Trzcinski, A.; Wojciechowski, M.; Wronka, S.; Zwieglinski, B.; Bühler, P.; Marton, J.; Steinschaden, D.; Suzuki, K.; Widmann, E.; Zmeskal, J.

    2016-10-01

    Simulation results for future measurements of electromagnetic proton form factors at overlinePANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel bar{p}p→ e+e- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. bar{p}p→ π+π-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.

  12. Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B. [Aligarth Muslim Univ., Aligarth (India). Physics Dept.; Erni, W.; Krusche, B. [Basel Univ. (Switzerland); Collaboration: The PANDA Collaboration; and others

    2016-10-15

    Simulation results for future measurements of electromagnetic proton form factors at PANDA(FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel anti pp → e{sup +}e{sup -} is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. anti pp → π{sup +}π{sup -}, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance. (orig.)

  13. Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    International Nuclear Information System (INIS)

    Singh, B.

    2016-01-01

    Simulation results for future measurements of electromagnetic proton form factors at PANDA(FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel anti pp → e + e - is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. anti pp → π + π - , is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance. (orig.)

  14. Reproducibility of proton MR spectroscopic imaging (PEPSI): comparison of dyslexic and normal-reading children and effects of treatment on brain lactate levels during language tasks.

    Science.gov (United States)

    Richards, Todd L; Berninger, Virginia W; Aylward, Elizabeth H; Richards, Anne L; Thomson, Jennifer B; Nagy, William E; Carlisle, Joanne F; Dager, Stephen R; Abbott, Robert D

    2002-01-01

    We repeated a proton echo-planar spectroscopic imaging (PEPSI) study to test the hypothesis that children with dyslexia and good readers differ in brain lactate activation during a phonologic judgment task before but not after instructional treatment. We measured PEPSI brain lactate activation (TR/TE, 4000/144; 1.5 T) at two points 1-2 months apart during two language tasks (phonologic and lexical) and a control task (passive listening). Dyslexic participants (n = 10) and control participants (n = 8) (boys and girls aged 9-12 years) were matched in age, verbal intelligence quotients, and valid PEPSI voxels. In contrast to patients in past studies who received combined treatment, our patients were randomly assigned to either phonologic or morphologic (meaning-based) intervention between the scanning sessions. Before treatment, the patients showed significantly greater lactate elevation in the left frontal regions (including the inferior frontal gyrus) during the phonologic task. Both patients and control subjects differed significantly in the right parietal and occipital regions during both tasks. After treatment, the two groups did not significantly differ in any brain region during either task, but individuals given morphologic treatment were significantly more likely to have reduced left frontal lactate activation during the phonologic task. The previous finding of greater left frontal lactate elevation in children with dyslexia during a phonologic judgment task was replicated, and brain activation changed as a result of treatment. However, the treatment effect was due to the morphologic component rather than the phonologic component.

  15. Proton MR spectroscopy in patients with pyogenic brain abscess: MR spectroscopic imaging versus single-voxel spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Shuo-Hsiu, E-mail: gerwuver@gmail.com [Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC (China); Chou, Ming-Chung, E-mail: mcchou@kmu.edu.tw [Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC (China); Ko, Cheng-Wen, E-mail: chengwen.ko@gmail.com [Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC (China); Hsu, Shu-Shong, E-mail: sshsu59@yahoo.com [Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC (China); Lin, Huey-Shyan, E-mail: sc035@fy.edu.tw [Program of Health-Business Administration, School of Nursing, Fooyin University, Kaohsiung, Taiwan, ROC (China); Fu, Jui-Hsun, E-mail: fujuihsun@gmail.com [Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC (China); Wang, Po-Chin, E-mail: hiscore6@gmail.com [Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC (China); School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC (China); Pan, Huay-Ben, E-mail: panhb@vghks.gov.tw [Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC (China); School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC (China); Lai, Ping-Hong, E-mail: pinghonglai@gmail.com [Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC (China); School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC (China)

    2013-08-15

    Purpose: Single-voxel spectroscopy (SVS) has been the gold standard technique to diagnose the pyogenic abssess. Two-dimensional magnetic resonance spectroscopic imaging (MRSI) is able to provide spatial distribution of metabolic concentration, and is potentially more suitable for differential diagnosis between abscess and necrotic tumors. Therefore, the purpose of this study was to evaluate the equivalence of MRSI and SVS in the detection of the metabolites in pyogenic brain abscesses. Materials and methods: Forty-two patients with pyogenic abscesses were studied by using both SVS and MRSI methods. Two neuroradiologists reviewed the MRS data independently. A κ value was calculated to express inter-reader agreement of the abscesses metabolites, and a correlation coefficient was calculated to show the similarity of two spectra. After consensus judgment of two readers, the binary value of metabolites of pyogenic abscesses (presence or absence) was compared between SVS and MRSI. Results: The consistency of spectral interpretation of the two readers was very good (κ ranged from 0.95 to 1), and the similarity of two spectra was also very high (cc = 0.9 ± 0.05). After consensus judgment of two readers, the sensitivities of MRSI ranged from 91% (acetate) to 100% (amino acids, succinate, lactate, lipid), and the specificities of MRSI were 100% for detecting all metabolites with SVS as reference. Conclusion: SVS and MRSI provide similar metabolites in the cavity of pyogenic brain abscess. With additional metabolic information of cavity wall and contralateral normal-appearing brain tissue, MRSI would be a more suitable technique to differentiate abscesses from necrotic tumors.

  16. Proton electromagnetic form factors: present status and future perspectives at PANDA

    Directory of Open Access Journals (Sweden)

    Tomasi-Gustafsson E.

    2015-01-01

    Full Text Available Data and models on electromagnetic proton form factors are reviewed, highlighting the contribution foreseen by the PANDA collaboration. Electromagnetic hadron form factors contain essential information on the internal structure of hadrons. Precise and surprising data have been obtained at electron accelerators, applying the polarization method in electron-proton elastic scattering. At electron-positron colliders, using initial state radiation, BABAR measured proton time-like form factors in a wide time-like kinematical region and the BESIII collaboration will measure very precisely proton and neutron form factors in the threshold region. In the next future an antiproton beam with momentum up to 15 GeV/c will be available at FAIR (Darmstadt. Measurements of the reaction p̅ + p → e+ + e− by the PANDA collaboration will contribute to the individual determination of electric and magnetic form factors in the time-like region of momentum transfer squared, as well as to their first determination in the unphysical region (below the kinematical threshold, through the reaction p̅ + p → e+ + e− + π0. From the discussion on feasibility studies at PANDA, we focus on the consequences of such measurements in view of an unified description of form factors in the full kinematical region. We present models which have the necessary analytical requirements and apply to the data in the whole kinematical region.

  17. Direct observation of a single proton in a Penning trap. Towards a direct measurement of the proton g-factor

    Energy Technology Data Exchange (ETDEWEB)

    Kreim, Susanne Waltraud

    2009-08-25

    This PhD thesis presents experiments performed on a single proton stored in a Penning trap. The eigenmotion of an isolated, free proton could be detected electronically via a coupling to a resonance circuit. This represents a non-destructive measurement, i.e. the particle is not lost during the measurement. The free cyclotron frequency emerging from the measured eigenfrequencies is one of the two frequencies required for the determination of the magnetic moment. This enables a direct determination of the g-factor contrary to already existing works. Design, developing, and commissioning of the experimental setup have been accomplished within the scope of this work leading to a measuring accuracy of 10{sup -7}. The technical challenges for the determination of the second frequency (the Larmor frequency) arising from the smallness of the magnetic moment were mastered. Since the spin state required for this measurement is an internal degree of freedom, it can only be accessed through a coupling of the magnetic moment to the eigenmotion. A novel, hybrid penning trap is presented in this work, which imprints the spin information onto the eigenmotion, thus, realizing a quantum jump spectrometer. Therewith, the frequency shift of the two spin states resulting from the magnetic coupling reaches for the first time an electronically detectable range. (orig.)

  18. Direct observation of a single proton in a Penning trap. Towards a direct measurement of the proton g-factor

    International Nuclear Information System (INIS)

    Kreim, Susanne Waltraud

    2009-01-01

    This PhD thesis presents experiments performed on a single proton stored in a Penning trap. The eigenmotion of an isolated, free proton could be detected electronically via a coupling to a resonance circuit. This represents a non-destructive measurement, i.e. the particle is not lost during the measurement. The free cyclotron frequency emerging from the measured eigenfrequencies is one of the two frequencies required for the determination of the magnetic moment. This enables a direct determination of the g-factor contrary to already existing works. Design, developing, and commissioning of the experimental setup have been accomplished within the scope of this work leading to a measuring accuracy of 10 -7 . The technical challenges for the determination of the second frequency (the Larmor frequency) arising from the smallness of the magnetic moment were mastered. Since the spin state required for this measurement is an internal degree of freedom, it can only be accessed through a coupling of the magnetic moment to the eigenmotion. A novel, hybrid penning trap is presented in this work, which imprints the spin information onto the eigenmotion, thus, realizing a quantum jump spectrometer. Therewith, the frequency shift of the two spin states resulting from the magnetic coupling reaches for the first time an electronically detectable range. (orig.)

  19. The proton electromagnetic form factor F2 and quark orbital angular ...

    Indian Academy of Sciences (India)

    We analyse the proton electromagnetic form factor ratio (2)= 2(2)/1(2) as a function of momentum transfer 2 within perturbative QCD. We find that the prediction for (2) at large momentum transfer depends on the exclusive quark wave functions, which are unknown. For a wide range of wave functions we ...

  20. Spectroscopic factors measurements in the s,d and f,p shells below and above the Coulomb barrier by (3He,d) reactions

    International Nuclear Information System (INIS)

    Baghdadi, Ahmed.

    1974-01-01

    The overlap of t and d or 3 He and d wave functions may be measured by one neutron transfer in (d,t) or one proton transfer in ( 3 He,d). The measurement of the resulting normalization constant has been performed in subcoulombic conditions in the case of 58 Ni( 3 He,d) 59 Cu and 60 Ni( 3 He,d) 61 Cu leading to the first 3/2 - and 1/2 - states with a position sensitive detector in a Buechner spectrograph. The result: D 2 =2.7+-0.2 10 4 MeV 2 fm 3 is in agreement with the D 2 measurement for (t,d) reactions [3.1+-0.2 10 4 MeV 2 fm 3 ] and with the theoretical value proposed by L.J.B. Goldfarg and coworkers. This result was used for a determination of the spectroscopic factors of the 1.379MeV 3/2 - state, the 1.507MeV 1/2 - state and the 1.758MeV 3/2 - state in 57 Co. The subcoulombic approximation is also shown to be valid even in the case of (d,p) reactions, by the measurement of angular distributions and excitation curves of 60 Ni(d,p) reactions leading to the excited states at 4.760MeV (l=2) and 4.907MeV (l=0). In the second part, some spectroscopic factors in the s-d shell were measured by ( 3 He,d) reactions at MP Tandem energies. In the case of 27 Al( 3 He,d) 28 Si (states at 4.62, 6.88, 6.89, 9.32 and 0.38MeV) the normalization constant D 0 2 (deduced from the subcoulombic D 2 value) together with the first order finite range approximation leads to spectroscopic factors in good agreement with Wildenthal theoretical results. For 28 Si( 3 He,d) 29 p however, the values are too high compared to 29 Si. The conclusion is that it is better to use the DWBA treatment at subcoulombic energies everytime the experimental conditions may be fulfilled [fr

  1. Spectroscopic Factors from the Single Neutron Pickup Reaction ^64Zn(d,t)

    Science.gov (United States)

    Leach, Kyle; Garrett, P. E.; Ball, G. C.; Bangay, J. C.; Bianco, L.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Krücken, R.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.; Wong, J.

    2009-10-01

    A great deal of attention has recently been paid towards high-precision superallowed β-decay Ft values. With the availability of extremely high-precision (<0.1%) experimental data, precision on the individual Ft values are now dominated by the ˜1% theoretical corrections^[1]. This limitation is most evident in heavier superallowed nuclei (e.g. ^62Ga) where the isospin-symmetry-breaking (ISB) correction calculations become more difficult due to the truncated model space. Experimental spectroscopic factors for these nuclei are important for the identification of the relevant orbitals that should be included in the model space of the calculations. Motivated by this need, the single-nucleon transfer reaction ^64Zn(d,t)^63Zn was conducted at the Maier-Leibnitz-Laboratory (MLL) of TUM/LMU in Munich, Germany, using a 22 MeV polarized deuteron beam from the tandem Van de Graaff accelerator and the TUM/LMU Q3D magnetic spectrograph, with angular distributions from 10^o to 60^o. Results from this experiment will be presented and implications for calculations of ISB corrections in the superallowed &+circ; decay of ^62Ga will be discussed.^[1] I.S. Towner and J.C. Hardy, Phys. Rev. C 77, 025501 (2008).

  2. Spectroscopic Factors from the Single Neutron Pickup ^64Zn(d,t)

    Science.gov (United States)

    Leach, Kyle; Garrett, P. E.; Demand, G. A.; Finlay, P.; Green, K. L.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wong, J.; Towner, I. S.; Ball, G. C.; Faestermann, T.; Krücken, R.; Hertenberger, R.; Wirth, H.-F.

    2010-11-01

    A great deal of attention has recently been paid towards high-precision superallowed β-decay Ft values. With the availability of extremely high-precision (<0.1%) experimental data, precision on the individual Ft values are now dominated by the ˜1% theoretical corrections. This limitation is most evident in heavier superallowed nuclei (e.g. ^62Ga) where the isospin-symmetry-breaking (ISB) correction calculations become more difficult due to the truncated model space. Experimental spectroscopic factors for these nuclei are important for the identification of the relevant orbitals that should be included in the model space of the calculations. Motivated by this need, the single-nucleon transfer reaction ^64Zn(d,t)^63Zn was conducted at the Maier-Leibnitz-Laboratory (MLL) of TUM/LMU in Munich, Germany, using a 22 MeV polarized deuteron beam from the tandem Van de Graaff accelerator and the TUM/LMU Q3D magnetic spectrograph, with angular distributions from 10^o to 60^o. Results from this experiment will be presented and implications for calculations of ISB corrections in the superallowed ° decay of ^62Ga will be discussed.

  3. Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data

    Science.gov (United States)

    Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R. P.; Arrington, J.; Brooks, W. K.; Adhikari, K. P.; Afanasev, A. V.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Careccia, S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Kalantarians, N.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Peña, C.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, I.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-02-01

    There is a significant discrepancy between the values of the proton electric form factor, GEp, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GEp from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ɛ ) and momentum transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ɛ at Q2=1.45 GeV2 . This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2 - 3 GeV2 .

  4. Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    CERN Document Server

    Singh, B.; Krusche, B.; Steinacher, M.; Walford, N.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Erlen, T.; Fink, M.; Heinsius, F.; Held, T.; Holtmann, T.; Jasper, S.; Keshk, I.; Koch, H.; Kopf, B.; Kuhlmann, M.; Kümmel, M.; Leiber, S.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Ball, M.; Beck, R.; Hammann, C.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Urban, M.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Patel, B.; Czyzycki, W.; Domagala, M.; Filo, G.; Jaworowski, J.; Krawczyk, M.; Lisowski, F.; Lisowski, E.; Michałek, M.; Poznański, P.; Płażek, J.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Pysz, K.; Schäfer, W.; Szczurek, A.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Biernat, J.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Pyszniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wronska, A.; Augustin, I.; Böhm, R.; Lehmann, I.; Marinescu, D. Nicmorus; Schmitt, L.; Varentsov, V.; Al-Turany, M.; Belias, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Gromliuk, A.; Gruber, L.; Karabowicz, R.; Kliemt, R.; Krebs, M.; Kurilla, U.; Lehmann, D.; Löchner, S.; Lühning, J.; Lynen, U.; Orth, H.; Patsyuk, M.; Peters, K.; Saito, T.; Schepers, G.; Schmidt, C.J.; Schwarz, C.; Schwiening, J.; Täschner, A.; Traxler, M.; Ugur, C.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V.; Alexeev, G.; Arefiev, V.A.; Astakhov, V.; Barabanov, M. Yu.; Batyunya, B.V.; Davydov, Y.; Dodokhov, V. Kh.; Efremov, A.; Fechtchenko, A.; Fedunov, A.G.; Galoyan, A.; Grigoryan, S.; Koshurnikov, E.K.; Lobanov, Y. Yu.; Lobanov, V.I.; Makarov, A.F.; Malinina, L.V.; Malyshev, V.; Olshevskiy, A.G.; Perevalova, E.; Piskun, A.A.; Pocheptsov, T.; Pontecorvo, G.; Rodionov, V.; Rogov, Y.; Salmin, R.; Samartsev, A.; Sapozhnikov, M.G.; Shabratova, G.; Skachkov, N.B.; Skachkova, A.N.; Strokovsky, E.A.; Suleimanov, M.; Teshev, R.; Tokmenin, V.; Uzhinsky, V.; Vodopianov, A.; Zaporozhets, S.A.; Zhuravlev, N.I.; Zorin, A.G.; Branford, D.; Glazier, D.; Watts, D.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savrie, M.; Akishina, V.; Kisel, I.; Kozlov, G.; Pugach, M.; Zyzak, M.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R.F.; Biguenko, K.; Brinkmann, K.; Di Pietro, V.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Etzelmüller, E.; Galuska, M.; Gutz, E.; Hahn, C.; Hayrapetyan, A.; Kesselkaul, M.; Kühn, W.; Kuske, T.; Lange, J.S.; Liang, Y.; Metag, V.; Nanova, M.; Nazarenko, S.; Novotny, R.; Quagli, T.; Reiter, S.; Rieke, J.; Rosenbaum, C.; Schmidt, M.; Schnell, R.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wagner, M.N.; Wasem, T.; Wohlfahrt, B.; Zaunick, H.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P.N.; Kulkarni, A.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P.J.; Lindemulder, M.; Loehner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; Tiemens, M.; van der Weele, J.C.; Veenstra, R.; Vejdani, S.; Dutta, K.; Kalita, K.; Kumar, A.; Roy, A.; Sohlbach, H.; Bai, M.; Bianchi, L.; Büscher, M.; Cao, L.; Cebulla, A.; Dosdall, R.; Gillitzer, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Lehrach, A.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Pütz, J.; Ritman, J.; Schadmand, S.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Zambanini, A.; Li, S.; Li, Z.; Sun, Z.; Rigato, V.; Isaksson, L.; Achenbach, P.; Corell, O.; Denig, A.; Distler, M.; Hoek, M.; Karavdina, A.; Lauth, W.; Merkel, H.; Müller, U.; Pochodzalla, J.; Sanchez, S.; Schlimme, S.; Sfienti, C.; Thiel, M.; Ahmadi, H.; Ahmed, S.; Bleser, S.; Capozza, L.; Cardinali, M.; Dbeyssi, A.; Deiseroth, M.; Feldbauer, F.; Fritsch, M.; Fröhlich, B.; Jasinski, P.; Kang, D.; Khaneft, D.; Klasen, R.; Leithoff, H.H.; Lin, D.; Maas, F.; Maldaner, S.; Marta, M.; Michel, M.; Espí, M. C. Mora; Morales Morales, C.; Motzko, C.; Nerling, F.; Noll, O.; Pflüger, S.; Pitka, A.; Piñeiro, D. Rodríguez; Sanchez-Lorente, A.; Steinen, M.; Valente, R.; Weber, T.; Zambrana, M.; Zimmermann, I.; Fedorov, A.; Korjik, M.; Missevitch, O.; Boukharov, A.; Malyshev, O.; Marishev, I.; Balanutsa, V.; Balanutsa, P.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Chandratre, V.; Datar, V.; Dutta, D.; Jha, V.; Kumawat, H.; Mohanty, A.K.; Parmar, A.; Roy, B.; Sonika, G.; Fritzsch, C.; Grieser, S.; Hergemöller, A.; Hetz, B.; Hüsken, N.; Khoukaz, A.; Wessels, J.P.; Khosonthongkee, K.; Kobdaj, C.; Limphirat, A.; Srisawad, P.; Yan, Y.; Barnyakov, M.; Barnyakov, A. Yu.; Beloborodov, K.; Blinov, A.E.; Blinov, V.E.; Bobrovnikov, V.S.; Kononov, S.; Kravchenko, E.A.; Kuyanov, I.A.; Martin, K.; Onuchin, A.P.; Serednyakov, S.; Sokolov, A.; Tikhonov, Y.; Atomssa, E.; Kunne, R.; Marchand, D.; Ramstein, B.; van de Wiele, J.; Wang, Y.; Boca, G.; Costanza, S.; Genova, P.; Montagna, P.; Rotondi, A.; Abramov, V.; Belikov, N.; Bukreeva, S.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Grishin, V.; Kachanov, V.; Kormilitsin, V.; Levin, A.; Melnik, Y.; Minaev, N.; Mochalov, V.; Morozov, D.; Nogach, L.; Poslavskiy, S.; Ryazantsev, A.; Ryzhikov, S.; Semenov, P.; Shein, I.; Uzunian, A.; Vasiliev, A.; Yakutin, A.; Tomasi-Gustafsson, E.; Roy, U.; Yabsley, B.; Belostotski, S.; Gavrilov, G.; Izotov, A.; Manaenkov, S.; Miklukho, O.; Veretennikov, D.; Zhdanov, A.; Makonyi, K.; Preston, M.; Tegner, P.; Wölbing, D.; Bäck, T.; Cederwall, B.; Rai, A.K.; Godre, S.; Calvo, D.; Coli, S.; De Remigis, P.; Filippi, A.; Giraudo, G.; Lusso, S.; Mazza, G.; Mignone, M.; Rivetti, A.; Wheadon, R.; Balestra, F.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Olave, J.; Amoroso, A.; Bussa, M.P.; Busso, L.; De Mori, F.; Destefanis, M.; Fava, L.; Ferrero, L.; Greco, M.; Hu, J.; Lavezzi, L.; Maggiora, M.; Maniscalco, G.; Marcello, S.; Sosio, S.; Spataro, S.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Calen, H.; Andersson, W. Ikegami; Johansson, T.; Kupsc, A.; Marciniewski, P.; Papenbrock, M.; Pettersson, J.; Schönning, K.; Wolke, M.; Galnander, B.; Diaz, J.; Chackara, V. Pothodi; Chlopik, A.; Kesik, G.; Melnychuk, D.; Slowinski, B.; Trzcinski, A.; Wojciechowski, M.; Wronka, S.; Zwieglinski, B.; Bühler, P.; Marton, J.; Steinschaden, D.; Suzuki, K.; Widmann, E.; Zmeskal, J.

    2016-01-01

    The results of simulations for future measurements of electromagnetic form factors at \\PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision at which the proton form factors can be determined is estimated. The signal channel $\\bar p p \\to e^+ e^-$ is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. the $\\bar p p \\to \\pi^+ \\pi^-$, is studied. Furthermore, the background versus signal efficiency, statistic and systematic uncertainties on the extracted proton form factors are evaluated using to the two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam condition and detector performances.

  5. High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2

    Energy Technology Data Exchange (ETDEWEB)

    Xiaohui Zhan

    2009-12-01

    A high precision measurement of the proton elastic form factor ratio µpGEp/GMp in the range Q2 = 0.3–0.7 GeV2/c2 was performed using recoil polarimetry in Jefferson Lab Hall A. In this low Q2 range, previous data from LEDEX [5] along with many fits and calculations [2, 3, 4] indicate substantial deviations of the ratio from unity. In this new measurement, with 80% polarized electron beam for 24 days, we are able to achieve <1% statistical uncertainty. Preliminary results are a few percent lower than expected from previous world data and fits, indicating a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the improved form factor measurements also have implications for DVCS, determinations of the proton Zemach radius and strangeness form factors through parity violation experiments.

  6. Experimental 64Zn(d⃗,t)63Zn spectroscopic factors: Guidance for isospin-symmetry-breaking calculations

    Science.gov (United States)

    Leach, K. G.; Garrett, P. E.; Towner, I. S.; Ball, G. C.; Bildstein, V.; Brown, B. A.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Krücken, R.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.; Wong, J.

    2013-06-01

    With the recent inclusion of core orbitals to the radial-overlap component of the isospin-symmetry-breaking (ISB) corrections for superallowed Fermi β decay, experimental data are needed to test the validity of the theoretical model. This work reports measurements of single-neutron pickup reaction spectroscopic factors into 63Zn, one neutron away from 62Zn, the superallowed daughter of 62Ga. The experiment was performed using a 22-MeV polarized deuteron beam, a Q3D magnetic spectrograph, and a cathode-strip focal-plane detector to analyze outgoing tritons at nine angles between 10∘ and 60∘. Angular distributions and vector analyzing powers were obtained for all 162 observed states in 63Zn, including 125 newly observed levels, up to an excitation energy of 4.8 MeV. Spectroscopic factors are extracted and compared to several shell-model predictions, and implications for the ISB calculations are discussed.

  7. SU-E-T-577: Obliquity Factor and Surface Dose in Proton Beam Therapy

    International Nuclear Information System (INIS)

    Das, I; Andersen, A; Coutinho, L

    2015-01-01

    Purpose: The advantage of lower skin dose in proton beam may be diminished creating radiation related sequalae usually seen with photon and electron beams. This study evaluates the surface dose as a complex function of beam parameters but more importantly the effect of beam angle. Methods: Surface dose in proton beam depends on the beam energy, source to surface distance, the air gap between snout and surface, field size, material thickness in front of surface, atomic number of the medium, beam angle and type of nozzle (ie double scattering, (DS), uniform scanning (US) or pencil beam scanning (PBS). Obliquity factor (OF) is defined as ratio of surface dose in 0° to beam angle Θ. Measurements were made in water phantom at various beam angles using very small microdiamond that has shown favorable beam characteristics for high, medium and low proton energy. Depth dose measurements were performed in the central axis of the beam in each respective gantry angle. Results: It is observed that surface dose is energy dependent but more predominantly on the SOBP. It is found that as SSD increases, surface dose decreases. In general, SSD, and air gap has limited impact in clinical proton range. High energy has higher surface dose and so the beam angle. The OF rises with beam angle. Compared to OF of 1.0 at 0° beam angle, the value is 1.5, 1.6, 1,7 for small, medium and large range respectively for 60 degree angle. Conclusion: It is advised that just like range and SOBP, surface dose should be clearly understood and a method to reduce the surface dose should be employed. Obliquity factor is a critical parameter that should be accounted in proton beam therapy and a perpendicular beam should be used to reduce surface dose

  8. Semi-Leptonic weak decay form factors of LAMBDAb and SIGMAb(OMEGAb) to proton

    International Nuclear Information System (INIS)

    Haghigat, M.

    1996-01-01

    The matrix elements of the semi-leptonic weak decays of Λ b and of Σ b Ω b to proton are calculated, in the Bethe-Salpeter formalism. We propose a protonic wave function in terms of its dynamically indistinguishable constituent quarks. We show that there are two universal form factors for Λ b → P and four for Σ b (OMEGA b ) → P decays. They depend, as expected, on the Lorentz scalar Υ 1 .Υ 2 , whereΥ 1 and Υ 2 , are the velocities of the baryons. On the first order perturbation approximation, however, the two and the four form factors degenerate to one expression for each of the two decays. (author). 14 refs

  9. Spectroscopically Enhanced Method and System for Multi-Factor Biometric Authentication

    Science.gov (United States)

    Pishva, Davar

    This paper proposes a spectroscopic method and system for preventing spoofing of biometric authentication. One of its focus is to enhance biometrics authentication with a spectroscopic method in a multifactor manner such that a person's unique ‘spectral signatures’ or ‘spectral factors’ are recorded and compared in addition to a non-spectroscopic biometric signature to reduce the likelihood of imposter getting authenticated. By using the ‘spectral factors’ extracted from reflectance spectra of real fingers and employing cluster analysis, it shows how the authentic fingerprint image presented by a real finger can be distinguished from an authentic fingerprint image embossed on an artificial finger, or molded on a fingertip cover worn by an imposter. This paper also shows how to augment two widely used biometrics systems (fingerprint and iris recognition devices) with spectral biometrics capabilities in a practical manner and without creating much overhead or inconveniencing their users.

  10. Proton location in (CH3)3N-H+-(CH3OH)n: A theoretical and infrared spectroscopic study

    International Nuclear Information System (INIS)

    Bing, Dan; Hamashima, Toru; Tsai, Chen-Wei; Fujii, Asuka; Kuo, Jer-Lai

    2013-01-01

    Highlights: • Preferential location of the excess proton in the trimethylamine-methanol clusters. • Collaboration between DFT calculations and IR spectroscopy. • The excess proton prefers the protonation to the trimethylamine moiety. - Abstract: The dependence of the preferential protonated site in (CH 3 ) 3 N-H + -(CH 3 OH) n on the cluster size was investigated using theoretical calculations and infrared spectroscopy measurements. While simple estimation from the magnitude of proton affinity suggested that the excess proton prefers the methanol site in n ⩾ 4, density functional theory calculations of the stabilization energy indicated the clear preference as protonation of the trimethylamine site, even for n = 9. Infrared spectra of the clusters were observed for n = 3–7. Spectral simulations were also performed using the quantum harmonic superposition approximation. The observed (CH 3 ) 3 N-H + -(CH 3 OH) n spectra were well interpreted by simulations of the isomers with the protonated trimethylamine ion core. It was shown that both the proton affinity and the mutual solvation energy govern the preferential location of the excess proton in binary component clusters

  11. The Proton Coulomb Form Factor from Polarized Inclusive e-p Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Christopher Matthew [Univ. of Virginia, Charlottesville, VA (United States)

    2001-05-01

    The proton form factors provide information on the fundamental properties of the proton and provide a test for models based on QCD. In 1998 at Jefferson Lab (JLAB) in Newport News, VA, experiment E93026 measured the inclusive e-p scattering cross section from a polarized ammonia (15NH3) target at a four momentum transfer squared of Q2 = 0.5 (GeV/c)2. Longitudinally polarized electrons were scattered from the polarized target and the scattered electron was detected. Data has been analyzed to obtain the asymmetry from elastically scattered electrons from hydrogen in 15NH3. The asymmetry, Ap, has been used to determine the proton elastic form factor GEp. The result is consistent with the dipole model and data from previous experiments. However, due to the choice of kinematics, the uncertainty in the measurement is large.

  12. On the ππ continuum in the nucleon form factors and the proton radius puzzle

    Science.gov (United States)

    Hoferichter, M.; Kubis, B.; Ruiz de Elvira, J.; Hammer, H.-W.; Meißner, U.-G.

    2016-11-01

    We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ→bar{N} N partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius.

  13. On the ππ continuum in the nucleon form factors and the proton radius puzzle

    International Nuclear Information System (INIS)

    Hoferichter, M.; Kubis, B.; Ruiz de Elvira, J.; Hammer, H.W.; Meissner, U.G.

    2016-01-01

    We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ → anti NN partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius. (orig.)

  14. On the ππ continuum in the nucleon form factors and the proton radius puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Hoferichter, M. [University of Washington, Institute for Nuclear Theory, Seattle, WA (United States); Kubis, B.; Ruiz de Elvira, J. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Bonn (Germany); Hammer, H.W. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Meissner, U.G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Bonn (Germany); Institut fuer Kernphysik, Institute for Advanced Simulation, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany)

    2016-11-15

    We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ → anti NN partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius. (orig.)

  15. Estimates of the astrophysical S-factors for proton radiative capture by 10B and 24Mg nuclei using the ANCs from proton transfer reactions

    International Nuclear Information System (INIS)

    Artemov, S.V.; Igamov, S.B.; Karakhodzhaev, A.A.; Nie, G.K.; Yarmukhamedov, R.; Zaparov, E.A.; Burtebaev, N.; Rehm, K.E.

    2010-01-01

    The contribution of the direct radiative capture of protons by 10 B and 24 Mg nuclei at low energies to the astrophysical S-factors in the reactions 10 B(p,γ) 11 C and 24 Mg(p,γ) 25 Al have been calculated within the R-matrix formalism by using empirical proton asymptotical normalization coefficients (ANC). The ANCs for bound proton configurations { 10 B+p} and { 24 Mg+p} were obtained from the analysis of the reactions ( 3 He, d). The ANCs were also estimated from the values of the neutron ANCs in the mirror nucleus 25 Mg following the suggestion that the neutron and the proton in the mirror states have equivalent nuclear potentials. It has been found that the S-factor for the reaction 10 B(p,γ) 11 C extrapolated to zero energy contributes ~100 keV b to the radiative capture to the ground state of 11 C. For the reaction 24 Mg(p,γ) 25 Al the value S(0) gives 58 keV b with a direct capture contribution of 41 keV b. (author)

  16. Quantitative investigation of physical factors contributing to gold nanoparticle-mediated proton dose enhancement

    International Nuclear Information System (INIS)

    Cho, Jongmin; Manohar, Nivedh; Kerr, Matthew; Cho, Sang Hyun; Gonzalez-Lepera, Carlos; Krishnan, Sunil

    2016-01-01

    Some investigators have shown tumor cell killing enhancement in vitro and tumor regression in mice associated with the loading of gold nanoparticles (GNPs) before proton treatments. Several Monte Carlo (MC) investigations have also demonstrated GNP-mediated proton dose enhancement. However, further studies need to be done to quantify the individual physical factors that contribute to the dose enhancement or cell-kill enhancement (or radiosensitization). Thus, the current study investigated the contributions of particle-induced x-ray emission (PIXE), particle-induced gamma-ray emission (PIGE), Auger and secondary electrons, and activation products towards the total dose enhancement. Specifically, GNP-mediated dose enhancement was measured using strips of radiochromic film that were inserted into vials of cylindrical GNPs, i.e. gold nanorods (GNRs), dispersed in a saline solution (0.3 mg of GNRs/g or 0.03% of GNRs by weight), as well as vials containing water only, before proton irradiation. MC simulations were also performed with the tool for particle simulation code using the film measurement setup. Additionally, a high-purity germanium detector system was used to measure the photon spectrum originating from activation products created from the interaction of protons and spherical GNPs present in a saline solution (20 mg of GNPs/g or 2% of GNPs by weight). The dose enhancement due to PIXE/PIGE recorded on the films in the GNR-loaded saline solution was less than the experimental uncertainty of the film dosimetry (<2%). MC simulations showed highly localized dose enhancement (up to a factor 17) in the immediate vicinity (<100 nm) of GNRs, compared with hypothetical water nanorods (WNRs), mostly due to GNR-originated Auger/secondary electrons; however, the average dose enhancement over the entire GNR-loaded vial was found to be minimal (0.1%). The dose enhancement due to the activation products from GNPs was minimal (<0.1%) as well. In conclusion, under the

  17. Gas-phase isotope fractionation factor for the proton-bound dimer of the ethoxide

    International Nuclear Information System (INIS)

    Ellenberger, M.R.; Farneth, W.E.; Dixon, D.A.

    1981-01-01

    The gas-phase isotope fractionation factor, phi/sub gp/, for A 2 L - where A = EtO and L = H or D has been measured by using ion cyclotron resonance spectroscopy. Two approaches to the formation of the A 2 L - dimers are presented. The value for phi/sub gp/ is 0.46 +- 0.1. This low value for phi/sub gp/ is consistent with motion of a proton in a potential with a small central maximum or no maximum

  18. DIFFERENTIATION OF AURANTII FRUCTUS IMMATURUS AND FRUCTUS PONICIRI TRIFOLIATAE IMMATURUS BY FLOW-INJECTION WITH ULTRAVIOLET SPECTROSCOPIC DETECTION AND PROTON NUCLEAR MAGNETIC RESONANCE USING PARTIAL LEAST-SQUARES DISCRIMINANT ANALYSIS.

    Science.gov (United States)

    Zhang, Mengliang; Zhao, Yang; Harrington, Peter de B; Chen, Pei

    2016-03-01

    Two simple fingerprinting methods, flow-injection coupled to ultraviolet spectroscopy and proton nuclear magnetic resonance, were used for discriminating between Aurantii fructus immaturus and Fructus poniciri trifoliatae immaturus . Both methods were combined with partial least-squares discriminant analysis. In the flow-injection method, four data representations were evaluated: total ultraviolet absorbance chromatograms, averaged ultraviolet spectra, absorbance at 193, 205, 225, and 283 nm, and absorbance at 225 and 283 nm. Prediction rates of 100% were achieved for all data representations by partial least-squares discriminant analysis using leave-one-sample-out cross-validation. The prediction rate for the proton nuclear magnetic resonance data by partial least-squares discriminant analysis with leave-one-sample-out cross-validation was also 100%. A new validation set of data was collected by flow-injection with ultraviolet spectroscopic detection two weeks later and predicted by partial least-squares discriminant analysis models constructed by the initial data representations with no parameter changes. The classification rates were 95% with the total ultraviolet absorbance chromatograms datasets and 100% with the other three datasets. Flow-injection with ultraviolet detection and proton nuclear magnetic resonance are simple, high throughput, and low-cost methods for discrimination studies.

  19. Measurements of the deuteron and proton magnetic form factors at large momentum transfers

    International Nuclear Information System (INIS)

    Bosted, P.E.; Katramatou, A.T.; Arnold, R.G.; Benton, D.; Clogher, L.; DeChambrier, G.; Lambert, J.; Lung, A.; Petratos, G.G.; Rahbar, A.; Rock, S.E.; Szalata, Z.M.; Debebe, B.; Frodyma, M.; Hicks, R.S.; Hotta, A.; Peterson, G.A.; Gearhart, R.A.; Alster, J.; Lichtenstadt, J.; Dietrich, F.; van Bibber, K.

    1990-01-01

    Measurements of the deuteron elastic magnetic structure function B(Q 2 ) are reported at squared four-momentum transfer values 1.20≤Q 2 ≤2.77 (GeV/c) 2 . Also reported are values for the proton magnetic form factor G Mp (Q 2 ) at 11 Q 2 values between 0.49 and 1.75 (GeV/c) 2 . The data were obtained using an electron beam of 0.5 to 1.3 GeV. Electrons backscattered near 180 degree were detected in coincidence with deuterons or protons recoiling near 0 degree in a large solid-angle double-arm spectrometer system. The data for B(Q 2 ) are found to decrease rapidly from Q 2 =1.2 to 2 (GeV/c) 2 , and then rise to a secondary maximum around Q 2 =2.5 (GeV/c) 2 . Reasonable agreement is found with several different models, including those in the relativistic impulse approximation, nonrelativistic calculations that include meson-exchange currents, isobar configurations, and six-quark configurations, and one calculation based on the Skyrme model. All calculations are very sensitive to the choice of deuteron wave function and nucleon form factor parametrization. The data for G Mp (Q 2 ) are in good agreement with the empirical dipole fit

  20. Strange magnetic form factor of the proton at $Q^2 = 0.23$ GeV$^2$

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ping; Leinweber, Derek; Thomas, Anthony; Young, Ross

    2009-06-01

    We determine the $u$ and $d$ quark contributions to the proton magnetic form factor at finite momentum transfer by applying chiral corrections to quenched lattice data. Heavy baryon chiral perturbation theory is applied at next to leading order in the quenched, and full QCD cases for the valence sector using finite range regularization. Under the assumption of charge symmetry these values can be combined with the experimental values of the proton and neutron magnetic form factors to deduce a relatively accurate value for the strange magnetic form factor at $Q^2=0.23$ GeV$^2$, namely $G_M^s=-0.034 \\pm 0.021$ $\\mu_N$.

  1. Vibrational spectroscopy on protons and deuterons in proton conducting perovskites

    DEFF Research Database (Denmark)

    Glerup, M.; Poulsen, F.W.; Berg, R.W.

    2002-01-01

    A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR-microscopy exper......A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR...

  2. How well do we know the electromagnetic form factors of the proton?

    International Nuclear Information System (INIS)

    Arrington, J.

    2003-01-01

    Several experiments have extracted proton electromagnetic form factors from elastic cross section measurements using the Rosenbluth technique. Global analyses of these measurements indicate approximate scaling of the electric and magnetic form factors (μ p G E p /G M p ≅1), in contrast to recent polarization transfer measurements from Jefferson Lab. We present here a global reanalysis of the cross section data aimed at understanding the disagreement between the Rosenbluth extraction and the polarization transfer data. We find that the individual cross section measurements are self-consistent, and that the new global analysis yields results that are still inconsistent with polarization measurements. This discrepancy indicates a fundamental problem in one of the two techniques, or a significant error in polarization transfer or cross section measurements. An error in the polarization data would imply a large error in the extracted electric form factor, while an error in the cross sections implies an uncertainty in the extracted form factors, even if the form factor ratio is measured exactly

  3. Systematic errors in the determination of the spectroscopic g-factor in broadband ferromagnetic resonance spectroscopy: A proposed solution

    Science.gov (United States)

    Gonzalez-Fuentes, C.; Dumas, R. K.; García, C.

    2018-01-01

    A theoretical and experimental study of the influence of small offsets of the magnetic field (δH) on the measurement accuracy of the spectroscopic g-factor (g) and saturation magnetization (Ms) obtained by broadband ferromagnetic resonance (FMR) measurements is presented. The random nature of δH generates systematic and opposite sign deviations of the values of g and Ms with respect to their true values. A δH on the order of a few Oe leads to a ˜10% error of g and Ms for a typical range of frequencies employed in broadband FMR experiments. We propose a simple experimental methodology to significantly minimize the effect of δH on the fitted values of g and Ms, eliminating their apparent dependence in the range of frequencies employed. Our method was successfully tested using broadband FMR measurements on a 5 nm thick Ni80Fe20 film for frequencies ranging between 3 and 17 GHz.

  4. Delirium in the geriatric unit: proton-pump inhibitors and other risk factors.

    Science.gov (United States)

    Otremba, Iwona; Wilczyński, Krzysztof; Szewieczek, Jan

    2016-01-01

    Delirium remains a major nosocomial complication of hospitalized elderly. Predictive models for delirium may be useful for identification of high-risk patients for implementation of preventive strategies. Evaluate specific factors for development of delirium in a geriatric ward setting. Prospective cross-sectional study comprised 675 consecutive patients aged 79.2±7.7 years (66% women and 34% men), admitted to the subacute geriatric ward of a multiprofile university hospital after exclusion of 113 patients treated with antipsychotic medication because of behavioral disorders before admission. Comprehensive geriatric assessments including a structured interview, physical examination, geriatric functional assessment, blood sampling, ECG, abdominal ultrasound, chest X-ray, Confusion Assessment Method for diagnosis of delirium, Delirium-O-Meter to assess delirium severity, Richmond Agitation-Sedation Scale to assess sedation or agitation, visual analog scale and Doloplus-2 scale to assess pain level were performed. Multivariate logistic regression analysis revealed five independent factors associated with development of delirium in geriatric inpatients: transfer between hospital wards (odds ratio [OR] =2.78; confidence interval [CI] =1.54-5.01; P=0.001), preexisting dementia (OR =2.29; CI =1.44-3.65; Pfall incidents (OR =1.76; CI =1.17-2.64; P=0.006), and use of proton-pump inhibitors (OR =1.67; CI =1.11-2.53; P=0.014). Transfer between hospital wards, preexisting dementia, previous delirium incidents, previous fall incidents, and use of proton-pump inhibitors are predictive of development of delirium in the geriatric inpatient setting.

  5. The prediction of output factors for spread-out proton Bragg peak fields in clinical practice

    International Nuclear Information System (INIS)

    Kooy, Hanne M; Rosenthal, Stanley J; Engelsman, Martijn; Mazal, Alejandro; Slopsema, Roelf L; Paganetti, Harald; Flanz, Jacob B

    2005-01-01

    The reliable prediction of output factors for spread-out proton Bragg peak (SOBP) fields in clinical practice remained unrealized due to a lack of a consistent theoretical framework and the great number of variables introduced by the mechanical devices necessary for the production of such fields. These limitations necessitated an almost exclusive reliance on manual calibration for individual fields and empirical, ad hoc, models. We recently reported on a theoretical framework for the prediction of output factors for such fields. In this work, we describe the implementation of this framework in our clinical practice. In our practice, we use a treatment delivery nozzle that uses a limited, and constant, set of mechanical devices to produce SOBP fields over the full extent of clinical penetration depths, or ranges, and modulation widths. This use of a limited set of mechanical devices allows us to unfold the physical effects that affect the output factor. We describe these effects and their incorporation into the theoretical framework. We describe the calibration and protocol for SOBP fields, the effects of apertures and range-compensators and the use of output factors in the treatment planning process

  6. Deprotonation/protonation of coordinated secondary thioamide units of pincer ruthenium complexes: modulation of voltammetric and spectroscopic characterization of the pincer complexes.

    Science.gov (United States)

    Teratani, Takuya; Koizumi, Take-aki; Yamamoto, Takakazu; Tanaka, Koji; Kanbara, Takaki

    2011-09-21

    New pincer ruthenium complexes, [Ru(SCS)(tpy)]PF(6) (1) (SCS = 2,6-bis(benzylaminothiocarbonyl)phenyl), tpy = 2,2':6',2''-terpyridyl) and [Ru(SNS)(tpy)]PF(6) (2) (SNS = 2,5-bis(benzylaminothiocarbonyl)pyrrolyl), having κ(3)SCS and κ(3)SNS pincer ligands with two secondary thioamide units were synthesized by the reactions of [RuCl(3)(tpy)] with N,N'-dibenzyl-1,3-benzenedicarbothioamide (L1) and N,N'-dibenzyl-2,5-1H-pyrroledicarbothioamide (L2), respectively, and their chemical and electrochemical properties were elucidated. The structure of 1 was determined by X-ray crystallography. The complexes 1 and 2 showed a two-step deprotonation reaction by treatment with 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU), and the addition of DBU led to a shift of the metal-centered redox couples to a lower potential by 720 and 550 mV, respectively. The di-deprotonated complexes were also studied by (1)H-NMR and UV-vis spectroscopy. The addition of methanesulfonic acid (MSA) to the di-deprotonated complexes enabled the recovery of 1 and 2, indicating that the thioamide moiety underwent a reversible deprotonation-protonation process, which resulted in regulating the redox potentials of the metal center. The Pourbaix diagram of 1 revealed that 1 underwent a one-proton/one-electron transfer process in the pH range of 5.83-10.35, and a two-proton/one-electron process at a pH of over 10.35, indicating that the deprotonation/protonation process of the complexes is related to proton-coupled electron transfer (PCET). This journal is © The Royal Society of Chemistry 2011

  7. Spectroscopic Factors from the Single Neutron Transfer Reaction 111Cd(d,p)112Cd

    Science.gov (United States)

    Jamieson, D. S.; Garrett, P. E.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Svensson, C. E.; Sumithrarachchi, C. S.; Triambak, S.; Wong, J.; Ball, G.; Faestermann, T.; Krücken, R.; Hertenberger, R.; Wirth, H.-F.

    2013-03-01

    The cadmium isotopes have been cited as excellent examples of vibrational nuclei for decades, with multi-phonon quadrupole, quadrupole-octupole, and mixed-symmetry states proposed. From a variety of experimental studies, a large amount of spectroscopic data has been obtained, recently focused on γ-ray studies. In the present work, the single-particle structure of 112Cd has been investigated using the 111Cd(ěcd, p)112Cd reaction. The investigation was carried out using a 22 MeV beam of polarized deuterons obtained from the Maier-Leibnitz Laboratory at Garching, Germany. The reaction ejectiles were momentum analyzed using a Q3D spectrograph, and 115 levels have been identified up to 4.2 MeV of excitation energy. Spin-parity has been assigned to each analyzed level, and angular distributions for the reaction cross sections and analyzing powers were obtained. Many additional levels have been observed compared with the previous (d,p) study performed with 8 MeV deuterons,1 including strongly populated 5- and 6- states. The former was previously assigned as a member of the quadrupole-octupole quintuplet, based on a strongly enhanced B(E2) value to the 3- state, but is now re-assigned as being predominately s1/2 ⊗ h11/2 configuration.

  8. Level spectra, electromagnetic moments and transition rates and spectroscopic factors for odd rhodium isotopes in the Coriolis coupling model

    International Nuclear Information System (INIS)

    Bredbacka, A.; Brenner, M.; Malik, F.B.; Aabo Akademi, Turku

    1989-01-01

    Properties of low-lying positive- and negative-parity states of 97,99,101,103,105,107,109 Rh at low excitation energies have been analyzed in terms of a Coriolis coupling model. The model can account for the general trend of the level schemes for states of both parties. In particular, the 9/2, 7/2, and 5/2 triplet near the ground state, the occurrence of multiple 13/2 and at least one 15/2 and 19/2 state of positive parity are reasonably reproduced by the model. Similarly, 1/2 ground-state spin followed by a (3/2, 5/2) doublet, and one or more 13/2 and 17/2 states of negative parity are adequately understood in terms of the model. The calculated electromagnetic dipole and quadrupole moments and magnetic dipole and electric quadrupole transition rates are in broad agreement with the observed ones. This is achieved without the use of any effective charge. The general trend of observed spectroscopic factors for pick-up reactions is in agreement with the calculated ones. The results are presented as a function of deformation. Because of the sparsity of data on many of these isotopes, no attempt has been made to find the best fit for each isotope individually. Since the model can reasonably reproduce the general trend of level schemes, electromagnetic properties and spectroscopic factors, one may conclude that the Coriolis coupling model provides a good description of the nuclear properties of these isotopes. (orig.)

  9. Technical note: Evaluation of the uncertainties in (choline+creatine)/citrate ratios measured by proton MR spectroscopic imaging in patients suspicious for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zbyn, S.; Krssak, M.; Memarsadeghi, M.; Gholami, B.; Haitel, A.; Weber, M.; Helbich, T.H.; Trattnig, S.; Moser, E.; Gruber, S.

    2014-07-15

    The presented evaluation of the relative uncertainty (δ'CCC) of the (choline + creatine)/citrate (CC/C) ratios can provide objective information about the quality and diagnostic value of prostate MR spectroscopic imaging data. This information can be combined with the numeric values of CC/C ratios and provides metabolic-quality maps enabling accurate cancer detection and user-independent data evaluation. In addition, the prostate areas suffering most from the low precision of CC/C ratios (e. g., prostate base) were identified.

  10. Spectroscopic study of 2-, 4- and 5-substituents on p Ka values of imidazole heterocycles prone to intramolecular proton-electrons transfer

    Science.gov (United States)

    Eseola, Abiodun O.; Obi-Egbedi, Nelson O.

    2010-02-01

    New 2-(1H-imidazol-2-yl)phenols ( L1Et- L8tBuPt) bearing a phenolic proton in the vicinity of the imidazole base were prepared and characterized. Experimental studies of the dependence of their protonation/deprotonation equilibrium on substituent identities and intramolecular hydrogen bonding tendencies were carried out using electronic absorption spectroscopy at varying pH values. In order to make comparison, 2-(anthracen-10-yl)-4,5-diphenyl-1H-imidazole ( L9Anthr) bearing no phenolic proton and 4,5-diphenyl-2-(4,5-diphenyl-1H-imidazol-2-yl)-1H-imidazole ( L10BisIm) bearing two symmetrical imidazole base fragments were also prepared and experimentally investigated. DFT calculations were carried out to study frontier orbitals of the investigated molecules. While electron-releasing substituents produced increase in protonation-deprotonation p Kas for the hydroxyl group, values for the imidazole base were mainly affected by polarization of the imidazole ring aromaticity across the 2-imidazole carbon and the 4,5-imidazole carbons axis of the imidazole ring. It was concluded that electron-releasing substituents on the phenol ring and/or electron-withdrawing substituents on 4,5-imidazole carbons negatively affects donor strengths/coordination chemistries of 2-(1H-imidazol-2-yl)phenols, and vice versa. Change of substituents on the phenol ring significantly altered the donor strength of the imidazole base. The understanding of p Ka variation on account of electronic effects of substituents in this work should aid the understanding of biochemical properties and substituent environments of imidazole-containing biomacromolecules.

  11. Synthesis, spectroscopic characterization and structural studies of a new proton transfer (H-bonded) complex of o-phenylenediamine with L-tartaric acid

    Science.gov (United States)

    Khan, Ishaat M.; Ahmad, Afaq

    2013-10-01

    A proton transfer or H-bonded (CT) complex of o-phenylenediamine (OPD) as donor with L-tartaric acid (TART) as acceptor was synthesized and characterized by spectral techniques such as FTIR, 1H NMR, elemental analysis, TGA-TDA, X-ray crystallography and spectrophotometric studies. The structural investigations exhibit that the cation [OPD+] and anion [TART-] are linked together through strong N+-H⋯O- type hydrogen bonds due to transfer of proton from acceptor to donor. Formed H-bonded complex exhibits well resolved proton transfer bands in the regions where neither donor nor acceptor has any absorption. The stoichiometry of the H-bonded complex (HBC) was found to be 1:1, determined by straight line methods. Spectrophotometric studies have been performed at room temperature and Benesi-Hildebrand equation was used to determine formation constant (KCT), molar extinction coefficient (ɛCT) and also transition energy (ECT) of the H-bonded complex. Spectrophotomeric and crystallographic studies have ascertained the formation of 1:1 H-bonded complex. Thermal analysis (TGA-DTA) was also used to confirm the thermal fragmentation and the stability of the synthesized H-bonded complex.

  12. Structural and spectroscopic features of proton hydrates in the crystalline state. Solid-state DFT study on HCl and triflic acid hydrates

    Science.gov (United States)

    Vener, M. V.; Chernyshov, I. Yu.; Rykounov, A. A.; Filarowski, A.

    2018-01-01

    Crystalline HCl and CF3SO3H hydrates serve as excellent model systems for protonated water and perfluorosulphonic acid membranes, respectively. They contain characteristic H3O+, H5О+2, H7О+3 and H3O+(H2O)3 (the Eigen cation) structures. The properties of these cations in the crystalline hydrates of strong monobasic acids are studied by solid-state density function theory (DFT). Simultaneous consideration of the HCl and CF3SO3H hydrates reveals the impact of the size of a counter ion and the crystalline environment on the structure and infrared active bands of the simplest proton hydrates. The H7O+3 structure is very sensitive to the size of the counter ion and symmetry of the local environment. This makes it virtually impossible to identify the specific features of H7O+3 in molecular crystals. The H3O+ ion can be treated as the Eigen-like cation in the crystalline state. Structural, infrared and electron-density features of H5О+2 and the Eigen cation are virtually insensitive to the size of the counter ion and the symmetry of the local crystalline environment. These cations can be considered as the simplest stable proton hydrates in the condensed phase. Finally, the influence of the Grimme correction on the structure and harmonic frequencies of the molecular crystals with short (strong) intermolecular O-H···O bonds is discussed.

  13. Factors associated with residual gastroesophageal reflux disease symptoms in patients receiving proton pump inhibitor maintenance therapy.

    Science.gov (United States)

    Kawara, Fumiaki; Fujita, Tsuyoshi; Morita, Yoshinori; Uda, Atsushi; Masuda, Atsuhiro; Saito, Masaya; Ooi, Makoto; Ishida, Tsukasa; Kondo, Yasuyuki; Yoshida, Shiei; Okuno, Tatsuya; Yano, Yoshihiko; Yoshida, Masaru; Kutsumi, Hiromu; Hayakumo, Takanobu; Yamashita, Kazuhiko; Hirano, Takeshi; Hirai, Midori; Azuma, Takeshi

    2017-03-21

    To elucidate the factors associated with residual gastroesophageal reflux disease (GERD) symptoms in patients receiving proton pump inhibitor (PPI) maintenance therapy in clinical practice. The study included 39 GERD patients receiving maintenance PPI therapy. Residual symptoms were assessed using the Frequency Scale for Symptoms of GERD (FSSG) questionnaire and the Gastrointestinal Symptom Rating Scale (GSRS). The relationships between the FSSG score and patient background factors, including the CYP2C19 genotype, were analyzed. The FSSG scores ranged from 1 to 28 points (median score: 7.5 points), and 19 patients (48.7%) had a score of 8 points or more. The patients' GSRS scores were significantly correlated with their FSSG scores (correlation coefficient = 0.47, P reflux-related symptom scores: 12 ± 1.9 vs 2.5 ± 0.8, P reflux disease patients were significantly lower than those of the other patients (total scores: 5.5 ± 1.0 vs 11.8 ± 6.3, P < 0.05; dysmotility symptom-related scores: 1.0 ± 0.4 vs 6.0 ± 0.8, P < 0.01). Approximately half of the GERD patients receiving maintenance PPI therapy had residual symptoms associated with a lower quality of life, and the CYP2C19 genotype appeared to be associated with these residual symptoms.

  14. Measurement of the proton form factor ratio at low momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Moshe [Hebrew Univ. of Jerusalem (Israel)

    2016-08-01

    Experiment E08-007-II measured the proton elastic form factor ratio μGE=GM in the momentum transfer range of Q2 ~ 0.02 - 0.08 GeV2, the lowest ever measured by polarization transfer techniques. The experiment was performed at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia, USA during 2012. A polarized electron beam with energies of 1.1, 1.7, and 2.2 GeV was elastically scattered off a polarized solid NH3 target. The asymmetries between the cross section of positive and negative helicity states of the beam were determined. These asymmetries can be used to determine the form factor ratio. In this thesis, we present the asymmetry analysis of the experiment, discuss the main challenges and show preliminary results for part of the data. Preliminary asymmetries indicate an increase in the form factor ratio above unity. However, a complete analysis is required before any conclusion can be made. Further analysis is ongoing, and final asymmetry results and form factor extraction is expected during 2017. We also present first results for 14N asymmetries for elastic and quasi-elastic scattering. The measured asymmetries are in agreement with the shell model approximation, within the low accuracy of the measurement. A change in the asymmetry sign between the elastic and the quasi-elastic processes is seen, and should motivate further theoretical studies. These experimental asymmetries will also be useful for systematic studies of other experiments using polarized NH3 targets.

  15. Determination of strange form factors of nucleon by parity violation asymmetry by polarized electron-proton elastic scattering

    International Nuclear Information System (INIS)

    Jardillier, Johann

    1999-01-01

    In the quark model, the proton is described as a system of three quarks UUD. However, recent experiments (CERN, SLAC) have shown that the strange quarks may contribute in a significant way to the mass and the spin of the proton. The HAPPEX experiment gives one further knowledge about the question of the role the strange quarks play inside the proton. It measures parity violating asymmetry in the scattering of polarized electrons from a proton because the latter is sensitive to the contribution of the strange quarks to the electromagnetic form factors of the nucleon. The observed asymmetry is in the order of a few ppm (part per million). The main difficulty of the experiment is to identify, to estimate and to minimize, as much as possible, all the systematic effects which could give rise to false asymmetries. This thesis discusses the principle of the HAPPEX experiment, its implementation at the Jefferson Lab (JLab), the processing and the analysis of the data, the systematic errors, and finally presents the result of the first data taking (1999) and its present interpretation. The HAPPEX experiment has measured, at Q 2 = 0.5 (GeV/c) 2 , a strange quarks contribution of (1.0 ± 2.3)% to the electromagnetic form factors of the nucleon. The statistics and the systematic effects (measure of the electron beam polarization and knowledge of the neutron electric form factor) contribute equally to the error. (author)

  16. Delirium in the geriatric unit: proton-pump inhibitors and other risk factors

    Directory of Open Access Journals (Sweden)

    Otremba I

    2016-04-01

    Full Text Available Iwona Otremba, Krzysztof Wilczyński, Jan SzewieczekDepartment of Geriatrics, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, PolandBackground: Delirium remains a major nosocomial complication of hospitalized elderly. Predictive models for delirium may be useful for identification of high-risk patients for implementation of preventive strategies.Objective: Evaluate specific factors for development of delirium in a geriatric ward setting.Methods: Prospective cross-sectional study comprised 675 consecutive patients aged 79.2±7.7 years (66% women and 34% men, admitted to the subacute geriatric ward of a multiprofile university hospital after exclusion of 113 patients treated with antipsychotic medication because of behavioral disorders before admission. Comprehensive geriatric assessments including a structured interview, physical examination, geriatric functional assessment, blood sampling, ECG, abdominal ultrasound, chest X-ray, Confusion Assessment Method for diagnosis of delirium, Delirium-O-Meter to assess delirium severity, Richmond Agitation-Sedation Scale to assess sedation or agitation, visual analog scale and Doloplus-2 scale to assess pain level were performed.Results: Multivariate logistic regression analysis revealed five independent factors associated with development of delirium in geriatric inpatients: transfer between hospital wards (odds ratio [OR] =2.78; confidence interval [CI] =1.54–5.01; P=0.001, preexisting dementia (OR =2.29; CI =1.44–3.65; P<0.001, previous delirium incidents (OR =2.23; CI =1.47–3.38; P<0.001, previous fall incidents (OR =1.76; CI =1.17–2.64; P=0.006, and use of proton-pump inhibitors (OR =1.67; CI =1.11–2.53; P=0.014.Conclusion: Transfer between hospital wards, preexisting dementia, previous delirium incidents, previous fall incidents, and use of proton-pump inhibitors are predictive of development of delirium in the geriatric inpatient setting.Keywords: delirium

  17. Spectroscopic study of 206,207,208Pb isotopes by high resolution analysis of 24.5 MeV proton scattering

    International Nuclear Information System (INIS)

    Vallois, G.

    1968-03-01

    206,207,208 pb have been studied by 24.5 MeV proton inelastic scattering with a resolution of 20 keV. The angular distributions of the differential cross-sections corresponding to the different excited levels have been measured in a large angular region and analysed with the DWBA.This work shows that it exists between 4 and 5 MeV of excitation energy some strongly excited levels corresponding to transfer momenta l = 2, 4, 6 and 8. The single particle-hole models do not explain these states; so it will probably be necessary to introduce some several particle - hole configurations. (author) [fr

  18. Proton Magnetic Resonance Spectroscopic Imaging in Newly Diagnosed Glioblastoma: Predictive Value for the Site of Postradiotherapy Relapse in a Prospective Longitudinal Study

    International Nuclear Information System (INIS)

    Laprie, Anne; Catalaa, Isabelle; Cassol, Emmanuelle; McKnight, Tracy R.; Berchery, Delphine; Marre, Delphine; Bachaud, Jean-Marc; Berry, Isabelle; Moyal, Elizabeth Cohen-Jonathan

    2008-01-01

    Purpose: To investigate the association between magnetic resonance spectroscopic imaging (MRSI)-defined, metabolically abnormal tumor regions and subsequent sites of relapse in data from patients treated with radiotherapy (RT) in a prospective clinical trial. Methods and Materials: Twenty-three examinations were performed prospectively for 9 patients with newly diagnosed glioblastoma multiforme studied in a Phase I trial combining Tipifarnib and RT. The patients underwent magnetic resonance imaging (MRI) and MRSI before treatment and every 2 months until relapse. The MRSI data were categorized by the choline (Cho)/N-acetyl-aspartate (NAA) ratio (CNR) as a measure of spectroscopic abnormality. CNRs corresponding to T1 and T2 MRI for 1,207 voxels were evaluated before RT and at recurrence. Results: Before treatment, areas of CNR2 (CNR ≥2) represented 25% of the contrast-enhancing (T1CE) regions and 10% of abnormal T2 regions outside T1CE (HyperT2). The presence of CNR2 was often an early indicator of the site of relapse after therapy. In fact, 75% of the voxels within the T1CE+CNR2 before therapy continued to exhibit CNR2 at relapse, compared with 22% of the voxels within the T1CE with normal CNR (p < 0.05). The location of new contrast enhancement with CNR2 corresponded in 80% of the initial HyperT2+CNR2 vs. 20.7% of the HyperT2 voxels with normal CNR (p < 0.05). Conclusion: Metabolically active regions represented a small percentage of pretreatment MRI abnormalities and were predictive for the site of post-RT relapse. The incorporation of MRSI data in the definition of RT target volumes for selective boosting may be a promising avenue leading to increased local control of glioblastomas

  19. Proton electromagnetic form factors: Basic notions, present achievements and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Pacetti, Simone, E-mail: simone.pacetti@pg.infn.it [Dipartimento di Fisica e Geologia dell’Universitá degli Studi di Perugia and INFN Sezione di Perugia, 06123 Perugia (Italy); Baldini Ferroli, Rinaldo [INFN, Laboratori Nazionali di Frascati, 00044 Frascati (Italy); Tomasi-Gustafsson, Egle [CEA, IRFU, SPhN, Saclay, 91191 Gif-sur-Yvette Cedex (France); CNRS/IN2P3, Institut de Physique Nucléaire, UMR 8608, 91406 Orsay (France)

    2015-01-20

    The aim of this report is to give basic notions on electromagnetic hadron form factors (FFs), as they are understood at the present time, to summarize and analyze the present experimental results and available theoretical models and to open a view on future perspectives. FFs are fundamental quantities, which describe the internal, dynamical structure of hadrons. Although the theoretical formalism was settled in the middle of last century, as well as the first experiments in electron–proton elastic scattering for which R. Hofstadter got the Nobel prize in 1961, a renewed activity is due to recent, surprising results and to the opening of new experimental possibilities. An elegant formalism was built on the assumption of a hadron electromagnetic interaction based on the exchange of a virtual photon of four-momentum q{sup 2}. In this case FFs are analytic functions of only one variable, q{sup 2}, and the electromagnetic vertex γ{sup ∗}hh (h is any hadron) is defined by two structure functions, which, in turn, are expressed in terms of (2S+1) FFs, S being the hadron spin, assuming parity and time-invariance. Our aim is to anticipate the potentiality contained in the future data, combined with the present knowledge, to point out the relevant observables and the most significative measurements, and to give predictions to be compared to the data when they will be available.

  20. Proton electromagnetic form factors: Basic notions, present achievements and future perspectives

    International Nuclear Information System (INIS)

    Pacetti, Simone; Baldini Ferroli, Rinaldo; Tomasi-Gustafsson, Egle

    2015-01-01

    The aim of this report is to give basic notions on electromagnetic hadron form factors (FFs), as they are understood at the present time, to summarize and analyze the present experimental results and available theoretical models and to open a view on future perspectives. FFs are fundamental quantities, which describe the internal, dynamical structure of hadrons. Although the theoretical formalism was settled in the middle of last century, as well as the first experiments in electron–proton elastic scattering for which R. Hofstadter got the Nobel prize in 1961, a renewed activity is due to recent, surprising results and to the opening of new experimental possibilities. An elegant formalism was built on the assumption of a hadron electromagnetic interaction based on the exchange of a virtual photon of four-momentum q 2 . In this case FFs are analytic functions of only one variable, q 2 , and the electromagnetic vertex γ ∗ hh (h is any hadron) is defined by two structure functions, which, in turn, are expressed in terms of (2S+1) FFs, S being the hadron spin, assuming parity and time-invariance. Our aim is to anticipate the potentiality contained in the future data, combined with the present knowledge, to point out the relevant observables and the most significative measurements, and to give predictions to be compared to the data when they will be available

  1. Coordinating the Structural Rearrangements Associated with Unidirectional Proton Transfer in the Bacteriorhodopsin Photocycle Induced by Deprotonation of the Proton-Release Group: A Time-Resolved Difference FTIR Spectroscopic Study†

    Science.gov (United States)

    Morgan, Joel E.; Vakkasoglu, Ahmet S.; Lanyi, Janos K.; Gennis, Robert B.; Maeda, Akio

    2014-01-01

    In the photocycle of bacteriorhodopsin at pH 7, proton release from the proton releasing group (PRG) to the extracellular medium occurs during formation of the M intermediate. This proton release is inhibited at acidic pH, below the pKa of the PRG, ∼6 in M, and instead occurs later in the cycle as the initial state is restored from the O intermediate. Here, structural changes related to deprotonation of the PRG have been investigated by time-resolved FTIR spectroscopy at 25°C. The vibrational features at 2100-1790 cm-1, 1730-1685 cm-1, 1661 cm-1, and 1130-1045 cm-1 have greater negative intensity in the pure M-minus-BR spectrum and even in the M-minus-BR spectrum, that is present earlier together with the L-minus-BR spectrum, at pH 7, than in the corresponding M-minus-BR spectra at pH 5 or pH 4. The D212N mutation abolishes the decreases in the intensities of the broad feature between 1730 and 1685 cm-1 and the band at 1661 cm-1. The 1730-1685 cm-1 feature may arise from transition dipole coupling of the backbone carbonyl groups of Glu204, Phe208, Asp212 and Lys216 interacting with Tyr57 and C15-H of the chromophore. The 1661 cm-1 band, which is insensitive to D2O substitution, may arise by interaction of the backbone carbonyl of Asp212 with C15-H. The 2100-1790 cm-1 feature with a trough at 1885 cm-1 could be due to a water cluster. Depletion of these bands upon deprotonation of the PRG is attributable to disruption of a coordinated structure, held in place by interactions of Asp212. Deprotonation of the PRG is accompanied also by disruption of the interaction of the water molecule near Arg82. The liberated Asp212 may stabilize the protonated state of Asp85, and thus confer uni-directionality to the transport. PMID:20232848

  2. High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Xiaohui [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2010-01-01

    Experiment E08-007 measured the proton elastic form factor ratio μpGE/GM in the range of Q2 = 0.3-0.7(GeV/c)2 by recoil polarimetry. Data were taken in 2008 at the Thomas Jefferson National Accelerator Facility in Virginia, USA. A 1.2 GeV polarized electron beam was scattered off a cryogenic hydrogen target. The recoil proton was detected in the left HRS in coincidence with the elasticly scattered electrons tagged by the BigBite spectrometer. The proton polarization was measured by the focal plane polarimeter (FPP). In this low Q2 region, previous measurement from Jefferson Lab Hall A (LEDEX) along with various fits and calculations indicate substantial deviations of the ratio from unity. For this new measurement, the proposed statistical uncertainty (< 1%) was achieved. These new results are a few percent lower than expected from previous world data and fits, which indicate a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the new results also have implications in determining the proton Zemach radius and the strangeness form factors from parity violation experiments.

  3. Optimization of the pion beam for the HADES detector and determination of the η form factor in proton-proton reactions at 2.2 GeV

    International Nuclear Information System (INIS)

    Spruck, Bjoern

    2008-01-01

    This thesis contains two tasks. The first part focuses on the development and optimization of the pion beam facility for the HADES experiment. The second part describes the measurement of the electromagnetic transition form factor of the η meson in proton-proton reactions. To investigate pion-nucleon reaction, a secondary pion beam is required. The pions are produced by a heavy ion beam impinging on a beryllium target. In order to determine the profile of the beam focus, two scintillating fiber detectors have been built as part of this thesis and are read out with recently developed electronics. The measured size of the beam focus appeared to be not acceptable, which can be attributed to the achromatic magnetic focusing in the beam line. Simulations have shown, that an additional quadrupole magnet directly in front of HADES would solve this problem and improve the beam quality. A test experiment including this new quadrupole has been performed and the analysis is still in progress. Preliminary results show a significant reduction of the momentum dependency of the focus. The size of the actual beam spot has been deduced to 14 mm by using an indirect tracking approach. For deducing the electromagnetic structure of hadrons, a first step has been done by analyzing the η Dalitz decay in p+p reactions at 2.2 GeV kinetic energy to determine the electromagnetic transition form factor of the η meson. A fit to the data leads to a form factor slope of b=2.2 -1.4 +1.2 GeV -2 . This corresponds to a pole mass of λ=680 -130 +460 MeV/c 2 . It has been shown, that a semi-exclusive analysis of the η Dalitz decay within the event hypothesis framework including a kinematical fit is feasible. (orig.)

  4. Study of proton radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Back, B.B.; Henderson, D.J. [and others

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  5. Single proton transfer reactions on odd-even nuclei

    International Nuclear Information System (INIS)

    Blasi, N.

    1984-01-01

    This thesis is devoted to the study of one proton transfer reactions, performed with the use of the magnetic spectrograph QMG/2 of the KVI, in two regions of the mass table. Stripping and pickup reactions on the odd-A target nuclei 193 Ir and 197 Au are described in the first part. The experimental spectroscopic factors obtained are used to test several collective models that are based on coupling between bosons (phonons) and fermions. In the second part, the proton stripping reactions on 113 In and 115 In are studied. Shell model calculations are performed and applied to the experimental results. (Auth.)

  6. Evaluation of ion chamber dependent correction factors for ionisation chamber dosimetry in proton beams using a Monte Carlo method

    International Nuclear Information System (INIS)

    Palmans, H.; Verhaegen, F.

    1995-01-01

    In the last decade, several clinical proton beam therapy facilities have been developed. To satisfy the demand for uniformity in clinical (routine) proton beam dosimetry two dosimetry protocols (ECHED and AAPM) have been published. Both protocols neglect the influence of ion chamber dependent parameters on dose determination in proton beams because of the scatter properties of these beams, although the problem has not been studied thoroughly yet. A comparison between water calorimetry and ionisation chamber dosimetry showed a discrepancy of 2.6% between the former method and ionometry following the ECHED protocol. Possibly, a small part of this difference can be attributed to chamber dependent correction factors. Indications for this possibility are found in ionometry measurements. To allow the simulation of complex geometries with different media necessary for the study of those corrections, an existing proton Monte Carlo code (PTRAN, Berger) has been modified. The original code, that applies Mollire's multiple scattering theory and Vavilov's energy straggling theory, calculates depth dose profiles, energy distributions and radial distributions for pencil beams in water. Comparisons with measurements and calculations reported in the literature are done to test the program's accuracy. Preliminary results of the influence of chamber design and chamber materials on dose to water determination are presented

  7. Evaluation of ion chamber dependent correction factors for ionisation chamber dosimetry in proton beams using a Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Palmans, H [Ghent Univ. (Belgium). Dept. of Biomedical Physics; Verhaegen, F

    1995-12-01

    In the last decade, several clinical proton beam therapy facilities have been developed. To satisfy the demand for uniformity in clinical (routine) proton beam dosimetry two dosimetry protocols (ECHED and AAPM) have been published. Both protocols neglect the influence of ion chamber dependent parameters on dose determination in proton beams because of the scatter properties of these beams, although the problem has not been studied thoroughly yet. A comparison between water calorimetry and ionisation chamber dosimetry showed a discrepancy of 2.6% between the former method and ionometry following the ECHED protocol. Possibly, a small part of this difference can be attributed to chamber dependent correction factors. Indications for this possibility are found in ionometry measurements. To allow the simulation of complex geometries with different media necessary for the study of those corrections, an existing proton Monte Carlo code (PTRAN, Berger) has been modified. The original code, that applies Mollire`s multiple scattering theory and Vavilov`s energy straggling theory, calculates depth dose profiles, energy distributions and radial distributions for pencil beams in water. Comparisons with measurements and calculations reported in the literature are done to test the program`s accuracy. Preliminary results of the influence of chamber design and chamber materials on dose to water determination are presented.

  8. Experimental determination of relative light conversion factors of TLD-100 for protons with energies from 2.0 to 9.0 MeV

    International Nuclear Information System (INIS)

    Schmidt, P.; Fellinger, J.; Henniger, J.; Huebner, K.

    1988-01-01

    The efficiency of thermoluminescent (TL) detectors to heavy charged particles is described by the so-called light conversion factor η. Relative light conversion factors for protons, alphas and heavier recoils are needed for the calculation of the neutron sensitivity of TL detectors. Such light conversion factors can be determined experimentally. In this paper a method is presented for the experimental determination of relative light conversion factors. Using the experimental arrangement described, relative light conversion factors for LiF material (TLD-100) for protons were determined. In LiF the relative main peak (peak V) efficiency is always lower than 1. It increases with increasing proton energy whereas the relative efficiency of the high temperature peak (peak VI) shows an opposite dependence on the proton energy. Relative light conversion factors for peak VI clearly exceed 1. (orig.)

  9. A Proton Magnetic Resonance Spectroscopic Study in Autism Spectrum Disorder Using a 3-Tesla Clinical Magnetic Resonance Imaging (MRI) System: The Anterior Cingulate Cortex and the Left Cerebellum.

    Science.gov (United States)

    Ito, Hiromichi; Mori, Kenji; Harada, Masafumi; Hisaoka, Sonoka; Toda, Yoshihiro; Mori, Tatsuo; Goji, Aya; Abe, Yoko; Miyazaki, Masahito; Kagami, Shoji

    2017-07-01

    The pathophysiology of autism spectrum disorder (ASD) is not fully understood. We used proton magnetic resonance spectroscopy to investigate metabolite concentration ratios in the anterior cingulate cortex and left cerebellum in ASD. In the ACC and left cerebellum studies, the ASD group and intelligence quotient- and age-matched control group consisted of 112 and 114 subjects and 65 and 45 subjects, respectively. In the ASD group, γ-aminobutyric acid (GABA)+/ creatine/phosphocreatine (Cr) was significantly decreased in the anterior cingulate cortex, and glutamate (Glu)/Cr was significantly increased and GABA+/Cr was significantly decreased in the left cerebellum compared to those in the control group. In addition, both groups showed negative correlations between Glu/Cr and GABA+/Cr in the left cerebellum, and positive correlations between GABA+/Cr in the anterior cingulate cortex and left cerebellum. ASD subjects have hypoGABAergic alterations in the anterior cingulate cortex and hyperglutamatergic/hypoGABAergic alterations in the left cerebellum.

  10. Proton-proton bremsstrahlung

    International Nuclear Information System (INIS)

    Fearing, H.W.

    1990-01-01

    We summarize some of the information about the nucleon-nucleon force which has been obtained by comparing recent calculations of proton-proton bremsstrahlung with cross section and analyzing power data from the new TRIUMF bremsstrahlung experiment. Some comments are made as to how these results can be extended to neutron-proton bremsstrahlung. (Author) 17 refs., 6 figs

  11. Stereochemistry of C18 monounsaturated cork suberin acids determined by spectroscopic techniques including (1) H-NMR multiplet analysis of olefinic protons.

    Science.gov (United States)

    Santos, Sara; Graça, José

    2014-01-01

    Suberin is a biopolyester responsible for the protection of secondary plant tissues, and yet its molecular structure remains unknown. The C18:1 ω-hydroxyacid and the C18:1 α,ω-diacid are major monomers in the suberin structure, but the configuration of the double bond remains to be elucidated. To unequivocally define the configuration of the C18:1 suberin acids. Pure C18:1 ω-hydroxyacid and C18:1 α,ω-diacid, isolated from cork suberin, and two structurally very close C18:1 model compounds of known stereochemistry, methyl oleate and methyl elaidate, were analysed by NMR spectroscopy, Fourier transform infrared (FTIR) and Raman spectroscopy, and GC-MS. The GC-MS analysis showed that both acids were present in cork suberin as only one geometric isomer. The analysis of dimethyloxazoline (DMOX) and picolinyl derivatives proved the double bond position to be at C-9. The FTIR spectra were concordant with a cis-configuration for both suberin acids, but their unambiguous stereochemical assignment came from the NMR analysis: (i) the chemical shifts of the allylic (13) C carbons were shielded comparatively to the trans model compound, and (ii) the complex multiplets of the olefinic protons could be simulated only with (3) JHH and long-range (4) JHH coupling constants typical of a cis geometry. The two C18:1 suberin acids in cork are (Z)-18-hydroxyoctadec-9-enoic acid and (Z)-octadec-9-enedoic acid. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Measurements of the Proton Elastic-Form-Factor Ratio μpGEp/GMp at Low Momentum Transfer

    International Nuclear Information System (INIS)

    Ron, G.; Piasetzky, E.; Pomerantz, I.; Shneor, R.; Glister, J.; Lee, B.; Choi, Seonho; Kang, H.; Oh, Y.; Song, J.; Yan, X.; Allada, K.; Dutta, C.; Armstrong, W.; Meziani, Z.-E.; Yao, H.; Arrington, J.; Solvignon, P.; Beck, A.; May-Tal Beck, S.

    2007-01-01

    High-precision measurements of the proton elastic form-factor ratio, μ p G E p /G M p , have been made at four-momentum transfer, Q 2 , values between 0.2 and 0.5 GeV 2 . The new data, while consistent with previous results, clearly show a ratio less than unity and significant differences from the central values of several recent phenomenological fits. By combining the new form-factor ratio data with an existing cross-section measurement, one finds that in this Q 2 range the deviation from unity is primarily due to G E p being smaller than expected

  13. Proton Magnetic Resonance Spectroscopy and MRI Reveal No Evidence for Brain Mitochondrial Dysfunction in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Corrigan, Neva M.; Shaw, Dennis. W. W.; Richards, Todd L.; Estes, Annette M.; Friedman, Seth D.; Petropoulos, Helen; Artru, Alan A.; Dager, Stephen R.

    2012-01-01

    Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ([superscript 1]HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally…

  14. SU-E-T-464: On the Equivalence of the Quality Correction Factor for Pencil Beam Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Sorriaux, J; Paganetti, H; Testa, M; Giantsoudi, D; Schuemann, J; Bertrand, D; Orban de Xivry, J.; Lee, J; Palmans, H; Vynckier, S; Sterpin, E

    2014-01-01

    Purpose: In current practice, most proton therapy centers apply IAEA TRS-398 reference dosimetry protocol. Quality correction factors (kQ) take into account in the dose determination process the differences in beam qualities used for calibration unit and for treatment unit. These quality correction factors are valid for specific reference conditions. TRS-398 reference conditions should be achievable in both scattered proton beams (i.e. DS) and scanned proton beams (i.e. PBS). However, it is not a priori clear if TRS-398 kQ data, which are based on Monte Carlo (MC) calculations in scattered beams, can be used for scanned beams. Using TOPAS-Geant4 MC simulations, the study aims to determine whether broad beam quality correction factors calculated in TRS-398 can be directly applied to PBS delivery modality. Methods: As reference conditions, we consider a 10×10×10 cm 3 homogeneous dose distribution delivered by PBS system in a water phantom (32/10 cm range/modulation) and an air cavity placed at the center of the spread-out-Bragg-peak. In order to isolate beam differences, a hypothetical broad beam is simulated. This hypothetical beam reproduces exactly the same range modulation, and uses the same energy layers than the PBS field. Ion chamber responses are computed for the PBS and hypothetical beams and then compared. Results: For an air cavity of 2×2×0.2 cm 3 , the ratio of ion chamber responses for the PBS and hypothetical beam qualities is 0.9991 ± 0.0016. Conclusion: Quality correction factors are insensitive to the delivery pattern of the beam (broad beam or PBS), as long as similar dose distributions are achieved. This investigation, for an air cavity, suggests that broad beam quality correction factors published in TRS-398 can be applied for scanned beams. J. Sorriaux is financially supported by a public-private partnership involving the company Ion Beam Applications (IBA)

  15. Ever-changing proton radius?

    Energy Technology Data Exchange (ETDEWEB)

    Mihovilovic, Miha [Institut fuer Kernphysik, Johannes-Gutenberg-Universitaet, Mainz (Germany)

    2016-07-01

    The discrepancy between the proton charge radius extracted from the muonic hydrogen Lamb shift measurement and the presently best value obtained from elastic scattering experiments remains unexplained and represents a burning problem of today's nuclear physics. Therefore, several new experiments are underway, committed to provide new insight into the problem. High-precision electron scattering experiments are in progress at the Jefferson Lab and the Mainz Microtron. As a counterpart to these measurements, a muon-proton scattering experiment is envisioned at the Paul Scherrer Institute. Together with the nuclear scattering experiments, new atomic measurements are underway at the Max Planck Institute in Garching, which aim to further improve also the spectroscopic results on electronic hydrogen. These experiments are complemented by extensive theoretical efforts focused on studying various processes contributing to the atomic Lamb shift measurements that could explain the difference, as well as on pursuing different ways to interpret nuclear form-factor measurements, which could lead to a consistent value of the radius. In this presentation the currently best proton radius measurements are summarized, and the importance of the observed inconsistency between the hydrogen and the muonic-hydrogen data is discussed. Selected new experiments dedicated to remeasuring the radius are described, and the results of the MAMI experiment are presented.

  16. ψ (2 S ) versus J /ψ suppression in proton-nucleus collisions from factorization violating soft color exchanges

    Science.gov (United States)

    Ma, Yan-Qing; Venugopalan, Raju; Watanabe, Kazuhiro; Zhang, Hong-Fei

    2018-01-01

    We argue that the large suppression of the ψ (2 S ) inclusive cross section relative to the J /ψ inclusive cross section in proton-nucleus (p+A) collisions can be attributed to factorization breaking effects in the formation of quarkonium. These factorization breaking effects arise from soft color exchanges between charm-anticharm pairs undergoing hadronization and comoving partons that are long lived on time scales of quarkonium formation. We compute the short distance pair production of heavy quarks in the color glass condensate (CGC) effective field theory and employ an improved color evaporation model (ICEM) to describe their hadronization into quarkonium at large distances. The combined CGC+ICEM model provides a quantitative description of J /ψ and ψ (2 S ) data in proton-proton (p+p) collisions from both RHIC and the LHC. Factorization breaking effects in hadronization, due to additional parton comovers in the nucleus, are introduced heuristically by imposing a cutoff Λ , representing the average momentum kick from soft color exchanges, in the ICEM. Such soft exchanges have no perceptible effect on J /ψ suppression in p+A collisions. In contrast, the interplay of the physics of these soft exchanges at large distances, with the physics of semihard rescattering at short distances, causes a significant additional suppression of ψ (2 S ) yields relative to that of the J /ψ . A good fit of all RHIC and LHC J /ψ and ψ (2 S ) data, for transverse momenta P⊥≤5 GeV in p+p and p+A collisions, is obtained for Λ ˜10 MeV.

  17. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations.

    Science.gov (United States)

    Palmans, H; Al-Sulaiti, L; Andreo, P; Shipley, D; Lühr, A; Bassler, N; Martinkovič, J; Dobrovodský, J; Rossomme, S; Thomas, R A S; Kacperek, A

    2013-05-21

    The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose-to-graphite in a graphite phantom to dose-to-water in a water phantom for 60 MeV mono-energetic protons were calculated using an analytical model and five different Monte Carlo codes (Geant4, FLUKA, MCNPX, SHIELD-HIT and McPTRAN.MEDIA). In general the fluence correction factors are found to be close to unity and the analytical and Monte Carlo codes give consistent values when considering the differences in secondary particle transport. When considering only protons the fluence correction factors are unity at the surface and increase with depth by 0.5% to 1.5% depending on the code. When the fluence of all charged particles is considered, the fluence correction factor is about 0.5% lower than unity at shallow depths predominantly due to the contributions from alpha particles and increases to values above unity near the Bragg peak. Fluence correction factors directly derived from the fluence distributions differential in energy at equivalent depths in water and graphite can be described by kfl = 0.9964 + 0.0024·zw-eq with a relative standard uncertainty of 0.2%. Fluence correction factors derived from a ratio of calculated doses at equivalent depths in water and graphite can be described by kfl = 0.9947 + 0.0024·zw-eq with a relative standard uncertainty of 0.3%. These results are of direct relevance to graphite calorimetry in low-energy protons but given that the fluence

  18. A new version of DWPI (inelastic pion-nucleus scattering) to incorporate microscopic form factors and differing proton and neutron radii

    International Nuclear Information System (INIS)

    Funsten, H.O.

    1979-01-01

    This is a modification of the Eisenstein-Miller program for calculation of collective inelastic pion-nucleus differential cross sections using free π-N scattering amplitudes. This revision permits the additional use of microscopic (shell model) proton and neutron form factors. It also incorporates separate proton and neutron radii for the nuclear density rho(r) generating the distorted wave optical potential. (Auth.)

  19. SU-F-BRD-15: Quality Correction Factors in Scanned Or Broad Proton Therapy Beams Are Indistinguishable

    Energy Technology Data Exchange (ETDEWEB)

    Sorriaux, J; Lee, J [Molecular Imaging Radiotherapy & Oncology, Universite Catholique de Louvain, Brussels (Belgium); ICTEAM Institute, Universite catholique de Louvain, Louvain-la-Neuve (Belgium); Testa, M; Paganetti, H [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, Massachusetts (United States); Bertrand, D; Orban de Xivry, J [Ion Beam Applications, Louvain-la-neuve, Brabant Wallon (Belgium); Palmans, H [EBG MedAustron GmbH, Wiener Neustadt (Austria); National Physical Laboratory, Teddington (United Kingdom); Vynckier, S [Cliniques Universitaires Saint-Luc, Brussels (Belgium); Sterpin, E [Molecular Imaging Radiotherapy & Oncology, Universite Catholique de Louvain, Brussels (Belgium)

    2015-06-15

    Purpose: The IAEA TRS-398 code of practice details the reference conditions for reference dosimetry of proton beams using ionization chambers and the required beam quality correction factors (kQ). Pencil beam scanning (PBS) requires multiple spots to reproduce the reference conditions. The objective is to demonstrate, using Monte Carlo (MC) calculations, that kQ factors for broad beams can be used for scanned beams under the same reference conditions with no significant additional uncertainty. We consider hereafter the general Alfonso formalism (Alfonso et al, 2008) for non-standard beam. Methods: To approach the reference conditions and the associated dose distributions, PBS must combine many pencil beams with range modulation and shaping techniques different than those used in passive systems (broad beams). This might lead to a different energy spectrum at the measurement point. In order to evaluate the impact of these differences on kQ factors, ion chamber responses are computed with MC (Geant4 9.6) in a dedicated scanned pencil beam (Q-pcsr) producing a 10×10cm2 composite field with a flat dose distribution from 10 to 16 cm depth. Ion chamber responses are also computed by MC in a broad beam with quality Q-ds (double scattering). The dose distribution of Q -pcsr matches the dose distribution of Q-ds. k-(Q-pcsr,Q-ds) is computed for a 2×2×0.2cm{sup 3} idealized air cavity and a realistic plane-parallel ion chamber (IC). Results: Under reference conditions, quality correction factors for a scanned composite field versus a broad beam are the same for air cavity dose response, k-(Q-pcsr,Q-ds) =1.001±0.001 and for a Roos IC, k-(Q-pcsr,Q-ds) =0.999±0.005. Conclusion: Quality correction factors for ion chamber response in scanned and broad proton therapy beams are identical under reference conditions within the calculation uncertainties. The results indicate that quality correction factors published in IAEA TRS-398 can be used for scanned beams in the SOBP of a

  20. SU-F-BRD-15: Quality Correction Factors in Scanned Or Broad Proton Therapy Beams Are Indistinguishable

    International Nuclear Information System (INIS)

    Sorriaux, J; Lee, J; Testa, M; Paganetti, H; Bertrand, D; Orban de Xivry, J; Palmans, H; Vynckier, S; Sterpin, E

    2015-01-01

    Purpose: The IAEA TRS-398 code of practice details the reference conditions for reference dosimetry of proton beams using ionization chambers and the required beam quality correction factors (kQ). Pencil beam scanning (PBS) requires multiple spots to reproduce the reference conditions. The objective is to demonstrate, using Monte Carlo (MC) calculations, that kQ factors for broad beams can be used for scanned beams under the same reference conditions with no significant additional uncertainty. We consider hereafter the general Alfonso formalism (Alfonso et al, 2008) for non-standard beam. Methods: To approach the reference conditions and the associated dose distributions, PBS must combine many pencil beams with range modulation and shaping techniques different than those used in passive systems (broad beams). This might lead to a different energy spectrum at the measurement point. In order to evaluate the impact of these differences on kQ factors, ion chamber responses are computed with MC (Geant4 9.6) in a dedicated scanned pencil beam (Q-pcsr) producing a 10×10cm2 composite field with a flat dose distribution from 10 to 16 cm depth. Ion chamber responses are also computed by MC in a broad beam with quality Q-ds (double scattering). The dose distribution of Q -pcsr matches the dose distribution of Q-ds. k-(Q-pcsr,Q-ds) is computed for a 2×2×0.2cm 3 idealized air cavity and a realistic plane-parallel ion chamber (IC). Results: Under reference conditions, quality correction factors for a scanned composite field versus a broad beam are the same for air cavity dose response, k-(Q-pcsr,Q-ds) =1.001±0.001 and for a Roos IC, k-(Q-pcsr,Q-ds) =0.999±0.005. Conclusion: Quality correction factors for ion chamber response in scanned and broad proton therapy beams are identical under reference conditions within the calculation uncertainties. The results indicate that quality correction factors published in IAEA TRS-398 can be used for scanned beams in the SOBP of a high

  1. High duty factor Plasma Generator for CERN’s Superconducting Proton Linac

    CERN Document Server

    Lettry, J; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, JM; Kuchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D

    2010-01-01

    CERN’s Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN’s PS-Booster. Its ion source is a non-cesiated RF driven H- volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H- during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the LHC, it consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV Synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H- during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H- plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the...

  2. Determination of strange form factors of nucleon by parity violation asymmetry by polarized electron-proton elastic scattering; Mesure des facteurs de forme etranges du nucleon par asymetrie de violation de parite dans la diffusion elastique electron polarise-proton

    Energy Technology Data Exchange (ETDEWEB)

    Jardillier, Johann [Lab. de Physique Corpusculaire, Clermont-Ferrand-2 Univ., 63 - Aubiere (France)

    1999-09-21

    In the quark model, the proton is described as a system of three quarks UUD. However, recent experiments (CERN, SLAC) have shown that the strange quarks may contribute in a significant way to the mass and the spin of the proton. The HAPPEX experiment gives one further knowledge about the question of the role the strange quarks play inside the proton. It measures parity violating asymmetry in the scattering of polarized electrons from a proton because the latter is sensitive to the contribution of the strange quarks to the electromagnetic form factors of the nucleon. The observed asymmetry is in the order of a few ppm (part per million). The main difficulty of the experiment is to identify, to estimate and to minimize, as much as possible, all the systematic effects which could give rise to false asymmetries. This thesis discusses the principle of the HAPPEX experiment, its implementation at the Jefferson Lab (JLab), the processing and the analysis of the data, the systematic errors, and finally presents the result of the first data taking (1999) and its present interpretation. The HAPPEX experiment has measured, at Q{sup 2} = 0.5 (GeV/c){sup 2}, a strange quarks contribution of (1.0 {+-} 2.3)% to the electromagnetic form factors of the nucleon. The statistics and the systematic effects (measure of the electron beam polarization and knowledge of the neutron electric form factor) contribute equally to the error. (author)

  3. The NASA Ames PAH IR Spectroscopic Database: Computational Version 3.00 with Updated Content and the Introduction of Multiple Scaling Factors

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Ricca, A.; Boersma, C.; Allamandola, L. J.

    2018-02-01

    Version 3.00 of the library of computed spectra in the NASA Ames PAH IR Spectroscopic Database (PAHdb) is described. Version 3.00 introduces the use of multiple scale factors, instead of the single scaling factor used previously, to align the theoretical harmonic frequencies with the experimental fundamentals. The use of multiple scale factors permits the use of a variety of basis sets; this allows new PAH species to be included in the database, such as those containing oxygen, and yields an improved treatment of strained species and those containing nitrogen. In addition, the computed spectra of 2439 new PAH species have been added. The impact of these changes on the analysis of an astronomical spectrum through database-fitting is considered and compared with a fit using Version 2.00 of the library of computed spectra. Finally, astronomical constraints are defined for the PAH spectral libraries in PAHdb.

  4. An experimental study of odd mass promethium isotopes using proton stripping and pickup reactions

    International Nuclear Information System (INIS)

    Straume, O.

    1979-11-01

    Odd Pm isotopes have been studied by one proton pick-up and stripping reactions. Spin assignment and spectroscopic factors have been obtained for a number of energy levels. In the stripping reactions, the relative cross-sections have been measured with an unusually high precision by the use of a target of natural neodymium. The spectroscopic strengths have been extracted using standard distorted wave methods. The nuclear structures of these promethium isotopes fall into three categories. The spherical approach seems valid for 143 Pm and 145 Pm and the deformed regime covers 151 Pm and 153 Pm, while 147 Pm and 149 Pm remain as transitional nuclei. (Auth.)

  5. Experimental determination of relative light conversion factors of TLD-100 for protons with energies from 2.0 to 9.0 MeV

    International Nuclear Information System (INIS)

    Schmidt, P.; Fellinger, J.; Huebner, K.; Henniger, J.

    1985-01-01

    Relative light conversion factors (RLCF) for heavy charged particles (protons, deuterons, recoils) are needed for the calculation of the neutron sensitivity of thermoluminescent (TL) detectors. Such light conversion factors can be determined experimentally. A method is represented for the experimental determination of RLCF. The described experimental facility gives the possibility of irradiation of different luminophor samples with heavy charged particles and flux determination and particle spectrometry at the same time. For the determination of RLCF the doses are needed which are applicated at the irradiation with heavy charged particles and gamma radiation, respectively, and the according detector readings at the TL evaluation. The problems arising at the dose determination are discussed. With this experimental facility the RLCF for TLD-100 for protons were determined. The relative light conversion factors determined according to the light sum method as well as the peak height method are summarizinhly represented and discussed. Furthermore a comparison of the glow curves is made after gamma and proton irradiation

  6. Spectroscopic data

    CERN Document Server

    Melzer, J

    1976-01-01

    During the preparation of this compilation, many people contributed; the compilers wish to thank all of them. In particular they appreciate the efforts of V. Gilbertson, the manuscript typist, and those of K. C. Bregand, J. A. Kiley, and W. H. McPherson, who gave editorial assistance. They would like to thank Dr. J. R. Schwartz for his cooperation and encouragement. In addition, they extend their grati­ tude to Dr. L. Wilson of the Air Force Weapons Laboratory, who gave the initial impetus to this project. v Contents I. I ntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . 11. Organization ofthe Spectroscopic Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Methods of Production and Experimental Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Band Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2...

  7. Investigations of Spectroscopic Factors and Sum Rules from the Single Neutron Transfer Reaction 111Cd(overrightarrow {{d}} ,p)112Cd

    Science.gov (United States)

    Jamieson, D. S.; Garrett, P. E.; Ball, G. C.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Krücken, R.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Triambak, S.; Wirth, H.-F.

    2014-03-01

    Cadmium isotopes have been presented for decades as excellent examples of vibrational nuclei, with low-lying levels interpreted as multi-phonon quadrupole, octupole, and mixed-symmetry states. A large amount of spectroscopic data has been obtained through various experimental studies of cadmiumisotopes. In the present work, the 111Cd(overrightarrow {{d}} ,p)112Cd reaction was used to investigate the single-particle structure of the 112Cd nucleus. A 22 MeV beam of polarized deuterons was obtained at the Maier-Leibnitz laboratory in Garching, Germany. The reaction ejectiles were momentum analyzed using a Q3D spectrograph, and 130 levels have been identified up to 4.2 MeV of excitation energy. Using DWBA analysis with optical model calculations, spin-parity assignments have been made for observed levels, and spectroscopic factors have been extracted from the experimental angular distributions of differential cross section and analyzing power. In this high energy resolution investigation, many additional levels have been observed compared with the previous (d,p) study using 8 MeV deuterons [1]. There were a total of 44 new levels observed, and the parity assignments of 34 levels were improved.

  8. Investigations of Spectroscopic Factors and Sum Rules from the Single Neutron Transfer Reaction 111Cd(d→$\\overrightarrow {\\rm{d}} $,p112Cd

    Directory of Open Access Journals (Sweden)

    Jamieson D.S.

    2014-03-01

    Full Text Available Cadmium isotopes have been presented for decades as excellent examples of vibrational nuclei, with low-lying levels interpreted as multi-phonon quadrupole, octupole, and mixed-symmetry states. A large amount of spectroscopic data has been obtained through various experimental studies of cadmiumisotopes. In the present work, the 111Cd(d→$\\overrightarrow {\\rm{d}} $,p112Cd reaction was used to investigate the single-particle structure of the 112Cd nucleus. A 22 MeV beam of polarized deuterons was obtained at the Maier-Leibnitz laboratory in Garching, Germany. The reaction ejectiles were momentum analyzed using a Q3D spectrograph, and 130 levels have been identified up to 4.2 MeV of excitation energy. Using DWBA analysis with optical model calculations, spin-parity assignments have been made for observed levels, and spectroscopic factors have been extracted from the experimental angular distributions of differential cross section and analyzing power. In this high energy resolution investigation, many additional levels have been observed compared with the previous (d,p study using 8 MeV deuterons [1]. There were a total of 44 new levels observed, and the parity assignments of 34 levels were improved.

  9. Spectroscopic information from different theoretical descriptions of (un)polarized (e,e sup ' p) reactions

    CERN Document Server

    Radici, M; Dickhoff, W H

    2003-01-01

    We analyze the unpolarized and polarized electron-induced proton knockout reactions on sup 1 sup 6 O in different kinematical settings using two theoretical approaches. The first one is based on a relativistic mean-field distorted-wave description of the bound and scattering states of the proton, including a fully relativistic electromagnetic current operator. The second approach adopts the same current operator, but describes the proton properties on the basis of microscopic calculations of the self-energy in sup 1 sup 6 O below the Fermi energy and final-state damping in nuclear matter above the Fermi energy, using the same realistic short-range and tensor correlations. Good agreement with all unpolarized data is obtained at low and high Q sup 2 by using the same spectroscopic factors fixed by the low-Q sup 2 analysis. A reasonable agreement is achieved for polarization observables. (orig.)

  10. Radiative proton capture to the first excited state of sup 29 P nucleus at subbarrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Matulewicz, T; Dabrowska, M; Decowski, P; Kicinska-Habior, M; Sikora, B [Warsaw Univ. (Poland). Inst. Fizyki Doswiadczalnej; Toke, J [Rochester Univ., NY (USA). Nuclear Structure Research Lab.; Somorjai, E [Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete

    1985-08-01

    Differential cross sections at 0 deg and 90 deg measured for {sup 28}Si(p,{gamma}{sub 1}){sup 29}P reaction at proton energy range 2.3-2.9 MeV have been analyzed in terms of the direct-semidirect capture model extended by the effective potential approach. Spectroscopic factor of the first excited states of {sup 29}P nucleus was found to be 0.10+-0.05. 9 refs., 1 fig. (author).

  11. Modeling of the symmetry factor of electrochemical proton discharge via the Volmer reaction

    DEFF Research Database (Denmark)

    Björketun, Mårten E.; Tripkovic, Vladimir; Skúlason, Egill

    2013-01-01

    A scheme for evaluating symmetry factors of elementary electrode reactions using a density functional theory (DFT) based model of the electrochemical double layer is presented. As an illustration, the symmetry factor is determined for hydrogen adsorption via the electrochemical Volmer reaction...

  12. A formula for half-life of proton radioactivity

    Science.gov (United States)

    Zhang, Zhi-Xing; Dong, Jian-Min

    2018-01-01

    We present a formula for proton radioactivity half-lives of spherical proton emitters with the inclusion of the spectroscopic factor. The coefficients in the formula are calibrated with the available experimental data. As an input to calculate the half-life, the spectroscopic factor that characterizes the important information on nuclear structure should be obtained with a nuclear many-body approach. This formula is found to work quite well, and in better agreement with experimental measurements than other theoretical models. Therefore, it can be used as a powerful tool in the investigation of proton emission, in particular for experimentalists. Supported by National Natural Science Foundation of China (11435014, 11405223, 11675265, 11575112), the 973 Program of China (2013CB834401, 2013CB834405), National Key Program for S&T Research and Development (2016YFA0400501), the Knowledge Innovation Project (KJCX2-EW-N01) of Chinese Academy of Sciences, the Funds for Creative Research Groups of China (11321064) and the Youth Innovation Promotion Association of Chinese Academy of Sciences

  13. CGC factorization for forward particle production in proton-nucleus collisions at next-to-leading order

    International Nuclear Information System (INIS)

    Iancu, E.; Mueller, A.H.; Triantafyllopoulos, D.N.

    2016-01-01

    Within the Color Glass Condensate effective theory, we reconsider the next-to-leading order (NLO) calculation of the single inclusive particle production at forward rapidities in proton-nucleus collisions at high energy. Focusing on quark production for definiteness, we establish a new factorization scheme, perturbatively correct through NLO, in which there is no ‘rapidity subtraction’. That is, the NLO correction to the impact factor is not explicitly separated from the high-energy evolution. Our construction exploits the skeleton structure of the (NLO) Balitsky-Kovchegov equation, in which the first step of the evolution is explicitly singled out. The NLO impact factor is included by computing this first emission with the exact kinematics for the emitted gluon, rather than by using the eikonal approximation. This particular calculation has already been presented in the literature http://dx.doi.org/10.1103/PhysRevLett.108.122301, http://dx.doi.org/10.1103/PhysRevD.86.054005, but the reorganization of the perturbation theory that we propose is new. As compared to the proposal in http://dx.doi.org/10.1103/PhysRevLett.108.122301, http://dx.doi.org/10.1103/PhysRevD.86.054005, our scheme is free of the fine-tuning inherent in the rapidity subtraction, which might be the origin of the negativity of the NLO cross-section observed in previous studies.

  14. CGC factorization for forward particle production in proton-nucleus collisions at next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, E. [Institut de physique théorique, Université Paris Saclay,CNRS, CEA, F-91191 Gif-sur-Yvette (France); Mueller, A.H. [Department of Physics, Columbia University,New York, NY 10027 (United States); Triantafyllopoulos, D.N. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas - ECT*, Trento (Italy); Fondazione Bruno Kessler, Strada delle Tabarelle 286, I-38123 Villazzano (Italy)

    2016-12-13

    Within the Color Glass Condensate effective theory, we reconsider the next-to-leading order (NLO) calculation of the single inclusive particle production at forward rapidities in proton-nucleus collisions at high energy. Focusing on quark production for definiteness, we establish a new factorization scheme, perturbatively correct through NLO, in which there is no ‘rapidity subtraction’. That is, the NLO correction to the impact factor is not explicitly separated from the high-energy evolution. Our construction exploits the skeleton structure of the (NLO) Balitsky-Kovchegov equation, in which the first step of the evolution is explicitly singled out. The NLO impact factor is included by computing this first emission with the exact kinematics for the emitted gluon, rather than by using the eikonal approximation. This particular calculation has already been presented in the literature http://dx.doi.org/10.1103/PhysRevLett.108.122301, http://dx.doi.org/10.1103/PhysRevD.86.054005, but the reorganization of the perturbation theory that we propose is new. As compared to the proposal in http://dx.doi.org/10.1103/PhysRevLett.108.122301, http://dx.doi.org/10.1103/PhysRevD.86.054005, our scheme is free of the fine-tuning inherent in the rapidity subtraction, which might be the origin of the negativity of the NLO cross-section observed in previous studies.

  15. The proton electromagnetic form factor F2 and quark orbital angular ...

    Indian Academy of Sciences (India)

    Protein; electromagnetic form factors; perturbative QCD; quark orbital angular momentum. ... Failures of the ASD approach to correctly predict ex- perimental ... The success of the formalism is the correct prediction of the Q2 scaling behavior of ...

  16. Spectroscopic study

    International Nuclear Information System (INIS)

    Flores, M.; Rodriguez, R.; Arroyo, R.

    1999-01-01

    This work is focused about the spectroscopic properties of a polymer material which consists of Polyacrylic acid (Paa) doped at different concentrations of Europium ions (Eu 3+ ). They show that to stay chemically joined with the polymer by a study of Nuclear Magnetic Resonance (NMR) of 1 H, 13 C and Fourier Transform Infrared Spectroscopy (Ft-IR) they present changes in the intensity of signals, just as too when this material is irradiated at λ = 394 nm. In according with the results obtained experimentally in this type of materials it can say that is possible to unify chemically the polymer with this type of cations, as well as, varying the concentration of them, since that these are distributed homogeneously inside the matrix maintaining its optical properties. These materials can be obtained more quickly and easy in solid or liquid phase and they have the best conditions for to make a quantitative analysis. (Author)

  17. Proton and neutron charge form factors in soliton model with dilaton-quarkonium fields

    International Nuclear Information System (INIS)

    Magar, E.N.; Nikolaev, V.A.; Tkachev, O.G.; Novozhilov, V.Yu.

    1997-01-01

    Nucleon electromagnetic form factors are considered in the framework of the generalized Skyrme model with dilaton-quarkonium fields. In our first publication we got big discrepancy between calculated form factors and dipole approximation formula. Here we have reasonably good accordance between them in finite impulse region after vector meson dominance has been taken into account. Omega- and rho-mesons have been included only into hadron structure of the photon

  18. Drell-Yan events from 400 GeV/c protons: Determination of the K-factor in a large kinematical domain

    International Nuclear Information System (INIS)

    Badier, J.; Bourotte, J.; Karyotakis, Y.; Mine, P.; Vanderhaghen, R.; Weisz, S.; Boucrot, J.; Callot, O.; Decamp, D.; Lefrancois, J.; Crozon, M.; Delpierre, P.; Leray, T.; Maillard, J.; Tilquin, A.

    1985-01-01

    We present the analysis of proportional30,000 high mass dimuons (Msub(μμ)>4.5 GeV/c 2 ) produced in 400 GeV/c proton-platinum interactions. A determination of the K-factor is given for different values of xsub(F) and Msub(μμ), and its variations are compared to QCD predictions. The proton structure functions derived from these events are compared to the values obtained in deep inelastic lepton scattering. (orig.)

  19. Proton Form Factor Puzzle and the CEBAF Large Acceptance Spectrometer (CLAS) Two-Photon Exchange Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rimal, Dipak [Florida Intl Univ., Miami, FL (United States)

    2014-05-01

    The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. This dissertation explored dependence of R on kinematic variables such as squared four-momentum transfer (Q2) and the virtual photon polarization parameter (ε).

  20. Precision Measurements of the Proton Electromagnetic Form Factors in the Time-Like Region and Vector Meson Spectroscopy

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to measure with precision the electromagnetic form factors of the proton in the time-like region via the reaction: .ce @*p @A e|+e|- with antiprotons of momenta between 0 and 2 GeV/c. Up to @= 800 MeV/c, a continuous energy scan in @= 2 MeV (@]s) bins will be performed. The form factor !G(E)! and !G(M)! will be determined separately since large statistics can be collected with LEAR antiproton beams, so that angular distributions can be obtained at many momenta.\\\\ \\\\ In addition, e|+e|- pairs produced via the reaction: .ce @*p @A V|0 + neutrals, .ce !@A e|+e|- where the antiprotons are at rest, will be detected allowing the vector meson mass spectrum between @= 1 GeV and @= 1.7 GeV to be obtained with high statistics and in one run. \\\\ \\\\ The proposed apparatus consists of a central detector, surrounded by a gas Cerenkov counter, wire chambers, hodoscopes, and an electromagnetic calorimeter. The central detector consists of several layers of proportional chambers around a liquid-h...

  1. Interaction of the Saccharomyces cerevisiae α-factor with phospholipid vesicles as revealed by proton and phosphorus NMR

    International Nuclear Information System (INIS)

    Jelicks, L.A.; Broido, M.S.; Becker, J.M.; Naider, F.R.

    1989-01-01

    Proton and phosphorus-31 nuclear magnetic resonance ( 1 H and 31 P NMR) studies of the interaction between a tridecapeptide pheromone, the α-factor of Saccharomyces cerevisiae, and sonicated lipid vesicles are reported. 31 P NMR studies demonstrate that there is interaction of the peptide with the phosphorus headgroups, and quasielastic light scattering (QLS) studies indicate that lipid vesicles increase in size upon addition of peptide. Previous solution (aqueous and DMSO) studies from this laboratory indicate that α-factor is highly flexible with only one long-lived identifiable structural feature, a type II β-turn spanning the central portion of the peptide. Two-dimensional (2D) 1 H nuclear Overhauser effect spectroscopy (NOESY) studies demonstrate a marked ordering of the peptide upon interaction with lipid, suggesting a compact N-terminus, in addition to a stabilized β-turn. In contrast to these results in both solution and lipid environment, Wakamatsu et al. proposed a lipid environment conformation, on the basis of one-dimensional transferred NOE studies in D 2 O, which does not include the β-turn

  2. The dipole asymptotic behaviour of the proton form factor as a contribution of vector mesons and central region

    International Nuclear Information System (INIS)

    Skachkov, N.B.; Solovtsov, I.L.

    1976-01-01

    In the method of the invariant description of the proton spatial distribution, vector mesons are found to contribute to the distribution only at distances larger than the proton Compton wavelength. The account of the central part contribution leads to a formula describing well the experimental data

  3. Proton Form Factors And Related Processes in BaBar by ISR

    Energy Technology Data Exchange (ETDEWEB)

    Ferroli, R.B.; /Enrico Fermi Ctr., Rome /INFN, Rome

    2007-02-12

    BaBar has measured with unprecedented accuracy e{sup +}e{sup -} {yields} p{bar p} from the threshold up to Q{sub p{bar p}}{sup 2} {approx} 20 GeV{sup 2}/c{sup 4}, finding out an unexpected cross section, with plateaux and drops. In particular it is well established a sharp drop near threshold, where evidence for structures in multihadronic channels has also been found. Other unexpected and spectacular features of the Nucleon form factors are reminded, the behavior of space-like G{sub E}{sup p}/G{sub M}{sup p} and the neutron time-like form factors.

  4. Thermodynamic model for the elastic form factor in diffraction scattering of protons

    International Nuclear Information System (INIS)

    Grashin, A.F.; Evstratenko, A.S.; Lepeshkin, M.V.

    1988-01-01

    An explicit expression is obtained for the differential pp(p-bar)-scattering cross section in the diffraction-cone region by employing the thermodynamic model for the elastic form factor previously proposed in Ref. 4. Data for the energy region 16.3≤(s)/sup 1/2/ ≤546 GeV have been analyzed and significant deviations have been discovered from the commonly used approximations in the form of linear or quadratic exponentials

  5. Parity-Violating Electron Deuteron Scattering and the Proton's Neutral Axial Vector Form Factor

    International Nuclear Information System (INIS)

    Ito, T.

    2003-01-01

    The authors report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at the backward angles at electron beam energy of 125 MeV [Q 2 =0.038 (GeV/c) 2 ]. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon. In addition to the tree level amplitude associated with Z-exchange, the neutral weak axial vector form factor as measured in electron scattering can potentially receive large electroweak corrections, including the anapole moment, that are absent in neutrino scattering. The measured asymmetry A -3.51 ± 0.57 (stat) ± 0.58 (sys) ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at 200 MeV [Q 2 = 0.091 (GeV/c) 2 ] on a deuterium target. The updated results are also consistent with theoretical predictions on the neutral weal axial vector form factor

  6. Predictions of diffractive cross sections in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Goulianos, Konstantin [Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States)

    2013-04-15

    We review our pre-LHC predictions of the total, elastic, total-inelastic, and diffractive components of proton-proton cross sections at high energies, expressed in the form of unitarized expressions based on a special parton-model approach to diffraction employing inclusive proton parton distribution functions and QCD color factors and compare with recent LHC results.

  7. Renormalization and factorization scale analysis of b-barb production in antiproton-proton collisions

    International Nuclear Information System (INIS)

    Chyla, Jiri

    2003-01-01

    There is a sizable and systematic discrepancy between experimental data on the b-barb production in , p-barp, γp and γγ collisions and existing theoretical calculations within perturbative QCD. Before interpreting this discrepancy as a signal of new physics, it is important to understand quantitatively the ambiguities of conventional calculations. In this paper the uncertainty coming from renormalization and factorization scale dependence of finite order perturbation calculations of the total cross section of b-barb production in p-barp collisions is discussed in detail. It is shown that the mentioned discrepancy is reduced significantly if these scales are fixed via the Principle of Minimal Sensitivity. (author)

  8. Study of single-nucleon spectroscopic characteristics in light nuclei

    International Nuclear Information System (INIS)

    Zhusupova, K.A.

    1998-01-01

    Single-nucleon characteristics of 1 p-shell nuclei are investigated in the thesis. These characteristics are necessary for describing nuclear processes leaded to separation of target nuclei or to addition of one nucleon to it. Multi-particle shell model and three-body cluster model (for 6 L i and 9 Be) are used. It is shown that shell model explains well spectroscopic S-factors for stripping and pick-up reactions of nucleon. Three body α2 N-model reproduces well S-factors and momentum distribution extracted from (e, e p) reactions for separation of proton from ground state of 6 L i nucleus accompanied by appearance of ground and high exited states of 5 He nucleolus. The classification and explanation for small value nucleon partial widths for high lying states for odd nuclei 1 p-shell with isospin T=3/2 are given. (author)

  9. Optimization of the pion beam for the HADES detector and determination of the {eta} form factor in proton-proton reactions at 2.2 GeV; Optimierung des Pionenstrahls zum HADES-Detektor und Bestimmung des {eta}-Formfaktors in Proton-Proton-Reaktionen bei 2.2 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Bjoern

    2008-02-08

    This thesis contains two tasks. The first part focuses on the development and optimization of the pion beam facility for the HADES experiment. The second part describes the measurement of the electromagnetic transition form factor of the {eta} meson in proton-proton reactions. To investigate pion-nucleon reaction, a secondary pion beam is required. The pions are produced by a heavy ion beam impinging on a beryllium target. In order to determine the profile of the beam focus, two scintillating fiber detectors have been built as part of this thesis and are read out with recently developed electronics. The measured size of the beam focus appeared to be not acceptable, which can be attributed to the achromatic magnetic focusing in the beam line. Simulations have shown, that an additional quadrupole magnet directly in front of HADES would solve this problem and improve the beam quality. A test experiment including this new quadrupole has been performed and the analysis is still in progress. Preliminary results show a significant reduction of the momentum dependency of the focus. The size of the actual beam spot has been deduced to 14 mm by using an indirect tracking approach. For deducing the electromagnetic structure of hadrons, a first step has been done by analyzing the {eta} Dalitz decay in p+p reactions at 2.2 GeV kinetic energy to determine the electromagnetic transition form factor of the {eta} meson. A fit to the data leads to a form factor slope of b=2.2{sub -1.4}{sup +1.2} GeV{sup -2}. This corresponds to a pole mass of {lambda}=680{sub -130}{sup +460} MeV/c{sup 2}. It has been shown, that a semi-exclusive analysis of the {eta} Dalitz decay within the event hypothesis framework including a kinematical fit is feasible. (orig.)

  10. Risk factors associated with gastroesophageal reflux disease relapse in primary care patients successfully treated with a proton pump inhibitor.

    Science.gov (United States)

    López-Colombo, A; Pacio-Quiterio, M S; Jesús-Mejenes, L Y; Rodríguez-Aguilar, J E G; López-Guevara, M; Montiel-Jarquín, A J; López-Alvarenga, J C; Morales-Hernández, E R; Ortiz-Juárez, V R; Ávila-Jiménez, L

    There are no studies on the factors associated with gastroesophageal reflux disease (GERD) relapse in primary care patients. To identify the risk factors associated with GERD relapse in primary care patients that responded adequately to short-term treatment with a proton pump inhibitor. A cohort study was conducted that included GERD incident cases. The patients received treatment with omeprazole for 4 weeks. The ReQuest questionnaire and a risk factor questionnaire were applied. The therapeutic success rate and relapse rate were determined at 4 and 12 weeks after treatment suspension. A logistic regression analysis of the possible risk factors for GERD relapse was carried out. Of the 83 patient total, 74 (89.16%) responded to treatment. Symptoms recurred in 36 patients (48.64%) at 4 weeks and in 13 patients (17.57%) at 12 weeks, with an overall relapse rate of 66.21%. The OR multivariate analysis (95% CI) showed the increases in the possibility of GERD relapse for the following factors at 12 weeks after treatment suspension: basic educational level or lower, 24.95 (1.92-323.79); overweight, 1.76 (0.22-13.64); obesity, 0.25 (0.01-3.46); smoking, 0.51 (0.06-3.88); and the consumption of 4-12 cups of coffee per month, 1.00 (0.12-7.84); citrus fruits, 14.76 (1.90-114.57); NSAIDs, 27.77 (1.12-686.11); chocolate, 0.86 (0.18-4.06); ASA 1.63 (0.12-21.63); carbonated beverages, 4.24 (0.32-55.05); spicy food 7-16 times/month, 1.39 (0.17-11.17); and spicy food ≥ 20 times/month, 4.06 (0.47-34.59). The relapse rate after short-term treatment with omeprazole was high. The consumption of citrus fruits and NSAIDs increased the possibility of GERD relapse. Copyright © 2016 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  11. Steady-State Spectroscopic Analysis of Proton-Dependent Electron Transfer on Pyrazine-Appended Metal Dithiolenes [Ni(pdt)2], [Pd(pdt)2], and [Pt(pdt)2] (pdt = 2,3-Pyrazinedithiol).

    Science.gov (United States)

    Kennedy, Steven R; Kozar, Morgan N; Yennawar, Hemant P; Lear, Benjamin J

    2016-09-06

    We report the structural, electronic, and acid/base properties of a series of ML2 metal dithiolene complexes, where M = Ni, Pd, Pt and L = 2,3-pyrazinedithiol. These complexes are non-innocent and possess strong electronic coupling between ligands across the metal center. The electronic coupling can be readily quantified in the monoanionic mixed valence state using Marcus-Hush theory. Analysis of the intervalence charge transfer (IVCT) band reveals that that electronic coupling in the mixed valence state is 5800, 4500, and 5700 cm(-1) for the Ni, Pd, and Pt complexes, respectively. We then focus on their response to acid titration in the mixed valence state, which generates the asymmetrically protonated mixed valence mixed protonated state. For all three complexes, protonation results in severe attenuation of the electronic coupling, as measured by the IVCT band. We find nearly 5-fold decreases in electronic coupling for both Ni and Pt, while, for the Pd complex, the electronic coupling is reduced to the point that the IVCT band is no longer observable. We ascribe the reduction in electronic coupling to charge pinning induced by asymmetric protonation. The more severe reduction in coupling for the Pd complex is a result of greater energetic mismatch between ligand and metal orbitals, reflected in the smaller electronic coupling for the pure mixed valence state. This work demonstrates that the bridging metal center can be used to tune the electronic coupling in both the mixed valence and mixed valence mixed protonated states, as well as the magnitude of change of the electronic coupling that accompanies changes in protonation state.

  12. Proton-threshold states in sup 27 Al and the production of sup 27 Al at low stellar temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, A E [Princeton Univ., NJ (USA). Dept. of Physics; Magnus, P V; Smith, M S [Yale Univ., New Haven, CT (USA). Wright Nuclear Structure Lab.; Howard, A J [Trinity Coll., Hartford, CT (USA). Dept. of Physics and Astronomy

    1990-06-04

    The {sup 26}Mg({sup 3}He, d){sup 27}Al reaction has been employed to measure excitation energies and proton spectroscopic factors for states corresponding to {sup 26}Mg+p resonances in the vicinity of the proton-capture threshold. The width ratio {Gamma}{sub {gamma}}/{Gamma} was measured for three previously established resonances via a study of the {sup 26}Mg({sup 3}He, d{gamma}){sup 27}Al reaction, and corresponding values of the proton widths were obtained. Combining this information establishes strengths for four of the states lying within 150 keV of the proton threshold. A {sup 26}Mg+p reaction rate is deduced, and its astrophysical implications are discussed. (orig.).

  13. Air Mass Factor Formulation for Spectroscopic Measurements from Satellites: Application to Formaldehyde Retrievals from the Global Ozone Monitoring Experiment

    Science.gov (United States)

    Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin

    2004-01-01

    We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.

  14. Proton therapy

    International Nuclear Information System (INIS)

    Smith, Alfred R

    2006-01-01

    Proton therapy has become a subject of considerable interest in the radiation oncology community and it is expected that there will be a substantial growth in proton treatment facilities during the next decade. I was asked to write a historical review of proton therapy based on my personal experiences, which have all occurred in the United States, so therefore I have a somewhat parochial point of view. Space requirements did not permit me to mention all of the existing proton therapy facilities or the names of all of those who have contributed to proton therapy. (review)

  15. Short-term myeloid growth factor mediated expansion of bone marrow haemopoiesis studied by localized magnetic resonance proton spectroscopy

    DEFF Research Database (Denmark)

    Jensen, K E; Hansen, P B; Larsen, V A

    1994-01-01

    (day 0), day 5 and day 12. Spectroscopic examinations were performed with the stimulated echo acquisition mode (STEAM) method on a 1.5 T clinical whole-body imaging unit. A cubic volume of interest (VOI) was selected in the bone marrow of the left iliac bone. The patients responded with a rise in blood...

  16. TU-H-CAMPUS-JeP3-04: Factors Predicting a Need for Treatment Replanning with Proton Radiotherapy for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Teng, C; Janssens, G; Ainsley, C; Teo, B; Valdes, G; Burgdorf, B; Berman, A; Levin, W; Xiao, Y; Lin, L; Gabriel, P; Simone, C; Solberg, T [University of Pennsylvania, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Proton dose distribution is sensitive to tumor regression and tissue and normal anatomy changes. Replanning is sometimes necessary during treatment to ensure continue tumor coverage or avoid overtreatment of organs at risk (OARs). We investigated action thresholds for replanning and identified both dosimetric and non-dosimetric metrics that would predict a need for replan. Methods: All consecutive lung cancer patients (n = 188) who received definitive proton radiotherapy and had more than two evaluation CT scans at the Roberts Proton Therapy Center (Philadelphia, USA) from 2011 to 2015 were included in this study. The cohort included a variety of tumor sizes, locations, histology, beam angles, as well as radiation-induced tumor and lung change. Dosimetric changes during therapy were characterized by changes in the dose volume distribution of PTV, ITV, and OARs (heart, cord, esophagus, brachial plexus and lungs). Tumor and lung change were characterized by changes in sizes, and in the distribution of Hounsfield numbers and water equivalent thickness (WET) along the beam path. We applied machine learning tools to identify both dosimetric and non-dosimetric metrics that predicted a replan. Results: Preliminary data showed that clinical indicators (n = 54) were highly correlated; thus, a simple indicator may be derived to guide the action threshold for replanning. Additionally, tumor regression alone could not predict dosimetric changes in OARs; it required further information about beam angles and tumor locations. Conclusion: Both dosimetric and non-dosimetric factors are predictive of the need for replanning during proton treatment.

  17. Determination of Lande gJ - factors of La I levels using laser spectroscopic methods: Complementary investigations

    Science.gov (United States)

    Sobolewski, Ł. M.; Windholz, L.; Kwela, J.

    2017-11-01

    Laser Induced Fluorescence Spectroscopy (LIF) and Optogalvanic Spectroscopy (OG) were used for the investigation of the Zeeman hyperfine structures of 26 spectral lines of La I in the wavelength range between 569.7 and 665.4 nm. As a source of free La atoms a hollow cathode discharge lamp was used. The spectra were recorded in the presence of a magnetic field of about 800G produced by a permanent magnet for two linear polarizations of the exciting laser light. As a result of the study, we determined for the first time the Landé gJ- factors of 20 levels of La I. For several other levels the Landé gJ- factors were re-investigated and determined with higher precision.

  18. Lifestyle factors among proton pump inhibitor users and nonusers: a cross-sectional study in a population-based setting.

    Science.gov (United States)

    Hvid-Jensen, Frederik; Nielsen, Rikke B; Pedersen, Lars; Funch-Jensen, Peter; Drewes, Asbjørn Mohr; Larsen, Finn B; Thomsen, Reimar W

    2013-01-01

    Lifestyle factors may influence observed associations between proton pump inhibitor (PPI) usage and health outcomes. The aim of the study reported here was to examine characteristics and differences in lifestyle among PPI users and nonusers. This cross-sectional study utilized data from a 2006 population-based health survey of 21,637 persons in the Central Danish Region. All persons using prescribed PPIs were identified through linkage to a population-based prescription database. Biometric measures and prevalence of smoking, excessive alcohol consumption, diet, and physical exercise were analyzed, comparing PPI users with nonusers. Among 10,129 (46.8%) male and 11,508 (53.2%) female survey respondents, 1,356 (13.4%) males and 1,691 (14.7%) females reported ever use of PPIs. PPI users were more obese (16.7%) than nonusers (13.1%), with an age- and sex-standardized prevalence ratio (PR) of 1.3 (95% confidence interval [CI]: 1.2-1.4). The prevalence of smokers was also higher in the PPI group (26.2% vs 22.3% [PR =1.2, 95% CI: 1.1-1.3]), as was the prevalence of ex-smokers (41.0% vs 32.0% [PR =1.2, 95% CI: 1.1-1.2]). Unhealthy diet was slightly more common among PPI users than among nonusers (15.4% vs 13.0%), with a PR of 1.2 (95% CI: 1.1-1.3). Physical exercise level and alcohol consumption were similar in the two groups. Hospital-diagnosed comorbidity was observed in 35% of PPI users (a Charlson Comorbidity Index score of 1 or more) compared with only 15% among nonusers. PPI users are more obese, smoke more, and have significantly more comorbidities than PPI nonusers. These data are important when evaluating unmeasured confounding in observational studies of PPI effects.

  19. A totally automated data acquisition/reduction system for routine treatment of mass spectroscopic data by factor analysis

    International Nuclear Information System (INIS)

    Tway, P.C.; Love, L.J.C.; Woodruff, H.B.

    1980-01-01

    Target transformation factor analysis is applied to typical data from gas chromatography-mass spectrometry and solid-probe mass spectrometry to determine rapidly the number of components in unresolved or partially resolved peaks. This technique allows the detection of hidden impurities which often make interpretation or quantification impossible. The error theory of Malinowski is used to assess the reliability of the results. The totally automated system uses a commercially available g.c.-m.s. data system interfaced to the large computer, and the number of components under a peak can be determined routinely and rapidly. (Auth.)

  20. Some considerations on the restoration of Galilei invariance in the nuclear many-body problem. Pt. I. Mathematical tools, spectral functions and spectroscopic factors of simple bound states

    International Nuclear Information System (INIS)

    Schmid, K.W.

    2001-01-01

    The mathematical tools to restore Galilei invariance in the nuclear many-body problem with the help of projection techniques are presented. For simple oscillator configurations recursion relations for the various elementary contractions are derived. The method is then applied to simple configurations for the ground states of 4 He, 16 O and 40 Ca as well as to the corresponding one-hole and one-particle states. As a first application the spectral functions and spectroscopic factors for the above-mentioned doubly even nuclei are investigated. It turns out that the conventional picture of an uncorrelated system underestimates the single-particle strengths of the hole states from the last occupied shell while that of the higher excited hole states is overestimated considerably. These results are in complete agreement with those derived by Dieperink and de Forest using different methods. Similar effects are seen for the particle states which have not been studied before. All the calculations presented here are performed analytically and thus can be checked explicitly by the interested reader. (orig.)

  1. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells

    Energy Technology Data Exchange (ETDEWEB)

    Rithidech, K.N.; Rusek, A.; Reungpatthanaphong, P.; Honikel, L.; Simon, S.R.

    2010-05-28

    The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-{kappa}B) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory [i.e., tumor necrosis factor-alpha (TNF-{alpha}), interleukin-1beta (IL-1{beta}), and IL-6] and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min{sup -1}, the dose and dose rates found during solar particle events in space. As a reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of {sup 137}Cs {gamma} rays (10 mGy min{sup -1}). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or {sup 137}Cs {gamma} rays, delivered at 10 mGy min{sup -1}, was similar. Although statistically significant levels of NF-{kappa}B activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p < 0.05 or < 0.01) were induced by either dose rate, these levels varied over time for each protein. Further, only a dose rate of 5 mGy min{sup -1} induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.

  2. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells

    International Nuclear Information System (INIS)

    Rithidech, K.N.; Rusek, A.; Reungpatthanaphong, P.; Honikel, L.; Simon, S.R.

    2010-01-01

    The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-κB) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory (i.e., tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and IL-6) and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min -1 , the dose and dose rates found during solar particle events in space. As a reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of 137 Cs γ rays (10 mGy min -1 ). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or 137 Cs γ rays, delivered at 10 mGy min -1 , was similar. Although statistically significant levels of NF-κB activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p -1 induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.

  3. Precision Measurement of the proton neutral weak form factors at Q2 ~ 0.1 GeV2

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, Lisa J. [Univ. of Massachusetts, Amherst, MA (United States)

    2007-02-01

    This thesis reports the HAPPEX measurement of the parity-violating asymmetry for longitudinally polarized electrons elastically scattered from protons in a liquid hydrogen target. The measurement was carried out in Hall A at Thomas Jefferson National Accelerator Facility using a beam energy E = 3 GeV and scattering angle <θ{sub lab}> = 6°. The asymmetry is sensitive to the weak neutral form factors from which we extract the strange quark electric and magnetic form factors (G$s\\atop{E}$ and G$s\\atop{M}$) of the proton. The measurement was conducted during two data-taking periods in 2004 and 2005. This thesis describes the methods for controlling the helicity-correlated beam asymmetries and the analysis of the raw asymmetry. The parity-violating asymmetry has been measured to be APV = -1.14± 0.24 (stat)±0.06 (syst) ppm at 2> = 0.099 GeV2 (2004), and APV = -1.58±0.12 (stat)±0.04 (syst) ppm at 2> = 0.109 GeV2 (2005). The strange quark form factors extracted from the asymmetry are G$s\\atop{E}$ + 0.080G$s\\atop{M}$ = 0.030 ± 0.025 (stat) ± 0.006 (syst) ± 0.012 (FF) (2004) and G$s\\atop{E}$ +0.088G$s\\atop{M}$ = 0.007±0.011 (stat)±0.004 (syst)±0.005 (FF) (2005). These results place the most precise constraints on the strange quark form factors and indicate little strange dynamics in the proton.

  4. Characterization of pH titration shifts for all the nonlabile proton resonances in a protein by two-dimensional NMR: The case of mouse epidermal growth factor

    International Nuclear Information System (INIS)

    Kohda, Daisuke; Sawada, Toshie; Inagaki, Fuyuhiko

    1991-01-01

    The pH titration shifts for all the nonlabile proton resonances in a 53-residue protein (mouse epidermal growth factor) were measured in the p 2 H range 1.5-9 with two-dimensional (2D) 1 H NMR. The 2D NMR pH titration experiment made it possible to determine the pK values for all the ionizable group which were titrated in the pH range 1.5-9 in the protein. The pK values of the nine ionizable groups (α-amino group, four Asp, two Glu, one His, and α-carboxyl group) were found to be near their normal values. The 2D titration experiment also provided a detailed description of the pH-dependent behavior of the proton chemical shifts and enabled us to characterize the pH-dependent changes of protein conformation. Analysis of the pH-dependent shifts of ca. 200 proton resonances offered evidence of conformational changes in slightly basic pH solution: The deprotonation of the N-terminal α-amino group induced a widespread conformational change over the β-sheet structure in the protein, while the effects of deprotonation of the His22 imidazole group were relatively localized. The authors found that the 2D NMR pH titration experiment is a powerful tool for investigating the structural and dynamic properties of proteins

  5. Proton computed tomography

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1978-01-01

    The use of protons or other heavy charged particles instead of x rays in computed tomography (CT) is explored. The results of an experimental implementation of proton CT are presented. High quality CT reconstructions are obtained at an average dose reduction factor compared with an EMI 5005 x-ray scanner of 10:1 for a 30-cm-diameter phantom and 3.5:1 for a 20-cm diameter. The spatial resolution is limited by multiple Coulomb scattering to about 3.7 mm FWHM. Further studies are planned in which proton and x-ray images of fresh human specimens will be compared. Design considerations indicate that a clinically useful proton CT scanner is eminently feasible

  6. Single-Shot MR Spectroscopic Imaging with Partial Parallel Imaging

    Science.gov (United States)

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2010-01-01

    An MR spectroscopic imaging (MRSI) pulse sequence based on Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI) is introduced that measures 2-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3 T whole body scanner equipped with 12-channel array coil. Four-step interleaved phase encoding and 4-fold SENSE acceleration were used to encode a 16×16 spatial matrix with 390 Hz spectral width. Comparison with conventional PEPSI and PEPSI with 4-fold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of Inositol, Choline, Creatine and NAA in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement. PMID:19097245

  7. Proton resonance elastic scattering of $^{30}$Mg for single particle structure of $^{31}$Mg

    CERN Multimedia

    The single particle structure of $^{31}$Mg, which is located in the so-called “island of inversion”, will be studied through measuring Isobaric Analog Resonances (IARs) of bound states of $^{31}$Mg. They are located in the high excitation energy of $^{31}$Al. We are going to determine the spectroscopic factors and angular momenta of the parent states by measuring the excitation function of the proton resonance elastic scattering around 0 degrees in the laboratory frame with around 3 MeV/nucleon $^{30}$Mg beam. The present study will reveal the shell evolution around $^{32}$Mg. In addition, the spectroscopic factor of the (7/2)$^{−}$ state which was not yet determined experimentally, may allow one to study the shape coexistence in this nucleus.

  8. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    International Nuclear Information System (INIS)

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-01-01

    Highlights: → The involvement of extracellular acidification in airway remodeling was investigated. → Extracellular acidification alone induced CTGF production in human ASMCs. → Extracellular acidification enhanced TGF-β-induced CTGF production in human ASMCs. → Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. → OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-β-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G q/11 protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP 3 ) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G q/11 protein and inositol-1,4,5-trisphosphate-induced Ca 2+ mobilization in human ASMCs.

  9. Proton Beam Writing

    International Nuclear Information System (INIS)

    Rajta, I.; Szilasi, S.Z.; Csige, I.; Baradacs, E.

    2005-01-01

    Complete text of publication follows. Refractive index depth profile in PMMA due to proton irradiation Proton Beam Writing has been successfully used to create buried channel waveguides in PMMA, which suggested that proton irradiation increases the refractive index. To investigate this effect, PMMA samples were irradiated by 1.7-2.1 MeV proton beam. Spectroscopic Ellipsometry has been used to investigate the depth profile of the refractive index. An increase of the refractive index was observed in the order of 0.01, which is approximately one order of magnitude higher than the detection limit. The highest increase of the refractive index occurs at the end of range, i.e. we found a good correlation with the Bragg curve of the energy loss. Hardness changes in PMMA due to proton beam micromachining As protons penetrate a target material and lose their energy according to the Bragg curve, the energy loss is different at different depths. This causes depth-dependent changes of some physical properties in the target material (e.g. refractive index, hardness). In order to characterize the changes of hardness and other mechanical properties as a function of beam penetration depth, systematic investigations have been performed on PMMA, the most common resist material used in proton beam micromachining. Silicon check valve made by proton beam micromachining The possible application of Proton Beam Micromachining (PBM) has been demonstrated by a few authors for creating 3D Si microstructures. In this work we present alternative methods for the formation of a simple a non-return valve for microfluidic applications. Two different approaches have been applied, in both cases we exploited characteristic features of the PBM technique and the selective formation and dissolution of porous Si over the implantation damaged areas. In the first case we implanted 10 μm thick cantilever-type membrane of the valve normally to the crystal surface and at 30-60 degrees to the sidewalls of the

  10. Spectroscopic classification of transients

    DEFF Research Database (Denmark)

    Stritzinger, M. D.; Fraser, M.; Hummelmose, N. N.

    2017-01-01

    We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017.......We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017....

  11. Kinetic Effects Of Increased Proton Transfer Distance On Proton-Coupled Oxidations Of Phenol-Amines

    Science.gov (United States)

    Rhile, Ian J.

    2011-01-01

    To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh2NH2 substituent (1). Spectroscopic, structural, thermochemical and computational studies show that the two amino-phenols are very similar, except that the O⋯N distance (dON) is >0.1 Å longer in 2 than in 1. The difference in dON is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations •OAr–NH3+ by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. two orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C6H4OMe)3•+ (3a+) occurs at (1.4 ± 0.1) × 104 M-1 s-1, only a factor of two slower than the closely related reaction of 1 with N(C6H4OMe)2(C6H4Br)•+ (3b+). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG°(2 + 3a+) = +0.078 V vs. ΔG°(1 + 3b+) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δln(k)/Δln(Keq)). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the two phenols emphasizes the importance of the highly

  12. Proton permeation of lipid bilayers.

    Science.gov (United States)

    Deamer, D W

    1987-10-01

    Proton permeation of the lipid bilayer barrier has two unique features. First, permeability coefficients measured at neutral pH ranges are six to seven orders of magnitude greater than expected from knowledge of other monovalent cations. Second, proton conductance across planar lipid bilayers varies at most by a factor of 10 when pH is varied from near 1 to near 11. Two mechanisms have been proposed to account for this anomalous behavior: proton conductance related to contaminants of lipid bilayers, and proton translocation along transient hydrogen-bonded chains (tHBC) of associated water molecules in the membrane. The weight of evidence suggests that trace contaminants may contribute to proton conductance across planar lipid membranes at certain pH ranges, but cannot account for the anomalous proton flux in liposome systems. Two new results will be reported here which were designed to test the tHBC model. These include measurements of relative proton/potassium permeability in the gramicidin channel, and plots of proton flux against the magnitude of pH gradients. (1) The relative permeabilities of protons and potassium through the gramicidin channel, which contains a single strand of hydrogen-bonded water molecules, were found to differ by at least four orders of magnitude when measured at neutral pH ranges. This result demonstrates that a hydrogen-bonded chain of water molecules can provide substantial discrimination between protons and other cations. It was also possible to calculate that if approximately 7% of bilayer water was present in a transient configuration similar to that of the gramicidin channel, it could account for the measured proton flux. (2) The plot of proton conductance against pH gradient across liposome membranes was superlinear, a result that is consistent with one of three alternative tHBC models for proton conductance described by Nagle elsewhere in this volume.

  13. Proton form factor ratio, μpGEP/GMP from double spin asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Habarakada Liyanage, Anusha Pushpakumari [Hampton Univ., Hampton, VA (United States)

    2013-08-01

    The form factors are fundamental properties of the nucleon representing the effect of its structure on its response to electromagnetic probes such as electrons. They are functions of the four-momentum transfer squared Q2 between the electron and the proton. This thesis reports the results of a new measurement of the ratio of the electric and magnetic form factors of the proton up to Q2 = 5.66 (GeV/c)2 using the double spin asymmetry with a polarized beam and target. Experiment E07-003 (SANE, Spin Asymmetries of the Nucleon Experiment) was carried out in Hall C at Jefferson Lab in 2009 to study the proton spin structure functions with a dynamically polarized ammonia target and longitudinally polarized electron beam. By detecting elastically scattered protons in the High-Momentum Spectrometer (HMS) in coincidence with the electrons in the Big Electron Telescope Array (BETA), elastic measurements were carried out in parallel. The elastic double spin asymmetry allows one to extract the proton electric to magnetic form factor ratio GpE/GpM at high-momentum transfer, Q2= 5.66 (GeV/c)2. In addition to the coincidence data, inclusively scattered electrons from the polarized ammonia target were detected by HMS, which allows to measure the beam-target asymmetry in the elastic region with the target spin nearly perpendicular to the momentum transfer, and to extract GpE/GpM at low Q2= 2.06 (GeV/c)2. This alternative measurement of GpE/GpM has verified and confirmed the dramatic discrepancy at high Q2 between the Rosenbluth and the recoil-polarization-transfer iv method with a different measurement technique and systematic uncertainties uncorrelated to those of the recoil-polarization measurements. The measurement of the form factor ratio at Q2 = 2

  14. Neutron pair and proton pair transfer reactions between identical cores in the sulfur region

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1995-12-01

    Optical model and exact finite range distorted-wave Born approximation analyses were performed on neutron pair exchange between identical cores for 32 S and 34 S nuclei and on proton pair exchange between identical cores for 30 Si and 32 S. The extracted spectroscopic factors were compared with theoretical ones deduced from Hartree-Fock calculations on these pair of nuclei. The enhancement of the experimental cross sections with respect to the theoretical ones strongly suggests evidence for a nuclear Josephson effect. (author). 15 refs., 5 figs., 3 tabs

  15. Background studies for the measurement of the strangeness vector form factor of the proton by parity-violating electron scattering under backward angles; Untergrundstudien zur Messung der Strangeness-Vektorfaktoren des Protons durch paritaetsverletzende Elektronenstreuung unter Rueckwaertswinkeln

    Energy Technology Data Exchange (ETDEWEB)

    Capozza, Luigi

    2010-08-19

    Within the A4 experiment the contributions of the strange quark to the electromagnetic form factors of the proton are measured. These see-quark effects in low energy observables are very important for the understanding of hadron structure, because they are a direct manifestation of QCD degrees of freedom in the non-perturbative regime. Linear combinations of the strangeness vector form factors of the proton (G{sub E}{sup s} and G{sub M}{sup s}) are accessible experimentally by measuring the parity violating asymmetry in the cross section of the elastic scattering of longitudinal polarised electrons off unpolarised nucleons. Two such measurements were published by the A4 collaboration before this work. Both of them were forward angle measurements at the Q{sup 2} values of 0.23 and 0.10 (GeV/c){sup 2}, respectively. A measurement at backward angle with a beam energy of 315 MeV was performed for separating G{sub E}{sup s} and G{sub M}{sup s} at the higher of these Q{sup 2} values. In the A4 experiment a longitudinally polarised electron beam scatters on a liquid hydrogen target. Single scattered electrons are counted with a Cherenkov calorimeter. The separation of elastic from inelastic events is achieved by means of calorimetric energy measurement. For the backward angle measurement a plastic scintillator was installed as electron tagger for suppressing the {gamma} background coming from the decay of {pi}{sup 0} mesons. In order to make the data analysis possible the energy spectra needed to be studied thoroughly. This was done in this work using detailed simulations of both the scattering processes suffered by beam electrons and of the response of the detectors. A method for handling the remaining background due to {gamma} conversion before the scintillator has been also developed. The simulation results agree with the measured spectra at the 5% level and the strategy for handling the background was shown to be feasible. The asymmetry value obtained by handling the

  16. Clinical applications of proton magnetic resonance spectroscopy of the brain

    International Nuclear Information System (INIS)

    Laubenberger, J.; Bayer, S.; Thiel, T.; Hennig, J.; Langer, M.

    1998-01-01

    In spite of all the scientific advances of the past few years, proton magnetic resonance spectroscopy of the brain has not attained the status of a routine examination technique with clinically accepted indications. The method should be considered as an additional option to MR imaging for inherited and acquired encephalopathic changes as well as, in future, for localization diagnosis of epilepsies. A proton magnetic resonance spectroscopic investigation without a prior intensive clinical and imaging investigation is not useful. Above all, factors influencing metabolite distribution such as for example, serum osmolability must be known. Methodological prerequisites for the clinical application of proton resonance spectroscopy are, first of all, a high stability of the chosen technique as well as a sufficiently certain quantification of metabolites and the availability of a reference group. The use of short echo times is necessary for the quantification of glutamine and the osmolyte myo-inositol. Indications for individual cases in which clinical investigations and MR topography cannot provide sufficient certainty and spectroscopy can furnish additional information are, in addition to uses in neuropediatrics, the suspicion of Alzheimer's dementia, HIV encephalopathy in early manifestations, and unclarified depressions of consciousness accompanying liver cirrhosis. (orig.) [de

  17. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Shinichi [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Ishizuka, Tamotsu, E-mail: tamotsui@showa.gunma-u.ac.jp [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Komachi, Mayumi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Dobashi, Kunio [Gunma University Graduate School of Health Sciences, Maebashi 371-8511 (Japan); Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Mori, Masatomo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan)

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  18. Multi-pass spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Stehle, Jean-Louis; Samartzis, Peter C.; Stamataki, Katerina; Piel, Jean-Philippe; Katsoprinakis, George E.; Papadakis, Vassilis; Schimowski, Xavier; Rakitzis, T. Peter; Loppinet, Benoit

    2014-01-01

    Spectroscopic ellipsometry is an established technique, particularly useful for thickness measurements of thin films. It measures polarization rotation after a single reflection of a beam of light on the measured substrate at a given incidence angle. In this paper, we report the development of multi-pass spectroscopic ellipsometry where the light beam reflects multiple times on the sample. We have investigated both theoretically and experimentally the effect of sample reflectivity, number of reflections (passes), angles of incidence and detector dynamic range on ellipsometric observables tanΨ and cosΔ. The multiple pass approach provides increased sensitivity to small changes in Ψ and Δ, opening the way for single measurement determination of optical thickness T, refractive index n and absorption coefficient k of thin films, a significant improvement over the existing techniques. Based on our results, we discuss the strengths, the weaknesses and possible applications of this technique. - Highlights: • We present multi-pass spectroscopic ellipsometry (MPSE), a multi-pass approach to ellipsometry. • Different detectors, samples, angles of incidence and number of passes were tested. • N passes improve polarization ratio sensitivity to the power of N. • N reflections improve phase shift sensitivity by a factor of N. • MPSE can significantly improve thickness measurements in thin films

  19. Proton decay theory

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay

  20. Proton therapy

    International Nuclear Information System (INIS)

    Jongen, Y.

    1995-01-01

    Ideal radiotherapy deposits a large amount of energy in the tumour volume, and none in the surrounding healthy tissues. Proton therapy comes closer to this goal because of a greater concentration of dose, well defined proton ranges and points of energy release which are precisely known - the Bragg peak1. In the past, the development of clinical proton therapy has been hampered by complexity, size, and cost. To be clinically effective, energies of several hundred MeV are required; these were previously unavailable for hospital installations, and pioneering institutions had to work with complex, inadequate equipment originally intended for nuclear physics research. Recently a number of specialist organizations and commercial companies have been working on dedicated systems for proton therapy. One, IBA of Belgium, has equipment for inhouse hospital operation which encompasses a complete therapy centre, delivered as a turnkey package and incorporating a compact, automated, higher energy cyclotron with isocentric gantries. Their system will be installed at Massachusetts General Hospital, Boston. The proton therapy system comprises: - a 235 MeV isochronous cyclotron to deliver beams of up to 1.5 microamps, but with a hardware limitation to restrict the maximum possible dose; - variable energy beam (235 to 70 MeV ) with energy spread and emittance verification; - a beam transport and switching system to connect the exit of the energy selection system to the entrances of a number of gantries and fixed beamlines. Along the beam transport system, the beam characteristics are monitored with non-interceptive multiwire ionization chambers for automatic tuning; - gantries fitted with nozzles and beamline elements for beam control; both beam scattering and beam wobbling techniques are available for shaping the beam;

  1. Background studies for the measurement of the strangeness vector form factor of the proton by parity-violating electron scattering under backward angles

    International Nuclear Information System (INIS)

    Capozza, Luigi

    2010-01-01

    Within the A4 experiment the contributions of the strange quark to the electromagnetic form factors of the proton are measured. These see-quark effects in low energy observables are very important for the understanding of hadron structure, because they are a direct manifestation of QCD degrees of freedom in the non-perturbative regime. Linear combinations of the strangeness vector form factors of the proton (G E s and G M s ) are accessible experimentally by measuring the parity violating asymmetry in the cross section of the elastic scattering of longitudinal polarised electrons off unpolarised nucleons. Two such measurements were published by the A4 collaboration before this work. Both of them were forward angle measurements at the Q 2 values of 0.23 and 0.10 (GeV/c) 2 , respectively. A measurement at backward angle with a beam energy of 315 MeV was performed for separating G E s and G M s at the higher of these Q 2 values. In the A4 experiment a longitudinally polarised electron beam scatters on a liquid hydrogen target. Single scattered electrons are counted with a Cherenkov calorimeter. The separation of elastic from inelastic events is achieved by means of calorimetric energy measurement. For the backward angle measurement a plastic scintillator was installed as electron tagger for suppressing the γ background coming from the decay of π 0 mesons. In order to make the data analysis possible the energy spectra needed to be studied thoroughly. This was done in this work using detailed simulations of both the scattering processes suffered by beam electrons and of the response of the detectors. A method for handling the remaining background due to γ conversion before the scintillator has been also developed. The simulation results agree with the measured spectra at the 5% level and the strategy for handling the background was shown to be feasible. The asymmetry value obtained by handling the background as proposed in this work was combined with the previous A4

  2. Spectroscopic study of {sup 206,207,208}Pb isotopes by high resolution analysis of 24.5 MeV proton scattering; Etude spectroscopique des isotopes 206, 207 et 208 du plomb par analyse a haute resolution de la diffusion de protons de 24,5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Vallois, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-03-01

    {sup 206,207,208}pb have been studied by 24.5 MeV proton inelastic scattering with a resolution of 20 keV. The angular distributions of the differential cross-sections corresponding to the different excited levels have been measured in a large angular region and analysed with the DWBA.This work shows that it exists between 4 and 5 MeV of excitation energy some strongly excited levels corresponding to transfer momenta l = 2, 4, 6 and 8. The single particle-hole models do not explain these states; so it will probably be necessary to introduce some several particle - hole configurations. (author) [French] Les isotopes 206, 207 et 208 du plomb ont ete etudies par diffusion inelastique de protons de 24,5 MeV avec une resolution de 20 keV. Les distributions angulaires des sections efficaces differentielles correspondant aux differents niveaux excites ont ete mesurees sur un large domaine angulaire et analysees a l'aide de la DWBA. Ce travail met en evidence l'existence, entre 4 et 5 MeV d'excitation, de niveaux fortement excites correspondant a des moments de transfert de 2, 4, 6 et 8. Les modeles a simple particule-trou ne rendant pas compte de ces niveaux, il faudra sans doute recourir a des configurations a plusieurs particules-trous pour les expliquer. (auteur)

  3. Proton radiography to improve proton therapy treatment

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E. R.; van Goethem, Marc-Jan; van Beuzekom, M.; Klaver, T.; Visser, Jan; Brandenburg, S.; Biegun, A. K.

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT)

  4. Proton relativistic model; Modelo relativistico do proton

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wilson Roberto Barbosa de

    1996-12-31

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author) 42 refs., 22 figs., 1 tab.

  5. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations

    DEFF Research Database (Denmark)

    Palmans, Hugo; Al-Sulaiti, L; Andreo, P

    2013-01-01

    , is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose...

  6. Skull base chordomas: treatment outcome and prognostic factors in adult patients following conformal treatment with 3D planning and high dose fractionated combined proton and photon radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Munzenrider, J E; Hug, E; McManus, P; Adams, J; Efird, J; Liebsch, N J

    1995-07-01

    Purpose: To report treatment outcome and prognostic factors for local recurrence-free survival and overall survival in adult patients with skull base chordomas treated with 3D planning and high dose fractionated combined proton and photon radiation therapy. Methods and Materials: From 1975 through 1993, 132 adult patients with skull base chordomas were treated with fractionated combined proton and photon radiation therapy. Seventy five patients (57%) were male and 57 (43%) female. Age ranged from 19 to 80 years (median 45.5 years). All pathology was verified at MGH by a single pathologist. Ninety six had non-chondroid (NCC) and 36 chondroid chordomas (CC), respectively. Median prescribed dose was 68.7 CGE (CGE, Cobalt Gray-equivalent: proton Gy X RBE 1.1 + photon Gy), ranging from 36 to 79.2 CGE; 95% received {>=} 66.6 CGE. Between 70 and 100% of the dose was given with the 160 MeV proton beam at the Harvard Cyclotron. 3D CT-based treatment planning has been employed in all patients treated since 1980. Median follow-up was 46 months (range 2-158 months). Results: Treatment outcome was evaluated in terms of local recurrence-free survival (LRFS) and disease specific survival (DSS), as well as treatment-related morbidity. Local failure (LF), defined as progressive neurological deficit with definite increase in tumor volume on CT or MRI scan, occurred in 39 patients (29.5%). LF was more common among women than among men:(26(57)) (46%) vs (13(75)) (17%), respectively. Thirty three of the 39 LF were seen in non-chondroid chordoma patients, with 6 occurring in patients with the chondroid variant (34% of NCC and 17% of CC), respectively. Distant metastasis was documented in 8 patients. LRFS was 81 {+-} 5.8%, 59 {+-} 8.3%, and 43 {+-} 10.4%, and DSS was 94 {+-} 3.6%, 80 {+-} 6.7%, and 50 {+-} 10.7% at 36, 60, and 96 months, respectively, for the total group. LRFS and DSS were not significantly different for patients with NCC than those with CC (p > .05). Gender was

  7. Spectroscopic surveys of LAMOST

    International Nuclear Information System (INIS)

    Zhao Yongheng

    2015-01-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), a new type of reflecting Schmidt telescope, has been designed and produced in China. It marks a breakthrough for large scale spectroscopic survey observation in that both large aperture and wide field of view have been achieved. LAMOST has the highest spectrum acquisition rate, and from October 2011 to June 2014 it has obtained 4.13 million spectra of celestial objects, of which 3.78 million are spectra of stars, with the stellar parameters of 2.20 million stars included. (author)

  8. On the proton radius problem

    OpenAIRE

    Giannini, M. M.; Santopinto, E.

    2013-01-01

    The recent values of the proton charge radius obtained by means of muonic-hydrogen laser spectroscopy are about $4\\%$ different from the electron scattering data. It has been suggested that the proton radius is actually measured in different frames and that, starting from a non relativistic quark model calculation, the Lorentz transformation of the form factors accounts properly for the discepancy. We shall show that the relation between the charge radii measured in different frames can be de...

  9. Highlights of the Brazilian Solar Spectroscope

    Czech Academy of Sciences Publication Activity Database

    Sawant, H. S.; Cecatto, J.R.; Mészárosová, Hana; Faria, C.; Fernandes, F. C. R.; Karlický, Marian; de Andrade, M. C.

    2009-01-01

    Roč. 44, č. 1 (2009), s. 54-57 ISSN 0273-1177 R&D Projects: GA AV ČR IAA300030701 Institutional research plan: CEZ:AV0Z10030501 Keywords : Sun istrumentation * spectroscope * corona * radio radiation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.079, year: 2009

  10. Analysis of nucleon form factor data reveals the e+e-→nucleon-antinucleon cross section to be remarkably larger than the e+e-→proton-antiproton one

    International Nuclear Information System (INIS)

    Dubricka, S.

    1987-01-01

    A modified six-resonance VMD model for a description of the nucleon electromagnetic structure is constructed. It possesses correct analytic properties and the asymptotic behaviour in accordance with a quark model prediction for baryons. Only parameters with clear physical meaning are contained in the model. They are evaluated numerically in a simultaneous fit of all existing data on electric and magnetic nucleon form factors. As a result, the behaviour in the time-like region of electric and magnetic neutron form factors, for which there are no data up to now, has been predicted. In comparison with the corresponding behaviour of proton form factors above the nucleon-antinucleon threshold one finds them to exceed by a factor of five. Consequently the cross section of e + e - →nucleon-antinucleon is expected to be roughly twenty-five-times as large as the cross section of e + e - →proton-antiproton

  11. Study of the /sup 58/Ni, /sup 90/Zr and /sup 208/Pb(p,d) reactions at 121 MeV. [DWBA, angular distributions, spectroscopic factors, finite range calculations

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R E; Kraushaar, J J; Shepard, J R [Colorado Univ., Boulder (USA). Nuclear Physics Lab.; Comfort, J R [Indiana Univ., Bloomington (USA). Dept. of Physics

    1978-01-01

    The (p,d) reaction has been studied on /sup 58/Ni, /sup 90/Zr and /sup 208/Pb at 121 MeV in order to test the applicability of the usual DWBA methods to higher energy data. The calculations describe the angular distribution for the strongly excited low-lying states reasonably well when adiabatic-deuteron optical potentials are used. Some discrepancies in shape persist, however, and some values of the spectroscopic factors differ from lower energy data in spite of many variations in the calculations. By use of exact finite-range calculations a value of D/sup 2//sub 0/ = 1.23 x 10/sup 4/ MeV/sup 2/.fm/sup 3/ was found for use at 121 MeV. Deuteron D-state contributions were negligible at forward angles and two-step contributions do not appear more significant than for data at lower energy.

  12. Proton diffraction

    International Nuclear Information System (INIS)

    Den Besten, J.L.; Jamieson, D.N.; Allen, L.J.

    1998-01-01

    The Lindhard theory on ion channeling in crystals has been widely accepted throughout ion beam analysis for use in simulating such experiments. The simulations use a Monte Carlo method developed by Barret, which utilises the classical 'billiard ball' theory of ions 'bouncing' between planes or tubes of atoms in the crystal. This theory is not valid for 'thin' crystals where the planes or strings of atoms can no longer be assumed to be of infinite proportions. We propose that a theory similar to that used for high energy electron diffraction can be applied to MeV ions, especially protons, in thin crystals to simulate the intensities of transmission channeling and of RBS spectra. The diffraction theory is based on a Bloch wave solution of the Schroedinger equation for an ion passing through the periodic crystal potential. The widely used universal potential for proton-nucleus scattering is used to construct the crystal potential. Absorption due to thermal diffuse scattering is included. Experimental parameters such as convergence angle, beam tilt and scanning directions are considered in our calculations. Comparison between theory and experiment is encouraging and suggests that further work is justified. (authors)

  13. Real-time monitoring of respiratory absorption factors of volatile organic compounds in ambient air by proton transfer reaction time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhonghui [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yanli [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Yan, Qiong [Department of Respiratory Diseases, Guangzhou No. 12 People' s Hospital, Guangzhou 510620 (China); Zhang, Zhou [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang, Xinming, E-mail: wangxm@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2016-12-15

    Respiratory absorption factors (AFs) are essential parameters in the evaluation of human health risks from toxic volatile organic compounds (VOCs) in ambient air. A method for the real time monitoring of VOCs in inhaled and exhaled air by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) has been developed to permit the calculation of respiratory AFs of VOCs. Isoprene was found to be a better breath tracer than O{sub 2}, CO{sub 2}, humidity, or acetone for distinguishing between the expiratory and inspiratory phases, and a homemade online breath sampling device with a buffer tube was used to optimize signal peak shapes. Preliminary tests with seven subjects exposed to aromatic hydrocarbons in an indoor environment revealed mean respiratory AFs of 55.0%, 55.9%, and 66.9% for benzene, toluene, and C8-aromatics (ethylbenzene and xylenes), respectively. These AFs were lower than the values of 90% or 100% used in previous studies when assessing the health risks of inhalation exposure to hazardous VOCs. The mean respiratory AFs of benzene, toluene and C8-aromatics were 66.5%, 70.2% and 82.3% for the three female subjects; they were noticeably much higher than that of 46.4%, 45.2% and 55.3%, respectively, for the four male subjects.

  14. Infrared spectra of proton transfer complexes of the cycleanine alkaloid in solid state

    Science.gov (United States)

    Kasende, Okuma E.; de Waal, D.

    2003-01-01

    Proton transfer complexes obtained between the cycleanine alkaloid and hydrogen chloride, hydrogen bromide and nitric acids have been investigated by infrared spectroscopic technique between 4000 and 400 cm -1 in KBr. The vibrational perturbations brought about by proton transfer complex formation, discussed in terms of preferred site of interaction, show that the proton of the inorganic acids is transferred to cycleanine through one of its N sites.

  15. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Sipala, V.; Lo Presti, D.; Brianzi, M.; Civinini, C.; Bruzzi, M.; Scaringella, M.; Talamonti, C.; Bucciolini, M.; Cirrone, G.A.P.; Cuttone, G.; Randazzo, N.; Stancampiano, C.; Tesi, M.

    2011-01-01

    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  16. Proton radioactivity from proton-rich nuclei

    International Nuclear Information System (INIS)

    Guzman, F.; Goncalves, M.; Tavares, O.A.P.; Duarte, S.B.; Garcia, F.; Rodriguez, O.

    1999-03-01

    Half-lives for proton emission from proton-rich nuclei have been calculated by using the effective liquid drop model of heavy-particle decay of nuclei. It is shown that this model is able to offer results or spontaneous proton-emission half-life-values in excellent agreement with the existing experimental data. Predictions of half-life-values for other possible proton-emission cases are present for null orbital angular momentum. (author)

  17. Risk Factors for Neovascular Glaucoma After Proton Beam Therapy of Uveal Melanoma: A Detailed Analysis of Tumor and Dose–Volume Parameters

    International Nuclear Information System (INIS)

    Mishra, Kavita K.; Daftari, Inder K.; Weinberg, Vivian; Cole, Tia; Quivey, Jeanne M.; Castro, Joseph R.; Phillips, Theodore L.; Char, Devron H.

    2013-01-01

    Purpose: To determine neovascular glaucoma (NVG) incidence and identify contributing tumor and dosing factors in uveal melanoma patients treated with proton beam radiation therapy (PBRT). Methods and Materials: A total of 704 PBRT patients treated by a single surgeon (DHC) for uveal melanoma (1996-2010) were reviewed for NVG in our prospectively maintained database. All patients received 56 GyE in 4 fractions. Median follow-up was 58.3 months. Analyses included the Kaplan-Meier method to estimate NVG distributions, univariate log–rank tests, and Cox's proportional hazards multivariate analysis using likelihood ratio tests to identify independent risk factors of NVG among patient, tumor, and dose–volume histogram parameters. Results: The 5-year PBRT NVG rate was 12.7% (95% confidence interval [CI] 10.2%-15.9%). The 5-year rate of enucleation due to NVG was 4.9% (95% CI 3.4%-7.2%). Univariately, the NVG rate increased significantly with larger tumor diameter (P 30% of the lens or ciliary body received ≥50% dose (≥28 GyE), there was a higher probability of NVG (P 0%-30% vs >30%) (P=.01), and optic nerve length treated to ≥90% Dose (≤1 mm vs >1 mm) (P=.02). Conclusions: Our current PBRT patients experience a low rate of NVG and resultant enucleation compared with historical data. The present analysis shows that tumor height, diameter, and anterior as well as posterior critical structure dose–volume parameters may be used to predict NVG risk

  18. Quality verification for respiratory gated proton therapy

    International Nuclear Information System (INIS)

    Kim, Eun Sook; Jang, Yo Jong; Park, Ji Yeon; Kang, Dong Yun; Yeom, Doo Seok

    2013-01-01

    To verify accuracy of respiratory gated proton therapy by measuring and analyzing proton beam delivered when respiratory gated proton therapy is being performed in our institute. The plan data of 3 patients who took respiratory gated proton therapy were used to deliver proton beam from proton therapy system. The manufactured moving phantom was used to apply respiratory gating system to reproduce proton beam which was partially irradiated. The key characteristics of proton beam, range, spreat-out Bragg peak (SOBP) and output factor were measured 5 times and the same categories were measured in the continuous proton beam which was not performed with respiratory gating system. Multi-layer ionization chamber was used to measure range and SOBP, and Scanditronix Wellhofer and farmer chamber was used to measure output factor. The average ranges of 3 patients (A, B, C), who had taken respiratory gated proton therapy or not, were (A) 7.226, 7.230, (B) 12.216, 12.220 and (C) 19.918, 19.920 g/cm 2 and average SOBP were (A) 4.950, 4.940, (B) 6.496, 6.512 and (C) 8.486, 8.490 g/cm 2 . And average output factor were (A) 0.985, 0.984 (B) 1.026, 1.027 and (C) 1.138, 1.136 cGy/MU. The differences of average range were -0.004, -0.004, -0.002 g/cm 2 , that of SOBP were 0.010, -0.016, -0.004 g/cm 2 and that of output factor were 0.001, -0.001, 0.002 cGy/MU. It is observed that the range, SOBP and output factor of proton beam delivered when respiratory gated proton therapy is being performed have the same beam quality with no significant difference compared to the proton beam which was continuously irradiated. Therefore, this study verified the quality of proton beam delivered when respiratory gated proton therapy and confirmed the accuracy of proton therapy using this

  19. Proton therapy project at PSI

    International Nuclear Information System (INIS)

    Nakagawa, K.; Akanuma, A.; Karasawa, K.

    1990-01-01

    Particle radiation which might present steeper dose distribution has received much attention as the third particle facility at the Paul Scherrer Institute (PSI), Switzerland. Proton conformation with sharp fall-off is considered to be the radiation beam suitable for confining high doses to a target volume without complications and for verifying which factor out of high RBE or physical dose distribution is more essential for local control in malignant tumors. This paper discusses the current status of the spot scanning method, which allows three dimensional conformation radiotherapy, and preliminary results. Preliminary dose distribution with proton conformation technique was acquired by modifying a computer program for treatment planning in pion treatment. In a patient with prostate carcinoma receiving both proton and pion radiation therapy, proton conformation was found to confine high doses to the target area and spare both the bladder and rectum well; and pion therapy was found to deliver non-homogeneous radiation to these organs. Although there are some obstacles in the proton project at PSI, experimental investigations are encouraging. The dynamic spot scanning method with combination of the kicker magnet, wobbler magnet, range shifter, patient transporter, and position sensitive monitor provides highly confined dose distribution, making it possible to increase total doses and thus to improve local control rate. Proton confirmation is considered to be useful for verifying possible biological effectiveness of negative pion treatment of PSI as well. (N.K.)

  20. Micron scale spectroscopic analysis of materials

    International Nuclear Information System (INIS)

    James, David; Finlayson, Trevor; Prawer, Steven

    1991-01-01

    The goal of this proposal is the establishment of a facility which will enable complete micron scale spectroscopic analysis of any sample which can be imaged in the optical microscope. Current applications include studies of carbon fibres, diamond thin films, ceramics (zirconia and high T c superconductors), semiconductors, wood pulp, wool fibres, mineral inclusions, proteins, plant cells, polymers, fluoride glasses, and optical fibres. The range of interests crosses traditional discipline boundaries and augurs well for a truly interdisciplinary collaboration. Developments in instrumentation such as confocal imaging are planned to achieve sub-micron resolution, and advances in computer software and hardware will enable the aforementioned spectroscopies to be used to map molecular and crystalline phases on the surfaces of materials. Coupled with existing compositional microprobes (e.g. the proton microprobe) the possibilities for the development of new, powerful, hybrid imaging technologies appear to be excellent

  1. Single-shot magnetic resonance spectroscopic imaging with partial parallel imaging.

    Science.gov (United States)

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2009-03-01

    A magnetic resonance spectroscopic imaging (MRSI) pulse sequence based on proton-echo-planar-spectroscopic-imaging (PEPSI) is introduced that measures two-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3-T whole-body scanner equipped with a 12-channel array coil. Four-step interleaved phase encoding and fourfold SENSE acceleration were used to encode a 16 x 16 spatial matrix with a 390-Hz spectral width. Comparison with conventional PEPSI and PEPSI with fourfold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor-related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of inositol, choline, creatine, and N-acetyl-aspartate (NAA) in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement.

  2. Risk Factors for Neovascular Glaucoma After Proton Beam Therapy of Uveal Melanoma: A Detailed Analysis of Tumor and Dose–Volume Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Kavita K., E-mail: kmishra@radonc.ucsf.edu [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Daftari, Inder K.; Weinberg, Vivian [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Cole, Tia [The Tumori Foundation, San Francisco, California (United States); Quivey, Jeanne M.; Castro, Joseph R.; Phillips, Theodore L. [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Char, Devron H. [The Tumori Foundation, San Francisco, California (United States)

    2013-10-01

    Purpose: To determine neovascular glaucoma (NVG) incidence and identify contributing tumor and dosing factors in uveal melanoma patients treated with proton beam radiation therapy (PBRT). Methods and Materials: A total of 704 PBRT patients treated by a single surgeon (DHC) for uveal melanoma (1996-2010) were reviewed for NVG in our prospectively maintained database. All patients received 56 GyE in 4 fractions. Median follow-up was 58.3 months. Analyses included the Kaplan-Meier method to estimate NVG distributions, univariate log–rank tests, and Cox's proportional hazards multivariate analysis using likelihood ratio tests to identify independent risk factors of NVG among patient, tumor, and dose–volume histogram parameters. Results: The 5-year PBRT NVG rate was 12.7% (95% confidence interval [CI] 10.2%-15.9%). The 5-year rate of enucleation due to NVG was 4.9% (95% CI 3.4%-7.2%). Univariately, the NVG rate increased significantly with larger tumor diameter (P<.0001), greater height (P<.0001), higher T stage (P<.0001), and closer proximity to the disc (P=.002). Dose–volume histogram analysis revealed that if >30% of the lens or ciliary body received ≥50% dose (≥28 GyE), there was a higher probability of NVG (P<.0001 for both). Furthermore, if 100% of the disc or macula received ≥28 GyE, the NVG rate was higher (P<.0001 and P=.03, respectively). If both anterior and posterior doses were above specified cut points, NVG risk was highest (P<.0001). Multivariate analysis confirmed significant independent risk factors to include tumor height (P<.0001), age (P<.0001), %disc treated to ≥50% Dose (<100% vs 100%) (P=.0007), larger tumor diameter (P=.01), %lens treated to ≥90% Dose (0 vs >0%-30% vs >30%) (P=.01), and optic nerve length treated to ≥90% Dose (≤1 mm vs >1 mm) (P=.02). Conclusions: Our current PBRT patients experience a low rate of NVG and resultant enucleation compared with historical data. The present analysis shows that tumor height

  3. Proton movies

    CERN Multimedia

    2009-01-01

    A humorous short film made by three secondary school students received an award at a Geneva film festival. Even without millions of dollars or Hollywood stars at your disposal, it is still possible to make a good science fiction film about CERN. That is what three students from the Collège Madame de Staël in Carouge, near Geneva, demonstrated. For their amateur short film on the LHC, they were commended by the jury of the video and multimedia festival for schools organised by the "Media in education" service of the Canton of Geneva’s Public Education Department. The film is a spoof of a television news report on the LHC start-up. In sequences full of humour and imagination, the reporter conducts interviews with a very serious "Professor Sairne", some protons preparing for their voyage and even the neutrons that were rejected by the LHC. "We got the idea of making a film about CERN at the end of the summer," explains Lucinda Päsche, one of the three students. "We did o...

  4. Concomitant use of proton pump inhibitors and clopidogrel in patients with coronary, cerebrovascular, or peripheral artery disease in the factores de Riesgo y ENfermedad Arterial (FRENA) registry.

    Science.gov (United States)

    Muñoz-Torrero, Juan Francisco Sánchez; Escudero, Domingo; Suárez, Carmen; Sanclemente, Carmen; Pascual, Ma Teresa; Zamorano, José; Trujillo-Santos, Javier; Monreal, Manuel

    2011-01-01

    Among patients receiving clopidogrel for coronary artery disease, concomitant therapy with proton pump inhibitors (PPIs) has been associated with an increased risk for recurrent coronary events. Factores de Riesgo y ENfermedad Arterial (FRENA) is an ongoing, multicenter, observational registry of consecutive outpatients with coronary artery disease, cerebrovascular disease, or peripheral artery disease. We retrospectively examined the influence of concomitant use of PPIs on outcome in patients receiving clopidogrel. As of March 2009, 1222 patients were using clopidogrel: 595 had coronary artery disease, 329 cerebrovascular disease, and 298 had peripheral artery disease. Of these, 519 (42%) were concomitantly using PPIs. Over a mean follow-up of 15 months, 131 patients (11%) had 139 subsequent ischemic events: myocardial infarction 44, ischemic stroke 40, and critical limb ischemia 55. Seventeen of them (13%) died within 15 days of the subsequent event. PPI users had a higher incidence of myocardial infarction (rate ratio, 2.5; 95% confidence interval [CI], 1.3-4.8), ischemic stroke (rate ratio, 1.9; 95% CI, 1.03-3.7), and a nonsignificantly higher rate of critical limb ischemia (rate ratio, 1.6; 95% CI, 0.95-2.8) than nonusers. On multivariate analysis, concomitant use of clopidogrel and PPIs was independently associated with an increased risk for subsequent ischemic events both in the whole series of patients (hazard ratio, 1.8; 95% CI, 1.1-2.7) and in those with cerebrovascular disease or peripheral artery disease (hazard ratio, 1.5; 95% CI, 1.01-2.4). In patients with established arterial disease, concomitant use of PPIs and clopidogrel was associated with a nearly doubling of the incidence of subsequent myocardial infarction or ischemic stroke. This higher incidence persisted after multivariate adjustment.

  5. Factors influencing the shift of patients from one proton pump inhibitor to another: the effect of direct-to-consumer advertising.

    Science.gov (United States)

    Hansen, Richard A; Shaheen, Nicholas J; Schommer, Jon C

    2005-09-01

    Switching from one proton pump inhibitor (PPI) to another is common, and may be related to factors other than efficacy and tolerability. The purposes of this study were to describe the incidence of therapeutic switching among PPI users, quantify direct ambulatory medical costs of switching, and characterize the relationship between product switching and variables hypothesized to influence a switch (eg, direct-to-consumer [DTC] advertising, structure of insurance coverage, disease diagnosis). This was a retrospective cohort study of health plans using 1998 data. The subjects were employees and dependents with employer-sponsored health insurance contributing to the Medstat Market-Scan administrative dataset. Using a commercially available database to quantify DTC advertising by marketing area, market-specific expenditures were matched to eligible subjects. Among PPI users, we identified those who switched from one product to another (switchers) and compared their utilization and spending with nonswitchers. We then evaluated the relationship between drug use and variables hypothesized to affect switching: DTC advertising, insurance characteristics, patient diagnosis, diagnostic procedures, comorbidities, age, and sex. The analysis used data for 396,500 individuals from 47 unique markets that were geographically well distributed, with population density similar to that of the United States overall. The sample was also comparable with US census estimates for age and sex among working adults and their dependents. Only 620 (6.3%) of PPI users switched products during the 1998 calendar year. Annual diagnostic and drug costs were >US $400 higher for switchers than nonswitchers. Subjects in areas with high levels of DTC advertising were 43% more likely to switch from lansoprazole to omeprazole than those in the low-expenditure areas. Additionally, patients paying prescription drug copayments >US $5 were 12% less likely to switch from lansoprazole to omeprazole than patients

  6. Measurement of the proton form factors ratio GE/GM to Q2 = 5.6 GeV2 by recoil polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Gayou, Olivier [College of William and Mary, Williamsburg, VA (United States)

    2002-01-01

    In this thesis, we present the results of the experiment E99-007, which measured the ratio of the electric to magnetic form factors of the proton to the four momentum transfer square Q2 = 5.6 GeV2, by recoil polarimetry. Data were taken in 2000 at the Thomas Jefferson National Accelerator Facility in Virginia, USA. A 4.6 GeV polarized electron beam was scattered off a cryogenic hydrogen target. The polarization of the recoil proton was measured in the Focal Plane Polarimeter, located after one of the two High Resolution Spectrometers in the hall. The ratio of the transverse to longitudinal components of the recoil proton polarization is proportional to the ratio of the form factors. Elastic events were selected by detecting the scattered electron in a large acceptance lead-glass calorimeter. The main result of this experiment is the linear decrease of the form factor ratio with increasing Q2, corresponding to different spatial distributions of the electric charge and the magnetization. Numerous theoretical calculations show that relativistic effects, such as mixing of spin states due to Lorentz boosts, are important to account for the observed data in this critical intermediate kinematic region.

  7. Proton relativistic model

    International Nuclear Information System (INIS)

    Araujo, Wilson Roberto Barbosa de

    1995-01-01

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)

  8. The Structure of the Proton

    Science.gov (United States)

    Chambers, E. E.; Hofstadter, R.

    1956-04-01

    The structure and size of the proton have been studied by means of the methods of high-energy electron scattering. The elastic scattering of electrons from protons in polyethylene has been investigated at the following energies in the laboratory system: 200, 300, 400, 500, 550 Mev. The range of laboratory angles examined has been 30 degrees to 135 degrees. At the largest angles and the highest energy, the cross section for scattering shows a deviation below that expected from a point proton by a factor of about nine. The magnitude and variation with angle of the deviations determine a structure factor for the proton, and thereby determine the size and shape of the charge and magnetic-moment distributions within the proton. An interpretation, consistent at all energies and angles and agreeing with earlier results from this laboratory, fixes the rms radius at 0.77 {plus or minus} 0.10 x 10{sup -13} cm for each of the charge and moment distributions. The shape of the density function is not far from a Gaussian with rms radius 0.70 x 10{sup -13} cm or an exponential with rms radius 0.80 x 10 {sup -13} cm. An equivalent interpretation of the experiments would ascribe the apparent size to a breakdown of the Coulomb law and the conventional theory of electromagnetism.

  9. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  10. Relation between proton and neutron asymptotic normalization coefficients for light mirror nuclei and its relevance for nuclear astrophysics

    International Nuclear Information System (INIS)

    Timofeyuk, N.K.; Johnson, R.C.; Descouvemont, P.

    2006-01-01

    It has been realised recently that charge symmetry of the nucleon-nucleon interaction leads to a certain relation between Asymptotic Normalization Coefficients (ANCs) in mirror-conjugated one-nucleon overlap integrals. This relation can be approximated by a simple analytical formula that involves mirror neutron and proton separation energies, the core charge and the range of the strong nucleon-core interaction. We perform detailed microscopic multi-channel cluster model calculations and compare their predictions to the simple analytical formula as well as to calculations within a single-particle model in which mirror symmetry in potential wells and spectroscopic factors are assumed. The validity of the latter assumptions is verified on the basis of microscopic cluster model calculations. For mirror pairs in which one of the states is above the proton decay threshold, a link exists between the proton partial width and the ANC of the mirror neutron. This link is given by an approximate analytical formula similar to that for a bound-bound mirror pair. We compare predictions of this formula to the results of microscopic cluster model calculations. Mirror symmetry in ANCs can be used to predict cross sections for proton capture at stellar energies using neutron ANCs measured with stable or ''less radioactive'' beams. (orig.)

  11. Rise in proton structure function

    International Nuclear Information System (INIS)

    Fazal-e-Aleem; Rashid, H.; Ali, S.

    1996-08-01

    By the choice of a new scale factor we obtain a good qualitative fit to the HERA data for the proton structure function in the small x region which exhibits double asymptotic scaling. Any scaling violations in the future measurements when made in smaller bins will be of immense value. (author). 19 refs, 6 figs

  12. Experimental determination of beam quality factors, kQ, for two types of Farmer chamber in a 10 MV photon and a 175 MeV proton beam.

    Science.gov (United States)

    Medin, Joakim; Ross, Carl K; Klassen, Norman V; Palmans, Hugo; Grusell, Erik; Grindborg, Jan-Erik

    2006-03-21

    Absorbed doses determined with a sealed water calorimeter operated at 4 degrees C are compared with the results obtained using ionization chambers and the IAEA TRS-398 code of practice in a 10 MV photon beam (TPR(20,10) = 0.734) and a 175 MeV proton beam (at a depth corresponding to the residual range, R(res) = 14.7 cm). Three NE 2571 and two FC65-G ionization chambers were calibrated in terms of absorbed-dose-to-water in (60)Co at the Swedish secondary standard dosimetry laboratory, directly traceable to the BIPM. In the photon beam quality, calorimetry was found to agree with ionometry within 0.3%, confirming the k(Q) values tabulated in TRS-398. In contrast, a 1.8% deviation was found in the proton beam at 6 g cm(-2) depth, suggesting that the TRS-398 tabulated k(Q) values for these two ionization chamber types are too high. Assuming no perturbation effect in the proton beam for the ionization chambers, a value for (w(air)/e)(Q) of 33.6 J C(-1) +/- 1.7% (k = 1) can be derived from these measurements. An analytical evaluation of the effect from non-elastic nuclear interactions in the ionization chamber wall indicates a perturbation effect of 0.6%. Including this estimated result in the proton beam would increase the determined (w(air)/e)(Q) value by the same amount.

  13. Model independent spectroscopic information from an analysis of peripheral direct radiative capture reaction and its application for an extrapolation of an astrophysical S-factor to stellar energies

    International Nuclear Information System (INIS)

    Igamov, S.B.; Tursunmuratov, T.M.; Yarmukhamedov, R.

    2003-01-01

    In this work, within the framework of the cluster potential approach we develop a method which can be used an independent source of getting information on the value of the nuclear vertex constant (NVC) (or respective asymptotical normalization coefficient (ANC)) from the analysis of the direct radiative capture cross section σ(E)(or the astrophysical S-factor S(E)) at extremely low energies by a model independent way as possible. The main idea of the proposed method is that at stellar energies peripheral direct radiative capture reaction of astrophysical interest proceeds mainly through the tail of the overlap integral, which is completely determined by the binding energy and the respective ANC (or NVC). The main advantage of the proposed method is that it allows us to determine both the absolute value of NVC (or ANC) and the astrophysical S-factor S(E) at solar energies (0-50 keV) by means of the analysis of the same experimental astrophysical S-factor S exp (E) in a correct self consistent way using the same potential both for the bound state and for scattering state. The method has been applied for an investigation of the direct radiative capture t(α, γ) 7 Li and 3 He(α, γ) 7 Be reactions at extremely low energies. At first, this method was used for analysis of the S exp (E) to determine values of the modulus squared of the NVC's (or the respective ANC's). The values of NVC's are presented. Then, the obtained NVC's are used by us for extrapolation of the S(E) of the reactions considered to stellar energies (E=0-50 keV) for the 3 He(α, γ) 7 Be reaction and for the t(α, γ) 7 Li reaction. The obtained results are compared with those other authors

  14. Theoretical determination of proton affinity differences in zeolites

    NARCIS (Netherlands)

    Kramer, G.J.; Santen, van R.A.

    1993-01-01

    An important factor in zeolite catalysis is the proton affinity, i.e., the energy required to remove a proton from the zeolite lattice. Differences in proton affinity are expected to influence the catalytic activity of acid sites, making the catalytically active sites inhomogeneous (within one

  15. Proton therapy device

    International Nuclear Information System (INIS)

    Tronc, D.

    1994-01-01

    The invention concerns a proton therapy device using a proton linear accelerator which produces a proton beam with high energies and intensities. The invention lies in actual fact that the proton beam which is produced by the linear accelerator is deflected from 270 deg in its plan by a deflecting magnetic device towards a patient support including a bed the longitudinal axis of which is parallel to the proton beam leaving the linear accelerator. The patient support and the deflecting device turn together around the proton beam axis while the bed stays in an horizontal position. The invention applies to radiotherapy. 6 refs., 5 figs

  16. Dose-volume histogram analysis for risk factors of radiation-induced rib fracture after hypofractionated proton beam therapy for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Kanemoto, Ayae

    2013-01-01

    Background: Radiation-induced rib fracture has been reported as a late complication after external radiotherapy to the chest. The purpose of this study was to clarify the characteristics and risk factors of rib fracture after hypofractionated proton beam therapy (PBT). Material and methods: The retrospective study comprised 67 patients with hepatocellular carcinoma who were treated using PBT of 66 Cobalt-Gray-equivalents [Gy (RBE)] in 10 fractions. We analyzed the patients' characteristics and determined dose-volume histograms (DVHs) for the irradiated ribs, and then estimated relationships between risk of fracture and several dose-volume parameters. An irradiated rib was defined to be any rib included in the area irradiated by PBT as determined by treatment-planning computed tomography. Results. Among the 67 patients, a total of 310 ribs were identified as irradiated ribs. Twenty-seven (8.7%) of the irradiated ribs developed fractures in 11 patients (16.4%). No significant relationships were seen between incidence of fracture and characteristics of patients, including sex, age, tumor size, tumor site, and follow-up period (p ≥ 0.05). The results of receiver operating characteristic curve analysis using DVH parameters demonstrated that the largest area under the curve (AUC) was observed for the volume of rib receiving a biologically effective dose of more than 60 Gy 3 (RBE) (V60) [The equivalent dose in 2 Gy fractions (EQD2); 36 Gy 3 ] and the AUCs of V30 to V120 (EQD2; 18-72 Gy 3 ) and D max to D 1 0 cm 3 were similar to that of V60. No significant relationships were seen for DVH parameters and intervals from PBT to incidence of fracture. Conclusion. DVH parameters are useful in predicting late adverse events of rib irradiation. This study identified that V60 was a most statistically significant parameter, and V30 to V120 and D max to D 1 0 cm 3 were also significant and clinically useful for estimating the risk of rib fracture after hypofractionated PBT

  17. Dose-volume histogram analysis for risk factors of radiation-induced rib fracture after hypofractionated proton beam therapy for hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Ayae [Proton Medical Research Center and Dept. of Radiation Oncology, Univ. of Tsukuba, Ibaraki (Japan)], e-mail: ayaek@pmrc.tsukuba.ac.jp [and others

    2013-04-15

    Background: Radiation-induced rib fracture has been reported as a late complication after external radiotherapy to the chest. The purpose of this study was to clarify the characteristics and risk factors of rib fracture after hypofractionated proton beam therapy (PBT). Material and methods: The retrospective study comprised 67 patients with hepatocellular carcinoma who were treated using PBT of 66 Cobalt-Gray-equivalents [Gy (RBE)] in 10 fractions. We analyzed the patients' characteristics and determined dose-volume histograms (DVHs) for the irradiated ribs, and then estimated relationships between risk of fracture and several dose-volume parameters. An irradiated rib was defined to be any rib included in the area irradiated by PBT as determined by treatment-planning computed tomography. Results. Among the 67 patients, a total of 310 ribs were identified as irradiated ribs. Twenty-seven (8.7%) of the irradiated ribs developed fractures in 11 patients (16.4%). No significant relationships were seen between incidence of fracture and characteristics of patients, including sex, age, tumor size, tumor site, and follow-up period (p {>=} 0.05). The results of receiver operating characteristic curve analysis using DVH parameters demonstrated that the largest area under the curve (AUC) was observed for the volume of rib receiving a biologically effective dose of more than 60 Gy{sub 3} (RBE) (V60) [The equivalent dose in 2 Gy fractions (EQD2); 36 Gy{sub 3}] and the AUCs of V30 to V120 (EQD2; 18-72 Gy{sub 3}) and D{sub max} to D{sub 1}0{sub cm}{sup 3} were similar to that of V60. No significant relationships were seen for DVH parameters and intervals from PBT to incidence of fracture. Conclusion. DVH parameters are useful in predicting late adverse events of rib irradiation. This study identified that V60 was a most statistically significant parameter, and V30 to V120 and D{sub max} to D{sub 1}0{sub cm}{sup 3} were also significant and clinically useful for estimating

  18. Elastic proton-proton scattering at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  19. Baryon production in proton-proton collisions

    International Nuclear Information System (INIS)

    Liu, F.M.; Werner, K.

    2002-01-01

    Motivated by the recent rapidity spectra of baryons and antibaryons in pp collisions at 158 GeV and the Ω-bar/Ω ratio discussion, we reviewed string formation mechanism and some string models. This investigation told us how color strings are formed in ultrarelativistic proton-proton collisions

  20. A subspace approach to high-resolution spectroscopic imaging.

    Science.gov (United States)

    Lam, Fan; Liang, Zhi-Pei

    2014-04-01

    To accelerate spectroscopic imaging using sparse sampling of (k,t)-space and subspace (or low-rank) modeling to enable high-resolution metabolic imaging with good signal-to-noise ratio. The proposed method, called SPectroscopic Imaging by exploiting spatiospectral CorrElation, exploits a unique property known as partial separability of spectroscopic signals. This property indicates that high-dimensional spectroscopic signals reside in a very low-dimensional subspace and enables special data acquisition and image reconstruction strategies to be used to obtain high-resolution spatiospectral distributions with good signal-to-noise ratio. More specifically, a hybrid chemical shift imaging/echo-planar spectroscopic imaging pulse sequence is proposed for sparse sampling of (k,t)-space, and a low-rank model-based algorithm is proposed for subspace estimation and image reconstruction from sparse data with the capability to incorporate prior information and field inhomogeneity correction. The performance of the proposed method has been evaluated using both computer simulations and phantom studies, which produced very encouraging results. For two-dimensional spectroscopic imaging experiments on a metabolite phantom, a factor of 10 acceleration was achieved with a minimal loss in signal-to-noise ratio compared to the long chemical shift imaging experiments and with a significant gain in signal-to-noise ratio compared to the accelerated echo-planar spectroscopic imaging experiments. The proposed method, SPectroscopic Imaging by exploiting spatiospectral CorrElation, is able to significantly accelerate spectroscopic imaging experiments, making high-resolution metabolic imaging possible. Copyright © 2014 Wiley Periodicals, Inc.

  1. Molecular modeling of the human eukaryotic translation initiation factor 5A (eIF5A) based on spectroscopic and computational analyses

    International Nuclear Information System (INIS)

    Costa-Neto, Claudio M.; Parreiras-e-Silva, Lucas T.; Ruller, Roberto; Oliveira, Eduardo B.; Miranda, Antonio; Oliveira, Laerte; Ward, Richard J.

    2006-01-01

    The eukaryotic translation initiation factor 5A (eIF5A) is a protein ubiquitously present in archaea and eukarya, which undergoes a unique two-step post-translational modification called hypusination. Several studies have shown that hypusination is essential for a variety of functional roles for eIF5A, including cell proliferation and synthesis of proteins involved in cell cycle control. Up to now neither a totally selective inhibitor of hypusination nor an inhibitor capable of directly binding to eIF5A has been reported in the literature. The discovery of such an inhibitor might be achieved by computer-aided drug design based on the 3D structure of the human eIF5A. In this study, we present a molecular model for the human eIF5A protein based on the crystal structure of the eIF5A from Leishmania brasiliensis, and compare the modeled conformation of the loop bearing the hypusination site with circular dichroism data obtained with a synthetic peptide of this loop. Furthermore, analysis of amino acid variability between different human eIF5A isoforms revealed peculiar structural characteristics that are of functional relevance

  2. Calculations with spectroscopic accuracy for energies, transition rates, hyperfine interaction constants, and Landé gJ-factors in nitrogen-like Kr XXX

    Science.gov (United States)

    Wang, K.; Li, S.; Jönsson, P.; Fu, N.; Dang, W.; Guo, X. L.; Chen, C. Y.; Yan, J.; Chen, Z. B.; Si, R.

    2017-01-01

    Extensive self-consistent multi-configuration Dirac-Fock (MCDF) calculations and second-order many-body perturbation theory (MBPT) calculations are performed for the lowest 272 states belonging to the 2s22p3, 2s2p4, 2p5, 2s22p23l, and 2s2p33l (l=s, p, d) configurations of N-like Kr XXX. Complete and consistent data sets of level energies, wavelengths, line strengths, oscillator strengths, lifetimes, AJ, BJ hyperfine interaction constants, Landé gJ-factors, and electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole (M2) transition rates among all these levels are given. The present MCDF and MBPT results are compared with each other and with other available experimental and theoretical results. The mean relative difference between our two sets of level energies is only about 0.003% for these 272 levels. The accuracy of the present calculations are high enough to facilitate identification of many observed spectral lines. These accurate data can be served as benchmark for other calculations and can be useful for fusion plasma research and astrophysical applications.

  3. Proton: the particle.

    Science.gov (United States)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. Copyright © 2013 Elsevier Inc. All

  4. Proton: The Particle

    Energy Technology Data Exchange (ETDEWEB)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created at 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  5. Proton-induced knockout reactions with netron-rich oxygen isotopes at R{sup 3}B

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Leyla [IKP, TU Darmstadt (Germany); GSI (Germany); Collaboration: R3B-Collaboration

    2014-07-01

    Proton-induced knockout reactions are one of the main goal of the experimental program at the future R{sup 3}B (Reactions with Relativistic Radioactive Beams) Experiment at FAIR. It allows us to obtain spectroscopic information about valence and deeply bound single-nucleon states and to study their evolution over a large variation in isospin. Recent studies have shown that the occupancies of loosely bound valence nucleons in neutron- or proton-rich nuclei have a spectroscopic factor close to unity, whereas single-particle strength for deeply bound nucleons is suppressed in isospin asymmetric systems compared to the predictions of the many-body shell model. Further experimental and theoretical studies are needed for a qualitative and quantitative understanding. For this aim a series of measurements have been performed on the complete oxygen isotopic chain using the existing experimental setup LAND/R{sup 3}B at GSI. We present the main scientific goals, the concepts of the experiment and the preliminary results.

  6. Proton therapy physics

    CERN Document Server

    2012-01-01

    Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also exami...

  7. Proton solvation and proton transfer in chemical and electrochemical processes

    International Nuclear Information System (INIS)

    Lengyel, S.; Conway, B.E.

    1983-01-01

    This chapter examines the proton solvation and characterization of the H 3 O + ion, proton transfer in chemical ionization processes in solution, continuous proton transfer in conductance processes, and proton transfer in electrode processes. Topics considered include the condition of the proton in solution, the molecular structure of the H 3 O + ion, thermodynamics of proton solvation, overall hydration energy of the proton, hydration of H 3 O + , deuteron solvation, partial molal entropy and volume and the entropy of proton hydration, proton solvation in alcoholic solutions, analogies to electrons in semiconductors, continuous proton transfer in conductance, definition and phenomenology of the unusual mobility of the proton in solution, solvent structure changes in relation to anomalous proton mobility, the kinetics of the proton-transfer event, theories of abnormal proton conductance, and the general theory of the contribution of transfer reactions to overall transport processes

  8. First Extraction of Transversity from a Global Analysis of Electron-Proton and Proton-Proton Data

    Science.gov (United States)

    Radici, Marco; Bacchetta, Alessandro

    2018-05-01

    We present the first extraction of the transversity distribution in the framework of collinear factorization based on the global analysis of pion-pair production in deep-inelastic scattering and in proton-proton collisions with a transversely polarized proton. The extraction relies on the knowledge of dihadron fragmentation functions, which are taken from the analysis of electron-positron annihilation data. For the first time, the transversity is extracted from a global analysis similar to what is usually done for the spin-averaged and helicity distributions. The knowledge of transversity is important for, among other things, detecting possible signals of new physics in high-precision low-energy experiments.

  9. Proton-induced $\\alpha$-cluster knockout from $^{12}$C

    CERN Document Server

    Cowley, A A; Förtsch, S V; Buthelezi, E Z; Neveling, R; Smit, F D; Steyn, G F; van Zyl, J J

    2010-01-01

    Results of a study of the (p, p ) reaction on 12C with polarized incident protons of 100 MeV are reviewed. Experimental cross section and analyzing power distributions are compared with predictions of a distorted wave impulse approximation (DWIA) theory. The theory reproduces the data reasonably well, suggesting that a quasifree knockout mechanism dominates the reaction. Spectroscopic information extracted from the cross section data is in agreement with a shell model prediction.

  10. Application of protons to computer tomography

    International Nuclear Information System (INIS)

    Hanson, K.M.; Bradbury, J.N.; Cannon, T.M.; Hutson, R.L.; Laubacher, D.B.; Macek, R.; Paciotti, M.A.; Taylor, C.A.

    1977-01-01

    It was demonstrated that the application of protons to computed tomography can result in a significant dose advantage relative to x rays. Thus, at the same dose as is delivered by contemporary commercial x-ray scanners, a proton scanner could produce reconstructions with a factor of 2 or more improvement in density resolution. Whether such an improvement can result in significantly better diagnoses of human disease is an open question which can only be answered by the implementation of a proton scanner in a clinical situation

  11. Viewing the proton through ''color'' filters

    International Nuclear Information System (INIS)

    Ji, Xiangdong

    2004-01-01

    While the form factors and parton distributions provide separately the shape of the proton in coordinate and momentum spaces, a more powerful imaging of the proton structure can be obtained through quantum phase-space distributions. Here we introduce the Wigner-type quark and gluon distributions which depict a full-3D proton at every fixed Feynman momentum, like what is seen through momentum(''color'')-filters. After appropriate reductions, the phase-space distributions are related to the generalized parton distributions (GPDs) and transverse-momentum dependent parton distributions measurable in high-energy experiments. (orig.)

  12. Spectroscopic study of low-lying 16N levels

    International Nuclear Information System (INIS)

    Bardayan, Daniel W.; O'Malley, Patrick; Blackmon, Jeff C.; Chae, K.Y.; Chipps, K.; Cizewski, J.A.; Hatarik, Robert; Jones, K.L.; Kozub, R. L.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D.; Pain, Steven D.; Paulauskas, Stanley; Peters, W.A.; Pittman, S.T.; Schmitt, Kyle; Shriner, J.F. Jr.; Smith, Michael Scott

    2008-01-01

    The magnitude of the 15N(n,gamma)16N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying 16N levels. A new study of the 15N(d,p)16N reaction is reported populating the ground and first three excited states in 16N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated 15N(n,gamma)16N reaction rates are presented

  13. Uncertainties in the proton lifetime

    International Nuclear Information System (INIS)

    Ellis, J.; Nanopoulos, D.V.; Rudaz, S.; Gaillard, M.K.

    1980-04-01

    We discuss the masses of the leptoquark bosons m(x) and the proton lifetime in Grand Unified Theories based principally on SU(5). It is emphasized that estimates of m(x) based on the QCD coupling and the fine structure constant are probably more reliable than those using the experimental value of sin 2 theta(w). Uncertainties in the QCD Λ parameter and the correct value of α are discussed. We estimate higher order effects on the evolution of coupling constants in a momentum space renormalization scheme. It is shown that increasing the number of generations of fermions beyond the minimal three increases m(X) by almost a factor of 2 per generation. Additional uncertainties exist for each generation of technifermions that may exist. We discuss and discount the possibility that proton decay could be 'Cabibbo-rotated' away, and a speculation that Lorentz invariance may be violated in proton decay at a detectable level. We estimate that in the absence of any substantial new physics beyond that in the minimal SU(5) model the proton lifetimes is 8 x 10 30+-2 years

  14. Scanning of irradiated silicon detectors using $\\alpha$ particles and low energy protons

    CERN Document Server

    Casse, G L; Glaser, M; Kohout, Z; Konícek, J; Lemeilleur, F; Leroy, C; Linhart, V; Mares, J J; Pospísil, S; Roy, P; Sopko, B; Sinor, M; Svejda, J; Vorobel, V; Wilhelm, I

    1999-01-01

    In a spectroscopic study of non-irradiated and proton-irradiated silicon diodes, the detectors were illuminated from the front side and from the rear side by various alpha particle sources (mainly ThC') and by monoenergetic protons with energies from 1.0 to 2.5~MeV. Their response characteristics have been studied as a function of the incoming particle energy and the applied bias voltage. The charge collection efficiency was determined as a function of fluence

  15. Review of Experimental and Theoretical Status of the Proton Radius Puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Richard J. [TRIUMF

    2017-01-01

    The discrepancy between the measured Lamb shift in muonic hydrogen and expectations from electron-proton scattering and regular hydrogen spectroscopy has become known as the proton radius puzzle, whose most “mundane” resolution requires a > 5σ shift in the value of the fundamental Rydberg constant. I briefly review the status of spectroscopic and scattering measurements, recent theoretical developments, and implications for fundamental physics.

  16. Kinetic and theoretical studies on the protonation of [Ni(2-SC6H4N){PhP(CH2CH2PPh2)2}]+: nitrogen versus sulfur as the protonation site.

    Science.gov (United States)

    Petrou, Athinoula L; Koutselos, Andreas D; Wahab, Hilal S; Clegg, William; Harrington, Ross W; Henderson, Richard A

    2011-02-07

    The complexes [Ni(4-Spy)(triphos)]BPh(4) and [Ni(2-Spy)(triphos)]BPh(4) {triphos = PhP(CH(2)CH(2)PPh(2))(2), 4-Spy = 4-pyridinethiolate, 2-Spy = 2-pyridinethiolate} have been prepared and characterized both spectroscopically and using X-ray crystallography. In both complexes the triphos is a tridentate ligand. However, [Ni(4-Spy)(triphos)](+) comprises a 4-coordinate, square-planar nickel with the 4-Spy ligand bound to the nickel through the sulfur while [Ni(2-Spy)(triphos)](+) contains a 5-coordinate, trigonal-bipyramidal nickel with a bidentate 2-Spy ligand bound to the nickel through both sulfur and nitrogen. The kinetics of the reactions of [Ni(4-Spy)(triphos)](+) and [Ni(2-Spy)(triphos)](+) with lutH(+) (lut = 2,6-dimethylpyridine) in MeCN have been studied using stopped-flow spectrophotometry, and the two complexes show very different reactivities. The reaction of [Ni(4-Spy)(triphos)](+) with lutH(+) is complete within the deadtime of the stopped-flow apparatus (2 ms) and corresponds to protonation of the nitrogen. However, upon mixing [Ni(2-Spy)(triphos)](+) and lutH(+) a reaction is observed (on the seconds time scale) to produce an equilibrium mixture. The mechanistic interpretation of the rate law has been aided by the application of MSINDO semiempirical and ADF calculations. The kinetics and calculations are consistent with the reaction between [Ni(2-Spy)(triphos)](+) and lutH(+) involving initial protonation of the sulfur followed by dissociation of the nitrogen and subsequent transfer of the proton from sulfur to nitrogen. The factors affecting the position of protonation and the coupling of the coordination state of the 2-pyridinethiolate ligand to the site of protonation are discussed.

  17. Proton-Proton and Proton-Antiproton Colliders

    CERN Document Server

    Scandale, Walter

    2014-01-01

    In the last five decades, proton–proton and proton–antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion–ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  18. Proton Fast Ignition

    International Nuclear Information System (INIS)

    Key, M H; Freeman, R R; Hatchett, S P; MacKinnon, A J; Patel, P K; Snavely, R A; Stephens, R B

    2006-04-01

    Fast ignition (FI) by a laser generated ballistically focused proton beam is a more recently proposed alternative to the original concept of FI by a laser generated beam of relativistic electrons. It has potential advantages in less complex energy transport into dense plasma. Recent successful target heating experiments motivate further investigation of the feasibility of proton fast ignition. The concept, the physics and characteristics of the proton beams, the recent experimental work on focusing of the beams and heating of solid targets and the overall prospects for proton FI are discussed

  19. Nuclear spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  20. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1988-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility, the SuperHILAC at Berkeley, and Chalk River Tandem Accelerator. Also, we have joined a collaboration to study ultra-relativistic heavy ion physics and one of our group has spent all of 1987 at CERN to work on the WA80 experiment. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document in sections 2A, 2B, 2C, and 2D, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  1. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1991-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility, the SuperHILAC at Berkeley, and Chalk River Tandem Accelerator. Also, we have joined a collaboration to study ultra-relativistic heavy ion physics and one of our group has spent all of 1987 at CERN to work on the WA80 experiment. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document in sections IIA, IIB, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  2. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R ampersand D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  3. A convolutional neural network to filter artifacts in spectroscopic MRI.

    Science.gov (United States)

    Gurbani, Saumya S; Schreibmann, Eduard; Maudsley, Andrew A; Cordova, James Scott; Soher, Brian J; Poptani, Harish; Verma, Gaurav; Barker, Peter B; Shim, Hyunsuk; Cooper, Lee A D

    2018-03-09

    Proton MRSI is a noninvasive modality capable of generating volumetric maps of in vivo tissue metabolism without the need for ionizing radiation or injected contrast agent. Magnetic resonance spectroscopic imaging has been shown to be a viable imaging modality for studying several neuropathologies. However, a key hurdle in the routine clinical adoption of MRSI is the presence of spectral artifacts that can arise from a number of sources, possibly leading to false information. A deep learning model was developed that was capable of identifying and filtering out poor quality spectra. The core of the model used a tiled convolutional neural network that analyzed frequency-domain spectra to detect artifacts. When compared with a panel of MRS experts, our convolutional neural network achieved high sensitivity and specificity with an area under the curve of 0.95. A visualization scheme was implemented to better understand how the convolutional neural network made its judgement on single-voxel or multivoxel MRSI, and the convolutional neural network was embedded into a pipeline capable of producing whole-brain spectroscopic MRI volumes in real time. The fully automated method for assessment of spectral quality provides a valuable tool to support clinical MRSI or spectroscopic MRI studies for use in fields such as adaptive radiation therapy planning. © 2018 International Society for Magnetic Resonance in Medicine.

  4. Review of inelastic proton-proton reactions

    CERN Document Server

    Morrison, Douglas Robert Ogston

    1973-01-01

    The most important new results on inelastic proton-proton scattering obtained with the new machines, I.S.R. and N.A.L., are: (1) The inelastic cross-section increases monotonically with energy from threshold to 1500 GeV/c. Above 6 GeV/c the energy variation has a s /sup +0.04/ behaviour. (2) Scaling is observed at I.S.R. energies in pion production. Confirmation is obtained of the hypothesis of limiting fragmentation. (3) The results are in general, consistent with the two-component model-one class of events being produced by diffraction dissociation and the other by a short-range-order process (e.g. the multiperipheral model). (4) There are indications that the protons have a granular structure; this from observation of secondaries of large transverse momenta. (33 refs).

  5. Spin structure of the proton

    International Nuclear Information System (INIS)

    Nathan Isgur

    1995-01-01

    In these lectures the author argues that their response to the spin crisis should not be to abandon the naive quark model baby, but rather to allow it to mature. He begin by recalling what a beautiful baby the quark model is via an overview of its successes in spectroscopy, dynamics, and valence spin structure. He also introduces the conservative hypothesis that dynamical qanti q pairs are its key missing ingredient. He then discusses dressing the baby. He first shows that it can be clothed in glue without changing its spectroscopic successes. In the process, several dynamical mysteries associated with quark model spectroscopy are potentially explained. Next, he dresses the baby in qanti q pairs, first showing that this can be done without compromising the naive quark model's success with either spectroscopy or the OZI rule. Finally, he shows that despite their near invisibility elsewhere, pairs do play an important role in the proton's spin structure by creating an antipolarized qanti q sea. In the context of an explicit calculation he demonstrate that it is plausible that the entire ''spin crisis'' arises from this effect

  6. Spectroscopic information on light halo - nuclei within the framework of multiparticle shell model

    International Nuclear Information System (INIS)

    Khaydarov, R.R.

    2004-09-01

    Aim of the inquiry: to develop the potential approach within the framework of multiparticle shell model; to obtain analytical expressions for a wave function and equations for widths off sub-barrier resonance states; to apply the theoretical approach for obtaining properties of 5 He, 5 Li, 8 B and 11 N nuclei; to estimate values of root-mean-square radiuses, radial density of nucleons, magnetic dipole and electrical quadrupole moments and spectroscopic information for 8 B and 8 Li with use of a method of expansion on functions of Storm - Liouville; to estimate the contribution of 2p - shell of 13 C and process of exchange replacement to the astrophysical S-factor of 13 C (α, n) 16 O reaction. Method of the research: theoretical approaches within the framework of multiparticle shell model. Achieved results and their novelty: new theoretical approach allowing to describe correctly the experimental static characteristics of sub-barrier one-particle resonance states in of 5 He, 5 Li, 8 B and 11 N light nuclei has been developed. Structure of 8 B and 8 Li light mirror nuclei with use of the approach for the description of one-particle resonance states based on the method of expansion on functions of Storm - Liouville has been investigated; The spectroscopic information for proton halo in 8 B and values of the magnetic dipole and electric quadrupole moments of 8 B and 8 Li with use of technique of genealogical coefficients have been obtained. The contribution of 2p - shell of 13 C (α, n) 16 O reaction has been estimated. (author)

  7. Centrality dependence of the nuclear modification factor of charged pions, kaons, and protons in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Zhang, Chunhui; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jadlovska, Slavka; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Ferreira Natal Da Luz, Pedro Hugo; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Masui, Hiroshi; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papcun, Peter; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-03-25

    Transverse momentum ($p_{\\rm{T}}$) spectra of pions, kaons, and protons up to $p_{\\rm{T}} = 20$ GeV/$c$ have been measured in Pb-Pb collisions at $\\sqrt{s_{\\rm NN}} = 2.76$ TeV using the ALICE detector for six different centrality classes covering 0-80%. The proton-to-pion and the kaon-to-pion ratios both show a distinct peak at $p_{\\rm{T}} \\approx 3$ GeV/$c$ in central Pb-Pb collisions that decreases towards more peripheral collisions. For $p_{\\rm{T}} > 10$ GeV/$c$, the nuclear modification factor is found to be the same for all three particle species in each centrality interval within systematic uncertainties of 10-20%. This suggests there is no direct interplay between the energy loss in the medium and the particle species composition in the hard core of the quenched jet. For $p_{\\rm{T}} < 10$ GeV/$c$, the data provide important constraints for models aimed at describing the transition from soft to hard physics.

  8. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Nissen, Poul

    2008-01-01

    molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...... proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK (a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires....

  9. Spectroscopic analysis of optoelectronic semiconductors

    CERN Document Server

    Jimenez, Juan

    2016-01-01

    This book deals with standard spectroscopic techniques which can be used to analyze semiconductor samples or devices, in both, bulk, micrometer and submicrometer scale. The book aims helping experimental physicists and engineers to choose the right analytical spectroscopic technique in order to get specific information about their specific demands. For this purpose, the techniques including technical details such as apparatus and probed sample region are described. More important, also the expected outcome from experiments is provided. This involves also the link to theory, that is not subject of this book, and the link to current experimental results in the literature which are presented in a review-like style. Many special spectroscopic techniques are introduced and their relationship to the standard techniques is revealed. Thus the book works also as a type of guide or reference book for people researching in optical spectroscopy of semiconductors.

  10. Giving Protons a Boost

    CERN Multimedia

    2004-01-01

    The first of LHC's superconducting radio-frequency cavity modules has passed its final test at full power in the test area of building SM18. These modules carry an oscillating electric field that will accelerate protons around the LHC ring and help maintain the stability of the proton beams.

  11. On the proton decay

    International Nuclear Information System (INIS)

    Fonda, L.; Ghirardi, G.C.; Weber, T.

    1983-07-01

    The problem of the proton decay is considered taking into account that in actual experiments there is an interaction of the proton with its environment which could imply an increase of its theoretical lifetime. It is seen that, by application of the time-energy uncertainty relation, no prolongation of the lifetime is obtained in this case. (author)

  12. PS proton source

    CERN Multimedia

    1959-01-01

    The first proton source used at CERN's Proton Synchrotron (PS) which started operation in 1959. This is CERN's oldest accelerator still functioning today (2018). It is part of the accelerator chain that supplies proton beams to the Large Hadron Collider. The source is a Thonemann type. In order to extract and accelerate the protons at high energy, a high frequency electrical field is used (140Mhz). The field is transmitted by a coil around a discharge tube in order to maintain the gas hydrogen in an ionised state. An electrical field pulse, in the order of 15kV, is then applied via an impulse transformer between anode and cathode of the discharge tube. The electrons and protons of the plasma formed in the ionised gas in the tube, are then separated. Currents in the order of 200mA during 100 microseconds have benn obtained with this type of source.

  13. Exclusive compton scattering on the proton

    International Nuclear Information System (INIS)

    Chen, J.P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M.

    1999-01-01

    An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range, and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together, these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same non-forward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged Bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer, currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supersedes E97 - 108 which was approved by PAC13. (author)

  14. Exclusive compton scattering on the proton

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)] [and others

    1999-07-01

    An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range, and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together, these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same non-forward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged Bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer, currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supersedes E97 - 108 which was approved by PAC13. (author)

  15. Exclusive Compton Scattering on the Proton

    International Nuclear Information System (INIS)

    Chen, J. P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M.; LeRose, J.; Liang, M.; Michaels, R.; Mitchell, J.; Liyanage, N.; Rutt, P.; Saha, A.; Wojtsekhowski, B.; Bouwhuis, M.; Chang, T.H.; Holt, R. J.; Nathan, A. M.; Roedelbronn, M.; Wijesooriya, K.; Williamson, S. E.; Dodge, G.; Hyde-Wright, C.; Radyushkin, A.; Sabatie, F.; Weinstein, L. B.; Ulmer, P.; Bosted, P.; Finn, J. M.; Jones, M.; Churchwell, S.; Howell, C.; Gilman, R.; Glashausser, C.; Jiang, X.; Ransome, R.; Strauch, S.; Berthot, J.; Bertin, P.; Fonvielle, H.; Roblin, Y.; Bertozzi, W.; Gilad, S.; Rowntree, D.; Zu, Z.; Brown, D.; Chang, G.; Afanasev, A.; Egiyan, K.; Hoohauneysan, E.; Ketikyan, A.; Mailyan, S.; Petrosyan, A.; Shahinyan, A.; Voskanyan, H.; Boeglin, W.; Markowitz, P.; Hines, J.; Strobel, G.; Templon, J.; Feldman, G.; Morris, C. L.; Gladyshev, V.; Lindgren, R. A.; Calarco, J.; Hersman, W.; Leuschner, M.; Gasparian, A.

    1999-01-01

    An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range; and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together; these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same nonforward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer; currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supercedes E97-108 which was approved by PAC13

  16. Proton threshold states in 26Al and their role in astrophysics

    International Nuclear Information System (INIS)

    Wijekumar, V.

    1985-01-01

    The energy levels of 26 Al between E/sub x/ = 6.3 and 6.5 MeV, corresponding to proton threshold energies in the 25 Mg + p reaction from E/sub p/ = 0 to 200 keV, have been investigated using the reactions 27 Al( 3 He,α) 26 Al and 24 Mg( 3 He,p) 26 Al. Despite early work reporting a doublet at E/sub x/ 6346 keV and E/sub x/ = 6362 keV, most subsequent work reported a single state with conflicting spin and parity assignments. By measuring the spectroscopic factors of these states from the 25 Mg( 3 He,d) 26 Al reaction, resonance strengths, omegaγ, of the proton threshold states in 26 Al corresponding to the 25 Mg(p,γ) 26 Al reaction have been deduced. The limits on the branching ratios from these states to the ground state of 26 Al have been obtained by using the reaction 27 Al( 3 He,αγ) 26 Al. Finally by combining the results of the above experiments, stellar reaction rates of the 25 Mg(p,γ) 26 Al reaction have been calculated. The results conclude that the production rate of 26 Al in stellar environments from the reaction 25 Mg(p,γ) 26 Al is substantially higher than what was calculated from other work

  17. Proton-proton colliding beam facility ISABELLE

    International Nuclear Information System (INIS)

    Hahn, H.

    1980-01-01

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed

  18. Proton structure functions in the dipole picture of BFKL dynamics

    International Nuclear Information System (INIS)

    Navelet, H.; Peschanski, R.; Wallon, S.; Royon, Ch.

    1996-06-01

    The proton structure functions are derived in the QCD dipole picture. Assuming k T and renormalization-group factorization, deep-inelastic proton scattering is related to deep-inelastic onium scattering. A three parameter fit of the 1994 H1 data in the low-x, moderate Q 2 range has been obtained. The dipole picture of BFKL dynamics is shown to provide a relevant model for quantitatively describing the proton structure functions at HERA. (author)

  19. Universal relation between spectroscopic constants

    Indian Academy of Sciences (India)

    (3) The author has used eq. (6) of his paper to calculate De. This relation leads to a large deviation from the correct value depending upon the extent to which experimental values are known. Guided by this fact, in our work, we used experimentally observed De values to derive the relation between spectroscopic constants.

  20. The VANDELS ESO spectroscopic survey

    Science.gov (United States)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Le Fèvre, O.; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 motivation, survey design and target selection.

  1. Proton storage rings

    International Nuclear Information System (INIS)

    Rau, R.R.

    1978-04-01

    A discussion is given of proton storage ring beam dynamic characteristics. Topics considered include: (1) beam energy; (2) beam luminosity; (3) limits on beam current; (4) beam site; (5) crossing angle; (6) beam--beam interaction; (7) longitudinal instability; (8) effects of scattering processes; (9) beam production; and (10) high magnetic fields. Much of the discussion is related to the design parameters of ISABELLE, a 400 x 400 GeV proton---proton intersecting storage accelerator to be built at Brookhaven National Laboratory

  2. ATLAS Forward Proton Detector

    CERN Document Server

    Grieco, Chiara; The ATLAS collaboration

    2018-01-01

    The aim of the ATLAS Forward Proton (AFP) detector system is the measurement of protons scattered diffractively or electromagnetically at very small angles. The full two-arm setup was installed during the 2016/2017 EYETS. This allows measurements of processes with two forward protons: central diffraction, exclusive production, and two-photon processes. In 2017, AFP participated in the ATLAS high-luminosity data taking on the day-by-day basis. In addition, several special runs with reduced luminosity were taken. The poster will present the AFP detectors and the lessons learned from the last year operation and some performance from 2016 and 2017.

  3. Electron - proton colliders

    International Nuclear Information System (INIS)

    Wiik, B.H.

    1985-01-01

    Electron-proton storage rings allow us to study the interaction between the two basic constituents of matter, electrons and quarks at very short distances. Such machines were first discussed in connection with the ISR but the idea was abandoned because of the anticipated low counting rate. The interest in electron-proton storage rings was rekindeled by the discovery of large pointlike cross sections in lepton-hardon interactions and several/sup 2-15/ projects have been discussed during the past decade. However, despite a glorious past, which includes the discovery of quarks and neutral currents, and a multitude of proposals no electron-proton storage ring has ever been built. What we might learn by studying electron-proton collisions at high energies is discussed. After some brief comments on present proposals the proposed DESY ep project HERA is described as an example of how to realize such a machine

  4. Apparatus for proton radiography

    International Nuclear Information System (INIS)

    Martin, R.L.

    1976-01-01

    An apparatus for effecting diagnostic proton radiography of patients in hospitals comprises a source of negative hydrogen ions, a synchrotron for accelerating the negative hydrogen ions to a predetermined energy, a plurality of stations for stripping extraction of a radiography beam of protons, means for sweeping the extracted beam to cover a target, and means for measuring the residual range, residual energy, or percentage transmission of protons that pass through the target. The combination of information identifying the position of the beam with information about particles traversing the subject and the back absorber is performed with the aid of a computer to provide a proton radiograph of the subject. In an alternate embodiment of the invention, a back absorber comprises a plurality of scintillators which are coupled to detectors. 10 claims, 7 drawing figures

  5. Plant proton pumps

    DEFF Research Database (Denmark)

    Gaxiola, Roberto A.; Palmgren, Michael Gjedde; Schumacher, Karin

    2007-01-01

    Chemiosmotic circuits of plant cells are driven by proton (H+) gradients that mediate secondary active transport of compounds across plasma and endosomal membranes. Furthermore, regulation of endosomal acidification is critical for endocytic and secretory pathways. For plants to react...

  6. Inauguration of Proton Synchrotron

    CERN Multimedia

    1960-01-01

    On 5 February 1960, the Proton Synchrotron (PS) was formally inaugurated. The great Danish physicist, Niels Bohr, releases a bottle of champagne against a shielding block to launch the PS on its voyage in physics.

  7. Proton beam therapy facility

    International Nuclear Information System (INIS)

    1984-01-01

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs

  8. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  9. PROTON MICROSCOPY AT FAIR

    International Nuclear Information System (INIS)

    Merrill, F. E.; Mariam, F. G.; Golubev, A. A.; Turtikov, V. I.; Varentsov, D.

    2009-01-01

    Proton radiography was invented in the 1990's at Los Alamos National Laboratory (LANL) as a diagnostic to study dynamic material properties under extreme pressures, strain and strain rate. Since this time hundreds of dynamic proton radiography experiments have been performed at LANL and a facility has been commissioned at the Institute for Theoretical and Experimental Physics (ITEP) in Russia for similar applications in dynamic material studies. Recently an international effort has investigated a new proton radiography capability for the study of dynamic material properties at the Facility for Anti-proton and Ion Research (FAIR) located in Darmstadt, Germany. This new Proton microscope for FAIR(PRIOR) will provide radiographic imaging of dynamic systems with unprecedented spatial, temporal and density resolution, resulting in a window for understanding dynamic material properties at new length scales. It is also proposed to install the PRIOR system at the GSI Helmholtzzentrum fuer Schwerionenforschung before installation at FAIR for dynamic experiments with different drivers including high explosives, pulsed power and lasers. The design of the proton microscope and expected radiographic performance is presented.

  10. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  11. Detection of the sulfhydryl groups in proteins with slow hydrogen exchange rates and determination of their proton/deuteron fractionation factors using the deuterium-induced effects on the 13C(beta) NMR signals.

    Science.gov (United States)

    Takeda, Mitsuhiro; Jee, JunGoo; Terauchi, Tsutomu; Kainosho, Masatsune

    2010-05-05

    A method for identifying cysteine (Cys) residues with sulfhydryl (SH) groups exhibiting slow hydrogen exchange rates has been developed for proteins in aqueous media. The method utilizes the isotope shifts of the C(beta) chemical shifts induced by the deuteration of the SH groups. The 18.2 kDa E. coli peptidyl prolyl cis-trans isomerase b (EPPIb), which was selectively labeled with [3-(13)C;3,3-(2)H(2)]Cys, showed much narrower line widths for the (13)C(beta) NMR signals, as compared to those of the proteins labeled with either [3-(13)C]Cys or (3R)-[3-(13)C;3-(2)H]Cys. The (13)C(beta) signals of the two Cys residues of EPPIb, i.e. Cys-31 and Cys-121, labeled with [3-(13)C;3,3-(2)H(2)]Cys, split into four signals in H(2)O/D(2)O (1:1) at 40 degrees C and pH 7.5, indicating that the exchange rates of the side-chain SH's and the backbone amides are too slow to average the chemical shift differences of the (13)C(beta) signals, due to the two- and three-bond isotope shifts. By virtue of the well-separated signals, the proton/deuteron fractional factors for both the SH and amide groups of the two Cys residues in EPPIb could be directly determined, as approximately 0.4-0.5 for [SD]/[SH] and 0.9-1.0 for [ND]/[NH], by the relative intensities of the NMR signals for the isotopomers. The proton NOE's of the two slowly exchanging SH's were clearly identified in the NOESY spectra and were useful for the determining the local structure of EPPIb around the Cys residues.

  12. Proton Radiography to Improve Proton Radiotherapy : Simulation Study at Different Proton Beam Energies

    NARCIS (Netherlands)

    Biegun, Aleksandra; Takatsu, Jun; van Goethem, Marc-Jan; van der Graaf, Emiel; van Beuzekom, Martin; Visser, Jan; Brandenburg, Sijtze

    To improve the quality of cancer treatment with protons, a translation of X-ray Computed Tomography (CT) images into a map of the proton stopping powers needs to be more accurate. Proton stopping powers determined from CT images have systematic uncertainties in the calculated proton range in a

  13. Single nanoparticle tracking spectroscopic microscope

    Science.gov (United States)

    Yang, Haw [Moraga, CA; Cang, Hu [Berkeley, CA; Xu, Cangshan [Berkeley, CA; Wong, Chung M [San Gabriel, CA

    2011-07-19

    A system that can maintain and track the position of a single nanoparticle in three dimensions for a prolonged period has been disclosed. The system allows for continuously imaging the particle to observe any interactions it may have. The system also enables the acquisition of real-time sequential spectroscopic information from the particle. The apparatus holds great promise in performing single molecule spectroscopy and imaging on a non-stationary target.

  14. Mid-infrared spectroscopic investigation

    International Nuclear Information System (INIS)

    Walter, L.; Vergo, N.; Salisbury, J.W.

    1987-01-01

    Mid-infrared spectroscopic research efforts are discussed. The development of a new instrumentation to permit advanced measurements in the mid-infrared region of the spectrum, the development of a special library of well-characterized mineral and rock specimens for interpretation of remote sensing data, and cooperative measurements of the spectral signatures of analogues of materials that may be present on the surfaces of asteroids, planets or their Moons are discussed

  15. Spectroscopic amplifier for pin diode

    International Nuclear Information System (INIS)

    Alonso M, M. S.; Hernandez D, V. M.; Vega C, H. R.

    2014-10-01

    The photodiode remains the basic choice for the photo-detection and is widely used in optical communications, medical diagnostics and field of corpuscular radiation. In detecting radiation it has been used for monitoring radon and its progeny and inexpensive spectrometric systems. The development of a spectroscopic amplifier for Pin diode is presented which has the following characteristics: canceler Pole-Zero (P/Z) with a time constant of 8 μs; constant gain of 57, suitable for the acquisition system; 4th integrator Gaussian order to waveform change of exponential input to semi-Gaussian output and finally a stage of baseline restorer which prevents Dc signal contribution to the next stage. The operational amplifier used is the TLE2074 of BiFET technology of Texas Instruments with 10 MHz bandwidth, 25 V/μs of slew rate and a noise floor of 17 nv/(Hz)1/2. The integrated circuit has 4 operational amplifiers and in is contained the total of spectroscopic amplifier that is the goal of electronic design. The results show like the exponential input signal is converted to semi-Gaussian, modifying only the amplitude according to the specifications in the design. The total system is formed by the detector, which is the Pin diode, a sensitive preamplifier to the load, the spectroscopic amplifier that is what is presented and finally a pulse height analyzer (Mca) which is where the spectrum is shown. (Author)

  16. Luminosity-independent measurement of the proton-proton total cross section at √ s = 8 TeV

    Czech Academy of Sciences Publication Activity Database

    Antchev, G.; Aspell, P.; Atanassov, I.; Kašpar, Jan; Kopal, Josef; Kundrát, Vojtěch; Procházka, Jiří; Lokajíček, Miloš V.

    2013-01-01

    Roč. 111, č. 1 (2013), "012001-1"-"012001-6" ISSN 0031-9007 R&D Projects: GA MŠk LA08015 Institutional support: RVO:68378271 Keywords : proton-proton elastic and total cross-sections * LHC Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.728, year: 2013

  17. Astrophysical S factor for the radiative capture N-12(p,gamma)O-13 determined from the N-14(N-12,O-13)C-13 proton transfer reaction

    Czech Academy of Sciences Publication Activity Database

    Banu, A.; Al-Abdullah, T.; Fu, C.; Gagliardi, C. A.; McCleskey, M.; Mukhamedzhanov, A. M.; Tabacaru, G.; Trache, L.; Tribble, R. E.; Zhai, Y.; Carstoiu, F.; Burjan, Václav; Kroha, Václav

    2009-01-01

    Roč. 79, č. 2 (2009), 025805/1-025805/10 ISSN 0556-2813 Institutional research plan: CEZ:AV0Z10480505 Keywords : ASYMPTOTIC NORMALIZATION COEFFICIENTS * COUPLED-CHANNELS CALCULATIONS * OPTICAL-MODEL Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.477, year: 2009

  18. Protonation Effect of Tyrosine in a Segment of the SRF Transcription Factor: A Combined Optical Spectroscopy, Molecular Dynamics, and Density Functional Theory Calculation Study

    Czech Academy of Sciences Publication Activity Database

    Profantová, B.; Profant, V.; Zíma, V.; Kopecký, V. Jr.; Bednárová, Lucie; Zentz, Ch.; Baumruk, V.; Turpin, P. Y.; Štěpánek, J.

    2013-01-01

    Roč. 117, č. 50 (2013), s. 16086-16095 ISSN 1520-6106 R&D Projects: GA ČR GA202/09/0193 Institutional support: RVO:61388963 Keywords : MADS box * protein secondary structure * tyrosine * pHtransition * Raman spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.377, year: 2013

  19. Measurement of the elastic electron-proton cross section and separation of the electric and magnetic form factor in the Q{sup 2} range from 0.004 to 1 (GeV/c){sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Jan C

    2010-09-24

    The electromagnetic form factors of the proton are fundamental quantities sensitive to the distribution of charge and magnetization inside the proton. Precise knowledge of the form factors, in particular of the charge and magnetization radii provide strong tests for theory in the non-perturbative regime of QCD. However, the existing data at Q{sup 2} below 1 (GeV/c){sup 2} are not precise enough for a hard test of theoretical predictions. For a more precise determination of the form factors, within this work more than 1400 cross sections of the reaction H(e, e{sup '})p were measured at the Mainz Microtron MAMI using the 3-spectrometer-facility of the A1-collaboration. The data were taken in three periods in the years 2006 and 2007 using beam energies of 180, 315, 450, 585, 720 and 855 MeV. They cover the Q{sup 2} region from 0.004 to 1 (GeV/c){sup 2} with counting rate uncertainties below 0.2% for most of the data points. The relative luminosity of the measurements was determined using one of the spectrometers as a luminosity monitor. The overlapping acceptances of the measurements maximize the internal redundancy of the data and allow, together with several additions to the standard experimental setup, for tight control of systematic uncertainties. To account for the radiative processes, an event generator was developed and implemented in the simulation package of the analysis software which works without peaking approximation by explicitly calculating the Bethe-Heitler and Born Feynman diagrams for each event. To separate the form factors and to determine the radii, the data were analyzed by fitting a wide selection of form factor models directly to the measured cross sections. These fits also determined the absolute normalization of the different data subsets. The validity of this method was tested with extensive simulations. The results were compared to an extraction via the standard Rosenbluth technique. The dip structure in G{sub E} that was seen in the

  20. Measurement of the elastic electron-proton cross section and separation of the electric and magnetic form factor in the Q2 range from 0.004 to 1 (GeV/c)2

    International Nuclear Information System (INIS)

    Bernauer, Jan C.

    2010-01-01

    The electromagnetic form factors of the proton are fundamental quantities sensitive to the distribution of charge and magnetization inside the proton. Precise knowledge of the form factors, in particular of the charge and magnetization radii provide strong tests for theory in the non-perturbative regime of QCD. However, the existing data at Q 2 below 1 (GeV/c) 2 are not precise enough for a hard test of theoretical predictions. For a more precise determination of the form factors, within this work more than 1400 cross sections of the reaction H(e, e ' )p were measured at the Mainz Microtron MAMI using the 3-spectrometer-facility of the A1-collaboration. The data were taken in three periods in the years 2006 and 2007 using beam energies of 180, 315, 450, 585, 720 and 855 MeV. They cover the Q 2 region from 0.004 to 1 (GeV/c) 2 with counting rate uncertainties below 0.2% for most of the data points. The relative luminosity of the measurements was determined using one of the spectrometers as a luminosity monitor. The overlapping acceptances of the measurements maximize the internal redundancy of the data and allow, together with several additions to the standard experimental setup, for tight control of systematic uncertainties. To account for the radiative processes, an event generator was developed and implemented in the simulation package of the analysis software which works without peaking approximation by explicitly calculating the Bethe-Heitler and Born Feynman diagrams for each event. To separate the form factors and to determine the radii, the data were analyzed by fitting a wide selection of form factor models directly to the measured cross sections. These fits also determined the absolute normalization of the different data subsets. The validity of this method was tested with extensive simulations. The results were compared to an extraction via the standard Rosenbluth technique. The dip structure in G E that was seen in the analysis of the previous world data

  1. Measurement of the elastic electron-proton cross section and separation of the electric and magnetic form factor in the Q{sup 2} range from 0.004 to 1 (GeV/c){sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Jan C.

    2010-09-24

    The electromagnetic form factors of the proton are fundamental quantities sensitive to the distribution of charge and magnetization inside the proton. Precise knowledge of the form factors, in particular of the charge and magnetization radii provide strong tests for theory in the non-perturbative regime of QCD. However, the existing data at Q{sup 2} below 1 (GeV/c){sup 2} are not precise enough for a hard test of theoretical predictions. For a more precise determination of the form factors, within this work more than 1400 cross sections of the reaction H(e, e{sup '})p were measured at the Mainz Microtron MAMI using the 3-spectrometer-facility of the A1-collaboration. The data were taken in three periods in the years 2006 and 2007 using beam energies of 180, 315, 450, 585, 720 and 855 MeV. They cover the Q{sup 2} region from 0.004 to 1 (GeV/c){sup 2} with counting rate uncertainties below 0.2% for most of the data points. The relative luminosity of the measurements was determined using one of the spectrometers as a luminosity monitor. The overlapping acceptances of the measurements maximize the internal redundancy of the data and allow, together with several additions to the standard experimental setup, for tight control of systematic uncertainties. To account for the radiative processes, an event generator was developed and implemented in the simulation package of the analysis software which works without peaking approximation by explicitly calculating the Bethe-Heitler and Born Feynman diagrams for each event. To separate the form factors and to determine the radii, the data were analyzed by fitting a wide selection of form factor models directly to the measured cross sections. These fits also determined the absolute normalization of the different data subsets. The validity of this method was tested with extensive simulations. The results were compared to an extraction via the standard Rosenbluth technique. The dip structure in G{sub E} that was seen in the

  2. Proton therapy in Australia

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities but with the development of more compact and reliable accelerators it is now possible to realistically plan for proton therapy in an Australian hospital. The Australian National Proton Project has been formed to look at the feasibility of a facility which would be primarily for patient treatment but would also be suitable for research and commercial applications. A detailed report will be produced by the end of the year. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. With the development of hospital-based facilities, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or Intensity Modulated Radiation Therapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. . Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in

  3. Spectroscopic magnetic resonance imaging of a tumefactive demyelinating lesion

    Energy Technology Data Exchange (ETDEWEB)

    Law, M.; Meltzer, D.E.; Cha, S. [MRI Department, Department of Radiology, New York University Medical Center, Schwartz Building, Basement HCC, 530 First Avenue, New York, NY 10016 (United States)

    2002-12-01

    Tumefactive demyelinating lesions can present with features similar, clinically and radiologically, to those of brain tumours. Proton MR spectroscopy has been increasingly used to characterize intracranial pathology. As the underlying pathophysiology of neoplasms is different from that of demyelinating disease, one may expect the metabolic composition of neoplasms to be significantly different from that of demyelinating lesions. We report a 49-year-old woman in whom the neurologic and radiologic findings were highly suggestive of a high-grade brain tumor, and the spectroscopic features were sufficiently similar to that of a tumor to convince the neurosurgeon to operate. This case emphasizes the need for caution when confronted with a patient who presents with a differential diagnosis of demyelinating lesion versus neoplasm. (orig.)

  4. ESR spectroscopic investigations of the radiation-grafting of fluoropolymers

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, G; Roduner, E [University of Stuttgart (Germany); Brack, H P; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    ESR spectroscopic investigations have clarified the influence of several preparative parameters on the reaction rates and yields obtained in the radiation-grafting method used at PSI to prepare proton-conducting polymer membranes. At a given irradiation dose, a higher concentration of reactive radical sites was detected in ETFE films than in FEP films. This higher concentration explains the higher grafting levels and rates of the ETFE films found in our previous grafting experiments. Taken together, the in-situ ESR experiments and grafting experiments show that the rates of disappearance of radical species and grafting rates and final grafting levels depend strongly on the reaction temperature and the oxygen content of the system. Average grafted chain lengths were calculated to contain about 1,000 monomer units. (author) 2 figs., 4 refs.

  5. Spectroscopic study of photo and thermal destruction of riboflavin

    Science.gov (United States)

    Astanov, Salikh; Sharipov, Mirzo Z.; Fayzullaev, Askar R.; Kurtaliev, Eldar N.; Nizomov, Negmat

    2014-08-01

    Influence of temperature and light irradiation on the spectroscopic properties of aqueous solutions of riboflavin was studied using linear dichroism method, absorption and fluorescence spectroscopy. It was established that in a wide temperature range 290-423 K there is a decline of absorbance and fluorescence ability, which is explained by thermodestruction of riboflavin. It is shown that the proportion of molecules, which have undergone degradation, are in the range of 4-28%, and depends on the concentration and quantity of temperature effects. Introduction of hydrochloric and sulfuric acids, as well as different metal ions leads to an increase in the photostability of riboflavin solutions by 2-2.5 times. The observed phenomena are explained by the formation protonation form of riboflavin and a complex between the metal ions and oxygen atoms of the carbonyl group of riboflavin, respectively.

  6. Proton dynamics in cancer.

    Science.gov (United States)

    Huber, Veronica; De Milito, Angelo; Harguindey, Salvador; Reshkin, Stephan J; Wahl, Miriam L; Rauch, Cyril; Chiesi, Antonio; Pouysségur, Jacques; Gatenby, Robert A; Rivoltini, Licia; Fais, Stefano

    2010-06-15

    Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth.Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC) in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology.

  7. Proton dynamics in cancer

    Directory of Open Access Journals (Sweden)

    Pouysségur Jacques

    2010-06-01

    Full Text Available Abstract Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth. Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology.

  8. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  9. Journal of Proton Therapy

    Directory of Open Access Journals (Sweden)

    Editorial Office

    2015-01-01

    Full Text Available Journal of Proton Therapy (JPT is an international open access, peer-reviewed journal, which publishes original research, technical reports, reviews, case reports, editorials, and other materials on proton therapy with focus on radiation oncology, medical physics, medical dosimetry, and radiation therapy.No article processing/submission feeNo publication feePeer-review completion within 3-6 weeksImmediate publication after the completion of final author proofreadDOI assignment for each published articleFree access to published articles for all readers without any access barriers or subscriptionThe views and opinions expressed in articles are those of the author/s and do not necessarily reflect the policies of the Journal of Proton Therapy.Authors are encouraged to submit articles for publication in the inaugural issue of the Journal of Proton Therapy by online or email to editor@protonjournal.comOfficial Website of Journal of Proton Therapy: http://www.protonjournal.org/

  10. Medical Proton Accelerator Project

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2008-01-01

    A project for a medical proton accelerator for cancer treatment is outlined. The project is motivated by the need for a precise modality for cancer curing especially in children. Proton therapy is known by its superior radiation and biological effectiveness as compared to photon or electron therapy. With 26 proton and 3 heavy-ion therapy complexes operating worldwide only one (p) exists in South Africa, and none in south Asia and the Middle East. The accelerator of choice should provide protons with energy 75 MeV for eye treatment and 250 MeV for body treatment. Four treatment rooms are suggested: two with isocentric gantries, one with fixed beams and one for development. Passive scanning is recommended. The project can serve Middle East and North Africa with ∼ 400 million populations. The annual capacity of the project is estimated as 1,100 to be compared with expected radiation cases eligible for proton cancer treatment of not less than 200,000

  11. Asymptotic normalization coefficients from proton transfer reactions and astrophysical S factors for the CNO 13C(p,gamma)14N radiative capture prosess

    Czech Academy of Sciences Publication Activity Database

    Mukhamedzhanov, A. M.; Azhari, A.; Burjan, Václav; Gagliardi, C. A.; Kroha, Václav; Sattarov, A.; Tang, X.; Trache, L.; Tribble, R. E.

    2003-01-01

    Roč. 725, č. 725 (2003), s. 279-294 ISSN 0375-9474 R&D Projects: GA ČR GA202/01/0709; GA MŠk ME 385 Institutional research plan: CEZ:AV0Z1048901 Keywords : radiative capture reaction * asymptotic normalization coefficient Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.761, year: 2003

  12. Asymptotic normalization coefficients from proton transfer reactions and astrophysical S factors for the (CNOC)-C-13(p, gamma)N-14 radiative capture process

    Czech Academy of Sciences Publication Activity Database

    Mukhamedzhanov, A. M.; Azhari, A.; Burjan, Václav; Gagliardi, C. A.; Kroha, Václav; Sattarov, A.; Tang, X.; Trache, L.; Tribble, R. E.

    2003-01-01

    Roč. 725, č. 22 (2003), s. 279-294 ISSN 0375-9474 R&D Projects: GA ČR GA202/01/0709; GA MŠk ME 385 Institutional research plan: CEZ:AV0Z1048901 Keywords : radiative capture reaction * asymptotic normalization coefficient Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.761, year: 2003

  13. Synchrotron radiation from protons

    International Nuclear Information System (INIS)

    Dutt, S.K.

    1992-12-01

    Synchrotron radiation from protons, though described by the same equations as the radiation from electrons, exhibits a number of interesting features on account of the parameters reached in praxis. In this presentation, we shall point out some of the features relating to (i) normal synchrotron radiation from dipoles in proton machines such as the High Energy Booster and the Superconducting Super Collider; (ii) synchrotron radiation from short dipoles, and its application to light monitors for proton machines, and (iii) synchrotron radiation from undulators in the limit when, the deflection parameter is much smaller than unity. The material for this presentation is taken largely from the work of Hofmann, Coisson, Bossart, and their collaborators, and from a paper by Kim. We shall emphasize the qualitative aspects of synchrotron radiation in the cases mentioned above, making, when possible, simple arguments for estimating the spectral and angular properties of the radiation. Detailed analyses can be found in the literature

  14. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  15. Current-current interaction picture for proton-proton scattering

    International Nuclear Information System (INIS)

    Clarke, D.J.; Lo, S.Y.

    1979-01-01

    The authors propose that color current - color current interaction is reponsible for small angle elastic proton proton scattering at asymptotic energy. Excellent fits are obtained for all data above 12 GeV/c which covers twelve orders of magnitude

  16. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Veierskov, Bjarke

    2008-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells...... of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic...... molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...

  17. Proton tunneling in solids

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, J.

    1998-10-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  18. Proton irradiation and endometriosis

    International Nuclear Information System (INIS)

    Wood, D.H.; Yochmowitz, M.G.; Salmon, Y.L.; Eason, R.L.; Boster, R.A.

    1983-01-01

    It was found that female rhesus monkeys given single total-body exposures of protons of varying energies developed endometriosis at a frequency significantly higher than that of nonirradiated animals of the same age. The minimum latency period was determined to be 7 years after the proton exposure. The doses and energies of the radiation received by the experimental animals were within the range that could be received by an aircrew member in near-earth orbit during a random solar flare event. It is concluded that endometriosis should be a consideration in assessing the risk of delayed radiation effects in female crew members. 15 references

  19. Diagnosis by proton bombardment

    International Nuclear Information System (INIS)

    Steward, V.W.; Koehler, A.M.

    1976-01-01

    Beams of monoenergetic protons or other charged ions are passed through the living human body to detect abnormalities and obstructions in body tissue, which abnormalities and obstructions are visualized as density variations in the particle image emerging from the body part under investigation. The particles used are preferably protons having an energy of 100 to 300 MeV, more especially 200 to 300 MeV. The method is of use in detecting inter alia tumors, blood clots, infarcts, soft tissue lesions and multiple sclerosis in patients without exposure to high radiation dosages. 6 claims, 2 drawing figures

  20. Do protons decay

    International Nuclear Information System (INIS)

    Litchfield, P.J.

    1984-09-01

    The experimental status of proton decay is reviewed after the Leipzig International conference, July 1984. A brief comparative description of the currently active experiments is given. From the overall samples of contained events it can be concluded that the experiments are working well and broadly agree with each other. The candidates for proton decay from each experiment are examined. Although several experiments report candidates at a higher rate than expected from background calculations, the validity of these calculations is still open to doubt. (author)

  1. Proton tunneling in solids

    International Nuclear Information System (INIS)

    Kondo, J.

    1998-01-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  2. Proton capture reactions and nuclear structure

    International Nuclear Information System (INIS)

    Kikstra, S.W.

    1989-01-01

    Experimental studies are described of the structure of 40 Ca and 42 Sc with measurements at proton-capture of (p, gamma) reactions. Where possible, an attempt has been made to interpret the results of the measurements in termsof existing models. The 40 Ca and 42 Sc nuclides were excited by bombarding 39 K and 41 Ca targets, respectively with low energy protons (E p = 0.3-3.0 MeV), that were produced by the Utrecht 3MV van de Graaff accelerator. From the measured energy and intensity of the gamma-rays created in the subsequent decay of the cuclei, information was obtained on the existence and properties of their excited states. In addition properties of two T = 3/2 levels at high excitation energy of the 9 Be nucleus were investigated. These levels were excited by the resonant absorption of gamma-rays from the 11 B(p, gamma) 12 C reaction. The results of the measurements are interpreted by a comparison to the analoque β-decay of 9 Li and to shell model calculations. The total decay energy of the superallowed O + → O + transition between the ground states of 42 Sc and 42 Ca was determined by measurements in Utrecht of the proton separation energy S p of 42 Sc and in Oak Ridge of S n of 42 Sc and 42 Ca. The results were used for verification of the conserved vector current hypothesis, which implies that the ft values of all superallowed O + → O + β-decays are the same. An attempt was made to describe properties of odd-parity states of A = 37-41 nuclei with a variant of the Warburton, Becker, Millener and Brown (WBMB) interaction.Finally a new method for the assignment of nuclear spins by a simple statistical analysis of spectroscopic information is proposed. (author). 169 refs.; 22 figs.; 24 schemes; 29 tabs

  3. Proton radiation therapy for clivus chordoma

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Tsunoda, Takashi; Hyodo, Akio; Nose, Tadao; Tsujii, Hirohiko; Tsuji, Hiroshi; Inada, Tetsuo; Maruhashi, Akira; Hayakawa, Yoshinori.

    1993-01-01

    A 57-year-old male with clival chordoma developed severe hoarseness, dysphagia, and dysphonia 1 month after a second removal of the tumor. Magnetic resonance imaging demonstrated a mass 10 cm in diameter in the region of the middle clivus enhanced inhomogeneously by gadolinium-diethylenetriaminepenta-acetic acid, and a defect in the skull base. There was evidence of compression of the anterior surface of the pons. He received proton irradiation employing a pair of parallel opposed lateral proton beams. The dose aimed at the tumor mass was 75.5 Gy, to the pharyngeal wall less than 38 Gy, and to the anterior portion of the pons less than 30 Gy. Time dose and fractionation factor was calculated at 148. Thirty-one months following treatment, he was free of clinical neurological sequelae. Proton therapy should be considered in treatment planning following initial surgical removal or for inoperable clivus chordoma. (author)

  4. Charge collection in an external proton beam

    International Nuclear Information System (INIS)

    Wookey, C.W.; Somswasdi, B.; Rouse, J.L.

    1982-01-01

    Results from the measurement of the stability of charge collected from the target and exit foil, or as alternatives, the γ-ray or backscattered proton counts from the exit foil and the Ar X-ray counts from the air path in an external proton beam are presented. These results show that comparative analysis of material mounted in air is reliable, using either the collected charge or the γ-ray counts as the normalizing factor, if there are no earthed objects in close geometry. The backscattered proton counts can also be used, but not the Ar X-ray counts, unless the current is stabilized. The electrical or thermal conductivity of the target and the target to exit foil separation do not affect the proportionality of the collected charge and the γ-ray counts to the charge incident on the target

  5. Source of proton anisotrophy in the high-speed solar wind

    International Nuclear Information System (INIS)

    Schwartz, S.J.; Feldman, W.C.; Gary, S.P.

    1981-01-01

    Two factors which can contribute to proton anisotropy in the high-speed solar wind are investigated. We present evidence that observed proton Tperpendicular< Tparallel anisotropies are maintained locally by plasma instabilities driven by proton and helium beams. The transfer of beam energy to T/sub perpendicular/ by means of these instabilities is shown to be sufficient to account for the aforementioned proton temperature anisotropy

  6. Proton-proton bremsstrahlung in a relativistic covariant model

    NARCIS (Netherlands)

    Martinus, Gerard Henk

    1998-01-01

    Proton-proton bremsstrahlung is one of the simplest processes involving the half off-shell NN interaction. Since protons are equally-charged particles with the same mass, electric-dipole radiation is suppressed and higher-order effects play an important role. Thus it is possible to get information

  7. Mossbauer spectroscopic studies in ferroboron

    Science.gov (United States)

    Yadav, Ravi Kumar; Govindaraj, R.; Amarendra, G.

    2017-05-01

    Mossbauer spectroscopic studies have been carried out in a detailed manner on ferroboron in order to understand the local structure and magnetic properties of the system. Evolution of the local structure and magnetic properties of the amorphous and crystalline phases and their thermal stability have been addressed in a detailed manner in this study. Role of bonding between Fe 4s and/or 4p electrons with valence electrons of boron (2s,2p) in influencing the stability and magnetic properties of Fe-B system is elucidated.

  8. Progresses in proton radioactivity studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, L. S., E-mail: flidia@ist.utl.pt [Center of Physics and Engineering of Advanced Materials, CeFEMA and Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, P1049-001 Lisbon (Portugal); Maglione, E. [Dipartimento di Fisica e Astronomia “G. Galilei”, Via Marzolo 8, I-35131 Padova, Italy and Istituto Nazionale di Fisica Nucleare, Padova (Italy)

    2016-07-07

    In the present talk, we will discuss recent progresses in the theoretical study of proton radioactivity and their impact on the present understanding of nuclear structure at the extremes of proton stability.

  9. Proton Radiography (pRad)

    Data.gov (United States)

    Federal Laboratory Consortium — The proton radiography project has used 800 MeV protons provided by the LANSCE accelerator facility at LANL, to diagnose more than 300 dynamic experiments in support...

  10. ELECTRON SCATTERING EXPERIMENTS ON THE NEUTRON AND PROTON

    Energy Technology Data Exchange (ETDEWEB)

    Berkelman, Karl

    1963-06-15

    The electric and magnetic helicity form factors of the proton are measured at 4-momentum transfers (squared) of 25 to 45 f/sup -2/, by means of electron scattering by protons at high energies. The results are combined with other e/sup -/--p and e/sup -/--d experimental findings in order to show the proton form fuctors from 0 to 45 f/sup -2/ and the neutron form factors from 0 to 25 f/sup -2/. (T.F.H.)

  11. Study on patient-induced radioactivity during proton treatment in hengjian proton medical facility.

    Science.gov (United States)

    Wu, Qingbiao; Wang, Qingbin; Liang, Tianjiao; Zhang, Gang; Ma, Yinglin; Chen, Yu; Ye, Rong; Liu, Qiongyao; Wang, Yufei; Wang, Huaibao

    2016-09-01

    At present, increasingly more proton medical facilities have been established globally for better curative effect and less side effect in tumor treatment. Compared with electron and photon, proton delivers more energy and dose at its end of range (Bragg peak), and has less lateral scattering for its much larger mass. However, proton is much easier to produce neutron and induced radioactivity, which makes radiation protection for proton accelerators more difficult than for electron accelerators. This study focuses on the problem of patient-induced radioactivity during proton treatment, which has been ignored for years. However, we confirmed it is a vital factor for radiation protection to both patient escort and positioning technician, by FLUKA's simulation and activation formula calculation of Hengjian Proton Medical Facility (HJPMF), whose energy ranges from 130 to 230MeV. Furthermore, new formulas for calculating the activity buildup process of periodic irradiation were derived and used to study the relationship between saturation degree and half-life of nuclides. Finally, suggestions are put forward to lessen the radiation hazard from patient-induced radioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Violent collisions of spinning protons

    Energy Technology Data Exchange (ETDEWEB)

    Krisch, A.D. [Michigan Univ., Spin Physics Center, Ann Arbor, MI (United States)

    2005-07-01

    The author draws the history of polarized proton beams that has relied on experiments that took place in different accelerators like ZGS (zero gradient synchrotron, Argonne), AGS (Brookhaven) and Fermilab from 1973 till today. The first studies of the behavior and spin-manipulation of polarized protons helped in developing polarized beams around the world: Brookhaven now has 200 GeV polarized protons in the RHIC collider, perhaps someday the 7 TeV LHC at CERN might have polarized protons.

  13. Relation between proton and neutron asymptotic normalization coefficients for light mirror nuclei and its relevance for nuclear astrophysics)

    International Nuclear Information System (INIS)

    Timofeyuk, N.K.; Johnson, R.C.; Descouvemont, P.

    2005-01-01

    In this talk, relation between proton and neutron Asymptotic Normalization Coefficients (ANCs) for light mirror nuclei will be discussed. This relation follows from charge symmetry of nucleon-nucleon interactions and is given by a simple approximate analytical formula which involves proton and neutron separation energies, charges of residual nuclei and the range of their strong interaction with the last nucleon. This relation is valid both for particle-bound mirror nuclear levels and for mirror pairs in which one of the levels is a narrow resonance. In the latter case, the width of this resonance is related to the ANC of its mirror particle-stable analog. Our theoretical study of mirror ANCs for several light nuclei within a framework of microscopic two-, three- and four-cluster models, have shown that the ratio of mirror ANCs changes as predicted by the simple approximate analytical formula. We will also compare the results from our microscopic calculations to the predictions of the single-particle model and discuss mirror symmetry of spectroscopic factors and single-particle ANCs. (author)

  14. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4.

    Science.gov (United States)

    Li, Shao-jia; Yin, Xue-ren; Xie, Xiu-lan; Allan, Andrew C; Ge, Hang; Shen, Shu-ling; Chen, Kun-song

    2016-02-03

    Organic acids are essential to fruit flavor. The vacuolar H(+) transporting adenosine triphosphatase (V-ATPase) plays an important role in organic acid transport and accumulation. However, less is known of V-ATPase interacting proteins and their relationship with organic acid accumulation. The relationship between V-ATPase and citric acid was investigated, using the citrus tangerine varieties 'Ordinary Ponkan (OPK)' and an early maturing mutant 'Zaoshu Ponkan (ZPK)'. Five V-ATPase genes (CitVHA) were predicted as important to citric acid accumulation. Among the genes, CitVHA-c4 was observed, using a yeast two-hybrid screen, to interact at the protein level with an ethylene response factor, CitERF13. This was verified using bimolecular fluorescence complementation assays. A similar interaction was also observed between Arabidopsis AtERF017 (a CitERF13 homolog) and AtVHA-c4 (a CitVHA-c4 homolog). A synergistic effect on citric acid levels was observed between V-ATPase proteins and interacting ERFs when analyzed using transient over-expression in tobacco and Arabidopsis mutants. Furthermore, the transcript abundance of CitERF13 was concomitant with CitVHA-c4. CitERF13 or AtERF017 over-expression leads to significant citric acid accumulation. This accumulation was abolished in an AtVHA-c4 mutant background. ERF-VHA interactions appear to be involved in citric acid accumulation, which was observed in both citrus and Arabidopsis.

  15. Neutron-proton scattering

    International Nuclear Information System (INIS)

    Doll, P.

    1990-02-01

    Neutron-proton scattering as fundamental interaction process below and above hundred MeV is discussed. Quark model inspired interactions and phenomenological potential models are described. The seminar also indicates the experimental improvements for achieving new precise scattering data. Concluding remarks indicate the relevance of nucleon-nucleon scattering results to finite nuclei. (orig.) [de

  16. Radiotherapy : proton therapy

    International Nuclear Information System (INIS)

    1991-01-01

    The first phase of proton therapy at the National Accelerator Centre will be the development of a 200 MeV small-field horizontal beam radioneurosurgical facility in the south treatment vault. A progressive expansion of this facility is planned. The patient support and positioning system has been designed and developed by the Departments of Mechanical Engineering and Surveying of the University of Cape Town to ensure the accurate positioning in the proton beam of the lesion to be treated. The basic components of the system are an adjustable chair, a series of video cameras and two computers. The specifications for the proton therapy interlock system require that the inputs to and the outputs from the system be similar to those of the neutron therapy system. Additional facilities such as a full diagnostic system which would assist the operators in the event of an error will also be provided. Dosimeters are required for beam monitoring, for monitor calibration and for determining dose distributions. Several designs of transmission ionization chambers for beam monitoring have been designed and tested, while several types of ionization chambers and diodes have been used for the dose distribution measurements. To facilitate the comparison of measured ranges and energy losses of proton beams in the various materials with tabled values, simple empirical approximations, which are sufficiently accurate for most applications, have been used. 10 refs., 10 fig., 4 tabs

  17. Proton Pulse Radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H C; Nilsson, G; Reitberger, T; Thuomas, K A

    1973-03-15

    A 5 MeV proton accelerator (Van de Graaff) has been used for pulse radiolysis of a number of organic gases and the transient spectra obtained from the alkanes methane, ethane, propane, n-butane and neopentane have tentatively been assigned to alkyl radicals. Some methodological aspects of this new technique are discussed

  18. The Melbourne proton microprobe

    International Nuclear Information System (INIS)

    Legge, G.J.F.; McKenzie, C.D.; Mazzolini, A.P.

    1979-01-01

    A scanning proton microprobe is described which operates in ultra-high vacuum with a resolution of ten microns. The operating principles and main features of the design are discussed and the ability of such an instrument to detect trace elements down to a few ppm by mass is illustrated

  19. Proton microanalysis in plants

    International Nuclear Information System (INIS)

    Garrec, J.P.

    Micro-analyses by nuclear reactions and atomic excitation are used to determine the distribution of fluorine and calcium in the needles of Abies Alba. Fluorine is detected by the nuclear reaction 19 F(p,α) 16 O at the 1.35 MeV resonance. Calcium is measured by its characteristic X-rays due to proton excitation [fr

  20. Stereochemistry-Dependent Proton Conduction in Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Tiwari, Omshanker; Gaikwad, Pramod; Paswan, Bhuneshwar; Thotiyl, Musthafa Ottakam

    2016-01-12

    Graphene oxide (GO) is impermeable to H2 and O2 fuels while permitting H(+) shuttling, making it a potential candidate for proton exchange membrane fuel cells (PEMFC), albeit with a large anisotropy in their proton transport having a dominant in plane (σIP) contribution over the through plane (σTP). If GO-based membranes are ever to succeed in PEMFC, it inevitably should have a dominant through-plane proton shuttling capability (σTP), as it is the direction in which proton gets transported in a real fuel-cell configuration. Here we show that anisotropy in proton conduction in GO-based fuel cell membranes can be brought down by selectively tuning the geometric arrangement of functional groups around the dopant molecules. The results show that cis isomer causes a selective amplification of through-plane proton transport, σTP, pointing to a very strong geometry angle in ionic conduction. Intercalation of cis isomer causes significant expansion of GO (001) planes involved in σTP transport due to their mutual H-bonding interaction and efficient bridging of individual GO planes, bringing down the activation energy required for σTP, suggesting the dominance of a Grotthuss-type mechanism. This isomer-governed amplification of through-plane proton shuttling resulted in the overall boosting of fuel-cell performance, and it underlines that geometrical factors should be given prime consideration while selecting dopant molecules for bringing down the anisotropy in proton conduction and enhancing the fuel-cell performance in GO-based PEMFC.

  1. Proton transfer events in GFP

    NARCIS (Netherlands)

    Di Donato, M.; van Wilderen, L.J.G.W.; van Stokkum, I.H.M.; Cohen Stuart, T.A.; Kennis, J.T.M.; Hellingwerf, K.J.; van Grondelle, R.; Groot, M.L.

    2011-01-01

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton

  2. Proton pump inhibitors and osteoporosis

    DEFF Research Database (Denmark)

    Andersen, Bjarne Nesgaard; Johansen, Per Birger; Abrahamsen, Bo

    2016-01-01

    PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months and a di......PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months...... and a discussion of these findings and how this has influenced our understanding of this association, the clinical impact and the underlying pathophysiology. RECENT FINDINGS: New studies have further strengthened existing evidence linking use of PPIs to osteoporosis. Short-term use does not appear to pose a lower...... risk than long-term use. There is a continued lack of conclusive studies identifying the pathogenesis. Direct effects on calcium absorption or on osteoblast or osteoclast action cannot at present plausibly explain the mechanism. SUMMARY: The use of PPIs is a risk factor for development of osteoporosis...

  3. Spectroscopic Needs for Imaging Dark Energy Experiments

    International Nuclear Information System (INIS)

    Newman, Jeffrey A.; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Reza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; Blanton, Michael R.; Brodwin, Mark; Brownstein, Joel R.; Brunner, Robert J.; Carrasco-Kind, Matias; Cervantes-Cota, Jorge; Chisari, Nora Elisa; Colless, Matthew; Coupon, Jean; Cunha, Carlos E.; Frye, Brenda L.; Gawiser, Eric J.; Gehrels, Neil; Grady, Kevin; Hagen, Alex; Hall, Patrick B.; Hearin, Andrew P.; Hildebrandt, Hendrik; Hirata, Christopher M.; Ho, Shirley; Huterer, Dragan; Ivezic, Zeljko; Kneib, Jean-Paul; Kruk, Jeffrey W.; Lahav, Ofer; Mandelbaum, Rachel; Matthews, Daniel J.; Miquel, Ramon; Moniez, Marc; Moos, H. W.; Moustakas, John; Papovich, Casey; Peacock, John A.; Rhodes, Jason; Ricol, Jean-Stepane; Sadeh, Iftach; Schmidt, Samuel J.; Stern, Daniel K.; Tyson, J. Anthony; Von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, A.

    2015-01-01

    .e., to minimize the uncertainty in their mean redshift, RMS dispersion, etc. - rather than to make the moments themselves small. Calibration may be done with the same spectroscopic dataset used for training if that dataset is extremely high in redshift completeness (i.e., no populations of galaxies to be used in analyses are systematically missed). Accurate photo-z calibration is necessary for all imaging experiments; Requirements: If extremely low levels of systematic incompleteness (<∼0.1%) are attained in training samples, the same datasets described above should be sufficient for calibration. However, existing deep spectroscopic surveys have failed to yield secure redshifts for 30-60% of targets, so that would require very large improvements over past experience. This incompleteness would be a limiting factor for training, but catastrophic for calibration. If <∼0.1% incompleteness is not attainable, the best known option for calibration of photometric redshifts is to utilize cross-correlation statistics in some form. The most direct method for this uses cross-correlations between positions on the sky of bright objects of known spectroscopic redshift with the sample of objects that we wish to calibrate the redshift distribution for, measured as a function of spectroscopic z. For such a calibration, redshifts of ∼100,000 objects over at least several hundred square degrees, spanning the full redshift range of the samples used for dark energy, would be necessary; and Options: The proposed BAO experiment eBOSS would provide sufficient spectroscopy for basic calibrations, particularly for ongoing and near-future imaging experiments. The planned DESI experiment would provide excellent calibration with redundant cross-checks, but will start after the conclusion of some imaging projects. An extension of DESI to the Southern hemisphere would provide the best possible calibration from cross-correlation methods for DES and LSST. We thus anticipate that our two primary

  4. Determination of the asymptotic normalization coefficients for 14C + n <--> 15C, the 14C(n, gamma)15C reaction rate, and evaluation of a new method to determine spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    McCleskey, M; Mukhamedzhanov, A M; Trache, L; Tribble, R E; Banu, A; Eremenko, V; Goldberg, V Z; Lui, Y W; McCleskey, E; Roeder, B T; Spiridon, A; Carstoiu, F; Burjan, V; Hons, Z; Thompson, I J

    2014-04-17

    The 14C + n <--> 15C system has been used as a test case in the evaluation of a new method to determine spectroscopic factors that uses the asymptotic normalization coefficient (ANC). The method proved to be unsuccessful for this case. As part of this experimental program, the ANCs for the 15C ground state and first excited state were determined using a heavy-ion neutron transfer reaction as well as the inverse kinematics (d,p) reaction, measured at the Texas A&M Cyclotron Institute. The ANCs were used to evaluate the astrophysical direct neutron capture rate on 14C, which was then compared with the most recent direct measurement and found to be in good agreement. A study of the 15C SF via its mirror nucleus 15F and a new insight into deuteron stripping theory are also presented.

  5. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  6. Australian national proton facility

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities and apart from the Harvard Cyclotron Laboratory and some low energy machines for eye treatment, only small numbers of patients were treated in each centre and conditions were less than optimal. Limited beam time and lack of support facilities restricted the type of patient treated and conventional fractionation could not be used. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. Since the development of hospital-based facilities, such as the one in Loma Linda in California, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or intensity modulated radiotherapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in the low dose volume is likely to be particularly

  7. Protonation of pyridine. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Zahran, N F; Ghoniem, H; Helal, A I [Physics Dept., Nuclear Research Center, AEA., Cairo, (Egypt); Rasheed, N [Nuclear Material Authority, Cairo, (Egypt)

    1996-03-01

    Field ionization mass spectra of pyridine is measured using 10{mu}m activated wire. protonation of pyridine, is observed as an intense peak in the mass spectra. Charge distribution of pyridine molecule is calculated using the modified neglect of diatomic overlap (MNDO) technique, and consequently proton attachment is proposed to be on the nitrogen atom. Temperature dependence of (M+H){sup +} ion is investigated and discussed. MNDO calculations of the protonated species are done, and the proton affinity of pyridine molecule is estimated. Time dependence of the field ionization process of pyridine and protonated ions are observed and discussed. 5 figs.

  8. The proton spectral function of 40Ca and 48Ca studied with the (e,e'p) reaction

    International Nuclear Information System (INIS)

    Kramer, G.J.

    1990-01-01

    This thesis presents the results of an experimental study into the occupation of the orbitals around the Fermi level for 40 Ca and 48 Ca with quasi-elastic proton knock-out (e,e'p). Experiments have been carried out with the 500 MeV electron beam of the linear accelerator MEA at NIKHEF, Amsterdam. For 40 Ca the mechanism of the (e,e'p) reaction has been studied by comparing the measured momentum distributions of some strong transitions to discrete states in 39K , with various theoretical calculations. From this it has been concluded that uncertainties caused by deviations of the impulse approximation can be minimized if the measurements are carried out under parallel kinematical conditions. The spectroscopic strengths of the shell-model orbitals in states just below the Fermi level, for 40 Ca the 1d 3/2 , 1d 5/2 and 2s 1/2 orbitals, turned out to amount 50 to 70% of the IPSM limit. A small part of the missing strength has been found in the 1f 7/2 and 2p 3/2 orbitals which are just above the Fermi level (resp. 11 and 2% of the 2j+1 limit), which is an indication for ground state correlations. The spectroscopic strengths for the 1d 3/2 , 2s 1/2 and 1d 3/2 orbitals of 48 Ca turned out to be the same as for 40C a within the actual measuring accuracy. Above the Fermi level only strength in the 1f 7/2 orbital has been found (1% of the 2j+1 limit). The spectroscopic strengths determined with (e,e'p) experiments are about a factor two smaller than those obtained from (d, 3 He) experiments. This discrepancy has been studied by reviewing the model dependency of the DWBA analysis for the (d, 3 He) reaction with special emphasis on the sensitivities of the spectroscopic factors to the various approximations made in this theory. It is also investigated which part of the bound state wave function is probed by the (e,e'p) and the (d, 3 He) reactions in order to understand the model sensitivities arising from the exact shape of the bound state wave function. (H.W.).97 refs.; 48

  9. Proton transfer events in GFP.

    Science.gov (United States)

    Di Donato, Mariangela; van Wilderen, Luuk J G W; Van Stokkum, Ivo H M; Stuart, Thomas Cohen; Kennis, John T M; Hellingwerf, Klaas J; van Grondelle, Rienk; Groot, Marie Louise

    2011-09-28

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton transfer through a 'proton-wire', formed by the chromophore (the proton donor), water molecule W22, Ser205 and Glu222 (the acceptor), on a picosecond time scale. To obtain a more refined view of this process, we have used a combined approach of time resolved mid-infrared spectroscopy and visible pump-dump-probe spectroscopy to resolve with atomic resolution how and how fast protons move through this wire. Our results indicate that absorption of light by GFP induces in 3 ps (10 ps in D(2)O) a shift of the equilibrium positions of all protons in the H-bonded network, leading to a partial protonation of Glu222 and to a so-called low barrier hydrogen bond (LBHB) for the chromophore's proton, giving rise to dual emission at 475 and 508 nm. This state is followed by a repositioning of the protons on the wire in 10 ps (80 ps in D(2)O), ultimately forming the fully deprotonated chromophore and protonated Glu222.

  10. Solar proton fluxes since 1956

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1977-01-01

    The fluxes of protons emitted during solar flares since 1956 were evaluated. The depth-versus-activity profiles of 56 Co in several lunar rocks are consistent with the solar-proton fluxes detected by experiments on several satellites. Only about 20% of the solar-proton-induced activities of 22 Na and 55 Fe in lunar rocks from early Apollo missions were produced by protons emitted from the sun during solar cycle 20 (1965--1975). The depth-versus-activity data for these radionuclides in several lunar rocks were used to determine the fluxes of protons during solar cycle 19 (1954--1964). The average proton fluxes for cycle 19 are about five times those for both the last million years and for cycle 20. These solar-proton flux variations correlate with changes in sunspot activity

  11. Proton irradiation effects on gallium nitride-based devices

    Science.gov (United States)

    Karmarkar, Aditya P.

    Proton radiation effects on state-of-the-art gallium nitride-based devices were studied using Schottky diodes and high electron-mobility transistors. The device degradation was studied over a wide range of proton fluences. This study allowed for a correlation between proton irradiation effects between different types of devices and enhanced the understanding of the mechanisms responsible for radiation damage in GaN-based devices. Proton irradiation causes reduced carrier concentration and increased series resistance and ideality factor in Schottky diodes. 1.0-MeV protons cause greater degradation than 1.8-MeV protons because of their higher non-ionizing energy loss. The displacement damage in Schottky diodes recovers during annealing. High electron-mobility transistors exhibit extremely high radiation tolerance, continuing to perform up to a fluence of ˜1014 cm-2 of 1.8-MeV protons. Proton irradiation creates defect complexes in the thin-film structure. Decreased sheet carrier mobility due to increased carrier scattering and decreased sheet carrier density due to carrier removal by the defect centers are the primary damage mechanisms. Interface disorder at either the Schottky or the Ohmic contact plays a relatively unimportant part in overall device degradation in both Schottky diodes and high electron-mobility transistors.

  12. Proton mass decomposition

    Science.gov (United States)

    Yang, Yi-Bo; Chen, Ying; Draper, Terrence; Liang, Jian; Liu, Keh-Fei

    2018-03-01

    We report the results on the proton mass decomposition and also on the related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of Nf = 2 + 1 DWF configurations with three lattice spacings and volumes, and several pion masses including the physical pion mass. With 1-loop pertur-bative calculation and proper normalization of the glue operator, we find that the u, d, and s quark masses contribute 9(2)% to the proton mass. The quark energy and glue field energy contribute 31(5)% and 37(5)% respectively in the MS scheme at µ = 2 GeV. The trace anomaly gives the remaining 23(1)% contribution. The u, d, s and glue momentum fractions in the MS scheme are consistent with the global analysis at µ = 2 GeV.

  13. Proton solar flares

    International Nuclear Information System (INIS)

    Shaposhnikova, E.F.

    1979-01-01

    The observations of proton solar flares have been carried out in 1950-1958 using the extrablackout coronograph of the Crimea astrophysical observatory. The experiments permit to determine two characteristic features of flares: the directed motion of plasma injection flux from the solar depths and the appearance of a shock wave moving from the place of the injection along the solar surface. The appearance of the shock wave is accompanied by some phenomena occuring both in the sunspot zone and out of it. The consistent flash of proton flares in the other groups of spots, the disappearance of fibres and the appearance of eruptive prominences is accomplished in the sunspot zone. Beyond the sunspot zone the flares occur above spots, the fibres disintegrate partially or completely and the eruptive prominences appear in the regions close to the pole

  14. Spectroscopic observations of AG Dra

    International Nuclear Information System (INIS)

    Chang-Chun, H.

    1982-01-01

    During summer 1981, spectroscopic observations of AG Dra were performed at the Haute-Provence Observatory using the Marly spectrograph with a dispersion of 80 A mm -1 at the 120 cm telescope and using the Coude spectrograph of the 193 cm telescope with a dispersion of 40 A mm -1 . The actual outlook of the spectrum of AG Dra is very different from what it was in 1966 in the sense that only a few intense absorption lines remain, the heavy emission continuum masking the absorption spectrum, while on the 1966 plate, about 140 absorption lines have been measured. Numerous emission lines have been measured, most of them, present in 1981, could also be detected in 1966. They are due to H, HeI and HeII. (Auth.)

  15. The Amsterdam proton microbeam

    International Nuclear Information System (INIS)

    Bos, A.J.J.

    1984-01-01

    The aim of the work presented in this thesis is to develop a microbeam setup such that small beam spot sizes can be produced routinely, and to investigate the capabilities of the setup for micro-PIXE analysis. The development and performance of the Amsterdam proton microbeam setup are described. The capabilities of the setup for micro-PIXE are shown with an investigation into the presence of trace elements in human hair. (Auth.)

  16. Prompt double J/ψ production in proton-proton collisions at the LHC

    International Nuclear Information System (INIS)

    Baranov, S.P.; Rezaeian, Amir H.

    2015-11-01

    We provide a detailed study of prompt double J/ψ production within the non-relativistic QCD (NRQCD) framework in proton-proton collisions at the LHC.We confront the recent LHC data with the results obtained at leading-order (LO) in the NRQCD framework within two approaches of the collinear factorization and the k T -factorization. We show that the LHCb data can be fairly described within the k T -factorized LO NRQCD, while the collinearly factorized LO NRQCD significantly overshoots the LHCb data at low J/ψ-pair invariant mass. We show that the LO NRQCD formalism cannot describe the recent CMS data, with about one order of magnitude discrepancy. If the CMS data are confirmed, this indicates rather large higher-order corrections for prompt double J/ψ production. We provide various predictions which can further test the NRQCD-based approach at the LHC in a kinematic region that LO contributions dominate. We also investigate long-range in rapidity double J/ψ correlations. We found no evidence of a ridge-like structure for double J/ψ production in proton-proton collisions at the LHC up to subleading α 6 s accuracy.

  17. The proton radius puzzle

    Science.gov (United States)

    Bonesini, Maurizio

    2017-12-01

    The FAMU (Fisica degli Atomi Muonici) experiment has the goal to measure precisely the proton Zemach radius, thus contributing to the solution of the so-called proton radius "puzzle". To this aim, it makes use of a high-intensity pulsed muon beam at RIKEN-RAL impinging on a cryogenic hydrogen target with an high-Z gas admixture and a tunable mid-IR high power laser, to measure the hyperfine (HFS) splitting of the 1S state of the muonic hydrogen. From the value of the exciting laser frequency, the energy of the HFS transition may be derived with high precision ( 10-5) and thus, via QED calculations, the Zemach radius of the proton. The experimental apparatus includes a precise fiber-SiPMT beam hodoscope and a crown of eight LaBr3 crystals and a few HPGe detectors for detection of the emitted characteristic X-rays. Preliminary runs to optimize the gas target filling and its operating conditions have been taken in 2014 and 2015-2016. The final run, with the pump laser to drive the HFS transition, is expected in 2018.

  18. Heavy quarks in proton

    CERN Document Server

    AUTHOR|(SzGeCERN)655637

    The measurement of prompt photon associated with a b jet in proton-proton interactions can provide us insight into the inner structure of proton. This is because precision of determination of parton distribution functions of b quark and gluon can be increased by such a measurement. The measurement of cross-section of prompt photon associated with a b jet (process $pp\\longrightarrow \\gamma + b + X$) at $\\sqrt{s}$= 8 TeV with the ATLAS detector is presented. Full 8 TeV dataset collected by ATLAS during the year 2012 was used in this analysis. Corresponding integrated luminosity is 20.3 $fb^{-1}$. Fiducial differential cross-section as a function of photon transverse momentum at particle level was extracted from data and compared with the prediction of leading order event generator Pythia 8. Cross-section extracted from data is normalised independently on the Monte Carlo prediction. Values of data distribution lie above Monte Carlo values. The difference can be explained by presence of higher order effects not ...

  19. Spectroscopic and chromatographic analysis of oil from an oil shale flash pyrolysis unit

    Energy Technology Data Exchange (ETDEWEB)

    Khraisha, V.H.; Irqsousi, N.A. [University of Jordan, Amman (Jordan). Dept. of Chemical Engineering; Shabib, I.M. [Applied Science Univ., Amman (Jordan). Dept. of Chemistry

    2003-01-01

    In this investigation, spectroscopic (FT-IR, UV-Vis, {sup 1}H NMR) and chromatographic (GC) techniques were used to analyze two Jordanian shale oils, Sultani and El-Lajjun. The oils were extracted at different pyrolysis temperatures (400-500{sup o}C) using a fluidized bed reactor. The spectroscopic and chromatographic analyses show that the variation of pyrolysis temperature has no significant effect on the composition of the produced oil. The {sup 1}H NMR results indicate that the protons of methyl and methelyene represent the bulk of the hydrogen ({approx}90%) in most shale oil samples. GC analysis reveals that the oil samples contain n-alkanes with a predominant proportion of n-C{sub 25}. (Author)

  20. Omega meson production in proton-proton collisions

    International Nuclear Information System (INIS)

    Schulte-Wissermann, M.; Brinkmann, K.; Dshemuchadse, S.

    2005-01-01

    The TOF spectrometer is an external experiment fed by the proton accelerator COSY, which is located at the Forschungszentrum Juelich, Germany. While this detector does not utilize a magnetic field for particle identification, it, however, stands out for its high acceptance (approx. 2π in the laboratory frame) and versatility. TOF measures the velocity-vectors of all charged particles, which then are used to completely reconstruct the event pattern. Due to the modular design of the TOF detector, its components can be assembled to ideally match different experimental requirements. This makes it a multipurpose device, which has shown results for many hadronic channels, starting from the pion threshold up to excess energies as high as 1GeV. One of the experimental programs is dedicated to the ω meson production. In proton-proton interactions, this channel has remained largely unstudied until the late 1990s. Then, first experimental data in the direct vicinity of the threshold and at an excess energy of ε=320 MeV became available. We have published data on ω production for two (intermediate) excess energies of ε=93 MeV and ε=173 MeV. In parallel, a considerable interest on the part of theory arose, since the reaction dynamics of ω-meson production in nucleon-nucleon collisions has an impact on many fields of modern physics. For example, there is an ongoing discussion whether 'missing resonances' may (help to) explain the phenomena observed in dense matter. These resonances would couple to the pω, but not to the pπ channel. Although predicted by many authors, until now no pω resonance was found experimentally; the strangeness content of the nucleon is still an open question. One possible key to an answer is the ratio of the total cross sections of ω to φ - mesons, which experimentally is about a factor of seven larger than simple SU predictions (often referred to as 'violation of the OZI-rule'). However, this comparison is only valid assuming similar

  1. Spectroscopy of {sup 18}Na: Bridging the two-proton radioactivity of {sup 19}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Assie, M. [GANIL, CEA/DSM-CNRS/IN2P3, Caen (France); Institut de Physique Nucleaire, Universite Paris-Sud-11-CNRS/IN2P3, 91406 Orsay (France); Oliveira Santos, F. de, E-mail: oliveira@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, Caen (France); Davinson, T. [SUPA School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Grancey, F. de [GANIL, CEA/DSM-CNRS/IN2P3, Caen (France); Achouri, L. [LPC/ENSICAEN, Blvd du Marechal Juin, 14050 Caen Cedex (France); Alcantara-Nunez, J. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela, E15782 (Spain); Al Kalanee, T.; Angelique, J.-C. [LPC/ENSICAEN, Blvd du Marechal Juin, 14050 Caen Cedex (France); Borcea, C.; Borcea, R. [Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest (Romania); Caceres, L. [GANIL, CEA/DSM-CNRS/IN2P3, Caen (France); Celikovic, I. [VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Chudoba, V. [Flerov Laboratory of Nuclear Reactions, JINR RU-141980 Dubna (Russian Federation); Institute of Physics, Silesian University in Opava, Bezrucovo nam. 13, 746 01 Opava (Czech Republic); Pang, D.Y. [GANIL, CEA/DSM-CNRS/IN2P3, Caen (France); Ducoin, C. [INFN - Sezione di Catania, Via S. Sofia 64, Catania 95123 (Italy); Fallot, M. [Subatech 4 rue Alfred Kastler, BP 20722, F-44307 Nantes Cedex 3 (France); Kamalou, O. [GANIL, CEA/DSM-CNRS/IN2P3, Caen (France); Kiener, J. [CSNSM, Universite Paris-Sud-11, CNRS/IN2P3, 91405 Orsay-Campus (France); Lam, Y. [CENBG CNRS/IN2P3 - Universite Bordeaux 1, Le Haut Vigneau, 33175 Gradignan cedex (France); and others

    2012-06-06

    The unbound nucleus {sup 18}Na, the intermediate nucleus in the two-proton radioactivity of {sup 19}Mg, was studied by the measurement of the resonant elastic scattering reaction H({sup 17}Ne,p){sup 17}Ne performed at 4 A.MeV using a radioactive beam from the SPIRAL Facility. Spectroscopic properties of the low-lying states were obtained in an R-matrix analysis of the excitation function.

  2. [Why proton therapy? And how?

    Science.gov (United States)

    Thariat, Juliette; Habrand, Jean Louis; Lesueur, Paul; Chaikh, Abdulhamid; Kammerer, Emmanuel; Lecomte, Delphine; Batalla, Alain; Balosso, Jacques; Tessonnier, Thomas

    2018-03-01

    Proton therapy is a radiotherapy, based on the use of protons, charged subatomic particles that stop at a given depth depending on their initial energy (pristine Bragg peak), avoiding any output beam, unlike the photons used in most of the other modalities of radiotherapy. Proton therapy has been used for 60 years, but has only become ubiquitous in the last decade because of recent major advances in particle accelerator technology. This article reviews the history of clinical implementation of protons, the nature of the technological advances that now allows its expansion at a lower cost. It also addresses the technical and physical specificities of proton therapy and the clinical situations for which proton therapy may be relevant but requires evidence. Different proton therapy techniques are possible. These are explained in terms of their clinical potential by explaining the current terminology (such as cyclotrons, synchrotrons or synchrocyclotrons, using superconducting magnets, fixed line or arm rotary with passive diffusion delivery or active by scanning) in basic words. The requirements associated with proton therapy are increased due to the precision of the depth dose deposit. The learning curve of proton therapy requires that clinical indications be prioritized according to their associated uncertainties (such as range uncertainties and movement in lung tumors). Many clinical indications potentially fall under proton therapy ultimately. Clinical strategies are explained in a paralleled manuscript. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  3. Method of absorbance correction in a spectroscopic heating value sensor

    Science.gov (United States)

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  4. Infrared multiple photon dissociation spectroscopy of ciprofloxacin: Investigation of the protonation site

    Energy Technology Data Exchange (ETDEWEB)

    Bodo, E. [Dip. Di Chimica, Universita di Roma ' La Sapienza' , p.le A. Moro 5, 00185 Rome (Italy); Ciavardini, A. [Dip. di Chimica e Tecnologie del Farmaco, Universita di Roma ' ' La Sapienza' ' , p.le A. Moro 5, 00185 Rome (Italy); Dip. di Scienze e Tecnologie Chimiche, Universita di Roma ' ' Tor Vergata' ' , via della Ricerca Scientifica, 00133 Rome (Italy); Giardini, A.; Paladini, A. [CNR - IMIP, Tito Scalo (PZ) (Italy); Piccirillo, S., E-mail: picciril@uniroma2.it [Dip. di Scienze e Tecnologie Chimiche, Universita di Roma ' ' Tor Vergata' ' , via della Ricerca Scientifica, 00133 Rome (Italy); Rondino, F. [ENEA, C.R. Casaccia, (UTT-MAT), Via Anguillarese, 301, 00123 Rome (Italy); Scuderi, D. [Laboratoire de Chimie Physique, Universite Paris Sud 11, UMR 8000, Orsay (France)

    2012-04-04

    Highlights: Black-Right-Pointing-Pointer IRMPD spectroscopy of protonated ciprofloxacin electrosprayed from methanol solution. Black-Right-Pointing-Pointer Quantum chemical calculations to identify the possible isomers differing in the protonation site. Black-Right-Pointing-Pointer Bands are assigned to the isomer protonated. Black-Right-Pointing-Pointer Bands are assigned to the isomer protonated at the piperazinyl amino group. - Abstract: The vibrational spectrum of isolated protonated ciprofloxacin was recorded in the range 1100-2000 cm{sup -1} by means of infrared multiple photon dissociation (IRMPD) spectroscopy. The spectrum was obtained by electrospraying a methanol solution of ciprofloxacin in a Paul ion trap, coupled to the tunable IR radiation of a free electron laser. This spectroscopic study has been complemented by quantum chemical calculations at the DFT and MP2 levels of theory to identify the possible structures present under our experimental conditions. Several low-energy isomers with protonation occurring at the piperazinyl amino group and at the carbonyl group are predicted in the energy range 0-84 kJ mol{sup -1}. A good agreement between the measured IRMPD spectrum and the calculated absorption spectrum is observed for the isomer protonated at the piperazinyl amino group. This isomer is calculated at MP2 level of theory to lie about 76 kJ/mol above the most stable isomer which is protonated at the quinone carbonyl group. This discrepancy can be rationalized by assuming that the protonation at the piperazinyl amino group, typical of the zwitterionic form that is found in protic solvents, is retained in the ESI process. The vibrational bands observed in the IRMPD spectrum are assigned to normal modes of the isomer protonated at the piperazinyl amino group, with deviations of less than 20 cm{sup -1} between measured and calculated frequencies.

  5. Code of practice for clinical proton dosimetry

    International Nuclear Information System (INIS)

    Vynckier, S.

    1991-01-01

    The objective of this document is to make recommendations for the determination of absorbed dose to tissue for clinical proton beams and to achieve uniformity in proton dosimetry. A Code of Practice (CoP) has been chosen, providing specific guidelines for the choice of the detector and the method of determination of absorbed dose for proton beams only. This CoP is confined specifically to the determination of absorbed dose and is not concerned with the biological effects of proton beams. It is recommended that dosimeters be calibrated by comparison with a calorimeter. If this is not available, a Faraday cup, or alter-natively, an ionization chamber, with a 60 Co calibration factor should be used. Physical parameters for determining the dose from tissue-equivalent ionization chamber measurements are given together with a worksheet. It is recommended that calibrations be carried out in water at the centre of the spread-out-Bragg-peak and that dose distributions be measured in a water phantom. It is estimated that the error in the calibrations will be less than +-5 per cent (1 S.D.) in all cases. Adoption and implementation of this CoP will facilitate the exchange of clinical information. (author). 34 refs.; 5 figs.; 5 tabs

  6. MUSE: Measuring the proton radius with muon-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Jan Christopher [Massachusetts Institute of Technology, Cambridge (United States)

    2014-07-01

    The proton radius has been measured so far using electron-proton scattering, electronic Hydrogen spectroscopy and muonic Hydrogen spectroscopy, the latter producing a much more accurate, but seven sigma different, result, leading to the now famous proton radius puzzle. The MUSE collaboration aims to complete the set of measurements by using muon scattering to determine the proton radius and to shed light on possible explanations of the discrepancy. The talk gives an overview of the experiment motivation and design and a status report on the progress.

  7. Raman spectroscopic approach to monitor the in vitro cyclization of creatine → creatinine

    Science.gov (United States)

    Gangopadhyay, Debraj; Sharma, Poornima; Singh, Sachin Kumar; Singh, Pushkar; Tarcea, Nicolae; Deckert, Volker; Popp, Jürgen; Singh, Ranjan K.

    2015-01-01

    The creatine → creatinine cyclization, an important metabolic phenomenon has been initiated in vitro at acidic pH and studied through Raman spectroscopic and DFT approach. The equilibrium composition of neutral, zwitterionic and protonated microspecies of creatine has been monitored with time as the reaction proceeds. Time series Raman spectra show clear signature of creatinine formation at pH 3 after ∼240 min at room temperature and reaction is faster at higher temperature. The spectra at pH 1 and pH 5 do not show such signature up to 270 min implying faster reaction rate at pH 3.

  8. Magnetic monopole catalysis of proton decay

    International Nuclear Information System (INIS)

    Marciano, W.J.; Salvino, D.

    1986-09-01

    Catalysis of proton decay by GUT magnetic monopoles (the Rubakov-Callan effect) is discussed. Combining a short-distance cross section calculation by Bernreuther and Craigie with the long-distance velocity dependent distortion factors of Arafune and Fukugita, catalysis rate predictions which can be compared with experiment are obtained. At present, hydrogen rich detectors such as water (H 2 O) and methane (CH 4 ) appear to be particularly well suited for observing catalysis by very slow monopoles. 17 refs., 1 fig

  9. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  10. Proton and carbon ion therapy

    CERN Document Server

    Lomax, Tony

    2013-01-01

    Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art...

  11. Proton NMR studies of functionalized nanoparticles in aqueous environments

    Science.gov (United States)

    Tataurova, Yulia Nikolaevna

    Nanoscience is an emerging field that can provide potential routes towards addressing critical issues such as clean and sustainable energy, environmental remediation and human health. Specifically, porous nanomaterials, such as zeolites and mesoporous silica, are found in a wide range of applications including catalysis, drug delivery, imaging, environmental protection, and sensing. The characterization of the physical and chemical properties of nanocrystalline materials is essential to the realization of these innovative applications. The great advantage of porous nanocrystals is their increased external surface area that can control their biological, chemical and catalytic activities. Specific functional groups synthesized on the surface of nanoparticles are able to absorb heavy metals from the solution or target disease cells, such as cancer cells. In these studies, three main issues related to functionalized nanomaterials will be addressed through the application of nuclear magnetic resonance (NMR) techniques including: 1) surface composition and structure of functionalized nanocrystalline particles; 2) chemical properties of the guest molecules on the surface of nanomaterials, and 3) adsorption and reactivity of surface bound functional groups. Nuclear magnetic resonance (NMR) is one of the major spectroscopic techniques available for the characterization of molecular structure and conformational dynamics with atomic level detail. This thesis deals with the application of 1H solution state NMR to porous nanomaterial in an aqueous environment. Understanding the aqueous phase behavior of functionalized nanomaterials is a key factor in the design and development of safe nanomaterials because their interactions with living systems are always mediated through the aqueous phase. This is often due to a lack of fundamental knowledge in interfacial chemical and physical phenomena that occur on the surface of nanoparticles. The use of solution NMR spectroscopy results

  12. Study on patient-induced radioactivity during proton treatment in hengjian proton medical facility

    International Nuclear Information System (INIS)

    Wu, Qingbiao; Wang, Qingbin; Liang, Tianjiao; Zhang, Gang; Ma, Yinglin; Chen, Yu; Ye, Rong; Liu, Qiongyao; Wang, Yufei; Wang, Huaibao

    2016-01-01

    At present, increasingly more proton medical facilities have been established globally for better curative effect and less side effect in tumor treatment. Compared with electron and photon, proton delivers more energy and dose at its end of range (Bragg peak), and has less lateral scattering for its much larger mass. However, proton is much easier to produce neutron and induced radioactivity, which makes radiation protection for proton accelerators more difficult than for electron accelerators. This study focuses on the problem of patient-induced radioactivity during proton treatment, which has been ignored for years. However, we confirmed it is a vital factor for radiation protection to both patient escort and positioning technician, by FLUKA’s simulation and activation formula calculation of Hengjian Proton Medical Facility (HJPMF), whose energy ranges from 130 to 230 MeV. Furthermore, new formulas for calculating the activity buildup process of periodic irradiation were derived and used to study the relationship between saturation degree and half-life of nuclides. Finally, suggestions are put forward to lessen the radiation hazard from patient-induced radioactivity. - Highlights: • A detailed study on patient-induced radioactivity was conducted by adopting Monte Carlo code FLUKA and activation formula. • New formulas for calculating the activity build-up process of periodic irradiation were derived and extensively studied. • Patient induced radioactivity, which has been ignored for years, is confirmed as a vital factor for radiation protection. • The induced radioactivity from single short-time treatment and long-time running (saturation) were studied and compared. • Some suggestions on how to reduce the hazard of patient’s induced radioactivity were given.

  13. Does the Intramolecular Hydrogen Bond Affect the Spectroscopic Properties of Bicyclic Diazole Heterocycles?

    Directory of Open Access Journals (Sweden)

    Paweł Misiak

    2018-01-01

    Full Text Available The formation of an intramolecular hydrogen bond in pyrrolo[1,2-a]pyrazin-1(2H-one bicyclic diazoles was analyzed, and the influence of N-substitution on HB formation is discussed in this study. B3LYP/aug-cc-pVDZ calculations were performed for the diazole, and the quantum theory of atoms in molecules (QTAIM approach as well as the natural bond orbital (NBO method was applied to analyze the strength of this interaction. It was found that the intramolecular hydrogen bond that closes an extra ring between the C=O proton acceptor group and the CH proton donor, that is, C=O⋯H–C, influences the spectroscopic properties of pyrrolopyrazine bicyclic diazoles, particularly the carbonyl frequencies. The influence of N-substitution on the aromaticity of heterocyclic rings is also discussed in this report.

  14. Magnetic resonance spectroscopic abnormalities in sporadic and variant Creutzfeldt-Jakob disease

    International Nuclear Information System (INIS)

    Pandya, H.G.; Coley, S.C.; Wilkinson, I.D.; Griffiths, P.D.

    2003-01-01

    AIM: To study the proton MR spectroscopic findings in Creutzfeldt-Jakob disease (CJD) (sporadic and variant). MATERIALS AND METHODS: MR imaging and proton MR spectra were acquired in two patients with sporadic CJD (biopsy proven) and one patient with variant CJD. RESULTS: The two patients with sporadic CJD demonstrated MR signal change within the basal ganglia and thalami and reduced N-acetylaspartate (NAA):creatine ratios. The patient with variant CJD showed characteristic signal change within the pulvinar of the thalami and a markedly reduced N-acetylaspartate:creatine ratio. CONCLUSION: All three patients with CJD demonstrated evidence of reduced N-acetylaspartate: creatine ratios on MR spectroscopy. These changes imply that neuronal loss and/or dysfunction is a consistent finding in established CJD. Pandya H. G., et al (2003) Clinical Radiology58, 148--153

  15. Magnetic resonance spectroscopic abnormalities in sporadic and variant Creutzfeldt-Jakob disease

    Energy Technology Data Exchange (ETDEWEB)

    Pandya, H.G.; Coley, S.C.; Wilkinson, I.D.; Griffiths, P.D

    2003-02-01

    AIM: To study the proton MR spectroscopic findings in Creutzfeldt-Jakob disease (CJD) (sporadic and variant). MATERIALS AND METHODS: MR imaging and proton MR spectra were acquired in two patients with sporadic CJD (biopsy proven) and one patient with variant CJD. RESULTS: The two patients with sporadic CJD demonstrated MR signal change within the basal ganglia and thalami and reduced N-acetylaspartate (NAA):creatine ratios. The patient with variant CJD showed characteristic signal change within the pulvinar of the thalami and a markedly reduced N-acetylaspartate:creatine ratio. CONCLUSION: All three patients with CJD demonstrated evidence of reduced N-acetylaspartate: creatine ratios on MR spectroscopy. These changes imply that neuronal loss and/or dysfunction is a consistent finding in established CJD. Pandya H. G., et al (2003) Clinical Radiology58, 148--153.

  16. The PIREX proton irradiation facility

    International Nuclear Information System (INIS)

    Victoria, M.

    1995-01-01

    The proton Irradiation Experiment (PIREX) is a materials irradiation facility installed in a beam line of the 590 MeV proton accelerator at the Paul Scherrer Institute. Its main purpose is the testing of candidate materials for fusion reactor components. Protons of this energy produce simultaneously displacement damage and spallation products, amongst them helium and can therefore simulate any possible synergistic effects of damage and helium, that would be produced by the fusion neutrons

  17. The PIREX proton irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, M. [Association EURATOM, Villigen (Switzerland)

    1995-10-01

    The proton Irradiation Experiment (PIREX) is a materials irradiation facility installed in a beam line of the 590 MeV proton accelerator at the Paul Scherrer Institute. Its main purpose is the testing of candidate materials for fusion reactor components. Protons of this energy produce simultaneously displacement damage and spallation products, amongst them helium and can therefore simulate any possible synergistic effects of damage and helium, that would be produced by the fusion neutrons.

  18. Search for proton decay: introduction

    International Nuclear Information System (INIS)

    Goldhaber, M.

    1984-01-01

    In interpreting contained events observed in various proton decay detectors one can sometimes postulate, though usually not unambiguously, a potential decay mode of the proton, called a candidate. It is called a candidate, because for any individual event it is not possible to exclude the possibility that it is instead due to cosmic ray background, chiefly atmospheric neutrinos. Some consistency checks are proposed which could help establish proton decay, if it does occur in the presently accessible lifetime window

  19. Sea Quarks in the Proton

    Directory of Open Access Journals (Sweden)

    Reimer Paul E

    2016-01-01

    Full Text Available The proton is a composite particle in which the binding force is responsible for the majority of its mass. To understand this structure, the distributions and origins of the quark-antiquark pairs produced by the strong force must be measured. The SeaQuest collaboration is using the Drell-Yan process to elucidate antiquark distributions in the proton and to study their modification when the proton is held within a nucleus.

  20. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III

    International Nuclear Information System (INIS)

    Dawson, Kyle S.; Ahn, Christopher P.; Bolton, Adam S.; Schlegel, David J.; Bailey, Stephen; Anderson, Scott F.; Bhardwaj, Vaishali; Aubourg, Éric; Bautista, Julian E.; Barkhouser, Robert H.; Beifiori, Alessandra; Berlind, Andreas A.; Bizyaev, Dmitry; Brewington, Howard; Blake, Cullen H.; Blanton, Michael R.; Blomqvist, Michael; Borde, Arnaud; Bovy, Jo; Brandt, W. N.

    2013-01-01

    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg 2 to measure BAO to redshifts z A to an accuracy of 1.0% at redshifts z = 0.3 and z = 0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyα forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D A (z) and H –1 (z) parameters to an accuracy of 1.9% at z ∼ 2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.

  1. Proton irradiation and endometriosis

    International Nuclear Information System (INIS)

    Wood, D.H.; Yochmowitz, M.G.; Salmon, Y.L.; Eason, R.L.; Boster, R.A.

    1983-01-01

    Female rhesus monkeys given single total-body exposures of protons of varying energies developed endometriosis at a frequency significantly higher than that of nonirradiated animals of the same age. The minimum latency period was 7 years after exposure. The doses and energies of the radiation received were within the range that could be received by an aircrew member in near-earth orbit during a random solar flare event, leading to the conclusion that endometriosis should be a consideration in assessing the risk of delayed radiation effects in female crewmembers

  2. Proton nuclear scattering radiography

    International Nuclear Information System (INIS)

    Duchazeaubeneix, J.C.; Faivre, J.C.; Garreta, D.

    1982-10-01

    Nuclear scattering of protons allows to radiograph objects with specific properties: direct 3- dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore, it is a well adapted method to gating techniques allowing the radiography of fast periodic moving systems. Results obtained on different objects (light and heavy materials) are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiography faster and to get a practical method are discussed

  3. Proton nuclear scattering radiography

    International Nuclear Information System (INIS)

    Saudinos, J.

    1982-04-01

    Nuclear scattering of protons allows to radiograph objects with specific properties: 3-dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore the nuclear scattering radiography (NSR) is a well adapted method to gating techniques allowing the radiography of fast periodic moving objects. Results obtained on phantoms, formalin fixed head and moving object are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiograph faster and to get a practical method are discussed

  4. Analysis of pion production data measured by HADES in proton-proton collisions at 1.25 GeV

    Czech Academy of Sciences Publication Activity Database

    Agakishiev, G.; Balanda, A.; Belver, D.; Belyaev, A.; Krása, Antonín; Křížek, Filip; Kugler, Andrej; Sobolev, Yuri, G.; Tlustý, Pavel; Wagner, Vladimír

    2015-01-01

    Roč. 51, X (2015), č. článku 137. ISSN 1434-6001 R&D Projects: GA MŠk LG12007; GA ČR GA13-06759S Institutional support: RVO:61389005 Keywords : proton-proton collisions * HADES collaboration * baryon resonance Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.373, year: 2015

  5. Spectroscopic diagnostics of industrial plasmas

    International Nuclear Information System (INIS)

    Joshi, N.K.

    2004-01-01

    Plasmas play key role in modern industry and are being used for processing micro electronic circuits to the destruction of toxic waste. Characterization of industrial plasmas which includes both 'thermal plasmas' and non-equilibrium plasmas or 'cold plasmas' in industrial environment offers quite a challenge. Numerous diagnostic techniques have been developed for the measurement of these partially ionized plasma and/or particulate parameters. The 'simple' non-invasive spectroscopic methods for characterization of industrial plasmas will be discussed in detail in this paper. The excitation temperature in thermal (DC/RF) plasma jets has been determined using atomic Boltzmann technique. The central axis temperature of thermal plasma jets in a spray torch can be determined using modified atomic Boltzmann technique with out using Abel inversion. The Stark broadening of H β and Ar-I (430 nm) lines have been used to determine the electron number density in thermal plasma jets. In low-pressure non-equilibrium argon plasma, electron temperature has been measured using the Corona model from the ratio of line intensities of atomic and ionic transitions. (author)

  6. Spectroscopic studies of copper enzymes

    International Nuclear Information System (INIS)

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-01-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present

  7. Proton-proton bremsstrahlung towards the elastic limit

    Science.gov (United States)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H. R.; Bacelar, J. C. S.; Castelijns, R.; Ermisch, K.; van Garderen, E.; Gašparić, I.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Kiš, M.; Löhner, H.

    2005-05-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed.

  8. Proton-proton bremsstrahlung towards the elastic limit

    International Nuclear Information System (INIS)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H.R.; Bacelar, J.C.S.; Castelijns, R.; Ermisch, K.; Garderen, E. van; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Kis, M.; Loehner, H.; Gasparic, I.

    2005-01-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed

  9. Influence of micromachined targets on laser accelerated proton beam profiles

    Science.gov (United States)

    Dalui, Malay; Permogorov, Alexander; Pahl, Hannes; Persson, Anders; Wahlström, Claes-Göran

    2018-03-01

    High intensity laser-driven proton acceleration from micromachined targets is studied experimentally in the target-normal-sheath-acceleration regime. Conical pits are created on the front surface of flat aluminium foils of initial thickness 12.5 and 3 μm using series of low energy pulses (0.5-2.5 μJ). Proton acceleration from such micromachined targets is compared with flat foils of equivalent thickness at a laser intensity of 7 × 1019 W cm-2. The maximum proton energy obtained from targets machined from 12.5 μm thick foils is found to be slightly lower than that of flat foils of equivalent remaining thickness, and the angular divergence of the proton beam is observed to increase as the depth of the pit approaches the foil thickness. Targets machined from 3 μm thick foils, on the other hand, show evidence of increasing the maximum proton energy when the depths of the structures are small. Furthermore, shallow pits on 3 μm thick foils are found to be efficient in reducing the proton beam divergence by a factor of up to three compared to that obtained from flat foils, while maintaining the maximum proton energy.

  10. The FAIR proton linac

    International Nuclear Information System (INIS)

    Kester, O.

    2015-01-01

    FAIR - the Facility for Antiproton and Ion Research in Europe - constructed at GSI in Darmstadt comprises an international centre of heavy ion accelerators that will drive heavy ion and antimatter research. FAIR will provide worldwide unique accelerator and experimental facilities, allowing a large variety of fore-front research in physics and applied science. FAIR will deliver antiproton and ion beams of unprecedented intensities and qualities. The main part of the FAIR facility is a sophisticated accelerator system, which delivers beams to different experiments of the FAIR experimental collaborations - APPA, NuSTAR, CBM and PANDA - in parallel. Modern H-type cavities offer highest shunt impedances of resonant structures of heavy ion linacs at low beam energies < 20 MeV/u and enable the acceleration of intense proton and ion beams. One example is the interdigital H-type structure. The crossed-bar H-cavities extend these properties to high energies even beyond 100 MeV/u. Compared to conventional Alvarez cavities, these crossed-bar (CH) cavities feature much higher shunt impedance at low energies. The design of the proton linac is based on those cavities

  11. Proton minibeam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Girst, Stefanie

    2016-03-08

    The risk of developing adverse side effects in the normal tissue after radiotherapy is often limiting for the dose that can be applied to the tumor. Proton minibeam radiotherapy, a spatially fractionated radiotherapy method using sub-millimeter proton beams, similar to grid therapy or microbeam radiation radiotherapy (MRT) using X-rays, has recently been invented at the ion microprobe SNAKE in Munich. The aim of this new concept is to minimize normal tissue injuries in the entrance channel and especially in the skin by irradiating only a small percentage of the cells in the total irradiation field, while maintaining tumor control via a homogeneous dose in the tumor, just like in conventional broad beam radiotherapy. This can be achieved by optimizing minibeam sizes and distances according to the prevailing tumor size and depth such that after widening of the minibeams due to proton interactions in the tissue, the overlapping minibeams produce a homogeneous dose distribution throughout the tumor. The aim of this work was to elucidate the prospects of minibeam radiation therapy compared to conventional homogeneous broad beam radiotherapy in theory and in experimental studies at the ion microprobe SNAKE. Treatment plans for model tumors of different sizes and depths were created using the planning software LAPCERR, to elaborate suitable minibeam sizes and distances for the individual tumors. Radiotherapy-relevant inter-beam distances required to obtain a homogeneous dose in the target volume were found to be in the millimeter range. First experiments using proton minibeams of only 10 μm and 50 μm size (termed microchannels in the corresponding publication Zlobinskaya et al. 2013) and therapy-conform larger dimensions of 100 μm and 180 μm were performed in the artificial human in-vitro skin model EpiDermFT trademark (MatTek). The corresponding inter-beam distances were 500 μm, 1mm and 1.8 mm, respectively, leading to irradiation of only a few percent of the cells

  12. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  13. Spectroscopic information from (3He, 7Be) reaction on 12C and 24Mg

    International Nuclear Information System (INIS)

    Rahman, Md.A.; Sen Gupta, H.M.

    1986-01-01

    The reaction ( 3 He, 7 Be) on 12 C and 24 Mg has been analysed using four discrete potential families for 7 Be channel and one discrete potential family for 3 He channel to extract alpha spectroscopic factors. It is shown that the relative spectroscopic factors are reliable if they are calculated staying within one potential family (S( 24 Mg/ 12 C) approx. 0.12). But, changing the potential family between 12 C and 24 Mg, one obtains the extreme cases, such as S( 24 Mg/ 12 C) = 0.025 and 0.51, i.e. 1:20

  14. A development plan for the Fermilab proton source

    International Nuclear Information System (INIS)

    Holmes, S. D.

    1997-01-01

    The present Fermilab Proton Source is composed of a 750 KV ion source, a 400 MeV Linac, and an 8 GeV Booster synchrotron. This facility currently provides proton beams at intensities up to 5 x 10 10 protons/bunch for injection into the Main Ring in support of the current Tevatron fixed target run. Following completion of the Main Injector project in 1999, the Proton Source is expected to provide protons to the Main Injector at an intensity of 6 x 10 10 protons/bunch as required to meet established performance goals for Tevatron Collider Run II. With the advent of the Main Injector the demand for protons in support of a diverse physics research program at Fermilab will grow. This is because the Main Injector creates a new capability for simultaneous operation of the collider and fixed target programs at 120 GeV. It has also been recently appreciated that a physics program based on the utilization of unallocated 8 GeV Booster cycles is potentially very attractive. A variety of experiments are either approved or under consideration including the Neutrinos at the Main Injector (NUMI) project, Kaons at the Main Injector (KAMI), and an rf separated K + beam for CPT tests, all utilizing 120 GeV protons, and a low energy neutrino (MiniBooNe) or muon program based on 8 GeV protons from the Booster. In addition significant effort is now being invested in defining paths to a factor of five improvement in Tevatron collider luminosity beyond those expected in Run II and in understanding the possible future siting of either a very large hadron collider or a modest energy ''First Muon Collider'' (FMC) at Fermilab. Support for these varied activities is beyond the capabilities of the current Proton Source--in the case of the FMC by about a factor of ten as measured in delivered protons per second. The purpose of this document is to describe a possible evolution of the Fermilab Proton Source over the next ten years. The goal is to outline a staged plan, with significant

  15. Proton-transfer reactions in ionized gases

    International Nuclear Information System (INIS)

    Stiller, W.; Schmidt, R.; Schuster, R.

    1985-01-01

    Ion-molecule reactions play an important role in various radiolytic processes, e.g. gas-pulse radiolysis, environmental research. For a discussion of mechanisms rate coefficients have to be assessed. Here gas-phase rate coefficients of ion-(polar) molecule reactions are calculated using the ideas of interaction potentials, reactive cross-sections and distribution functions of the translational energies of both the reactants (ions I, molecules M). The starting point of our approach, directed especially to gas-phase proton-transfer reactions, is the idea that the rate coefficient k can be calculated as an ion-molecule capture-rate coefficient multiplied by a 'steric factor' representing the probability for proton transfer. Mutual capture of the reaction partners within a possible reaction zone is caused by the physical interaction between an ion and a polar molecule. A model is discussed. Results are presented. (author)

  16. Anion Photoelectron Spectroscopy of the Homogenous 2-Hydroxypyridine Dimer Electron Induced Proton Transfer System

    Science.gov (United States)

    Vlk, Alexandra; Stokes, Sarah; Wang, Yi; Hicks, Zachary; Zhang, Xinxing; Blando, Nicolas; Frock, Andrew; Marquez, Sara; Bowen, Kit; Bowen Lab JHU Team

    Anion photoelectron spectroscopic (PES) and density functional theory (DFT) studies on the dimer anion of (2-hydroxypyridine)2-are reported. The experimentally measured vertical detachment energy (VDE) of 1.21eV compares well with the theoretically predicted values. The 2-hydroxypyridine anionic dimer system was investigated because of its resemblance to the nitrogenous heterocyclic pyrimidine nucleobases. Experimental and theoretical results show electron induced proton transfer (EIPT) in both the lactim and lactam homogeneous dimers. Upon electron attachment, the anion can serve as the intermediate between the two neutral dimers. A possible double proton transfer process can occur from the neutral (2-hydroxypyridine)2 to (2-pyridone)2 through the dimer anion. This potentially suggests an electron catalyzed double proton transfer mechanism of tautomerization. Research supported by the NSF Grant No. CHE-1360692.

  17. Determination of the asymptotic normalization coefficients for C-14 + n - C-15,the C-14(n,gamma)C-15 reaction rate, and evaluation of a new method to determine spectroscopic factors

    Czech Academy of Sciences Publication Activity Database

    McCleskey, M.; Mukhamedzhanov, A. M.; Trache, L.; Tribble, R. E.; Banu, A.; Eremenko, V.; Goldberg, V. Z.; Lui, Y. W.; McCleskey, E.; Roeder, B. T.; Spiridon, A.; Carstoiu, F.; Burjan, Václav; Hons, Zdeněk; Thompson, I. J.

    2014-01-01

    Roč. 89, č. 4 (2014), 044605 ISSN 0556-2813 R&D Projects: GA MŠk(CZ) LH11001 Institutional support: RVO:61389005 Keywords : capture reactions * cross-section * asymptotic normalization coefficient Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.733, year: 2014

  18. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  19. Polarized proton collider at RHIC

    International Nuclear Information System (INIS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N.

    2003-01-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to √s=500 GeV

  20. Protonic decay of oriented nuclei

    International Nuclear Information System (INIS)

    Kadmensky, S.G.

    2002-01-01

    On the basis of the multiparticle theory of protonic decay, the angular distributions of protons emitted by oriented spherical and deformed nuclei in the laboratory frame and in the internal coordinate frame of deformed parent nuclei are constructed with allowance for symmetry with respect to time inversion. It is shown that, because of the deep-subbarrier character of protonic decay, the adiabatic approximation is not applicable to describing the angular distributions of protons emitted by oriented deformed nuclei and that the angular distribution of protons in the laboratory frame does not coincide with that in the internal coordinate frame. It is demonstrated that these angular distributions coincide only if the adiabatic and the semiclassical approximation are simultaneously valid

  1. Protein proton-proton dynamics from amide proton spin flip rates

    International Nuclear Information System (INIS)

    Weaver, Daniel S.; Zuiderweg, Erik R. P.

    2009-01-01

    Residue-specific amide proton spin-flip rates K were measured for peptide-free and peptide-bound calmodulin. K approximates the sum of NOE build-up rates between the amide proton and all other protons. This work outlines the theory of multi-proton relaxation, cross relaxation and cross correlation, and how to approximate it with a simple model based on a variable number of equidistant protons. This model is used to extract the sums of K-rates from the experimental data. Error in K is estimated using bootstrap methodology. We define a parameter Q as the ratio of experimental K-rates to theoretical K-rates, where the theoretical K-rates are computed from atomic coordinates. Q is 1 in the case of no local motion, but decreases to values as low as 0.5 with increasing domination of sidechain protons of the same residue to the amide proton flips. This establishes Q as a monotonous measure of local dynamics of the proton network surrounding the amide protons. The method is applied to the study of proton dynamics in Ca 2+ -saturated calmodulin, both free in solution and bound to smMLCK peptide. The mean Q is 0.81 ± 0.02 for free calmodulin and 0.88 ± 0.02 for peptide-bound calmodulin. This novel methodology thus reveals the presence of significant interproton disorder in this protein, while the increase in Q indicates rigidification of the proton network upon peptide binding, confirming the known high entropic cost of this process

  2. Acute skin reactions observed in fractionated proton irradiation

    International Nuclear Information System (INIS)

    Arimoto, Takuro; Maruhashi, Noboru; Takada, Yoshihisa; Hayakawa, Yoshinori; Inada, Tetsuo; Kitagawa, Toshio

    1989-01-01

    Between May 1985 and July 1987, 49 skin reactions of 43 patients treated by proton irradiation were observed at the Particle Radiation Medical Science Center (PARMS), the University of Tsukuba. Taking the peak skin score as an endpoint, the radiobiological effects [relative biological effectiveness (RBE) and time-dose relationship] of the proton beam in multi-fractionated treatments were estimated. Factors influencing the skin dose, such as the prescribed tumor dose, tumor site, and number of applied fields, were also analyzed. The following conclusions regarding acute skin reactions to the clinical use of proton irradiation were obtained: 1) the physical skin-sparing effect of proton irradiation in single-field irradiation, especially in superficial regions, is not large compared with that of high-energy photon irradiation; 2) multidirectional proton irradiation significantly reduced the skin dose and severity of acute reasons; 3) the radiobiological effects of the proton beam, RBE and the time factor, estimated in human skin in multi-fractional treatment were slightly smaller than those of X-rays, i.e., 0.92 and -0.25±0.09, respectively. (author)

  3. Radiation Environment Model of Protons and Heavier Ions at Jupiter

    Science.gov (United States)

    Sierra, Luz Maria Martinez; Garrett, Henry B.; Jun, Insoo

    2015-01-01

    We performed an in depth study of the methods used to review the geometric factors (GF) and sensitivity to charge particles of the Energetic Particle Detector instrument on board the Galileo Spacecraft. Monte Carlo simulations were performed to understand the interactions of electrons and ions (i. e., protons and alphas) with the sensitive regions of the instrument. The DC0 and B0 channels were studied with the intention of using them to update the jovian proton radiation model. The results proved that the B0 is a clean proton chanel without any concerns for contamination by heavier ions and electrons. In contrast, DC0 was found to be contaminated by electrons. Furthermore, we also found out that the B2 channel is a clean alpha particle channel (in other words, no contamination by electrons and/or protons).

  4. Magnifying lens for 800 MeV proton radiography

    International Nuclear Information System (INIS)

    Merrill, F. E.; Campos, E.; Espinoza, C.; Hogan, G.; Hollander, B.; Lopez, J.; Mariam, F. G.; Morley, D.; Morris, C. L.; Murray, M.; Saunders, A.; Schwartz, C.; Thompson, T. N.

    2011-01-01

    This article describes the design and performance of a magnifying magnetic-lens system designed, built, and commissioned at the Los Alamos National Laboratory (LANL) for 800 MeV flash proton radiography. The technique of flash proton radiography has been developed at LANL to study material properties under dynamic loading conditions through the analysis of time sequences of proton radiographs. The requirements of this growing experimental program have resulted in the need for improvements in spatial radiographic resolution. To meet these needs, a new magnetic lens system, consisting of four permanent magnet quadrupoles, has been developed. This new lens system was designed to reduce the second order chromatic aberrations, the dominant source of image blur in 800 MeV proton radiography, as well as magnifying the image to reduce the blur contribution from the detector and camera systems. The recently commissioned lens system performed as designed, providing nearly a factor of three improvement in radiographic resolution.

  5. Nuclear spectroscopic studies: Progress report

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1989-01-01

    The Nuclear Physics Group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility (HHIRF) and the Niels Bohr Institute Tandem Accelerator. Also, we are active in a collaboration (WA80) to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland. Our experimental work is four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  6. Evidence for non-exponential elastic proton-proton differential cross-section at low |t| and s√ = 8 TeV

    Czech Academy of Sciences Publication Activity Database

    Antchev, G.; Aspell, P.; Atanassov, I.; Kašpar, Jan; Kopal, Josef; Kundrát, Vojtěch; Lokajíček, Miloš V.; Procházka, Jiří

    2015-01-01

    Roč. 899, Oct (2015), s. 527-546 ISSN 0550-3213 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:68378271 Keywords : elastic proton-proton scattering Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.735, year: 2015

  7. Proton structure functions at small x

    International Nuclear Information System (INIS)

    Hentschinski, Martin

    2015-01-01

    Proton structure functions are measured in electron-proton collision through inelastic scattering of virtual photons with virtuality Q on protons; x denotes the momentum fraction carried by the struck parton. Proton structure functions are currently described with excellent accuracy in terms of scale dependent parton distribution functions, defined in terms of collinear factorization and DGLAP evolution in Q. With decreasing x however, parton densities increase and are ultimately expected to saturate. In this regime DGLAP evolution will finally break down and non-linear evolution equations w.r.t x are expected to take over. In the first part of the talk we present recent result on an implementation of physical DGLAP evolution. Unlike the conventional description in terms of parton distribution functions, the former describes directly the Q dependence of the measured structure functions. It is therefore physical insensitive to factorization scheme and scale ambiguities. It therefore provides a more stringent test of DGLAP evolution and eases the manifestation of (non-linear) small x effects. It however requires a precise measurement of both structure functions F 2 and F L , which will be only possible at future facilities, such as an Electron Ion Collider. In the second part we present a recent analysis of the small x region of the combined HERA data on the structure function F 2 . We demonstrate that (linear) next-to-leading order BFKL evolution describes the effective Pomeron intercept, determined from the combined HERA data, once a resummation of collinear enhanced terms is included and the renormalization scale is fixed using the BLM optimal scale setting procedure. We also provide a detailed description of the Q and x dependence of the full structure functions F 2 in the small x region, as measured at HERA. Predictions for the structure function F L are found to be in agreement with the existing HERA data. (paper)

  8. Protonation of benzimidazoles and 1,2,3-benzotriazoles Solid-state linear dichroic infrared (IR-LD) spectral analysis and ab initio calculations

    Science.gov (United States)

    Ivanova, Bojidarka B.; Pindeva, Liliya I.

    2006-09-01

    IR-LD spectroscopic data obtained by the orientated solid samples as a suspension in a nematic liquid crystal of 1-hydroxy-1,2,3-benzotriazole, 2-methyl-, 2-acetonitrilebenzimidazoles and their protonated salts have been presented. The stereo-structures have been predicted and compared with theoretical ones. The IR-characteristic bands assignments of all molecule systems have been achieved.

  9. Proton femtoscopy at STAR

    International Nuclear Information System (INIS)

    Zbroszczyk, H.P.

    2011-01-01

    The analysis of two-particle femtoscopy provides a powerful tool to study the properties of matter created in heavy-ion collisions. Applied to identical and nonidentical hadron pairs, it makes the study of space-time evolution of the source in femtoscopic scale possible. Baryon femtoscopy allows extraction of the radii of produced sources which can be compared to those deduced from identical pion studies, providing additional information about source characteristics. In this paper we present the correlation functions obtained for protons and antiprotons for Au + Au collisions at √ s NN = 62.4 and 200 GeV. On the other hand, as STAR experiment participates in the Beam Energy Scan (BES) program, we present theoretical predictions of p - p , p-bar - p-bar and p - p-bar femtoscopic measurements, based on UrQMD simulation for √ s NN = 5-39 GeV

  10. Proton synchrotron accelerator theory

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1977-01-01

    This is the text of a series of lectures given as part of the CERN Academic Training Programme and primarily intended for young engineers and technicians in preparation for the running-in of the 400 GeV Super Proton Synchrotron (SPS). Following the definition of basic quantities, the problems of betatron motion and the effect of momentum spread and orbital errors on the transverse motion of the beam are reviewed. Consideration is then given to multipole fields, chromaticity and non-linear resonances. After dealing with basic relations governing longitudinal beam dynamics, the space-charge, resistive-wall and other collective effects are treated, with reference to precautions in the SPS to prevent their occurrence. (Auth.)

  11. Proton decay: 1982

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1982-01-01

    Employing the current world average Λ/sub MS/ = 0.160 GeV as input, the minimal Georgi-Glashow SU(5) model predicts sin 2 theta/sub W/(m/sub W/) = 0.214, m/sub b//m/sub tau/ approx. = 2.8 and tau/sub p/ approx. = (0.4 approx. 12) x 10 29 yr. The first two predictions are in excellent agreement with experiment; but the implied proton lifetime is already somewhat below the present experimental bound. In this status report, uncertainties in tau/sub p/ are described and effects of appendages to the SU(5) model (such as new fermion generations, scalars, supersymmetry, etc.) are examined

  12. BROOKHAVEN: Proton goal reached

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    On March 30 the 35-year old Alternating Gradient Synchrotron (AGS) exceeded its updated design goal of 6 x 10 13 protons per pulse (ppp), by accelerating 6.3 x 10 13 ppp, a world record intensity. This goal was set 11 years ago and achieving it called for the construction of a new booster and the reconstruction of much of the AGS. The booster was completed in 1991, and reached its design intensity of 1.5 x 10 13 ppp in 1993. The AGS reconstruction was finished in 1994, and by July of that year the AGS claimed a new US record intensity for a proton synchrotron of 4 x 10 13 ppp, using four booster pulses. Reaching the design intensity was scheduled for 1995. In 1994, the AGS had seemed to be solidly limited to 4 x 10 13 ppp, but in 1995 the operations crew, working on their own in the quiet of the owl shift, steadily improved the intensity, regularly setting new records, much to the bemusement of the machine physicists. The physicists, however, did contribute. A second harmonic radiofrequency cavity in the booster increased the radiofrequency bucket area for capture, raising the booster intensity from 1.7 to 2.1 x 10 13 ppp. In the AGS, new radiofrequency power supplies raised the available voltage from 8 to 13 kV, greatly enhancing the beam loading capabilities of the system. A powerful new transverse damping system successfully controlled instabilities that otherwise would have destroyed the beam in less than a millisecond. Also in the AGS, 35th harmonic octupole resonances were found

  13. BROOKHAVEN: Proton goal reached

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    On March 30 the 35-year old Alternating Gradient Synchrotron (AGS) exceeded its updated design goal of 6 x 10{sup 13} protons per pulse (ppp), by accelerating 6.3 x 10{sup 13} ppp, a world record intensity. This goal was set 11 years ago and achieving it called for the construction of a new booster and the reconstruction of much of the AGS. The booster was completed in 1991, and reached its design intensity of 1.5 x 10{sup 13} ppp in 1993. The AGS reconstruction was finished in 1994, and by July of that year the AGS claimed a new US record intensity for a proton synchrotron of 4 x 10{sup 13} ppp, using four booster pulses. Reaching the design intensity was scheduled for 1995. In 1994, the AGS had seemed to be solidly limited to 4 x 10{sup 13} ppp, but in 1995 the operations crew, working on their own in the quiet of the owl shift, steadily improved the intensity, regularly setting new records, much to the bemusement of the machine physicists. The physicists, however, did contribute. A second harmonic radiofrequency cavity in the booster increased the radiofrequency bucket area for capture, raising the booster intensity from 1.7 to 2.1 x 10{sup 13} ppp. In the AGS, new radiofrequency power supplies raised the available voltage from 8 to 13 kV, greatly enhancing the beam loading capabilities of the system. A powerful new transverse damping system successfully controlled instabilities that otherwise would have destroyed the beam in less than a millisecond. Also in the AGS, 35th harmonic octupole resonances were found.

  14. Spectroscopic effects in 1H and 13C NMR spectra of 4,4'-di-substituted 3,3'-diquinolines sulfides

    International Nuclear Information System (INIS)

    Pluta, K.

    1994-01-01

    The 1 H and 13 C NMR spectra of 4,4'-disubstituted sulfides of 3,3'-quinolines have been studied in CDCl 3 solutions. The observed spectroscopic effects have been interpreted in terms of molecule structure and configuration. The factors being responsible for the value of spectroscopic effects have been discussed

  15. sick: The Spectroscopic Inference Crank

    Science.gov (United States)

    Casey, Andrew R.

    2016-03-01

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  16. SICK: THE SPECTROSCOPIC INFERENCE CRANK

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Andrew R., E-mail: arc@ast.cam.ac.uk [Institute of Astronomy, University of Cambridge, Madingley Road, Cambdridge, CB3 0HA (United Kingdom)

    2016-03-15

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  17. SICK: THE SPECTROSCOPIC INFERENCE CRANK

    International Nuclear Information System (INIS)

    Casey, Andrew R.

    2016-01-01

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  18. A two-dimensional wide-angle proton spectrometer with improved angular resolution

    International Nuclear Information System (INIS)

    Yang, Su; Deng, Yanqing; Ge, Xulei; Fang, Yuan; Wei, Wenqing; Gao, Jian; Liu, Feng; Chen, Min; Liao, Guoqian; Li, Yutong; Zhao, Li; Ma, Yanyun

    2017-01-01

    We present an improvement design of a two-dimensional (2D) angular-resolved proton spectrometer for wide-angle measurement of proton beams from high-intensity laser-solid interactions. By using a 2D selective entrance pinhole array with different periods in orthogonal axes, the angular resolution along one dimension is improved by a factor of 6.7. This improvement provides the accessibility to detect the spatial fine structures of the proton energy spectrum.

  19. A two-dimensional wide-angle proton spectrometer with improved angular resolution

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Su [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Deng, Yanqing [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); College of Science, National University of Defense Technology, Changsha 410073 (China); Ge, Xulei [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Fang, Yuan; Wei, Wenqing; Gao, Jian; Liu, Feng; Chen, Min [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Liao, Guoqian; Li, Yutong [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Zhao, Li [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Ma, Yanyun [College of Science, National University of Defense Technology, Changsha 410073 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); and others

    2017-07-11

    We present an improvement design of a two-dimensional (2D) angular-resolved proton spectrometer for wide-angle measurement of proton beams from high-intensity laser-solid interactions. By using a 2D selective entrance pinhole array with different periods in orthogonal axes, the angular resolution along one dimension is improved by a factor of 6.7. This improvement provides the accessibility to detect the spatial fine structures of the proton energy spectrum.

  20. Spectroscopic Signatures and Structural Motifs of Dopamine: a Computational Study

    Science.gov (United States)

    Srivastava, Santosh Kumar; Singh, Vipin Bahadur

    2016-06-01

    Dopamine (DA) is an essential neurotransmitter in the central nervous system and it plays integral role in numerous brain functions including behaviour, cognition, emotion, working memory and associated learning. In the present work the conformational landscapes of neutral and protonated dopamine have been investigated in the gas phase and in aqueous solution by MP2 and DFT (M06-2X, ωB97X-D, B3LYP and B3LYP-D3) methods. Twenty lowest energy structures of neutral DA were subjected to geometry optimization and the gauche conformer, GIa, was found to be the lowest gas phase structure at the each level of theory in agreement with the experimental rotational spectroscopy. All folded gauche conformers (GI) where lone electron pair of the NH2 group is directed towards the π system of the aromatic ring ( 'non up' ) are found more stable in the gas phase. While in aqueous solution, all those gauche conformers (GII) where lone electron pair of the NH2 group is directed opposite from the π system of the aromatic ring ('up' structures) are stabilized significantly.Nine lowest energy structures, protonated at the amino group, are optimized at the same MP2/aug-cc-pVDZ level of theory. In the most stable gauche structures, g-1 and g+1, mainly electrostatic cation - π interaction is further stabilized by significant dispersion forces as predicted by the substantial differences between the DFT and dispersion corrected DFT-D3 calculations. In aqueous environment the intra-molecular cation- π distance in g-1 and g+1 isomers, slightly increases compared to the gas phase and the magnitude of the cation- π interaction is reduced relative to the gas phase, because solvation of the cation decreases its interaction energy with the π face of aromatic system. The IR intensity of the bound N-H+ stretching mode provides characteristic 'IR spectroscopic signatures' which can reflect the strength of cation- π interaction energy. The CC2 lowest lying S1 ( 1ππ* ) excited state of neutral

  1. Nuclear spectroscopic studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  2. In Vivo H MR spectroscopic imaging of human brain

    International Nuclear Information System (INIS)

    Choe, Bo Young; Suh, Tae Suk; Choi, Kyo Ho; Bahk, Yong Whee; Shinn, Kyung Sub

    1994-01-01

    To evaluate the spatial distribution of various proton metabolites in the human brain with use of water-suppressed in vivo H MR spectroscopic imaging (MRSI) technique. All of water-suppressed in vivo H MRSI were performed on 1.5 T whole-body MRI/MRS system using Stimulated Echo Acquisition Method (STEAM) Chemical Shift Imaging (CSI) pulse sequence. T1-weighted MR images were used for CSI field of view (FOV; 24 cm). Voxel size of 1.5 cm 3 was designated from the periphery of the brain which was divided by 1024 X 16 X 16 data points. Metabolite images of N-acetylaspartate (NAA), creatine/ phosphocreatine (Cr) + choline/phosphocholine (Cho), and complex of γ-aminobutyric acid (GABA) + glutamate (Glu) were obtained on the human brain. Our preliminary study suggests that in vivo H MRSI could provide the metabolite imaging to compensate for hypermetabolism on Positron Emission Tomography (PET) scans on the basis of the metabolic informations on brain tissues. The unique ability of in vivo H MRSI to offer noninvasive information about tissue biochemistry in disease states will stimulate on clinical research and disease diagnosis

  3. Phosphorus-31 spectroscopic imaging of the human liver

    International Nuclear Information System (INIS)

    Biran, M.; Raffard, G.; Canioni, P.; Kien, P.

    1993-01-01

    During the last decade, progresses in the field of nuclear magnetic resonance spectroscopy (M.R.S.), have allowed the metabolic studies of complex biological systems. Since the coming out of whole body magnets, clinical applications are possible; they utilize magnetic field gradients coupled with selective pulse sequences. Study of the phosphorylated metabolism of human liver can be performed with sequences as ISIS, FROGS or 1D-CSI. But they present some disadvantages (for instance contamination by phosphocreatine from muscle). In the present work, we have studied the human liver in vivo by 31 P spectroscopic imaging. Several spectra could be acquired with only one acquisition. This study has needed the building of radiofrequency coils (surface coils), specially designed for liver observation (15 cm diameter 31 P coil and 19 cm diameter proton coil, both transmitter and receiver coils). Preliminary studies have been done on a phantom followed by in vivo measurements on healthy subject livers. We have obtained localized 31 P N.M.R. spectra corresponding to different voxels within the hepatic tissue. The conditions of acquisition of spectra and the problems related to the saturation of phosphorylated metabolite signals (in particular phosphodiesters) are discussed. (author). 5 figs., 15 refs

  4. Two proton decay in 12O

    International Nuclear Information System (INIS)

    Kumawat, M.; Singh, U.K.; Jain, S.K.; Saxena, G.; Kaushik, M.; Aggarwal, Mamta

    2017-01-01

    Two-proton radioactivity was observed experimentally in the decay of 45 Fe, 54 Zn and 48 Ni. From then many theoretical studies of one and two-proton radioactivity have been carried out within the framework of different models including RMF+BCS approach for medium mass region. Towards light mass region proton-proton correlations were observed in two-proton decay of 19 Mg and 16 Ne. Recently, different mechanism of two-proton emission from proton-rich nuclei 23 Al and 22 Mg has been investigated and transition from direct to sequential two-proton decay in sd shell nuclei is observed. Encouraged with these recent studies of two proton emission in light mass nuclei, we have applied our RMF+BCS approach for the study of two proton emission in light mass region and in this paper we present our result of two proton emission in 12 O

  5. Measurement of conversion electrons with the $^{208}Pb(p,n)^{208}Bi$ reaction and derivation of the shell model proton neutron hole interaction from the properties of $^{208}Bi$

    CERN Document Server

    Maier, K H; Dracoulis, G D; Boutachkov, P; Aprahamian, A; Byrne, A P; Davidson, P M; Lane, G L; Marie-Jeanne, Mélanie; Nieminen, P; Watanabe, H

    2007-01-01

    Conversion electrons from 208Bi have been measured using singles and coincidence techniques with the 208Pb(p,n)208Bi reaction at 9 MeV. The new information on multipolarities and spins complements that available from recent gamma-gamma-coincidence studies with the same reaction [Boutachkov et al., Nucl. Phys. A768, 22 (2006)]. The results on electromagnetic decays taken together with information on spectroscopic factors from earlier single-particle transfer reaction measurements represent an extensive data set on the properties of the one-proton one-neutron-hole states below 3 MeV, a spectrum which is virtually complete. Comparison of the experimental observables, namely, energies, spectroscopic factors, and gamma-branching ratios, with those calculated within the shell model allows extraction of the matrix elements of the shell model residual interaction. More than 100 diagonal and nondiagonal elements can be determined in this way, through a least squares fit to the experimental data. This adjustment of the...

  6. High intensity proton accelerator and its application (Proton Engineering Center)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, Spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  7. The underlying event in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, F.

    2009-05-15

    In this thesis, studies of the underlying event in proton-proton collisions at a center-of-mass energy of {radical}(s) = 10 TeV are presented. Crucial ingredient to underlying event models are multiple parton-parton scatters in single proton-proton collisions. The feasibility of measuring the underlying event was investigated with the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) using charged particles and charged-particle jets. Systematic uncertainties of the underlying event measurement due to detector misalignment and imperfect track reconstruction are found to be negligible after {integral}Ldt=1 pb{sup -1} of data are available. Different model predictions are compared with each other using fully simulated Monte Carlo samples. It is found, that distinct models differ strongly enough to tell them apart with early data. (orig.)

  8. Proton-proton elastic scattering measurements at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Bagdasarian, Zara [Forschungszentrum Juelich, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia); Collaboration: ANKE-Collaboration

    2014-07-01

    To construct the reliable phase shift analysis (PSA) that can successfully describe the nucleon-nucleon (NN) interaction it is necessary to measure variety of experimental observables for both proton-proton (pp) and neutron-proton (np) elastic scattering. The polarized beams and targets at COSY-ANKE facility allow a substantial contribution to the existing database. The experiment was carried out in April 2013 at ANKE using a transversely polarized proton beam incident on an unpolarized hydrogen cluster target. Six beam energies of T{sub p}=0.8,1.6,1.8,2.0,2.2,2.4 GeV were used. The aim of this talk is to present the preliminary results for the analyzing power (A{sub y}) for the pp elastic scattering in the so-far unexplored 5 <θ{sub cm}<30 angular range. Our measurements are also compared to the world data and current partial wave solutions.

  9. Where is the proton's spin?

    International Nuclear Information System (INIS)

    Close, F.E.

    1988-01-01

    There has been much recent excitement arising from the claim by the EMC collaboration that none of the proton's spin is carried by quarks. There are many textbooks, including those written by some members of this audience, which assert that the proton's spin is carried by quarks. I will review the history of deep inelastic scattering of polarized leptons from polarized protons, culminating in this most recent dramatic claim. I will show that, for the last decade, data have appeared consistent with predictions of the quark model and highlight what the new and potentially exciting data are. I will conclude with suggestions for the future. 33 refs

  10. Acceleration of polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1998-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian snakes are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  11. Where is the proton's spin?

    International Nuclear Information System (INIS)

    Close, F.E.

    1989-01-01

    There has been much recent excitement arising from the claim by the EMC collaboration that none of the proton's spin is carried by quarks. There are many textbooks, including those written by some members of this audience, which assert that the proton's spin is carried by quarks. I will review the history of deep inelastic scattering of polarized leptons from polarized protons, culminating in this most recent dramatic claim. I will show that, for the last decade, data have appeared consistent with predictions of the quark model and highlight what the new and potentially exciting data are. I will conclude with suggestions for the future

  12. Measurement of proton autoneutralization potential

    International Nuclear Information System (INIS)

    Garcia, M.

    1984-09-01

    A proton space charge having multi-MeV kinetic energy was injected through a thin ground plane to extract electrons and produce a time-dependent autoneutralization space potential. An electon-emitting floating-potential resistive divider was used to measure the space potential during 20 ns of the proton current pulse. During this time, proton kinetic energy fell from 10.6 MeV to 8.5 MeV and thus the space potential (taken as 1.09 x the floating potential) fell from 5.8 kV to 4.6 kV

  13. Scattering of intermediate energy protons

    International Nuclear Information System (INIS)

    Chaumeaux, Alain.

    1980-06-01

    The scattering of 1 GeV protons appears to be a powerful means of investigating nuclear matter. We worked with SPESI and the formalism of Kerman-Mc Manus and Thaler. The amplitude of nucleon-nucleon scattering was studied as were the aspects of 1 GeV proton scattering (multiple scattering, absorption, spin-orbit coupling, N-N amplitude, KMT-Glauber comparison, second order effects). The results of proton scattering on 16 O, the isotopes of calcium, 58 Ni, 90 Zr and 208 Pb are given [fr

  14. Fractionated proton beam irradiation of pituitary adenomas

    International Nuclear Information System (INIS)

    Ronson, Brian B.; Schulte, Reinhard W.; Han, Khanh P.; Loredo, Lilia N.; Slater, James M.; Slater, Jerry D.

    2006-01-01

    Purpose: Various radiation techniques and modalities have been used to treat pituitary adenomas. This report details our experience with proton treatment of these tumors. Methods and Materials: Forty-seven patients with pituitary adenomas treated with protons, who had at least 6 months of follow-up, were included in this analysis. Forty-two patients underwent a prior surgical resection; 5 were treated with primary radiation. Approximately half the tumors were functional. The median dose was 54 cobalt-gray equivalent. Results: Tumor stabilization occurred in all 41 patients available for follow-up imaging; 10 patients had no residual tumor, and 3 had greater than 50% reduction in tumor size. Seventeen patients with functional adenomas had normalized or decreased hormone levels; progression occurred in 3 patients. Six patients have died; 2 deaths were attributed to functional progression. Complications included temporal lobe necrosis in 1 patient, new significant visual deficits in 3 patients, and incident hypopituitarism in 11 patients. Conclusion: Fractionated conformal proton-beam irradiation achieved effective radiologic, endocrinological, and symptomatic control of pituitary adenomas. Significant morbidity was uncommon, with the exception of postradiation hypopituitarism, which we attribute in part to concomitant risk factors for hypopituitarism present in our patient population

  15. Aspects of the fundamental theory of proton-proton scattering

    CERN Document Server

    Martin, A

    1973-01-01

    After recalling the existence of a high energy bound on proton-proton total cross-sections, the author discusses the various phenomena which occur when these cross-sections rise and especially when they have the qualitative behaviour of the bound: rising elastic cross- sections, shrinking diffraction peak, validity of the Pomeranchuk theorem for total and elastic cross-sections, existence of a positive real part of the forward amplitude at high energies. (16 refs).

  16. Proton-proton elastic scattering at ultrahigh energies

    International Nuclear Information System (INIS)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem

    1981-01-01

    Recent experimental results on proton-proton elastic scattering at high energies are discussed in the context of the comments by Chou and Yang. There does not appear to be any tendency that the experimental results would agree with the predictions of the geometrical model even at ultrahigh energies. The angular distribution structure as described by using the dipole pomeron is consistent with the experimental data at presently available high energies and predicts results quite different from the geometrical model. (author)

  17. Proton-proton elastic scattering at ultrahigh energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)

    1981-05-30

    Recent experimental results on proton-proton elastic scattering at high energies are discussed in the context of the comments by Chou and Yang. There does not appear to be any tendency that the experimental results would agree with the predictions of the geometrical model even at ultrahigh energies. The angular distribution structure as described by using the dipole pomeron is consistent with the experimental data at presently available high energies and predicts results quite different from the geometrical model.

  18. Laser-accelerated proton beams as a new particle source

    Energy Technology Data Exchange (ETDEWEB)

    Nuernberg, Frank

    2010-11-15

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. In this work, an experimental method to fully reconstruct laser-accelerated proton beam parameters, called radiochromic film imaging spectroscopy (RIS), was developed. Since the proton beam expansion is a plasma expansion with accompanying electrons, a low-energy electron spectrometer was developed, built and tested to study the electron distribution matching to the proton beam energy distribution. Two experiments were carried out at the VULCAN Petawatt laser with the aim of showing dynamic control and enhancement of proton acceleration using multiple or defocused laser pulses. Irradiating the target with a long pulse, low-intensity laser (10{sup 12} W/cm{sup 2}) prior to the main pulse ({proportional_to}ns), an optimum pre-plasma density scale length of 60 {mu}m is generated leading to an enhancement of the maximum proton energy ({proportional_to}25%), the proton flux (factor of 3) and the beam uniformity. Proton beams were generated more efficiently than previously by driving thinner target foils at a lower intensity over a large area. The optimum condition was a 2 {mu}m foil irradiated with an intensity of 10{sup 19} W/cm{sup 2} onto a 60 {mu}m spot. Laser to proton beam efficiencies of 7.8% have been achieved (2.2% before) - one of the highest conversion efficiencies ever achieved. In the frame of this work, two separate experiments at the TRIDENT laser system have shown that these laser-accelerated proton beams, with their high number of particles in a short pulse duration, are well-suited for creating isochorically heated matter in extreme conditions. Besides the manipulation of the proton beam parameters directly during the generation, the primary aim of this thesis was the capture, control and transport of laser-accelerated proton beams by a solenoidal magnetic field lense for further purpose. In a joint project proposal, the laser and

  19. Laser-accelerated proton beams as a new particle source

    International Nuclear Information System (INIS)

    Nuernberg, Frank

    2010-01-01

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. In this work, an experimental method to fully reconstruct laser-accelerated proton beam parameters, called radiochromic film imaging spectroscopy (RIS), was developed. Since the proton beam expansion is a plasma expansion with accompanying electrons, a low-energy electron spectrometer was developed, built and tested to study the electron distribution matching to the proton beam energy distribution. Two experiments were carried out at the VULCAN Petawatt laser with the aim of showing dynamic control and enhancement of proton acceleration using multiple or defocused laser pulses. Irradiating the target with a long pulse, low-intensity laser (10 12 W/cm 2 ) prior to the main pulse (∝ns), an optimum pre-plasma density scale length of 60 μm is generated leading to an enhancement of the maximum proton energy (∝25%), the proton flux (factor of 3) and the beam uniformity. Proton beams were generated more efficiently than previously by driving thinner target foils at a lower intensity over a large area. The optimum condition was a 2 μm foil irradiated with an intensity of 10 19 W/cm 2 onto a 60 μm spot. Laser to proton beam efficiencies of 7.8% have been achieved (2.2% before) - one of the highest conversion efficiencies ever achieved. In the frame of this work, two separate experiments at the TRIDENT laser system have shown that these laser-accelerated proton beams, with their high number of particles in a short pulse duration, are well-suited for creating isochorically heated matter in extreme conditions. Besides the manipulation of the proton beam parameters directly during the generation, the primary aim of this thesis was the capture, control and transport of laser-accelerated proton beams by a solenoidal magnetic field lense for further purpose. In a joint project proposal, the laser and plasma physics group of the Technische Universitat

  20. Development of a high intensity proton accelerator

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu; Kusano, Joichi; Hasegawa, Kazuo; Ito, Nobuo; Oguri, Hidetomo; Touchi, Yutaka; Mukugi, Ken; Ino, Hiroshi

    1997-01-01

    The high-intensity proton linear accelerator with a beam power of 15 MW has been proposed for various engineering tests for the nuclear waste transmutation system as one of the research plans in the Neutron Science Research Program (NSRP) in JAERI. High intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beam generated from the proton spallation reaction will be utilized at these facilities in each research field. The R and D work has been carried out for the components of the front-end part of the proton accelerator; ion source, RFQ, DTL and RF source. In the beam test, the current of 70 mA with a duty factor of 7% has been accelerated from the RFQ at the energy of 2 MeV. A hot test model of the DTL for the high power and high duty operation was fabricated and tested. For the high energy portion above 100 MeV, superconducting accelerating cavity is studied as a main option. The superconducting linac is expected to have several favourable characteristics for high intensity accelerator such as short accelerator length, large bore radius resulting in low beam losses and cost effectiveness for construction and operation. A test stand with equipment of cryogenics system, vacuum system, RF system and cavity processing and cleaning is prepared to test the physics issues and fabrication process. The proposed plan for accelerator design and construction will compose of two consecutive stages. The first stage will be completed in about 7 years with the beam power of 1.5 MW. As the second stage gradual upgrading of the beam power will be made up to 15 MW. 7 refs., 3 figs., 4 tabs

  1. Development of a THz spectroscopic imaging system

    International Nuclear Information System (INIS)

    Usami, M; Iwamoto, T; Fukasawa, R; Tani, M; Watanabe, M; Sakai, K

    2002-01-01

    We have developed a real-time THz imaging system based on the two-dimensional (2D) electro-optic (EO) sampling technique. Employing the 2D EO-sampling technique, we can obtain THz images using a CCD camera at a video rate of up to 30 frames per second. A spatial resolution of 1.4 mm was achieved. This resolution was reasonably close to the theoretical limit determined by diffraction. We observed not only static objects but also moving ones. To acquire spectroscopic information, time-domain images were collected. By processing these images on a computer, we can obtain spectroscopic images. Spectroscopy for silicon wafers was demonstrated

  2. Spectroscopic databases - A tool for structure elucidation

    Energy Technology Data Exchange (ETDEWEB)

    Luksch, P [Fachinformationszentrum Karlsruhe, Gesellschaft fuer Wissenschaftlich-Technische Information mbH, Eggenstein-Leopoldshafen (Germany)

    1990-05-01

    Spectroscopic databases have developed to useful tools in the process of structure elucidation. Besides the conventional library searches, new intelligent programs have been added, that are able to predict structural features from measured spectra or to simulate for a given structure. The example of the C13NMR/IR database developed at BASF and available on STN is used to illustrate the present capabilities of online database. New developments in the field of spectrum simulation and methods for the prediction of complete structures from spectroscopic information are reviewed. (author). 10 refs, 5 figs.

  3. Design of the WNR proton storage ring lattice

    International Nuclear Information System (INIS)

    Cooper, R.K.; Lawrence, G.P.

    1977-01-01

    The Weapons Neutron Research Facility, now approaching operational status, is a pulsed neutron time-of-flight facility utilizing bursts of 800 MeV protons from the LAMPF linac. The protons strike a heavy metal target and produce a broad energy spectrum of neutrons via spallation reactions. Ideally the width of the proton pulse should approach a delta function in order to achieve good neutron energy resolution. Practically, the shortest pulse that can be employed in the facility is that produced by a single LAMPF micropulse, which, at design current, contains approximately 5 x 10 8 protons. With the addition of a storage ring capable of accumulating many micropulses, this intensity can be increased, as can the repetition rate. Moreover, by storing an unbunched beam, a low repetition rate, very intense proton burst can be generated. This latter mode of usage allows neutron time-of-flight studies using large neutron targets, for which pulse lengths of the order of several hundred nanoseconds are suitable. The primary goals of the ring are reported: (i) to increase the intensity of the burst to 10 11 protons while retaining a short pulse length; (ii) to increase the repetition rate of the bursts by at least a factor of six; and (iii) to store as many particles as possible, uniformly distributed around the ring

  4. Trapped Proton Environment in Medium-Earth Orbit (2000-2010)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Friedel, Reinhard Hans [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kippen, Richard Marc [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-31

    This report describes the method used to derive fluxes of the trapped proton belt along the GPS orbit (i.e., a Medium-Earth Orbit) during 2000 – 2010, a period almost covering a solar cycle. This method utilizes a newly developed empirical proton radiation-belt model, with the model output scaled by GPS in-situ measurements, to generate proton fluxes that cover a wide range of energies (50keV- 6MeV) and keep temporal features as well. The new proton radiation-belt model is developed based upon CEPPAD proton measurements from the Polar mission (1996 – 2007). Comparing to the de-facto standard empirical model of AP8, this model is not only based upon a new data set representative of the proton belt during the same period covered by GPS, but can also provide statistical information of flux values such as worst cases and occurrence percentiles instead of solely the mean values. The comparison shows quite different results from the two models and suggests that the commonly accepted error factor of 2 on the AP8 flux output over-simplifies and thus underestimates variations of the proton belt. Output fluxes from this new model along the GPS orbit are further scaled by the ns41 in-situ data so as to reflect the dynamic nature of protons in the outer radiation belt at geomagnetically active times. Derived daily proton fluxes along the GPS ns41 orbit, whose data files are delivered along with this report, are depicted to illustrate the trapped proton environment in the Medium-Earth Orbit. Uncertainties on those daily proton fluxes from two sources are evaluated: One is from the new proton-belt model that has error factors < ~3; the other is from the in-situ measurements and the error factors could be ~ 5.

  5. Fast quantification of proton magnetic resonance spectroscopic imaging with artificial neural networks

    Science.gov (United States)

    Bhat, Himanshu; Sajja, Balasrinivasa Rao; Narayana, Ponnada A.

    2006-11-01

    Accurate quantification of the MRSI-observed regional distribution of metabolites involves relatively long processing times. This is particularly true in dealing with large amount of data that is typically acquired in multi-center clinical studies. To significantly shorten the processing time, an artificial neural network (ANN)-based approach was explored for quantifying the phase corrected (as opposed to magnitude) spectra. Specifically, in these studies radial basis function neural network (RBFNN) was used. This method was tested on simulated and normal human brain data acquired at 3T. The N-acetyl aspartate (NAA)/creatine (Cr), choline (Cho)/Cr, glutamate + glutamine (Glx)/Cr, and myo-inositol (mI)/Cr ratios in normal subjects were compared with the line fitting (LF) technique and jMRUI-AMARES analysis, and published values. The average NAA/Cr, Cho/Cr, Glx/Cr and mI/Cr ratios in normal controls were found to be 1.58 ± 0.13, 0.9 ± 0.08, 0.7 ± 0.17 and 0.42 ± 0.07, respectively. The corresponding ratios using the LF and jMRUI-AMARES methods were 1.6 ± 0.11, 0.95 ± 0.08, 0.78 ± 0.18, 0.49 ± 0.1 and 1.61 ± 0.15, 0.78 ± 0.07, 0.61 ± 0.18, 0.42 ± 0.13, respectively. These results agree with those published in literature. Bland-Altman analysis indicated an excellent agreement and minimal bias between the results obtained with RBFNN and other methods. The computational time for the current method was 15 s compared to approximately 10 min for the LF-based analysis.

  6. Special focus on cerebral myo-inositol in patients with hepatic encephalopathy : proton MR spectroscopic evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Choong Gon; Lee, Ho Kyu; Suh, Dae Chul; Lim, Tae Whan; Auh, Yong Ho; Lee Young Sang [Ulsan Univ. College of Medicine , Seoul (Korea, Republic of); Lee, Jung Hee [Asan Institute for Life Sciences, Seoul (Korea, Republic of)

    1996-08-01

    To determine whether or not cerebral myo-inositol/creatine-phos-phocreatine (MI/Cr) level can be used as a criterion of hepatic encephalopathy (HE). Single voxel stimulated echo sequence with short echo time (30ms) was applied to parietal white matter of 14 healthy control subjects, 11 patients with chronic viral hepatitis, 29 cirrhotic patients without HE, and 33 cirrhotic patients with HE. The metabolite ratios of N-acetylaspartate (NAA), choline containing compounds (Cho), and myo-Inositol (MI) were calculated using creatine/phosphocreatine (Cr) as an internal reference. Clinical data including modified Child-Pugh score, estimated serum osmolarity, and grade of HE, were obtained at the day of MR spectroscopy. MI/Cr was 34% lower in cirrhotic patients with HE than in control subjects. It was reduced below two standard deviation from normal in 17 of 33 cirrhotic patients with HE (52%). MI/Cr did not correlate with grade of HE (r=-0.55, p=0.00). In the analysis of Child class C patients, there was no significant difference of MI/Cr between cirrhotic patients with HE and those without HE (0.83 {+-} 0.11, n= 29 vs. 0.39 {+-} 0.11, n= 15, p= 0.59, respectively). A reduction of cerebral MI/Cr cannot be used as a diagnostic criterion of HE.

  7. Impedance Spectroscopic Investigation of Proton Conductivity in Nafion Using Transient Electrochemical Atomic Force Microscopy (AFM

    Directory of Open Access Journals (Sweden)

    Emil Roduner

    2012-06-01

    Full Text Available Spatially resolved impedance spectroscopy of a Nafion polyelectrolyte membrane is performed employing a conductive and Pt-coated tip of an atomic force microscope as a point-like contact and electrode. The experiment is conducted by perturbing the system by a rectangular voltage step and measuring the incurred current, followed by Fourier transformation and plotting the impedance against the frequency in a conventional Bode diagram. To test the potential and limitations of this novel method, we present a feasibility study using an identical hydrogen atmosphere at a well-defined relative humidity on both sides of the membrane. It is demonstrated that good quality impedance spectra are obtained in a frequency range of 0.2–1,000 Hz. The extracted polarization curves exhibit a maximum current which cannot be explained by typical diffusion effects. Simulation based on equivalent circuits requires a Nernst element for restricted diffusion in the membrane which suggests that this effect is based on the potential dependence of the electrolyte resistance in the high overpotential region.

  8. Proton radiotherapy: some perspectives

    International Nuclear Information System (INIS)

    Kirn, T.F.

    1988-01-01

    A news article highlighting the use of protons in radiotherapy is presented. Development of stereotaxic radiosurgery is the result of contributions from physicists, radiologists, and neurosurgeons, says Jacob Fabrikant, MD, head of the Arteriovenous Malformation Program at the University of California's Lawrence Berkeley laboratory. It also appears to have been the product of Harvard University (Boston) and University of California (Berkeley) cooperation. Robert R. Wilson, PhD, now a professor emeritus at Cornell University, Ithaca, NY, is credited with proposing the medical use of charged particles. Wilson, a physicist, says that the idea occurred to him while he was at Berkeley in the mid-1940's, designing the cyclotron to be built at Harvard. Although he was aware of their work, he does not remember discussing it with Robert Stone, MD, or John Lawrence, MD, who only a few years earlier at Berkeley had begun the initial medical experiments with neutrons. Wilson says that it simply occurred to him that in certain instances charged particles had two advantages over x-rays

  9. Polarized protons at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1990-12-01

    The Physics case is presented for the use of polarized protons at RHIC for one or two months each year. This would provide a facility with polarizations of approx-gt 50% high luminosity ∼2.0 x 10 32 cm -2 s -1 , the possibility of both longitudinal and transverse polarization at the interaction regions, and frequent polarization reversal for control of systematic errors. The annual integrated luminosity for such running (∼10 6 sec per year) would be ∫ Ldt = 2 x 10 38 cm -2 -- roughly 20 times the total luminosity integrated in ∼ 10 years of operation of the CERN Collider (∼10 inverse picobarns, 10 37 cm -2 ). This facility would be unique in the ability to perform parity-violating measurements and polarization test of QCD. Also, the existence of p-p collisions in a new energy range would permit the study of ''classical'' reactions like the total cross section and elastic scattering, etc., and serve as a complement to measurements from p-bar p colliders. 11 refs

  10. Proton-proton and deuteron-deuteron correlations in interactions of relativistic helium nuclei with protons

    International Nuclear Information System (INIS)

    Galazka-Friedman, J.; Sobczak, T.; Stepaniak, J.; Zielinski, I.P.; Bano, M.; Hlavacova, J.; Martinska, G.; Patocka, J.; Seman, M.; Sandor, L.; Urban, J.

    1993-01-01

    The reactions 4 Hep→pp+X, 3 Hep→pp+X and 4 Hep→ddp have been investigated and the correlation function has been measured for protons and deuterons with small relative momenta. Strong positive correlation has been observed for protons related mainly to the final state interactions in 1 S 0 state. The root mean square radius of the proton source calculated from the correlation function has been found to be equal to (1.7±0.3) fm and (2.1±0.3) fm for 4 He and 3 He respectively. It agrees with the known radii of these nuclei. (orig.)

  11. Dynamics of Anti-Proton -- Protons and Anti-Proton -- Nucleus Reactions

    CERN Document Server

    Galoyan, A; Uzhinsky, V

    2016-01-01

    A short review of simulation results of anti-proton-proton and anti-proton-nucleus interactions within the framework of Geant4 FTF (Fritiof) model is presented. The model uses the main assumptions of the Quark-Gluon-String Model or Dual Parton Model. The model assumes production and fragmentation of quark-anti-quark and diquark-anti-diquark strings in the mentioned interactions. Key ingredients of the model are cross sections of string creation processes and an usage of the LUND string fragmentation algorithm. They allow one to satisfactory describe a large set of experimental data, especially, a strange particle production, Lambda hyperons and K mesons.

  12. Parametric Model for Astrophysical Proton-Proton Interactions and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Niklas [KTH Royal Institute of Technology, Stockholm (Sweden)

    2007-01-01

    Observations of gamma-rays have been made from celestial sources such as active galaxies, gamma-ray bursts and supernova remnants as well as the Galactic ridge. The study of gamma rays can provide information about production mechanisms and cosmic-ray acceleration. In the high-energy regime, one of the dominant mechanisms for gamma-ray production is the decay of neutral pions produced in interactions of ultra-relativistic cosmic-ray nuclei and interstellar matter. Presented here is a parametric model for calculations of inclusive cross sections and transverse momentum distributions for secondary particles--gamma rays, e±, ve, $\\bar{v}$e, vμ and $\\bar{μ}$e--produced in proton-proton interactions. This parametric model is derived on the proton-proton interaction model proposed by Kamae et al.; it includes the diffraction dissociation process, Feynman-scaling violation and the logarithmically rising inelastic proton-proton cross section. To improve fidelity to experimental data for lower energies, two baryon resonance excitation processes were added; one representing the Δ(1232) and the other multiple resonances with masses around 1600 MeV/c2. The model predicts the power-law spectral index for all secondary particle to be about 0.05 lower in absolute value than that of the incident proton and their inclusive cross sections to be larger than those predicted by previous models based on the Feynman-scaling hypothesis. The applications of the presented model in astrophysics are plentiful. It has been implemented into the Galprop code to calculate the contribution due to pion decays in the Galactic plane. The model has also been used to estimate the cosmic-ray flux in the Large Magellanic Cloud based on HI, CO and gamma-ray observations. The transverse momentum distributions enable calculations when the proton distribution is anisotropic. It is shown that the gamma-ray spectrum and flux due to a

  13. The two-potential approach to one-proton emission

    International Nuclear Information System (INIS)

    Al-Khalili, J. S.; Cannon, A. J.; Stevenson, P. D.

    2007-01-01

    Proton decay half-lives can be calculated reliably using the idea of simple tunnelling probabilities within a WKB model. Just as simple, but much more intuitive is the approach of Gurvitz and Kalbermann of splitting the tunnelling potential into internal (bound state) and external (scattering state) parts. This is referred to as the Two-Potential approach to the tunnelling problem. For spherical nuclei there is not much to choose between TPA and WKB, but to extract reliable spectroscopic information from the dripline nuclei of interest, these methods must be extended to deformed potentials. We outline our approach for the case of spherical nuclei starting from a mean field HF potential using the Skyrme interaction and outline a programme of work leading to an extended 3-D TPA model

  14. Proton beam monitor chamber calibration

    International Nuclear Information System (INIS)

    Gomà, C; Meer, D; Safai, S; Lorentini, S

    2014-01-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences—of the order of 3%—were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth—i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers—rather than cylindrical chambers—for the reference dosimetry of pseudo-monoenergetic proton beams. (paper)

  15. Spectroscopic and imaging diagnostics of pulsed laser deposition laser plasmas

    International Nuclear Information System (INIS)

    Thareja, Raj K.

    2002-01-01

    An overview of laser spectroscopic techniques used in the diagnostics of laser ablated plumes used for thin film deposition is given. An emerging laser spectroscopic imaging technique for the laser ablation material processing is discussed. (author)

  16. When the proton becomes larger

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The TOTEM experiment at the LHC has just confirmed that, at high energy, protons behave as if they were becoming larger. In more technical terms, their total cross-section – a parameter linked to the proton-proton interaction probability – increases with energy. This phenomenon, expected from previous measurements performed at much lower energy, has now been confirmed for the first time at the LHC’s unprecedented energy.   One arm of a TOTEM T2 detector during its installation at interaction point 5. A composite particle like the proton is a complex system that in no way resembles a static Lego construction: sub-components move inside and interactions keep the whole thing together, but in a very dynamic way. This partly explains why even the very common proton can still be hiding secrets about its nature, decades after its discovery. One way of studying the inner properties of protons is to observe how they interact with each other, which, in technical terms, i...

  17. Porphyrin Protonation Studied by Magnetic Circular Dichroism

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, Petr; Andrushchenko, Valery; Ruud, K.; Bouř, Petr

    2012-01-01

    Roč. 116, č. 1 (2012), s. 778-783 ISSN 1089-5639 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA203/09/2037; GA ČR GAP208/10/0559; GA MŠk(CZ) LH11033 Institutional research plan: CEZ:AV0Z40550506 Keywords : magnetic circular dichroism ( MCD ) * TPPS * spectra simulations * porphyrin protonation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.771, year: 2012

  18. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Kyle S.; Ahn, Christopher P.; Bolton, Adam S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schlegel, David J.; Bailey, Stephen [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Anderson, Scott F.; Bhardwaj, Vaishali [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Aubourg, Eric; Bautista, Julian E. [APC, University of Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite (France); Barkhouser, Robert H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Beifiori, Alessandra [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Berlind, Andreas A. [Department of Physics and Astronomy, Vanderbilt University, VU Station 1807, Nashville, TN 37235 (United States); Bizyaev, Dmitry; Brewington, Howard [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Blake, Cullen H. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Blomqvist, Michael [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Borde, Arnaud [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette (France); Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Brandt, W. N., E-mail: kdawson@astro.utah.edu [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); and others

    2013-01-01

    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg{sup 2} to measure BAO to redshifts z < 0.7. Observations of neutral hydrogen in the Ly{alpha} forest in more than 150,000 quasar spectra (g < 22) will constrain BAO over the redshift range 2.15 < z < 3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Ly{alpha} forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance d{sub A} to an accuracy of 1.0% at redshifts z = 0.3 and z = 0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Ly{alpha} forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D{sub A} (z) and H {sup -1}(z) parameters to an accuracy of 1.9% at z {approx} 2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.

  19. Spectroscopic, thermal and biological studies of coordination

    Indian Academy of Sciences (India)

    Spectroscopic, thermal and biological studies of coordination compounds of sulfasalazine drug: Mn(II), Hg(II), Cr(III), ZrO(II), VO(II) and Y(III) transition metal ... The thermal decomposition of the complexes as well as thermodynamic parameters ( *}, *, * and *) were estimated using Coats–Redfern and ...

  20. 8th Czechoslovak spectroscopic conference. Abstracts

    International Nuclear Information System (INIS)

    1988-01-01

    Volume 3 of the conference proceedings contains abstracts of 17 invited papers, 101 poster presentations and 7 papers of instrument manufacturers, devoted to special spectroscopic techniques including X-ray microanalysis, X-ray spectral analysis, Moessbauer spectrometry, mass spectrometry, instrumental activation analysis and other instrumental radioanalytical methods, electron spectrometry, and techniques of environmental analysis. Sixty abstracts were inputted in INIS. (A.K.)

  1. Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...

    Indian Academy of Sciences (India)

    ian velocity curve that does justice to the measurements, but it cannot be expected to have much predictive power. Key words. Stars: late-type—stars: radial velocities—spectroscopic binaries—orbits. 0. Preamble. The 'Redman K stars' are a lot of seventh-magnitude K stars whose radial velocities were first observed by ...

  2. The VANDELS ESO public spectroscopic survey

    Science.gov (United States)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Fèvre, O. Le; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 motivation, survey design and target selection.

  3. The Gaia-ESO Public Spectroscopic Survey

    DEFF Research Database (Denmark)

    Gilmore, G.; Randich, S.; Asplund, M.

    2012-01-01

    The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically covering all the major components of the Milky Way. This survey will provide the first homogeneous o...

  4. Intra- und intermolecular hydrogen bonds. Spectroscopic, quantum chemical and molecular dynamics studies

    International Nuclear Information System (INIS)

    Simperler, A.

    1999-03-01

    Intra- and intermolecular H-bonds have been investigated with spectroscopic, quantum chemical, and molecular dynamics methods. The work is divided into the following three parts: 1. Intramolecular interactions in ortho-substituted phenols. Theoretical and experimental data that characterizes the intramolecular hydrogen bonds in 48 different o-substituted phenols are discussed. The study covers various kinds of O-H ... Y -type interactions (Y= N, O, S, F, Cl, Br, I, C=C, C=-C, and C-=N). The bond strength sequences for several series of systematically related compounds as obtained from IR spectroscopy data (i.e., v(OH) stretching frequencies) are discussed and reproduced with several theoretical methods (B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B3LYP/6-31++G(d,p), B3LYP/DZVP, MP2/6-31G(d,p), and MP2/6-31++G(d,p) levels of theory). The experimentally determined sequences are interpreted in terms of the intrinsic properties of the molecules: hydrogen bond distances, Mulliken partial charges, van der Waals radii, and electron densities of the Y-proton acceptors. 2. Competitive hydrogen bonds and conformational equilibria in 2,6-disubstituted phenols containing two different carbonyl substituents. The rotational isomers of ten unsymmetrical 2,6-disubstituted phenols as obtained by combinations of five different carbonyl substituents (COOH, COOCH 3 , CHO, COCH 3 , and CONH 2 ) have been theoretically investigated at the B3LYP/6-31G(d,p) level of theory. The relative stability of four to five conformers of each compound were determined by full geometry optimization for free molecules as well as for molecules in reaction fields with dielectric constants up to ε=37.5. A comparison with IR spectroscopic data of available compounds revealed excellent agreement with the theoretically predicted stability sequences and conformational equilibria. The stability of a conformer could be interpreted to be governed by the following two contributions: (i) an attractive hydrogen bond

  5. Heteronuclear proton assisted recoupling

    Science.gov (United States)

    De Paëpe, Gaël; Lewandowski, Józef R.; Loquet, Antoine; Eddy, Matt; Megy, Simon; Böckmann, Anja; Griffin, Robert G.

    2011-03-01

    We describe a theoretical framework for understanding the heteronuclear version of the third spin assisted recoupling polarization transfer mechanism and demonstrate its potential for detecting long-distance intramolecular and intermolecular 15N-13C contacts in biomolecular systems. The pulse sequence, proton assisted insensitive nuclei cross polarization (PAIN-CP) relies on a cross term between 1H-15N and 1H-13C dipolar couplings to mediate zero- and/or double-quantum 15N-13C recoupling. In particular, using average Hamiltonian theory we derive effective Hamiltonians for PAIN-CP and show that the transfer is mediated by trilinear terms of the form N±C∓Hz (ZQ) or N±C±Hz (DQ) depending on the rf field strengths employed. We use analytical and numerical simulations to explain the structure of the PAIN-CP optimization maps and to delineate the appropriate matching conditions. We also detail the dependence of the PAIN-CP polarization transfer with respect to local molecular geometry and explain the observed reduction in dipolar truncation. In addition, we demonstrate the utility of PAIN-CP in structural studies with 15N-13C spectra of two uniformly 13C,15N labeled model microcrystalline proteins—GB1, a 56 amino acid peptide, and Crh, a 85 amino acid domain swapped dimer (MW = 2 × 10.4 kDa). The spectra acquired at high magic angle spinning frequencies (ωr/2π > 20 kHz) and magnetic fields (ω0H/2π = 700-900 MHz) using moderate rf fields, yield multiple long-distance intramonomer and intermonomer 15N-13C contacts. We use these distance restraints, in combination with the available x-ray structure as a homology model, to perform a calculation of the monomer subunit of the Crh protein.

  6. Delayed Proton Emission in the A=70 Region, a Strobe for Level Density and Particle Width

    CERN Multimedia

    2002-01-01

    The delayed particle emission, which is a characteristic signature of the most exotic nuclei decay, provides a wide variety of spectroscopic information among which level density, and gives in some cases access to selected microscopic structures. In regard to these two aspects the $\\beta^+$-EC delayed proton emission in the A=70 neutron deficient mass region is of special interest to be investigated. Indeed, in this area located close to the proton drip line and along the N=Z line, the delayed proton emission constitutes an access to level density in the Q$_{EC}$-S$_p$ window of the emitting nucleus. Moreover, the unbound states populated by the EC process are expected to exhibit lifetimes in the vicinity of the K electronic shell filling time ($\\tau\\!\\sim\\!2\\times10^{-16}$s) and so the particle widths can be reached via proton X-ray coincidence measurements (PXCT). From theoretical approaches strongly deformed low-spin proton unbound levels which may be populated in the T$_Z$ = 1/2 precursors decay are predi...

  7. Sparse-view proton computed tomography using modulated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiseoc; Kim, Changhwan; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejon 305-701 (Korea, Republic of); Min, Byungjun [Department of Radiation Oncology, Kangbuk Samsung Hospital, 110–746 (Korea, Republic of); Kwak, Jungwon [Department of Radiation Oncology, Asan Medical Center, 138–736 (Korea, Republic of); Park, Seyjoon; Lee, Se Byeong [Proton Therapy Center, National Cancer Center, 410–769 (Korea, Republic of); Park, Sungyong [Proton Therapy Center, McLaren Cancer Institute, Flint, Michigan 48532 (United States)

    2015-02-15

    Purpose: Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Methods: Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method–projection onto convex sets (SM-POCS), superiorization method–expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Results: Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed

  8. Delayed protons and properties of proton-rich nuclei

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.

    1976-01-01

    The object of the investigation is to study the properties of proton-rich nuclei. The emphasis in the proposed survey is made on investigations in the range of Z > 50. Measurement of the total energy in emission of delayed protons (DP) enables one to determine the difference between the masses of initial and final isotopes. The statistical model of the DP emission is used for describing the proton spectrum. A comparison of the DP experimental and theoretical spectra shows that the presence of local resonances in the strength functions of the β dacay is rather a rule than an exception. Studies into the fine structure of the proton spectra supply information of the density of nuclei considerably removed from the β-stability line at the excitation energies of 3-7 MeV. The aproaches for retrieval of nuclear information with the aid of proton radiators developed so far can serve as a good basis for systematic investigation over a wide range of A and Z

  9. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Mamta [Nuclear Science Centre, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India)

    2006-07-15

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line.

  10. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2006-01-01

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line

  11. External proton and Li beams

    International Nuclear Information System (INIS)

    Schuff, Juan A.; Burlon, Alejandro A.; Debray, Mario E.; Kesque, Jose M.; Kreiner, Andres J.; Stoliar, Pablo A.; Naab, Fabian; Ozafran, Mabel J.; Vazquez, Monica E.; Perez de la Hoz, A.; Somacal, Hector; Valda, Alejandro; Canevas, S.; Ruffolo, M.; Tasat, D.R.; Muhlmann, M. C.

    2000-01-01

    In the frame of a feasibility study to introduce proton therapy in Argentina in a collaborative agreement between the Physics and Radiobiology Departments of the National Atomic Energy Commission or Argentina and the Centre de Protontherapie de Orsay, France, external proton and Li beams were produced at the TANDAR accelerator in Buenos Aires. The specific aim of this work was to start radiobiology studies on cell cultures and small laboratory animals. In particular we seek to determine here the relative biological effectiveness, RBE, for proton and Li beams as a function of energy for different tumor and normal cell lines. The 24 MeV proton beam was diffused using a 25 μm gold foil and extracted through a Kapton window to obtain a homogeneous field (constant to 95%) of about 7 cm in diameter. Measurements were carried out with quasi-monoenergetic beams (of 20.2 ± 0.07 MeV, 2.9 ± 0.10 MeV y 1.5 ± 0.1 MeV for protons and 21.4 ± 0.4 MeV for Lithium). Proton fluence and Bragg peaks were measured. The dose delivered in each case was monitored on-line with a calibrated transmission ionization chamber. Three cell lines PDV, PDVC 57 and V 79 (as a reference) were irradiated with γ-rays, proton and lithium beams with linear energy transfer (LET) from 2 to 100 keV/μm. RBE values in the range of 1.2-5.9 were obtained. In addition preliminary studies on chromosomal aberrations and viability of alveolar macrophages were carried out. (author)

  12. Proton-proton Scattering Above 3 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    A. Sibirtsev, J. Haidenbauer, H.-W. Hammer S. Krewald ,Ulf-G. Meissner

    2010-01-01

    A large set of data on proton-proton differential cross sections, analyzing powers and the double-polarization parameter A{sub NN} is analyzed employing the Regge formalism. We find that the data available at proton beam momenta from 3 GeV/c to 50 GeV/c exhibit features that are very well in line with the general characteristics of Regge phenomenology and can be described with a model that includes the {rho}, {omega}, f{sub 2}, and a{sub 2} trajectories and single-Pomeron exchange. Additional data, specifically for spin-dependent observables at forward angles, would be very helpful for testing and refining our Regge model.

  13. Proton-pump inhibitors

    African Journals Online (AJOL)

    chronic pancreatitis, diabetic gastroparesis, and a number of medications. Frequently ... PPI prophylaxis in those who have additional risk factors for gastrointestinal bleeding. ... PPIs are associated with the increased development of gastric.

  14. Proton-proton reaction rates at extreme energies

    International Nuclear Information System (INIS)

    Nagano, Motohiko

    1993-01-01

    Results on proton-antiproton reaction rates (total cross-section) at collision energies of 1.8 TeV from experiments at Fermilab have suggested a lower rate of increase with energy compared to the extrapolation based on results previously obtained at CERN's proton-antiproton collider (CERN Courier, October 1991). Now an independent estimate of the values for the proton-proton total cross-section for collision energies from 5 to 30 TeV has been provided by the analysis of cosmic ray shower data collected over ten years at the Akeno Observatory operated by the Institute for Cosmic Ray Research of University of Tokyo. These results are based on the inelastic cross-section for collisions of cosmic ray protons with air nuclei at energies in the range10 16-18 eV. A new extensive air shower experiment was started at Akeno, 150 km west of Tokyo, in 1979 with a large array of detectors, both on the ground and under a 1-metre concrete absorber. This measured the total numbers of electrons and muons of energies above 1GeV for individual showers with much better accuracy than before. Data collection was almost continuous for ten years without any change in the triggering criteria for showers above10 16 eV. The mean free path for proton-air nuclei collisions has been determined from the zenith angle of the observed frequency of air showers which have the same effective path length for development in the atmosphere and the same primary energy

  15. Proton emission from laser-generated plasmas at different intensities

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cutroneo, M.; Cavallaro, S.; Giuffrida, L.; Margarone, Daniele

    2012-01-01

    Roč. 57, č. 2 (2012), s. 237-240 ISSN 0029-5922. [International Conference on Research and Applications of Plasmas (PLASMA). Warsaw, 12.09.2011-16.09.2011] Institutional support: RVO:68378271 Keywords : laser-generated plasma * hydrogenated targets * proton acceleration Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.507, year: 2012

  16. Microdosimetric Characteristics of the Clinical Proton Beams at JIRN, Dubna

    Czech Academy of Sciences Publication Activity Database

    Molokanov, A. G.; Běgusová, Marie; Spurný, František; Vlček, Bohumil

    2002-01-01

    Roč. 99, 1-4 (2002), s. 433-434 ISSN 0144-8420 R&D Projects: GA ČR GA202/01/0710 Institutional research plan: CEZ:AV0Z1048901 Keywords : microdosimetry * proton beams * biological efficiency Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.555, year: 2002

  17. Proton thermal energetics in the solar wind: Helios reloaded

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, P.; Štverák, Štěpán; Matteini, L.; Velli, M.

    2013-01-01

    Roč. 118, č. 4 (2013), s. 1351-1365 ISSN 2169-9380 Institutional support: RVO:68378289 Keywords : solar wind * proton energetics * turbulent heating Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50107/abstract

  18. Role of the Transmembrane Potential in the Membrane Proton Leak

    Czech Academy of Sciences Publication Activity Database

    Ruprecht, A.; Sokolenko, E. A.; Beck, V.; Ninnemann, O.; Jabůrek, Martin; Trimbuch, T.; Klishin, S. S.; Ježek, Petr; Skulachev, V. P.; Pohl, E. E.

    2010-01-01

    Roč. 98, č. 8 (2010), s. 1503-1511 ISSN 0006-3495 R&D Projects: GA MŠk ME09018; GA ČR(CZ) GA303/07/0105 Institutional research plan: CEZ:AV0Z50110509 Keywords : proton leak * membrane potential * uncoupling proteins Subject RIV: BO - Biophysics Impact factor: 4.218, year: 2010

  19. Los Alamos high-power proton linac designs

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, G.P. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    Medium-energy high-power proton linear accelerators have been studied at Los Alamos as drivers for spallation neutron applications requiring large amounts of beam power. Reference designs for such accelerators are discussed, important design factors are reviewed, and issues and concern specific to this unprecedented power regime are discussed.

  20. LHC Report: Ions cross protons

    CERN Multimedia

    Reyes Alemany Fernandez for the LHC team

    2013-01-01

    The LHC starts the New Year facing a new challenge: proton-lead collisions in the last month before the shutdown in mid-February.    The first stable beams were achieved on 20 January with 13 individual bunches per beam. In the next fill, the first bunch-trains were injected and stable beams were achieved with 96 proton on 120 ion bunches.  This fill was very important because we were able to study the so-called moving long-range beam-beam encounters. Long-range encounters, which are also seen in proton-proton runs, occur when the bunches in the two beams “see” each other as they travel in the same vacuum chamber at either side of the experiments.  The situation becomes more complicated with proton-lead ions because the two species have different revolution times (until the frequencies are locked at top energy- see “Cogging exercises”) and thus these encounters move. We found that this effect does not cause significant beam losses...

  1. High energy proton PIXE [HEPP

    International Nuclear Information System (INIS)

    McKee, J.S.C.

    1993-01-01

    Studies of particle induced X-ray emission (PIXE) have been widespread and detailed in recent years and despite the fact that most data obtained are from low energy 1-3 MeV experiments, the value of higher energy proton work with its emphasis on K X-ray emission has become more marked as time has progressed. The purpose of this review paper is to outline the history of analysis using high energy protons and to compare and contrast the results obtained with those from lower energy analysis using more firmly established analytical techniques. The work described will concentrate exclusively on proton induced processes and will attempt to outline the rationale for selecting an energy, greater than 20 and up to 70 MeV protons for initiating particles. The relative ease and accuracy of the measurements obtained will be addressed. Clearly such X-ray studies should be seen as complementing low energy work in many instances rather than competing directly with them. However, it will be demonstrated that above a Z value of approximately 20, K X-ray analysis using high energy protons is the only way to go in this type of analysis. (author)

  2. New measurement of G_E/GM for the proton

    Science.gov (United States)

    Segel, Ralph

    2003-10-01

    Recent polarization transfer measurements of the ratio of the proton electric to magnetic form factor, G E /G_M, find μ_pG E /GM = 1 - 0.13Q ^2 while a long series of L-T separations are fit by μ_pG_E/GM ≈ 1. Jefferson Lab experiment E01-001 used a new technique for making L-T separations that greatly reduces the dominant systematic uncertainties present in previous determinations. Protons from ep scattering were measured over a wide range in ɛ at Q^2 = 2.64, 3.20 and 4.10 GeV^2 and, simultaneously, protons scattered at Q^2 = 0.5 GeV^2 were measured over a small range in ɛ. The Q^2 = 0.5 GeV^2 measurements provided an internal monitor and only kinematic factors and ratios of simultaneously measured cross sections enter into the determinations of G_E/G_M. Measuring the proton cross sections has the advantage that for the same Q^2, count rates change very little with ɛ and also proton momentum is the same at all ɛ thus eliminating the effect of any momentum-dependent inefficiencies. Neither of these is true for L-T separations performed by measuring electron cross sections. Furthermore, the radiative corrections for the proton cross sections are a factor of about 2.5 smaller. All previous L-T separations measured electron cross sections and none had the advantage of an internal monitor. Therefore, the results of E01-001 stringently test whether systematic uncertainties in previous L-T separations may have been sufficient to explain the discrepancy with the recent polarization transfer results.

  3. ATLAS proton-proton event containing four muons

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    An event with four identified muons from a proton-proton collision in ATLAS. This event is consistent with coming from two Z particles decaying: both Z particles decay to two muons each. Such events are produced by Standard Model processes without Higgs particles. They are also a possible signature for Higgs particle production, but many events must be analysed together in order to tell if there is a Higgs signal. This view is a zoom into the central part of the detector. The four muons are picked out as red tracks. Other tracks and deposits of energy in the calorimeters are shown in yellow.

  4. ATLAS proton-proton event containing two high energy photons

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    An event where two energetic photons ("gammas") are produced in a proton-proton collision in ATLAS. Many events of this type are produced by well-understood Standard Model processes ("backgrounds") which do not involve Higgs particles. A small excess of events of this type with similar masses could indicate evidence for Higgs particle production, but any specific event is most likely to be from the background. The photons are indicated, in the different projections and views, by the clusters of energy shown in yellow.

  5. Concept for a Future Super Proton-Proton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jingyu; et al.

    2015-07-12

    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.

  6. Concept for a Future Super Proton-Proton Collider

    CERN Document Server

    Tang, Jingyu; Chai, Weiping; Chen, Fusan; Chen, Nian; Chou, Weiren; Dong, Haiyi; Gao, Jie; Han, Tao; Leng, Yongbin; Li, Guangrui; Gupta, Ramesh; Li, Peng; Li, Zhihui; Liu, Baiqi; Liu, Yudong; Lou, Xinchou; Luo, Qing; Malamud, Ernie; Mao, Lijun; Palmer, Robert B.; Peng, Quanling; Peng, Yuemei; Ruan, Manqi; Sabbi, GianLuca; Su, Feng; Su, Shufang; Stratakis, Diktys; Sun, Baogeng; Wang, Meifen; Wang, Jie; Wang, Liantao; Wang, Xiangqi; Wang, Yifang; Wang, Yong; Xiao, Ming; Xing, Qingzhi; Xu, Qingjin; Xu, Hongliang; Xu, Wei; Witte, Holger; Yan, Yingbing; Yang, Yongliang; Yang, Jiancheng; Yuan, Youjin; Zhang, Bo; Zhang, Yuhong; Zheng, Shuxin; Zhu, Kun; Zhu, Zian; Zou, Ye

    2015-01-01

    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.

  7. Parity Non-Conservation in Proton-Proton Elastic Scattering

    International Nuclear Information System (INIS)

    Brown, V.R.; B.F. Gibson; J.A. Carlson; R. Schiavilla

    2002-01-01

    The parity non-conserving longitudinal asymmetry in proton-proton (pp) elastic scattering is calculated in the lab-energy range 0-350 MeV using contemporary, realistic strong-interaction potentials combined with a weak-interaction potential comprised of rho- and omega-meson exchanges as exemplified by the DDH model. Values for the rho- and omega-meson coupling constants, h rho rho rho and h rho rho omega , are determined from comparison with the measured asymmetries at 13.6 MeV, 45 MeV, and 221 MeV

  8. Synthesis of selectively 13C-labelled benzoic acid for nuclear magnetic resonance spectroscopic measurement of glycine conjugation activity

    International Nuclear Information System (INIS)

    Akira, Kazuki; Hasegawa, Hiroshi; Baba, Shigeo

    1995-01-01

    The synthesis of [4- 13 C]benzoic acid (BA) labelled in a single protonated carbon, for use as a probe to measure glycine conjugation activity by nuclear magnetic resonance (NMR) spectroscopy, has been reported. The labelled compound was prepared by a seven-step synthetic scheme on a relatively small scale using [2- 13 C] acetone as the source of label in overall yield of 16%. The usefulness of [4- 13 C]BA was demonstrated by the NMR spectroscopic monitoring of urinary excretion of [4- 13 C]hippuric acid in the rat administered with the labelled BA. (Author)

  9. Signature for g bosons from medium energy proton scattering experiments

    International Nuclear Information System (INIS)

    Kuyucak, S.

    1993-01-01

    We apply the recently developed algebraic (1/N expansion) scattering formalism to medium energy proton scattering from 154 Sm and 176 Yb. The nuclear structure effects in this formalism are described by the interacting boson model generalized to arbitrary interactions and types of bosons i.e. s,d,g, etc. We find that, in the sd boson model, a consistent description of cross sections is possible only for the 0 + and 2 + states. The failure of the model with regard to the 4 + states indicates that the effective hexadecapole operator used in the sd model is inadequate. In contrast, the data for scattering to the 0 + , 2 + and 4 + states could be consistently described in the sdg boson model. The spectroscopic data for the low-lying levels usually can not distinguish between the sd and sdg models due to renormalization of parameters, and one has to look at high spin or energy data for evidence of g bosons. The inelastic proton scattering experiments, on the other hand, directly probe the wave functions, and hence could provide a signature for g bosons even in the ground band states

  10. STARCODES, Stopping Power and Ranges for Electrons, Protons, He

    International Nuclear Information System (INIS)

    2000-01-01

    1 - Description of program or function: The 'STAR CODES', ESTAR, PSTAR, and ASTAR, calculate stopping-power and range tables for electrons, protons, and helium ions (alphas), according to methods described in ICRU Reports 37 and 39. 2 - Method of solution: Collision stopping powers are calculated from the theory of Bethe (1930, 1932), with a density-effect correction evaluated according to Sternheimer (1952, 1982). The stopping-power formula contains an important parameter, the mean excitation energy (I-value), which characterizes the stopping properties of a material. The codes provide output for electrons in any stopping material (279 provided) and for protons and helium ions in 74 materials. The calculations include the 1) Collision stopping power, 2) Radiative stopping power (electrons only), 3) Nuclear stopping power (protons and helium ions), 4) Total stopping power, 5) CSDA range, 6) Projected range (protons and helium ions), 7) Density effect parameter (electrons), 8) Radiation yield (electrons), and 9) Detour factor (protons and helium ions). Standard energy grids and files of elements w/ionization-excitation information are included with lookup table capabilities. 3 - Restrictions on the complexity of the problem: The minimum energies used in the calculations are at 1 KeV (protons and helium ions) and 10 KeV (electrons), and the maximum are 1 GeV. The standard energy grids are set at 81 for electrons, equally spaced (logarithmically), 133 for protons, and 122 for helium ions. The lower energy electron calculations (< 10 KeV) have up to 5-10% errors and are considered too fallable

  11. Public Dose Assessment Modeling from Skyshine by Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mwambinga, S. A. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Yoo, S. J. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, the skyshine dose by proton accelerator (230 MeV) has been evaluated. The amount of dose by skyshine is related to some influence factors which are emission angle (Height wall), the thickness of ceiling and distance from source to receptor (Human body). Empirical formula is made by using MCNPX code results. It can easily calculate and assess dose from skyshine by proton accelerator. The skyshine doses are calculated with MCNPX code and DCFs in ICRP 116. Thereafter, we made empirical formula which can calculate dose easily and be compared with the results of MCNPX. The maximum exposure point by skyshine is about 5 ∼ 10 m from source. Therefore, the licensee who wants to operate the proton accelerator must keep the appropriate distance from accelerator and set the fence to restrict the approach by the public. And, exposure doses by accelerator depend on operating time and proton beam intensities. Eq. (6) suggested in this study is just considered for mono energy proton accelerator. Therefore, it is necessary to expand the dose calculation to diverse proton energies. Radiations like neutron and photon generated by high energy proton accelerators over 10 MeV, are important exposure sources to be monitored to radiation workers and the public members near the facility. At that case, one of the exposure pathways to the public who are located in near the facility is skyshine. Neutrons and photons can be scattered by the atmosphere near the facility and exposed to public as scattered dose. All of the facilities using high energy radiation and NDI (Non-Destructive Inspection) which is tested at open field, skyshine dose must be taken into consideration. Skyshine dose is not related to the wall thickness of radiation shielding directly.

  12. Low energy proton beams from laser-generated plasma

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Giuffrida, L.; Margarone, Daniele; Caridi, F.; Di Bartolo, F.

    2011-01-01

    Roč. 653, č. 1 (2011), s. 140-144 ISSN 0168-9002 R&D Projects: GA ČR(CZ) GAP205/11/1165; GA MŠk(CZ) 7E09092; GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-generated plasma * proton acceleration * hydrogenated targets * proton yield * doped polymers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.207, year: 2011

  13. Proton and Ion Sources for High Intensity Accelerators

    CERN Multimedia

    Scrivens, R

    2004-01-01

    Future high intensity ion accelerators, including the Spallation Neutron Source (SNS), the European Spallation Source (ESS), the Superconducting Proton Linac (SPL) etc, will require high current and high duty factor sources for protons and negative hydrogen ions. In order to achieve these goals, a comparison of the Electron Cyclotron Resonance, radio-frequency and Penning ion sources, among others, will be made. For each of these source types, the present operational sources will be compared to the state-of-the-art research devices with special attention given to reliability and availability. Finally, the future research and development aims will be discussed.

  14. Conceptual design of proton beam window

    International Nuclear Information System (INIS)

    Teraoku, Takuji; Kaminaga, Masanori; Terada, Atsuhiko; Ishikura, Syuichi; Kinoshita, Hidetaka; Hino, Ryutaro

    2001-01-01

    In a MW-scale neutron scattering facility coupled with a high-intensity proton accelerator, a proton beam window is installed as the boundary between a high vacuum region of the proton beam transport line and a helium environment around the target assembly working as a neutron source. The window is cooled by water so as to remove high volumetric heat generated by the proton beam. A concept of the flat-type proton beam window consisting of two plates of 3 mm thick was proposed, which was found to be feasible under the proton beam power of 5 MW through thermal-hydraulic and structural strength analyses. (authors)

  15. Correlation of the antimicrobial activity of salicylaldehydes with broadening of the NMR signal of the hydroxyl proton. Possible involvement of proton exchange processes in the antimicrobial activity.

    Science.gov (United States)

    Elo, Hannu; Kuure, Matti; Pelttari, Eila

    2015-03-06

    Certain substituted salicylaldehydes are potent antibacterial and antifungal agents and some of them merit consideration as potential chemotherapeutic agents against Candida infections, but their mechanism of action has remained obscure. We report here a distinct correlation between broadening of the NMR signal of the hydroxyl proton of salicylaldehydes and their activity against several types of bacteria and fungi. When proton NMR spectra of the compounds were determined using hexadeuterodimethylsulfoxide as solvent and the height of the OH proton signal was measured, using the signal of the aldehyde proton as an internal standard, it was discovered that a prerequisite of potent antimicrobial activity is that the proton signal is either unobservable or relatively very low, i.e. that it is extremely broadened. Thus, none of the congeners whose OH proton signal was high were potent antimicrobial agents. Some congeners that gave a very low OH signal were, however, essentially inactive against the microbes, indicating that although drastic broadening of the OH signal appears to be a prerequisite, also other (so far unknown) factors are needed for high antimicrobial activity. Because broadening of the hydroxyl proton signal is related to the speed of the proton exchange process(es) involving that proton, proton exchange may be involved in the mechanism of action of the compounds. Further studies are needed to analyze the relative importance of different factors (such as electronic effects, strength of the internal hydrogen bond, co-planarity of the ring and the formyl group) that determine the rates of those processes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Metabolic networks in epilepsy by MR spectroscopic imaging.

    Science.gov (United States)

    Pan, J W; Spencer, D D; Kuzniecky, R; Duckrow, R B; Hetherington, H; Spencer, S S

    2012-12-01

    The concept of an epileptic network has long been suggested from both animal and human studies of epilepsy. Based on the common observation that the MR spectroscopic imaging measure of NAA/Cr is sensitive to neuronal function and injury, we use this parameter to assess for the presence of a metabolic network in mesial temporal lobe epilepsy (MTLE) patients. A multivariate factor analysis is performed with controls and MTLE patients, using NAA/Cr measures from 12 loci: the bilateral hippocampi, thalami, basal ganglia, and insula. The factor analysis determines which and to what extent these loci are metabolically covarying. We extract two independent factors that explain the data's variability in control and MTLE patients. In controls, these factors characterize a 'thalamic' and 'dominant subcortical' function. The MTLE patients also exhibit a 'thalamic' factor, in addition to a second factor involving the ipsilateral insula and bilateral basal ganglia. These data suggest that MTLE patients demonstrate a metabolic network that involves the thalami, also seen in controls. The MTLE patients also display a second set of metabolically covarying regions that may be a manifestation of the epileptic network that characterizes limbic seizure propagation. © 2012 John Wiley & Sons A/S.

  17. Family symmetries and proton decay

    International Nuclear Information System (INIS)

    Murayama, Hitoshi; Kaplan, D.B.

    1994-01-01

    The proton decay modes p → K 0 e + and p → K 0 μ + may be visible in certain supersymmetric theories, and if seen would provide evidence for new flavor physics at extremely short distances. These decay modes can arise from the dimension five operator (Q 1 Q 1 Q 2 L 1,2 ), where Q i and L i are i th generation quark and lepton superfields respectively. Such an operator is not generated at observable levels due to gauge or Higgs boson exchange in a minimal GUT. However in theories that explain the fermion mass hierarchy, it may be generated at the Planck scale with a strength such that the decays p → K 0 ell + are both compatible with the proton lifetime and visible at Super-Kamiokande. Observable proton decay can even occur in theories without unification

  18. The search for proton decay

    International Nuclear Information System (INIS)

    Haines, T.; Kaneyuki, K.; McGrew, C.; Mohapatra, R.; Peterson, E.; Cline, D.B.

    1994-01-01

    The conservation of the quantum number called baryon number, like lepton (or family) number, is an empirical fact even though there are very good reasons to expect otherwise. Experimentalists have been searching for baryon number violating decays of the proton and neutron for decades now without success. Theorists have evolved deep understanding of the relationship between the natural forces in the development of various Grand Unified Theories (GUTs) that nearly universally predict baryon number violating proton decay, or related phenomena like n-bar n oscillations. With this in mind, the Proton Decay Working Group reviewed the current experimental and theoretical status of the search for baryon number violation with an eye to the advancement in the next decade

  19. Proton and neutron structure functions

    International Nuclear Information System (INIS)

    Rock, S.

    1991-01-01

    New result on charged lepton scattering from hydrogen and deuterium targets by the BCDMS, NMC and SLAC collaborations have greatly increased our knowledge of the structure functions of protons and neutrons. The disagreement between the high energy muon scattering cross sections obtained by the EMC and BCDMS collaborations have been almost completely resolved by comparison with a global analysis of old and new SLAC data and a reanalysis of EMC data. We now have a consistent set of structure functions which covers an approximate range 1 ≤ Q 2 ≤ 200 (GeV/c) 2 and 0.07 ≤ x ≤ 0.7. The ratio of neutron to proton structure functions decreases with increasing Q 2 for values of x ≥ 0.1. The difference between proton and neutron structure functions approaches zero as x decreases, consistent with the expected √x behavior. (orig.)

  20. The HITRAN2016 molecular spectroscopic database

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, I. E.; Rothman, L. S.; Hill, C.; Kochanov, R. V.; Tan, Y.; Bernath, P. F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K. V.; Drouin, B. J.; Flaud, J. -M.; Gamache, R. R.; Hodges, J. T.; Jacquemart, D.; Perevalov, V. I.; Perrin, A.; Shine, K. P.; Smith, M. -A. H.; Tennyson, J.; Toon, G. C.; Tran, H.; Tyuterev, V. G.; Barbe, A.; Császár, A. G.; Devi, V. M.; Furtenbacher, T.; Harrison, J. J.; Hartmann, J. -M.; Jolly, A.; Johnson, T. J.; Karman, T.; Kleiner, I.; Kyuberis, A. A.; Loos, J.; Lyulin, O. M.; Massie, S. T.; Mikhailenko, S. N.; Moazzen-Ahmadi, N.; Müller, H. S. P.; Naumenko, O. V.; Nikitin, A. V.; Polyansky, O. L.; Rey, M.; Rotger, M.; Sharpe, S. W.; Sung, K.; Starikova, E.; Tashkun, S. A.; Auwera, J. Vander; Wagner, G.; Wilzewski, J.; Wcisło, P.; Yu, S.; Zak, E. J.

    2017-12-01

    This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is comprised of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 200 additional significant molecules have been added to the database.