WorldWideScience

Sample records for proton implanted chirped

  1. Dense monoenergetic proton beams from chirped laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Galow, Benjamin J.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Department of Physics, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Liseykina, Tatyana V. [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany); Harman, Zoltan [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt (Germany)

    2012-07-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. Feasibility of generating ultra-intense (10{sup 7} particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10{sup 21} W/cm{sup 2}.

  2. Dense monoenergetic proton beams from chirped laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianxing; Galow, Benjamin J.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Department of Physics, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Harman, Zoltan [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt (Germany)

    2013-07-01

    Interactions of linearly and radially polarized frequency-chirped laser pulses with single protons and hydrogen gas targets are studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultra-intense (10{sup 7} particles per bunch) and phase-space collimated beams of protons is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10{sup 21} W/cm{sup 2}.

  3. Simulations of Proton Implantation in Silicon Carbide (SiC)

    Science.gov (United States)

    2016-03-31

    Simulations of Proton Implantation in Silicon Carbide (SiC) Jonathan P. McCandless, Hailong Chen, Philip X.-L. Feng Electrical Engineering, Case...of implanting protons (hydrogen ions, H+) into SiC thin layers on silicon (Si) substrate, and explore the ion implantation conditions that are...relevant to experimental radiation of SiC layers. Keywords: silicon carbide (SiC); radiation effects; ion implantation ; proton; stopping and range of

  4. Proton implantation effect on (SUS-316) stainless steel

    International Nuclear Information System (INIS)

    Das, A.K.; Ishigami, R.; Kamal, I.

    2015-01-01

    Microstructural damage and nano hardness of the industrial grade stainless steel (SUS-316) have been studied under proton (H + ) implanted condition applying different doses at room temperature. The implantation scheme such as proton energy, fluence, irradiation time, and penetration depth in the target materials were estimated by Monte Carlo Simulation Code SRIM-2008. In the simulation, the parameters were chosen in such a way that the damage density (displacement per atom or dpa) would be uniform up to certain depth from the surface. X-ray diffraction study of the annealed samples prior to the proton implantation showed the austenitic fcc structure and no significant change was observed after proton implantation in it. Microstructural observation made by Scanning Transmission Electron Microscopy (STEM) revealed that 1 dpa of proton-irradiation induced the structural damage extended up to 1 μm depth from the surface. The nano hardness study showed that the hardness level of the irradiated samples increased monotonically with the irradiation doses. Proton dose of 1 dpa caused 65% increment of hardness level on average in case of uniformly irradiated samples. It was realized that the increment of hardness was a consequence of microstructural damages caused by the formation of interstitial dislocation loops in the sample matrix keeping the lattice structure unaffected

  5. Si exfoliation by MeV proton implantation

    International Nuclear Information System (INIS)

    Braley, Carole; Mazen, Frédéric; Tauzin, Aurélie; Rieutord, François; Deguet, Chrystel; Ntsoenzok, Esidor

    2012-01-01

    Proton implantation in silicon and subsequent annealing are widely used in the Smart Cut™ technology to transfer thin layers from a substrate to another. The low implantation energy range involved in this process is usually from a few ten to a few hundred of keV, which enables the separation of up to 2 μm thick layers. New applications in the fields of 3D integration and photovoltaic wafer manufacturing raise the demand for extending this technology to higher energy in order to separate thicker layer from a substrate. In this work, we propose to investigate the effect of proton implantation in single crystalline silicon in the 1–3 MeV range which corresponds to a 15–100 μm range for the hydrogen maximum concentration depth. We show that despites a considerably lower hydrogen concentration at R p , the layer separation is obtained with fluence close to the minimum fluence required for low energy implantation. It appears that the fracture propagation in Si and the resulting surface morphology is affected by the substrate orientation. Defects evolution is investigated with Fourier Transform Infrared Spectroscopy. The two orientations reveal similar type of defects but their evolution under annealing appears to be different.

  6. Simulation of the proton implantation process in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Faccinelli, Martin; Hadley, Peter [Graz University of Technology, Institute of Solid State Physics (Austria); Jelinek, Moriz; Wuebben, Thomas [Infineon Technologies Austria AG, Villach (Austria); Laven, Johannes G.; Schulze, Hans-Joachim [Infineon Technologies AG, Neubiberg (Germany)

    2016-12-15

    Proton implantation is one of many processes used to ad-just the electronic and mechanical properties of silicon. Though the process has been extensively studied, it is still not clear which exact defects are formed and what their concentration profiles are. In this article, a simulation method is presented, which provides a better understanding of the implantation process. The simulation takes into account the diffusion of mobile point defects and their reactions to defect complexes, as well as the dissociation of defect complexes. Concentration profiles for a set of defect complexes after an implantation at 400 keV and a dose of 5 x 10{sup 14} H{sup +}cm{sup -2} are presented. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Proton Beam Therapy Interference With Implanted Cardiac Pacemakers

    International Nuclear Information System (INIS)

    Oshiro, Yoshiko; Sugahara, Shinji; Noma, Mio; Sato, Masato; Sakakibara, Yuzuru; Sakae, Takeji; Hayashi, Yasutaka; Nakayama, Hidetsugu; Tsuboi, Koji; Fukumitsu, Nobuyoshi; Kanemoto, Ayae; Hashimoto, Takayuki; Tokuuye, Koichi

    2008-01-01

    Purpose: To investigate the effect of proton beam therapy (PBT) on implanted cardiac pacemaker function. Methods and Materials: After a phantom study confirmed the safety of PBT in patients with cardiac pacemakers, we treated 8 patients with implanted pacemakers using PBT to a total tumor dose of 33-77 gray equivalents (GyE) in dose fractions of 2.2-6.6 GyE. The combined total number of PBT sessions was 127. Although all pulse generators remained outside the treatment field, 4 patients had pacing leads in the radiation field. All patients were monitored by means of electrocardiogram during treatment, and pacemakers were routinely examined before and after PBT. Results: The phantom study showed no effect of neutron scatter on pacemaker generators. In the study, changes in heart rate occurred three times (2.4%) in 2 patients. However, these patients remained completely asymptomatic throughout the PBT course. Conclusions: PBT can result in pacemaker malfunctions that manifest as changes in pulse rate and pulse patterns. Therefore, patients with cardiac pacemakers should be monitored by means of electrocardiogram during PBT

  8. The effects of irradiation and proton implantation on the density of mobile protons in SiO2 films

    International Nuclear Information System (INIS)

    Vanheusden, K.

    1998-04-01

    Proton implantation into the buried oxide of Si/SiO 2 /Si structures does not introduce mobile protons. The cross section for capture of radiation-induced electrons by mobile protons is two orders of magnitude smaller than for electron capture by trapped holes. The data provide new insights into the atomic mechanisms governing the generation and radiation tolerance of mobile protons in SiO 2 . This can lead to improved techniques for production and radiation hardening of radiation tolerant memory devices

  9. Comparison of proton and phosphorous ion implantation-induced intermixing of InAs/InP quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S; Tan, H H; Jagadish, C [Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia)

    2007-05-02

    We report and compare proton and phosphorous ion implantation-induced intermixing of InAs/InP quantum dots (QDs). After ion implantation at 20-300 deg. C, the QDs are rapid thermally annealed at 850 deg. C for 30 s. Proton implantation induces less energy shift than P ion implantation for a given concentration of atomic displacements due to the more efficient dynamic annealing of the defects created by protons. The implantation-induced energy shift reaches a maximum value of about 260 meV for a dose of 5 x 10{sup 12} ions cm{sup -2} in the P ion implanted QDs, which also show narrower PL linewidths compared to the proton implanted QDs. We also report the effects of an InGaAs top cap layer on the ion implantation-induced QD intermixing and show that defect production and annihilation processes evolve differently in InGaAs and InP layers and vary with the implantation temperature. When the implantation is performed at higher temperatures, the energy shift of the P ion implanted QDs capped with an InP layer increases due to the reduction in larger defect cluster formation at higher temperatures, while the energy shift of the proton implanted QDs decreases due to increased dynamic annealing irrespective of their cap layers.

  10. Range verification for eye proton therapy based on proton-induced x-ray emissions from implanted metal markers

    Science.gov (United States)

    La Rosa, Vanessa; Kacperek, Andrzej; Royle, Gary; Gibson, Adam

    2014-06-01

    Metal fiducial markers are often implanted on the back of the eye before proton therapy to improve target localization and reduce patient setup errors. We aim to detect characteristic x-ray emissions from metal targets during proton therapy to verify the treatment range accuracy. Initially gold was chosen for its biocompatibility properties. Proton-induced x-ray emissions (PIXE) from a 15 mm diameter gold marker were detected at different penetration depths of a 59 MeV proton beam at the CATANA proton facility at INFN-LNS (Italy). The Monte Carlo code Geant4 was used to reproduce the experiment and to investigate the effect of different size markers, materials, and the response to both mono-energetic and fully modulated beams. The intensity of the emitted x-rays decreases with decreasing proton energy and thus decreases with depth. If we assume the range to be the depth at which the dose is reduced to 10% of its maximum value and we define the residual range as the distance between the marker and the range of the beam, then the minimum residual range which can be detected with 95% confidence level is the depth at which the PIXE peak is equal to 1.96 σbkg, which is the standard variation of the background noise. With our system and experimental setup this value is 3 mm, when 20 GyE are delivered to a gold marker of 15 mm diameter. Results from silver are more promising. Even when a 5 mm diameter silver marker is placed at a depth equal to the range, the PIXE peak is 2.1 σbkg. Although these quantitative results are dependent on the experimental setup used in this research study, they demonstrate that the real-time analysis of the PIXE emitted by fiducial metal markers can be used to derive beam range. Further analysis are needed to demonstrate the feasibility of the technique in a clinical setup.

  11. 3D microscopy of hydrogen and magnetic force on proton implanted microstructures in graphite

    International Nuclear Information System (INIS)

    Reichart, P.; Cluitmans, J.F.J.; Pakes, C.; Orbons, S.; Jamieson, D.N.

    2005-01-01

    We investigated the depth dependence of magnetic signals in proton irradiated graphite using a tilted microspot implantation followed by combined AFM/MFM analysis. This study is motivated by the not yet independently reproduced discovery of ferromagnetism in carbon materials created by proton irradiation. We present results of 3D hydrogen analysis of pristine and irradiated highly oriented pyrolytic graphite (HOPG). These results, previously presented in collaboration with universities in Leipzig and Munich, are summarized here and reveal a hydrogen level in pristine HOPG less than 0.3 at-ppm and that 2.25 MeV implanted hydrogen is located within a peak confined to the end of range with no evidence of diffusion broadening. For implanted microspots, up to 40 at-% of the implanted hydrogen is not detected, providing support for lateral hydrogen diffusion. Up to 10 16 H-atoms/cm 2 are detected in the near-surface region on all samples, which has not yet been considered in possible mechanisms for creation of ferromagnetism. As theoretical models propose that hydrogen could play a major role in carbon ferromagnetism, this result raises the hypothesis for an effect restricted to the surface. Our preliminary data on magnetic force microscopy of tilted implants show a strong magnetic phase shift localized on the beam entrance point only. (author). 14 refs., 5 figs

  12. Near-infrared optical properties of Yb3+-doped silicate glass waveguides prepared by double-energy proton implantation

    Science.gov (United States)

    Shen, Xiao-Liang; Zhu, Qi-Feng; Zheng, Rui-Lin; Lv, Peng; Guo, Hai-Tao; Liu, Chun-Xiao

    2018-03-01

    We report on the preparation and properties of an optical planar waveguide structure operating at 1539 nm in the Yb3+-doped silicate glass. The waveguide was formed by using (470 + 500) keV proton implantation at fluences of (1.0 + 2.0) × 1016 ions/cm2. The waveguiding characteristics including the guided-mode spectrum and the near-field image were investigated by the m-line technique and the finite-difference beam propagation method. The energy distribution for implanted protons and the refractive index profile for the proton-implanted waveguide were simulated by the stopping and range of ions in matter and the reflectivity calculation method. The proton-implanted Yb3+-doped silicate glass waveguide is a candidate for optoelectronic elements in the near-infrared region.

  13. Theoretical ion implantation profiles for low energy protons under channeling conditions

    International Nuclear Information System (INIS)

    Nobel, J.A.; Sabin, J.R.; Trickey, S.B.

    1994-01-01

    The authors present early results from the CHANNEL code, which simulates the passage of ionized projectiles through bulk solids. CHANNEL solves the classical equations of motion for the projectile using a force obtained from the gradient of the quantum mechanically derived coulombic potential of the solid (determined via a full potential augmented plane wave (FLAPW) calculation on the bulk) and a quantum mechanical energy dissipation term, the stopping power, as determined from the method of Echenique, Neiminen, and Ritchie. The code then generates the trajectory of the ionic projectile for a given incident position on the unit cell face and an initial velocity. The authors use CHANNEL to generate an ion (proton) implantation profile for the test case of simple cubic hydrogen with the projectile's initial velocity parallel to the (100) channel. Further preliminary results for ion implantation profiles of protons in diamond structure Si, with initial velocity along the (100) and (110) channels, are given

  14. Improvement of kink characteristic of proton-implanted VCSEL with ITO overcoating

    Science.gov (United States)

    Lai, Fang-I.; Chang, Ya-Hsien; Laih, Li-Hong; Kuo, Hao-chung; Wang, S. C.

    2004-06-01

    Proton implanted VCSEL has been demonstrated with good reliability and decent modulation speed up to 1.25 Gb/s. However, kinks in current vs light output (L-I) has been always an issue in the gain-guided proton implant VCSEL. The kink related jitter and noise performance made it difficult to meet 2.5 Gb/s (OC-48) requirement. The kinks in L-I curve can be attributed to non-uniform carrier distribution induced non-uniform gain distribution within emission area. In this paper, the effects of a Ti/ITO transparent over-coating on the proton-implanted AlGaAs/GaAs VCSELs (15um diameter aperture) are investigated. The kinks distribution in L-I characteristics from a 2 inch wafer is greatly improved compared to conventional process. These VCSELs exhibit nearly kink-free L-I output performance with threshold currents ~3 mA, and the slope efficiencies ~ 0.25 W/A. The near-field emission patterns suggest the Ti/ITO over-coating facilitates the current spreading and uniform carrier distribution of the top VCSEL contact thus enhancing the laser performance. Finally, we performed high speed modulation measurement. The eye diagram of proton-implanted VCSELs with Ti/ITO transparent over-coating operating at 2.125 Gb/s with 10mA bias and 9dB extinction ratio shows very clean eye with jitter less than 35 ps.

  15. Feasibility of proton-activated implantable markers for proton range verification using PET

    Science.gov (United States)

    Cho, Jongmin; Ibbott, Geoffrey; Gillin, Michael; Gonzalez-Lepera, Carlos; Titt, Uwe; Paganetti, Harald; Kerr, Matthew; Mawlawi, Osama

    2013-11-01

    Proton beam range verification using positron emission tomography (PET) currently relies on proton activation of tissue, the products of which decay with a short half-life and necessitate an on-site PET scanner. Tissue activation is, however, negligible near the distal dose fall-off region of the proton beam range due to their high interaction energy thresholds. Therefore Monte Carlo simulation is often supplemented for comparison with measurement; however, this also may be associated with systematic and statistical uncertainties. Therefore, we sought to test the feasibility of using long-lived proton-activated external materials that are inserted or infused into the target volume for more accurate proton beam range verification that could be performed at an off-site PET scanner. We irradiated samples of ≥98% 18O-enriched water, natural Cu foils, and >97% 68Zn-enriched foils as candidate materials, along with samples of tissue-equivalent materials including 16O water, heptane (C7H16), and polycarbonate (C16H14O3)n, at four depths (ranging from 100% to 3% of center of modulation (COM) dose) along the distal fall-off of a modulated 160 MeV proton beam. Samples were irradiated either directly or after being embedded in Plastic Water® or balsa wood. We then measured the activity of the samples using PET imaging for 20 or 30 min after various delay times. Measured activities of candidate materials were up to 100 times greater than those of the tissue-equivalent materials at the four distal dose fall-off depths. The differences between candidate materials and tissue-equivalent materials became more apparent after longer delays between irradiation and PET imaging, due to the longer half-lives of the candidate materials. Furthermore, the activation of the candidate materials closely mimicked the distal dose fall-off with offsets of 1 to 2 mm. Also, signals from the foils were clearly visible compared to the background from the activated Plastic Water® and balsa wood

  16. Hydrogen effects on deep level defects in proton implanted Cu(In,Ga)Se{sub 2} based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.W.; Seol, M.S.; Kwak, D.W.; Oh, J.S. [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of); Jeong, J.H. [Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Cho, H.Y., E-mail: hycho@dongguk.edu [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2012-08-01

    Hydrogen effects on deep level defects and a defect generation in proton implanted Cu(In,Ga)Se{sub 2} (CIGS) based thin films for solar cell were investigated. CIGS films with a thickness of 3 {mu}m were grown on a soda-lime glass substrate by a co-evaporation method, and then were implanted with protons. To study deep level defects in the proton implanted CIGS films, deep level transient spectroscopy measurements on the CIGS-based solar cells were carried out, these measurements found 6 traps (including 3 hole traps and 3 electron traps). In the proton implanted CIGS films, the deep level defects, which are attributed to the recombination centers of the CIGS solar cell, were significantly reduced in intensity, while a deep level defect was generated around 0.28 eV above the valence band maximum. Therefore, we suggest that most deep level defects in CIGS films can be controlled by hydrogen effects. - Highlights: Black-Right-Pointing-Pointer Proton implanted Cu(In,Ga)Se{sub 2} thin film and solar cell are prepared. Black-Right-Pointing-Pointer Deep level defects of Cu(In,Ga)Se{sub 2} thin film and solar cell are investigated. Black-Right-Pointing-Pointer Hydrogenation using proton implantation and H{sub 2} annealing reduces deep level defects. Black-Right-Pointing-Pointer Hydrogenation could enhance electrical properties and efficiency of solar cells.

  17. Range verification for eye proton therapy based on proton-induced x-ray emissions from implanted metal markers

    International Nuclear Information System (INIS)

    Rosa, Vanessa La; Royle, Gary; Gibson, Adam; Kacperek, Andrzej

    2014-01-01

    Metal fiducial markers are often implanted on the back of the eye before proton therapy to improve target localization and reduce patient setup errors. We aim to detect characteristic x-ray emissions from metal targets during proton therapy to verify the treatment range accuracy. Initially gold was chosen for its biocompatibility properties. Proton-induced x-ray emissions (PIXE) from a 15 mm diameter gold marker were detected at different penetration depths of a 59 MeV proton beam at the CATANA proton facility at INFN-LNS (Italy). The Monte Carlo code Geant4 was used to reproduce the experiment and to investigate the effect of different size markers, materials, and the response to both mono-energetic and fully modulated beams. The intensity of the emitted x-rays decreases with decreasing proton energy and thus decreases with depth. If we assume the range to be the depth at which the dose is reduced to 10% of its maximum value and we define the residual range as the distance between the marker and the range of the beam, then the minimum residual range which can be detected with 95% confidence level is the depth at which the PIXE peak is equal to 1.96 σ bkg , which is the standard variation of the background noise. With our system and experimental setup this value is 3 mm, when 20 GyE are delivered to a gold marker of 15 mm diameter. Results from silver are more promising. Even when a 5 mm diameter silver marker is placed at a depth equal to the range, the PIXE peak is 2.1 σ bkg . Although these quantitative results are dependent on the experimental setup used in this research study, they demonstrate that the real-time analysis of the PIXE emitted by fiducial metal markers can be used to derive beam range. Further analysis are needed to demonstrate the feasibility of the technique in a clinical setup. (paper)

  18. Study of the bistable hydrogen donors properties in silicon implanted by the protons

    International Nuclear Information System (INIS)

    Abdullin, Kh.A.; Gorelkinskij, Yu.V.; Serikkanov, A.S.

    2003-01-01

    The proton implantation in silicon with doses 10 16 -10 17 cm -2 leads to formation of the hydrogen supersaturated solid solution in the Si. At the room temperature the hydrogen mobility on radiation defects limited by the H atom capture is inappreciably low. Thermal annealing at 400-500 Deg. C results in the decay and rebuilding of hydrogen-containing radiation defects and precipitants, that leads to reduction of the free energy of the system. Precipitation occurring in the form of nano-cluster defects formation, containing the hydrogen atoms. Thermal annealing of the silicon implanted by hydrogen at ∼450 Deg. C during 20 min. causing the hydrogen precipitation process and defects agglomeration leads to donor centers formation registering by the Hall effect

  19. Fast Harmonic Chirp Summation

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Jensen, Tobias Lindstrøm; Jensen, Jesper Rindom

    2017-01-01

    -robust to noise, or very computationally inten- sive. In this paper, we propose a fast algorithm for the harmonic chirp summation method which has been demonstrated in the liter- ature to be accurate and robust to noise. The proposed algorithm is orders of magnitudes faster than previous algorithms which is also...

  20. Temperature behavior and annealing of insulated gate transistors subjected to localized lifetime control by proton implantation

    International Nuclear Information System (INIS)

    Mogro-Campero, A.; Love, R.P.; Chang, M.F.; Dyer, R.F.

    1987-01-01

    Localized lifetime control by proton implantation can result in a considerable improvement (as much as an order of magnitude or more) in the trade-off between device turn-off time and forward voltage when compared with the unlocalized method of electron irradiation. The physical mechanisms responsible for the qualitative temperature dependences are identified: MOS channel resistance for forward voltage, carrier capture cross-section for turn-off time, and generation and diffusion components of leakage current. Since no catastrophic or unrecoverable behavior is observed, normal device operation within the tested temperature range is possible. Isothermal annealing curves of turn-off time measured after annealing, and corresponding to a few hours annealing time, reveal that a constant turn-off time is reached after about an hour. The constant value increases with temperature, but is still below the unimplanted value after 4 h at 525 0 C. The turn-off time was verified to be constant even after 24 h of annealing at 200 0 C. Lifetime control by proton implantation seems to be more thermally stable than that caused by electron irradiation. (author)

  1. Malfunctions of Implantable Cardiac Devices in Patients Receiving Proton Beam Therapy: Incidence and Predictors

    International Nuclear Information System (INIS)

    Gomez, Daniel R.; Poenisch, Falk; Pinnix, Chelsea C.; Sheu, Tommy; Chang, Joe Y.; Memon, Nada; Mohan, Radhe; Rozner, Marc A.; Dougherty, Anne H.

    2013-01-01

    Purpose: Photon therapy has been reported to induce resets of implanted cardiac devices, but the clinical sequelae of treating patients with such devices with proton beam therapy (PBT) are not well known. We reviewed the incidence of device malfunctions among patients undergoing PBT. Methods and Materials: From March 2009 through July 2012, 42 patients with implanted cardiac implantable electronic devices (CIED; 28 pacemakers and 14 cardioverter-defibrillators) underwent 42 courses of PBT for thoracic (23, 55%), prostate (15, 36%), liver (3, 7%), or base of skull (1, 2%) tumors at a single institution. The median prescribed dose was 74 Gy (relative biological effectiveness; range 46.8-87.5 Gy), and the median distance from the treatment field to the CIED was 10 cm (range 0.8-40 cm). Maximum proton and neutron doses were estimated for each treatment course. All CIEDs were checked before radiation delivery and monitored throughout treatment. Results: Median estimated peak proton and neutron doses to the CIED in all patients were 0.8 Gy (range 0.13-21 Gy) and 346 Sv (range 11-1100 mSv). Six CIED malfunctions occurred in 5 patients (2 pacemakers and 3 defibrillators). Five of these malfunctions were CIED resets, and 1 patient with a defibrillator (in a patient with a liver tumor) had an elective replacement indicator after therapy that was not influenced by radiation. The mean distance from the proton beam to the CIED among devices that reset was 7.0 cm (range 0.9-8 cm), and the mean maximum neutron dose was 655 mSv (range 330-1100 mSv). All resets occurred in patients receiving thoracic PBT and were corrected without clinical incident. The generator for the defibrillator with the elective replacement indicator message was replaced uneventfully after treatment. Conclusions: The incidence of CIED resets was about 20% among patients receiving PBT to the thorax. We recommend that PBT be avoided in pacing-dependent patients and that patients with any type of CIED receiving

  2. LET spectra behind high-density titanium and stainless steel hip implants irradiated with a therapeutic proton beam

    Czech Academy of Sciences Publication Activity Database

    Oancea, Cristina; Ambrožová, Iva; Popescu, A. I.; Mytsin, G. V.; Vondráček, V.; Davídková, Marie

    2018-01-01

    Roč. 110, č. 3 (2018), s. 7-13 ISSN 1350-4487 R&D Projects: GA MŠk EF16_013/0001677 Institutional support: RVO:61389005 Keywords : proton therapy * metallic hip implant * titanium * stainless steel * track etched detectors Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.442, year: 2016

  3. Formation of hydrogen-related shallow donors in Ge1-xSix crystals implanted with protons

    International Nuclear Information System (INIS)

    Pokotilo, Yu.M.; Petukh, A.N.; Litvinov, V.V.; Markevich, V.P.; Peaker, A.R.; Abrosimov, N.A.

    2007-01-01

    It is found that shallow hydrogen-related donors are formed in the proton-implanted dilute Ge 1-x Si x alloys (0≤x≤0.031) as well as in Si-free Ge samples upon heat-treatments in the temperature range 225-300 degrees centigrade. The maximum concentration of the donors is about 1.5·10 16 cm -3 for a H + implantation dose of 10 15 cm -2 . Formation and annihilation temperatures of the proton-implantation-induced donors do not depend on the Si concentration in Ge 1-x Si x samples. However, the increase in Si content has resulted in a decrease of the concentration of the H-related donors. The possible origin of the H-related donors and mechanisms of Si-induced suppression of their formation are discussed. (authors)

  4. X-ray diffraction patterns in high-energy proton implanted silicon

    International Nuclear Information System (INIS)

    Wieteska, K.; Dluzewska, K.D.; Wierzchowski, W.; Graeff, W.

    1998-01-01

    Silicon crystals implanted with 1 and 1.6 MeV protons were studied by means of conventional source double-crystal and synchrotron multi-crystal arrangements. Both the rocking curves and series of topographs were recorded in different parallel settings employing different reflections and wavelengths of radiation. A comparison of rocking curves in different regions of implanted areas was performed in synchrotron multi-crystal arrangement with a beam of a very small diameter. The rocking curves exhibited subsidiary interference maxima with increasing periodicity on the low angle side. The plane wave topographs taken at different angular setting revealed characteristic fringes whose number decreased with increasing distance from the main maximum. The fringe pattern did not depend on the direction of the diffraction vector. The number of fringes for equivalent angular distance from the maximum was larger for higher order of reflection. The shape of the rocking curve and other diffraction patterns were reasonably explained assuming the lattice parameter change depth distribution proportional to the profile obtained from the Biersack-Ziegler theory and lateral non-uniformity of ion dose. A good approximation of the experimental results was obtained using numerical integration of the Takagi-Taupin equations. (orig.)

  5. Dose perturbation effect of metallic spinal implants in proton beam therapy.

    Science.gov (United States)

    Jia, Yingcui; Zhao, Li; Cheng, Chee-Wai; McDonald, Mark W; Das, Indra J

    2015-09-08

    The purpose of this study was to investigate the effect of dose perturbations for two metallic spinal screw implants in proton beam therapy in the perpendicular and parallel beam geometry. A 5.5 mm (diameter) by 45 mm (length) stainless steel (SS) screw and a 5.5 mm by 35 mm titanium (Ti) screw commonly used for spinal fixation were CT-scanned in a hybrid phantom of water and solid water. The CT data were processed with an orthopedic metal artifact reduction (O-MAR) algorithm. Treatment plans were generated for each metal screw with a proton beam oriented, first parallel and then perpendicular, to the longitudinal axis of the screw. The calculated dose profiles were compared with measured results from a plane-parallel ion chamber and Gafchromic EBT2 films. For the perpendicular setup, the measured dose immediately downstream from the screw exhibited dose enhancement up to 12% for SS and 8% for Ti, respectively, but such dose perturbation was not observed outside the lateral edges of the screws. The TPS showed 5% and 2% dose reductions immediately at the interface for the SS nd Ti screws, respectively, and up to 9% dose enhancements within 1 cm outside of the lateral edges of the screws. The measured dose enhancement was only observed within 5 mm from the interface along the beam path. At deeper depths, the lateral dose profiles appeared to be similar between the measurement and TPS, with dose reduction in the screw shadow region and dose enhancement within 1-2 cm outside of the lateral edges of the metals. For the parallel setup, no significant dose perturbation was detected at lateral distance beyond 3 mm away from both screws. Significant dose discrepancies exist between TPS calculations and ion chamber and film measurements in close proximity of high-Z inhomogeneities. The observed dose enhancement effect with proton therapy is not correctly modeled by TPS. An extra measure of caution should be taken when evaluating dosimetry with spinal metallic implants.

  6. Effect of titanium dental implants on proton therapy delivered for head tumors: experimental validation using an anthropomorphic head phantom

    Science.gov (United States)

    Oancea, C.; Shipulin, K.; Mytsin, G.; Molokanov, A.; Niculae, D.; Ambrožová, I.; Davídková, M.

    2017-03-01

    A dosimetric experiment was performed at the Medico-Technical Complex in the Joint Institute for Nuclear Research, Dubna, to investigate the effects of metallic dental implants in the treatment of head and neck tumours with proton therapy. The goal of the study was to evaluate the 2D dose distributions of different clinical treatment plans measured in an anthropomorphic phantom, and compare them to predictions from a treatment planning system. The anthropomorphic phantom was sliced into horizontal segments. Two grade 4 Titanium implants were inserted between 2 slices, corresponding to a maxillary area. GafChromic EBT2 films were placed between the segments containing the implants to measure the 2D delivered dose. Two different targets were designed: the first target includes the dental implants in the isocentre, and in the second target, the proton beam is delivered through the implants, which are located at the entrance region of the Bragg curve. The experimental results were compared to the treatment plans made using our custom 3D Treatment Planning System, named RayTreat. To quantitatively determine differences in the isodose distributions (measured and calculated), the gamma index (3 mm, 3%) was calculated for each target for the matrix value in the region of high isodose (> 90%): for the experimental setup, which includes the implants in the SOBP region, the result obtained was 84.3%. When the implants were localised in the entrance region of the Bragg curve, the result obtained was 86.4%. In conclusion, the uncertainties introduced by the clinically planned dose distribution are beyond reasonable limits. The linear energy transfer spectra in close proximity to the implants were investigated using solid state nuclear track detectors (TED). Scattered particles outside the target were detected.

  7. Effect of titanium dental implants on proton therapy delivered for head tumors: experimental validation using an anthropomorphic head phantom

    International Nuclear Information System (INIS)

    Oancea, C.; Shipulin, K.; Mytsin, G.; Molokanov, A.; Niculae, D.; Ambrožová, I.; Davídková, M.

    2017-01-01

    A dosimetric experiment was performed at the Medico-Technical Complex in the Joint Institute for Nuclear Research, Dubna, to investigate the effects of metallic dental implants in the treatment of head and neck tumours with proton therapy. The goal of the study was to evaluate the 2D dose distributions of different clinical treatment plans measured in an anthropomorphic phantom, and compare them to predictions from a treatment planning system. The anthropomorphic phantom was sliced into horizontal segments. Two grade 4 Titanium implants were inserted between 2 slices, corresponding to a maxillary area. GafChromic EBT2 films were placed between the segments containing the implants to measure the 2D delivered dose. Two different targets were designed: the first target includes the dental implants in the isocentre, and in the second target, the proton beam is delivered through the implants, which are located at the entrance region of the Bragg curve. The experimental results were compared to the treatment plans made using our custom 3D Treatment Planning System, named RayTreat. To quantitatively determine differences in the isodose distributions (measured and calculated), the gamma index (3 mm, 3%) was calculated for each target for the matrix value in the region of high isodose (> 90%): for the experimental setup, which includes the implants in the SOBP region, the result obtained was 84.3%. When the implants were localised in the entrance region of the Bragg curve, the result obtained was 86.4%. In conclusion, the uncertainties introduced by the clinically planned dose distribution are beyond reasonable limits. The linear energy transfer spectra in close proximity to the implants were investigated using solid state nuclear track detectors (TED). Scattered particles outside the target were detected.

  8. Studies of the permeability coefficient of polyethylene terephtalate and the influence of protons implanted on polymer molecular structure

    International Nuclear Information System (INIS)

    Santos, V.M.S. dos.

    1981-01-01

    The principle of operation of an apparatus developed to study gas permeation through thin film is described, and the experimental procedure is discussed. Use is made of diffusion theory to obtain an expression for the permeability coeficient K as a function of the rate of increase of the pressura in the receiving volume. Measurements of K for Polyethylene Terephtalate (P.E.T.) were performed using Argon and Helium. The Gibbs function for ''He-P.E.T'' was determined from the study of K as a function of the film temperature. Protons were implanted along the thickness of P.E.T samples. The observed increase of K may be explained by possible modifications of the polymer structure: degradation and/or crosslinking. Preliminary studies using small angle X-rays scattering suggest again structurural modifications of the proton implanted P.E.T. (author) [pt

  9. Next generation Chirped Pulse Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nees, J; Biswal, S; Mourou, G [Univ. Michigan, Center for Ultrafast Optical Science, Ann Arbor, MI (United States); Nishimura, Akihiko; Takuma, Hiroshi

    1998-03-01

    The limiting factors of Chirped Pulse Amplification (CPA) are discussed and experimental results of CPA in Yb:glass regenerative amplifier are given. Scaling of Yb:glass to the petawatt level is briefly discussed. (author)

  10. Biological effects and application of proton beam (H+) implantation on melon seeds

    International Nuclear Information System (INIS)

    Sun Xun; Ren Ruixing; Meng Hui; Shi Jinguo; Tang Zhangxiong; Tao Xianping

    2006-01-01

    Various doses and energy of the proton beam (H + ) were used to treat dry seeds of melon (Cucumis melo L.). Results show that, the proton beam irradiation can induced structural variations of chromosomes and abnormal behaviors during mitosis and meiosis. The percentage of cells with chromosomal aberration increased with the increment of energy and dose of the proton. The micronuclei, chromosomal bridge and chromosomal fragments were included in chromosomal aberration. The proton beam was effective in inducing mutants of early maturity. A early maturity line T 63-1-17-8-1-3 was selected from the progenies of the seeds treated with the proton beam. (authors)

  11. Electron heating enhancement by frequency-chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, E.; Afarideh, H., E-mail: hafarideh@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Riazi, Z. [Physics and Accelerator School, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  12. Determination of migration of ion-implanted helium in silica by proton backscattering spectrometry

    International Nuclear Information System (INIS)

    Szakacs, G.; Szilagyi, E.; Paszti, F.; Kotai, E.

    2008-01-01

    Understanding the processes caused by ion implantation of light ions in dielectric materials such as silica is important for developing the diagnostic systems used in fusion and fission environments. Recently, it has been shown that ion-implanted helium is able to escape from SiO 2 films. To study this process in details, helium was implanted into the central part of a buried SiO 2 island up to a fluence of 4 x 10 17 He/cm 2 . The implanted helium could be detected in the SiO 2 island, if the oxide was insulated properly from the vacuum. The shape of the helium depth distributions was far from SRIM simulation because helium distributed in the whole 1 μm thick oxide layer. After the ion implantation, helium was observed only on the implanted spot. After nine months the implanted helium filled out the whole oxide island as it was expected from the high diffusivity

  13. Transverse mode control in proton-implanted and oxide-confined VCSELs via patterned dielectric anti-phase filters

    Science.gov (United States)

    Kesler, Benjamin; O'Brien, Thomas; Dallesasse, John M.

    2017-02-01

    A novel method for controlling the transverse lasing modes in both proton implanted and oxide-confined vertical- cavity surface-emitting lasers (VCSELs) with a multi-layer, patterned, dielectric anti-phase (DAP) filter is pre- sented. Using a simple photolithographic liftoff process, dielectric layers are deposited and patterned on individual VCSELs to modify (increase or decrease) the mirror reflectivity across the emission aperture via anti-phase reflections, creating spatially-dependent threshold material gain. The shape of the dielectric pattern can be tailored to overlap with specific transverse VCSEL modes or subsets of transverse modes to either facilitate or inhibit lasing by decreasing or increasing, respectively, the threshold modal gain. A silicon dioxide (SiO2) and titanium dioxide (TiO2) anti-phase filter is used to achieve a single-fundamental-mode, continuous-wave output power greater than 4.0 mW in an oxide-confined VCSEL at a lasing wavelength of 850 nm. A filter consisting of SiO2 and TiO2 is used to facilitate injection-current-insensitive fundamental mode and lower order mode lasing in proton implanted VCSELs at a lasing wavelength of 850 nm. Higher refractive index dielectric materials such as amorphous silicon (a-Si) can be used to increase the effectiveness of the anti-phase filter on proton implanted devices by reducing the threshold modal gain of any spatially overlapping modes. This additive, non-destructive method allows for mode selection at any lasing wavelength and for any VCSEL layer structure without the need for semiconductor etching or epitaxial regrowth. It also offers the capability of designing a filter based upon available optical coating materials.

  14. Frequency chirpings in Alfven continuum

    Science.gov (United States)

    Wang, Ge; Berk, Herb; Breizman, Boris; Zheng, Linjin

    2017-10-01

    We have used a self-consistent mapping technique to describe both the nonlinear wave-energetic particle resonant interaction and its spatial mode structure that depends upon the resonant energetic particle pressure. At the threshold for the onset of the energetic particle mode (EPM), strong chirping emerges in the lower continuum close to the TAE gap and then, driven by strong continuum damping, chirps rapidly to lower frequencies in the Alfven continuum. An adiabatic theory was developed that accurately replicated the results from the simulation where the nonlinearity was only due to the EPM resonant particles. The results show that the EPM-trapped particles have their action conserved during the time of rapid chirping. This adiabaticity enabled wave trapped particles to be confined within their separatrix, and produce even larger resonant structures, that can produce a large amplitude mode far from linearly predicted frequencies. In the present work we describe the effect of additional MHD nonlinearity to this calculation. We studied how the zonal flow component and its nonlinear feedback to the fundamental frequency and found that the MHD nonlinearity doesn't significantly alter the frequency chirping response that is predicted by the calculation that neglects the MHD nonlinearity.

  15. SU-F-T-126: Microdosimetic Evaluation of Proton Energy Distributions in the Vicinity of Metal Implants

    Energy Technology Data Exchange (ETDEWEB)

    Heczko, S; McAuley, GA; Slater, JM [Loma Linda University, Loma Linda, CA (United States); Wroe, A [Loma Linda University, Loma Linda, CA (United States); Loma Linda University Medical Center, Loma Linda, CA (United States)

    2016-06-15

    Purpose: To evaluate the impact of titanium and surgical stainless steel implants on the microscopic dose distribution in proton treatment plans Methods: Geant4 Monte Carlo simulations were used to analyze the microdosimetric distribution of proton radiation in the vicinity of 3.1 mm thick CP Grade 4 titanium (Ti) or 316 stainless steel (SS316) plates in a water phantom. Additional simulations were performed using either water, or water with a density equivalent to the respective metals (Tiwater, SS316water) (to reflect common practice in treatment planning). Implants were placed at the COM of SOBPs of 157 MeV (range of ∼15 cm in water) protons with 30 or 60 mm modulation. Primary and secondary particle dose and fluence, frequency-weighted and dose-weighted average lineal energy, average radiation quality factor, dose equivalent and energy deposition histograms in the plate vicinity were compared. Results: Preliminary results show frequency-weighted (yf) and dose-weighted lineal energy (yd) was increased downstream of the Ti plate (yf = 3.1 keV/µm; yd = 5.5 keV/µm) and Tiwater (yf = 4.1 keV/µm; yd = 6.8 keV/µm) compared to that of water (ie, the absence of a plate) (yf = 2.5 keV/µm; yd = 4.5 keV/µm). In addition, downstream proton dose deposition was also elevated due to the presence of the Ti plate or Tiwater. The additional dose deposited at higher lineal energy implies that tissues downstream of the plate will receive a higher dose equivalent. Detailed analyses of the Ti, Tiwater, SS316, and SS316 water simulations will be presented. Conclusion: The presence of high-density materials introduces changes in the spatial distribution of radiation in the vicinity of an implant. Further work quantifying these effects could be incorporated into future treatment planning systems resulting in more accurate treatment plans. This project was sponsored with funding from the Department of Defense (DOD # W81XWH-10-2-0192).

  16. SU-F-T-126: Microdosimetic Evaluation of Proton Energy Distributions in the Vicinity of Metal Implants

    International Nuclear Information System (INIS)

    Heczko, S; McAuley, GA; Slater, JM; Wroe, A

    2016-01-01

    Purpose: To evaluate the impact of titanium and surgical stainless steel implants on the microscopic dose distribution in proton treatment plans Methods: Geant4 Monte Carlo simulations were used to analyze the microdosimetric distribution of proton radiation in the vicinity of 3.1 mm thick CP Grade 4 titanium (Ti) or 316 stainless steel (SS316) plates in a water phantom. Additional simulations were performed using either water, or water with a density equivalent to the respective metals (Tiwater, SS316water) (to reflect common practice in treatment planning). Implants were placed at the COM of SOBPs of 157 MeV (range of ∼15 cm in water) protons with 30 or 60 mm modulation. Primary and secondary particle dose and fluence, frequency-weighted and dose-weighted average lineal energy, average radiation quality factor, dose equivalent and energy deposition histograms in the plate vicinity were compared. Results: Preliminary results show frequency-weighted (yf) and dose-weighted lineal energy (yd) was increased downstream of the Ti plate (yf = 3.1 keV/µm; yd = 5.5 keV/µm) and Tiwater (yf = 4.1 keV/µm; yd = 6.8 keV/µm) compared to that of water (ie, the absence of a plate) (yf = 2.5 keV/µm; yd = 4.5 keV/µm). In addition, downstream proton dose deposition was also elevated due to the presence of the Ti plate or Tiwater. The additional dose deposited at higher lineal energy implies that tissues downstream of the plate will receive a higher dose equivalent. Detailed analyses of the Ti, Tiwater, SS316, and SS316 water simulations will be presented. Conclusion: The presence of high-density materials introduces changes in the spatial distribution of radiation in the vicinity of an implant. Further work quantifying these effects could be incorporated into future treatment planning systems resulting in more accurate treatment plans. This project was sponsored with funding from the Department of Defense (DOD # W81XWH-10-2-0192).

  17. Determination of migration of ion-implanted helium in silica by proton backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Szakacs, G. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)], E-mail: szilagyi@rmki.kfki.hu; Paszti, F.; Kotai, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2008-04-15

    Understanding the processes caused by ion implantation of light ions in dielectric materials such as silica is important for developing the diagnostic systems used in fusion and fission environments. Recently, it has been shown that ion-implanted helium is able to escape from SiO{sub 2} films. To study this process in details, helium was implanted into the central part of a buried SiO{sub 2} island up to a fluence of 4 x 10{sup 17} He/cm{sup 2}. The implanted helium could be detected in the SiO{sub 2} island, if the oxide was insulated properly from the vacuum. The shape of the helium depth distributions was far from SRIM simulation because helium distributed in the whole 1 {mu}m thick oxide layer. After the ion implantation, helium was observed only on the implanted spot. After nine months the implanted helium filled out the whole oxide island as it was expected from the high diffusivity.

  18. TH-B-204-02: Application of Implanted Markers in Proton Therapy

    International Nuclear Information System (INIS)

    Park, S.

    2016-01-01

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRI compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a consultant

  19. TH-B-204-02: Application of Implanted Markers in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. [McLaren-Flint, Flint, MI (United States)

    2016-06-15

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRI compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a consultant

  20. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  1. Bragg-case synchrotron section topography of silicon implanted with high-energy protons and α particles

    International Nuclear Information System (INIS)

    Wieteska, K.; Wierzchowski, W.; Graeff, W.

    1997-01-01

    Back reflection section topography using white-beam synchrotron radiation has been applied for the investigation of silicon implanted with 1 and 1.6 MeV protons and 4.8 MeV α particles. The beam width was limited to 5 μm, and a series of spots in the vicinity of a centrally adjusted reflection were indexed and analysed. The back-reflection section pattern of implanted crystals usually exhibits fringes corresponding to the reflection from the surface and a series of fringes corresponding to the rear region of the shot-through layer, the destroyed layer and the bulk. The patterns were used for direct evaluation of ion ranges and thicknesses of the shot-through layer. The overall characteristics of the obtained patterns were successfully reproduced in simulations based on numerical integration of the Takagi-Taupin equations. The agreement between the simulation and experiment proves that the lattice-parameter depth-distribution profiles can be assumed to be proportional to interstitial-vacancy distributions obtained using the Monte Carlo method from the Biersack-Ziegler theory. The simulation also reproduced interference tails observed in some section patterns. It was found that these tails are caused by the ion-dose change along the beam and they were probably formed due to the interference between the radiation reflected from the bulk and those rays reflected by the rear region of the shot-through layer. (orig.)

  2. PET/CT imaging for treatment verification after proton therapy: a study with plastic phantoms and metallic implants.

    Science.gov (United States)

    Parodi, Katia; Paganetti, Harald; Cascio, Ethan; Flanz, Jacob B; Bonab, Ali A; Alpert, Nathaniel M; Lohmann, Kevin; Bortfeld, Thomas

    2007-02-01

    The feasibility of off-line positron emission tomography/computed tomography (PET/CT) for routine three dimensional in-vivo treatment verification of proton radiation therapy is currently under investigation at Massachusetts General Hospital in Boston. In preparation for clinical trials, phantom experiments were carried out to investigate the sensitivity and accuracy of the method depending on irradiation and imaging parameters. Furthermore, they addressed the feasibility of PET/CT as a robust verification tool in the presence of metallic implants. These produce x-ray CT artifacts and fluence perturbations which may compromise the accuracy of treatment planning algorithms. Spread-out Bragg peak proton fields were delivered to different phantoms consisting of polymethylmethacrylate (PMMA), PMMA stacked with lung and bone equivalent materials, and PMMA with titanium rods to mimic implants in patients. PET data were acquired in list mode starting within 20 min after irradiation at a commercial luthetium-oxyorthosilicate (LSO)-based PET/CT scanner. The amount and spatial distribution of the measured activity could be well reproduced by calculations based on the GEANT4 and FLUKA Monte Carlo codes. This phantom study supports the potential of millimeter accuracy for range monitoring and lateral field position verification even after low therapeutic dose exposures of 2 Gy, despite the delay between irradiation and imaging. It also indicates the value of PET for treatment verification in the presence of metallic implants, demonstrating a higher sensitivity to fluence perturbations in comparison to a commercial analytical treatment planning system. Finally, it addresses the suitability of LSO-based PET detectors for hadron therapy monitoring. This unconventional application of PET involves countrates which are orders of magnitude lower than in diagnostic tracer imaging, i.e., the signal of interest is comparable to the noise originating from the intrinsic radioactivity of

  3. Raw Knudsen Engineering 3260 CHIRP subbottom - CHIRP Subbottom Profiler data for the U.S. Atlantic margin.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Knudsen Engineering 3260 CHIRP subbottom - CHIRP Subbottom Profiler data were collected in Raw Knudsen SEG-Y Datagram format.

  4. Chirping the LCLS Electron Beam

    International Nuclear Information System (INIS)

    Emma, P.

    2005-01-01

    We explore scenarios for generating a linear time-correlated energy spread in the LCLS electron bunch, prior to the undulator, that is needed for optical (x-ray) pulse compression. The correlated energy spread (''chirp'') is formed by generating an energy gradient along the length of the electron bunch using RF phasing and/or longitudinal wakefields of the accelerating structures. The sign of the correlation is an important limitation. Excluding a complete re-design of the compression systems, the best possibility is to use ''over-compression'' to effect the required energy chirp. This is easily done with only a slight strength increase (∼10%) in the chicane bends of the second compressor. In this case, the bend-plane emittance dilution associated with the increased coherent synchrotron radiation (CSR) in the bunch compressor may, however, significantly compromise the electron beam density. The CSR calculations for the momentary extremely short (∼1 (micro)m) electron bunch during over-compression are quite subtle and an adequate confidence level may not be achievable. A practical limit in this short-pulse scenario may be to use spontaneous rather than FEL radiation. Ignoring the potential emittance growth, a FWHM electron energy spread of 2% is possible

  5. Chirp investigation in EMLs towards frequency shift keying modulation

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Vegas Olmos, Juan José; Westergren, Urban

    2014-01-01

    This paper presents a chirp modeling and experimental results that support our vision of enabling frequency shift keying (FSK) exploiting the chirp effect in externally modulated lasers (EMLs).......This paper presents a chirp modeling and experimental results that support our vision of enabling frequency shift keying (FSK) exploiting the chirp effect in externally modulated lasers (EMLs)....

  6. Frequency chirp of harmonic and attosecond pulses

    International Nuclear Information System (INIS)

    Varju, K.; Johansson, P; L'Huillier, A.L.; Mairesse, Y.; Salieres, P.

    2005-01-01

    Full text: We have explored in detail the first- and second-order variations of the atomic phase as a function of the laser intensity and harmonic order. This unravels the similitudes and differences existing between the chirp of individual harmonic pulses and the chirp of the attosecond pulses. We show that the two techniques XFROG and RABITT used to characterize the two chirps (respectively) converge to give the same information, namely the values of the mixed partial derivatives of the atomic phase. This underlines the common physical origin of all these phenomena and provides a unified frame for their description and understanding. Ref. 1 (author)

  7. Magnetic field perturbation in proton MR imaging - A study of a contrast agent and of distortions due to metallic implants

    International Nuclear Information System (INIS)

    Olsson, M.

    1992-01-01

    Perturbations of the static magnetic field in proton MR imaging (NMR imaging, MRI, MRT) result in image distortion and/or signal loss. An investigation of a superparamagnetic contrast agent for MR imaging has been performed. Magnetite particles were embedded in biodegradable starch spheres with a diameter of one micrometer. Animal experiments showed that the agent was quickly accumulated in the reticulo-endothelial system (RES), causing a decrease in signal intensity in this region. Diffusion within the locally generated magnetic field perturbation is responsible for signal loss in spin-echo images. Furthermore, the magnetic properties of various aneurysm clips were investigated to determine which clips could be used safely in a clinical MR investigation. MR artifacts caused by the metallic clips were studied using a geometric phantom. Non-ferromagnetic clips were concluded to be safe for examinations with medium field (0.3 tesla) MR imaging systems. A comparison study between MR and CT was performed on patients harbouring intracranial, nonferromagnetic aneurysm clips. The artifacts close to the clips were equally serve for MR and CT, but at some distance, the MR images were much less affected than the CT images. Finally, a computer program capable of simulating any realistic MR imaging situation has been developed. Raw data matrices are obtained by solving the Bloch equations. Corrections for intravascular spin behaviour have been implemented together with efficient algorithms. A quantitative investigation of signal displacement and signal loss, caused by small metallic implants, has been performed by computer simulation. An exact expression for the magnetic field outside a homogeneous ellipsoid in an external magnetic field has been derived. Distortions in MR images, caused by perturbing ellipsoids of different shapes and orientations, were studied. (30 refs.) (au)

  8. Interaction of free charged particles with a chirped electromagnetic pulse

    International Nuclear Information System (INIS)

    Khachatryan, A.G.; Goor, F.A. van; Boller, K.-J.

    2004-01-01

    We study the effect of chirp on electromagnetic (EM) pulse interaction with a charged particle. Both the one-dimensional (1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped pulse, the charged particle energy can be changed after the interaction with a 1D EM chirped pulse. Different types of chirp and pulse envelopes are considered. In the case of small chirp, an analytical expression is found for arbitrary temporal profiles of the chirp and the pulse envelope. In the 3D case, the interaction with a chirped pulse results in a polarization-dependent scattering of charged particles

  9. SU-E-T-396: Dosimetric Accuracy of Proton Therapy for Patients with Metal Implants in CT Scans Using Metal Deletion Technique (MDT) Artifacts Reduction

    International Nuclear Information System (INIS)

    Li, X; Kantor, M; Zhu, X; Frank, S; Sahoo, N; Li, H

    2014-01-01

    Purpose: To evaluate the dosimetric accuracy for proton therapy patients with metal implants in CT using metal deletion technique (MDT) artifacts reduction. Methods: Proton dose accuracies under CT metal artifacts were first evaluated using a water phantom with cylindrical inserts of different materials (titanium and steel). Ranges and dose profiles along different beam angles were calculated using treatment planning system (Eclipse version 8.9) on uncorrected CT, MDT CT, and manually-corrected CT, where true Hounsfield units (water) were assigned to the streak artifacts. In patient studies, the treatment plans were developed on manually-corrected CTs, then recalculated on MDT and uncorrected CTs. DVH indices were compared between the dose distributions on all the CTs. Results: For water phantom study with 1/2 inch titanium insert, the proton range differences estimated by MDT CT were with 1% for all beam angles, while the range error can be up to 2.6% for uncorrected CT. For the study with 1 inch stainless steel insert, the maximum range error calculated by MDT CT was 1.09% among all the beam angles compared with maximum range error with 4.7% for uncorrected CT. The dose profiles calculated on MDT CTs for both titanium and steel inserts showed very good agreements with the ones calculated on manually-corrected CTs, while large dose discrepancies calculated using uncorrected CTs were observed in the distal end region of the proton beam. The patient study showed similar dose distribution and DVHs for organs near the metal artifacts recalculated on MDT CT compared with the ones calculated on manually-corrected CT, while the differences between uncorrected and corrected CTs were much pronounced. Conclusion: In proton therapy, large dose error could occur due to metal artifact. The MDT CT can be used for proton dose calculation to achieve similar dose accuracy as the current clinical practice using manual correction

  10. Picosecond chirped pulse compression in single-mode fibers

    International Nuclear Information System (INIS)

    Wenhua Cao; Youwei Zhang

    1995-01-01

    In this paper, the nonlinear propagation of picosecond chirped pulses in single mode fibers has been investigated both analytically and numerically. Results show that downchirped pulses can be compressed owing to normal group-velocity dispersion. The compression ratio depends both on the initial peak power and on the initial frequency chirp of the input pulse. While the compression ratio depends both on the initial peak power and on the initial frequency chirp of the input pulse. While the compression ratio increases with the negative frequency chirp, it decreases with the initial peak power of the input pulse. This means that the self-phase modulation induced nonlinear frequency chirp which is linear and positive (up-chirp) over a large central region of the pulse and tends to cancel the initial negative chirp of the pulse. It is also shown that, as the negative chirped pulse compresses temporally, it synchronously experiences a spectral narrowing

  11. Optical ridge waveguides preserving the thermo-optic features in LiNbO3 crystals fabricated by combination of proton implantation and selective wet etching.

    Science.gov (United States)

    Tan, Yang; Chen, Feng

    2010-05-24

    We report on a new, simple method to fabricate optical ridge waveguides in a z-cut LiNbO3 wafer by using proton implantation and selective wet etching. The measured modal field is well confined in the ridge waveguide region, which is also confirmed by the numerical simulation. With thermal annealing treatment at 400 degrees C, the propagation loss of the ridge waveguides is determined to be as low as approximately 0.9 dB/cm. In addition, the measured thermo-optic coefficients of the waveguides are in good agreement with those of the bulk, suggesting potential applications in integrated photonics.

  12. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza, E-mail: r-massudi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411 (Iran, Islamic Republic of)

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  13. Raw Knudsen 320B/R CHIRP Subbottom Profiler - CHIRP Subbottom Profiler data for the Arctic Ocean ECS survey.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Knudsen 320B/R CHIRP Subbottom Profiler - CHIRP Subbottom Profiler data were collected in Raw Knudsen SEG-Y Datagram format.

  14. Effects of moderate pump and Stokes chirp on chirped-probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry

    KAUST Repository

    Gu, Mingming; Satija, Aman; Lucht, Robert P.

    2018-01-01

    The effects of moderate levels of chirp in the pump and Stokes pulses on chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CPP fs CARS) were investigated. The frequency chirp in the pump and Stokes pulses was introduced

  15. Raw ODEC Bathy2000 CHIRP subbottom profiler - CHIRP high-resolution Seismic Profile data for the U.S. Arctic Continental Margin.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ODEC Bathy2000 CHIRP subbottom profiler - CHIRP high-resolution Seismic Profile data were collected in Raw ODEC Bathy2000 CHIRP dat Datagram Format.

  16. Raw ODEC Bathy2000 CHIRP subbottom profiler - CHIRP high-resolution Seismic Profile data for the Chukchi Cap and Arctic Ocean.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ODEC Bathy2000 CHIRP subbottom profiler - CHIRP high-resolution Seismic Profile data were collected in Raw ODEC Bathy2000 CHIRP dat Datagram Format.

  17. The Climate Hazards group InfraRed Precipitation (CHIRP) with Stations (CHIRPS): Development and Validation

    Science.gov (United States)

    Peterson, P.; Funk, C. C.; Husak, G. J.; Pedreros, D. H.; Landsfeld, M.; Verdin, J. P.; Shukla, S.

    2013-12-01

    CHIRP and CHIRPS are new quasi-global precipitation products with daily to seasonal time scales, a 0.05° resolution, and a 1981 to near real-time period of record. Developed by the Climate Hazards Group at UCSB and scientists at the U.S. Geological Survey Earth Resources Observation and Science Center specifically for drought early warning and environmental monitoring, CHIRPS provides moderate latency precipitation estimates that place observed hydrologic extremes in their historic context. Three main types of information are used in the CHIRPS: (1) global 0.05° precipitation climatologies, (2) time-varying grids of satellite-based precipitation estimates, and (3) in situ precipitation observations. CHIRP: The global grids of long-term (1980-2009) average precipitation were estimated for each month based on station data, averaged satellite observations, and physiographic parameters. 1981-present time-varying grids of satellite precipitation were derived from spatially varying regression models based on pentadal cold cloud duration (CCD) values and TRMM V7 training data. The CCD time-series were derived from the CPC and NOAA B1 datasets. Pentadal CCD-percent anomaly values were multiplied by pentadal climatology fields to produce low bias pentadal precipitation estimates. CHIRPS: The CHG station blending procedure uses the satellite-observed spatial covariance structure to assign relative weights to neighboring stations and the CHIRP values. The CHIRPS blending procedure is based on the expected correlation between precipitation at a given target location and precipitation at the locations of the neighboring observation stations. These correlations are estimated using the CHIRP fields. The CHG has developed an extensive archive of in situ daily, pentadal and monthly precipitation totals. The CHG database has over half a billion daily rainfall observations since 1980 and another half billion before 1980. Most of these observations come from four sets of global

  18. All-Fiber, Directly Chirped Laser Source for Chirped-Pulse-Amplification

    Science.gov (United States)

    Xin, Ran

    Chirped-pulse-amplification (CPA) technology is widely used to produce ultra-short optical pulses (sub picosecond to femtoseconds) with high pulse energy. A chirped pulse laser source with flexible dispersion control is highly desirable as a CPA seed. This thesis presents an all-fiber, directly chirped laser source (DCLS) that produces nanosecond, linearly-chirped laser pulses at 1053 nm for seeding high energy CPA systems. DCLS produces a frequency chirp on an optical pulse through direct temporal phase modulation. DCLS provides programmable control for the temporal phase of the pulse, high pulse energy and diffraction-limited beam performance, which are beneficial for CPA systems. The DCLS concept is first described. Its key enabling technologies are identified and their experimental demonstration is presented. These include high-precision temporal phase control using an arbitrary waveform generator, multi-pass phase modulation to achieve high modulation depth, regenerative amplification in a fiber ring cavity and a negative feedback system that controls the amplifier cavity dynamics. A few technical challenges that arise from the multi-pass architecture are described and their solutions are presented, such as polarization management and gain-spectrum engineering in the DCLS fiber cavity. A DCLS has been built and its integration into a high energy OPCPA system is demonstrated. DCLS produces a 1-ns chirped pulse with a 3-nm bandwidth. The temporal phase and group delay dispersion on the DCLS output pulse is measured using temporal interferometry. The measured temporal phase has an ˜1000 rad amplitude and is close to a quadratic shape. The chirped pulse is amplified from 0.9 nJ to 76 mJ in an OPCPA system. The amplified pulse is compressed to close to its Fourier transform limit, producing an intensity autocorrelation trace with a 1.5-ps width. Direct compressed-pulse duration control by adjusting the phase modulation drive amplitude is demonstrated. Limitation

  19. Extended deep level defects in Ge-condensed SiGe-on-Insulator structures fabricated using proton and helium implantations

    International Nuclear Information System (INIS)

    Kwak, D.W.; Lee, D.W.; Oh, J.S.; Lee, Y.H.; Cho, H.Y.

    2012-01-01

    SiGe-on-Insulator (SGOI) structures were created using the Ge condensation method, where an oxidation process is performed on the SiGe/Si structure. This method involves rapid thermal chemical vapor deposition and H + /He + ion-implantations. Deep level defects in these structures were investigated using deep level transient spectroscopy (DLTS) by varying the pulse injection time. According to the DLTS measurements, a deep level defect induced during the Ge condensation process was found at 0.28 eV above the valence band with a capture cross section of 2.67 × 10 −17 cm 2 , two extended deep levels were also found at 0.54 eV and 0.42 eV above the valence band with capture cross sections of 3.17 × 10 −14 cm 2 and 0.96 × 10 −15 cm 2 , respectively. In the SGOI samples with ion-implantation, the densities of the newly generated defects as well as the existing defects were decreased effectively. Furthermore, the Coulomb barrier heights of the extended deep level defects were drastically reduced. Thus, we suggest that the Ge condensation method with H + ion implantation could reduce deep level defects generated from the condensation and control the electrical properties of the condensed SiGe layers. - Highlights: ► We have fabricated low-defective SiGe-on-Insulator (SGOI) with implantation method. ► H + and He + -ions are used for ion-implantation method. ► We have investigated the deep level defects of SGOI layers. ► Ge condensation method using H + ion implantation could reduce extended defects. ► They could enhance electrical properties.

  20. Superconducting delay lines and chirp filters

    International Nuclear Information System (INIS)

    Hoefer, G.J.; Kratz, H.A.

    1993-01-01

    High temperature superconductor (HTSC) thin films are now good enough to realize certain devices, particularly passive analog broadband devices requiring only a single layer of high quality material. This is especially true for long delay lines and related structures, e. g. chirp filters, where low loss and dispersion result in large usable bandwidths. The availability of these devices may hasten the commercialization of the high temperature superconductors, because they take full advantage of their unique properties. (orig.)

  1. Chirped Pulse Spectrometer Operating at 200 GHz

    Science.gov (United States)

    Hindle, Francis; Bray, Cédric; Hickson, Kevin; Fontanari, Daniele; Mouelhi, Meriem; Cuisset, Arnaud; Mouret, Gaël; Bocquet, Robin

    2018-01-01

    The combination of electronic sources operating at high frequencies and modern microwave instrumentation has enabled the recent development of chirped pulse spectrometers for the millimetre and THz bands. This type of instrument can operate at high resolution which is particularly suited to gas-phase rotational spectroscopy. The construction of a chirped pulse spectrometer operating at 200 GHz is described in detail while attention is paid to the phase stability and the data accumulation over many cycles. Validation using carbonyl sulphide has allowed the detection limit of the instrument to be established as function of the accumulation. A large number of OCS transitions were identified using a 10-GHz chirped pulse and include the six most abundant isotopologues, the weakest line corresponding to the fundamental R(17) transition of 16O13C33S with a line strength of 4.3 × 10-26 cm-1/(molecule cm-2). The linearity of the system response for different degrees of data accumulation and transition line strength was confirmed over four orders of magnitudes. A simple analysis of the time-domain data was demonstrated to provide the line-broadening coefficient without the need for conversion by a Fourier transform. Finally, the pulse duration is discussed and optimal values are given for both Doppler-limited and collisional regimes.

  2. Spectrally modified chirped pulse generation of sustained shock waves

    International Nuclear Information System (INIS)

    McGrane, S.D.; Moore, D.S.; Funk, D.J.; Rabie, R.L.

    2002-01-01

    A method is described for generating shock waves with 10-20 ps risetime followed by >200 ps constant pressure, using spectrally modified (clipped) chirped laser pulses. The degree of spectral clipping alters the chirped pulse temporal intensity profile and thereby the time-dependent pressure (tunable via pulse energy) generated in bare and nitrocellulose-coated Al thin films. The method is implementable in common chirped amplified lasers, and allows synchronous probing with a <200 fs pulse

  3. SAR processing with stepped chirps and phased array antennas.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2006-09-01

    Wideband radar signals are problematic for phased array antennas. Wideband radar signals can be generated from series or groups of narrow-band signals centered at different frequencies. An equivalent wideband LFM chirp can be assembled from lesser-bandwidth chirp segments in the data processing. The chirp segments can be transmitted as separate narrow-band pulses, each with their own steering phase operation. This overcomes the problematic dilemma of steering wideband chirps with phase shifters alone, that is, without true time-delay elements.

  4. Chirp analysis of high-order harmonics from atoms driven by intense femtosecond laser pulses

    International Nuclear Information System (INIS)

    Kim, Hyung Taek; Kim, I Jong; Hong, Kyung-Han; Lee, Dong Gun; Kim, Jung-Hoon; Nam, Chang Hee

    2004-01-01

    The spectral structure of harmonics was experimentally controlled by changing the chirp of femtosecond laser pulses, and the dependence of harmonic chirp on atomic species was analysed using harmonics from neon and helium. Experimental results and theoretical analysis based on the Wigner distribution function showed that the spectral structure varied sensitively to laser chirp and the harmonic chirp was determined by the competition between dynamically induced negative chirp and self-phase modulation induced positive chirp. The generation of sharp and bright harmonics was achieved with appropriately chirped laser pulses under given experimental conditions, especially negatively chirped pulses in the case of laser intensity above the saturation intensity for optical-field ionization

  5. Frequency-chirped readout of spatial-spectral absorption features

    International Nuclear Information System (INIS)

    Chang, Tiejun; Mohan, R. Krishna; Harris, Todd L.; Merkel, Kristian D.; Tian Mingzhen; Babbitt, Wm. Randall

    2004-01-01

    This paper examines the physical mechanisms of reading out spatial-spectral absorption features in an inhomogeneously broadened medium using linear frequency-chirped electric fields. A Maxwell-Bloch model using numerical calculation for angled beams with arbitrary phase modulation is used to simulate the chirped field readout process. The simulation results indicate that any spatial-spectral absorption feature can be read out with a chirped field with the appropriate bandwidth, duration, and intensity. Mapping spectral absorption features into temporal intensity modulations depends on the chirp rate of the field. However, when probing a spatial-spectral grating with a chirped field, a beat signal representing the grating period can be created by interfering the emitted photon echo chirped field with a reference chirped field, regardless of the chirp rate. Comparisons are made between collinear and angled readout configurations. Readout signal strength and spurious signal distortions are investigated as functions of the grating strength and the Rabi frequency of the readout pulse. Using a collinear readout geometry, distortions from optical nutation on the transmitted field and higher-order harmonics are observed, both of which are avoided in an angled beam geometry

  6. Clinical Comparison of Pulse and Chirp Excitation

    DEFF Research Database (Denmark)

    Pedersen, Morten Høgholm; Misaridis, T.; Jensen, Jørgen Arendt

    2002-01-01

    Coded excitation (CE) using frequency modulated signals (chirps) combined with modified matched filtering has earlier been presented showing promising results in simulations and in-vitro. In this study an experimental ultrasound system is evaluated in a clinical setting, where image sequences...... and short pulse excitation to simultaneously produce identical image sequences using both techniques. Nine healthy male volunteers were scanned in abdominal locations. All sequences were evaluated by 3 skilled medical doctors, blinded to each other and to the technique used. They assessed the depth (1...

  7. Frequency chirping during a fishbone burst

    International Nuclear Information System (INIS)

    Marchenko, V.S.; Reznik, S.N.

    2011-01-01

    It is shown that frequency chirping during fishbone activity can be attributed to the reactive torque exerted on the plasma during the instability burst, which slows down plasma rotation inside the q = 1 surface and reduces the mode frequency in the lab frame. Estimates show that the peak value of this torque can exceed the neutral beam torque in modern tokamaks. The simple line-broadened quasilinear burst model (Berk et al 1995 Nucl. Fusion 35 1661), properly adapted for the fishbone case, is capable of reproducing the key features of the bursting mode. (letter)

  8. Spatial chirp in Ti:sapphire multipass amplifier

    International Nuclear Information System (INIS)

    Li Wenkai; Lu Jun; Li Yanyan; Guo Xiaoyang; Wu Fenxiang; Yu Linpeng; Wang Pengfei; Xu Yi; Leng Yuxin

    2017-01-01

    The spatial chirp generated in the Ti:sapphire multipass amplifier is numerically investigated based on the one-dimensional (1D) and two-dimensional (2D) Frantz–Nodvik equations. The simulation indicates that the spatial chirp is induced by the spatially inhomogeneous gain, and it can be almost eliminated by utilization of proper beam profiles and spot sizes of the signal and pump pulses, for example, the pump pulse has a top-hatted beam profile and the signal pulse has a super-Gaussian beam profile with a relatively larger spot size. In this way, a clear understanding of spatial chirp mechanisms in the Ti:sapphire multipass amplifier is proposed, therefore we can effectively almost eliminate the spatial chirp and improve the beam quality of a high-power Ti:sapphire chirped pulse amplifier system. (paper)

  9. Enhancement of Non-Stationary Speech using Harmonic Chirp Filters

    DEFF Research Database (Denmark)

    Nørholm, Sidsel Marie; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2015-01-01

    In this paper, the issue of single channel speech enhancement of non-stationary voiced speech is addressed. The non-stationarity of speech is well known, but state of the art speech enhancement methods assume stationarity within frames of 20–30 ms. We derive optimal distortionless filters that take...... the non-stationarity nature of voiced speech into account via linear constraints. This is facilitated by imposing a harmonic chirp model on the speech signal. As an implicit part of the filter design, the noise statistics are also estimated based on the observed signal and parameters of the harmonic chirp...... model. Simulations on real speech show that the chirp based filters perform better than their harmonic counterparts. Further, it is seen that the gain of using the chirp model increases when the estimated chirp parameter is big corresponding to periods in the signal where the instantaneous fundamental...

  10. Accuracy of CHIRPS Satellite-Rainfall Products over Mainland China

    Directory of Open Access Journals (Sweden)

    Lei Bai

    2018-02-01

    Full Text Available Precipitation is the main component of global water cycle. At present, satellite quantitative precipitation estimates (QPEs are widely applied in the scientific community. However, the evaluations of satellite QPEs have some limitations in terms of the deficiency in observation, evaluation methodology, the selection of time windows for evaluation and short periods for evaluation. The objective of this work is to make some improvements by evaluating the spatio-temporal pattern of the long-terms Climate Hazard Group InfraRed Precipitation Satellite’s (CHIRPS’s QPEs over mainland China. In this study, we compared the daily precipitation estimates from CHIRPS with 2480 rain gauges across China and gridded observation using several statistical metrics in the long-term period of 1981–2014. The results show that there is significant difference between point evaluation and grid evaluation for CHIRPS. CHIRPS has better performance for a large amount of precipitation than it does for arid and semi-arid land. The change in good performance zones has strong relationship with monsoon’s movement. Therefore, CHIRPS performs better in river basins of southern China and exhibits poor performance in river basins in northwestern and northern China. Moreover, CHIRPS exhibits better in warm season than in Winter, owing to its limited ability to detect snowfall. Nevertheless, CHIRPS is moderately sensitive to the precipitation from typhoon weather systems. The limitations for CHIRPS result from the Tropical Rainfall Measuring Mission (TRMM 3B42 estimates’ accuracy and valid spatial coverage.

  11. Chirped pulse amplification: Present and future

    International Nuclear Information System (INIS)

    Maine, P.; Strickland, D.; Pessot, M.; Squier, J.; Bado, P.; Mourou, G.; Harter, D.

    1988-01-01

    Short pulses with ultrahigh peak powers have been generated in Nd: glass and Alexandrite using the Chirped Pulse Amplification (CPA) technique. This technique has been successful in producing picosecond terawatt pulses with a table-top laser system. In the near future, CPA will be applied to large laser systems such as NOVA to produce petawatt pulses (1 kJ in a 1 ps pulse) with focused intensities exceeding 10/sup /plus/21/ W/cm 2 . These pulses will be associated with electric fields in excess of 100 e/a/sub o/ 2 and blackbody energy densities equivalent to 3 /times/ 10 10 J/cm 3 . This petawatt source will have important applications in x-ray laser research and will lead to fundamentally new experiments in atomic, nuclear, solid-state, plasma, and high-energy density physics. A review of present and future designs are discussed. 17 refs., 5 figs

  12. Frequency Chirping during a Fishbone Burst

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, V.; Reznik, S., E-mail: march@kinr.kiev.ua [Institute for Nuclear Research, Kyiv (Ukraine)

    2012-09-15

    Full text: It is shown that gradual (more than a factor of two, in some cases - down to zero in the lab frame) reduction of the mode frequency (the so called frequency chirping) can be attributed to the reactive torque exerted on the plasma during the fishbone instability burst, which slows down the plasma rotation inside the q = 1 surface and reduces the mode frequency in the lab frame, while frequency in the plasma frame remains constant. This torque arises due to imbalance between the power transfered to the mode by energeric ions and the power of the mode dissipation by thermal species. Estimates show that the peak value of this torque exceeds the neutral beam torque in modern tokamaks and in ITER. The line-broadened quasilinear burst model, properly adapted for the fishbone case, is capable of reproducing the key features of the bursting mode. (author)

  13. Study of proton radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Back, B.B.; Henderson, D.J. [and others

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  14. Charged particle interaction with a chirped electromagnetic pulse

    NARCIS (Netherlands)

    Khachatryan, A.G.; Boller, Klaus J.; van Goor, F.A.

    2003-01-01

    It is found that a charged particle can get a net energy gain from the interaction with an electromagnetic chirped pulse. Theoretically, the energy gain increases with the pulse amplitude and with the relative frequency variation in the pulse.

  15. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild

    1997-01-01

    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...... different regimes and the transition between them are characterized experimentally and the behavior is explained on the basis of our model for the CPM laser dynamics. (C) 1997 American Institute of Physics....

  16. Simulation of Chirping Avalanche in Neighborhood of TAE gap

    Science.gov (United States)

    Berk, Herb; Breizman, Boris; Wang, Ge; Zheng, Linjin

    2016-10-01

    A new kinetic code, CHIRP, focuses on the nonlinear response of resonant energetic particles (EPs) that destabilize Alfven waves which then can produce hole and clump phase space chirping structures, while the background plasma currents are assumed to respond linearly to the generated fields. EP currents are due to the motion arising from the perturbed field that is time averaged over an equilibrium orbit. A moderate EP source produces TAE chirping structures that have a limited range of chirping that do not reach the continuum. When the source is sufficiently strong, an EPM is excited in the lower continuum and it chirps rapidly downward as its amplitude rapidly grows in time. This response resembles the experimental observation of an avalanche, which occurs after a series of successive chirping events with a modest frequency shift, and then suddenly a rapid large amplitude and rapid frequency burst to low frequency with the loss of EPs. From these simulation observations we propose that in the experiment the EP population is slowly increasing to the point where the EPM is eventually excited. Supported by SCIDAC Center for Nonlinear Simulation of Energetic Particles Burning Plasmas (CSEP).

  17. Effects of moderate pump and Stokes chirp on chirped-probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry

    KAUST Repository

    Gu, Mingming

    2018-01-08

    The effects of moderate levels of chirp in the pump and Stokes pulses on chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CPP fs CARS) were investigated. The frequency chirp in the pump and Stokes pulses was introduced by placing SF11 glass disks with thicknesses of 10 mm or 20 mm in the optical path for these beams. The magnitude of the chirp in the probe beam was much greater and was induced by placing a 30-cm rod of SF10 glass in the beam path. The temperature measurements were performed in hydrogen/air non-premixed flames stabilized on a Hencken burner at equivalence ratios of 0.3, 0.5, 0.7, and 1.0. We performed measurements with no disks in pump and Stokes beam paths, and then with disks of 10 mm and 20 mm placed in both beam paths. The spectrum of the nonresonant background four-wave mixing signal narrowed considerably with increasing pump and Stokes chirp, while the resonant CARS signal was relatively unaffected. Consequently, the interference of the nonresonant background with the resonant CARS signal in the frequency-spread dephasing region of the spectrum was minimized. The increased rate of decay of the resonant CARS signal with increasing temperature was thus readily apparent. We have started to analyze the CPP fs CARS thermometry data and initial results indicate improved accuracy and precision are obtained due to moderate chirp in the pump and Stokes laser pulses.

  18. Chirp effects on impulsive vibrational spectroscopy: a multimode perspective.

    Science.gov (United States)

    Wand, Amir; Kallush, Shimshon; Shoshanim, Ofir; Bismuth, Oshrat; Kosloff, Ronnie; Ruhman, Sanford

    2010-03-07

    The well-documented propensity of negatively-chirped pulses to enhance resonant impulsive Raman scattering has been rationalized in terms of a one pulse pump-dump sequence which "follows" the evolution of the excited molecules and dumps them back at highly displaced configurations. The aim of this study was to extend the understanding of this effect to molecules with many displaced vibrational modes in the presence of condensed surroundings. In particular, to define an optimally chirped pulse, to investigate what exactly it "follows" and to discover how this depends on the molecule under study. To this end, linear chirp effects on vibrational coherences in poly-atomics are investigated experimentally and theoretically. Chirped pump-impulsive probe experiments are reported for Sulforhodamine-B ("Kiton Red"), Betaine-30 and Oxazine-1 in ethanol solutions with <10 fs resolution. Numerical simulations, including numerous displaced modes and electronic dephasing, are conducted to reproduce experimental results. Through semi-quantitative reproduction of experimental results in all three systems we show that the effect of group velocity dispersion (GVD) on the buildup of ground state wave-packets depends on the pulse spectrum, on the displacements of vibrational modes upon excitation, on the detuning of the excitation pulses from resonance, and on electronic dephasing rates. Akin to scenarios described for frequency-domain resonance Raman, within the small-displacement regime each mode responds to excitation chirp independently and the optimal GVD is mode-specific. Highly-displaced modes entangle the dynamics of excitation in different modes, requiring a multi-dimensional description of the response. Rapid photochemistry and ultrafast electronic dephasing narrow the window of opportunity for coherent manipulations, leading to a reduced and similar optimal chirp for different modes. Finally, non-intuitive coherent aspects of chirp "following" are predicted in the small

  19. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar, E-mail: gjeschke@ethz.ch [ETH Zurich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, CH-8093 Zurich (Switzerland)

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.

  20. Proton-proton bremsstrahlung

    International Nuclear Information System (INIS)

    Fearing, H.W.

    1990-01-01

    We summarize some of the information about the nucleon-nucleon force which has been obtained by comparing recent calculations of proton-proton bremsstrahlung with cross section and analyzing power data from the new TRIUMF bremsstrahlung experiment. Some comments are made as to how these results can be extended to neutron-proton bremsstrahlung. (Author) 17 refs., 6 figs

  1. Generation of frequency-chirped optical pulses with felix

    Energy Technology Data Exchange (ETDEWEB)

    Knippels, G.M.H.; Meer, A.F.G. van der; Mols, R.F.X.A.M. [FOM-Institute for Plasma Physics, Nieuwegein (Netherlands)] [and others

    1995-12-31

    Frequency-chirped optical pulses have been produced in the picosecond regime by varying the energy of the electron beam on a microsecond time scale. These pulses were then compressed close to their bandwidth limit by an external pulse compressor. The amount of chirp can be controlled by varying the sweep rate on the electron beam energy and by cavity desynchronisation. To examine the generated chirp we used the following diagnostics: a pulse compressor, a crossed beam autocorrelator, a multichannel electron spectrometer and multichannel optical spectrometer. The compressor is build entirely using reflective optics to permit broad band operation. The autocorrelator is currently operating from 6 {mu}m to 30 {mu}m with one single crystal. It has been used to measure pulses as short as 500 fs. All diagnostics are evacuated to prevent pulse shape distortion or pulse lengthening caused by absorption in ambient water vapour. Pulse length measurements and optical spectra will be presented for different electron beam sweep rates, showing the presence of a frequency chirp. Results on the compression of the optical pulses to their bandwidth limit are given for different electron sweep rates. More experimental results showing the dependence of the amount of chirp on cavity desynchronisation will be presented.

  2. Exploring Agro-Climatic Trends in Ethiopia Using CHIRPS

    Science.gov (United States)

    Pedreros, D. H.; Funk, C. C.; Brown, M. E.; Korecha, D.; Seid, Y. M.

    2015-12-01

    The Famine Early Warning Systems Network (FEWS NET) uses the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) to monitor agricultural food production in different regions of the world. CHIRPS is a 1981-present, 5 day, approximately 5km resolution, rainfall product based on a combination of geostationary satellite observations, a high resolution climatology and in situ station observations. Furthermore, FEWS NET has developed a gridded implementation of the Water Requirement Satisfaction Index (WRSI), a water balance measurement indicator of crop performance. This study takes advantage of the CHIRPS' long term period of record and high spatial and temporal resolution to examine agro-climatic trends in Ethiopia. We use the CHIRPS rainfall dataset to calculate the WRSI for the boreal spring and summer crop seasons, as well as for spring-summer rangelands conditions. We find substantial long term rainfall declines in the spring and summer seasons across southeastern and northeastern Ethiopia. Crop Model results indicate that rainfall declines in the cropped regions have been associated with water deficits during the critical grain filling periods in well populated and/or highly vulnerable parts of eastern Ethiopia. WRSI results in the pastoral areas indicate substantial reductions in rangeland health during the later part of the growing seasons. These health declines correspond to the regions of Somaliland and Afar that have experienced chronic severe food insecurity since 2010. Key words: CHIRPS, satellite estimated rainfall, agricultural production

  3. Multiuser chirp modulation for underwater acoustic channel based on VTRM

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    2017-05-01

    Full Text Available In this paper, an ascheme is proposed for multiuser underwater acoustic communication by using the multi-chirp rate signals. It differs from the well known TDMA (Time Division Multiple Access, FDMA (Frequency Division Multiple Access or CDMA (Code Division Multiple Access, by assigning each users with different chirp-rate carriers instead of the time, frequency or PN code. Multi-chirp rate signals can be separated from each other by FrFT (Fractional Fourier Transform, which can be regarded as the chirp-based decomposing, and superior to the match filter in the underwater acoustic channel. VTRM (Virtual Time Reverse Mirror is applied into the system to alleviate the ISI caused by the multipatch and make the equalization more simple. Results of computer simulations and pool experiments prove that the proposed multiuser underwater acoustic communication based on the multi-chirp rate exhibit well performance. Outfield experments carrie out in Xiamen Port show that using about 10 kHz bandwidth, four users could communicate at the same time with 425 bps with low BER and can match the UAC application.

  4. Phase-locking transition in a chirped superconducting Josephson resonator.

    Science.gov (United States)

    Naaman, O; Aumentado, J; Friedland, L; Wurtele, J S; Siddiqi, I

    2008-09-12

    We observe a sharp threshold for dynamic phase locking in a high-Q transmission line resonator embedded with a Josephson tunnel junction, and driven with a purely ac, chirped microwave signal. When the drive amplitude is below a critical value, which depends on the chirp rate and is sensitive to the junction critical current I0, the resonator is only excited near its linear resonance frequency. For a larger amplitude, the resonator phase locks to the chirped drive and its amplitude grows until a deterministic maximum is reached. Near threshold, the oscillator evolves smoothly in one of two diverging trajectories, providing a way to discriminate small changes in I0 with a nonswitching detector, with potential applications in quantum state measurement.

  5. Duobinary pulse shaping for frequency chirp enabled complex modulation.

    Science.gov (United States)

    Che, Di; Yuan, Feng; Khodakarami, Hamid; Shieh, William

    2016-09-01

    The frequency chirp of optical direct modulation (DM) used to be a performance barrier of optical transmission system, because it broadens the signal optical spectrum, which becomes more susceptible to chromatic dispersion induced inter-symbol interference (ISI). However, by considering the chirp as frequency modulation, the single DM simultaneously generates a 2-D signal containing the intensity and phase (namely, the time integral of frequency). This complex modulation concept significantly increases the optical signal to noise ratio (OSNR) sensitivity of DM systems. This Letter studies the duobinary pulse shaping (DB-PS) for chirp enabled DM and its impact on the optical bandwidth and system OSNR sensitivity. DB-PS relieves the bandwidth requirement, at the sacrifice of system OSNR sensitivity. As DB-PS induces a controlled ISI, the receiver requires one more tap for maximum likelihood sequence estimation (MLSE). We verify this modified MLSE with a 10-Gbaud duobinary PAM-4 transmission experiment.

  6. Narrowband pulse-enhanced upconversion of chirped broadband pulses

    International Nuclear Information System (INIS)

    Zhao, Kun; Yuan, Peng; Zhong, Haizhe; Zhang, Dongfang; Zhu, Heyuan; Qian, Liejia; Chen, Liezun; Wen, Shuangchun

    2010-01-01

    We propose and demonstrate an efficient sum-frequency mixing scheme based on narrowband and chirped broadband pulses. It combines the advantages of wider spectral acceptance bandwidth and of alleviating the temporal walk-off, which are both beneficial to higher conversion efficiency. Chirped sum-frequency pulses at 455 nm with energy up to 360 µJ, corresponding to a conversion efficiency of ∼ 40%, are obtained and the pulses can be compressed to ∼ 110 fs. The sum-frequency mixing scheme may provide a promising route to the efficient generation of deep-ultraviolet femtosecond pulses

  7. Observation and explanation of the JET n=0 chirping mode

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, C.J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)]. E-mail: christopher.boswell@navy.mil; Berk, H.L. [Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712-1060 (United States); Borba, D.N. [Centro de Fusao Nuclear Associacao Euratom-IST, Instituto Superior Tecnico, 1049001 Lisbon (Portugal); EFDA Close Support Unit, Culham Science Centre, OX14 3DB (United Kingdom); Johnson, T. [Alfven Laboratory, KTH, Euratom-VR Association (Sweden); Pinches, S.D. [Max-Planck Institute for Plasma Physics, EURATOM Association, D-85748 Garching (Germany); Sharapov, S.E. [Euratom-UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2006-10-09

    Persistent rapid up and down frequency chirping modes with a toroidal mode number of zero (n=0) have been observed in the JET tokamak when energetic ions, with a mean energy {approx}500keV, were created by high field side ion cyclotron resonance frequency heating. This heating method enables the formation of an energetically inverted ion distribution function that allows ions to spontaneously excite the observed instability, identified as a global geodesic acoustic mode. The interpretation is that phase space structures form and interact with the fluid zonal flow to produce the pronounced frequency chirping.

  8. Ultrabroadband optical chirp linearization for precision metrology applications.

    Science.gov (United States)

    Roos, Peter A; Reibel, Randy R; Berg, Trenton; Kaylor, Brant; Barber, Zeb W; Babbitt, Wm Randall

    2009-12-01

    We demonstrate precise linearization of ultrabroadband laser frequency chirps via a fiber-based self-heterodyne technique to enable extremely high-resolution, frequency-modulated cw laser-radar (LADAR) and a wide range of other metrology applications. Our frequency chirps cover bandwidths up to nearly 5 THz with frequency errors as low as 170 kHz, relative to linearity. We show that this performance enables 31-mum transform-limited LADAR range resolution (FWHM) and 86 nm range precisions over a 1.5 m range baseline. Much longer range baselines are possible but are limited by atmospheric turbulence and fiber dispersion.

  9. Reference hearing threshold levels for chirp signals delivered by an ER-3A insert earphone

    DEFF Research Database (Denmark)

    Gøtsche-Rasmussen, Kristian; Poulsen, Torben; Elberling, Claus

    2012-01-01

    back from a Tucker Davies Technologies System II, and a Matlab program controlled the test setup. The results are specified in dB peak-to-peak equivalent threshold sound pressure levels (dB peETSPL). Study sample: The test group consisted of 25 otologically-normal young adults (age 18–25 years......Objective: To establish reference hearing threshold levels for chirps and frequency-specific chirps. Design: Hearing thresholds were determined monaurally for broad-band chirps and octave-band chirps using the Etymotic Research, ER-3A insert earphone. The chirps were presented using two repetition...

  10. Measurement and control of the frequency chirp rate of high-order harmonic pulses

    International Nuclear Information System (INIS)

    Mauritsson, J.; Johnsson, P.; Lopez-Martens, R.; Varju, K.; L'Huillier, A.; Kornelis, W.; Biegert, J.; Keller, U.; Gaarde, M.B.; Schafer, K.J.

    2004-01-01

    We measure the chirp rate of harmonics 13 to 23 in argon by cross correlation with a 12 femtosecond probe pulse. Under low ionization conditions, we directly measure the negative chirp due to the atomic dipole phase, and show that an additional chirp on the pump pulse is transferred to the qth harmonic as q times the fundamental chirp. Our results are in accord with simulations using the experimentally measured 815 nm pump and probe pulses. The ability to measure and manipulate the harmonic chirp rate is essential for the characterization and optimization of attosecond pulse trains

  11. Ultrafast geometric control of a single qubit using chirped pulses

    International Nuclear Information System (INIS)

    Hawkins, Patrick E; Malinovskaya, Svetlana A; Malinovsky, Vladimir S

    2012-01-01

    We propose a control strategy to perform arbitrary unitary operations on a single qubit based solely on the geometrical phase that the qubit state acquires after cyclic evolution in the parameter space. The scheme uses ultrafast linearly chirped pulses and provides the possibility of reducing the duration of a single-qubit operation to a few picoseconds.

  12. Decoherence control in quantum computing with simple chirped ...

    Indian Academy of Sciences (India)

    We show how the use of optimally shaped pulses to guide the time evolution of a system ('coherent control') can be an effective approach towards quantum computation logic. We demonstrate this with selective control of decoherence for a multilevel system with a simple linearly chirped pulse. We use a multiphoton ...

  13. Interaction of free charged particles with a chirped electromagnetic pulse

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2004-01-01

    We study the effect of chirp on electromagnetic (EM) pulse interaction with a charged particle. Both the one-dimensional (1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped pulse, the charged particle energy can be changed after the interaction with a 1D EM

  14. Ultra-Compact linear chirped microwave signal generator

    DEFF Research Database (Denmark)

    Yan, Siqi; Zhou, Feng; Dong, Jianji

    2017-01-01

    A novel concept to generate linear chirped microwave signal is proposed and experimentally verified. The frequency to time mapping method is used while the Mach-Zehnder interferometer based on the photonic crystal waveguide is employed as the key device with its significant advantages of the ultra...

  15. Parameter estimation of linear and quadratic chirps by employing ...

    Indian Academy of Sciences (India)

    Almeida (1994) has defined the Fractional Fourier Transform (FrFT) by means of the transfor- .... From Eqs. (5–11), we see that x(t) can be expressed in terms of the ortho-normal basis formed .... In other words, during the binary search, we are taking slices of the |ZFα (u)| surface ... LFM chirp is calculated from Eq. (25).

  16. MGL111 Chirp - US Extended Continental Shelf Project: Bering Sea CHIRP high-resolution Seismic Profile data.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Knudsen 2620 acquired sub-bottom profiles continuously throughout the cruise. The Knudsen was operated in 3.5 kHz Chirp mode, emitting a 1.5 kHz to 5 kHz (3 kHz...

  17. MGL1109 Chirp - US Extended Continental Shelf Project: Gulf of Alaska CHIRP high-resolution Seismic Profile data.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Knudsen 2620 acquired sub-bottom profiles continuously throughout the cruise. The Knudsen was operated in 3.5 kHz Chirp mode, emitting a 1.5 kHz to 5 kHz (3 kHz...

  18. Role of third-order dispersion in chirped Airy pulse propagation in single-mode fibers

    Science.gov (United States)

    Cai, Wangyang; Wang, Lei; Wen, Shuangchun

    2018-04-01

    The dynamic propagation of the initial chirped Airy pulse in single-mode fibers is studied numerically, special attention being paid to the role of the third-order dispersion (TOD). It is shown that for the positive TOD, the Airy pulse experiences inversion irrespective of the sign of initial chirp. The role of TOD in the dynamic propagation of the initial chirped Airy pulse depends on the combined sign of the group-velocity dispersion (GVD) and the initial chirp. If the GVD and chirp have the opposite signs, the chirped Airy pulse compresses first and passes through a breakdown area, then reconstructs a new Airy pattern with opposite acceleration, with the breakdown area becoming small and the main peak of the new Airy pattern becoming asymmetric with an oscillatory structure due to the positive TOD. If the GVD and chirp have the same signs, the finite-energy Airy pulse compresses to a focal point and then inverses its acceleration, in the case of positive TOD, the distance to the focal point becoming smaller. At zero-dispersion point, the finite-energy Airy pulse inverses to the opposite acceleration at a focal point, with the tight-focusing effect being reduced by initial chirp. Under the effect of negative TOD, the initial chirped Airy pulse disperses and the lobes split. In addition, in the anomalous dispersion region, for strong nonlinearity, the initial chirped Airy pulse splits and enters a soliton shedding regime.

  19. Electromagnetic Chirps from Neutron Star-Black Hole Mergers

    Science.gov (United States)

    Schnittman, Jeremy D.; Dal Canton, Tito; Camp, Jordan B.; Tsang, David; Kelly, Bernard J.

    2018-01-01

    We calculate the electromagnetic signal of a gamma-ray flare coming from the surface of a neutron star shortly before merger with a black hole companion. Using a new version of the Monte Carlo radiation transport code Pandurata that incorporates dynamic spacetimes, we integrate photon geodesics from the neutron star surface until they reach a distant observer or are captured by the black hole. The gamma-ray light curve is modulated by a number of relativistic effects, including Doppler beaming and gravitational lensing. Because the photons originate from the inspiraling neutron star, the light curve closely resembles the corresponding gravitational waveform: a chirp signal characterized by a steadily increasing frequency and amplitude. We propose to search for these electromagnetic chirps using matched filtering algorithms similar to those used in LIGO data analysis.

  20. Optical chirp z-transform processor with a simplified architecture.

    Science.gov (United States)

    Ngo, Nam Quoc

    2014-12-29

    Using a simplified chirp z-transform (CZT) algorithm based on the discrete-time convolution method, this paper presents the synthesis of a simplified architecture of a reconfigurable optical chirp z-transform (OCZT) processor based on the silica-based planar lightwave circuit (PLC) technology. In the simplified architecture of the reconfigurable OCZT, the required number of optical components is small and there are no waveguide crossings which make fabrication easy. The design of a novel type of optical discrete Fourier transform (ODFT) processor as a special case of the synthesized OCZT is then presented to demonstrate its effectiveness. The designed ODFT can be potentially used as an optical demultiplexer at the receiver of an optical fiber orthogonal frequency division multiplexing (OFDM) transmission system.

  1. Study on high gain broadband optical parametric chirped pulse amplification

    International Nuclear Information System (INIS)

    Zhang, S.K.; Fujita, M.; Yamanaka, C.; Yoshida, H.; Kodama, R.; Fujita, H.; Nakatsuka, M.; Izawa, Y.

    2000-01-01

    Optical parametric chirped pulse amplification has apparent advantages over the current schemes for high energy ultrashort pulse amplification. High gain in a single pass amplification, small B-integral, low heat deposition, high contrast ratio and, especially the extremely broad gain bandwidth with large-size crystals available bring people new hope for over multi-PW level at which the existing Nd:glass systems suffered difficulties. In this paper we present simulation and experimental studies for a high gain optical parametric chirped pulse amplification system which may be used as a preamplifier to replace the current complicated regenerative system or multi-pass Ti:sapphire amplifiers. Investigations on the amplification bandwidth and gain with BBO are performed. Analysis and discussions are also given. (author)

  2. Hyper dispersion pulse compressor for chirped pulse amplification systems

    Science.gov (United States)

    Barty, Christopher P. J.

    2011-11-29

    A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

  3. Excess quantum noise in optical parametric chirped-pulse amplification

    OpenAIRE

    Manzoni, C.; Moses, J.; Kärtner, F. X.; Cerullo, G.

    2011-01-01

    Noise evolution in an optical parametric chirped-pulse amplifier (OPCPA) differs essentially from that of an optical parametric or a conventional laser amplifier, in that an incoherent pedestal is produced by superfluorescence that can overwhelm the signal under strong saturation. Using a model for the nonlinear dynamics consistent with quantum mechanics, we numerically study the evolution of excess noise in an OPCPA. The observed dynamics explain the macroscopic characteristics seen previous...

  4. Superharmonic imaging with chirp coded excitation: filtering spectrally overlapped harmonics.

    Science.gov (United States)

    Harput, Sevan; McLaughlan, James; Cowell, David M J; Freear, Steven

    2014-11-01

    Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without

  5. Effect of linear chirp on strong field photodissociation of H+2

    International Nuclear Information System (INIS)

    Prabhudesai, Vaibhav; Natan, Adi; Bruner, Barry; Silberberg, Yaron; Lev, Uri; Heber, Oded; Strasser, Daniel; Schwalm, Dirk; Zajfman, Daniel; Ben-Itzhak, Itzik

    2011-01-01

    We report the experimental findings of a systematic study of the effect of linear chirp on strong field photodissociation of H + 2 . For vibrational levels around or above the one photon crossing, the effect manifests itself in terms of a shift in the kinetic energy release (KER) peaks. The peaks shift up for negative chirp whereas they shift down for positive chirp. The measurements are carried out by varying two of the three laser pulse characteristics, energy, pulse peak intensity and linear chirp, while keeping the third constant. The shifts in the KER peaks are found to be intensity dependent for a given value of chirp. However, in the last two cases (i.e., fixed pulsed energy and fixed pulse peak intensity), they are found to be independent of the chirp magnitude. The results are understood on the basis of saturation of photodissociation probabilities for these levels.

  6. Effect of linear chirp on strong field photodissociation of H{sup +}{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Prabhudesai, Vaibhav; Natan, Adi; Bruner, Barry; Silberberg, Yaron; Lev, Uri; Heber, Oded; Strasser, Daniel; Schwalm, Dirk; Zajfman, Daniel [Weizmann Institute of Science, 76100 (Israel); Ben-Itzhak, Itzik [Kansas State University, Kansas (United States)

    2011-10-15

    We report the experimental findings of a systematic study of the effect of linear chirp on strong field photodissociation of H{sup +}{sub 2}. For vibrational levels around or above the one photon crossing, the effect manifests itself in terms of a shift in the kinetic energy release (KER) peaks. The peaks shift up for negative chirp whereas they shift down for positive chirp. The measurements are carried out by varying two of the three laser pulse characteristics, energy, pulse peak intensity and linear chirp, while keeping the third constant. The shifts in the KER peaks are found to be intensity dependent for a given value of chirp. However, in the last two cases (i.e., fixed pulsed energy and fixed pulse peak intensity), they are found to be independent of the chirp magnitude. The results are understood on the basis of saturation of photodissociation probabilities for these levels.

  7. Frequency-chirp rates of harmonics driven by a few-cycle pulse

    International Nuclear Information System (INIS)

    Murakami, M.; Mauritsson, J.; Gaarde, M.B.

    2005-01-01

    We present numerical calculations of the time-frequency characteristics of cutoff harmonics generated by few-cycle laser pulses. We find that for driving pulses as short as three optical cycles, the adiabatic prediction for the harmonic chirp rate is very accurate. This negative chirp is so large that the resulting bandwidth causes substantial overlap between neighboring harmonics, and the harmonic phase therefore appears to not vary in time or frequency. By adding a compensating positive chirp to the driving pulse, which reduces the harmonic bandwidth and allows for the appearance of the negative chirp, we can measure the harmonic chirp rates. We also find that the positive chirp on the driving pulse causes the harmonics to shift down in frequency. We show that this counterintuitive result is caused by the change in the strong field continuum dynamics introduced by the variation of the driving frequency with time

  8. Coherent chirped pulse laser network with Mickelson phase conjugator.

    Science.gov (United States)

    Okulov, A Yu

    2014-04-10

    The mechanisms of nonlinear phase-locking of a large fiber amplifier array are analyzed. The preference is given to the most suitable configuration for a coherent coupling of thousands of fundamental spatial mode fiber beams into a single smooth beam ready for chirped pulse compression. It is shown that a Michelson phase-conjugating configuration with double passage through an array of fiber amplifiers has the definite advantage compared to a one-way fiber array coupled in a Mach-Zehnder configuration. Regardless of the amount of synchronized fiber amplifiers, the Michelson phase-conjugating interferometer is expected to do a perfect compensation of the phase-piston errors and collimation of backwardly amplified fiber beams on an entrance/output beam splitter. In both configurations, the nonlinear transformation of the stretched pulse envelope, due to gain saturation, is capable of randomizing the position of chirp inside an envelope; thus it may reduce the visibility of the interference pattern at an output beam splitter. Certain advantages are inherent to the sech-form temporal envelope because of the exponential precursor and self-similar propagation in gain medium. The Gaussian envelope is significantly compressed in a deep gain saturation regime, and the frequency chirp position inside pulse envelope is more deformed.

  9. Overview of Spontaneous Frequency Chirping in Confined Plasmas

    Science.gov (United States)

    Berk, Herbert

    2012-10-01

    Spontaneous rapid frequency chirping is now a commonly observed phenomenon in plasmas with an energetic particle component. These particles typically induce so called weak instabilities, where they excite background waves that the plasma can support such as shear Alfven waves. The explanation for this phenomenon attributes the frequency chirping to the formation of phase space structures in the form of holes and clumps. Normally a saturated mode, in the presence of background dissipation, would be expected decay after saturation as the background plasma absorbs the energy of the excited wave. However the phase space structures take an alternate route, and move to a regions of phase space that are lower energy states of the energetic particle distribution. Through the wave-resonant particle interaction, this movement is locked to the frequency observed by the wave. This phenomenon implies that alternate mechanisms for plasma relaxation need to be considered for plasma states new marginal stability. It is also possible that these chirping mechanisms can be used to advantage to externally control states of plasma.

  10. Mapping Rotational Wavepacket Dynamics with Chirped Probe Pulses

    Science.gov (United States)

    Romanov, Dmitri; Odhner, Johanan; Levis, Robert

    2014-05-01

    We develop an analytical model description of the strong-field pump-probe polarization spectroscopy of rotational transients in molecular gases in a situation when the probe pulse is considerably chirped: the frequency modulation over the pulse duration is comparable with the carrier frequency. In this scenario, a femtosecond pump laser pulse prepares a rotational wavepacket in a gas-phase sample at room temperature. The rotational revivals of the wavepacket are then mapped onto a chirped broadband probe pulse derived from a laser filament. The slow-varying envelope approximation being inapplicable, an alternative approach is proposed which is capable of incorporating the substantial chirp and the related temporal dispersion of refractive indices. Analytical expressions are obtained for the probe signal modulation over the interaction region and for the resulting heterodyned transient birefringence spectra. Dependencies of the outputs on the probe pulse parameters reveal the trade-offs and the ways to optimize the temporal-spectral imaging. The results are in good agreement with the experiments on snapshot imaging of rotational revival patterns in nitrogen gas. We gratefully acknowledge financial support through AFOSR MURI Grant No. FA9550-10-1-0561.

  11. Electron laser acceleration in vacuum by a quadratically chirped laser pulse

    International Nuclear Information System (INIS)

    Salamin, Yousef I; Jisrawi, Najeh M

    2014-01-01

    Single MeV electrons in vacuum subjected to single high-intensity quadratically chirped laser pulses are shown to gain multi-GeV energies. The laser pulses are modelled by finite-duration trapezoidal and cos  2 pulse-shapes and the equations of motion are solved numerically. It is found that, typically, the maximum energy gain from interaction with a quadratic chirp is about half of what would be gained from a linear chirp. (paper)

  12. Reduction of damage threshold in dielectric materials induced by negatively chirped laser pulses

    International Nuclear Information System (INIS)

    Louzon, E.; Henis, Z.; Pecker, S.; Ehrlich, Y.; Fisher, D.; Fraenkel, M.; Zigler, A.

    2005-01-01

    The threshold fluence for laser induced damage in wide band gap dielectric materials, fused silica and MgF 2 , is observed to be lower by up to 20% for negatively (down) chirped pulses than for positively (up) chirped, at pulse durations ranging from 60 fs to 1 ps. This behavior of the threshold fluence for damage on the chirp direction was not observed in semiconductors (silicon and GaAs). Based on a model including electron generation in the conduction band and Joule heating, it is suggested that the decrease in the damage threshold for negatively chirped pulse is related to the dominant role of multiphoton ionization in wide gap materials

  13. Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control.

    Science.gov (United States)

    Gorju, G; Jucha, A; Jain, A; Crozatier, V; Lorgeré, I; Le Gouët, J-L; Bretenaker, F; Colice, M

    2007-03-01

    We propose and demonstrate a novel active stabilization scheme for wide and fast frequency chirps. The system measures the laser instantaneous frequency deviation from a perfectly linear chirp, thanks to a digital phase detection process, and provides an error signal that is used to servo-loop control the chirped laser. This way, the frequency errors affecting a laser scan over 10 GHz on the millisecond timescale are drastically reduced below 100 kHz. This active optoelectronic digital servo-loop control opens new and interesting perspectives in fields where rapidly chirped lasers are crucial.

  14. Implantation of the method of quantitative analysis by proton induced X-ray analysis and application to the analysis of aerosols

    International Nuclear Information System (INIS)

    Margulis, W.

    1977-09-01

    Fundamental aspects for the implementation of the method of quantitative analysis by proton induced X-ray spectroscopy are discussed. The calibration of the system was made by determining a response coefficient for selected elements, both by irradiating known amounts of these elements as well as by the use of theoretical and experimental parameters. The results obtained by these two methods agree within 5% for the analysed elements. A computer based technique of spectrum decomposition was developed to facilitate routine analysis. Finally, aerosol samples were measured as an example of a possible application of the method, and the results are discussed. (Author) [pt

  15. Superimposed chirped pulse parameter estimation based on the extended Kalman filter (EKF)

    CSIR Research Space (South Africa)

    Olivier, JC

    2009-05-01

    Full Text Available An extended Kalman filter (EKF) is proposed to estimate the frequencies and chirp rate of multiple superimposed chirped pulses. The estimation problem is a difficult one, where maximum likelyhood methods are very complex especially if more than two...

  16. Effects of Energy Chirp on Echo-Enabled Harmonic Generation Free-Electron Lasers

    International Nuclear Information System (INIS)

    Huang, Z.

    2009-01-01

    We study effects of energy chirp on echo-enabled harmonic generation (EEHG). Analytical expressions are compared with numerical simulations for both harmonic and bunching factors. We also discuss the EEHG free-electron laser bandwidth increase due to an energy-modulated beam and its pulse length dependence on the electron energy chirp

  17. Propagation and reflection of chirped pulses in the nonuniform ionospheric plasma

    International Nuclear Information System (INIS)

    Levitsky, S.M.

    2009-01-01

    By passing of a chirped pulse in a inhomogeneous ionospheric plasma this pulses due to the dispersion futures of the plasma becomes deformed and can be strongly compressed. The chirped pulse can be compressed also being reflected by the ionosphere. This can give some advantage using such pulses in the experiments of ionospheric zoning.

  18. Optical label encoding using electroabsorption modulators and investigation of chirp properties

    DEFF Research Database (Denmark)

    Xu, Lin; Chi, Nan; Oxenløwe, Leif Katsuo

    2003-01-01

    A novel scheme of optical label encoding by wavelength conversion based on electroabsorption modulators (EAMs) is reported. Based on the experimental observations, the chirp properties of the wavelength-converted signal are discussed and a wide dynamic range of the chirp α-parameter is found...

  19. Low-frequency versus high-frequency synchronisation in chirp-evoked auditory brainstem responses

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Gøtsche-Rasmussen, Kristian

    2011-01-01

    This study investigates the frequency specific contribution to the auditory brainstem response (ABR) of chirp stimuli. Frequency rising chirps were designed to compensate for the cochlear traveling wave delay, and lead to larger wave-V amplitudes than for click stimuli as more auditory nerve fibr...

  20. Few-cycle Optical Parametric Chirped Pulse Amplification

    Science.gov (United States)

    2007-01-08

    silicon - 150mm suprasi1300 Figure 10. Stretcher-compressor unit: group delay 5 -45mm TeO2 (ordinary) (GD) of 30mm silicon, 150mm suprasil300, 45mm CL 0...cycle pulse characterization: 840 -Measured raw 2DSI 20 °OA- traces for pulse (a) before 02. -and (b) after dispersion D 0 by glass plate; (c) so...fused silica plateJ19] see Fig. 15(a), along with the extracted spectral group delays. The chirp introduced by the glass plate is reflected in the

  1. Spatial filtering of light by chirped photonic crystals

    International Nuclear Information System (INIS)

    Staliunas, Kestutis; Sanchez-Morcillo, Victor J.

    2009-01-01

    We propose an efficient method for spatial filtering of light beams by propagating them through two-dimensional (also three dimensional) chirped photonic crystals, i.e., through the photonic structures with fixed transverse lattice period and with the longitudinal lattice period varying along the direction of the beam propagation. We prove the proposed idea by numerically solving the paraxial propagation equation in refraction-index-modulated media and we evaluate the efficiency of the process by harmonic-expansion analysis. The technique can be also applied for filtering (for cleaning) of the packages of atomic waves (Bose condensates), also to improve the directionality of acoustic and mechanical waves.

  2. Extension of supercontinuum spectrum, generated in polarization-maintaining photonic crystal fiber, using chirped femtosecond pulses

    Science.gov (United States)

    Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas

    2018-01-01

    We present results of experimental and numerical investigation of supercontinuum (SC) generation in polarization-maintaining photonic crystal fiber (PCF) using chirped femtosecond pulses. The initial unchirped pump pulse source was a mode-locked Yb:KGW laser generating 52-nJ energy, 110-fs duration pulses at 1030 nm with a 76-MHz repetition rate. The nonlinear medium was a 32-cm-long polarization-maintaining PCF manufactured by NKT Photonics A/S. We demonstrated the influence of pump pulse chirp on spectral characteristics of a SC. We showed that by chirping pump pulses positively or negatively one can obtain a broader SC spectrum than in the case of unchirped pump pulses at the same peak power. Moreover, the extension can be controlled by changing the amount of pump pulse chirp. Numerical simulation results also indicated that pump pulse chirp yields an extension of SC spectrum.

  3. Broadband demonstrations of true-time delay using linear sideband chirped programming and optical coherent transients

    International Nuclear Information System (INIS)

    Reibel, R.R.; Barber, Z.W.; Fischer, J.A.; Tian, M.; Babbitt, W.R.

    2004-01-01

    Linear sideband chirped (LSC) programming is introduced as a means of configuring spatial-spectral holographic gratings for optical coherent transient processors. Similar to linear frequency chirped programming, LSC programming allows the use of broadband integrated electro-optic phase modulators to produce chirps instead of using elaborate broadband chirped lasers. This approach has several advantages including the ability to use a stabilized laser for the optical carrier as well as stable, reproducible chirped optical signals when the modulator is driven digitally. Using LSC programming, we experimentally demonstrate broadband true-time delay as a proof of principle for the optical control of phased array radars. Here both cw phase modulated and binary phase shift keyed probe signals are true-time delayed with bandwidths of 1 GHz and delay resolutions better than 60 ps

  4. Transverse-to-longitudinal Emittance-exchange with an Energy Chirped Beam

    Energy Technology Data Exchange (ETDEWEB)

    Thangaraj, J.; Ruan, J.; Johnson, A.S.; Thurman-Keup, R.; Lumpkin, A.H.; Santucci, J.; Sun, Y.-E; Maxwell, T.; Edwards, H.; /Fermilab

    2012-05-01

    Emittance exchange has been proposed to increase the performance of free electron lasers by tailoring the phase space of an electron beam. The principle of emittance exchange - where the transverse phase space of the electron beam is exchanged with the longitudinal phase space - has been demonstrated recently at the A0 photoinjector. The experiment used a low charge bunch (250 pC) with no energy chirp. Theory predicts an improvement in the emittance exchange scheme when the incoming beam has an energy chirp imparted on it. The energy chirp helps to overcome the thick lens effect of the deflecting mode cavity and other second order effects that might lead to an incomplete emittance exchange at higher charges. In this work, we report experimental and simulation results from operating the emittance exchange beam line using an energy chirped beam with higher charge (500 pC) at different RF-chirp settings.

  5. Ion implantation

    International Nuclear Information System (INIS)

    Dearnaley, Geoffrey

    1975-01-01

    First, ion implantation in semiconductors is discussed: ion penetration, annealing of damage, gettering, ion implanted semiconductor devices, equipement requirements for ion implantation. The importance of channeling for ion implantation is studied. Then, some applications of ion implantation in metals are presented: study of the corrosion of metals and alloys; influence or ion implantation on the surface-friction and wear properties of metals; hyperfine interactions in implanted metals

  6. Quadratic Frequency Modulation Signals Parameter Estimation Based on Two-Dimensional Product Modified Parameterized Chirp Rate-Quadratic Chirp Rate Distribution.

    Science.gov (United States)

    Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong

    2018-05-19

    In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.

  7. Chirp echo Fourier transform EPR-detected NMR.

    Science.gov (United States)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Pressurized transient otoacoustic emissions measured using click and chirp stimuli.

    Science.gov (United States)

    Keefe, Douglas H; Patrick Feeney, M; Hunter, Lisa L; Fitzpatrick, Denis F; Sanford, Chris A

    2018-01-01

    Transient-evoked otoacoustic emission (TEOAE) responses were measured in normal-hearing adult ears over frequencies from 0.7 to 8 kHz, and analyzed with reflectance/admittance data to measure absorbed sound power and the tympanometric peak pressure (TPP). The mean TPP was close to ambient. TEOAEs were measured in the ear canal at ambient pressure, TPP, and fixed air pressures from 150 to -200 daPa. Both click and chirp stimuli were used to elicit TEOAEs, in which the incident sound pressure level was constant across frequency. TEOAE levels were similar at ambient and TPP, and for frequencies from 0.7 to 2.8 kHz decreased with increasing positive and negative pressures. At 4-8 kHz, TEOAE levels were larger at positive pressures. This asymmetry is possibly related to changes in mechanical transmission through the ossicular chain. The mean TEOAE group delay did not change with pressure, although small changes were observed in the mean instantaneous frequency and group spread. Chirp TEOAEs measured in an adult ear with Eustachian tube dysfunction and TPP of -165 daPa were more robust at TPP than at ambient. Overall, results demonstrate the feasibility and clinical potential of measuring TEOAEs at fixed pressures in the ear canal, which provide additional information relative to TEOAEs measured at ambient pressure.

  9. Chirp echo Fourier transform EPR-detected NMR

    Science.gov (United States)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies.

  10. Proton Beam Writing

    International Nuclear Information System (INIS)

    Rajta, I.; Szilasi, S.Z.; Csige, I.; Baradacs, E.

    2005-01-01

    Complete text of publication follows. Refractive index depth profile in PMMA due to proton irradiation Proton Beam Writing has been successfully used to create buried channel waveguides in PMMA, which suggested that proton irradiation increases the refractive index. To investigate this effect, PMMA samples were irradiated by 1.7-2.1 MeV proton beam. Spectroscopic Ellipsometry has been used to investigate the depth profile of the refractive index. An increase of the refractive index was observed in the order of 0.01, which is approximately one order of magnitude higher than the detection limit. The highest increase of the refractive index occurs at the end of range, i.e. we found a good correlation with the Bragg curve of the energy loss. Hardness changes in PMMA due to proton beam micromachining As protons penetrate a target material and lose their energy according to the Bragg curve, the energy loss is different at different depths. This causes depth-dependent changes of some physical properties in the target material (e.g. refractive index, hardness). In order to characterize the changes of hardness and other mechanical properties as a function of beam penetration depth, systematic investigations have been performed on PMMA, the most common resist material used in proton beam micromachining. Silicon check valve made by proton beam micromachining The possible application of Proton Beam Micromachining (PBM) has been demonstrated by a few authors for creating 3D Si microstructures. In this work we present alternative methods for the formation of a simple a non-return valve for microfluidic applications. Two different approaches have been applied, in both cases we exploited characteristic features of the PBM technique and the selective formation and dissolution of porous Si over the implantation damaged areas. In the first case we implanted 10 μm thick cantilever-type membrane of the valve normally to the crystal surface and at 30-60 degrees to the sidewalls of the

  11. Proton therapy

    International Nuclear Information System (INIS)

    Smith, Alfred R

    2006-01-01

    Proton therapy has become a subject of considerable interest in the radiation oncology community and it is expected that there will be a substantial growth in proton treatment facilities during the next decade. I was asked to write a historical review of proton therapy based on my personal experiences, which have all occurred in the United States, so therefore I have a somewhat parochial point of view. Space requirements did not permit me to mention all of the existing proton therapy facilities or the names of all of those who have contributed to proton therapy. (review)

  12. Chirped self-similar solutions of a generalized nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Fei Jin-Xi [Lishui Univ., Zhejiang (China). College of Mathematics and Physics; Zheng Chun-Long [Shaoguan Univ., Guangdong (China). School of Physics and Electromechanical Engineering; Shanghai Univ. (China). Shanghai Inst. of Applied Mathematics and Mechanics

    2011-01-15

    An improved homogeneous balance principle and an F-expansion technique are used to construct exact chirped self-similar solutions to the generalized nonlinear Schroedinger equation with distributed dispersion, nonlinearity, and gain coefficients. Such solutions exist under certain conditions and impose constraints on the functions describing dispersion, nonlinearity, and distributed gain function. The results show that the chirp function is related only to the dispersion coefficient, however, it affects all of the system parameters, which influence the form of the wave amplitude. As few characteristic examples and some simple chirped self-similar waves are presented. (orig.)

  13. Peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse

    International Nuclear Information System (INIS)

    Song, Q.; Wu, X. Y.; Wang, J. X.; Kawata, S.; Wang, P. X.

    2014-01-01

    In this paper, we qualitatively analyzed peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse. We unveiled the relationship between the changes in the orientation of the electron trajectory and the cusps in magnitude of the phase velocity of the optical field along the electron trajectory in a chirped laser pulse. We also explained how the chirp effect induced the singular point of the phase velocity. Finally, we discussed the phase velocity and phase witnessed by the electron in the particle's moving instantaneous frame

  14. Explanation of the JET n=0 chirping mode

    International Nuclear Information System (INIS)

    Berk, H.L.; Boswell, C.J.; Borba, D.; Figueiredo, A.C.A.; Nave, M.F.F.; Johnson, T.; Pinches, S.D.; Sharapov, S.E.

    2006-01-01

    Persistent rapid up and down frequency chirping modes with a toroidal mode number of zero (n=0) are observed in the JET tokomak when energetic ions, in the range of several hundred keV, are created by high field side ion cyclotron resonance frequency heating. Fokker-Planck calculations demonstrate that the heating method enables the formation of an energetically inverted ion distribution which supplies the free energy for the ions to excite a mode related to the geodesic acoustic mode (GAM). The large frequency shifts of this mode are attributed to the formation of phase space structures whose frequencies, which are locked to an ion orbit bounce resonance frequency, are forced to continually shift so that energetic particle energy can be released to counterbalance the energy dissipation present in the background plasma. (author)

  15. Propagation properties of the chirped Airy beams through the gradient-index medium

    Science.gov (United States)

    Feng, Liyan; Zhang, Jianbin; Pang, Zihao; Wang, Linyi; Zhong, Tianfen; Yang, Xiangbo; Deng, Dongmei

    2017-11-01

    Through analytical derivation and numerical analysis, the propagation properties of the chirped Airy(CAi) beams in the gradient-index medium are investigated. The intensity and the phase distributions, the propagation trajectory and the Poynting vector of the CAi beams are demonstrated to investigate the propagation properties. Owing to the special and symmetrical refractive index profile of the gradient-index medium, the CAi beams propagate periodically. The effects of the distribution factor and the chirped parameter on the propagation of the CAi beams are analyzed. As the increasing of the distribution factor, the intensity distribution of the CAi beams is more scattering. However, with the chirped parameter increasing, the focusing property of the CAi beams strengthens. The variation of the chirped parameter can change the position of the peak intensity maximum, but it cannot alter the period of the peak intensity. The variations of the initial phase and the energy of the beams in the transverse plane expedite accordingly.

  16. The optimal input optical pulse shape for the self-phase modulation based chirp generator

    Science.gov (United States)

    Zachinyaev, Yuriy; Rumyantsev, Konstantin

    2018-04-01

    The work is aimed to obtain the optimal shape of the input optical pulse for the proper functioning of the self-phase modulation based chirp generator allowing to achieve high values of chirp frequency deviation. During the research, the structure of the device based on self-phase modulation effect using has been analyzed. The influence of the input optical pulse shape of the transmitting optical module on the chirp frequency deviation has been studied. The relationship between the frequency deviation of the generated chirp and frequency linearity for the three options for implementation of the pulse shape has been also estimated. The results of research are related to the development of the theory of radio processors based on fiber-optic structures and can be used in radars, secure communications, geolocation and tomography.

  17. Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers

    NARCIS (Netherlands)

    Li, L.H.; Rossetti, M.; Fiore, A.; Occhi, L.; Velez, C.

    2005-01-01

    A superluminescent diode (SLED) using chirped multiple InAs quantum dot (QD) layers as the active region is demonstrated. The fabricated QD SLEDs exhibit a large spectral width up to 121 nm, covering the range 1165-1286 nm.

  18. Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses

    International Nuclear Information System (INIS)

    Polli, D.; Lanzani, G.; Brida, D.; Cerullo, G.; Mukamel, S.

    2010-01-01

    This paper introduces a general theoretical description of femtosecond pump-probe spectroscopy with chirped pulses whose joint spectral and temporal profile is expressed by Wigner spectrograms. We demonstrate that the actual experimental time resolution intimately depends on the pulse-sample interaction and that the commonly used instrumental response function needs to be replaced by a sample-dependent effective response function. We also show that, using the proper configurations in excitation and/or detection, it is possible to overcome the temporal smearing of the measured dynamics due to chirp-induced pulse broadening and recover the temporal resolution that would be afforded by the transform-limited pulses. We verify these predictions with experiments using broadband chirped pump and probe pulses. Our results allow optimization of the temporal resolution in the common case when the chirp of the pump and/or probe pulse is not corrected and may be extended to a broad range of time-resolved experiments.

  19. Fabry-Pérot cavity based on chirped sampled fiber Bragg gratings.

    Science.gov (United States)

    Zheng, Jilin; Wang, Rong; Pu, Tao; Lu, Lin; Fang, Tao; Li, Weichun; Xiong, Jintian; Chen, Yingfang; Zhu, Huatao; Chen, Dalei; Chen, Xiangfei

    2014-02-10

    A novel kind of Fabry-Pérot (FP) structure based on chirped sampled fiber Bragg grating (CSFBG) is proposed and demonstrated. In this structure, the regular chirped FBG (CFBG) that functions as reflecting mirror in the FP cavity is replaced by CSFBG, which is realized by chirping the sampling periods of a sampled FBG having uniform local grating period. The realization of such CSFBG-FPs having diverse properties just needs a single uniform pitch phase mask and sub-micrometer precision moving stage. Compared with the conventional CFBG-FP, it becomes more flexible to design CSFBG-FPs of diverse functions, and the fabrication process gets simpler. As a demonstration, based on the same experimental facilities, FPs with uniform FSR (~73 pm) and chirped FSR (varying from 28 pm to 405 pm) are fabricated respectively, which shows good agreement with simulation results.

  20. The chirped-pulse free-electron laser: Final technical report, September 1987--October 1988

    International Nuclear Information System (INIS)

    Moore, G.T.

    1989-01-01

    This is the final report of a theoretical and numerical investigation into the operation of pulsed free-electron lasers in which the electron energy depends on the time of injection into the wiggler. Such energy ''chirping'' over each of a train of electron micropulses injected into an FEL oscillator is expected to give rise to a laser pulse inside the optical resonator with a chirped carrier frequency ω/sub s/(/tau/). 8 refs., 7 figs

  1. Fiber Optical Parametric Chirped Pulse Amplification of Sub-Picosecond Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Da Ros, Francesco

    2013-01-01

    We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs.......We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs....

  2. Dynamic Characterization of Fiber Optical Chirped Pulse Amplification for Sub-ps Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation.......We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation....

  3. Study on control of defect mode in hybrid mirror chirped porous silicon photonic crystal

    Science.gov (United States)

    Chen, Ying; Luo, Pei; Han, Yangyang; Cui, Xingning; He, Lei

    2018-03-01

    Based on the optical resonance principle and the tight-binding theory, a hybrid mirror chirped porous silicon photonic crystal is proposed. The control of the defect mode in hybrid mirror chirped porous silicon photonic crystal is studied. Through the numerical simulation, the control regulations of the defect modes resulted by the number of the periodical layers for the fundamental unit and the cascading number of the chirped structures are analyzed, and the split and the degeneration of the defect modes resulted by the change of the relative location between the mirror structures and the quasi-mirror structures are discussed. The simulation results show that the band gap would be broadened with the increase of the chirp quantity and the layer number of unilateral chirp. Adjusting the structural parameters of the hybrid mirror structure, the multimode characteristics will occur in the band gap. The more the cascading number of the chirped units, the more the number of the filtering channels will be. In addition, with the increase of the relative location between the mirror structures and the quasi-mirror structures, the degeneration of the defect modes will occur and can obtain high Q value. The structure can provide effective theoretical references for the design the multi-channel filters and high Q value sensors.

  4. A novel method for length of chirped fiber Bragg grating sensor

    Science.gov (United States)

    Li, Zhenwei; Wei, Peng; Liu, Taolin

    2018-03-01

    Length of chirped fiber Bragg grating sensor is very important for detonation velocity. Different from other ways, we proposed a novel method based on the optical frequency domain reflection theory to measure the length of chirped fiber grating sensor in non-contact condition. This method adopts a tunable laser source to provide wavelength scanning laser, which covers the Full Width at Half Maximum of spectrum of the chirped fiber Bragg grating sensor. A Michelson interferometer is used to produce optical interference signal. Finally, the grating's length is attainable by distance domain signal. In theory, length resolution of chirped fiber Bragg grating sensor could be 0.02 mm. We perform a series of length measurement experiments for chirped fiber grating sensor, including comparison experiments with hot-tip method. And the experiment results show that the novel method could accurately measure the length of chirped fiber Bragg grating sensors, and the length differences between the optical frequency domain reflection method and the hot-tip probe method are very small.

  5. Thermally tunable dispersion compensator in 40-Gb/s system using FBG fabricated with linearly chirped phase mask.

    Science.gov (United States)

    Sun, Jie; Dai, Yitang; Chen, Xiangfei; Zhang, Yejin; Xie, Shizhong

    2006-01-09

    An improved design and fabrication method of nonlinearly chirped fiber Bragg gratings is demonstrated. Based on reconstruction-equivalent- chirp method, the nonlinearly chirped fiber Bragg grating is realized with a linearly chirped phase mask instead of a uniform one, which improves the performance of the device. Coated with uniform thin metal film, the obtained grating works as a tunable dispersion compensator with a tuning range ~200ps/nm, peak-to-peak group delay ripple fiber using carrier suppressed return-to-zero format is less than 0.7dB at a BER=10-10.

  6. A Study of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Models for Nonstationary Acoustic Time Series

    KAUST Repository

    Martinez, Josue G.; Bohn, Kirsten M.; Carroll, Raymond J.; Morris, Jeffrey S.

    2013-01-01

    We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to capture correlation within the spectrogram in our modeling and obtain adaptive regularization of the estimates and inference for the regions-specific spectrograms. Our model includes random effect spectrograms at the bat level to account for correlation among chirps from the same bat, and to assess relative variability in chirp spectrograms within and between bats. The modeling of spectrograms using functional mixed models is a general approach for the analysis of replicated nonstationary time series, such as our acoustical signals, to relate aspects of the signals to various predictors, while accounting for between-signal structure. This can be done on raw spectrograms when all signals are of the same length, and can be done using spectrograms defined on a relative time scale for signals of variable length in settings where the idea of defining correspondence across signals based on relative position is sensible.

  7. A Study of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Models for Nonstationary Acoustic Time Series

    KAUST Repository

    Martinez, Josue G.

    2013-06-01

    We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to capture correlation within the spectrogram in our modeling and obtain adaptive regularization of the estimates and inference for the regions-specific spectrograms. Our model includes random effect spectrograms at the bat level to account for correlation among chirps from the same bat, and to assess relative variability in chirp spectrograms within and between bats. The modeling of spectrograms using functional mixed models is a general approach for the analysis of replicated nonstationary time series, such as our acoustical signals, to relate aspects of the signals to various predictors, while accounting for between-signal structure. This can be done on raw spectrograms when all signals are of the same length, and can be done using spectrograms defined on a relative time scale for signals of variable length in settings where the idea of defining correspondence across signals based on relative position is sensible.

  8. Optimization and characterization of dual-chirped optical parametric amplification

    International Nuclear Information System (INIS)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi; Zhang, Qingbin; Lu, Peixiang

    2015-01-01

    We report optimization and characterization of a dual-chirped optical parametric amplification (DC-OPA) scheme (2011 Opt. Express 19 7190). By increasing a pump pulse energy to 100 mJ, a total (signal + idler) output energy exceeding 30 mJ was recorded with higher than 30% conversion efficiency. The feasibility of further increasing the output energy to a higher scale using the DC-OPA scheme was confirmed by a proof-of-principle experiment, in which 30%–40% conversion efficiency was observed. The signal pulse with the center wavelength of 1.4 μm was compressed to 27 fs (FWHM), which was very close to a transform-limited pulse duration of 25 fs. Since the DC-OPA scheme is efficient for generating high-energy infrared (IR) pulses with excellent scaling ability, the design parameters for obtaining hundred-mJ-level and even joule-level IR pulses are discussed and presented in detail. (invited article)

  9. Ultrashort pulse shaping by optical parametric chirped amplification

    International Nuclear Information System (INIS)

    Nelet, Ambre

    2007-01-01

    The aim of this work is to propose new laser architectures based on optical parametric chirped pulse amplification (OPCPA). Common goals of OPCPA pre-amplifiers are to reach high energy level while maintaining the spectrum width and to adapt geometry of the amplified beam to the high power laser chain optics. We consider OPCPA as a way to control and to sculpt ultrashort pulses. Our first set-up aims at thwarting possible time recovery default between pump and signal pulses, which lower the energy extraction. A regenerative OPCPA, idler resonant, is a way to produce a high-intensity and high-repetition rate train of amplified signal replicas. Our second laser system pre-compensates the spectral gain narrowing by sculpting pulses directly within the OPCPA section, where a temporal shaping of the pump beam permits a spectro-spectral shaping of the amplified signal. Finally, we propose an OPCPA based on spatial coding and uniform amplification of spectral signal components by using a fan-out periodically poled crystal and a zero dispersion line. (author) [fr

  10. Cochlear Implants

    Science.gov (United States)

    ... implant, including: • How long a person has been deaf, •The number of surviving auditory nerve fibers, and • ... Implant, Severe Sensoryneurial Hearing Loss Get Involved Professional Development Practice Management ENT Careers Marketplace Privacy Policy Terms ...

  11. Proton Therapy for Thoracoabdominal Tumors

    Science.gov (United States)

    Sakurai, Hideyuki; Okumura, Toshiyuki; Sugahara, Shinji; Nakayama, Hidetsugu; Tokuuye, Koichi

    In advanced-stage disease of certain thoracoabdominal tumors, proton therapy (PT) with concurrent chemotherapy may be an option to reduce side effects. Several technological developments, including a respiratory gating system and implantation of fiducial markers for image guided radiation therapy (IGRT), are necessary for the treatment in thoracoabdominal tumors. In this chapter, the role of PT for tumors of the lung, the esophagus, and liver are discussed.

  12. Validation of the CHIRPS Satellite Rainfall Estimates over Eastern of Africa

    Science.gov (United States)

    Dinku, T.; Funk, C. C.; Tadesse, T.; Ceccato, P.

    2017-12-01

    Long and temporally consistent rainfall time series are essential in climate analyses and applications. Rainfall data from station observations are inadequate over many parts of the world due to sparse or non-existent observation networks, or limited reporting of gauge observations. As a result, satellite rainfall estimates have been used as an alternative or as a supplement to station observations. However, many satellite-based rainfall products with long time series suffer from coarse spatial and temporal resolutions and inhomogeneities caused by variations in satellite inputs. There are some satellite rainfall products with reasonably consistent time series, but they are often limited to specific geographic areas. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and quasi-global coverage. In this study, CHIRP and CHIRPS were evaluated over East Africa at daily, dekadal (10-day) and monthly time scales. The evaluation was done by comparing the satellite products with rain gauge data from about 1200 stations. The is unprecedented number of validation stations for this region covering. The results provide a unique region-wide understanding of how satellite products perform over different climatic/geographic (low lands, mountainous regions, and coastal) regions. The CHIRP and CHIRPS products were also compared with two similar satellite rainfall products: the African Rainfall Climatology version 2 (ARC2) and the latest release of the Tropical Applications of Meteorology using Satellite data (TAMSAT). The results show that both CHIRP and CHIRPS products are significantly better than ARC2 with higher skill and low or no bias. These products were also found to be slightly better than the latest version of the TAMSAT product. A comparison was also done between the latest release of the TAMSAT product

  13. Extension of supercontinuum spectrum generated in photonic crystal fiber by using chirped femtosecond pulses

    Science.gov (United States)

    Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas

    2017-08-01

    We present results of experimental and numerical investigation of supercontinuum generation in polarization maintaining photonic crystal fiber (PCF) using chirped femtosecond pulses. The initial unchirped pump pulse source was a mode-locked Yb:KGW laser generating 52 nJ energy 110 fs duration pulses at 1030 nm with 76 MHz repetition rate. The nonlinear medium was a 32 cm long polarization maintaining PCF manufactured by NKT Photonics A/S. We demonstrated the influence of pump pulse chirp on spectral characteristics of supercontinuum. We showed that by chirping pump pulses positively or negatively one can obtain broader supercontinuum spectrum than in case of unchirped pump pulses at the same peak power. Moreover, the extension can be controlled by changing the amount of pump pulse chirp. In our case the supercontinuum spectrum width was extended by up to 115 nm (at maximum chirp value of +10500 fs2 that we could achieve in our setup) compared to the case of unchirped pump at the same peak power.

  14. CHIRP-Like Signals: Estimation, Detection and Processing A Sequential Model-Based Approach

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-04

    Chirp signals have evolved primarily from radar/sonar signal processing applications specifically attempting to estimate the location of a target in surveillance/tracking volume. The chirp, which is essentially a sinusoidal signal whose phase changes instantaneously at each time sample, has an interesting property in that its correlation approximates an impulse function. It is well-known that a matched-filter detector in radar/sonar estimates the target range by cross-correlating a replicant of the transmitted chirp with the measurement data reflected from the target back to the radar/sonar receiver yielding a maximum peak corresponding to the echo time and therefore enabling the desired range estimate. In this application, we perform the same operation as a radar or sonar system, that is, we transmit a “chirp-like pulse” into the target medium and attempt to first detect its presence and second estimate its location or range. Our problem is complicated by the presence of disturbance signals from surrounding broadcast stations as well as extraneous sources of interference in our frequency bands and of course the ever present random noise from instrumentation. First, we discuss the chirp signal itself and illustrate its inherent properties and then develop a model-based processing scheme enabling both the detection and estimation of the signal from noisy measurement data.

  15. Preparing isolated vibrational wave packets with light-induced molecular potentials by chirped laser pulses

    Science.gov (United States)

    Vatasescu, Mihaela

    2012-05-01

    We consider a specific wave packet preparation arising from the control of tunneling in the 0g-(6s,6p3/2) double well potential of a Cs2 cold molecule with chirped laser pulses. Such a possibility to manipulate the population dynamics in the 0g-(6s,6p3/2) potential appears in a pump-dump scheme designed to form cold molecules by photoassociation of two cold cesium atoms. The initial population in the 0g-(6s,6p3/2) double well is a wave packet prepared in the outer well at large interatomic distances (94 a0) by a photoassociation step with a first chirped pulse, being a superposition of several vibrational states whose energies surround the energy of a tunneling resonance. Our present work is focused on a second delayed chirped pulse, coupling the 0g-(6s,6p3/2) surface with the a3Σu+(6s,6s) one in the zone of the double well barrier (15 a0) and creating deeply bound cold molecules in the a3Σu+(6s,6s) state. We explore the parameters choice (intensity, duration, chirp rate and sign) for this second pulse, showing that picoseconds pulses with a negative chirp can lead to trapping of population in the inner well in strongly bound vibrational states, out of the resonant tunneling able to transfer it back to the outer well.

  16. Frequency Correction for MIRO Chirp Transformation Spectroscopy Spectrum

    Science.gov (United States)

    Lee, Seungwon

    2012-01-01

    This software processes the flyby spectra of the Chirp Transform Spectrometer (CTS) of the Microwave Instrument for Rosetta Orbiter (MIRO). The tool corrects the effect of Doppler shift and local-oscillator (LO) frequency shift during the flyby mode of MIRO operations. The frequency correction for CTS flyby spectra is performed and is integrated with multiple spectra into a high signal-to-noise averaged spectrum at the rest-frame RF frequency. This innovation also generates the 8 molecular line spectra by dividing continuous 4,096-channel CTS spectra. The 8 line spectra can then be readily used for scientific investigations. A spectral line that is at its rest frequency in the frame of the Earth or an asteroid will be observed with a time-varying Doppler shift as seen by MIRO. The frequency shift is toward the higher RF frequencies on approach, and toward lower RF frequencies on departure. The magnitude of the shift depends on the flyby velocity. The result of time-varying Doppler shift is that of an observed spectral line will be seen to move from channel to channel in the CTS spectrometer. The direction (higher or lower frequency) in the spectrometer depends on the spectral line frequency under consideration. In order to analyze the flyby spectra, two steps are required. First, individual spectra must be corrected for the Doppler shift so that individual spectra can be superimposed at the same rest frequency for integration purposes. Second, a correction needs to be applied to the CTS spectra to account for the LO frequency shifts that are applied to asteroid mode.

  17. Femtosecond X-ray Pulses from a Spatially Chirped Electron Bunch in a SASE FEL

    Energy Technology Data Exchange (ETDEWEB)

    Emma, P.

    2003-01-14

    We propose a simple method to produce short x-ray pulses using a spatially chirped electron bunch in a SASE FEL. The spatial chirp is generated using an rf deflector which produces a transverse offset (in y and/or y') correlated with the longitudinal bunch position. Since the FEL gain is very sensitive to an initial offset in the transverse phase space at the entrance of the undulator, only a small portion of the electron bunch with relatively small transverse offset will interact significantly with the radiation, resulting in an x-ray pulse length much shorter than the electron bunch length. The x-ray pulse is also naturally phase locked to the rf deflector and so allows high precision timing synchronization. We discuss the generation and transport of such a spatially chirped electron beam and show that tens of femtosecond long pulse can be generated for the linac coherent light source (LCLS).

  18. THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses

    Science.gov (United States)

    Nguyen, A.; González de Alaiza Martínez, P.; Thiele, I.; Skupin, S.; Bergé, L.

    2018-03-01

    We numerically study the influence of chirping and delaying several ionizing two-color light pulses in order to engineer terahertz (THz) wave generation in air. By means of comprehensive 3D simulations, it is shown that two chirped pulses can increase the THz yield when they are separated by a suitable time delay for the same laser energy in focused propagation geometry. To interpret these results, the local current theory is revisited and we propose an easy, accessible all-optical criterion that predicts the laser-to-THz conversion efficiencies given any input laser spectrum. In the filamentation regime, numerical simulations display evidence that a chirped pulse is able to produce more THz radiation due to propagation effects, which maintain the two colors of the laser field more efficiently coupled over long distances. A large delay between two pulses promotes multi-peaked THz spectra as well as conversion efficiencies above 10‑4.

  19. Rainbow trapping in one-dimensional chirped photonic crystals composed of alternating dielectric slabs

    International Nuclear Information System (INIS)

    Shen, Yun; Fu, Jiwu; Yu, Guoping

    2011-01-01

    Highlights: → A simple one-dimensional chirped photonic crystal is proposed to realize rainbow trapping. → The results show different wavelengths can be trapped at different spatial positions. → The structure can be used for optical buffer, memories and filter, sorter, etc. -- Abstract: One-dimensional chirped photonic crystals composed of alternating dielectric slabs are proposed to realize rainbow trapping. We theoretically and numerically demonstrate that not only significantly reduced group velocity can be achieved in the proposed chirped structures, but different wavelengths can be localized in different spatial positions, indicating trapped rainbow. Our results imply a feasible way to slow or even trap light in simple systems, which can be used for optical buffer, memory, data processor and filter, sorter, etc.

  20. Evaluation of chirp reversal power modulation sequence for contrast agent imaging

    International Nuclear Information System (INIS)

    Novell, A; Sennoga, CA; Escoffre, JM; Chaline, J; Bouakaz, A

    2014-01-01

    Over the last decade, significant research effort has been focused on the use of chirp for contrast agent imaging because chirps are known to significantly increase imaging contrast-to-noise ratio (CNR). New imaging schemes, such as chirp reversal (CR), have been developed to improve contrast detection by increasing non-linear microbubble responses. In this study we evaluated the contrast enhancement efficiency of various chirped imaging sequences in combination with well-established imaging schemes such as power modulation (PM) and pulse inversion (PI). The imaging schemes tested were implemented on a fully programmable open scanner and evaluated by ultrasonically scanning (excitation frequency of 2.5 MHz; amplitude of 350 kPa) a tissue-mimicking flow phantom comprising a 4 mm diameter tube through which aqueous dispersions (dilution fraction of 1/2000) of the commercial ultrasound contrast agent, SonoVue ® were continuously circulated. The recovery of non-linear microbubble responses after chirp compression requires the development and the optimization of a specific filter. A compression filter was therefore designed and used to compress and extract several non-linear components from the received microbubble responses. The results showed that using chirps increased the image CNR by approximately 10 dB, as compared to conventional Gaussian apodized sine burst excitation but degraded the axial resolution by a factor of 1.4, at −3 dB. We demonstrated that the highest CNR and contrast-to-noise ratio (CTR) were achievable when CR was combined with PM as compared to other imaging schemes such as PI. (paper)

  1. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S P; Jamieson, D N; Nugent, K W; Prawer, S [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  2. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S.P.; Jamieson, D.N.; Nugent, K.W.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  3. A Fast Algorithm for Maximum Likelihood Estimation of Harmonic Chirp Parameters

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Nielsen, Jesper Kjær; Jensen, Jesper Rindom

    2017-01-01

    . A statistically efficient estimator for extracting the parameters of the harmonic chirp model in additive white Gaussian noise is the maximum likelihood (ML) estimator which recently has been demonstrated to be robust to noise and accurate --- even when the model order is unknown. The main drawback of the ML......The analysis of (approximately) periodic signals is an important element in numerous applications. One generalization of standard periodic signals often occurring in practice are harmonic chirp signals where the instantaneous frequency increases/decreases linearly as a function of time...

  4. Volterra equalization of complex modulation utilizing frequency chirp in directly modulated lasers

    Science.gov (United States)

    Hu, Shaohua; Yi, Xingwen; Zhang, Jing; Song, Yang; Zhu, Mingyue; Qiu, Kun

    2018-02-01

    We apply Volterra-based equalization for complex modulated optical signals utilizing the frequency chirp in DMLs. We experimentally demonstrate that the higher order Volterra filter is necessary in the higher speed transmissions. For further study, we isolate the adiabatic chirp by injection locking and realize the optical PM transmission. We make a comparison among IM, FM and PM with Volterra equalization, finding that PM and FM are more power insensitive and suitable for high speed, power limited fiber transmission. The performance can be further improved by exploiting the diversity gain.

  5. Numerical simulation of extremely chirped pulse formation with an optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Tamitake; Nishimura, Akihiko; Tei, Kazuyoku; Matoba, Tohru; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yamashita, Mikio; Morita, Ryuji

    1998-03-01

    A nonlinear propagation code which used a symmetric split-step Fourier method as an algorithm was improved to simulate a propagation behavior of extremely chirped pulse in a long fiber. The performances of pulse propagation in noble gases cored hollow fibers and a pulse stretcher using a nonlinear and normal silicate fibers have been simulated by the code. The calculation results in the case of the hollow fiber are consistent with their experimental results. We estimated that this pulse stretcher could give a extremely chirped pulse whose spectral width was 84.2 nm and temporal duration was 1.5 ns. (author)

  6. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C. [Departament de Física i Enginyeria Nuclear, Universitat Politècnica Catalunya, Terrassa 08222 (Spain); Sola, I. [Grupo de Investigación en Óptica Extrema (GIOE), Departamento de Física Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Krolikowski, W. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Science Program, Texas A and M University at Qatar, Doha (Qatar); Sheng, Y. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2015-06-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.

  7. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    International Nuclear Information System (INIS)

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C.; Sola, I.; Krolikowski, W.; Sheng, Y.

    2015-01-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system

  8. Dynamics of surface solitons at the edge of chirped optical lattices

    International Nuclear Information System (INIS)

    Kartashov, Yaroslav V.; Torner, Lluis; Vysloukh, Victor A.

    2007-01-01

    We address soliton formation at the edge of chirped optical lattices imprinted in Kerr-type nonlinear media. We find families of power thresholdless surface waves that do not exist at other types of lattice interfaces. Such solitons form due to combined action of internal reflection at the interface, distributed Bragg-type reflection, and focusing nonlinearity. Remarkably, we discover that surfaces of chirped lattices are soliton attractors: Below an energy threshold, solitons launched well within the lattice self-bend toward the interface, and then stick to it

  9. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier.

    Science.gov (United States)

    Tavella, Franz; Nomura, Yutaka; Veisz, Laszlo; Pervak, Vladimir; Marcinkevicius, Andrius; Krausz, Ferenc

    2007-08-01

    We report the amplification of three-cycle, 8.5 fs optical pulses in a near-infrared noncollinear optical parametric chirped-pulse amplifier (OPCPA) up to energies of 80 mJ. Improved dispersion management in the amplifier by means of a combination of reflection grisms and a chirped-mirror stretcher allowed us to recompress the amplified pulses to within 6% of their Fourier limit. The novel ultrabroad, ultraprecise dispersion control technology presented in this work opens the way to scaling multiterawatt technology to even shorter pulses by optimizing the OPCPA bandwidth.

  10. Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2011-02-28

    We propose a novel photonic structure to implement a chirped single-bandpass microwave photonic filter based on the amplitude modulation of a broadband optical signal transmitted by a non-linear dispersive element and an interferometric system prior to balanced photodetection. A full reconfigurability of the filter is achieved since amplitude and phase responses can be independently controlled. We have experimentally demonstrated chirp values up to tens of ns/GHz, which is, as far as we know, one order of magnitude better than others achieved by electrical approaches and furthermore, without restrictions in terms of frequency tuning since a frequency operation range up to 40 GHz has been experimentally demonstrated.

  11. Spectral tuning of the diameter-dependent-chirped Bragg gratings written in microfibers.

    Science.gov (United States)

    Xiao, Peng; Liu, Tong; Feng, Fu-Rong; Sun, Li-Peng; Liang, Hao; Ran, Yang; Jin, Long; Guan, Bai-Ou

    2016-12-26

    Chirped fiber Bragg gratings can straightforwardly and efficiently be fabricated onto microfibers with a uniform phase mask. Due to the variation of the propagating constant, which depends on the fiber diameter, the broadband spectrum of the grating can be formed. Depending on the different responses to the ambient refractive index in different parts of the grating, the bandwidth of the grating can be tuned by changing the surrounding solution. In addition, by being partly immersed in a liquid, the diameter-chirped Bragg grating can act as a broadband Fabry-Perot interferometer, whose spectrum can be tuned by means of controlling the liquid level and ambient refractive index.

  12. Chirp and temperature effects in parametric down conversion from crystals pumped at 800 nm

    Science.gov (United States)

    Sánchez-Lozano, X.; Wiechers, C.; Lucio, J. L.

    2018-04-01

    We consider spontaneous parametric down conversion from aperiodic poled crystals pumped at 800 nm. Our analyses account the effect of internal and external parameters, where, in the former, we include the crystal chirp and length, while in the latter temperature, also the pump chirp and other beam properties. The typical distribution produced is a pop-tab like structure in frequency-momentum space, and our results show that this system is a versatile light source, appropriated to manipulate the frequency and transverse momentum properties of the light produced. We briefly comment on the potential usefulness of the types of telecom wavelength light produced, in particular for quantum information applications.

  13. Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts

    Science.gov (United States)

    Karasawa, Naoki

    2018-04-01

    Optical setups for measuring the sequence of ultrafast optical wavefronts using a chirped pulse as a reference wave in digital holography are proposed and analyzed. In this method, multiple ultrafast object pulses are used to probe the temporal evolution of ultrafast phenomena and they are interfered with a chirped reference wave to record a digital hologram. Wavefronts at different times can be reconstructed separately from the recorded hologram when the reference pulse can be treated as a quasi-monochromatic wave during the pulse width of each object pulse. The feasibility of this method is demonstrated by numerical simulation.

  14. Proton decay theory

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay

  15. Proton therapy

    International Nuclear Information System (INIS)

    Jongen, Y.

    1995-01-01

    Ideal radiotherapy deposits a large amount of energy in the tumour volume, and none in the surrounding healthy tissues. Proton therapy comes closer to this goal because of a greater concentration of dose, well defined proton ranges and points of energy release which are precisely known - the Bragg peak1. In the past, the development of clinical proton therapy has been hampered by complexity, size, and cost. To be clinically effective, energies of several hundred MeV are required; these were previously unavailable for hospital installations, and pioneering institutions had to work with complex, inadequate equipment originally intended for nuclear physics research. Recently a number of specialist organizations and commercial companies have been working on dedicated systems for proton therapy. One, IBA of Belgium, has equipment for inhouse hospital operation which encompasses a complete therapy centre, delivered as a turnkey package and incorporating a compact, automated, higher energy cyclotron with isocentric gantries. Their system will be installed at Massachusetts General Hospital, Boston. The proton therapy system comprises: - a 235 MeV isochronous cyclotron to deliver beams of up to 1.5 microamps, but with a hardware limitation to restrict the maximum possible dose; - variable energy beam (235 to 70 MeV ) with energy spread and emittance verification; - a beam transport and switching system to connect the exit of the energy selection system to the entrances of a number of gantries and fixed beamlines. Along the beam transport system, the beam characteristics are monitored with non-interceptive multiwire ionization chambers for automatic tuning; - gantries fitted with nozzles and beamline elements for beam control; both beam scattering and beam wobbling techniques are available for shaping the beam;

  16. Ion implantation

    International Nuclear Information System (INIS)

    Johnson, E.

    1986-01-01

    It is the purpose of the present paper to give a review of surface alloy processing by ion implantation. However, rather than covering this vast subject as a whole, the survey is confined to a presentation of the microstructures that can be found in metal surfaces after ion implantation. The presentation is limited to alloys processed by ion implantation proper, that is to processes in which the alloy compositions are altered significantly by direct injection of the implanted ions. The review is introduced by a presentation of the processes taking place during development of the fundamental event in ion implantation - the collision cascade, followed by a summary of the various microstructures which can be formed after ion implantation into metals. This is compared with the variability of microstructures that can be achieved by rapid solidification processing. The microstructures are subsequently discussed in the light of the processes which, as the implantations proceed, take place during and immediately after formation of the individual collision cascades. These collision cascades define the volumes inside which individual ions are slowed down in the implanted targets. They are not only centres for vigorous agitation but also the sources for formation of excess concentrations of point defects, which will influence development of particular microstructures. A final section presents a selection of specific structures which have been observed in different alloy systems. (orig./GSCH)

  17. Flashlamp pumped Ti-sapphire laser for ytterbium glass chirped pulse amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akihiko; Ohzu, Akira; Sugiyama, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    1998-03-01

    A flashlamp pumped Ti:sapphire laser is designed for ytterbium glass chirped pulse amplification. A high quality Ti:sapphire rod and a high energy long pulse discharging power supply are key components. The primary step is to produce the output power of 10 J per pulse at 920 nm. (author)

  18. Imaging of human tooth using ultrasound based chirp-coded nonlinear time reversal acoustics

    Czech Academy of Sciences Publication Activity Database

    Dos Santos, S.; Převorovský, Zdeněk

    2011-01-01

    Roč. 51, č. 6 (2011), s. 667-674 ISSN 0041-624X Institutional research plan: CEZ:AV0Z20760514 Keywords : TR-NEWS * chirp-coded excitation * echodentography * ultrasonic imaging Subject RIV: BI - Acoustics Impact factor: 1.838, year: 2011 http://www.sciencedirect.com/science/article/pii/S0041624X11000229

  19. Effect of ion cyclotron acceleration on frequency chirping beam-driven instabilities in NSTX

    International Nuclear Information System (INIS)

    Ruskov, E.; Heidbrink, W.W.; Fredrickson, E.D.; Darrow, D.; Medley, S.; Gorelenkov, N.

    2006-01-01

    The fast-ion distribution function in the National Spherical Torus Experiment (NSTX) is modified from shot to shot while keeping the total injected power at ∼2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including TAE modes, 50-100∼kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10-20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power (∼3 MW) harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the effective collision frequency. Steady-frequency TAE modes excited early in the discharge are affected by the HHFW heating but there is no evidence that the chirping of 20-100 kHz modes is suppressed. (author)

  20. Study on superluminescent diodes using InGaAs-InAs chirped quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Han, Il Ki; Heo, Du Chang; Song, Jin Dong; Lee, Jung Il [Korea Institute Science and Technology, Seoul (Korea, Republic of); Lee, Joo In [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2004-11-15

    We have fabricated superluminescent diodes (SLD) by using InGaAs-InAs chirped quantum dots (QD). The spectral bandwidth of the SLD was measured to be 170 nm. These results explain the possibility of QD-based SLD exceeding the performance of multi-quantum well-based ones.

  1. Paraxial propagation of the first-order chirped Airy vortex beams in a chiral medium.

    Science.gov (United States)

    Xie, Jintao; Zhang, Jianbin; Ye, Junran; Liu, Haowei; Liang, Zhuoying; Long, Shangjie; Zhou, Kangzhu; Deng, Dongmei

    2018-03-05

    We introduce the propagation of the first-order chirped Airy vortex beams (FCAiV) in a chiral medium analytically. Results show that the FCAiV beams split into the left circularly polarized vortex (LCPV) beams and the right circularly polarized vortex (RCPV) beams, which have totally different propagation trajectories in the chiral medium. In this paper, we investigate the effects of the first-order chirped parameter β, the chiral parameter γ and the optical vortex on the propagation process of the FCAiV beams. It is shown that the propagation trajectory of the FCAiV beams declines with the chirped parameter increasing. Besides, the increase of the chiral parameter acting on the LCPV beams makes the relative position between the main lobe and the optical vortex further while the effect on the RCPV beams is the opposite. Furthermore, the relative position between the main lobe and the optical vortex contributes to the position of the intensity focusing. Meanwhile, with the chiral parameter increasing, the maximum gradient and scattering forces of the LCPV beams decrease but those of the RCPV beams will increase during the propagation. It is significant that we can control the propagation trajectory, the intensity focusing position and the radiation forces of the FCAiV beams by varying the chirped parameter and the chiral parameter.

  2. A novel Chirped Return-to-Zero Transmitter and Transmission Experiments

    DEFF Research Database (Denmark)

    Liu, Fenghai; Peucheret, Christophe; Xueyan, Zheng

    2000-01-01

    A new 10 Gb/s chirped return-to-zero transmitter using CW light modulated by only one external modulator is proposed. Transmission over 3600 km of standard single mode fibre is performed in a re-circulating loop set-up with 80 km amplifier span....

  3. MATLAB simulation of a Distributed Feedback (DFB) laser with chirp effects

    Science.gov (United States)

    Espe, Burt L.

    1994-12-01

    A model of a distributed feedback (DFB) laser was implemented in MATLAB and SIMULINK. Using the laser rate equation, the model was simulated to obtain general characteristics of the chirp of the lasers frequency. The simulations were controlled by using different drive current waveforms, based on various bit patterns, data rates, and drive current values (threshold current and the extinction ratio). Once created, the laser drive current was passed to the SIMULINK DFB laser model. The output of a simulation provided frequency chirp, laser power emitted, photon density, and carrier density data. Two sets of simulations were conducted. The first set of simulations focused on the data rates and bit patterns. From these simulations it was determined that the transition from a ZERO bit to a ONE bit caused the greatest frequency excursions. Also, as the data rate increases the maximum frequency excursion increases. Finally, the first set of simulations revealed that the predictability of the chirp decreases as the data rate increases and as the complexity of the bit pattern increases. The second set of simulations examined the effect of the extinction ratio on frequency chirp. By plotting the maximum frequency excursion against its respective extinction ratio, it was determined that in some cases the maximum frequency excursions in a system could be minimized.

  4. On the undesired frequency chirping in photonic time-stretch systems

    Science.gov (United States)

    Xu, Yuxiao; Chi, Hao; Jin, Tao; Zheng, Shilie; Jin, Xiaofeng; Zhang, Xianmin

    2017-12-01

    The technique of photonic time stretch (PTS) has been intensively investigated in the past decade due to its potential in the acquisition of ultra-high speed signals. The frequency-related RF power fading in the PTS systems with double sideband (DSB) modulation has been well-known, which limits the maximum modulation frequency. Some solutions have been proposed to solve this problem. In this paper, we report another effect, i.e., undesired frequency chirping, which also relates to the performance degradation of PTS systems with DSB modulation, for the first time to our knowledge. Distinct from the nonlinearities caused by nonlinear modulation and square-law photodetection, which is common in radio frequency analog optical links, this frequency chirping originates from the addition of two beating signals with a relative delay after photodetection. A theoretical model for exactly describing the frequency chirping is presented, and is then verified by simulations. Discussion on the method to avoid the frequency chirping is also presented.

  5. Optimization of an Optical Parametric Chirped Pulse Amplification System for the OMEGA EP Laser System

    International Nuclear Information System (INIS)

    Begishev, I.; Bagnoud, V.; Guardalben, M.; Waxer, L.; Puth, J.; Zuegel, J.

    2003-01-01

    OAK B204 We report on the experimental achievements of the optical parametric chirped-pulse amplification (OPCPA) system, including 29% pump-to-signal conversion efficiency and 107 gain using two LBO crystals configured as a single amplification stage. Temporal and spatial shaping of the pump laser pulse is required to achieve both high-gain and high-conversion efficiency

  6. Distinct Lasing Operation From Chirped InAs/InP Quantum-Dash Laser

    KAUST Repository

    Khan, Mohammed Zahed Mustafa; Ng, Tien Khee; Lee, Chi-Sen; Anjum, Dalaver H.; Cha, Dong Kyu; Bhattacharya, Pallab K.; Ooi, Boon S.

    2013-01-01

    We study the enhanced inhomogeneity across the InAs quantum-dash (Qdash) layers by incorporating a chirped AlGaInAs barrier thickness in the InAs/InP laser structure. The lasing operation is investigated via Fabry-Pérot ridge-waveguide laser

  7. Ultra-high temperature chirped fiber Bragg gratings produced by gradient stretching of viscoelastic silica.

    Science.gov (United States)

    Gao, Shaorui; Canning, John; Cook, Kevin

    2013-12-15

    By applying a suitable quadratic temperature distribution at a temperature within the viscoelastic softening region for silica, a regenerated chirped grating with bandwidth of 9.8 nm is produced from a uniform grating using post strain-tuning under load. Simulated and experimental results are in good agreement.

  8. Effect of Ion Cyclotron Acceleration on Frequency Chirping Beam-Driven Instabilities in NSTX

    International Nuclear Information System (INIS)

    Ruskov, E.; Heidbrink, W.W.; Fredrickson, E.D.; Darrow, D.; Medley, S.; Gorelenkov, N.

    2006-01-01

    The fast-ion distribution function in the National Spherical Torus Experiment (NSTX) is modified from shot to shot while keeping the total injected power at ∼2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including TAE modes, 50-100∼kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10-20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power (∼3 MW) harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the effective collision frequency. Steady-frequency TAE modes excited early in the discharge are affected by the HHFW heating but there is no evidence that the chirping of 20-100 kHz modes is suppressed. (author)

  9. Helium in chirped laser fields as a time-asymmetric atomic switch

    Czech Academy of Sciences Publication Activity Database

    Kaprálová-Žďánská, Petra Ruth; Moiseyev, N.

    2014-01-01

    Roč. 141, č. 1 (2014), "014307-1"-"014307-14" ISSN 0021-9606 R&D Projects: GA ČR GAP205/11/0571 Institutional support: RVO:68378271 Keywords : laser excitation * chirped pulses * non-hermitian quantum mechanics * time-asymmetry Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.952, year: 2014

  10. Linear chirped slope profile for spatial calibration in slope measuring deflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, F., E-mail: frank.siewert@helmholtz-berlin.de; Zeschke, T. [Helmholtz Zentrum Berlin für Materialien und Energie, Institut für Nanometer Optik und Technologie, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Arnold, T.; Paetzelt, H. [Leibnitz Institut für Oberflächen Modifizierung Leipzig e.V., IOM, Permoserstr. 15, 04318 Leipzig (Germany); Yashchuk, V. V. [Lawerence Berkeley National Laboratory, Advanced Light Source, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2016-05-15

    Slope measuring deflectometry is commonly used by the X-ray optics community to measure the long-spatial-wavelength surface figure error of optical components dedicated to guide and focus X-rays under grazing incidence condition at synchrotron and free electron laser beamlines. The best performing instruments of this kind are capable of absolute accuracy on the level of 30-50 nrad. However, the exact bandwidth of the measurements, determined at the higher spatial frequencies by the instrument’s spatial resolution, or more generally by the instrument’s modulation transfer function (MTF) is hard to determine. An MTF calibration method based on application of a test surface with a one-dimensional (1D) chirped height profile of constant amplitude was suggested in the past. In this work, we propose a new approach to designing the test surfaces with a 2D-chirped topography, specially optimized for MTF characterization of slope measuring instruments. The design of the developed MTF test samples based on the proposed linear chirped slope profiles (LCSPs) is free of the major drawback of the 1D chirped height profiles, where in the slope domain, the amplitude strongly increases with the local spatial frequency of the profile. We provide the details of fabrication of the LCSP samples. The results of first application of the developed test samples to measure the spatial resolution of the BESSY-NOM at different experimental arrangements are also presented and discussed.

  11. Proton radiography to improve proton therapy treatment

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E. R.; van Goethem, Marc-Jan; van Beuzekom, M.; Klaver, T.; Visser, Jan; Brandenburg, S.; Biegun, A. K.

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT)

  12. Photoacoustic simulation study of chirp excitation response from different size absorbers

    Science.gov (United States)

    Jnawali, K.; Chinni, B.; Dogra, V.; Rao, N.

    2017-03-01

    Photoacoustic (PA) imaging is a hybrid imaging modality that integrates the strength of optical and ultrasound imaging. Nanosecond (ns) pulsed lasers used in current PA imaging systems are expensive, bulky and they often waste energy. We propose and evaluate, through simulations, the use of a continuous wave (CW) laser whose amplitude is linear frequency modulated (chirp) for PA imaging. The chirp signal provides signal-to-side-lobe ratio (SSR) improvement potential and full control over PA signal frequencies excited in the sample. The PA signal spectrum is a function of absorber size and the time frequencies present in the chirp. A mismatch between the input chirp spectrum and the output PA signal spectrum can affect the compressed pulse that is recovered from cross-correlating the two. We have quantitatively characterized this effect. The k-wave Matlab tool box was used to simulate PA signals in three dimensions for absorbers ranging in size from 0.1 mm to 0.6 mm, in response to laser excitation amplitude that is linearly swept from 0.5 MHz to 4 MHz. This sweep frequency range was chosen based on the spectrum analysis of a PA signal generated from ex-vivo human prostate tissue samples. In comparison, the energy wastage by a ns laser pulse was also estimated. For the chirp methodology, the compressed pulse peak amplitude, pulse width and side lobe structure parameters were extracted for different size absorbers. While the SSR increased 6 fold with absorber size, the pulse width decreased by 25%.

  13. Building Climate Service Capacities in Eastern Africa with CHIRP and GeoCLIM

    Science.gov (United States)

    Pedreros, D. H.; Magadzire, T.; Funk, C. C.; Verdin, J. P.; Peterson, P.; Landsfeld, M.; Husak, G. J.

    2013-12-01

    In developing countries there is a great need for capacity building within national and regional climate agencies to develop and analyze historical and real time gridded rainfall datasets. These datasets are of key importance for monitoring climate and agricultural food production at decadal and seasonal time scales, and for informing local decision makers. The Famine Early Warning Systems Network (FEWS NET), working together with the U.S. Geological Survey (USGS) and the Climate Hazards Group (CHG) of the University of California Santa Barbara, has developed an integrated set of data products and tools to support the development of African climate services. The core data product is the Climate Hazards Group Infrared Precipitation (CHIRP) dataset. The CHIRP is a new rainfall dataset resulting from the blending of satellite estimated precipitation with high resolution precipitation climatology. The CHIRP depicts rainfall on five day totals at 5km spatial resolution from 1981 to present. The CHG is developing and deploying a standalone tool - the GeoCLIM - which will allow national and regional meteorological agencies to blend the CHIRP with station observations, run simple crop water balance models, and conduct climatological, trend, and time series analysis. Blending satellite estimates and gauge data helps overcome limited in situ observing networks. Furthermore, the GeoCLIM combines rainfall, soil, and evapotranspiration data with crop hydrological requirements to calculate agricultural water balance, presented as the Water Requirement Satisfaction Index (WRSI). The WRSI is a measurement of the degree in which a crop's hydrological requirements have been satisfied by rainfall. We present the results of a training session for personnel of the East African Intergovernmental Authority on Development Climate Prediction and Applications Center. The two week training program included the use of the GeoCLIM to improve CHIRP using station data, and to calculate and

  14. Chirped-pulse manipulated carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs

    International Nuclear Information System (INIS)

    Lee, Chao-Kuei; Lin, Yuan-Yao; Lin, Sung-Hui; Lin, Gong-Ru; Pan, Ci-Ling

    2014-01-01

    Chirped pulse controlled carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs are investigated by degenerate pump-probe technique. Varying the chirped condition of excited pulse from negative to positive increases the carrier relaxation time so as to modify the dispersion and reshape current pulse in time domain. The spectral dependence of carrier dynamics is analytically derived and explained by Shockley-Read Hall model. This observation enables the new feasibility of controlling carrier dynamics in ultrafast optical devices via the chirped pulse excitations

  15. Amplification and focusing of a picosecond chirped pulse to 20TW and 5x1017W/cm2

    International Nuclear Information System (INIS)

    Sauteret, C.; Husson, D.; Rouyer, C.; Seznec, S.; Gary, S.

    1991-01-01

    Pulses of 20 TW power have been generated at 1064 nm using the Chirped Pulse Amplification technique coupled to a 90 mm output aperture powerful Nd:silicate glass amplification line. This system delivers 60 J in a chirped pulse of 600 ps duration with a capacity of maintaining 3.5 nm output bandwidth. These chirped pulses have been compressed to 1.2 ps with an energy of 24J using large holographic diffraction gratings. After presenting the results we discuss the expected applications in atomic and plasma physics

  16. The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Chen, Yaohui; Öhman, Filip

    2009-01-01

    We experimentally investigate the initial chirp dependence of slow and fast light effects in a semiconductor optical amplifier followed by an optical filter. It is shown that the enhancement of the phase shift due to optical filtering strongly depends on the chirp of the input optical signal. We...... demonstrate ~120º phase delay as well as ~170º phase advance at a microwave frequency of 19 GHz for different optimum values of the input chirp. The experimental results are shown to be in good agreement with numerical results based on a four-wave mixing model. Finally, a simple physical explanation based...

  17. A detection system for charged-particle decay studies with a continuous-implantation method

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L.J. [China Institute of Atomic Energy, Beijing 102413 (China); Xu, X.X., E-mail: xuxinxing@ciae.ac.cn [China Institute of Atomic Energy, Beijing 102413 (China); Lin, C.J., E-mail: cjlin@ciae.ac.cn [China Institute of Atomic Energy, Beijing 102413 (China); Wang, J.S. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Fang, D.Q. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Z.H. [School of Physic and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Wang, Y.T. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, J. [School of Physic and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Yang, L.; Ma, N.R. [China Institute of Atomic Energy, Beijing 102413 (China); Wang, K. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zang, H.L. [School of Physic and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Wang, H.W.; Li, C.; Shi, C.Z.; Nie, M.W.; Li, X.F.; Li, H. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Ma, J.B.; Ma, P. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); and others

    2015-12-21

    A new detection system with high detection efficiency and low detection threshold has been developed for charged-particle decay studies, including β-delayed proton, α decay or direct proton emission from proton-rich nuclei. The performance was evaluated by using the β-delayed proton emitter {sup 24}Si produced by projectile fragmentation at the First Radioactive Ion Beam Line in Lanzhou. Under a continuous-beam mode, the isotopes of interest were implanted into two double-sided silicon strip detectors, where the subsequent decays were measured and correlated to the preceding implantations by using position and time information. The system allows us to measure protons with energies down to about 200 keV without obvious β background in the proton spectrum. Further application of the detection system can be extended to the measurements of β-delayed proton decay and the direct proton emission of more exotic proton-rich nuclei.

  18. Carmustine Implant

    Science.gov (United States)

    ... works by slowing or stopping the growth of cancer cells in your body. ... are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while receiving carmustine implant, call your doctor. Carmustine may harm the fetus.

  19. Cochlear Implants

    Science.gov (United States)

    ... NIDCD A cochlear implant is a small, complex electronic device that can help to provide a sense ... Hearing Aids Retinitis Pigmentosa - National Eye Institute Telecommunications Relay Services Usher Syndrome Your Baby's Hearing Screening News ...

  20. Effect of initial chirp on near-infrared supercontinuum generation by a nanosecond pulse in a nonlinear fiber amplifier

    International Nuclear Information System (INIS)

    Song Rui; Hou Jing; Wang Ze-Feng; Lu Qi-Sheng; Xiao Rui

    2013-01-01

    Theoretical and experimental research on the effect of initial chirp on near-infrared supercontinuum generation by a nanosecond pulse in a nonlinear fiber amplifier is carried out. The complex Ginzburg—Landau equation is used to simulate the propagation of the pulse in the fiber amplifier and the results show that pulses with negative initial chirp produce the widest supercontinuum and pulses with positive initial chirp produce the narrowest supercontinuum when the central wavelength of the pump lies in the normal dispersion region of the gain fiber. A self-made line width narrowing system is utilized to control the initial chirp of the nanosecond pump pulse and a four-stage master oscillator power amplifier configuration is adopted to produce a high power near-infrared suppercontinuum. The experimental results are in good agreement with simulations which can provide some guidance on further optimization of the system in future work. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Raw Knudsen Chirp 320BR subbottom profiler - Knudsen subbottom profile data for the Chukchi Cap and Arctic Ocean.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Knudsen Chirp 320BR subbottom profiler - Knudsen subbottom profile data were collected in Raw Knudsen SEG-Y Datagram format.

  2. Proton diffraction

    International Nuclear Information System (INIS)

    Den Besten, J.L.; Jamieson, D.N.; Allen, L.J.

    1998-01-01

    The Lindhard theory on ion channeling in crystals has been widely accepted throughout ion beam analysis for use in simulating such experiments. The simulations use a Monte Carlo method developed by Barret, which utilises the classical 'billiard ball' theory of ions 'bouncing' between planes or tubes of atoms in the crystal. This theory is not valid for 'thin' crystals where the planes or strings of atoms can no longer be assumed to be of infinite proportions. We propose that a theory similar to that used for high energy electron diffraction can be applied to MeV ions, especially protons, in thin crystals to simulate the intensities of transmission channeling and of RBS spectra. The diffraction theory is based on a Bloch wave solution of the Schroedinger equation for an ion passing through the periodic crystal potential. The widely used universal potential for proton-nucleus scattering is used to construct the crystal potential. Absorption due to thermal diffuse scattering is included. Experimental parameters such as convergence angle, beam tilt and scanning directions are considered in our calculations. Comparison between theory and experiment is encouraging and suggests that further work is justified. (authors)

  3. Photodissociation of H2+ by intense chirped pulses - beyond the effect of pulse duration and peak power

    International Nuclear Information System (INIS)

    Lev, U; Prabhudesai, V; Natan, A; Bruner, B; Diner, A; Heber, O; Strasser, D; Schwalm, D; Silberberg, Y; Zajfman, D; Ben-Itzhak, I; Hua, J J; Esry, B D

    2009-01-01

    H 2 + photodissociation, induced by intense short laser pulses, was measured by a full 3D imaging system. We have conducted a series of experiments, in which we systematically changed the linear chirp, using a pulse shaper, and observed the kinetic energy release spectra(KER). Distinct differences in the KER spectra are observed both in peak positions and angular distribution for laser pulses with similar duration and intensity but opposite chirp sign.

  4. Photodissociation of H{sub 2}{sup +} by intense chirped pulses - beyond the effect of pulse duration and peak power

    Energy Technology Data Exchange (ETDEWEB)

    Lev, U; Prabhudesai, V; Natan, A; Bruner, B; Diner, A; Heber, O; Strasser, D; Schwalm, D; Silberberg, Y; Zajfman, D [Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Ben-Itzhak, I; Hua, J J; Esry, B D, E-mail: uri.lev@Weizmann.ac.i [Department of Physics, Kansas State University, Manhattan, KS 66506 (United States)

    2009-11-01

    H{sub 2}{sup +} photodissociation, induced by intense short laser pulses, was measured by a full 3D imaging system. We have conducted a series of experiments, in which we systematically changed the linear chirp, using a pulse shaper, and observed the kinetic energy release spectra(KER). Distinct differences in the KER spectra are observed both in peak positions and angular distribution for laser pulses with similar duration and intensity but opposite chirp sign.

  5. Research for robust femtosecond chirped-pulse amplification laser with an identical positive dispersive media as pulse stretcher and compressor

    International Nuclear Information System (INIS)

    Akahane, Yutaka; Ogawa, Kanade; Tsuji, Koichi; Aoyama, Makoto; Yamakawa, Koichi

    2011-01-01

    We have proposed and demonstrated a simple and robust femtosecond optical-parametric chirped-pulse amplification scheme in which an even order dispersion of an idler pulse is compensated by passing through an identical positive dispersive material used for temporal stretching a signal pulse. By compressing the idler pulses having a negatively chirp in this manner, high power sub-100 fs pulses were successfully obtained with only a transparent glass block used for the stretcher and compressor. (author)

  6. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.

    1984-01-01

    The implantation and sputtering mechanisms which are relevant to ion bombardment of surfaces are described. These are: collision, thermal, electronic and photon-induced sputtering. 135 refs.; 36 figs.; 9 tabs

  7. Role of misalignment-induced angular chirp in the electro-optic detection of THz waves

    CERN Document Server

    Walsh, D A; Pan, R; Snedden, E W; Graham, D M; Gillespie, W A; Jamison, S P

    2014-01-01

    A general description of electro-optic detection including non-collinear phase matching and finite transverse beam profiles is presented. It is shown theoretically and experimentally that non-collinear phase matching in ZnTe (and similar materials) produces an angular chirp in the chi((2))-generated optical signal. Due to this, in non-collinear THz and probe arrangements such as single-shot THz measurements or through accidental misalignment, measurement of an undistorted THz signal is critically dependent on having sufficient angular acceptance in the optical probe path. The associated spatial walk-off can also preclude the phase retardation approximation used in THz-TDS. The rate of misalignment-induced chirping in commonly used ZnTe and GaP schemes is tabulated, allowing ready analysis of a detection system. (C) 2014 Optical Society of America.

  8. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging.

    Science.gov (United States)

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-11-07

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  9. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging

    Directory of Open Access Journals (Sweden)

    Tianzhu Yi

    2017-11-01

    Full Text Available This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR data processing. Several nonlinear chirp scaling (NLCS algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC. However, the azimuth depth of focusing (ADOF is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS algorithm that is proposed in this paper uses the method of series reverse (MSR to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  10. A Range Ambiguity Suppression Processing Method for Spaceborne SAR with Up and Down Chirp Modulation

    Directory of Open Access Journals (Sweden)

    Xuejiao Wen

    2018-05-01

    Full Text Available Range ambiguity is one of the factors which affect the SAR image quality. Alternately transmitting up and down chirp modulation pulses is one of the methods used to suppress the range ambiguity. However, the defocusing range ambiguous signal can still hold the stronger backscattering intensity than the mainlobe imaging area in some case, which has a severe impact on visual effects and subsequent applications. In this paper, a novel hybrid range ambiguity suppression method for up and down chirp modulation is proposed. The method can obtain the ambiguity area image and reduce the ambiguity signal power appropriately, by applying pulse compression using a contrary modulation rate and CFAR detecting method. The effectiveness and correctness of the approach is demonstrated by processing the archive images acquired by Chinese Gaofen-3 SAR sensor in full-polarization mode.

  11. A Range Ambiguity Suppression Processing Method for Spaceborne SAR with Up and Down Chirp Modulation.

    Science.gov (United States)

    Wen, Xuejiao; Qiu, Xiaolan; Han, Bing; Ding, Chibiao; Lei, Bin; Chen, Qi

    2018-05-07

    Range ambiguity is one of the factors which affect the SAR image quality. Alternately transmitting up and down chirp modulation pulses is one of the methods used to suppress the range ambiguity. However, the defocusing range ambiguous signal can still hold the stronger backscattering intensity than the mainlobe imaging area in some case, which has a severe impact on visual effects and subsequent applications. In this paper, a novel hybrid range ambiguity suppression method for up and down chirp modulation is proposed. The method can obtain the ambiguity area image and reduce the ambiguity signal power appropriately, by applying pulse compression using a contrary modulation rate and CFAR detecting method. The effectiveness and correctness of the approach is demonstrated by processing the archive images acquired by Chinese Gaofen-3 SAR sensor in full-polarization mode.

  12. On the conditions for the onset of nonlinear chirping structures in NSTX

    Science.gov (United States)

    Duarte, Vinicius; Podesta, Mario; Berk, Herbert; Gorelenkov, Nikolai

    2015-11-01

    The nonlinear dynamics of phase space structures is a topic of interest in tokamak physics in connection with fast ion loss mechanisms. The onset of phase-space holes and clumps has been theoretically shown to be associated with an explosive solution of an integro-differential, nonlocal cubic equation that governs the early mode amplitude evolution in the weakly nonlinear regime. The existence and stability of the solutions of the cubic equation have been theoretically studied as a function of Fokker-Planck coefficients for the idealized case of a single resonant point of a localized mode. From realistic computations of NSTX mode structures and resonant surfaces, we calculate effective pitch angle scattering and slowing-down (drag) collisional coefficients and analyze NSTX discharges for different cases with respect to chirping experimental observation. Those results are confronted to the theory that predicts the parameters region that allow for chirping to take place.

  13. CSR Interaction for a 2D Energy-Chirped Bunch on a General Orbit

    International Nuclear Information System (INIS)

    Li, Rui

    2009-01-01

    When an electron bunch with initial linear energy chirp traverses a bunch compression chicane, the bunch interacts with itself via coherent synchrotron radiation (CSR) and space charge force. The effective longitudinal CSR force for such kind of 2D bunch on a circular orbit has been analyzed earlier (1). In this paper, we present the analytical results of the effective longitudinal CSR force for a 2D energy-chirped bunch going through a general orbit, which includes the entrance and exit of a circular orbit. In particular, we will show the behavior of the force in the last bend of a chicane when the bunch is under extreme compression. This is the condition when bifurcation of bunch phase space occurs in many CSR measurements. (1) R. Li, Phys. Rev. ST Accel. Beams 11, 024401 (2008)

  14. Making ultracold molecules in a two-color pump-dump photoassociation scheme using chirped pulses

    International Nuclear Information System (INIS)

    Koch, Christiane P.; Luc-Koenig, Eliane; Masnou-Seeuws, Francoise

    2006-01-01

    This theoretical paper investigates the formation of ground state molecules from ultracold cesium atoms in a two-color scheme. Following previous work on photoassociation with chirped picosecond pulses [Luc-Koenig et al., Phys. Rev. A, 70, 033414 (2004)], we investigate stabilization by a second (dump) pulse. By appropriately choosing the dump pulse parameters and time delay with respect to the photoassociation pulse, we show that a large number of deeply bound molecules are created in the ground triplet state. We discuss (i) broad-bandwidth dump pulses which maximize the probability to form molecules while creating a broad vibrational distribution as well as (ii) narrow-bandwidth pulses populating a single vibrational ground state level, bound by 113 cm -1 . The use of chirped pulses makes the two-color scheme robust, simple, and efficient

  15. Cluster explosion investigated by linearly chirped spectral scattering of an expanding plasma sphere

    International Nuclear Information System (INIS)

    Liu Jiansheng; Wang Cheng; Liu Bingchen; Shuai Bin; Wang Wentao; Cai Yi; Li Hongyu; Ni Guoquan; Li Ruxin; Xu Zhizhan

    2006-01-01

    Femtosecond explosive processes of argon clusters irradiated by linearly chirped ultraintense laser pulses have been investigated by 90 deg. side spectral scattering. The spectral redshift and blueshift, which correlate with the cluster explosion processes have been measured for negatively and positively chirped driving laser pulses, respectively. The evolution of the heated-cluster polarizability indicates that the core of the cluster is shielded from the laser field in the beginning of the explosion and enhanced scattering occurs after the fast explosion initiates. Evidence of resonant heating is found from the coincidence of enhanced scattering with enhanced absorption measured using the transmitted spectra. Anomalously large-size clusters with very low gas density have been observed in this way and can be used as clean and important cluster targets

  16. Analysis of reflection-peak wavelengths of sampled fiber Bragg gratings with large chirp.

    Science.gov (United States)

    Zou, Xihua; Pan, Wei; Luo, Bin

    2008-09-10

    The reflection-peak wavelengths (RPWs) in the spectra of sampled fiber Bragg gratings with large chirp (SFBGs-LC) are theoretically investigated. Such RPWs are divided into two parts, the RPWs of equivalent uniform SFBGs (U-SFBGs) and the wavelength shift caused by the large chirp in the grating period (CGP). We propose a quasi-equivalent transform to deal with the CGP. That is, the CGP is transferred into quasi-equivalent phase shifts to directly derive the Fourier transform of the refractive index modulation. Then, in the case of both the direct and the inverse Talbot effect, the wavelength shift is obtained from the Fourier transform. Finally, the RPWs of SFBGs-LC can be achieved by combining the wavelength shift and the RPWs of equivalent U-SFBGs. Several simulations are shown to numerically confirm these predicted RPWs of SFBGs-LC.

  17. Multi-resonance peaks fiber Bragg gratings based on largely-chirped structure

    Science.gov (United States)

    Chen, Chao; Zhang, Xuan-Yu; Wei, Wei-Hua; Chen, Yong-Yi; Qin, Li; Ning, Yong-Qiang; Yu, Yong-Sen

    2018-04-01

    A composite fiber Bragg grating (FBG) with multi-resonance peaks (MRPs) has been realized by using femtosecond (fs) laser point-by-point inscription in single-mode fiber. This device contains a segment of largely-chirped gratings with the ultrahigh chirp coefficients and a segment of uniform high-order gratings. The observed MRPs are distributed in an ultra-broadband wavelength range from 1200 nm to 1700 nm in the form of quasi-period or multi-peak-group. For the 8th-order MRPs-FBG, we studied the axial strain and high-temperature sensing characteristics of different resonance peaks experimentally. Moreover, we have demonstrated a multi-wavelength fiber lasers with three-wavelength stable output by using a 9th-order MRPs-FBG as the wavelength selector. This work is significant for the fabrication and functionalization of FBGs with complicated spectra characteristics.

  18. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Sipala, V.; Lo Presti, D.; Brianzi, M.; Civinini, C.; Bruzzi, M.; Scaringella, M.; Talamonti, C.; Bucciolini, M.; Cirrone, G.A.P.; Cuttone, G.; Randazzo, N.; Stancampiano, C.; Tesi, M.

    2011-01-01

    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  19. Proton radioactivity from proton-rich nuclei

    International Nuclear Information System (INIS)

    Guzman, F.; Goncalves, M.; Tavares, O.A.P.; Duarte, S.B.; Garcia, F.; Rodriguez, O.

    1999-03-01

    Half-lives for proton emission from proton-rich nuclei have been calculated by using the effective liquid drop model of heavy-particle decay of nuclei. It is shown that this model is able to offer results or spontaneous proton-emission half-life-values in excellent agreement with the existing experimental data. Predictions of half-life-values for other possible proton-emission cases are present for null orbital angular momentum. (author)

  20. Quantum state population transfer of lithium atoms induced by frequency-chirped laser pulses

    International Nuclear Information System (INIS)

    Ma Huanqiang; Zhang Xianzhou; Jia Guangrui; Zhang Yonghui; Jiang Lijuan

    2011-01-01

    Using the time-dependent multilevel approach (TDMA) and B-splines function, we have calculated the five quantum state population transfer of rydberg lithium atoms. We also analyse the influence of the four major parameters of the frequency-chirped laser pulses field on transition. The result shows that the population can be completely transferred to the target state by changing the parameters of the laser pulse and achieve manual controls to a certain degree. (authors)

  1. Making ultracold molecules in a two color pump-dump photoassociation scheme using chirped pulses

    OpenAIRE

    Koch, Christiane P.; Luc-Koenig, Eliane; Masnou-Seeuws, Françoise

    2005-01-01

    This theoretical paper investigates the formation of ground state molecules from ultracold cesium atoms in a two-color scheme. Following previous work on photoassociation with chirped picosecond pulses [Luc-Koenig et al., Phys. Rev. A {\\bf 70}, 033414 (2004)], we investigate stabilization by a second (dump) pulse. By appropriately choosing the dump pulse parameters and time delay with respect to the photoassociation pulse, we show that a large number of deeply bound molecules are created in t...

  2. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression.

    Science.gov (United States)

    Moses, J; Huang, S-W; Hong, K-H; Mücke, O D; Falcão-Filho, E L; Benedick, A; Ilday, F O; Dergachev, A; Bolger, J A; Eggleton, B J; Kärtner, F X

    2009-06-01

    We present a 9 GW peak power, three-cycle, 2.2 microm optical parametric chirped-pulse amplification source with 1.5% rms energy and 150 mrad carrier envelope phase fluctuations. These characteristics, in addition to excellent beam, wavefront, and pulse quality, make the source suitable for long-wavelength-driven high-harmonic generation. High stability is achieved by careful optimization of superfluorescence suppression, enabling energy scaling.

  3. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  4. Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing.

    Science.gov (United States)

    Rius, Manuel; Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2015-05-18

    We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing.

  5. Chirped fiber Bragg gratings written with ultrashort pulses and a tunable phase mask.

    Science.gov (United States)

    Voigtländer, Christian; Thomas, Jens; Wikszak, Elodie; Dannberg, Peter; Nolte, Stefan; Tünnermann, Andreas

    2009-06-15

    We report a fabrication technique for chirped fiber Bragg gratings (CFBGs) using a flexible setup based on a poly(methyl-methacrylate) phase mask. The period of the phase mask can be thermally tuned during the inscription process, allowing the grating period of uniform fiber Bragg gratings to be shifted about 7 nm by a temperature change of 74 K. In addition, CFBGs with bandwidths up to 2 nm are demonstrated in non-photosensitive fibers by IR femtosecond inscription.

  6. High spatial and temporal resolution interrogation of fully distributed chirped fiber Bragg grating sensors

    OpenAIRE

    Ahmad, Eamonn J.; Wang, Chao; Feng, Dejun; Yan, Zhijun; Zhang, Lin

    2017-01-01

    A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are...

  7. Experimental measurement of proton penetration in silicon

    International Nuclear Information System (INIS)

    Castaing, C.; Baruch, P.; Picard, C.

    1974-01-01

    After proton implantation in silicon at high fluence, hydrogen precipitation in bubbles is induced by annealing. The stresses are so high that blister formation and peeling occur, leaving flat bottomed pits, with a depth equal to the projected proton range R(p). In this way R(p) was measured between 200 and 600keV, and compared with already published values, and with values computed through LSS (Lindhard, Scharff, and Schiott) theory, using a correct electronic stopping power. A table of ranges and standard deviations, computed in this way is given. The agreement with experimental results is excellent [fr

  8. Influence of chirp on laser-pulse amplification in Brillouin backscattering schemes

    Science.gov (United States)

    Lehmann, Goetz; Schluck, Friedrich; Spatschek, Karl-Heinz

    2015-11-01

    Plasma-based amplification of laser pulses is currently discussed as a key component for the next generation of high-intensity laser systems, possibly enabling the generation of ultra-short pulses in the exawatt-zetawatt regime. In these scenarios the energy of a long pump pulse (several ps to ns of duration) is transferred to a short seed pulse via a plasma oscillation. Weakly- and strongly-coupled (sc) Brillouin backscattering have been identified as potential candidates for robust amplification scenarios. With the help of three-wave interaction models, we investigate the influence of a chirp of the pump beam on the seed amplification. We show that chirp can mitigate deleterious spontaneous Raman backscattering of the pump off noise and that at the same time the amplification dynamics due to Brillouin scattering is still intact. For the experimentally very interesting case of sc-Brillouin we find a dependence of the efficiency on the sign of the chirp. Funding provided by project B10 of SFB TR18 of the Deutsche Forschungsgemeinschaft (DFG).

  9. Concurrent validation of CHIRP, a new instrument for measuring healthcare student attitudes towards interdisciplinary teamwork.

    Science.gov (United States)

    Hollar, David; Hobgood, Cherri; Foster, Beverly; Aleman, Marco; Sawning, Susan

    2012-01-01

    Positive attitudes towards teamwork among health care professionals are critical to patient safety. The purpose of this study is to describe the development and concurrent validation of a new instrument to measure attitudes towards healthcare teamwork that is generalizable across various populations of healthcare students. The Collaborative Healthcare Interdisciplinary Planning (CHIRP) scale was validated against the Readiness for Inter-Professional Learning Scale (RIPLS). Analyses included student (n = 266) demographics, ANOVA, internal consistency, factor analysis, and Rasch analysis. The two instruments correlated at r = .582. The CHIRP showed a multifactorial structure having excellent internal consistency (alpha = .850), with 25 of the 36 scale items loading onto a single Teamwork Attitudes factor. The RIPLS likewise had strong internal consistency (alpha = .796) and a three-factor structure, supporting previous studies of the instrument. However, Rasch analyses showed 14 (38.9%) of the 36 CHIRP items, but only four (21.1%) of the 19 RIPLS items remaining within the satisfactory standardized OUTFIT zone of 2.0 standard deviation units. We propose the 14 fitting items as a new, validated teamwork attitudes scale.

  10. Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp

    International Nuclear Information System (INIS)

    Su Hui; Lester, Luke F

    2005-01-01

    The dynamic properties of distributed feedback lasers (DFBs) based on InAs/InGaAs quantum dots (QDs) are studied. The response function of QD DFBs under external modulation is measured, and the gain compression with photon density is identified to be the limiting factor of the modulation bandwidth. The enhancement of the gain compression by the gain saturation with the carrier density in QDs is also analysed for the first time. The linewidth of the QD DFBs is found to be more than one order of magnitude narrower than that of conventional quantum well (QW) DFBs at comparable output powers. The figure of merit for the narrow linewidth is compared between different semiconductor materials, including bulk, QWs and QDs. Linewidth re-broadening and the effects of gain offset are also investigated. Finally, the chirp of QD DFBs is studied by time-resolved-chirp measurements. The wavelength chirping of the QD DFBs under 2.5 Gbps modulation is characterized. The strong dependence of the linewidth enhancement factor on the photon density is explained by the enhancement of gain compression by the gain saturation with the carrier density, which is related to the inhomogeneous broadening and spectral hole burning in QDs

  11. Non-stationary component extraction in noisy multicomponent signal using polynomial chirping Fourier transform.

    Science.gov (United States)

    Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan

    2016-01-01

    Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.

  12. Broadband excitation by chirped pulses: application to single electron spins in diamond

    International Nuclear Information System (INIS)

    Niemeyer, I; Shim, J H; Zhang, J; Suter, D; Taniguchi, T; Teraji, T; Abe, H; Onoda, S; Yamamoto, T; Ohshima, T; Isoya, J; Jelezko, F

    2013-01-01

    Pulsed excitation of broad spectra requires very high field strengths if monochromatic pulses are used. If the corresponding high power is not available or not desirable, the pulses can be replaced by suitable low-power pulses that distribute the power over a wider bandwidth. As a simple case, we use microwave pulses with a linear frequency chirp. We use these pulses to excite spectra of single nitrogen–vacancy centres in a Ramsey experiment. Compared to the conventional Ramsey experiment, our approach increases the bandwidth by at least an order of magnitude. Compared to the conventional continuous wave-ODMR experiment, the chirped Ramsey experiment does not suffer from power broadening and increases the resolution by at least an order of magnitude. As an additional benefit, the chirped Ramsey spectrum contains not only ‘allowed’ single quantum transitions, but also ‘forbidden’ zero- and double quantum transitions, which can be distinguished from the single quantum transitions by phase-shifting the readout pulse with respect to the excitation pulse or by variation of the external magnetic field strength. (paper)

  13. Development of a Chirp Stimulus PC-Based Auditory Brainstem Response Audiometer

    Directory of Open Access Journals (Sweden)

    Ali AL-Afsaa

    2004-05-01

    Full Text Available Hearing losses during infancy and childhood have many negative future effects and impacts on the child life and productivity. The earlier detection of hearing losses, the earlier medical intervention and then the greater benefit of remediation will be. During this research a PC-based audiometer is designed and, currently, the audiometer prototype is in its final development steps. It is based on the auditory brainstem response (ABR method. Chirp stimuli instead of traditional click stimuli will be used to invoke the ABR signal. The stimulus is designed to synchronize the hair cells movement when it spreads out over the cochlea. In addition to the available hardware utilization (PC and PCI board, the efforts confined to design and implement a hardware prototype and to develop a software package that enables the system to behave as ABR audiometer. By using such a method and chirp stimulus, it is expected to be able to detect hearing impairment (sensorineural in the first few days of the life and conduct hearing test at low frequency of stimulus. Currently, the intended chirp stimulus has been successfully generated and the implemented module is able to amplify a signal (on the order of ABR signal to a recordable level. Moreover, a NI-DAQ data acquisition board has been chosen to implement the PC-prototype interface.

  14. Temporal characterization of ultrashort linearly chirped electron bunches generated from a laser wakefield accelerator

    Directory of Open Access Journals (Sweden)

    C. J. Zhang

    2016-06-01

    Full Text Available A new method for diagnosing the temporal characteristics of ultrashort electron bunches with linear energy chirp generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser, it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma, if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but are separated by half a laser wavelength. Since only the electrons that are undeflected by the laser go through the slit, the energy spectrum of the bunch is modulated. By analyzing the modulated energy spectrum, the shots where the bunch has a linear energy chirp can be recognized. Consequently, the energy chirp and beam current profile of those bunches can be reconstructed. This method is demonstrated through particle-in-cell simulations and experiment.

  15. FY07 LDRD Final Report Precision, Split Beam, Chirped-Pulse, Seed Laser Technology

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2009-11-12

    The goal of this LDRD ER was to develop a robust and reliable technology to seed high-energy laser systems with chirped pulses that can be amplified to kilo-Joule energies and recompressed to sub-picosecond pulse widths creating extremely high peak powers suitable for petawatt class physics experiments. This LDRD project focused on the development of optical fiber laser technologies compatible with the current long pulse National Ignition Facility (NIF) seed laser. New technologies developed under this project include, high stability mode-locked fiber lasers, fiber based techniques for reduction of compressed pulse pedestals and prepulses, new compact stretchers based on chirped fiber Bragg gratings (CFBGs), new techniques for manipulation of chirped pulses prior to amplification and new high-energy fiber amplifiers. This project was highly successful and met virtually all of its goals. The National Ignition Campaign has found the results of this work to be very helpful. The LDRD developed system is being employed in experiments to engineer the Advanced Radiographic Capability (ARC) front end and the fully engineered version of the ARC Front End will employ much of the technology and techniques developed here.

  16. Hip Implant Systems

    Science.gov (United States)

    ... Implants and Prosthetics Metal-on-Metal Hip Implants Hip Implants Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Hip implants are medical devices intended to restore mobility ...

  17. Breast reconstruction - implants

    Science.gov (United States)

    Breast implants surgery; Mastectomy - breast reconstruction with implants; Breast cancer - breast reconstruction with implants ... harder to find a tumor if your breast cancer comes back. Getting breast implants does not take as long as breast reconstruction ...

  18. Proton movies

    CERN Multimedia

    2009-01-01

    A humorous short film made by three secondary school students received an award at a Geneva film festival. Even without millions of dollars or Hollywood stars at your disposal, it is still possible to make a good science fiction film about CERN. That is what three students from the Collège Madame de Staël in Carouge, near Geneva, demonstrated. For their amateur short film on the LHC, they were commended by the jury of the video and multimedia festival for schools organised by the "Media in education" service of the Canton of Geneva’s Public Education Department. The film is a spoof of a television news report on the LHC start-up. In sequences full of humour and imagination, the reporter conducts interviews with a very serious "Professor Sairne", some protons preparing for their voyage and even the neutrons that were rejected by the LHC. "We got the idea of making a film about CERN at the end of the summer," explains Lucinda Päsche, one of the three students. "We did o...

  19. Characterisation of Cs ion implanted GaN by DLTS

    Science.gov (United States)

    Ngoepe, P. N. M.; Meyer, W. E.; Auret, F. D.; Omotoso, E.; Hlatshwayo, T. T.; Diale, M.

    2018-04-01

    Deep level transient spectroscopy (DLTS) was used to characterise Cs implanted GaN grown by hydride vapour phase epitaxy (HVPE). This implantation was done at room temperature using energy of 360 keV to a fluence of 10-11 cm-2. A defect with activation energy of 0.19 eV below the conduction band and an apparent capture cross section of 1.1 × 10-15 cm2 was induced. This defect has previously been observed after rare earth element (Eu, Er and Pr) implantation. It has also been reported after electron, proton and He ion implantation.

  20. Modification of semiconductors with proton beams. A review

    International Nuclear Information System (INIS)

    Kozlovskii, V.V.; Lomasov, V.N.; Kozlov, V.A.

    2000-01-01

    Analysis is given of the progress in the modification of semiconductors by proton beams in fields such as proton-enhanced diffusion, ion-beam mixing, and formation of porous layers. This method of modification (doping) is shown to have high potential in monitoring the properties of semiconductor materials and designing devices of micro and nano electronics as compared to the conventional doping techniques such as thermal diffusion, epitaxy, and ion implantation

  1. The Climate Hazards group InfraRed Precipitation with Stations (CHIRPS) dataset and its applications in drought risk management

    Science.gov (United States)

    Shukla, Shraddhanand; Funk, Chris; Peterson, Pete; McNally, Amy; Dinku, Tufa; Barbosa, Humberto; Paredes-Trejo, Franklin; Pedreros, Diego; Husak, Greg

    2017-04-01

    A high quality, long-term, high-resolution precipitation dataset is key for supporting drought-related risk management and food security early warning. Here, we present the Climate Hazards group InfraRed Precipitation with Stations (CHIRPS) v2.0, developed by scientists at the University of California, Santa Barbara and the U.S. Geological Survey Earth Resources Observation and Science Center under the direction of Famine Early Warning Systems Network (FEWS NET). CHIRPS is a quasi-global precipitation product and is made available at daily to seasonal time scales with a spatial resolution of 0.05° and a 1981 to near real-time period of record. We begin by describing the three main components of CHIRPS - a high-resolution climatology, time-varying cold cloud duration precipitation estimates, and in situ precipitation estimates, and how they are combined. We then present a validation of this dataset and describe how CHIRPS is being disseminated and used in different applications, such as large-scale hydrologic models and crop water balance models. Validation of CHIRPS has focused on comparisons with precipitation products with global coverage, long periods of record and near real-time availability such as CPC-Unified, CFS Reanalysis and ECMWF datasets and datasets such GPCC and GPCP that incorporate high quality in situ datasets from places such as Uganda, Colombia, and the Sahel. The CHIRPS is shown to have low systematic errors (bias) and low mean absolute errors. We find that CHIRPS performance appears quite similar to research quality products like the GPCC and GPCP, but with higher resolution and lower latency. We also present results from independent validation studies focused on South America and East Africa. CHIRPS is currently being used to drive FEWS NET Land Data Assimilation System (FLDAS), that incorporates multiple hydrologic models, and Water Requirement Satisfaction Index (WRSI), which is a widely used crop water balance model. The outputs (such as

  2. Effects of chirping on the dissociation dynamics of H2 in a two-frequency laser field

    International Nuclear Information System (INIS)

    Datta, Avijit; Bhattacharyya, S.S.; Kim, Bongsoo

    2002-01-01

    We present the effects of frequency chirping of laser pulses on (1+1)-photon resonance-enhanced dissociation dynamics of H 2 . The dissociation occurs via two closely spaced nonadiabatically coupled intermediate levels which are in one-photon resonance or near resonance with the initial level. Predissociating levels embedded into continua are considered. When the first laser field is sufficiently intense and suitably chirped, the dissociation probability is enhanced by adiabatic rapid passage through the avoided crossing arising from the frequency swept radiative interaction. The whole population of the ground level can be effectively transferred to the intermediate levels by this technique facilitating the dissociation process by the second field. We also report the effect of frequency detuning and chirp width on the dissociation probability. Widths of the two peaks of the dissociation line shape increase with an increase in chirp width, resulting in the possibility of control in the dissociation yield. When the first field is a laser pulse of low intensity and constant frequency and the second laser frequency is chirped, predissociating levels take important parts in the dissociation dynamics and we obtain a signature of the nonadiabatic effect of the first step on the second step of photodissociation dynamics. This feature is due to the presence of the predissociating levels and the nonadiabatic mixing of two intermediate levels. All these results can be explained in terms of the adiabatic dressed levels

  3. Implanted muon study of superlattice ordering in palladium hydride PdH/sub 0. 64/

    Energy Technology Data Exchange (ETDEWEB)

    Cox, S F.J.; Ross, D K; Witchell, D; Hartmann, O; Hempelmann, R; Richter, D; Stoneham, A M

    1986-12-01

    The superlattice ordering transition in PdH/sub 0.64/ is detected by implanted muon spectroscopy. The temperature dependence around 50 K of the static ..mu..SR depolarisation rate, measured in low transverse magnetic field in a polycrystalline sample, indicates appropriate changes in the average number of nearest neighbour protons. These measurements establish the similarity of the proton-proton and muon-proton interactions within the interstitial lattice. The implanted muons reveal the onset of short range order as the transition is approached and, to the extent that vacancy sites are available, participate in the predicted structure below the critical temperature.

  4. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  5. Short Implants: New Horizon in Implant Dentistry.

    Science.gov (United States)

    Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-09-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.

  6. Dispersion measurement on chirped mirrors at arbitrary incidence angle and polarization state (Conference Presentation)

    Science.gov (United States)

    Kovacs, Mate; Somoskoi, Tamas; Seres, Imre; Borzsonyi, Adam; Sipos, Aron; Osvay, Károly

    2017-05-01

    The optical elements of femtosecond high peak power lasers have to fulfill more and more strict requirements in order to support pulses with high intensity and broad spectrum. In most cases chirped pulse amplification scheme is used to generate high peak power ultrashort laser pulses, where a very precise control of spectral intensity and spectral phase is required in reaching transform-limited temporal shape at the output. In the case of few cycle regime, the conventional bulk glass, prism-, grating- and their combination based compressors are not sufficient anymore, due to undesirable nonlinear effects in their material and proneness to optical damages. The chirped mirrors are also commonly used to complete the compression after a beam transport system just before the target. Moreover, the manufacturing technology requires quality checks right after production and over the lifetime of the mirror as well, since undesired deposition on the surface can lead alteration from the designed value over a large part of the aperture. For the high harmonic generation, polarization gating technology is used to generate single attosecond pulses [1]. In this case the pulse to be compressed has various polarization state falling to the chirped mirrors. For this reason, it is crucial to measure the dispersion of the mirrors for the different polarization states. In this presentation we demonstrate a simple technique to measure the dispersion of arbitrary mirror at angles of incidence from 0 to 55 degree, even for a 12" optics. A large aperture 4" mirror has been scanned over with micrometer accuracy and the dispersion property through the surface has been investigated with a stable interference fringes in that robust geometry. We used Spectrally Resolved Interferometry, which is based on a Michaelson interferometer and a combined visible and infrared spectrometer. Tungsten halogen lamp with 10 mW coupled optical power was used as a white-light source so with the selected

  7. Prospects for future proton studies at HRIBF

    International Nuclear Information System (INIS)

    Bingham, C.R.; Batchelder, J. C.; Ginter, T.N.; Gross, C.J.; Grzywacz, R.; Janas, Z.; Karny, M.; McConnell, J.W.; Toth, K.S.; Rykaczewski, K.; Zganjar, E. F.

    2000-01-01

    Great progress has been made in the last 20 years in the study of proton emission from unstable nuclei, but the prospects for additional strides in the next several years are bright. The present main limitations on the study of proton radioactivity are related to the inability to produce copious quantities of nuclides beyond the proton drip line, and the difficulty of measuring proton radioactivity of a mass-separated nucleus in the first few microseconds of its existence. At the Holifield Facility we will attack the second of these limitations by using new signal processing CAMAC modules DGF-4C. Digitizing of the preamplifier signals should enable the analysis of a proton decay occurring at times even less than 1 microsecond after an implant in a strip detector. In the same process, the threshold energy at which we can make measurements will be lowered. These two things will hopefully enable the measurement of lower-energy, but faster decays of isotopes in the 100 Sn region and below. For the latter region, the proton decays crucial for a rp-process scenario are of particular interest (e.g. 69 Br decay). Secondly, for very short-lived species, we plan to make measurements (without residue separation) at points much closer to the target, thus reducing the flight time between the target and detector. As more intense radioactive beams become available, eg. 56 Ni, we will utilize these to produce more neutron-deficient nuclides by use of colder reactions than is possible with stable beams. In some cases where delayed proton emitters are present in the same isobaric chain, the use of the cold reactions with radioactive beams can provide purer samples of the isotope of interest, with a reduction in background from the delayed proton emitters in the same mass chain

  8. Cpuf: Chirped-Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Suits, Arthur; Abeysekera, Chamara; Zack, Lindsay N.; Joalland, Baptiste; Ariyasingha, Nuwandi M.; Park, Barratt; Field, Robert W.; Sims, Ian

    2015-06-01

    Chirped-pulse Fourier-transform microwave spectroscopy has stimulated a resurgence of interest in rotational spectroscopy owing to the dramatic reduction in spectral acquisition time it enjoys when compared to cavity-based instruments. This suggests that it might be possible to adapt the method to study chemical reaction dynamics and even chemical kinetics using rotational spectroscopy. The great advantage of this would be clear, quantifiable spectroscopic signatures for polyatomic products as well as the possibility to identify and characterize new radical reaction products and transient intermediates. To achieve this, however, several conditions must be met: 1) products must be thermalized at low temperature to maximize the population difference needed to achieve adequate signal levels and to permit product quantification based on the rotational line strength; 2) a large density and volume of reaction products is also needed to achieve adequate signal levels; and 3) for kinetics studies, a uniform density and temperature is needed throughout the course of the reaction. These conditions are all happily met by the uniform supersonic flow produced from a Laval nozzle expansion. In collaboration with the Field group at MIT we have developed a new instrument we term a CPUF (Chirped-pulse/Uniform Flow) spectrometer in which we can study reaction dynamics, photochemistry and kinetics using broadband microwave and millimeter wave spectroscopy as a product probe. We will illustrate the performance of the system with a few examples of photodissociation and reaction dynamics, and also discuss a number of challenges unique to the application of chirped-pulse microwave spectroscopy in the collisional environment of the flow. Future directions and opportunities for application of CPUF will also be explored.

  9. Coherence limits and chirp control in long pulse free electron laser oscillator

    Directory of Open Access Journals (Sweden)

    Y. Socol

    2005-08-01

    Full Text Available We report experimental studies of the spectral linewidth and chirp characteristics of the mm-wave rf radiation of the Israeli Electrostatic-Accelerator free electron laser (EA-FEL, along with theory and numerical simulations. The simulations, matching the experimental data, were carried out using a space-frequency-domain model. EA-FELs have the capacity to generate long pulses of tens microseconds and more, that in principle can be elongated indefinitely (cw operation. Since a cold beam FEL is by nature a “homogeneously broadened laser,” EA-FEL can operate, unlike other kinds of FELs, at a single longitudinal mode (single frequency. This allows the generation of very coherent radiation. The current status of the Israeli Tandem Electrostatic-Accelerator FEL, which is based on an electrostatic Van de Graaff accelerator, allows the generation of pulses of tens microseconds duration. It has been operated recently past saturation, and produced single-mode coherent radiation of record narrow inherent relative linewidth ∼Δf/f=10^{-6} at frequencies near 100 GHz. A frequency chirp was observed during the pulses of tens of microseconds (0.3–0.5  MHz/ms. This is essentially a drifting “frequency-pulling effect,” associated with the accelerator voltage drop during the pulse. Additionally, damped relaxation of the FEL oscillator was experimentally measured at the beginning and the end of the lasing pulse, in good correspondence to our theory and numerical simulations. We propose using the chirped signal of the pulsed EA-FEL for single pulse sweep spectroscopy of very fine resolution. The characteristics of this application are analyzed based on the experimental data.

  10. Generation of green frequency comb from chirped χ{sup (2)} nonlinear photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lai, C.-M. [Department of Electronic Engineering, Ming Chuan University, Taoyuan, Taiwan (China); Chang, K.-H.; Yang, Z.-Y.; Fu, S.-H.; Tsai, S.-T.; Hsu, C.-W.; Peng, L.-H. [Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan (China); Yu, N. E. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Boudrioua, A. [LPL, CNRS - UMR 7538, Université Paris 13, Sorbone Paris Cité (France); Kung, A. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan (China); Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan (China)

    2014-12-01

    Spectrally broad frequency comb generation over 510–555 nm range was reported on chirped quasi-phase-matching (QPM) χ{sup (2)} nonlinear photonic crystals of 12 mm length with periodicity stepwise increased from 5.9 μm to 7.1 μm. When pumped with nanosecond infrared (IR) frequency comb derived from a QPM optical parametric oscillator (OPO) and spanned over 1040 nm to 1090 nm wavelength range, the 520 nm to 545 nm up-converted green spectra were shown to consist of contributions from (a) second-harmonic generation among the signal or the idler modes, and (b) sum-frequency generation (SFG) from the neighboring pairs of the signal or the idler modes. These mechanisms led the up-converted green frequency comb to have the same mode spacing of 450 GHz as that in the IR-OPO pump comb. As the pump was further detuned from the aforementioned near-degeneracy point and moved toward the signal (1020–1040 nm) and the idler (1090–1110 nm) spectral range, the above QPM parametric processes were preserved in the chirped QPM devices to support up-converted green generation in the 510–520 nm and the 545–555 nm spectral regime. Additional 530–535 nm green spectral generation was also observed due to concurrence of multi-wavelength SFG processes between the (signal, idler) mode pairs. These mechanisms facilitate the chirped QPM device to support a single-pass up-conversion efficiency ∼10% when subject to an IR-OPO pump comb with 200 mW average power operated near- or off- the degeneracy point.

  11. Proton therapy device

    International Nuclear Information System (INIS)

    Tronc, D.

    1994-01-01

    The invention concerns a proton therapy device using a proton linear accelerator which produces a proton beam with high energies and intensities. The invention lies in actual fact that the proton beam which is produced by the linear accelerator is deflected from 270 deg in its plan by a deflecting magnetic device towards a patient support including a bed the longitudinal axis of which is parallel to the proton beam leaving the linear accelerator. The patient support and the deflecting device turn together around the proton beam axis while the bed stays in an horizontal position. The invention applies to radiotherapy. 6 refs., 5 figs

  12. Numerical analysis of the optimal length and profile of a linearly chirped fiber Bragg grating for dispersion compensation.

    Science.gov (United States)

    Thibault, S; Lauzon, J; Cliche, J F; Martin, J; Duguay, M A; Têtu, M

    1995-03-15

    We propose a theoretical investigation of the length and coupling profile of a linearly chirped fiber Bragg grating for maximum dispersion compensation in a repeaterless optical communication system. The system consists of 100 km of standard optical fiber in which a 1550-nm signal, directly modulated at 2.5 Gbits/s, is launched. We discuss the results obtained with 6-, 4.33-, and 1-cm-long linearly chirped fiber Bragg gratings having Gaussian and uniform coupling profiles. We numerically show that a 4.33-cm-long chirped fiber Bragg grating having a uniform coupling profile is capable of compensating efficiently for the dispersion of our optical communication system.

  13. Recharging processes, radiation induced strain and changes of OH - bands under H + ion implantation in Ti doped lithium niobate

    Science.gov (United States)

    Kumar, P.; Moorthy Babu, S.; Bhaumik, I.; Ganesamoorthy, S.; Karnal, A. K.; Kumar, Praveen; Rodrigues, G. O.; Sulania, I.; Kanjilal, D.; Pandey, A. K.; Raman, R.

    2010-01-01

    A systematic analysis of variations in structural and optical characteristics of Z-cut plates of titanium doped congruent lithium niobate single crystals implanted with 120 keV proton beam at various fluences of 10 15, 10 16 and 10 17 protons/cm 2 is presented. Through, high resolution X-ray diffraction, atomic force microscopy, Fourier transform infrared and UV-visible-NIR analysis of congruent lithium niobate, the correlation of properties before and after implantation are discussed. HRXRD (0 0 6) reflection by Triple Crystal Mode shows that both tensile and compressive strain peak are produced by the high fluence implantation. A distinct tensile peak was observed from implanted region for a fluence of 10 16 protons/cm 2. AFM micrographs indicate mountain ridges, bumps and protrusions on target surface on implantation. UV-visible-NIR spectra reveal an increase in charge transfer between Ti 3+/Ti 4+ and ligand oxygen for implantation with 10 15 protons/cm 2, while spectra for higher fluence implanted samples show complex absorption band in the region from 380-1100 nm. Variations of OH - stretching vibration mode were observed for cLN Pure, cLNT2% virgin, and implanted samples with FTIR spectra. The concentration of OH - ion before and after implantation was calculated from integral absorption intensity. The effect of 120 keV proton implantation induced structural, surface and optical studies were correlated.

  14. Characteristics of temporal modulation in nonlinear propagation of broad-band lasers stacked by chirped pulses

    International Nuclear Information System (INIS)

    Wang Youwen; Chen Liezun; Zhang Lifu; Deng Jianqin; Zhang Jin; Wen Shuangchun; Fu Xiquan; Fan Dianyuan

    2010-01-01

    Characteristics of the temporal modulation riding on broad-band lasers stacked by chirped pulses are numerically investigated in nonlinear propagation. For the case of normal dispersion, the temporal modulations induced by interference among pulses and added artificially to simulate the noise weaken gradually with the increase of the propagation distance. For the case of anomalous dispersion, the temporal modulations induced by interference among pulses grow slowly at first, and start to grow rapidly after a long propagation distance; in contrast, the temporal modulations added artificially grow rapidly from the begin, indicating that the temporal peak of damage risk to the optics can be formed easily. (authors)

  15. High-power pre-chirp managed amplification of femtosecond pulses at high repetition rates

    International Nuclear Information System (INIS)

    Liu, Yang; Li, Wenxue; Zhao, Jian; Bai, Dongbi; Luo, Daping; Zeng, Heping

    2015-01-01

    Femtosecond pulses at 250 MHz repetition rate from a mode-locked fiber laser are amplified to high power in a pre-chirp managed amplifier. The experimental strategy offers a potential towards high-power ultrashort laser pulses at high repetition rates. By investigating the laser pulse evolution in the amplification processes, we show that self-similar evolution, finite gain bandwidth and mode instabilities determine pulse characteristics in different regimes. Further average power scaling is limited by the mode instabilities. Nevertheless, this laser system enables us to achieve sub-50 fs pulses with an average power of 93 W. (letter)

  16. Gravitational wave chirp search: no-signal cumulative distribution of the maximum likelihood detection statistic

    International Nuclear Information System (INIS)

    Croce, R P; Demma, Th; Longo, M; Marano, S; Matta, V; Pierro, V; Pinto, I M

    2003-01-01

    The cumulative distribution of the supremum of a set (bank) of correlators is investigated in the context of maximum likelihood detection of gravitational wave chirps from coalescing binaries with unknown parameters. Accurate (lower-bound) approximants are introduced based on a suitable generalization of previous results by Mohanty. Asymptotic properties (in the limit where the number of correlators goes to infinity) are highlighted. The validity of numerical simulations made on small-size banks is extended to banks of any size, via a Gaussian correlation inequality

  17. Chirped laser dispersion spectroscopy using a directly modulated quantum cascade laser

    International Nuclear Information System (INIS)

    Hangauer, Andreas; Nikodem, Michal; Wysocki, Gerard; Spinner, Georg

    2013-01-01

    Chirped laser dispersion spectroscopy (CLaDS) utilizing direct modulation of a quantum cascade laser (QCL) is presented. By controlling the laser bias nearly single- and dual-sideband CLaDS operation can be realized in an extremely simplified optical setup with no external optical modulators. Capability of direct single-sideband modulation is a unique feature of QCLs that exhibit a low linewidth enhancement factor. The developed analytical model shows excellent agreement with the experimental, directly modulated CLaDS spectra. This method overcomes major technical limitations of mid-infrared CLaDS systems by allowing significantly higher modulation frequencies and eliminating optical fringes introduced by external modulators

  18. Population Transfer between Two Quantum States by Piecewise Chirping of Femtosecond Pulses: Theory and Experiment

    International Nuclear Information System (INIS)

    Zhdanovich, S.; Shapiro, E. A.; Shapiro, M.; Hepburn, J. W.; Milner, V.

    2008-01-01

    We propose and experimentally demonstrate the method of population transfer by piecewise adiabatic passage between two quantum states. Coherent excitation of a two-level system with a train of ultrashort laser pulses is shown to reproduce the effect of an adiabatic passage, conventionally achieved with a single frequency-chirped pulse. By properly adjusting the amplitudes and phases of the pulses in the excitation pulse train, we achieve complete and robust population transfer to the target state. The piecewise nature of the process suggests a possibility for the selective population transfer in complex quantum systems

  19. Coherent Control of Lithium Atom by Adiabatic Rapid Passage with Chirped Microwave Pulses

    International Nuclear Information System (INIS)

    Jiang Li-Juan; Zhang Xian-Zhou; Ma Huan-Qiang; Xia Li-Hua; Jia Guang-Rui

    2012-01-01

    Using the time-dependent multilevel approach and the B-spline technique, populations of Rydberg lithium atoms in chirped microwave pulses are demonstrated. Firstly the populations of two energy levels are controlled by the microwave pulse parameters. Secondly the atoms experience the consequence 70s-71p-72s-73p-74s in a microwave field using optimized microwave field parameters. It is shown that the coherent control of the population transfer in the microwave field from the initial to the target states can be accomplished by optimizing the microwave field parameters. (atomic and molecular physics)

  20. Chirped Auger electron emission due to field-assisted post-collision interaction

    Directory of Open Access Journals (Sweden)

    Bonitz M.

    2013-03-01

    Full Text Available We have investigated the Auger decay in the temporal domain by applying a terahertz streaking light field. Xenon and krypton atoms were studied by implementing the free-electron laser in Hamburg (FLASH as well as a source of high-order harmonic radiation combined with terahertz pulses from an optical rectification source. The observed linewidth asymmetries in the streaked spectra suggest a chirped Auger electron emission which is understood in terms of field-assisted post-collision interaction. The experimentally obtained results agree well with model calculations.

  1. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  2. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus

    2016-09-19

    We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.

  3. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.

    1984-01-01

    Underlying ion-beam modification of surfaces is the more basic subject of particle-surface interaction. The ideas can be grouped into forward and backward features, i.e. those affecting the interior of the target and those leading to particle expulsion. Forward effects include the stopping of the incident particles and the deposition of energy, both governed by integral equations which are easily set up but difficult to solve. Closely related is recoil implantation where emphasis is placed not on the stopping of the incident particles but on their interaction with target atoms with resulting implantation of these atoms. Backward effects, all of which are denoted as sputtering, are in general either of collisional, thermal, electronic, or exfoliational origin. (Auth.)

  4. Channeling ion implantation through palladium films

    International Nuclear Information System (INIS)

    Ishiwara, H.; Furukawa, S.

    1975-01-01

    The possibility of channeling ion implantation into semiconductors through polycrystalline metallic layers is studied. Minimum values and standard deviations of channeling angular yield in polycrystalline Pd 2 Si layers formed on Si have been measured by protons and 4 He, and 14 N ion backscattering and channeling measurements. Depth distributions of the spread of crystallite orientations and scattering centers such as lattice defects have been separately derived by using the above two quantities. It has been concluded that the channeling-ion-implantation technique will become a practical one by using the parallel scanning system

  5. Elastic proton-proton scattering at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  6. Baryon production in proton-proton collisions

    International Nuclear Information System (INIS)

    Liu, F.M.; Werner, K.

    2002-01-01

    Motivated by the recent rapidity spectra of baryons and antibaryons in pp collisions at 158 GeV and the Ω-bar/Ω ratio discussion, we reviewed string formation mechanism and some string models. This investigation told us how color strings are formed in ultrarelativistic proton-proton collisions

  7. Proton: the particle.

    Science.gov (United States)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. Copyright © 2013 Elsevier Inc. All

  8. Proton: The Particle

    Energy Technology Data Exchange (ETDEWEB)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created at 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  9. Dental Implant Surgery

    Science.gov (United States)

    ... here to find out more. Dental Implant Surgery Dental Implant Surgery Dental implant surgery is, of course, ... to find out more. Wisdom Teeth Management Wisdom Teeth Management An impacted wisdom tooth can damage neighboring ...

  10. Cochlear Implant

    Directory of Open Access Journals (Sweden)

    Mehrnaz Karimi

    1992-04-01

    Full Text Available People with profound hearing loss are not able to use some kinds of conventional amplifiers due to the nature of their loss . In these people, hearing sense is stimulated only when the auditory nerve is activated via electrical stimulation. This stimulation is possible through cochlear implant. In fact, for the deaf people who have good mental health and can not use surgical and medical treatment and also can not benefit from air and bone conduction hearing aids, this device is used if they have normal central auditory system. The basic parts of the device included: Microphone, speech processor, transmitter, stimulator and receiver, and electrode array.

  11. Combining multi-pulse excitation and chirp coding in contrast-enhanced ultrasound imaging

    International Nuclear Information System (INIS)

    Crocco, M; Sciallero, C; Trucco, A; Pellegretti, P

    2009-01-01

    The development of techniques to separate the response of the contrast agent from that of the biological tissues is of great importance in ultrasound medical imaging. In the literature, one can find various solutions involving the use of multiple transmitted signals and the weighted sum of related echoes. In this paper, the combination of one of these multi-pulse techniques with a coded excitation is proposed and assessed. Coded excitation has been used mainly to increase the signal-to-noise ratio (SNR) and the penetration depth, provided that a matched filtering is applied in the reception chain. However, it has been shown that a signal with a long duration time also increases the backscattered echoes produced by the microbubbles and, consequently, the contrast-to-tissue ratio. Therefore, the implementation of a multi-pulse technique using a long coded pulse can yield a better contrast-to-tissue ratio and SNR. This paper investigates the combination of the linear chirp pulse with a multi-pulse technique based on the transmission of three pulses. The performance was evaluated using both simulated and real signals, assessing the improvement in the contrast-to-tissue ratio and SNR, the visual quality of the images obtained and the axial accuracy. A comparison with the same multi-pulse technique implemented using a traditional amplitude-modulated pulse revealed that the deployment of a chirp pulse produces several noticeable advantages and only a minor drawback

  12. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.

    Science.gov (United States)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-03-01

    This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.

  13. Coincident Down-chirps in GW150914 Betray the Absence of Event Horizons

    Directory of Open Access Journals (Sweden)

    Spivey R. J.

    2016-07-01

    Full Text Available A century has elapsed since gravitational waves were predicted. Their recent detection by the LIGO-Virgo collaboration represents another feather in Einstein’s cap and at- tests to the technological ingenuity of experimentalists. However, the news has been portrayed as affirmation of the existence of black holes, objects whose defining charac- teristics are event horizons. Whilst a gravitational wave chirp is indicative of coalescing bodies and the inferred masses, 29 ± 4 M ⊙ and 36 ± 5 M ⊙ , rule out neutron stars, a promi- nent yet overlooked feature in the Hanford and Livingston spectrograms points to a curious mass ejection during the merger process. The spectral bifurcations, beyond which down-chirps are clearly discernible, suggest that a considerable quantity of mat- ter spiralled away from the binary system at the height of the merger. Since accretion disks cannot survive until the latter stages of coalescence , a black hole model seems un- tenable, and Einstein’s expectation that black holes can neither form nor ingest matter in a universe of finite age would appear to be upheld. By virtue of general relativity’s logi- cal consistency and the fact that gravity propagates at light speed, gravitational collapse must terminate with the formation of pathology-free temporally suspended objects.

  14. Curvature-Induced Bunch Self-Interaction for an Energy-Chirped Bunch in Magnetic Bends

    International Nuclear Information System (INIS)

    Rui Li

    2008-01-01

    Within the realm of classical electrodynamics, the curvature-induced bunch collective interaction in magnetic bends can be studied using effective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. As an application of this canonical formulation, in this paper, for an electron distribution moving ultrarelativistically in a bending system, the dynamics of the particles in the distribution is derived from the Hamiltonian of the particles in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly how the phase-space distribution is perturbed by the effective CSR forces. In particular, we study the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudinal CSR force, which arises due to the modification of the retardation relation as a result of the energy-chirping-induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt) in dispersive regions. Our study demonstrates clearly the time delay (or retardation) of the behavior of the effective longitudinal CSR force on a bunch in responding to the change of the bunch length in a magnetic bend. Our result also shows that the effective longitudinal CSR force for a bunch under full compression can have sensitive dependence on the transverse position of the test particle in the bunch for certain parameter regimes

  15. MIMO-OFDM Chirp Waveform Diversity Design and Implementation Based on Sparse Matrix and Correlation Optimization

    Directory of Open Access Journals (Sweden)

    Wang Wen-qin

    2015-02-01

    Full Text Available The waveforms used in Multiple-Input Multiple-Output (MIMO Synthetic Aperture Radar (SAR should have a large time-bandwidth product and good ambiguity function performance. A scheme to design multiple orthogonal MIMO SAR Orthogonal Frequency Division Multiplexing (OFDM chirp waveforms by combinational sparse matrix and correlation optimization is proposed. First, the problem of MIMO SAR waveform design amounts to the associated design of hopping frequency and amplitudes. Then a iterative exhaustive search algorithm is adopted to optimally design the code matrix with the constraints minimizing the block correlation coefficient of sparse matrix and the sum of cross-correlation peaks. And the amplitudes matrix are adaptively designed by minimizing the cross-correlation peaks with the genetic algorithm. Additionally, the impacts of waveform number, hopping frequency interval and selectable frequency index are also analyzed. The simulation results verify the proposed scheme can design multiple orthogonal large time-bandwidth product OFDM chirp waveforms with low cross-correlation peak and sidelobes and it improves ambiguity performance.

  16. Re-assessing Rainwater Harvesting Volume by CHIRPS Satellite in Semarang Settlement Area

    Science.gov (United States)

    Prihanto, Yosef; Koestoer, Raldi H.; Sutjiningsih, Dwita

    2017-12-01

    Semarang City is one of the most influential coastal cities in Java Island. The city is facing increasingly-high water demand due to its development and water problems due to climate change. The spatial physiography and landscape of Semarang City are also exposed the city to water security problem. Hence, rainwater harvesting treatment is an urgent effort to meet the city’s water needs. However, planning, implementation and management of rainwater harvesting are highly depended on multitemporal rainfall data. It has not yet been fully compiled due to limited rain stations. This study aims to examine the extent to which CHIRPS satellite data can be utilized in estimating volume of rainwater harvesting 16 sub-districts in Semarang and determine the water security status. This study uses descriptive statistical method based on spatial analyses. Such method was developed through spatial modeling for rainfall using isohyetal model. The parameters used are rainfall, residential rooftop area, administrative area, population, physiographic and altitude units. Validation is carried out by using monthly 10 rain stations data. The results show level of validity by utilizing CHIRPS Satellite data and mapping rainfall distribution. This study also produces a potential map of distribution rainfall volume that can be harvested in 16 sub-districts of Semarang.

  17. Complications after cardiac implantable electronic device implantations

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard

    2013-01-01

    Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient...

  18. Spherical proton emitters

    International Nuclear Information System (INIS)

    Berg, S.; Semmes, P.B.; Nazarewicz, W.

    1997-01-01

    Various theoretical approaches to proton emission from spherical nuclei are investigated, and it is found that all the methods employed give very similar results. The calculated decay widths are found to be qualitatively insensitive to the parameters of the proton-nucleus potential, i.e., changing the potential parameters over a fairly large range typically changes the decay width by no more than a factor of ∼3. Proton half-lives of observed heavy proton emitters are, in general, well reproduced by spherical calculations with the spectroscopic factors calculated in the independent quasiparticle approximation. The quantitative agreement with experimental data obtained in our study requires that the parameters of the proton-nucleus potential be chosen carefully. It also suggests that deformed proton emitters will provide invaluable spectroscopic information on the angular momentum decomposition of single-proton orbitals in deformed nuclei. copyright 1997 The American Physical Society

  19. Proton therapy physics

    CERN Document Server

    2012-01-01

    Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also exami...

  20. Proton solvation and proton transfer in chemical and electrochemical processes

    International Nuclear Information System (INIS)

    Lengyel, S.; Conway, B.E.

    1983-01-01

    This chapter examines the proton solvation and characterization of the H 3 O + ion, proton transfer in chemical ionization processes in solution, continuous proton transfer in conductance processes, and proton transfer in electrode processes. Topics considered include the condition of the proton in solution, the molecular structure of the H 3 O + ion, thermodynamics of proton solvation, overall hydration energy of the proton, hydration of H 3 O + , deuteron solvation, partial molal entropy and volume and the entropy of proton hydration, proton solvation in alcoholic solutions, analogies to electrons in semiconductors, continuous proton transfer in conductance, definition and phenomenology of the unusual mobility of the proton in solution, solvent structure changes in relation to anomalous proton mobility, the kinetics of the proton-transfer event, theories of abnormal proton conductance, and the general theory of the contribution of transfer reactions to overall transport processes

  1. Weak effect of ion cyclotron acceleration on rapidly chirping beam-driven instabilities in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Heidbrink, W W; Ruskov, E; Fredrickson, E D; Gorelenkov, N; Medley, S S; Berk, H L; Harvey, R W

    2006-01-01

    The fast-ion distribution function in the National Spherical Torus Experiment is modified from shot to shot while keeping the total injected power at ∼2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including compressional Alfven eigenmodes, toroidicity-induced Alfven eigenmodes (TAE), 50-100 kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10-20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase-space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power (∼<3 MW) high harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the nonlinear dynamics. Steady-frequency TAE modes diminish during the HHFW heating but there is little evidence that frequency chirping is suppressed

  2. Stimulated Brillouin Scattering (SBS) Suppression and Long Delivery Fibers at the Multikilowatt Level with Chirped Seed Lasers

    Science.gov (United States)

    2017-03-16

    an amplifier with 0.6 dB/m shows that the threshold could be raised to 2 kW in this fashion without requiring an increase in chirp (Fig. 12...characterization in optical fibres from 1 to 1000 K. 16th International Conference on Optical Fiber Sensors; 2003 Oct 13–17; Nara, Japan . 18

  3. Weak effect of ion cyclotron acceleration on rapidly chirping beam-driven instabilities in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Heidbrink, W W [University of California, Irvine, California (United States); Ruskov, E [University of California, Irvine, California (United States); Fredrickson, E D [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Gorelenkov, N [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Medley, S S [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Berk, H L [University of Texas, Austin, Texas (United States); Harvey, R W [CompX, Del Mar, California (United States)

    2006-09-15

    The fast-ion distribution function in the National Spherical Torus Experiment is modified from shot to shot while keeping the total injected power at {approx}2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including compressional Alfven eigenmodes, toroidicity-induced Alfven eigenmodes (TAE), 50-100 kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10-20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase-space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power ({approx}<3 MW) high harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the nonlinear dynamics. Steady-frequency TAE modes diminish during the HHFW heating but there is little evidence that frequency chirping is suppressed.

  4. Weak effect of ion cyclotron acceleration on rapidly chirping beam-driven instabilities in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    W W,Heidbrink; E,Ruskov; E D,Fredrickson; N,Gorelenkov; S S,Medley; H L,Berk; R W,Harvey

    2006-09-01

    The fast-ion distribution function in the National Spherical Torus Experiment is modified from shot to shot while keeping the total injected power at ~2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including compressional Alfven eigenmodes, toroidicity-induced Alfven eigenmodes (TAE), 50–100 kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10–20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase-space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power (≤3MW) high harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the nonlinear dynamics. Steady-frequency TAE modes diminish during the HHFW heating but there is little evidence that frequency chirping is suppressed.

  5. Electroabsorption modulator laser for cost-effective 40 Gbit/s networks with low drive voltage, chirp and temperature dependence

    DEFF Research Database (Denmark)

    Aubin, G.; Seoane, Jorge; Merghem, K.

    2009-01-01

    The performances of a novel low-chirp electroabsorption modulator laser module are presented. Transmission is analysed in standard singlermode fibre at 40 Gbit/s. Propagation without chromatic dispersion compensation up to 2 km exhibits a low penalty variation over a wide temperature range. A pro....... A propagation scheme with compensation leads to negligible impairment at 88 km....

  6. Single-energy intensity modulated proton therapy

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-09-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described. The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods. It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan. When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  7. Single-energy intensity modulated proton therapy.

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-10-07

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  8. Single-energy intensity modulated proton therapy

    International Nuclear Information System (INIS)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-01-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT. (note)

  9. Development of optical parametric chirped-pulse amplifiers and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Nobuhisa

    2006-11-21

    In this work, optical pulse amplification by parametric chirped-pulse amplification (OPCPA) has been applied to the generation of high-energy, few-cycle optical pulses in the near-infrared (NIR) and infrared (IR) spectral regions. Amplification of such pulses is ordinarily difficult to achieve by existing techniques of pulse amplification based on standard laser gain media followed by external compression. Potential applications of few-cycle pulses in the IR have also been demonstrated. The NIR OPCPA system produces 0.5-terawatt (10 fs,5 mJ) pulses by use of noncollinearly phase-matched optical parametric amplification and a down-chirping stretcher and up-chirping compressor pair. An IR OPCPA system was also developed which produces 20-gigawatt (20 fs,350 {mu}J) pulses at 2.1 {mu}m. The IR seed pulse is generated by optical rectification of a broadband pulse and therefore it exhibits a self-stabilized carrier-envelope phase (CEP). In the IR OPCPA a common laser source is used to generate the pump and seed resulting in an inherent sub-picosecond optical synchronization between the two pulses. This was achieved by use of a custom-built Nd:YLF picosecond pump pulse amplifier that is directly seeded with optical pulses from a custom-built ultrabroadband Ti:sapphire oscillator. Synchronization between the pump and seed pulses is critical for efficient and stable amplification. Two spectroscopic applications which utilize these unique sources have been demonstrated. First, the visible supercontinuum was generated in a solid-state media by the infrared optical pulses and through which the carrier-envelope phase (CEP) of the driving pulse was measured with an f-to-3f interferometer. This measurement confirms the self-stabilization mechanism of the CEP in a difference frequency generation process and the preservation of the CEP during optical parametric amplification. Second, high-order harmonics with energies extending beyond 200 eV were generated with the few

  10. 2 ~ 5 times tunable repetition-rate multiplication of a 10 GHz pulse source using a linearly tunable, chirped fiber Bragg grating.

    Science.gov (United States)

    Lee, Ju Han; Chang, You; Han, Young-Geun; Kim, Sang; Lee, Sang

    2004-08-23

    We experimentally demonstrate a simple scheme for the tunable pulse repetition-rate multiplication based on the fractional Talbot effect in a linearly tunable, chirped fiber Bragg grating (FBG). The key component in this scheme is our linearly tunable, chirped FBG with no center wavelength shift, which was fabricated with the S-bending method using a uniform FBG. By simply tuning the group velocity dispersion of the chirped FBG, we readily multiply an original 8.5 ps, 10 GHz soliton pulse train by a factor of 2 ~ 5 to obtain high quality pulses at repetition-rates of 20 ~ 50 GHz without significantly changing the system configuration.

  11. Retrograde peri-implantitis

    Directory of Open Access Journals (Sweden)

    Mohamed Jumshad

    2010-01-01

    Full Text Available Retrograde peri-implantitis constitutes an important cause for implant failure. Retrograde peri-implantitis may sometimes prove difficult to identify and hence institution of early treatment may not be possible. This paper presents a report of four cases of (the implant placed developing to retrograde peri-implantitis. Three of these implants were successfully restored to their fully functional state while one was lost due to extensive damage. The paper highlights the importance of recognizing the etiopathogenic mechanisms, preoperative assessment, and a strong postoperative maintenance protocol to avoid retrograde peri-implant inflammation.

  12. Proton-Proton and Proton-Antiproton Colliders

    CERN Document Server

    Scandale, Walter

    2014-01-01

    In the last five decades, proton–proton and proton–antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion–ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  13. Individual titanium zygomatic implant

    Science.gov (United States)

    Nekhoroshev, M. V.; Ryabov, K. N.; Avdeev, E. V.

    2018-03-01

    Custom individual implants for the reconstruction of craniofacial defects have gained importance due to better qualitative characteristics over their generic counterparts – plates, which should be bent according to patient needs. The Additive Manufacturing of individual implants allows reducing cost and improving quality of implants. In this paper, the authors describe design of zygomatic implant models based on computed tomography (CT) data. The fabrication of the implants will be carried out with 3D printing by selective laser melting machine SLM 280HL.

  14. The chirped-pulse inverse free-electron laser: A high-gradient vacuum laser accelerator

    International Nuclear Information System (INIS)

    Hartemann, F.V.; Landahl, E.C.; Troha, A.L.; Van Meter, J.R.; Baldis, H.A.; Freeman, R.R.; Luhmann, N.C. Jr.; Song, L.; Kerman, A.K.; Yu, D.U.

    1999-01-01

    The inverse free-electron laser (IFEL) interaction is studied theoretically and computationally in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. The IFEL concept has been demonstrated as a viable vacuum laser acceleration process; it is shown here that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread. copyright 1999 American Institute of Physics

  15. 1-MHz high power femtosecond Yb-doped fiber chirped-pulse amplifier

    Science.gov (United States)

    Hu, Zhong-Qi; Yang, Pei-Long; Teng, Hao; Zhu, Jiang-Feng; Wei, Zhi-Yi

    2018-01-01

    A practical femtosecond polarization-maintaining Yb-doped fiber amplifier enabling 153 fs transform-limited pulse duration with 32 μJ pulse energy at 1 MHz repetition rate corresponding to a peak power of 0.21 GW is demonstrated. The laser system based on chirped-pulse amplification (CPA) technique is seeded by a dispersion managed, nonlinear polarization evolution (NPE) mode-locked oscillator with spectrum bandwidth of 31 nm at 1040 nm and amplified by three fiber pre-amplifying stages and a rod type fiber main amplifying stage. The laser works with beam quality of M2 of 1.3 and power stability of 0.63% (root mean square, RMS) over 24 hours will be stable sources for industrial micromachining, medical therapy and scientific research.

  16. Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing.

    Science.gov (United States)

    Nikodem, Michal; Wysocki, Gerard

    2012-11-28

    In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented.

  17. Wavelength characteristics of chirped quantum dot superluminescent diodes for broad spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hyung-Chul; Park, Hong-Lee [Yonsei University, Seoul (Korea, Republic of); You, Young-Chae [Sungkyunkwan University, Suwon (Korea, Republic of); Han, Il-Ki [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2006-04-15

    A chirped InAs quantum dot superluminescent diode both with and without a In{sub 0.15}Ga{sub 0.85}As cap layer was fabricated for a broad-band spectrum. This study shows that the cap layer reduces strain and operates as a carrier capturer and that carriers excited by lattice heating also affect the radiative recombination in the quantum dots (QDs) as well as the cap layer through the characteristic temperature (T{sub 0}). In addition, by surveying peaks of each QD layers, the characteristics of carriers in QDs, such as band-filling effect and the thermal effect, were analyzed, in QDs, and a more effective method for creating a wider spectrum is proposed.

  18. Experimental validation of a linear model for data reduction in chirp-pulse microwave CT.

    Science.gov (United States)

    Miyakawa, M; Orikasa, K; Bertero, M; Boccacci, P; Conte, F; Piana, M

    2002-04-01

    Chirp-pulse microwave computerized tomography (CP-MCT) is an imaging modality developed at the Department of Biocybernetics, University of Niigata (Niigata, Japan), which intends to reduce the microwave-tomography problem to an X-ray-like situation. We have recently shown that data acquisition in CP-MCT can be described in terms of a linear model derived from scattering theory. In this paper, we validate this model by showing that the theoretically computed response function is in good agreement with the one obtained from a regularized multiple deconvolution of three data sets measured with the prototype of CP-MCT. Furthermore, the reliability of the model as far as image restoration in concerned, is tested in the case of space-invariant conditions by considering the reconstruction of simple on-axis cylindrical phantoms.

  19. Improvement of chirped pulse contrast using electro-optic birefringence scanning filter method

    International Nuclear Information System (INIS)

    Zeng Shuguang; Wang Xianglin; Wang Qishan; Zhang Bin; Sun Nianchun; Wang Fei

    2013-01-01

    A method using scanning filter to improve the contrast of chirped pulse is proposed, and the principle of this method is analyzed. The scanning filter is compared with the existing pulse-picking technique and nonlinear filtering technique. The scanning filter is a temporal gate that is independent on the intensity of the pulses, but on the instantaneous wavelengths of light. Taking the electro-optic birefringence scanning filter as an example, the application of scanning filter methods is illustrated. Based on numerical simulation and experimental research, it is found that the electro-optic birefringence scanning filter can eliminate a prepulse which is several hundred picoseconds before the main pulse, and the main pulse can maintain a high transmissivity. (authors)

  20. Reconfiguration of spectral absorption features using a frequency-chirped laser pulse.

    Science.gov (United States)

    Tian, Mingzhen; Chang, Tiejun; Merkel, Kristian D; Babbitt, W Randall

    2011-12-20

    A technique is proposed to manipulate atomic population in an inhomogeneously broadened medium, which can set an arbitrary absorption spectrum to a uniform transparency (erasure) or to a nearly complete inversion. These reconfigurations of atomic spectral distribution are achieved through excitation of electronic transitions using a laser pulse with chirped frequency, which precisely affects selected spectral regions while leaving the rest of the spectrum unperturbed. An erasure operation sets the final atomic population inversion to zero and the inversion operation flips the population between the ground and the excited states, regardless of the previously existing population distribution. This technique finds important applications both in optical signal processing, where fast, recursive processing and high dynamic range are desirable and in quantum memory and quantum computing, which both require high efficiency and high fidelity in quantum state preparation of atomic ensembles. Proof-of-concept demonstrations were performed in a rare-earth doped crystal.

  1. Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses

    Science.gov (United States)

    Azima, Armin; Bödewadt, Jörn; Becker, Oliver; Düsterer, Stefan; Ekanayake, Nagitha; Ivanov, Rosen; Kazemi, Mehdi M.; Lamberto Lazzarino, Leslie; Lechner, Christoph; Maltezopoulos, Theophilos; Manschwetus, Bastian; Miltchev, Velizar; Müller, Jost; Plath, Tim; Przystawik, Andreas; Wieland, Marek; Assmann, Ralph; Hartl, Ingmar; Laarmann, Tim; Rossbach, Jörg; Wurth, Wilfried; Drescher, Markus

    2018-01-01

    We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.

  2. Ultrafast chirped optical waveform recorder using referenced heterodyning and a time microscope

    Science.gov (United States)

    Bennett, Corey Vincent [Livermore, CA

    2011-11-22

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  3. Ultrafast chirped optical waveform recording using referenced heterodyning and a time microscope

    Science.gov (United States)

    Bennett, Corey Vincent

    2010-06-15

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  4. Control of tunneling in a double-well potential with chirped laser pulses

    Science.gov (United States)

    Vatasescu, Mihaela

    2012-11-01

    We investigate the use of chirped laser pulses to control the tunneling dynamics in the 0g-(6s,6p3/2) double well of Cs2 coupled with other electronic surfaces. The possibility to manipulate the tunneling dynamics appears in a pump-dump scheme designed to form deeply bound cold molecules by photoassociation of two cold cesium atoms in the 0g-(6s,6p3/2) electronic state coupled with a3Σu+ (6s,6s) electronic state. The dump pulse is acting on the 0g-(6s,6p3/2) barrier and can be used to control the tunneling and to capture population in the inner well in deep vibrational levels out of tunneling resonances.

  5. Control of tunneling in a double-well potential with chirped laser pulses

    International Nuclear Information System (INIS)

    Vatasescu, Mihaela

    2012-01-01

    We investigate the use of chirped laser pulses to control the tunneling dynamics in the 0 g − (6s,6p 3/2 ) double well of Cs 2 coupled with other electronic surfaces. The possibility to manipulate the tunneling dynamics appears in a pump-dump scheme designed to form deeply bound cold molecules by photoassociation of two cold cesium atoms in the 0 g − (6s,6p 3/2 ) electronic state coupled with a 3 Σ u + (6s,6s) electronic state. The dump pulse is acting on the 0g − (6s,6p3/2) barrier and can be used to control the tunneling and to capture population in the inner well in deep vibrational levels out of tunneling resonances.

  6. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  7. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.

  8. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    International Nuclear Information System (INIS)

    Höppner, H; Hage, A; Tanikawa, T; Schulz, M; Faatz, B; Riedel, R; Prandolini, M J; Teubner, U; Tavella, F

    2015-01-01

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation. (paper)

  9. Asymmetric propagation using enhanced self-demodulation in a chirped phononic crystal

    Directory of Open Access Journals (Sweden)

    A. Cebrecos

    2016-12-01

    Full Text Available Asymmetric propagation of acoustic waves is theoretically reported in a chirped phononic crystal made of the combination of two different nonlinear solids. The dispersion of the system is spatially dependent and allows the rainbow trapping inside the structure. Nonlinearity is used to activate the self-demodulation effect, which is enhanced due to the particular dispersion characteristics of the system. The performed numerical study reveals an efficient generation of the demodulated wave, up to 15% in terms of the pressure amplitude, as well as strong attenuation for undesired frequency components above the cut-off frequency. The obtained energy rectification ratio is in the order of 104 for the whole range of amplitudes employed in this work, indicating the robustness of the asymmetry and non-reciprocity of the proposed device for a wide operational range.

  10. Distribution profiling of a transverse load using the DGD spectrum of chirped FBGs.

    Science.gov (United States)

    Descamps, Frédéric; Caucheteur, Christophe; Mégret, Patrice; Bette, Sébastien

    2015-07-13

    In this paper, we propose a new method to determine the longitudinal distribution of a non-uniform transverse force applied to an optical fiber. For that purpose, we use a chirped fiber Bragg grating (CFBG) for which we monitor the polarization parameters in reflection. In particular, we demonstrate that the differential group delay (DGD) spectrum of the CFBG is an imprint of the load profile so that it can be used for the shape determination of an applied load. Thereafter, we discuss the influence of the CFBG parameters on the achievable accuracy and resolution of our technique. An experimental validation is finally reported with two 48 mm long CFBGs subject to step transverse load profiles.

  11. High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation.

    Science.gov (United States)

    Peng, Xiang; Kim, Kyungbum; Mielke, Michael; Jennings, Stephen; Masor, Gordon; Stohl, Dave; Chavez-Pirson, Arturo; Nguyen, Dan T; Rhonehouse, Dan; Zong, Jie; Churin, Dmitriy; Peyghambarian, N

    2013-10-21

    A novel monolithic fiber-optic chirped pulse amplification (CPA) system for high energy, femtosecond pulse generation is proposed and experimentally demonstrated. By employing a high gain amplifier comprising merely 20 cm of high efficiency media (HEM) gain fiber, an optimal balance of output pulse energy, optical efficiency, and B-integral is achieved. The HEM amplifier is fabricated from erbium-doped phosphate glass fiber and yields gain of 1.443 dB/cm with slope efficiency >45%. We experimentally demonstrate near diffraction-limited beam quality and near transform-limited femtosecond pulse quality at 1.55 µm wavelength. With pulse energy >100 µJ and pulse duration of 636 fs (FWHM), the peak power is estimated to be ~160 MW. NAVAIR Public Release Distribution Statement A-"Approved for Public release; distribution is unlimited".

  12. Tunable Landau-Zener transitions using continuous- and chirped-pulse-laser couplings

    Science.gov (United States)

    Sarreshtedari, Farrokh; Hosseini, Mehdi

    2017-03-01

    The laser coupled Landau-Zener avoided crossing has been investigated with an aim towards obtaining the laser source parameters for precise controlling of the state dynamics in a two-level quantum system. The conventional Landau-Zener equation is modified for including the interaction of the system with a laser field during a bias energy sweep and the obtained Hamiltonian is numerically solved for the investigation of the two-state occupation probabilities. We have shown that in the Landau-Zener process, using an additional laser source with controlled amplitude, frequency, and phase, the system dynamics could be arbitrarily engineered. This is while, by synchronous frequency sweeping of a chirped-pulse laser, the system could be guided into a resonance condition, which again gives the remarkable possibility for precise tuning and controlling of the quantum system dynamics.

  13. Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation

    CERN Document Server

    Wu, Zilu; Krinsky, Sam; Loos, Henrik; Murphy, James; Shaftan, Timur; Sheehy, Brian; Shen, Yuzhen; Wang, Xijie; Yu Li Hua

    2004-01-01

    High Gain Harmonic Generation (HGHG), because it produces longitudinally coherent pulses derived from a coherent seed, presents remarkable possibilities for manipulating FEL pulses. If spectral phase modulation imposed on the seed modulates the spectral phase of the HGHG in a deterministic fashion, then chirped pulse amplification, pulse shaping, and coherent control experiments at short wavelengths become possible. In addition, the details of the transfer function will likely depend on electron beam and radiator dynamics and so prove to be a useful tool for studying these. Using the DUVFEL at the National Synchrotron Light Source at Brookhaven National Laboratory, we present spectral phase analyses of both coherent HGHG and incoherent SASE ultraviolet FEL radiation, applying Spectral Interferometry for Direct Electric Field Reconstruction (SPIDER), and assess the potential for employing compression and shaping techniques.

  14. Distinct Lasing Operation From Chirped InAs/InP Quantum-Dash Laser

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2013-08-01

    We study the enhanced inhomogeneity across the InAs quantum-dash (Qdash) layers by incorporating a chirped AlGaInAs barrier thickness in the InAs/InP laser structure. The lasing operation is investigated via Fabry-Pérot ridge-waveguide laser characterization, which shows a peculiar behavior under quasi-continuous-wave (QCW) operation. Continuous energy transfer between different dash ensembles initiated quenching of lasing action among certain dash groups, causing a reduced intensity gap in the lasing spectra. We discuss these characteristics in terms of the quasi-zero-dimensional density of states (DOS) of dashes and the active region inhomogeneity. © 2009-2012 IEEE.

  15. Space weather and HF propagation along different paths of the Russian chirp sounders network

    Science.gov (United States)

    Kurkin, V. I.; Litovkin, G. I.; Matyushonok, S. M.; Vertogradov, G. G.; Ivanov, V. A.; Poddelsky, I. N.; Rozanov, S. V.; Uryadov, V. P.

    This paper presents experimental data obtained on long paths (from 2200 km to 5700 km range) of Russian frequency modulated continues wave (chirp) sounders network for the period from 1998 to 2003. Four transmitters (near Magadan, Khabarovsk, Irkutsk, Norilsk) and four receivers (near Irkutsk, Yoshkar-Ola, Nizhny Novgorod, Rostov-on-Don) were combined into single network to investigate a influence of geomagnetic storms and substorms on HF propagation in Asian region of Russia. In this region the geographic latitudes are in greatest excess of magnetic latitudes. As a consequence, elements of the large-scale structure, such as the main ionospheric trough, and the zone of auroral ionization, are produced in the ionosphere at the background of a low electron ionization. Coordinated experiments were carried out using 3-day Solar-Geophysical activity forecast presented by NOAA Space Environment Center in Internet. Sounding operations were conducted in the frequency band 4 -- 30 MHz on a round-the-clock basis at 15-min intervals. Oblique-incidence sounding (OIS) ionograms were recorded during 5-7 days every season for some years. The comparison between experimental data and simulation of OIS ionograms using International Reference Ionospheric model (IRI-2001) allowed to estimate the forecast of HF propagation errors both under quiet condition and during geomagnetic disturbances. Strong deviations from median values of maximum observed frequencies on mid-latitude paths in daytime present a real challenge to ionospheric forecast. Subauroral and mid-latitude chirp-sounding paths run, respectively, near the northward and southward walls of the main ionospheric trough. This make sit possible to study the dynamics of the trough's boundaries under different geophysical conditions and assess the influence of ionization gradients and small-scale turbulence on HF signal characteristics. The signals off-great circle propagation were registered over a wide frequency range and for

  16. Proton Fast Ignition

    International Nuclear Information System (INIS)

    Key, M H; Freeman, R R; Hatchett, S P; MacKinnon, A J; Patel, P K; Snavely, R A; Stephens, R B

    2006-04-01

    Fast ignition (FI) by a laser generated ballistically focused proton beam is a more recently proposed alternative to the original concept of FI by a laser generated beam of relativistic electrons. It has potential advantages in less complex energy transport into dense plasma. Recent successful target heating experiments motivate further investigation of the feasibility of proton fast ignition. The concept, the physics and characteristics of the proton beams, the recent experimental work on focusing of the beams and heating of solid targets and the overall prospects for proton FI are discussed

  17. Friction wear and dissolution of orthopedic implant systems

    International Nuclear Information System (INIS)

    Ektessabi, A.M.; Shikine, S.; Hamdi, M.; Kitamura, N.; Rokkum, M.; Johansson, C.

    2000-01-01

    Bio-medical implants release metallic elements during the long periods of time while inserted in the human body. The chemical interactions between the tissues and surface of the implants, and the mechanical friction of implants cause the release of metals into the human tissues. In this study we investigated the distribution and the chemical-state of the metallic elements in the tissues around a failed implant system using PIXE (proton induced x-ray emission) and SR-XRF (synchrotron radiation x-ray fluorescence) spectroscopies. The specimens were from the causes of patients with diagnosed arthritis. The implant consisted of a stem and a metal backing made of Ti-6Al-4V, an implant head made of stainless steel, and a polyethylene (PE) cup. Both the stem and the metal backing had a plasma-sprayed HAp surface coating. Distribution and concentration of dissolved elements in tissues surrounding implants were examined and quantified using PIXE analysis. Similar specimen from the same case was further investigated using SR-XRF analysis. Chemical-states of the dissolved elements were also studied by XAFS (x-ray absorption fine structure) analysis. From results of these measurements, it is confirmed that the tissues surrounding implants contained metallic elements such as Fe, Cr, Ni, and Ti. These elements are originated from the implant. Furthermore, it was made clear that the chemical-state of Fe had changed as a consequence of dissolution of Fe in the organic tissues. (author)

  18. Recharging processes, radiation induced strain and changes of OH{sup -} bands under H{sup +} ion implantation in Ti doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. [Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu (India); Moorthy Babu, S., E-mail: smoorthybabu@yahoo.co [Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu (India); Bhaumik, I.; Ganesamoorthy, S.; Karnal, A.K. [LMDD Division, RRCAT, Indore 452013, Madhya Pradesh (India); Kumar, Praveen; Rodrigues, G.O.; Sulania, I.; Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg 110067, New Delhi (India); Pandey, A.K.; Raman, R. [Solid State Physics Laboratory, Timarpur 110 054, New Delhi (India)

    2010-01-15

    A systematic analysis of variations in structural and optical characteristics of Z-cut plates of titanium doped congruent lithium niobate single crystals implanted with 120 keV proton beam at various fluences of 10{sup 15}, 10{sup 16} and 10{sup 17} protons/cm{sup 2} is presented. Through, high resolution X-ray diffraction, atomic force microscopy, Fourier transform infrared and UV-visible-NIR analysis of congruent lithium niobate, the correlation of properties before and after implantation are discussed. HRXRD (0 0 6) reflection by Triple Crystal Mode shows that both tensile and compressive strain peak are produced by the high fluence implantation. A distinct tensile peak was observed from implanted region for a fluence of 10{sup 16} protons/cm{sup 2}. AFM micrographs indicate mountain ridges, bumps and protrusions on target surface on implantation. UV-visible-NIR spectra reveal an increase in charge transfer between Ti{sup 3+}/Ti{sup 4+} and ligand oxygen for implantation with 10{sup 15} protons/cm{sup 2}, while spectra for higher fluence implanted samples show complex absorption band in the region from 380-1100 nm. Variations of OH{sup -} stretching vibration mode were observed for cLN Pure, cLNT2% virgin, and implanted samples with FTIR spectra. The concentration of OH{sup -} ion before and after implantation was calculated from integral absorption intensity. The effect of 120 keV proton implantation induced structural, surface and optical studies were correlated.

  19. β-particle energy-summing correction for β-delayed proton emission measurements

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, Z., E-mail: meisel@ohio.edu [Institute of Nuclear and Particle Physics, Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements (United States); Santo, M. del [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Crawford, H.L. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Cyburt, R.H. [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Grinyer, G.F. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Bvd Henri Becquerel, Caen 14076 (France); Langer, C. [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, Institute for Applied Physics, Goethe University Frankfurt am Main, 60438 Frankfurt am Main (Germany); Montes, F. [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Schatz, H. [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Smith, K. [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States)

    2017-02-01

    A common approach to studying β-delayed proton emission is to measure the energy of the emitted proton and corresponding nuclear recoil in a double-sided silicon-strip detector (DSSD) after implanting the β-delayed proton-emitting (βp) nucleus. However, in order to extract the proton-decay energy, the measured energy must be corrected for the additional energy implanted in the DSSD by the β-particle emitted from the βp nucleus, an effect referred to here as β-summing. We present an approach to determine an accurate correction for β-summing. Our method relies on the determination of the mean implantation depth of the βp nucleus within the DSSD by analyzing the shape of the total (proton + recoil + β) decay energy distribution shape. We validate this approach with other mean implantation depth measurement techniques that take advantage of energy deposition within DSSDs upstream and downstream of the implantation DSSD.

  20. Proton decay: spectroscopic probe beyond the proton drip line

    International Nuclear Information System (INIS)

    Seweryniak, D; Davids, C N; Robinson, A; Woods, P J; Blank, B; Carpenter, M P; Davinson, T; Freeman, S J; Hammond, N; Hoteling, N; Janssens, R V F; Khoo, T L; Liu, Z; Mukherjee, G; Shergur, J; Sinha, S; Sonzogni, A A; Walters, W B; Woehr, A

    2005-01-01

    Proton decay has been transformed in recent years from an exotic phenomenon into a powerful spectroscopic tool. The frontiers of experimental and theoretical proton-decay studies will be reviewed. Different aspects of proton decay will be illustrated with recent results on the deformed proton emitter 135 Tb, the odd-odd deformed proton emitter 130 Eu, the complex fine structure in the odd-odd 146 Tm nucleus and on excited states in the transitional proton emitter 145 Tm

  1. Review of inelastic proton-proton reactions

    CERN Document Server

    Morrison, Douglas Robert Ogston

    1973-01-01

    The most important new results on inelastic proton-proton scattering obtained with the new machines, I.S.R. and N.A.L., are: (1) The inelastic cross-section increases monotonically with energy from threshold to 1500 GeV/c. Above 6 GeV/c the energy variation has a s /sup +0.04/ behaviour. (2) Scaling is observed at I.S.R. energies in pion production. Confirmation is obtained of the hypothesis of limiting fragmentation. (3) The results are in general, consistent with the two-component model-one class of events being produced by diffraction dissociation and the other by a short-range-order process (e.g. the multiperipheral model). (4) There are indications that the protons have a granular structure; this from observation of secondaries of large transverse momenta. (33 refs).

  2. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Nissen, Poul

    2008-01-01

    molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...... proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK (a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires....

  3. Giving Protons a Boost

    CERN Multimedia

    2004-01-01

    The first of LHC's superconducting radio-frequency cavity modules has passed its final test at full power in the test area of building SM18. These modules carry an oscillating electric field that will accelerate protons around the LHC ring and help maintain the stability of the proton beams.

  4. On the proton decay

    International Nuclear Information System (INIS)

    Fonda, L.; Ghirardi, G.C.; Weber, T.

    1983-07-01

    The problem of the proton decay is considered taking into account that in actual experiments there is an interaction of the proton with its environment which could imply an increase of its theoretical lifetime. It is seen that, by application of the time-energy uncertainty relation, no prolongation of the lifetime is obtained in this case. (author)

  5. EFFECT OF OPTICAL FIBER HYDROGEN LOADING ON THE INSCRIPTION EFFICIENCY OF CHIRPED BRAGG GRATINGS BY MEANS OF KrF EXCIMER LASER RADIATION

    Directory of Open Access Journals (Sweden)

    Sergey V. Varzhel

    2016-11-01

    Full Text Available Subject of Research.We present comparative results of the chirped Bragg gratings inscription efficiency in optical fiber of domestic production with and without low-temperature hydrogen loading. Method. Chirped fiber Bragg gratings inscription was made by the Talbot interferometer with chirped phase mask having a chirp rate of 2.3 nm/cm used for the laser beam amplitude separation. The excimer laser system Coherent COMPexPro 150T, working with the gas mixture KrF (248 nm, was used as the radiation source. In order to increase the UV photosensitivity, the optical fiber was placed in a chamber with hydrogen under a pressure of 10 MPa and kept there for 14 days at 40 °C. Main Results. The usage of the chirped phase mask in a Talbot interferometer scheme has made it possible to get a full width at half-maximum of the fiber Bragg grating reflection spectrum of 3.5 nm with induced diffraction structure length of 5 mm. By preliminary hydrogen loading of optical fiber the broad reflection spectrum fiber Bragg gratings with a reflectivity close to 100% has been inscribed. Practical Relevance. The resulting chirped fiber Bragg gratings can be used as dispersion compensators in optical fiber communications, as well as the reflective elements of distributed fiber-optic phase interferometric sensors.

  6. PS proton source

    CERN Multimedia

    1959-01-01

    The first proton source used at CERN's Proton Synchrotron (PS) which started operation in 1959. This is CERN's oldest accelerator still functioning today (2018). It is part of the accelerator chain that supplies proton beams to the Large Hadron Collider. The source is a Thonemann type. In order to extract and accelerate the protons at high energy, a high frequency electrical field is used (140Mhz). The field is transmitted by a coil around a discharge tube in order to maintain the gas hydrogen in an ionised state. An electrical field pulse, in the order of 15kV, is then applied via an impulse transformer between anode and cathode of the discharge tube. The electrons and protons of the plasma formed in the ionised gas in the tube, are then separated. Currents in the order of 200mA during 100 microseconds have benn obtained with this type of source.

  7. Chirp-free direct modulation of 550 nm emission in Er3+ -Doped Fluoroindate glass by nonlinear feedback control

    Science.gov (United States)

    Cai, Runyu; Thitsa, Makhin; Bluiett, Althea; Brown, Ei; Hommerich, Uwe

    2017-06-01

    We propose a direct modulation method with nonlinear feedback controller which can produce chirp-free modulation of the output pulse without bulky external modulators. This work reports the design of the controller which, via a feedback loop, varies and controls the pump rate in real time by automatically adjusting the pump power to precisely modulate the emission of 550 nm in Er3+ -doped Fluoroindate glass under 1.48 μm pumping. In this interdisciplinary paper, well established theoretical tools from nonlinear control theory are applied to the dynamical system of the laser material in order to produce the desired output of the laser. The controller is simulated in MATLAB Simulink and the simulation results show that our technique yields precise modulation of the output intensity without frequency chirping. Results on both theoretical analysis of the control methodology and simulation are presented.

  8. Use of conventional and chirped optical fibre Bragg gratings to detect matrix cracking damage in composite materials

    International Nuclear Information System (INIS)

    Palaniappan, J; Wang, H; Ogin, S L; Thorne, A; Reed, G T; Tjin, S C

    2005-01-01

    A comparison is made between conventional (i.e. uniform) and chirped optical fibre Bragg gratings (FBGs) for the detection of matrix cracking damage in composite materials. Matrix cracking damage is generally the first type of visible damage to develop under load in the off-axis plies of laminated composites and is generally the precursor of more serious damage mechanisms, particularly delamination. The detection of this type of damage is thus important, particularly in aerospace applications. Using a uniform FBG, characteristic changes develop in the reflected spectrum which can be used to identify crack development in the composite. The additional advantage of using a chirped grating is that the crack position can also be located

  9. Propagation of frequency-chirped laser pulses in a medium of atoms with a Λ-level scheme

    International Nuclear Information System (INIS)

    Demeter, G.; Dzsotjan, D.; Djotyan, G. P.

    2007-01-01

    We study the propagation of frequency-chirped laser pulses in optically thick media. We consider a medium of atoms with a Λ level-scheme (Lambda atoms) and also, for comparison, a medium of two-level atoms. Frequency-chirped laser pulses that induce adiabatic population transfer between the atomic levels are considered. They induce transitions between the two lower (metastable) levels of the Λ-atoms and between the ground and excited states of the two-level atoms. We show that associated with this adiabatic population transfer in Λ-atoms, there is a regime of enhanced transparency of the medium--the pulses are distorted much less than in the medium of two-level atoms and retain their ability to transfer the atomic population much longer during propagation

  10. Proton-proton colliding beam facility ISABELLE

    International Nuclear Information System (INIS)

    Hahn, H.

    1980-01-01

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed

  11. Effect of pre-implanted oxygen in Si on the retention of implanted He

    Energy Technology Data Exchange (ETDEWEB)

    Manuaba, A. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Paszti, F. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)]. E-mail: paszti@rmki.kfki.hu; Ramos, A.R. [ITN - Instituto Tecnologico e Nuclear, Estrada Nacional 10, P-2686-953, Sacavem (Portugal); Khanh, N.Q. [MTA Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest (Hungary); Pecz, B. [MTA Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest (Hungary); Zolnai, Z. [MTA Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest (Hungary); Tunyogi, A. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2006-08-15

    Buried SiO {sub x} layers, with different x values, were formed by implanting 80 keV O{sup +} ions with different fluences into single crystal Si samples at room temperature. Into each of these O pre-implanted layers, 20 keV He{sup +} was implanted up to the fluence of 1 x 10{sup 17} ion/cm{sup 2}. The He distribution profiles were determined by 2045 keV proton backscattering spectrometry. It was found that as the O content increases, the retained He gradually decreases at the beginning, then rapidly falls at x = 0.6 till it disappears at x = 1.3. The process that leads to this phenomenon is discussed.

  12. Implantable Medical Devices

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Implantable Medical Devices Updated:Sep 16,2016 For Rhythm Control ... a Heart Attack Introduction Medications Surgical Procedures Implantable Medical Devices • Life After a Heart Attack • Heart Attack ...

  13. Intercavitary implants dosage calculation

    International Nuclear Information System (INIS)

    Rehder, B.P.

    The use of spacial geometry peculiar to each treatment for the attainment of intercavitary and intersticial implants dosage calculation is presented. The study is made in patients with intercavitary implants by applying a modified Manchester technique [pt

  14. The sedimentary regime around northern Sylt, South-eastern North Sea, based on shallow seismic (sparker and Chirp III) information

    DEFF Research Database (Denmark)

    Boldreel, Lars Ole; Kuijpers, Antoon; Madsen, Emil B

    2010-01-01

    on a workstation. Interpretation of the data reveals bedforms, with their internal structures representative of the “present sedimentation regime”. In addition, the sparker data show 2-3 well-defined deeper regional reflectors and pronounced erosion channels at greater subbottom depth. Using various bedform....... The sparker seismic and Chirp III data show that the processes responsible for the bedforms have been persistent throughout the Holocene. Based on the study, a model for the current and sedimentation regime is proposed....

  15. Implantable electronic medical devices

    CERN Document Server

    Fitzpatrick, Dennis

    2014-01-01

    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  16. (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect

    International Nuclear Information System (INIS)

    Li Jin-Yuan; Fang Nian-Qiao; Yuan Xiao-Bo; Zhang Ji; Xue Yu-Long; Wang Xue-Mu

    2016-01-01

    In the past few decades, the (1+1)-dimensional nonlinear Schrödinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the development of theory, we note that the (1+1)-dimensional model cannot reflect the evolution of envelope Rossby solitary waves in a plane. In this paper, by constructing a new (2+1)-dimensional multiscale transform, we derive the (2+1)-dimensional dissipation nonlinear Schrödinger equation (DNLS) to describe envelope Rossby solitary waves under the influence of dissipation which propagate in a plane. Especially, the previous researches about envelope Rossby solitary waves were established in the zonal area and could not be applied directly to the spherical earth, while we adopt the plane polar coordinate and overcome the problem. By theoretical analyses, the conservation laws of (2+1)-dimensional envelope Rossby solitary waves as well as their variation under the influence of dissipation are studied. Finally, the one-soliton and two-soliton solutions of the (2+1)-dimensional NLS equation are obtained with the Hirota method. Based on these solutions, by virtue of the chirp concept from fiber soliton communication, the chirp effect of envelope Rossby solitary waves is discussed, and the related impact factors of the chirp effect are given. (paper)

  17. Measurement and interpretation of laser accelerated protons at GSI

    International Nuclear Information System (INIS)

    Al-Omari, Husam

    2014-01-01

    generated by the Matlab program, while the TraceWin code is employed to study the tracking through magnetic elements. - Chapter 6 describes the PHELIX laser parameters at GSI with chirp pulse amplification technique (CPA), and Gafchromic Radiochromic film (RCF) as a spatial energy resolver film detector. The results of experiments with laser proton acceleration, which were performed in two experimental areas at GSI (Z6 area and PHELIX Laser Hall (PLH)), are presented in section 6.3. - Chapter 7 includes the main results of this work, conclusions and gives a perspective for future experimental activities.

  18. Measurement and interpretation of laser accelerated protons at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Al-Omari, Husam

    2014-04-28

    generated by the Matlab program, while the TraceWin code is employed to study the tracking through magnetic elements. - Chapter 6 describes the PHELIX laser parameters at GSI with chirp pulse amplification technique (CPA), and Gafchromic Radiochromic film (RCF) as a spatial energy resolver film detector. The results of experiments with laser proton acceleration, which were performed in two experimental areas at GSI (Z6 area and PHELIX Laser Hall (PLH)), are presented in section 6.3. - Chapter 7 includes the main results of this work, conclusions and gives a perspective for future experimental activities.

  19. Proton storage rings

    International Nuclear Information System (INIS)

    Rau, R.R.

    1978-04-01

    A discussion is given of proton storage ring beam dynamic characteristics. Topics considered include: (1) beam energy; (2) beam luminosity; (3) limits on beam current; (4) beam site; (5) crossing angle; (6) beam--beam interaction; (7) longitudinal instability; (8) effects of scattering processes; (9) beam production; and (10) high magnetic fields. Much of the discussion is related to the design parameters of ISABELLE, a 400 x 400 GeV proton---proton intersecting storage accelerator to be built at Brookhaven National Laboratory

  20. ATLAS Forward Proton Detector

    CERN Document Server

    Grieco, Chiara; The ATLAS collaboration

    2018-01-01

    The aim of the ATLAS Forward Proton (AFP) detector system is the measurement of protons scattered diffractively or electromagnetically at very small angles. The full two-arm setup was installed during the 2016/2017 EYETS. This allows measurements of processes with two forward protons: central diffraction, exclusive production, and two-photon processes. In 2017, AFP participated in the ATLAS high-luminosity data taking on the day-by-day basis. In addition, several special runs with reduced luminosity were taken. The poster will present the AFP detectors and the lessons learned from the last year operation and some performance from 2016 and 2017.

  1. A simulation of low energy channeling of protons in silicon

    International Nuclear Information System (INIS)

    Sabin, J.R.

    1994-01-01

    The authors present early results from the CHANNEL code, which simulates the passage of ionized projectiles through bulk solids. CHANNEL solves the classical equations of motion for the projectile using the force obtained from the gradient of the quantum mechanically derived coulombic potential of the solid (determined via a full potential augmented plane wave FLAPW calculation on the bulk) and a quantum mechanical energy dissipation term, the stopping power, as determined from the local electron density, using the method of Echenique, Nieminen, and Ritchie. The code then generates the trajectory of the ionic projectile for a given initial velocity and a given incident position on the unit cell face. For each incident projectile velocity, the authors generate trajectories for incidence distributed over the channel face. The distribution of ranges generates an implantation profile. In this paper, they report ion (proton) implantation profiles for low energy protons with initial velocity along the (100) and (110) channel directions of diamond structured Silicon

  2. Permeability coefficient of proton irradiated polyethylene terephatalate thin films

    International Nuclear Information System (INIS)

    Bassani, L.C.; Santos, W.M.S.; Marechal, B.

    1983-01-01

    The principle of operation of an apparatus developed to study gas permation through thin films is described and the measurement method is discussed. Use is made of diffusion theory to obtain a expression for the permeability coefficient as a function of the rate of increase of the pressure in the receiving volume. The Gibbs function for permeation of Helium through Polyethylene Terephtalate (P.E.T.) is determined. The permeability coefficient of Helium is found to increase significantly with the range of the implanted protons although the incident charge has been kept constant. The hypothesis of structural modifications of the proton implanted P.E.T. seems to be confirmed by small angles X-rays scattering experiments on the irradiated samples. (Author) [pt

  3. Proton computed tomography

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1978-01-01

    The use of protons or other heavy charged particles instead of x rays in computed tomography (CT) is explored. The results of an experimental implementation of proton CT are presented. High quality CT reconstructions are obtained at an average dose reduction factor compared with an EMI 5005 x-ray scanner of 10:1 for a 30-cm-diameter phantom and 3.5:1 for a 20-cm diameter. The spatial resolution is limited by multiple Coulomb scattering to about 3.7 mm FWHM. Further studies are planned in which proton and x-ray images of fresh human specimens will be compared. Design considerations indicate that a clinically useful proton CT scanner is eminently feasible

  4. Electron - proton colliders

    International Nuclear Information System (INIS)

    Wiik, B.H.

    1985-01-01

    Electron-proton storage rings allow us to study the interaction between the two basic constituents of matter, electrons and quarks at very short distances. Such machines were first discussed in connection with the ISR but the idea was abandoned because of the anticipated low counting rate. The interest in electron-proton storage rings was rekindeled by the discovery of large pointlike cross sections in lepton-hardon interactions and several/sup 2-15/ projects have been discussed during the past decade. However, despite a glorious past, which includes the discovery of quarks and neutral currents, and a multitude of proposals no electron-proton storage ring has ever been built. What we might learn by studying electron-proton collisions at high energies is discussed. After some brief comments on present proposals the proposed DESY ep project HERA is described as an example of how to realize such a machine

  5. Apparatus for proton radiography

    International Nuclear Information System (INIS)

    Martin, R.L.

    1976-01-01

    An apparatus for effecting diagnostic proton radiography of patients in hospitals comprises a source of negative hydrogen ions, a synchrotron for accelerating the negative hydrogen ions to a predetermined energy, a plurality of stations for stripping extraction of a radiography beam of protons, means for sweeping the extracted beam to cover a target, and means for measuring the residual range, residual energy, or percentage transmission of protons that pass through the target. The combination of information identifying the position of the beam with information about particles traversing the subject and the back absorber is performed with the aid of a computer to provide a proton radiograph of the subject. In an alternate embodiment of the invention, a back absorber comprises a plurality of scintillators which are coupled to detectors. 10 claims, 7 drawing figures

  6. Plant proton pumps

    DEFF Research Database (Denmark)

    Gaxiola, Roberto A.; Palmgren, Michael Gjedde; Schumacher, Karin

    2007-01-01

    Chemiosmotic circuits of plant cells are driven by proton (H+) gradients that mediate secondary active transport of compounds across plasma and endosomal membranes. Furthermore, regulation of endosomal acidification is critical for endocytic and secretory pathways. For plants to react...

  7. Inauguration of Proton Synchrotron

    CERN Multimedia

    1960-01-01

    On 5 February 1960, the Proton Synchrotron (PS) was formally inaugurated. The great Danish physicist, Niels Bohr, releases a bottle of champagne against a shielding block to launch the PS on its voyage in physics.

  8. Gravitational waves from rotating neutron stars and evaluation of fast chirp transform techniques

    CERN Document Server

    Strohmayer, T E

    2002-01-01

    X-ray observations suggest that neutron stars in low mass x-ray binaries (LMXB) are rotating with frequencies in the range 300-600 Hz. These spin rates are significantly less than the break-up rates for essentially all realistic neutron star equations of state, suggesting that some process may limit the spin frequencies of accreting neutron stars to this range. If the accretion-induced spin up torque is in equilibrium with gravitational radiation losses, these objects could be interesting sources of gravitational waves. I present a brief summary of current measurements of neutron star spins in LMXBs based on the observations of high-Q oscillations during thermonuclear bursts (so-called 'burst oscillations'). Further measurements of neutron star spins will be important in exploring the gravitational radiation hypothesis in more detail. To this end, I also present a study of fast chirp transform (FCT) techniques as described by Jenet and Prince (Prince T A and Jenet F A 2000 Phys. Rev. D 62 122001) in the conte...

  9. Effects of energy chirp on bunch length measurement in linear accelerator beams

    Science.gov (United States)

    Sabato, L.; Arpaia, P.; Giribono, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Vaccarezza, C.; Variola, A.

    2017-08-01

    The effects of assumptions about bunch properties on the accuracy of the measurement method of the bunch length based on radio frequency deflectors (RFDs) in electron linear accelerators (LINACs) are investigated. In particular, when the electron bunch at the RFD has a non-negligible energy chirp (i.e. a correlation between the longitudinal positions and energies of the particle), the measurement is affected by a deterministic intrinsic error, which is directly related to the RFD phase offset. A case study on this effect in the electron LINAC of a gamma beam source at the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) is reported. The relative error is estimated by using an electron generation and tracking (ELEGANT) code to define the reference measurements of the bunch length. The relative error is proved to increase linearly with the RFD phase offset. In particular, for an offset of {{7}\\circ} , corresponding to a vertical centroid offset at a screen of about 1 mm, the relative error is 4.5%.

  10. Multiharmonic Frequency-Chirped Transducers for Surface-Acoustic-Wave Optomechanics

    Science.gov (United States)

    Weiß, Matthias; Hörner, Andreas L.; Zallo, Eugenio; Atkinson, Paola; Rastelli, Armando; Schmidt, Oliver G.; Wixforth, Achim; Krenner, Hubert J.

    2018-01-01

    Wide-passband interdigital transducers are employed to establish a stable phase lock between a train of laser pulses emitted by a mode-locked laser and a surface acoustic wave generated electrically by the transducer. The transducer design is based on a multiharmonic split-finger architecture for the excitation of a fundamental surface acoustic wave and a discrete number of its overtones. Simply by introducing a variation of the transducer's periodicity p , a frequency chirp is added. This combination results in wide frequency bands for each harmonic. The transducer's conversion efficiency from the electrical to the acoustic domain is characterized optomechanically using single quantum dots acting as nanoscale pressure sensors. The ability to generate surface acoustic waves over a wide band of frequencies enables advanced acousto-optic spectroscopy using mode-locked lasers with fixed repetition rate. Stable phase locking between the electrically generated acoustic wave and the train of laser pulses is confirmed by performing stroboscopic spectroscopy on a single quantum dot at a frequency of 320 MHz. Finally, the dynamic spectral modulation of the quantum dot is directly monitored in the time domain combining stable phase-locked optical excitation and time-correlated single-photon counting. The demonstrated scheme will be particularly useful for the experimental implementation of surface-acoustic-wave-driven quantum gates of optically addressable qubits or collective quantum states or for multicomponent Fourier synthesis of tailored nanomechanical waveforms.

  11. Chirp subbottom profile data collected in 2015 from the northern Chandeleur Islands, Louisiana

    Science.gov (United States)

    Forde, Arnell S.; DeWitt, Nancy T.; Fredericks, Jake J.; Miselis, Jennifer L.

    2018-01-30

    As part of the Barrier Island Evolution Research project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore geophysical survey around the northern Chandeleur Islands, Louisiana, in September 2015. The objective of the project is to improve the understanding of barrier island geomorphic evolution, particularly storm-related depositional and erosional processes that shape the islands over annual to interannual time scales (1–5 years). Collecting geophysical data can help researchers identify relations between the geologic history of the islands and their present day morphology and sediment distribution. High-resolution geophysical data collected along this rapidly changing barrier island system can provide a unique time-series dataset to further the analyses and geomorphological interpretations of this and other coastal systems, improving our understanding of coastal response and evolution over medium-term time scales (months to years). Subbottom profile data were collected in September 2015 offshore of the northern Chandeleur Islands, during USGS Field Activity Number 2015-331-FA. Data products, including raw digital chirp subbottom data, processed subbottom profile images, survey trackline map, navigation files, geographic information system data files and formal Federal Geographic Data Committee metadata, and Field Activity Collection System and operation logs are available for download.

  12. Chirped or time modulated excitation compared to short pulses for photoacoustic imaging in acoustic attenuating media

    Science.gov (United States)

    Burgholzer, P.; Motz, C.; Lang, O.; Berer, T.; Huemer, M.

    2018-02-01

    In photoacoustic imaging, optically generated acoustic waves transport the information about embedded structures to the sample surface. Usually, short laser pulses are used for the acoustic excitation. Acoustic attenuation increases for higher frequencies, which reduces the bandwidth and limits the spatial resolution. One could think of more efficient waveforms than single short pulses, such as pseudo noise codes, chirped, or harmonic excitation, which could enable a higher information-transfer from the samples interior to its surface by acoustic waves. We used a linear state space model to discretize the wave equation, such as the Stoke's equation, but this method could be used for any other linear wave equation. Linear estimators and a non-linear function inversion were applied to the measured surface data, for onedimensional image reconstruction. The proposed estimation method allows optimizing the temporal modulation of the excitation laser such that the accuracy and spatial resolution of the reconstructed image is maximized. We have restricted ourselves to one-dimensional models, as for higher dimensions the one-dimensional reconstruction, which corresponds to the acoustic wave without attenuation, can be used as input for any ultrasound imaging method, such as back-projection or time-reversal method.

  13. Study of Coherence Limits and Chirp Control in Long Pulse FEL Oscillator

    CERN Document Server

    Gover, Avraham; Socol, Yehoshua; Volshonok, Mark

    2004-01-01

    Electrostatic Accelerator FELs have the capacity to generate long pulses of tens microseconds and more, that in principle can be elongated indefinitely (CW operation). This allows the generation of very coherent radiation. The fundamental linewidth is extremely narrow [1], and in practice the spectral width is limited by the pulse duration (Fourier transform limit) and e-beam stability. Practical problems such as the accelerator terminal voltage drop due to a non-ideal electron beam transport may reduce the length of the radiation pulse and hence create a limiting factor for coherence measurement. The current status of the Israeli Tandem Electrostatic Accelerator FEL allows the generation of pulses of tens microseconds duration. It has been operated recently past saturation, and produces single mode coherent radiation of relative linewidth ~Δf/f=10-5 at frequencies near 100GHz. A clear frequency chirp is observed during pulses of tens of microseconds (0.1-1 MHz/mS), and is directly proportional to th...

  14. Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber Bragg gratings.

    Science.gov (United States)

    Davis, Alex O C; Saulnier, Paul M; Karpiński, Michał; Smith, Brian J

    2017-05-29

    A fiber-integrated spectrometer for single-photon pulses outside the telecommunications wavelength range based upon frequency-to-time mapping, implemented by chromatic group delay dispersion (GDD), and precise temporally-resolved single-photon counting, is presented. A chirped fiber Bragg grating provides low-loss GDD, mapping the frequency distribution of an input pulse onto the temporal envelope of the output pulse. Time-resolved detection with fast single-photon-counting modules enables monitoring of a wavelength range from 825 nm to 835 nm with nearly uniform efficiency at 55 pm resolution (24 GHz at 830 nm). To demonstrate the versatility of this technique, spectral interference of heralded single photons and the joint spectral intensity distribution of a photon-pair source are measured. This approach to single-photon-level spectral measurements provides a route to realize applications of time-frequency quantum optics at visible and near-infrared wavelengths, where multiple spectral channels must be simultaneously monitored.

  15. Trends in cochlear implants.

    Science.gov (United States)

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management.

  16. Benefits and Risks of Cochlear Implants

    Science.gov (United States)

    ... and Medical Procedures Implants and Prosthetics Cochlear Implants Benefits and Risks of Cochlear Implants Share Tweet Linkedin ... the Use of Cochlear Implants What are the Benefits of Cochlear Implants? For people with implants: Hearing ...

  17. Proton beam therapy facility

    International Nuclear Information System (INIS)

    1984-01-01

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs

  18. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  19. PROTON MICROSCOPY AT FAIR

    International Nuclear Information System (INIS)

    Merrill, F. E.; Mariam, F. G.; Golubev, A. A.; Turtikov, V. I.; Varentsov, D.

    2009-01-01

    Proton radiography was invented in the 1990's at Los Alamos National Laboratory (LANL) as a diagnostic to study dynamic material properties under extreme pressures, strain and strain rate. Since this time hundreds of dynamic proton radiography experiments have been performed at LANL and a facility has been commissioned at the Institute for Theoretical and Experimental Physics (ITEP) in Russia for similar applications in dynamic material studies. Recently an international effort has investigated a new proton radiography capability for the study of dynamic material properties at the Facility for Anti-proton and Ion Research (FAIR) located in Darmstadt, Germany. This new Proton microscope for FAIR(PRIOR) will provide radiographic imaging of dynamic systems with unprecedented spatial, temporal and density resolution, resulting in a window for understanding dynamic material properties at new length scales. It is also proposed to install the PRIOR system at the GSI Helmholtzzentrum fuer Schwerionenforschung before installation at FAIR for dynamic experiments with different drivers including high explosives, pulsed power and lasers. The design of the proton microscope and expected radiographic performance is presented.

  20. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  1. Proton and temperature-induced competitive segregation of iron on surface and volume sinks of silica

    International Nuclear Information System (INIS)

    Shilobreeva, S.N.; Kashkarov, L.L.; Barabanenkov, M.Yu.; Pustovit, A.N.; Zinenko, V.I.; Agafonov, Yu.A.

    2007-01-01

    Experimental results are delivered on iron redistribution in silica for proton irradiation followed by thermal annealing. Iron ions are initially implanted into silica at room temperature. Proton irradiation is performed at different temperatures. It is demonstrated, in particular, that radiation-induced migration of iron is more efficient at low temperature. Iron surface segregation and capture of iron by sinks in silica subsurface region during thermal annealing are speculated in terms of diffusion-alternative-sinks problem

  2. Proton and temperature-induced competitive segregation of iron on surface and volume sinks of silica

    Energy Technology Data Exchange (ETDEWEB)

    Shilobreeva, S.N. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, ul. Kosygina 19, Moscow 117975 (Russian Federation); Kashkarov, L.L. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, ul. Kosygina 19, Moscow 117975 (Russian Federation); Barabanenkov, M.Yu. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation)]. E-mail: barab@ipmt-hpm.ac.ru; Pustovit, A.N. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Zinenko, V.I. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Agafonov, Yu.A. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation)

    2007-03-15

    Experimental results are delivered on iron redistribution in silica for proton irradiation followed by thermal annealing. Iron ions are initially implanted into silica at room temperature. Proton irradiation is performed at different temperatures. It is demonstrated, in particular, that radiation-induced migration of iron is more efficient at low temperature. Iron surface segregation and capture of iron by sinks in silica subsurface region during thermal annealing are speculated in terms of diffusion-alternative-sinks problem.

  3. Proton Radiography to Improve Proton Radiotherapy : Simulation Study at Different Proton Beam Energies

    NARCIS (Netherlands)

    Biegun, Aleksandra; Takatsu, Jun; van Goethem, Marc-Jan; van der Graaf, Emiel; van Beuzekom, Martin; Visser, Jan; Brandenburg, Sijtze

    To improve the quality of cancer treatment with protons, a translation of X-ray Computed Tomography (CT) images into a map of the proton stopping powers needs to be more accurate. Proton stopping powers determined from CT images have systematic uncertainties in the calculated proton range in a

  4. Proton therapy in Australia

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities but with the development of more compact and reliable accelerators it is now possible to realistically plan for proton therapy in an Australian hospital. The Australian National Proton Project has been formed to look at the feasibility of a facility which would be primarily for patient treatment but would also be suitable for research and commercial applications. A detailed report will be produced by the end of the year. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. With the development of hospital-based facilities, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or Intensity Modulated Radiation Therapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. . Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in

  5. Optical effects of ion implantation

    International Nuclear Information System (INIS)

    Townsend, P.D.

    1987-01-01

    The review concerns the effects of ion implantation that specifically relate to the optical properties of insulators. Topics which are reviewed include: ion implantation, ion range and damage distributions, colour centre production by ion implantation, high dose ion implantation, and applications for integrated optics. Numerous examples are presented of both diagnostic and industrial examples of ion implantation effects in insulators. (U.K.)

  6. Proton dynamics in cancer.

    Science.gov (United States)

    Huber, Veronica; De Milito, Angelo; Harguindey, Salvador; Reshkin, Stephan J; Wahl, Miriam L; Rauch, Cyril; Chiesi, Antonio; Pouysségur, Jacques; Gatenby, Robert A; Rivoltini, Licia; Fais, Stefano

    2010-06-15

    Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth.Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC) in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology.

  7. Proton dynamics in cancer

    Directory of Open Access Journals (Sweden)

    Pouysségur Jacques

    2010-06-01

    Full Text Available Abstract Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth. Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology.

  8. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  9. Journal of Proton Therapy

    Directory of Open Access Journals (Sweden)

    Editorial Office

    2015-01-01

    Full Text Available Journal of Proton Therapy (JPT is an international open access, peer-reviewed journal, which publishes original research, technical reports, reviews, case reports, editorials, and other materials on proton therapy with focus on radiation oncology, medical physics, medical dosimetry, and radiation therapy.No article processing/submission feeNo publication feePeer-review completion within 3-6 weeksImmediate publication after the completion of final author proofreadDOI assignment for each published articleFree access to published articles for all readers without any access barriers or subscriptionThe views and opinions expressed in articles are those of the author/s and do not necessarily reflect the policies of the Journal of Proton Therapy.Authors are encouraged to submit articles for publication in the inaugural issue of the Journal of Proton Therapy by online or email to editor@protonjournal.comOfficial Website of Journal of Proton Therapy: http://www.protonjournal.org/

  10. Medical Proton Accelerator Project

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2008-01-01

    A project for a medical proton accelerator for cancer treatment is outlined. The project is motivated by the need for a precise modality for cancer curing especially in children. Proton therapy is known by its superior radiation and biological effectiveness as compared to photon or electron therapy. With 26 proton and 3 heavy-ion therapy complexes operating worldwide only one (p) exists in South Africa, and none in south Asia and the Middle East. The accelerator of choice should provide protons with energy 75 MeV for eye treatment and 250 MeV for body treatment. Four treatment rooms are suggested: two with isocentric gantries, one with fixed beams and one for development. Passive scanning is recommended. The project can serve Middle East and North Africa with ∼ 400 million populations. The annual capacity of the project is estimated as 1,100 to be compared with expected radiation cases eligible for proton cancer treatment of not less than 200,000

  11. Proton relativistic model; Modelo relativistico do proton

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wilson Roberto Barbosa de

    1996-12-31

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author) 42 refs., 22 figs., 1 tab.

  12. Accurate offline dispersion measurement of Petawatt-class chirped pulse amplification compressor and stretcher systems

    International Nuclear Information System (INIS)

    Haefner, C.; Crane, J.; Halpin, J.; Heebner, J.; Kanz, V.; Phan, H.; Nissen, J.; Shverdin, M.; Hackel, R.; Dawson, J.; Messerly, M.; Siders, C.W.

    2010-01-01

    Complete text of publication follows. The Advanced Radiographic Capability (ARC) on the National Ignition Facility (NIF) is designed to produce energetic x-rays in the range of 10-100 keV for backlighting NIF targets. ARC will convert 4 of the 192 NIF beamlines into 8 split beams, delivering laser pulses with adjustable pulse durations from 1 ps to 50 ps at the kilo-Joule level. Adjustable time delays between the 8 beams enable X-ray 'motion-picture' capture with tens-of-picosecond resolution during the critical phases of an ICF shot. The precise alignment of stretcher-compressor pairs in energetic chirped pulse amplification (CPA) systems is tedious and requires several iterations using advanced temporal diagnostics until the shortest pulse durations and highest peak intensities are achieved. For large, energetic Petawatt laser systems with beam sizes up to 40 cm, diffraction gratings in the compressor reach meter-scale size and are difficult to precisely align. We developed a group delay diagnostic which enables accurate, offline measurements of highly dispersive components such as stretchers or compressors with sub-picosecond accuracy. This diagnostic tool enables us to simply measure each dispersive component offline, and balance the dispersion in each beamline. Furthermore it allows exactly matching the dispersion of ARC's eight, independent four-grating compressors, which is critical for producing eight identical pulses. ARC utilizes a unique, folded compressor design for maximum compactness; two 5.5 m long vacuum vessels house 8 compressors with 91 cm x 45 cm multilayer, dielectric gratings. The group delay diagnostic utilizes the phase-shift technique for measuring the dispersion characteristics of each individual element, e.g. grating stretcher, chirped fiber Bragg grating, grating compressor, material dispersion, or an entire laser system. The system uses an amplitude modulated, highly-stable, single-frequency laser, which is scanned over the spectral

  13. Anomalous heat evolution of deuteron implanted Al on electron bombardment

    International Nuclear Information System (INIS)

    Kamada, K.; Kinoshita, H.; Takahashi, H.

    1994-05-01

    Anomalous heat evolution was observed in deuteron implanted Al foils on 175 keV electron bombardment. Local regions with linear dimension of several 100nm showed simultaneous transformation from single crystalline to polycrystalline structure instantaneously on the electron bombardment, indicating the temperature rise up to more than melting point of Al from room temperature. The amount of energy evolved was more than 180 MeV for each transformed region. The transformation was never observed in proton implanted Al foils. The heat evolution was considered due to a nuclear reaction in D 2 molecular collections. (author)

  14. Ion implantation in semiconductors

    International Nuclear Information System (INIS)

    Gusev, V.; Gusevova, M.

    1980-01-01

    The historical development is described of the method of ion implantation, the physical research of the method, its technological solution and practical uses. The method is universally applicable, allows the implantation of arbitrary atoms to an arbitrary material, ensures high purity of the doping element. It is linked with sample processing at low temperatures. In implantation it is possible to independently change the dose and energy of the ions thereby affecting the spatial distribution of the ions. (M.S.)

  15. Ion implantation in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, V; Gusevova, M

    1980-06-01

    The historical development of the method of ion implantation, the physical research of the method, its technological solution and practical uses is described. The method is universally applicable, allows the implantation of arbitrary atoms to an arbitrary material and ensures high purity of the doping element. It is linked with sample processing at low temperatures. In implantation it is possible to independently change the dose and energy of the ions thereby affecting the spatial distribution of the ions.

  16. Trends in Cochlear Implants

    OpenAIRE

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic as...

  17. Ion implantation technology

    CERN Document Server

    Downey, DF; Jones, KS; Ryding, G

    1993-01-01

    Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approach

  18. High energy ion implantation

    International Nuclear Information System (INIS)

    Ziegler, J.F.

    1985-01-01

    High energy ion implantation offers the oppertunity for unique structures in semiconductor processing. The unusual physical properties of such implantations are discussed as well as the special problems in masking and damage annealing. A review is made of proposed circuit structures which involve deep implantation. Examples are: deep buried bipolar collectors fabricated without epitaxy, barrier layers to reduce FET memory sensitivity to soft-fails, CMOS isolation well structures, MeV implantation for customization and correction of completed circuits, and graded reach-throughs to deep active device components. (orig.)

  19. [Silastic implant and synovitis].

    Science.gov (United States)

    Sennwald, G

    1989-07-22

    The silastic implant based on siloxane polymere induces granulomatous synovitis in certain predisposed individuals, a reaction which may continue even after removal of the implant. This is also true of a prosthesis of the trapezium in two of our patients, though to a lesser degree. This is probably the reason why the problem has not yet been widely recognized. The hypothesis is put forward that an enzymatic predisposition may allow chemical degradation of the fragmented silastic implant into a toxic component responsible for the pathologic condition. The slow progression of the lesions is a challenge for the future and puts in question the further use of silastic implants.

  20. Cochlear implant magnet retrofit.

    Science.gov (United States)

    Cohen, N L; Breda, S D; Hoffman, R A

    1988-06-01

    An implantable magnet is now available for patients who have received the standard Nucleus 22-channel cochlear implant and who are not able to wear the headband satisfactorily. This magnet is attached in piggy-back fashion to the previously implanted receiver/stimulator by means of a brief operation under local anesthesia. Two patients have received this magnet retrofit, and are now wearing the headset with greater comfort and satisfaction. It is felt that the availability of this magnet will increase patient compliance in regard to hours of implant usage.

  1. PIXE microbeam analysis of the metallic debris release around endosseous implants

    International Nuclear Information System (INIS)

    Buso, G.P.; Galassini, S.; Moschini, G.; Passi, P.; Zadro, A.; Uzunov, N.M.; Doyle, B.L.; Rossi, P.; Provencio, P.

    2005-01-01

    The mechanical friction that occurs during the surgical insertion of endosseous implants, both in dentistry and orthopaedics, may cause the detachment of metal debris which are dislodged into the peri-implant tissues and can lead to adverse clinical effects. This phenomenon more likely happens with coated or roughened implants that are the most widely employed. In the present study were studied dental implants screws made of commercially pure titanium and coated using titanium plasma-spray (TPS) technique. The implants were inserted in the tibia of rabbits, and removed 'en bloc' with the surrounding bone after one month. After proper processing and mounting on plastic holders, samples from bones were analysed by EDXRF setup at of National Laboratories of Legnaro, INFN, Italy, and consequently at 3 MeV proton microbeam setup at Sandia National Laboratories. Elemental maps were drawn, showing some occasional presence of metal particles in the peri-implant bone

  2. Synchrotron radiation from protons

    International Nuclear Information System (INIS)

    Dutt, S.K.

    1992-12-01

    Synchrotron radiation from protons, though described by the same equations as the radiation from electrons, exhibits a number of interesting features on account of the parameters reached in praxis. In this presentation, we shall point out some of the features relating to (i) normal synchrotron radiation from dipoles in proton machines such as the High Energy Booster and the Superconducting Super Collider; (ii) synchrotron radiation from short dipoles, and its application to light monitors for proton machines, and (iii) synchrotron radiation from undulators in the limit when, the deflection parameter is much smaller than unity. The material for this presentation is taken largely from the work of Hofmann, Coisson, Bossart, and their collaborators, and from a paper by Kim. We shall emphasize the qualitative aspects of synchrotron radiation in the cases mentioned above, making, when possible, simple arguments for estimating the spectral and angular properties of the radiation. Detailed analyses can be found in the literature

  3. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  4. Current-current interaction picture for proton-proton scattering

    International Nuclear Information System (INIS)

    Clarke, D.J.; Lo, S.Y.

    1979-01-01

    The authors propose that color current - color current interaction is reponsible for small angle elastic proton proton scattering at asymptotic energy. Excellent fits are obtained for all data above 12 GeV/c which covers twelve orders of magnitude

  5. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Veierskov, Bjarke

    2008-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells...... of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic...... molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...

  6. Exact spectrum of non-linear chirp scaling and its application in geosynchronous synthetic aperture radar imaging

    Directory of Open Access Journals (Sweden)

    Chen Qi

    2013-07-01

    Full Text Available Non-linear chirp scaling (NLCS is a feasible method to deal with time-variant frequency modulation (FM rate problem in synthetic aperture radar (SAR imaging. However, approximations in derivation of NLCS spectrum lead to performance decline in some cases. Presented is the exact spectrum of the NLCS function. Simulation with a geosynchronous synthetic aperture radar (GEO-SAR configuration is implemented. The results show that using the presented spectrum can significantly improve imaging performance, and the NLCS algorithm is suitable for GEO-SAR imaging after modification.

  7. Photonic linear chirped microwave signal generation based on the ultra-compact spectral shaper using the slow light effect

    DEFF Research Database (Denmark)

    Yan, Siqi; Gao, Shengqian; Zhou, Feng

    2017-01-01

    A novel concept to generate a linear chirped microwave signal is proposed and experimentally demonstrated. The frequency to time mapping method is employed, where the photonic crystal waveguide Mach-Zehnder interferometer structure acts as the spectral shaper thanks to the slow light effect. By o....... The utilization of the slow light effect brings in significant advantages, including the ultra-small footprint of 0.096 mm(2) and simple structure to our scheme, which may be of great importance towards its potential applications. (C) 2017 Optical Society of America...

  8. Chirped InAs/InP quantum-dash laser with enhanced broad spectrum of stimulated emission

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2013-03-01

    We report on the demonstration of 50 nm (full-width at half-maximum) broadband stimulated emission from a chirped AlGaInAs barrier thickness multi-stack InAs/InP quantum dash (Qdash) laser. The 2 ?m wide uncoated Fabry-Perot (FP) ridge-waveguide laser exhibits a total power of 0.18 W, corresponding to an average spectral power density of 3.5 mW/nm, under pulsed current conditions. Intentional extended inhomogeneity across the Qdash stacks have been attributed to the enhancement of broadband emission. © 2013 American Institute of Physics.

  9. Chirped InAs/InP quantum-dash laser with enhanced broad spectrum of stimulated emission

    KAUST Repository

    Khan, Mohammed Zahed Mustafa; Bhattacharya, Pallab K.; Lee, Chi-Sen; Ng, Tien Khee; Ooi, Boon S.

    2013-01-01

    We report on the demonstration of 50 nm (full-width at half-maximum) broadband stimulated emission from a chirped AlGaInAs barrier thickness multi-stack InAs/InP quantum dash (Qdash) laser. The 2 ?m wide uncoated Fabry-Perot (FP) ridge-waveguide laser exhibits a total power of 0.18 W, corresponding to an average spectral power density of 3.5 mW/nm, under pulsed current conditions. Intentional extended inhomogeneity across the Qdash stacks have been attributed to the enhancement of broadband emission. © 2013 American Institute of Physics.

  10. Proton tunneling in solids

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, J.

    1998-10-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  11. Proton irradiation and endometriosis

    International Nuclear Information System (INIS)

    Wood, D.H.; Yochmowitz, M.G.; Salmon, Y.L.; Eason, R.L.; Boster, R.A.

    1983-01-01

    It was found that female rhesus monkeys given single total-body exposures of protons of varying energies developed endometriosis at a frequency significantly higher than that of nonirradiated animals of the same age. The minimum latency period was determined to be 7 years after the proton exposure. The doses and energies of the radiation received by the experimental animals were within the range that could be received by an aircrew member in near-earth orbit during a random solar flare event. It is concluded that endometriosis should be a consideration in assessing the risk of delayed radiation effects in female crew members. 15 references

  12. Diagnosis by proton bombardment

    International Nuclear Information System (INIS)

    Steward, V.W.; Koehler, A.M.

    1976-01-01

    Beams of monoenergetic protons or other charged ions are passed through the living human body to detect abnormalities and obstructions in body tissue, which abnormalities and obstructions are visualized as density variations in the particle image emerging from the body part under investigation. The particles used are preferably protons having an energy of 100 to 300 MeV, more especially 200 to 300 MeV. The method is of use in detecting inter alia tumors, blood clots, infarcts, soft tissue lesions and multiple sclerosis in patients without exposure to high radiation dosages. 6 claims, 2 drawing figures

  13. Do protons decay

    International Nuclear Information System (INIS)

    Litchfield, P.J.

    1984-09-01

    The experimental status of proton decay is reviewed after the Leipzig International conference, July 1984. A brief comparative description of the currently active experiments is given. From the overall samples of contained events it can be concluded that the experiments are working well and broadly agree with each other. The candidates for proton decay from each experiment are examined. Although several experiments report candidates at a higher rate than expected from background calculations, the validity of these calculations is still open to doubt. (author)

  14. Proton tunneling in solids

    International Nuclear Information System (INIS)

    Kondo, J.

    1998-01-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  15. Bruxism and dental implant failures: a multilevel mixed effects parametric survival analysis approach.

    Science.gov (United States)

    Chrcanovic, B R; Kisch, J; Albrektsson, T; Wennerberg, A

    2016-11-01

    Recent studies have suggested that the insertion of dental implants in patients being diagnosed with bruxism negatively affected the implant failure rates. The aim of the present study was to investigate the association between the bruxism and the risk of dental implant failure. This retrospective study is based on 2670 patients who received 10 096 implants at one specialist clinic. Implant- and patient-related data were collected. Descriptive statistics were used to describe the patients and implants. Multilevel mixed effects parametric survival analysis was used to test the association between bruxism and risk of implant failure adjusting for several potential confounders. Criteria from a recent international consensus (Lobbezoo et al., J Oral Rehabil, 40, 2013, 2) and from the International Classification of Sleep Disorders (International classification of sleep disorders, revised: diagnostic and coding manual, American Academy of Sleep Medicine, Chicago, 2014) were used to define and diagnose the condition. The number of implants with information available for all variables totalled 3549, placed in 994 patients, with 179 implants reported as failures. The implant failure rates were 13·0% (24/185) for bruxers and 4·6% (155/3364) for non-bruxers (P bruxism was a statistically significantly risk factor to implant failure (HR 3·396; 95% CI 1·314, 8·777; P = 0·012), as well as implant length, implant diameter, implant surface, bone quantity D in relation to quantity A, bone quality 4 in relation to quality 1 (Lekholm and Zarb classification), smoking and the intake of proton pump inhibitors. It is suggested that the bruxism may be associated with an increased risk of dental implant failure. © 2016 John Wiley & Sons Ltd.

  16. Proton-proton bremsstrahlung in a relativistic covariant model

    NARCIS (Netherlands)

    Martinus, Gerard Henk

    1998-01-01

    Proton-proton bremsstrahlung is one of the simplest processes involving the half off-shell NN interaction. Since protons are equally-charged particles with the same mass, electric-dipole radiation is suppressed and higher-order effects play an important role. Thus it is possible to get information

  17. Predictions of diffractive cross sections in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Goulianos, Konstantin [Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States)

    2013-04-15

    We review our pre-LHC predictions of the total, elastic, total-inelastic, and diffractive components of proton-proton cross sections at high energies, expressed in the form of unitarized expressions based on a special parton-model approach to diffraction employing inclusive proton parton distribution functions and QCD color factors and compare with recent LHC results.

  18. Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier

    International Nuclear Information System (INIS)

    Li, Jiang; Shi, Junkai; Xu, Baozhong; Xing, Qirong; Wang, Chingyue; Chai, Lu; Liu, Bowen; Hu, Minglie; Li, Yanfeng; Fedotov, Andrey B.; Zheltikov, Aleksei M.

    2014-01-01

    A chirp-tunable femtosecond 10 W, 42 MHz photonic-crystal-fiber oscillator-amplifier system that is capable of delivering sub-60 fs light pulses at 1040 nm is used to demonstrate high-efficiency terahertz radiation generation via optical rectification in GaP crystals only a few millimeters in length. The optimization of the chirp of the fiber-laser pulses is shown to radically enhance the terahertz output, indicating one possible way to more efficiently use these extended nonlinear crystals in compact fiber-pumped terahertz radiation sources

  19. Fiber transmission and generation of ultrawideband pulses by direct current modulation of semi-conductor lasers and chirp-to-intensity conversion

    DEFF Research Database (Denmark)

    Company Torres, Victor; Prince, Kamau; Tafur Monroy, Idelfonso

    2008-01-01

    Optical pulses generated by current modulation of semiconductor lasers are strongly frequency chirped. This effect has been considered pernicious for optical communications. We take advantage of this effect for the generation of ultrawideband microwave signals by using an optical filter to achieve...... chirp-to-intensity conversion. We also experimentally achieve propagation through a 20 km nonzero dispersion shifted fiber with no degradation of the signal at the receiver. Our method constitutes a prospective low-cost solution and offers integration capabilities with fiber...

  20. Progresses in proton radioactivity studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, L. S., E-mail: flidia@ist.utl.pt [Center of Physics and Engineering of Advanced Materials, CeFEMA and Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, P1049-001 Lisbon (Portugal); Maglione, E. [Dipartimento di Fisica e Astronomia “G. Galilei”, Via Marzolo 8, I-35131 Padova, Italy and Istituto Nazionale di Fisica Nucleare, Padova (Italy)

    2016-07-07

    In the present talk, we will discuss recent progresses in the theoretical study of proton radioactivity and their impact on the present understanding of nuclear structure at the extremes of proton stability.

  1. Proton Radiography (pRad)

    Data.gov (United States)

    Federal Laboratory Consortium — The proton radiography project has used 800 MeV protons provided by the LANSCE accelerator facility at LANL, to diagnose more than 300 dynamic experiments in support...

  2. Percutaneous and skeletal biocarbon implants

    Science.gov (United States)

    Mooney, V.

    1977-01-01

    Review of carbon implants developed by NASA discussed four different types of implants and subsequent improvements. Improvements could be of specific interest to rehabilitation centers and similar organizations.

  3. Degradable Implantate: Entwicklungsbeispiele

    Science.gov (United States)

    Ruffieux, Kurt; Wintermantel, Erich

    Resorbierbare Implantate werden seit mehreren Jahrzehnten in der Implantologie eingesetzt. Bekannt wurden diese Biomaterialien mit dem Aufkommen von sich selbst auflösenden Nahtfäden auf der Basis von synthetisch hergestellten Polylactiden und Polyglycoliden in den 70er Jahren. In einem nächsten Schritt wurden Implantate wie Platten und Schrauben zur Gewebefixation aus den gleichen Biomaterialien hergestellt.

  4. Risks of Breast Implants

    Science.gov (United States)

    ... have a risk of developing a type of cancer called breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) in the breast tissue surrounding the implant. BIA-ALCL is not breast cancer. Women diagnosed with BIA-ALCL may need to ...

  5. Ion implantation of metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1976-01-01

    In this part of the paper descriptions are given of the effects of ion implantation on (a) friction and wear in metals; and (b) corrosion of metals. In the study of corrosion, ion implantation can be used either to introduce a constituent that is known to convey corrosion resistance, or more generally to examine the parameters which control corrosion. (U.K.)

  6. Ion implantation into diamond

    International Nuclear Information System (INIS)

    Sato, Susumu

    1994-01-01

    The graphitization and the change to amorphous state of diamond surface layer by ion implantation and its characteristics are reported. In the diamond surface, into which more than 10 16 ions/cm 2 was implanted, the diamond crystals are broken, and the structure changes to other carbon structure such as amorphous state or graphite. Accompanying this change of structure, the electric conductivity of the implanted layer shows two discontinuous values due to high resistance and low resistance. This control of structure can be done by the temperature of the base during the ion implantation into diamond. Also it is referred to that by the base temperature during implantation, the mutual change of the structure between amorphous state and graphite can be controlled. The change of the electric resistance and the optical characteristics by the ion implantation into diamond surface, the structural analysis by Raman spectroscopy, and the control of the structure of the implanted layer by the base temperature during implantation are reported. (K.I.)

  7. Violent collisions of spinning protons

    Energy Technology Data Exchange (ETDEWEB)

    Krisch, A.D. [Michigan Univ., Spin Physics Center, Ann Arbor, MI (United States)

    2005-07-01

    The author draws the history of polarized proton beams that has relied on experiments that took place in different accelerators like ZGS (zero gradient synchrotron, Argonne), AGS (Brookhaven) and Fermilab from 1973 till today. The first studies of the behavior and spin-manipulation of polarized protons helped in developing polarized beams around the world: Brookhaven now has 200 GeV polarized protons in the RHIC collider, perhaps someday the 7 TeV LHC at CERN might have polarized protons.

  8. Neutron-proton scattering

    International Nuclear Information System (INIS)

    Doll, P.

    1990-02-01

    Neutron-proton scattering as fundamental interaction process below and above hundred MeV is discussed. Quark model inspired interactions and phenomenological potential models are described. The seminar also indicates the experimental improvements for achieving new precise scattering data. Concluding remarks indicate the relevance of nucleon-nucleon scattering results to finite nuclei. (orig.) [de

  9. Radiotherapy : proton therapy

    International Nuclear Information System (INIS)

    1991-01-01

    The first phase of proton therapy at the National Accelerator Centre will be the development of a 200 MeV small-field horizontal beam radioneurosurgical facility in the south treatment vault. A progressive expansion of this facility is planned. The patient support and positioning system has been designed and developed by the Departments of Mechanical Engineering and Surveying of the University of Cape Town to ensure the accurate positioning in the proton beam of the lesion to be treated. The basic components of the system are an adjustable chair, a series of video cameras and two computers. The specifications for the proton therapy interlock system require that the inputs to and the outputs from the system be similar to those of the neutron therapy system. Additional facilities such as a full diagnostic system which would assist the operators in the event of an error will also be provided. Dosimeters are required for beam monitoring, for monitor calibration and for determining dose distributions. Several designs of transmission ionization chambers for beam monitoring have been designed and tested, while several types of ionization chambers and diodes have been used for the dose distribution measurements. To facilitate the comparison of measured ranges and energy losses of proton beams in the various materials with tabled values, simple empirical approximations, which are sufficiently accurate for most applications, have been used. 10 refs., 10 fig., 4 tabs

  10. Proton Pulse Radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H C; Nilsson, G; Reitberger, T; Thuomas, K A

    1973-03-15

    A 5 MeV proton accelerator (Van de Graaff) has been used for pulse radiolysis of a number of organic gases and the transient spectra obtained from the alkanes methane, ethane, propane, n-butane and neopentane have tentatively been assigned to alkyl radicals. Some methodological aspects of this new technique are discussed

  11. The Melbourne proton microprobe

    International Nuclear Information System (INIS)

    Legge, G.J.F.; McKenzie, C.D.; Mazzolini, A.P.

    1979-01-01

    A scanning proton microprobe is described which operates in ultra-high vacuum with a resolution of ten microns. The operating principles and main features of the design are discussed and the ability of such an instrument to detect trace elements down to a few ppm by mass is illustrated

  12. Proton microanalysis in plants

    International Nuclear Information System (INIS)

    Garrec, J.P.

    Micro-analyses by nuclear reactions and atomic excitation are used to determine the distribution of fluorine and calcium in the needles of Abies Alba. Fluorine is detected by the nuclear reaction 19 F(p,α) 16 O at the 1.35 MeV resonance. Calcium is measured by its characteristic X-rays due to proton excitation [fr

  13. Number of implants for mandibular implant overdentures: a systematic review

    Science.gov (United States)

    Lee, Jeong-Yol; Kim, Ha-Young; Bryant, S. Ross

    2012-01-01

    PURPOSE The aim of this systematic review is to address treatment outcomes of Mandibular implant overdentures relative to implant survival rate, maintenance and complications, and patient satisfaction. MATERIALS AND METHODS A systematic literature search was conducted by a PubMed search strategy and hand-searching of relevant journals from included studies. Randomized Clinical Trials (RCT) and comparative clinical trial studies on mandibular implant overdentures until August, 2010 were selected. Eleven studies from 1098 studies were finally selected and data were analyzed relative to number of implants. RESULTS Six studies presented the data of the implant survival rate which ranged from 95% to 100% for 2 and 4 implant group and from 81.8% to 96.1% for 1 and 2 implant group. One study, which statistically compared implant survival rate showed no significant differences relative to the number of implants. The most common type of prosthetic maintenance and complications were replacement or reattaching of loose clips for 2 and 4 implant group, and denture repair due to the fracture around an implant for 1 and 2 implant groups. Most studies showed no significant differences in the rate of prosthetic maintenance and complication, and patient satisfaction regardless the number of implants. CONCLUSION The implant survival rate of mandibular overdentures is high regardless of the number of implants. Denture maintenance is likely not inflenced substantially by the number of implants and patient satisfaction is typically high again regardless os the number of implants. PMID:23236572

  14. Ion implantation into iron

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1978-01-01

    The distribution of implanted ions in iron, the friction characteristics and the corrosion of iron were studied. The distribution of Ni or Cr ions implanted into mild steel was measured. The accelerated voltage was 150 keV, and the beam current density was about 2 microampere/cm 2 . The measurement was made with an ion microanalyzer. The measured distribution was compared with that of LSS theory. Deep invasion of Ni was seen in the measured distribution. The distribution of Cr ions was different from the distribution calculated by the LSS theory. The relative friction coefficient of mild steel varied according to the dose of implanted Cu or N ions, and to the accelerating voltage. Formation of compound metals on the surfaces of metals by ion-implantation was investigated for the purpose to prevent the corrosion of metals. The resistance of mild steel in which Ni ions were implanted was larger than that of mild steel without any treatment. (Kato, T.)

  15. Proton transfer events in GFP

    NARCIS (Netherlands)

    Di Donato, M.; van Wilderen, L.J.G.W.; van Stokkum, I.H.M.; Cohen Stuart, T.A.; Kennis, J.T.M.; Hellingwerf, K.J.; van Grondelle, R.; Groot, M.L.

    2011-01-01

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton

  16. Orbit-based analysis of nonlinear energetic ion dynamics in tokamaks. II. Mechanisms for rapid chirping and convective amplification

    Energy Technology Data Exchange (ETDEWEB)

    Bierwage, Andreas [National Institutes for Quantum and Radiological Science and Technology, Rokkasho Fusion Institute, Aomori 039-3212 (Japan); Shinohara, Kouji [National Institutes for Quantum and Radiological Science and Technology, Naka Fusion Institute, Ibaraki 311-0193 Japan (Japan)

    2016-04-15

    The nonlinear interactions between shear Alfvén modes and tangentially injected beam ions in the 150–400 keV range are studied numerically in realistic geometry for a JT-60U tokamak scenario. In Paper I, which was reported in the companion paper, the recently developed orbit-based resonance analysis method was used to track the resonant frequency of fast ions during their nonlinear evolution subject to large magnetic and electric drifts. Here, that method is applied to map the wave-particle power transfer from the canonical guiding center phase space into the frequency-radius plane, where it can be directly compared with the evolution of the fluctuation spectra of fast-ion-driven modes. Using this technique, we study the nonlinear dynamics of strongly driven shear Alfvén modes with low toroidal mode numbers n = 1 and n = 3. In the n = 3 case, both chirping and convective amplification can be attributed to the mode following the resonant frequency of the radially displaced particles, i.e., the usual one-dimensional phase locking process. In the n = 1 case, a new chirping mechanism is found, which involves multiple dimensions, namely, wave-particle trapping in the radial direction and phase mixing across velocity coordinates.

  17. How females of chirping and trilling field crickets integrate the 'what' and 'where' of male acoustic signals during decision making.

    Science.gov (United States)

    Gabel, Eileen; Gray, David A; Matthias Hennig, R

    2016-11-01

    In crickets acoustic communication serves mate selection. Female crickets have to perceive and integrate male cues relevant for mate choice while confronted with several different signals in an acoustically diverse background. Overall female decisions are based on the attractiveness of the temporal pattern (informative about the 'what') and on signal intensity (informative about the 'where') of male calling songs. Here, we investigated how the relevant cues for mate choice are integrated during the decision process by females of five different species of chirping and trilling field crickets. Using a behavioral design, female preferences in no-choice and choice situations for male calling songs differing in pulse rate, modulation depth, intensities, chirp/trill arrangements and temporal shifts were examined. Sensory processing underlying decisions in female field crickets is rather similar as combined evidence suggested that incoming song patterns were analyzed separately by bilaterally paired networks for pattern attractiveness and pattern intensity. A downstream gain control mechanism leads to a weighting of the intensity cue by pattern attractiveness. While remarkable differences between species were observed with respect to specific processing steps, closely related species exhibited more similar preferences than did more distantly related species.

  18. Influence of Palatal Coverage and Implant Distribution on Implant Strain in Maxillary Implant Overdentures.

    Science.gov (United States)

    Takahashi, Toshihito; Gonda, Tomoya; Mizuno, Yoko; Fujinami, Yozo; Maeda, Yoshinobu

    2016-01-01

    Maxillary implant overdentures are often used in clinical practice. However, there is no agreement or established guidelines regarding prosthetic design or optimal implant placement configuration. The purpose of this study was to examine the influence of palatal coverage and implant number and distribution in relation to impact strain under maxillary implant overdentures. A maxillary edentulous model with implants and experimental overdentures with and without palatal coverage was fabricated. Four strain gauges were attached to each implant, and they were positioned in the anterior, premolar, and molar areas. A vertical occlusal load of 98 N was applied through a mandibular complete denture, and the implant strains were compared using one-way analysis of variance (P = .05). The palatolabial strain was much higher on anterior implants than on other implants in both denture types. Although there was no significant difference between the strain under dentures with and without palatal coverage, palateless dentures tended to result in higher implant strain than dentures with palatal coverage. Dentures supported by only two implants registered higher strain than those supported by four or six implants. Implants under palateless dentures registered higher strain than those under dentures with palatal coverage. Anterior implants exhibited higher palatolabial strain than other implants regardless of palatal coverage and implant configuration; it is therefore recommended that maxillary implant overdentures should be supported by six implants with support extending to the distal end of the arch.

  19. Australian national proton facility

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities and apart from the Harvard Cyclotron Laboratory and some low energy machines for eye treatment, only small numbers of patients were treated in each centre and conditions were less than optimal. Limited beam time and lack of support facilities restricted the type of patient treated and conventional fractionation could not be used. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. Since the development of hospital-based facilities, such as the one in Loma Linda in California, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or intensity modulated radiotherapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in the low dose volume is likely to be particularly

  20. Protonation of pyridine. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Zahran, N F; Ghoniem, H; Helal, A I [Physics Dept., Nuclear Research Center, AEA., Cairo, (Egypt); Rasheed, N [Nuclear Material Authority, Cairo, (Egypt)

    1996-03-01

    Field ionization mass spectra of pyridine is measured using 10{mu}m activated wire. protonation of pyridine, is observed as an intense peak in the mass spectra. Charge distribution of pyridine molecule is calculated using the modified neglect of diatomic overlap (MNDO) technique, and consequently proton attachment is proposed to be on the nitrogen atom. Temperature dependence of (M+H){sup +} ion is investigated and discussed. MNDO calculations of the protonated species are done, and the proton affinity of pyridine molecule is estimated. Time dependence of the field ionization process of pyridine and protonated ions are observed and discussed. 5 figs.

  1. Charge collection control using retrograde well tested by proton microprobe irradiation

    International Nuclear Information System (INIS)

    Sayama, Hirokazu; Takai, Mikio; Kimura, Hiroshi; Ohno, Yoshikazu; Satoh, Shinichi; Sonoda, Kenichirou; Katani, Norihiko.

    1993-01-01

    Soft error reduction by high-energy ion-implanted layers has been investigated by novel evaluation techniques using high-energy proton microprobes. A retrograde well formed by 160 and 700 keV boron ion implantation could completely suppress soft errors induced by the proton microprobes at 400 keV. The proton-induced current revealed the charge collection efficiency for the retrograde well structure. The collected charge for the retrograde well in the soft-error mapping was proved to be lower than the critical charge of the measured DRAMs(dynamic random-access memories). Complementary use of soft-error mapping and ion-induced-current measurement could clarify well structures immune against soft errors. (author)

  2. Implants for orthodontic anchorage

    Science.gov (United States)

    Zheng, Xiaowen; Sun, Yannan; Zhang, Yimei; Cai, Ting; Sun, Feng; Lin, Jiuxiang

    2018-01-01

    Abstract Implantanchorage continues to receive much attention as an important orthodontic anchorage. Since the development of orthodontic implants, the scope of applications has continued to increase. Although multiple reviews detailing implants have been published, no comprehensive evaluations have been performed. Thus, the purpose of this study was to comprehensively evaluate the effects of implants based on data published in review articles. An electronic search of the Cochrane Library, Medline, Embase, Ebsco and Sicencedirect for reviews with “orthodontic” and “systematic review or meta analysis” in the title, abstract, keywords, or full text was performed. A subsequent manual search was then performed to identify reviews concerning orthodontic implants. A manual search of the orthodontic journals American Journal of Orthodontics and Dentofacial Orthopedics (AJODO), European Journal of Orthodontics (EJO), and Angle Othodontist was also performed. Such systematic reviews that evaluated the efficacy and safety of orthodontic implants were used to indicate success rates and molar movements. A total of 23 reviews were included in the analysis. The quality of each review was assessed using a measurement tool for Assessment of Multiple Systematic Reviews (AMSTAR), and the review chosen to summarize outcomes had a quality score of >6. Most reviews were less than moderate quality. Success rates of implants ranged in a broad scope, and movement of the maxillary first molar was superior with implants compared with traditional anchorage. PMID:29595673

  3. Maintenance in dental implants

    Directory of Open Access Journals (Sweden)

    Giselle Póvoa Gomes

    2008-01-01

    Full Text Available In implants, maintenance is a decisive factor for obtaining success when implant supported overdentures and dentures are used. The present stud presents, a clinical case of a patient, a 70 year-old white man, with a completely edentulous mandibular alveolar ridge, severe bone resorption with presence of basal bone only, and absence of vestibule. Initially, treatment consisted of the placement of a mandibular overdenture, supported on three implants in the anterior inter-foramen region, as the left implant was transfixed in the basal bone of 2 to 3 millimeters. Eleven years later, another two implants were placed in the anterior area and an immediate load was performed up to the first molars, for the placement of an implant supported fixed. Throughout the entire treatment, meticulous maintenance was carried out, with follow-up for fourteen years, interrupted by the patient’s death. From the third month after the opening the three implants initially placed, the presence of keratinized mucosa, definition of the vestibule, maturation of the alveolar ridge and bone formation in the mento region were observed. It was concluded that good planning, allied to mastery of the technique and adequate maintenance were the prerequisites necessary for obtaining favorable results, success of the present case, and for the patient to have a better quality of life.

  4. Proton transfer events in GFP.

    Science.gov (United States)

    Di Donato, Mariangela; van Wilderen, Luuk J G W; Van Stokkum, Ivo H M; Stuart, Thomas Cohen; Kennis, John T M; Hellingwerf, Klaas J; van Grondelle, Rienk; Groot, Marie Louise

    2011-09-28

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton transfer through a 'proton-wire', formed by the chromophore (the proton donor), water molecule W22, Ser205 and Glu222 (the acceptor), on a picosecond time scale. To obtain a more refined view of this process, we have used a combined approach of time resolved mid-infrared spectroscopy and visible pump-dump-probe spectroscopy to resolve with atomic resolution how and how fast protons move through this wire. Our results indicate that absorption of light by GFP induces in 3 ps (10 ps in D(2)O) a shift of the equilibrium positions of all protons in the H-bonded network, leading to a partial protonation of Glu222 and to a so-called low barrier hydrogen bond (LBHB) for the chromophore's proton, giving rise to dual emission at 475 and 508 nm. This state is followed by a repositioning of the protons on the wire in 10 ps (80 ps in D(2)O), ultimately forming the fully deprotonated chromophore and protonated Glu222.

  5. Nanotechnology for dental implants.

    Science.gov (United States)

    Tomsia, Antoni P; Lee, Janice S; Wegst, Ulrike G K; Saiz, Eduardo

    2013-01-01

    With the advent of nanotechnology, an opportunity exists for the engineering of new dental implant materials. Metallic dental implants have been successfully used for decades, but they have shortcomings related to osseointegration and mechanical properties that do not match those of bone. Absent the development of an entirely new class of materials, faster osseointegration of currently available dental implants can be accomplished by various surface modifications. To date, there is no consensus regarding the preferred method(s) of implant surface modification, and further development will be required before the ideal implant surface can be created, let alone become available for clinical use. Current approaches can generally be categorized into three areas: ceramic coatings, surface functionalization, and patterning on the micro- to nanoscale. The distinctions among these are imprecise, as some or all of these approaches can be combined to improve in vivo implant performance. These surface improvements have resulted in durable implants with a high percentage of success and long-term function. Nanotechnology has provided another set of opportunities for the manipulation of implant surfaces in its capacity to mimic the surface topography formed by extracellular matrix components of natural tissue. The possibilities introduced by nanotechnology now permit the tailoring of implant chemistry and structure with an unprecedented degree of control. For the first time, tools are available that can be used to manipulate the physicochemical environment and monitor key cellular events at the molecular level. These new tools and capabilities will result in faster bone formation, reduced healing time, and rapid recovery to function.

  6. Solar proton fluxes since 1956

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1977-01-01

    The fluxes of protons emitted during solar flares since 1956 were evaluated. The depth-versus-activity profiles of 56 Co in several lunar rocks are consistent with the solar-proton fluxes detected by experiments on several satellites. Only about 20% of the solar-proton-induced activities of 22 Na and 55 Fe in lunar rocks from early Apollo missions were produced by protons emitted from the sun during solar cycle 20 (1965--1975). The depth-versus-activity data for these radionuclides in several lunar rocks were used to determine the fluxes of protons during solar cycle 19 (1954--1964). The average proton fluxes for cycle 19 are about five times those for both the last million years and for cycle 20. These solar-proton flux variations correlate with changes in sunspot activity

  7. Ion implantation for microelectronics

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1977-01-01

    Ion implantation has proved to be a versatile and efficient means of producing microelectronic devices. This review summarizes the relevant physics and technology and assesses the advantages of the method. Examples are then given of widely different device structures which have been made by ion implantation. While most of the industrial application has been in silicon, good progress continues to be made in the more difficult field of compound semiconductors. Equipment designed for the industrial ion implantation of microelectronic devices is discussed briefly. (Auth.)

  8. Optimization of dental implantation

    Science.gov (United States)

    Dol, Aleksandr V.; Ivanov, Dmitriy V.

    2017-02-01

    Modern dentistry can not exist without dental implantation. This work is devoted to study of the "bone-implant" system and to optimization of dental prostheses installation. Modern non-invasive methods such as MRI an 3D-scanning as well as numerical calculations and 3D-prototyping allow to optimize all of stages of dental prosthetics. An integrated approach to the planning of implant surgery can significantly reduce the risk of complications in the first few days after treatment, and throughout the period of operation of the prosthesis.

  9. Proton mass decomposition

    Science.gov (United States)

    Yang, Yi-Bo; Chen, Ying; Draper, Terrence; Liang, Jian; Liu, Keh-Fei

    2018-03-01

    We report the results on the proton mass decomposition and also on the related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of Nf = 2 + 1 DWF configurations with three lattice spacings and volumes, and several pion masses including the physical pion mass. With 1-loop pertur-bative calculation and proper normalization of the glue operator, we find that the u, d, and s quark masses contribute 9(2)% to the proton mass. The quark energy and glue field energy contribute 31(5)% and 37(5)% respectively in the MS scheme at µ = 2 GeV. The trace anomaly gives the remaining 23(1)% contribution. The u, d, s and glue momentum fractions in the MS scheme are consistent with the global analysis at µ = 2 GeV.

  10. Proton solar flares

    International Nuclear Information System (INIS)

    Shaposhnikova, E.F.

    1979-01-01

    The observations of proton solar flares have been carried out in 1950-1958 using the extrablackout coronograph of the Crimea astrophysical observatory. The experiments permit to determine two characteristic features of flares: the directed motion of plasma injection flux from the solar depths and the appearance of a shock wave moving from the place of the injection along the solar surface. The appearance of the shock wave is accompanied by some phenomena occuring both in the sunspot zone and out of it. The consistent flash of proton flares in the other groups of spots, the disappearance of fibres and the appearance of eruptive prominences is accomplished in the sunspot zone. Beyond the sunspot zone the flares occur above spots, the fibres disintegrate partially or completely and the eruptive prominences appear in the regions close to the pole

  11. Influence of disorder on phonon resistivity of ion-implanted nickel hydride

    International Nuclear Information System (INIS)

    Brossard, L.; Bernas, H.; Thome, L.; Traverse, A.; Nedellec, P.

    1982-01-01

    Metastable nickel hydride NiHsub(1.00) is produced by low energy proton implantation into thin nickel films at 6 K. After annealing at different temperatures (125, 185 K), the sample resistivity-temperature dependence is studied by cycling between 4.2 K and the annealing temperature. The temperature-dependent term in the resistivity is thus determined - for the first time - in an implanted system. A T 3 -dependence is found, in contrast to the T 5 -dependence of the ordered NiH β-phase obtained by electrolytic charging. This result is ascribed to implantation induced disorder. Isochronal annealing experiments are discussed elsewhere. (author)

  12. Level Specific CE-Chirp® BAEP's: A new faster technique in neuromonitoring cochlear nerve during cerebello-pontine angle tumor surgery

    Directory of Open Access Journals (Sweden)

    Ettore Di Scipio, MD

    2018-03-01

    Conclusions: We herein confirm that LS CE-Chirp® BAEP's provide a fast feedback to surgeons regarding acoustic pathways function, helping them during skull base tumor removal in the attempt to hearing preservation when it is socially useful in the preoperative evaluation.

  13. Electron acceleration from rest to GeV energy by chirped axicon Gaussian laser pulse in vacuum in the presence of wiggler magnetic field

    Science.gov (United States)

    Kant, Niti; Rajput, Jyoti; Singh, Arvinder

    2018-03-01

    This paper presents a scheme of electron energy enhancement by employing frequency - chirped lowest order axicon focussed radially polarised (RP) laser pulse in vacuum under the influence of wiggler magnetic field. Terawatt RP laser can be focussed down to ∼5μm by an axicon optical element, which produces an intense longitudinal electric field. This unique property of axicon focused Gaussian RP laser pulse is employed for direct electron acceleration in vacuum. A linear frequency chirp increases the time duration of laser-electron interaction, whereas, the applied magnetic wiggler helps in improving the strength of ponderomotive force v→ ×B→ and periodically deflects electron in order to keep it traversing in the accelerating phase up to longer distance. Numerical simulations have been carried out to investigate the influence of laser, frequency chirp and magnetic field parameters on electron energy enhancement. It is noticed that an electron from rest can be accelerated up to GeV energy under optimized laser and magnetic field parameters. Significant enhancement in the electron energy gain of the order of 11.2 GeV is observed with intense chirped laser pulse in the presence of wiggler magnetic field of strength 96.2 kG.

  14. A Front End for Multipetawatt Lasers Based on a High-Energy, High-Average-Power Optical Parametric Chirped-Pulse Amplifier

    International Nuclear Information System (INIS)

    Bagnoud, V.

    2004-01-01

    We report on a high-energy, high-average-power optical parametric chirped-pulse amplifier developed as the front end for the OMEGA EP laser. The amplifier provides a gain larger than 109 in two stages leading to a total energy of 400 mJ with a pump-to-signal conversion efficiency higher than 25%

  15. Case Study Analysis of Linear Chirp and Multitones (OFDM) Radar Signals Through Simulations and Measurement with HYCAM-Research Test Bench

    OpenAIRE

    Le Kernec, Julien; Dreuillet, Philippe; Bobillot, Gerard; Garda, Patrick; Romain, Olivier; Denoulet, Julien

    2009-01-01

    This paper presents a experimental platform that allows comparing objectively any radar waveforms. This is realized by equating radar characteristics, using the same test-bench HYCAM-Research, the same signal processing and also insuring the reproducibility of the experiments. The experimental measurements on linear chirp and multitones are analyzed through distance and velocity imaging.

  16. Effect of optical waveguiding mechanism on the lasing action of chirped InAs/AlGaInAs/InP quantum dash lasers

    KAUST Repository

    Khan, Mohammed Zahed Mustafa; Ng, Tien Khee; Lee, C.-S.; Bhattacharya, P.; Ooi, Boon S.

    2013-01-01

    We report on the atypical emission dynamics of InAs/AlGaInAs/InP quantum dash (Qdash) lasers employing varying AlGaInAs barrier thickness (multilayer-chirped structure). The analysis is carried out via fabry-perot (FP) ridge (RW) and stripe

  17. The Amsterdam proton microbeam

    International Nuclear Information System (INIS)

    Bos, A.J.J.

    1984-01-01

    The aim of the work presented in this thesis is to develop a microbeam setup such that small beam spot sizes can be produced routinely, and to investigate the capabilities of the setup for micro-PIXE analysis. The development and performance of the Amsterdam proton microbeam setup are described. The capabilities of the setup for micro-PIXE are shown with an investigation into the presence of trace elements in human hair. (Auth.)

  18. The proton radius puzzle

    Science.gov (United States)

    Bonesini, Maurizio

    2017-12-01

    The FAMU (Fisica degli Atomi Muonici) experiment has the goal to measure precisely the proton Zemach radius, thus contributing to the solution of the so-called proton radius "puzzle". To this aim, it makes use of a high-intensity pulsed muon beam at RIKEN-RAL impinging on a cryogenic hydrogen target with an high-Z gas admixture and a tunable mid-IR high power laser, to measure the hyperfine (HFS) splitting of the 1S state of the muonic hydrogen. From the value of the exciting laser frequency, the energy of the HFS transition may be derived with high precision ( 10-5) and thus, via QED calculations, the Zemach radius of the proton. The experimental apparatus includes a precise fiber-SiPMT beam hodoscope and a crown of eight LaBr3 crystals and a few HPGe detectors for detection of the emitted characteristic X-rays. Preliminary runs to optimize the gas target filling and its operating conditions have been taken in 2014 and 2015-2016. The final run, with the pump laser to drive the HFS transition, is expected in 2018.

  19. Heavy quarks in proton

    CERN Document Server

    AUTHOR|(SzGeCERN)655637

    The measurement of prompt photon associated with a b jet in proton-proton interactions can provide us insight into the inner structure of proton. This is because precision of determination of parton distribution functions of b quark and gluon can be increased by such a measurement. The measurement of cross-section of prompt photon associated with a b jet (process $pp\\longrightarrow \\gamma + b + X$) at $\\sqrt{s}$= 8 TeV with the ATLAS detector is presented. Full 8 TeV dataset collected by ATLAS during the year 2012 was used in this analysis. Corresponding integrated luminosity is 20.3 $fb^{-1}$. Fiducial differential cross-section as a function of photon transverse momentum at particle level was extracted from data and compared with the prediction of leading order event generator Pythia 8. Cross-section extracted from data is normalised independently on the Monte Carlo prediction. Values of data distribution lie above Monte Carlo values. The difference can be explained by presence of higher order effects not ...

  20. Management of radiation oncology patients with implanted cardiac pacemakers or implant able cardioverter defibrilators; Tratamiento de pacientes en radioterapia con marcapasos o desfibriladores automaticos implantables

    Energy Technology Data Exchange (ETDEWEB)

    Martin Martin, G.

    2012-07-01

    The increase in life expectancy along with the technological development in the last decades has resulted in an increase in the number of patients requiring pacemaker implants or implantable cardioverter defibrillators worldwide. An increase in the number of patients with implanted cardiac devices in radiotherapy is also expected due to the risk factors in common between heart disease and cancer. In 1994 the American Association of Physicists in Medicine (AAPM) released a report about the management of radiation oncology patients with implanted cardiac pacemakers. The addition of new technologies, both in radiotherapy units and in the manufacturing process of heart devices, has shown the need for an updated protocol for the management of these patients. In this work, the most important articles published after the report of the AAPM have been compiled, in order to analyze the effects not previously studied such as dose rate, scattered radiation, electromagnetic interference or random failures produced by neutrons and protons. Additionally, the latest recommendations given by the manufacturers have been analyzed and, finally, some indications are given as an updated guide for the management of radiation oncology patients with pacemakers or cardioverter defibrillators implanted. (Author)

  1. Breast Reconstruction with Implants

    Science.gov (United States)

    ... your surgical options and discuss the advantages and disadvantages of implant-based reconstruction, and may show you ... Policy Notice of Privacy Practices Notice of Nondiscrimination Advertising Mayo Clinic is a not-for-profit organization ...

  2. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    The current paper presents a state-of-the-art review in the field of ion implantation of polymers. Numerous published studies of polymers modified by ion beams are analysed. General aspects of ion stopping, latent track formation and changes of structure and composition of organic materials...... are discussed. Related to that, the effects of radiothermolysis, degassing and carbonisation are considered. Specificity of depth distributions of implanted into polymers impurities is analysed and the case of high-fluence implantation is emphasised. Within rather broad topic of ion bombardment, the focus...... is put on the low-energy implantation of metal ions causing the nucleation and growth of nanoparticles in the shallow polymer layers. Electrical, optical and magnetic properties of metal/polymer composites are under the discussion and the approaches towards practical applications are overviewed....

  3. Precipitation processes in implanted materials

    International Nuclear Information System (INIS)

    Borders, J.A.

    1978-01-01

    Ion implantation is a nonequilibrium process. It is possible to implant materials with impurities to concentration levels which exceed the solid solubilities. The return of the system to thermodynamic equilibrium is often accomplished by precipitation of the implanted species or a compound involving atoms of both the host and the implanted species. This may involve long time scales when taking place at room temperature or it may take place during the implantation

  4. Ion implantation for semiconductors

    International Nuclear Information System (INIS)

    Grey-Morgan, T.

    1995-01-01

    Full text: Over the past two decades, thousands of particle accelerators have been used to implant foreign atoms like boron, phosphorus and arsenic into silicon crystal wafers to produce special embedded layers for manufacturing semiconductor devices. Depending on the device required, the atomic species, the depth of implant and doping levels are the main parameters for the implantation process; the selection and parameter control is totally automated. The depth of the implant, usually less than 1 micron, is determined by the ion energy, which can be varied between 2 and 600 keV. The ion beam is extracted from a Freeman or Bernas type ion source and accelerated to 60 keV before mass analysis. For higher beam energies postacceleration is applied up to 200 keV and even higher energies can be achieved by mass selecting multiplycharged ions, but with a corresponding reduction in beam output. Depending on the device to be manufactured, doping levels can range from 10 10 to 10 15 atoms/cm 2 and are controlled by implanter beam currents in the range up to 30mA; continuous process monitoring ensures uniformity across the wafer of better than 1 % . As semiconductor devices get smaller, additional sophistication is required in the design of the implanter. The silicon wafers charge electrically during implantation and this charge must be dissipated continuously to reduce the electrical stress in the device and avoid destructive electrical breakdown. Electron flood guns produce low energy electrons (below 10 electronvolts) to neutralize positive charge buildup and implanter design must ensure minimum contamination by other isotopic species and ensure low internal sputter rates. The pace of technology in the semiconductor industry is such that implanters are being built now for 256 Megabit circuits but which are only likely to be widely available five years from now. Several specialist companies manufacture implanter systems, each costing around US$5 million, depending on the

  5. [Why proton therapy? And how?

    Science.gov (United States)

    Thariat, Juliette; Habrand, Jean Louis; Lesueur, Paul; Chaikh, Abdulhamid; Kammerer, Emmanuel; Lecomte, Delphine; Batalla, Alain; Balosso, Jacques; Tessonnier, Thomas

    2018-03-01

    Proton therapy is a radiotherapy, based on the use of protons, charged subatomic particles that stop at a given depth depending on their initial energy (pristine Bragg peak), avoiding any output beam, unlike the photons used in most of the other modalities of radiotherapy. Proton therapy has been used for 60 years, but has only become ubiquitous in the last decade because of recent major advances in particle accelerator technology. This article reviews the history of clinical implementation of protons, the nature of the technological advances that now allows its expansion at a lower cost. It also addresses the technical and physical specificities of proton therapy and the clinical situations for which proton therapy may be relevant but requires evidence. Different proton therapy techniques are possible. These are explained in terms of their clinical potential by explaining the current terminology (such as cyclotrons, synchrotrons or synchrocyclotrons, using superconducting magnets, fixed line or arm rotary with passive diffusion delivery or active by scanning) in basic words. The requirements associated with proton therapy are increased due to the precision of the depth dose deposit. The learning curve of proton therapy requires that clinical indications be prioritized according to their associated uncertainties (such as range uncertainties and movement in lung tumors). Many clinical indications potentially fall under proton therapy ultimately. Clinical strategies are explained in a paralleled manuscript. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  6. Quantitative ion implantation

    International Nuclear Information System (INIS)

    Gries, W.H.

    1976-06-01

    This is a report of the study of the implantation of heavy ions at medium keV-energies into electrically conducting mono-elemental solids, at ion doses too small to cause significant loss of the implanted ions by resputtering. The study has been undertaken to investigate the possibility of accurate portioning of matter in submicrogram quantities, with some specific applications in mind. The problem is extensively investigated both on a theoretical level and in practice. A mathematical model is developed for calculating the loss of implanted ions by resputtering as a function of the implanted ion dose and the sputtering yield. Numerical data are produced therefrom which permit a good order-of-magnitude estimate of the loss for any ion/solid combination in which the ions are heavier than the solid atoms, and for any ion energy from 10 to 300 keV. The implanted ion dose is measured by integration of the ion beam current, and equipment and techniques are described which make possible the accurate integration of an ion current in an electromagnetic isotope separator. The methods are applied to two sample cases, one being a stable isotope, the other a radioisotope. In both cases independent methods are used to show that the implantation is indeed quantitative, as predicted. At the same time the sample cases are used to demonstrate two possible applications for quantitative ion implantation, viz. firstly for the manufacture of calibration standards for instrumental micromethods of elemental trace analysis in metals, and secondly for the determination of the half-lives of long-lived radioisotopes by a specific activity method. It is concluded that the present study has advanced quantitative ion implantation to the state where it can be successfully applied to the solution of problems in other fields

  7. Ion implantation - an introduction

    International Nuclear Information System (INIS)

    Townsend, P.D.

    1986-01-01

    Ion implantation is a widely used technique with a literature that covers semiconductor production, surface treatments of steels, corrosion resistance, catalysis and integrated optics. This brief introduction outlines advantages of the technique, some aspects of the underlying physics and examples of current applications. Ion implantation is already an essential part of semiconductor technology while in many other areas it is still in an early stage of development. The future scope of the subject is discussed. (author)

  8. Proton permeation of lipid bilayers.

    Science.gov (United States)

    Deamer, D W

    1987-10-01

    Proton permeation of the lipid bilayer barrier has two unique features. First, permeability coefficients measured at neutral pH ranges are six to seven orders of magnitude greater than expected from knowledge of other monovalent cations. Second, proton conductance across planar lipid bilayers varies at most by a factor of 10 when pH is varied from near 1 to near 11. Two mechanisms have been proposed to account for this anomalous behavior: proton conductance related to contaminants of lipid bilayers, and proton translocation along transient hydrogen-bonded chains (tHBC) of associated water molecules in the membrane. The weight of evidence suggests that trace contaminants may contribute to proton conductance across planar lipid membranes at certain pH ranges, but cannot account for the anomalous proton flux in liposome systems. Two new results will be reported here which were designed to test the tHBC model. These include measurements of relative proton/potassium permeability in the gramicidin channel, and plots of proton flux against the magnitude of pH gradients. (1) The relative permeabilities of protons and potassium through the gramicidin channel, which contains a single strand of hydrogen-bonded water molecules, were found to differ by at least four orders of magnitude when measured at neutral pH ranges. This result demonstrates that a hydrogen-bonded chain of water molecules can provide substantial discrimination between protons and other cations. It was also possible to calculate that if approximately 7% of bilayer water was present in a transient configuration similar to that of the gramicidin channel, it could account for the measured proton flux. (2) The plot of proton conductance against pH gradient across liposome membranes was superlinear, a result that is consistent with one of three alternative tHBC models for proton conductance described by Nagle elsewhere in this volume.

  9. Contraceptive implants: current perspectives

    Directory of Open Access Journals (Sweden)

    Rowlands S

    2014-09-01

    Full Text Available Sam Rowlands,1,2 Stephen Searle3 1Centre of Postgraduate Medical Research and Education, School of Health and Social Care, Bournemouth University, Bournemouth, United Kingdom; 2Dorset HealthCare, Bournemouth, United Kingdom; 3Sexual Health Services, Chesterfield, United KingdomAbstract: Progestin-only contraceptive implants are a highly cost-effective form of long-acting reversible contraception. They are the most effective reversible contraceptives and are of a similar effectiveness to sterilization. Pregnancies are rare in women using this method of contraception, and those that do occur must be fully investigated, with an ultrasound scan of the arm and serum etonogestrel level if the implant cannot be located. There are very few contraindications to use of implants, and they have an excellent safety profile. Both acceptability and continuation with the method are high. Noncontraceptive benefits include improvements in dysmenorrhea, ovulatory pain, and endometriosis. Problematic bleeding is a relatively common adverse effect that must be covered in preinsertion information-giving and supported adequately if it occurs. Recognized training for both insertion and removal should be undertaken. Care needs to be taken at both insertion and removal to avoid neurovascular injury. Implants should always be palpable; if they are not, noninsertion should be assumed until disproven. Etonogestrel implants are now radiopaque, which aids localization. Anticipated difficult removals should be performed by specially trained experts. Keywords: contraceptive, subdermal implant, etonogestrel, levonorgestrel, progestin-only, long-acting reversible contraception

  10. Anodized dental implant surface

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Mishra

    2017-01-01

    Full Text Available Purpose: Anodized implants with moderately rough surface were introduced around 2000. Whether these implants enhanced biologic effect to improve the environment for better osseointegration was unclear. The purpose of this article was to review the literature available on anodized surface in terms of their clinical success rate and bone response in patients till now. Materials and Methods: A broad electronic search of MEDLINE and PubMed databases was performed. A focus was made on peer-reviewed dental journals. Only articles related to anodized implants were included. Both animal and human studies were included. Results: The initial search of articles resulted in 581 articles on anodized implants. The initial screening of titles and abstracts resulted in 112 full-text papers; 40 animal studies, 16 studies on cell adhesion and bacterial adhesion onto anodized surfaced implants, and 47 human studies were included. Nine studies, which do not fulfill the inclusion criteria, were excluded. Conclusions: The long-term studies on anodized surface implants do favor the surface, but in most of the studies, anodized surface is compared with that of machined surface, but not with other surfaces commercially available. Anodized surface in terms of clinical success rate in cases of compromised bone and immediately extracted sockets has shown favorable success.

  11. Plasma source ion implantation

    International Nuclear Information System (INIS)

    Conrad, J.R.; Forest, C.

    1986-01-01

    The authors' technique allows the ion implantation to be performed directly within the ion source at higher currents without ion beam extraction and transport. The potential benefits include greatly increased production rates (factors of 10-1000) and the ability to implant non-planar targets without rastering or shadowing. The technique eliminates the ion extractor grid set, beam raster equipment, drift space and target manipulator equipment. The target to be implanted is placed directly within the plasma source and is biased to a large negative potential so that plasma ions gain energy as they accelerate through the potential drop across the sheath that forms at the plasma boundary. Because the sheath surrounds the target on all sides, all surfaces of the target are implanted without the necessity to raster the beam or to rotate the target. The authors have succeeded in implanting nitrogen ions in a silicon target to the depths and concentrations required for surface treatment of materials like stainless steel and titanium alloys. They have performed ESCA measurements of the penetration depth profile of a silicon target that was biased to 30 kV in a nitrogen discharge plasma. Nitrogen ions were implanted to a depth of 700A at a peak concentration of 30% atomic. The measured profile is quite similar to a previously obtained profile in titanium targets with conventional techniques

  12. Development and applications of femtosecond monolithic Yb-doped fiber chirped-pulse amplifiers

    International Nuclear Information System (INIS)

    Zhu, L.

    2011-01-01

    In the past few years, compact and environmentally stable high-energy ultrashort pulse laser sources have been broadly utilized in many different applications. Fiber lasers offer big practical advantages over bulk solid-state laser systems in terms of flexibility, compactness, reliability, cost effectiveness and turn-key operability. Moreover, thermal effects are dramatically reduced due to the large surface-to-volume ratio of an optical fiber, and good spatial mode quality can be ensured by its waveguiding property. Therefore, a fiber-based laser system is considered to be the preferred laser architecture. The main theme of this thesis is the development of various femtosecond monolithic Yb-doped fiber chirped-pulse-amplification (FCPA) system and their applications. We demonstrate an ultrafast high-energy monolithic Yb-doped FCPA system in which the pulse fidelity is preserved by weakening the nonlinear effects via a substantial level of temporal stretching of the seed pulses and by using highly doped active fibers as amplifying media. The presented monolithic FCPA delivers up to ∼ 25 μJ diffraction-limited pulses that can be recompressed to sub-200 fs duration, and the pulse quality has been confirmed through the second-harmonic-generation (SHG) conversion efficiency of over 52%. Improved dispersion and nonlinearity management schemes of the FCPA system allowing substantial pulse energy scaling in the monolithic format as well as methods for overcoming a series of technological challenges are reported. Three different types of Yb-doped fiber oscillators have been developed and built in the course of this PhD work. First, we compare two oscillator types that are based on the all-normal-dispersion (ANDi) regime and the dispersion-managed (DM) regime. Both of them have been tested as the seed-pulse source of the monolithic Yb-doped FCPA system. Then we introduce another novel design based on higher-order-mode (HOM) dispersion management that competes with a

  13. Short dental implants: an emerging concept in implant treatment.

    Science.gov (United States)

    Al-Hashedi, Ashwaq Ali; Taiyeb Ali, Tara Bai; Yunus, Norsiah

    2014-06-01

    Short implants have been advocated as a treatment option in many clinical situations where the use of conventional implants is limited. This review outlines the effectiveness and clinical outcomes of using short implants as a valid treatment option in the rehabilitation of edentulous atrophic alveolar ridges. Initially, an electronic search was performed on the following databases: Medline, PubMed, Embase, Cochrane Database of Systematic Reviews, and DARE using key words from January 1990 until May 2012. An additional hand search was included for the relevant articles in the following journals: International Journal of Oral and Maxillofacial Implants, Clinical Oral Implants Research, Journal of Clinical Periodontology, International Journal of Periodontics, Journal of Periodontology, and Clinical Implant Dentistry and Related Research. Any relevant papers from the journals' references were hand searched. Articles were included if they provided detailed data on implant length, reported survival rates, mentioned measures for implant failure, were in the English language, involved human subjects, and researched implants inserted in healed atrophic ridges with a follow-up period of at least 1 year after implant-prosthesis loading. Short implants demonstrated a high rate of success in the replacement of missing teeth in especially atrophic alveolar ridges. The advanced technology and improvement of the implant surfaces have encouraged the success of short implants to a comparable level to that of standard implants. However, further randomized controlled clinical trials and prospective studies with longer follow-up periods are needed.

  14. MUSE: Measuring the proton radius with muon-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Jan Christopher [Massachusetts Institute of Technology, Cambridge (United States)

    2014-07-01

    The proton radius has been measured so far using electron-proton scattering, electronic Hydrogen spectroscopy and muonic Hydrogen spectroscopy, the latter producing a much more accurate, but seven sigma different, result, leading to the now famous proton radius puzzle. The MUSE collaboration aims to complete the set of measurements by using muon scattering to determine the proton radius and to shed light on possible explanations of the discrepancy. The talk gives an overview of the experiment motivation and design and a status report on the progress.

  15. Vibrational spectroscopy on protons and deuterons in proton conducting perovskites

    DEFF Research Database (Denmark)

    Glerup, M.; Poulsen, F.W.; Berg, R.W.

    2002-01-01

    A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR-microscopy exper......A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR...

  16. Characterizing proton-activated materials to develop PET-mediated proton range verification markers

    Science.gov (United States)

    Cho, Jongmin; Ibbott, Geoffrey S.; Kerr, Matthew D.; Amos, Richard A.; Stingo, Francesco C.; Marom, Edith M.; Truong, Mylene T.; Palacio, Diana M.; Betancourt, Sonia L.; Erasmus, Jeremy J.; DeGroot, Patricia M.; Carter, Brett W.; Gladish, Gregory W.; Sabloff, Bradley S.; Benveniste, Marcelo F.; Godoy, Myrna C.; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R.

    2016-06-01

    Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials (18O, Cu, and 68Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm-3) and beef (~1.0 g cm-3) were embedded with Cu or 68Zn foils of several volumes (10-50 mm3). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1-5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20-40 min of scan time using various delay times (30-150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils’ PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers.

  17. (n,p) emission channeling measurements on ion-implanted beryllium

    CERN Multimedia

    Jakubek, J; Uher, J

    2007-01-01

    We propose to perform emission-channeling measurements using thermal neutron induced proton emission from ion-implanted $^{7}$Be. The physics questions addressed concern the beryllium doping of III-V and II-VI semiconductors and the host dependence of the electron capture half-life of $^{7}$Be.

  18. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  19. Comparação dos estímulos clique e CE-chirp® no registro do Potencial Evocado Auditivo de Tronco Encefálico Comparison of click and CE-chirp® stimuli on Brainstem Auditory Evoked Potential recording

    Directory of Open Access Journals (Sweden)

    Gabriela Ribeiro Ivo Rodrigues

    2012-12-01

    Full Text Available OBJETIVO: Comparar as latências e as amplitudes da onda V no registro do Potencial Evocado Auditivo de Tronco Encefálico (PEATE com os estímulos clique e CE-chirp® e a presença ou ausência das ondas I, III e V em fortes intensidades. MÉTODOS: Estudo transversal com 12 adultos com limiares audiométricos PURPOSE: To compare the latencies and amplitudes of wave V on the Brainstem Auditory Evoked Potential (BAEP recording obtained with click and CE-chirp® stimuli and the presence or absence of waves I, III and V in high intensities. METHODS: Cross-sectional study with 12 adults with audiometric thresholds <15 dBHL (24 ears and mean age of 27 years. The parameters used for the recording with both stimuli in intensities of 80, 60, 40, 20 dBnHL were alternate polarity and repetition rate of 27.1 Hz. RESULTS: The CE-chirp® latencies for wave V were longer than click latencies at low intensity levels (20 and 40 dBnHL. At high intensity levels (60 and 80 dBnHL, the opposite occurred. Larger wave V amplitudes were observed with CE-chirp® in all intensity levels, except at 80 dBnHL. CONCLUSION: The CE-chirp® showed shorter latencies than those observed with clicks at high intensity levels and larger amplitudes at all intensity levels, except at 80 dBnHL. The waves I and III tended to disappear with CE-chirp® stimulation.

  20. Proton and carbon ion therapy

    CERN Document Server

    Lomax, Tony

    2013-01-01

    Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art...

  1. Numerical investigations of non-collinear optical parametric chirped pulse amplification for Laguerre-Gaussian vortex beam

    Science.gov (United States)

    Xu, Lu; Yu, Lianghong; Liang, Xiaoyan

    2016-04-01

    We present for the first time a scheme to amplify a Laguerre-Gaussian vortex beam based on non-collinear optical parametric chirped pulse amplification (OPCPA). In addition, a three-dimensional numerical model of non-collinear optical parametric amplification was deduced in the frequency domain, in which the effects of non-collinear configuration, temporal and spatial walk-off, group-velocity dispersion and diffraction were also taken into account, to trace the dynamics of the Laguerre-Gaussian vortex beam and investigate its critical parameters in the non-collinear OPCPA process. Based on the numerical simulation results, the scheme shows promise for implementation in a relativistic twisted laser pulse system, which will diversify the light-matter interaction field.

  2. Contrast enhancement in an optical time-domain reflectometer via self-phase modulation compensation by chirped probe pulses

    International Nuclear Information System (INIS)

    Alekseev, A E; Potapov, V T; Vdovenko, V S; Simikin, D E; Gorshkov, B G

    2016-01-01

    In the present paper we propose a novel method for optical time-domain reflectometer (OTDR)–reflectogram contrast enhancement via compensation of nonlinear distortions of propagating probe pulse, which arise due to the self-phase modulation (SPM) effect in optical fiber. The compensation is performed via preliminary frequency modulation (chirp) of the initial probe pulse according to the specific law. As a result the OTDR contrast at some distant predefined fiber point is fully restored to the value of non-distorted probe pulse at the beginning of the fiber line. As a result, the performance of the phase OTDR increases. The point of full SPM compensation could be shifted to any other point of the fiber line via preliminary frequency modulation index change. The feasibility of the proposed method is theoretically proved and experimentally demonstrated. (paper)

  3. Archive of digital Chirp subbottom profile data collected during USGS cruise 08CCT01, Mississippi Gulf Islands, July 2008

    Science.gov (United States)

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Worley, Charles R.

    2011-01-01

    In July of 2008, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on island framework from Ship Island to Horn Island, Mississippi, for the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. Funding was provided through the Geologic Framework and Holocene Coastal Evolution of the Mississippi-Alabama Region Subtask (http://ngom.er.usgs.gov/task2_2/index.php); this project is also part of a broader USGS study on Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, observer's logbook, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.

  4. Application of the device based on chirping of optical impulses for management of software-defined networks in dynamic mode

    Science.gov (United States)

    Vinogradova, Irina L.; Khasansin, Vadim R.; Andrianova, Anna V.; Yantilina, Liliya Z.; Vinogradov, Sergey L.

    2016-03-01

    The analysis of the influence of the physical layer concepts in optical networks on the performance of the whole network. It is concluded that the relevance of the search for new means of transmitting information on a physical level. It is proposed to use an optical chirp overhead transmission between controllers SDN. This article is devoted to research of a creation opportunity of optical neural switchboards controlled in addition by submitted optical radiation. It is supposed, that the managing radiation changes a parameter of refraction of optical environment of the device, and with it and length of a wave of information radiation. For the control by last is used multibeam interferometer. The brief estimation of technical aspects of construction of the device is carried out. The principle of using the device to an extensive network. Simulation of network performance parameters.

  5. Design of a Highly Stable, High-Conversion-Efficiency, Optical Parametric Chirped-Pulse Amplification System with Good Beam Quality

    International Nuclear Information System (INIS)

    Guardalben, M.J.; Keegan, J.; Waxer, L.J.; Bagnoud, V.; Begishev, I.A.; Puth, J.; Zuegel, J.D.

    2003-01-01

    OAK B204 An optical parametric chirped-pulse amplifier (OPCPA) design that provides 40% pump-to-signal conversion efficiency and over-500-mJ signal energy at 1054 nm for front-end injection into a Nd:glass amplifier chain is presented. This OPCPA system is currently being built as the prototype front end for the OMEGA EP (extended performance) laser system at the University of Rochester's Laboratory for Laser Energetics. Using a three-dimensional spatial and temporal numerical model, several design considerations necessary to achieve high conversion efficiency, good output stability, and good beam quality are discussed. The dependence of OPCPA output on the pump beam's spatiotemporal shape and the relative size of seed and pump beams is described. This includes the effects of pump intensity modulation and pump-signal walk-off. The trade-off among efficiency, stability, and low output beam intensity modulation is discussed

  6. Direct transverse load profile determination using the polarization-dependent loss spectral response of a chirped fiber Bragg grating.

    Science.gov (United States)

    Descamps, Frédéric; Bette, Sébastien; Kinet, Damien; Caucheteur, Christophe

    2016-06-01

    The determination of stress profiles created by transverse loads was proved to be important in different domains, such as structural health monitoring and biomechanics, and, more specifically, in the prostheses domain. In this paper, we report an original method to estimate the transverse load profile from the polarization-dependent loss (PDL) spectrum of a chirped fiber Bragg grating (CFBG). This method makes use of the relationship between the integration of the PDL of a CFBG, and the force profile has the advantage of not requiring any iterative method to estimate the transverse load profile. The relationship linking the integration of the PDL and the force profile is demonstrated using an analytical approximation of the transmission spectrum of CFBGs. The validity of this method for the determination of non-uniform load profiles is then shown using a numerical analysis. An experimental demonstration is finally reported using a 48 mm-long CFBG subject to different step transverse load profiles.

  7. Tunable superstructure fiber Bragg grating with chirp-distribution modulation based on the effect of external stress.

    Science.gov (United States)

    Huang, Yize; Li, Yi; Zhu, Huiqun; Tong, Guoxiang; Fang, Baoying; Li, Liu; Shen, Yujian; Zheng, Qiuxin; Liang, Qian; Yan, Meng; Wang, Feng; Qin, Yuan; Ding, Jie; Wang, Xiaohua

    2012-09-15

    We report an external stress modulation method for producing a superstructure fiber Bragg grating (FBG) with approximate cascaded resonant cavities composed of different index chirp distributions. The 15 mm uncoated apodized uniform-period FBG is pressed by the vertical stress from the upper 11 pieces of the pattern plate controlled by a piezoelectric ceramic actuator. The piece length is 1 mm, and the interval of the adjacent pieces is 0.4 mm. The reflectivity of the modulated FBG gradually shows six obvious multichannel 75%-85% reflection peaks with the increase of the vertical stress of each pattern-plate piece from 0 to 30 N. The channel spacing is steady at about 10 GHz for a C-band wavelength division multiplexing system.

  8. Study of the degradation and recovery of the optical properties of H+-implanted ZnO pigments

    Science.gov (United States)

    Li, Chundong; Lv, Jinpeng; Yao, Shulong; Hu, Jiangang; Liang, Zhiqiang

    2013-01-01

    We studied the influences of proton implantation and oxygen post-annealing on the optical properties of ZnO pigments using a combination of Raman scattering, positron annihilation and photoluminescence techniques. Raman scattering results indicated that oxygen vacancies and interstitial zinc defects were produced after proton implantation. Positron annihilation spectroscopy and photoluminescence measurements demonstrated that the zinc vacancies do not contribute to the optical absorption, but give rise to the visible band emission. Interestingly, the proton implantation induced optical degradation can be annealed out at 800 °C in an O2 atmosphere. We conclude that the defect centers responsible for the optical absorption are primarily composed of VO+, ionized Zni and ionized Oi.

  9. Study of the degradation and recovery of the optical properties of H{sup +}-implanted ZnO pigments

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chundong [Key Laboratory on Materials Behavior and Evaluation Technology in Space Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Lv, Jinpeng, E-mail: hitlv@yahoo.com.cn [Key Laboratory on Materials Behavior and Evaluation Technology in Space Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yao, Shulong; Hu, Jiangang; Liang, Zhiqiang [Key Laboratory on Materials Behavior and Evaluation Technology in Space Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-01-15

    We studied the influences of proton implantation and oxygen post-annealing on the optical properties of ZnO pigments using a combination of Raman scattering, positron annihilation and photoluminescence techniques. Raman scattering results indicated that oxygen vacancies and interstitial zinc defects were produced after proton implantation. Positron annihilation spectroscopy and photoluminescence measurements demonstrated that the zinc vacancies do not contribute to the optical absorption, but give rise to the visible band emission. Interestingly, the proton implantation induced optical degradation can be annealed out at 800 °C in an O{sub 2} atmosphere. We conclude that the defect centers responsible for the optical absorption are primarily composed of V{sub O}{sup +}, ionized Zn{sub i} and ionized O{sub i}.

  10. Study of the degradation and recovery of the optical properties of H+-implanted ZnO pigments

    International Nuclear Information System (INIS)

    Li, Chundong; Lv, Jinpeng; Yao, Shulong; Hu, Jiangang; Liang, Zhiqiang

    2013-01-01

    We studied the influences of proton implantation and oxygen post-annealing on the optical properties of ZnO pigments using a combination of Raman scattering, positron annihilation and photoluminescence techniques. Raman scattering results indicated that oxygen vacancies and interstitial zinc defects were produced after proton implantation. Positron annihilation spectroscopy and photoluminescence measurements demonstrated that the zinc vacancies do not contribute to the optical absorption, but give rise to the visible band emission. Interestingly, the proton implantation induced optical degradation can be annealed out at 800 °C in an O 2 atmosphere. We conclude that the defect centers responsible for the optical absorption are primarily composed of V O + , ionized Zn i and ionized O i

  11. The PIREX proton irradiation facility

    International Nuclear Information System (INIS)

    Victoria, M.

    1995-01-01

    The proton Irradiation Experiment (PIREX) is a materials irradiation facility installed in a beam line of the 590 MeV proton accelerator at the Paul Scherrer Institute. Its main purpose is the testing of candidate materials for fusion reactor components. Protons of this energy produce simultaneously displacement damage and spallation products, amongst them helium and can therefore simulate any possible synergistic effects of damage and helium, that would be produced by the fusion neutrons

  12. The PIREX proton irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, M. [Association EURATOM, Villigen (Switzerland)

    1995-10-01

    The proton Irradiation Experiment (PIREX) is a materials irradiation facility installed in a beam line of the 590 MeV proton accelerator at the Paul Scherrer Institute. Its main purpose is the testing of candidate materials for fusion reactor components. Protons of this energy produce simultaneously displacement damage and spallation products, amongst them helium and can therefore simulate any possible synergistic effects of damage and helium, that would be produced by the fusion neutrons.

  13. Search for proton decay: introduction

    International Nuclear Information System (INIS)

    Goldhaber, M.

    1984-01-01

    In interpreting contained events observed in various proton decay detectors one can sometimes postulate, though usually not unambiguously, a potential decay mode of the proton, called a candidate. It is called a candidate, because for any individual event it is not possible to exclude the possibility that it is instead due to cosmic ray background, chiefly atmospheric neutrinos. Some consistency checks are proposed which could help establish proton decay, if it does occur in the presently accessible lifetime window

  14. Sea Quarks in the Proton

    Directory of Open Access Journals (Sweden)

    Reimer Paul E

    2016-01-01

    Full Text Available The proton is a composite particle in which the binding force is responsible for the majority of its mass. To understand this structure, the distributions and origins of the quark-antiquark pairs produced by the strong force must be measured. The SeaQuest collaboration is using the Drell-Yan process to elucidate antiquark distributions in the proton and to study their modification when the proton is held within a nucleus.

  15. Investigation of Chirped InAs/InGaAlAs/InP Quantum Dash Lasers as Broadband Emitters

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2014-02-01

    In this paper, we assessed the effect of additionally broadened quantum dash (Qdash) optical transitions in the multi-stack dash-in-a-well laser structure at both, material and device level. A broad photoluminescence linewidth of ?150 nm demonstrates the formation of highly inhomogeneous InAs-dashes across the stacks. The transmission electron microscopy revealed small (large) average dash height from the Qdash stack with thick (thin) over grown barrier layer. The Fabry-Perot laser diodes fabricated from this chirped structure exhibits unique device physics under the short pulsewidth (SPW) and quasi-continuous wave (QCW) operation. Varying the ridge-width W from 2 to 4 ?rm showed quenching of ultrabroad lasing signature in the SPW operation, and consistent even for a wide 15 ?rm oxide strip laser diode. A lasing spectral split with reduced intensity gap in the center is observed in the QCW operation with the gap decreasing with increasing ridge-width. Such atypical lasing operation, influenced by the waveguiding mechanism is qualitatively realized by associating to the reduced vertical coupling effect of the Qdash stacks in the operation of small ridge-width lasers compared with large ridge-width and oxide stripe lasers, and leading to varying non-uniform distribution of carriers among the inhomogeneously broadened Qdash stacks in each case. Our chirped 2 × 830 ?rm ridge laser demonstrated marked improvement in the internal quantum efficiency (?80) and -3 dB lasing bandwidth, >50 nm centered at ?1.61 ?m. © 2013 IEEE.

  16. A Web Architecture to Geographically Interrogate CHIRPS Rainfall and eMODIS NDVI for Land Use Change

    Science.gov (United States)

    Burks, Jason E.; Limaye, Ashutosh

    2014-01-01

    Monitoring of rainfall and vegetation over the continent of Africa is important for assessing the status of crop health and agriculture, along with long-term changes in land use change. These issues can be addressed through examination of long-term precipitation (rainfall) data sets and remote sensing of land surface vegetation and land use types. Two products have been used previously to address these goals: the Climate Hazard Group Infrared Precipitation with Stations (CHIRPS) rainfall data, and multi-day composites of Normalized Difference Vegetation Index (NDVI) from the USGS eMODIS product. Combined, these are very large data sets that require unique tools and architecture to facilitate a variety of data analysis methods or data exploration by the end user community. To address these needs, a web-enabled system has been developed to allow end-users to interrogate CHIRPS rainfall and eMODIS NDVI data over the continent of Africa. The architecture allows end-users to use custom defined geometries, or the use of predefined political boundaries in their interrogation of the data. The massive amount of data interrogated by the system allows the end-users with only a web browser to extract vital information in order to investigate land use change and its causes. The system can be used to generate daily, monthly and yearly averages over a geographical area and range of dates of interest to the user. It also provides analysis of trends in precipitation or vegetation change for times of interest. The data provided back to the end-user is displayed in graphical form and can be exported for use in other, external tools. The development of this tool has significantly decreased the investment and requirements for end-users to use these two important datasets, while also allowing the flexibility to the end-user to limit the search to the area of interest.

  17. Proton irradiation and endometriosis

    International Nuclear Information System (INIS)

    Wood, D.H.; Yochmowitz, M.G.; Salmon, Y.L.; Eason, R.L.; Boster, R.A.

    1983-01-01

    Female rhesus monkeys given single total-body exposures of protons of varying energies developed endometriosis at a frequency significantly higher than that of nonirradiated animals of the same age. The minimum latency period was 7 years after exposure. The doses and energies of the radiation received were within the range that could be received by an aircrew member in near-earth orbit during a random solar flare event, leading to the conclusion that endometriosis should be a consideration in assessing the risk of delayed radiation effects in female crewmembers

  18. Proton nuclear scattering radiography

    International Nuclear Information System (INIS)

    Duchazeaubeneix, J.C.; Faivre, J.C.; Garreta, D.

    1982-10-01

    Nuclear scattering of protons allows to radiograph objects with specific properties: direct 3- dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore, it is a well adapted method to gating techniques allowing the radiography of fast periodic moving systems. Results obtained on different objects (light and heavy materials) are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiography faster and to get a practical method are discussed

  19. Proton nuclear scattering radiography

    International Nuclear Information System (INIS)

    Saudinos, J.

    1982-04-01

    Nuclear scattering of protons allows to radiograph objects with specific properties: 3-dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore the nuclear scattering radiography (NSR) is a well adapted method to gating techniques allowing the radiography of fast periodic moving objects. Results obtained on phantoms, formalin fixed head and moving object are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiograph faster and to get a practical method are discussed

  20. Proton relativistic model

    International Nuclear Information System (INIS)

    Araujo, Wilson Roberto Barbosa de

    1995-01-01

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)

  1. Decay Spectroscopy for Nuclear Astrophysics: {beta}-delayed Proton Decay

    Energy Technology Data Exchange (ETDEWEB)

    Trache, L.; Simmons, E.; Spiridon, A.; McCleskey, M.; Roeder, B. T.; Tribble, R. E. [Texas A and M University, College Station, TX 77845 (United States); Saastamoinen, A.; Jokinen, A.; Aysto, J. [University of Jyvaskyla, Jyvaskyla (Finland); Davinson, T.; Woods, P. J. [University of Edinburgh, Edinburgh (United Kingdom); Pollacco, E.; Kebbiri, M. [CEA/IRFU Saclay (France); Pascovici, G. [IKP, Universitaet zu Koeln (Germany)

    2011-11-30

    Decay spectroscopy is one of the oldest indirect methods in nuclear astrophysics. We have developed at TAMU techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. These allowed us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measure gamma-rays up to 8 MeV with high resolution HPGe detectors. We have studied the decay of {sup 23}Al, {sup 27}P, {sup 31}Cl, all important for understanding explosive H-burning in novae. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and works even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions {sup 22}Na(p,{gamma}){sup 23}Mg(crucial for the depletion of {sup 22}Na in novae), {sup 26m}Al(p,{gamma}){sup 27}Si and {sup 30}P(p,{gamma}){sup 31}S(bottleneck in novae and XRB burning), respectively. More recently we have radically improved the technique using a gas based detector we call AstroBox.

  2. Fission neutron irradiation of copper containing implanted and transmutation produced helium

    DEFF Research Database (Denmark)

    Singh, B.N.; Horsewell, A.; Eldrup, Morten Mostgaard

    1992-01-01

    High purity copper containing approximately 100 appm helium was produced in two ways. In the first, helium was implanted by cyclotron at Harwell at 323 K. In the second method, helium was produced as a transmutation product in 800 MeV proton irradiation at Los Alamos, also at 323 K. The distribut......High purity copper containing approximately 100 appm helium was produced in two ways. In the first, helium was implanted by cyclotron at Harwell at 323 K. In the second method, helium was produced as a transmutation product in 800 MeV proton irradiation at Los Alamos, also at 323 K...... as well as the effect of the presence of other transmutation produced impurity atoms in the 800 MeV proton irradiated copper will be discussed....

  3. Production and characterization of thin 7Li targets fabricated by ion implantation

    International Nuclear Information System (INIS)

    Cruz, J.; Fonseca, M.; Luis, H.; Mateus, R.; Marques, H.; Jesus, A.P.; Ribeiro, J.P.; Teodoro, O.M.N.D.; Rolfs, C.

    2009-01-01

    Very high fluence implantation of 7 Li + ions was used to promote the formation of a thin and high density 7 Li target in the surface region of Al samples. The implanted volume was characterized by particle induced gamma-ray emission, Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and nuclear reaction analysis, revealing that the implanted surface is a combination of Li 2 CO 3 , metallic lithium, LiOH and C, with almost no Al present. Radiation damage effects by proton beams were studied by observing the evolution of the 7 Li(p, α) 4 He nuclear reaction yield with the accumulated charge, at different proton energies, revealing high stability of the produced Li target.

  4. Proton-proton bremsstrahlung towards the elastic limit

    Science.gov (United States)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H. R.; Bacelar, J. C. S.; Castelijns, R.; Ermisch, K.; van Garderen, E.; Gašparić, I.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Kiš, M.; Löhner, H.

    2005-05-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed.

  5. Proton-proton bremsstrahlung towards the elastic limit

    International Nuclear Information System (INIS)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H.R.; Bacelar, J.C.S.; Castelijns, R.; Ermisch, K.; Garderen, E. van; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Kis, M.; Loehner, H.; Gasparic, I.

    2005-01-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed

  6. [Bilateral cochlear implants].

    Science.gov (United States)

    Müller, J

    2017-07-01

    Cochlear implants (CI) are standard for the hearing rehabilitation of severe to profound deafness. Nowadays, if bilaterally indicated, bilateral implantation is usually recommended (in accordance with German guidelines). Bilateral implantation enables better speech discrimination in quiet and in noise, and restores directional and spatial hearing. Children with bilateral CI are able to undergo hearing-based hearing and speech development. Within the scope of their individual possibilities, bilaterally implanted children develop faster than children with unilateral CI and attain, e.g., a larger vocabulary within a certain time interval. Only bilateral implantation allows "binaural hearing," with all the benefits that people with normal hearing profit from, namely: better speech discrimination in quiet and in noise, as well as directional and spatial hearing. Naturally, the developments take time. Binaural CI users benefit from the same effects as normal hearing persons: head shadow effect, squelch effect, and summation and redundancy effects. Sequential CI fitting is not necessarily disadvantageous-both simultaneously and sequentially fitted patients benefit in a similar way. For children, earliest possible fitting and shortest possible interval between the two surgeries seems to positively influence the outcome if bilateral CI are indicated.

  7. Psychological intervention following implantation of an implantable defibrillator

    DEFF Research Database (Denmark)

    Pedersen, Susanne S.; van den Broek, Krista C; Sears, Samuel F

    2007-01-01

    The medical benefits of the implantable cardioverter defibrillator (ICD) are unequivocal, but a subgroup of patients experiences emotional difficulties following implantation. For this subgroup, some form of psychological intervention may be warranted. This review provides an overview of current ...

  8. The FAIR proton linac

    International Nuclear Information System (INIS)

    Kester, O.

    2015-01-01

    FAIR - the Facility for Antiproton and Ion Research in Europe - constructed at GSI in Darmstadt comprises an international centre of heavy ion accelerators that will drive heavy ion and antimatter research. FAIR will provide worldwide unique accelerator and experimental facilities, allowing a large variety of fore-front research in physics and applied science. FAIR will deliver antiproton and ion beams of unprecedented intensities and qualities. The main part of the FAIR facility is a sophisticated accelerator system, which delivers beams to different experiments of the FAIR experimental collaborations - APPA, NuSTAR, CBM and PANDA - in parallel. Modern H-type cavities offer highest shunt impedances of resonant structures of heavy ion linacs at low beam energies < 20 MeV/u and enable the acceleration of intense proton and ion beams. One example is the interdigital H-type structure. The crossed-bar H-cavities extend these properties to high energies even beyond 100 MeV/u. Compared to conventional Alvarez cavities, these crossed-bar (CH) cavities feature much higher shunt impedance at low energies. The design of the proton linac is based on those cavities

  9. Proton minibeam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Girst, Stefanie

    2016-03-08

    The risk of developing adverse side effects in the normal tissue after radiotherapy is often limiting for the dose that can be applied to the tumor. Proton minibeam radiotherapy, a spatially fractionated radiotherapy method using sub-millimeter proton beams, similar to grid therapy or microbeam radiation radiotherapy (MRT) using X-rays, has recently been invented at the ion microprobe SNAKE in Munich. The aim of this new concept is to minimize normal tissue injuries in the entrance channel and especially in the skin by irradiating only a small percentage of the cells in the total irradiation field, while maintaining tumor control via a homogeneous dose in the tumor, just like in conventional broad beam radiotherapy. This can be achieved by optimizing minibeam sizes and distances according to the prevailing tumor size and depth such that after widening of the minibeams due to proton interactions in the tissue, the overlapping minibeams produce a homogeneous dose distribution throughout the tumor. The aim of this work was to elucidate the prospects of minibeam radiation therapy compared to conventional homogeneous broad beam radiotherapy in theory and in experimental studies at the ion microprobe SNAKE. Treatment plans for model tumors of different sizes and depths were created using the planning software LAPCERR, to elaborate suitable minibeam sizes and distances for the individual tumors. Radiotherapy-relevant inter-beam distances required to obtain a homogeneous dose in the target volume were found to be in the millimeter range. First experiments using proton minibeams of only 10 μm and 50 μm size (termed microchannels in the corresponding publication Zlobinskaya et al. 2013) and therapy-conform larger dimensions of 100 μm and 180 μm were performed in the artificial human in-vitro skin model EpiDermFT trademark (MatTek). The corresponding inter-beam distances were 500 μm, 1mm and 1.8 mm, respectively, leading to irradiation of only a few percent of the cells

  10. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  11. Chirp subbottom profiler data collected in Pamlico Sound on cruise RVRiggs_05_23_24_2012 of RV Riggs for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Edgetech 216 chirp data (SEG-Y format) collected for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project, OCE-1130843. Survey area covers...

  12. Chirp subbottom profiler data collected in Pamlico Sound on cruise EPamSh-2016 of RV Riggs for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Edgetech 216 chirp data (SEG-Y format) collected for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project, OCE-1130843. Survey area covers...

  13. Chirp subbottom profiler data collected in Pamlico Sound on cruise RVRiggs_07_31_2013 of RV Riggs for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Edgetech 216 chirp data (SEG-Y format) collected for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project, OCE-1130843. Survey area covers...

  14. Chirp subbottom profiler data collected in Pamlico Sound on cruise RVRiggs_07_30_2013 of RV Riggs for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Edgetech 216 chirp data (SEG-Y format) collected for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project, OCE-1130843. Survey area covers...

  15. Chirp subbottom profiler data collected in Pamlico Sound on cruise SndPt_05_21_22_2012 of RV Riggs for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Edgetech 216 chirp data (SEG-Y format) collected for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project, OCE-1130843. Survey area covers...

  16. Chirp subbottom profiler data collected in Pamlico Sound on cruise RVRiggs_05_20_22_2014 of RV Riggs for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Edgetech 216 chirp data (SEG-Y format) collected for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project, OCE-1130843. Survey area covers the...

  17. Management of peri-implantitis

    Directory of Open Access Journals (Sweden)

    Jayachandran Prathapachandran

    2012-01-01

    Full Text Available Peri-implantitis is a site-specific infectious disease that causes an inflammatory process in soft tissues, and bone loss around an osseointegrated implant in function. The etiology of the implant infection is conditioned by the status of the tissue surrounding the implant, implant design, degree of roughness, external morphology, and excessive mechanical load. The microorganisms most commonly associated with implant failure are spirochetes and mobile forms of Gram-negative anaerobes, unless the origin is the result of simple mechanical overload. Diagnosis is based on changes of color in the gingiva, bleeding and probing depth of peri-implant pockets, suppuration, X-ray, and gradual loss of bone height around the tooth. Treatment will differ depending upon whether it is a case of peri-implant mucositis or peri-implantitis. The management of implant infection should be focused on the control of infection, the detoxification of the implant surface, and regeneration of the alveolar bone. This review article deals with the various treatment options in the management of peri-implantitis. The article also gives a brief description of the etiopathogenesis, clinical features, and diagnosis of peri-implantitis.

  18. Ion implantation control system

    International Nuclear Information System (INIS)

    Gault, R. B.; Keutzer, L. L.

    1985-01-01

    A control system is disclosed for an ion implantation system of the type in which the wafers to be implanted are mounted around the periphery of a disk which rotates and also moves in a radial direction relative to an ion beam to expose successive sections of each wafer to the radiation. The control system senses beam current which passes through one or more apertures in the disk and is collected by a Faraday cup. This current is integrated to obtain a measure of charge which is compared with a calculated value based upon the desired ion dosage and other parameters. The resultant controls the number of incremental steps the rotating disk moves radially to expose the adjacent sections of each wafer. This process is continued usually with two or more traverses until the entire surface of each wafer has been implanted with the proper ion dosage

  19. Implantation for tribological applications

    International Nuclear Information System (INIS)

    Leutenecker, R.; Cao-Minh, U.; Overbeck, R.

    1992-08-01

    Empirical results on the strength enhancement of steels by N- and B-implantation should be explained from a materials science point of view. The methods applied were X-ray diffractometry and element depth profiling. The investigations of N-implanted steels focussed on the nitride formation in selected model materials and, with respect to applications, in: X90 CrMoV and S 6-5-2 tool steels, austenite X10 CrNiTi189 as well as in hard chromium plates. Main topic in B-implanted steels were the transformations: crystalline Fe-phase - amorphous Fe-B-phase - crystalline boride phases. The result is an improvement in process control by first an insight into the strength enhancing mechanisms and second in into their generation depending on the materials microstructure and the process parameter. (orig.). 101 figs., 16 tabs., 15 refs [de

  20. Dental implants: A review.

    Science.gov (United States)

    Guillaume, B

    2016-12-01

    A high number of patients have one or more missing tooth and it is estimated that one in four American subjects over the age of 74 have lost all their natural teeth. Many options exist to replace missing teeth but dental implants have become one of the most used biomaterial to replace one (or more) missing tooth over the last decades. Contemporary dental implants made with titanium have been proven safe and effective in large series of patients. This review considers the main historical facts concerned with dental implants and present the different critical factors that will ensure a good osseo-integration that will ensure a stable prosthesis anchorage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.