WorldWideScience

Sample records for proteins manipulate optimal

  1. Interactive protein manipulation

    Energy Technology Data Exchange (ETDEWEB)

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  2. Interactive protein manipulation

    International Nuclear Information System (INIS)

    2003-01-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures

  3. Wave Manipulation by Topology Optimization

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders

    topology optimization can be used to design structures for manipulation of the electromagnetic and acoustic waves. The wave problems considered here fall within three classes. The first class concerns the design of cloaks, which when wrapped around an object will render the object undetectable...... for the cloak is to delay the waves in regions of higher permittivity than the background and subsequently phase match them to the waves outside. Directional acoustic cloaks can also be designed using the topology optimization method. Aluminum cylinders constitutes the design and their placement and size...... concerns the design of planar Fresnel zone plate lenses for focusing electromagnetic waves. The topology optimized zone plates improve the focusing performance compared to results known from the literature....

  4. Better with Byzantine: Manipulation-Optimal Mechanisms

    Science.gov (United States)

    Othman, Abraham; Sandholm, Tuomas

    A mechanism is manipulable if it is in some agents’ best interest to misrepresent their private information. The revelation principle establishes that, roughly, anything that can be accomplished by a manipulable mechanism can also be accomplished with a truthful mechanism. Yet agents often fail to play their optimal manipulations due to computational limitations or various flavors of incompetence and cognitive biases. Thus, manipulable mechanisms in particular should anticipate byzantine play. We study manipulation-optimal mechanisms: mechanisms that are undominated by truthful mechanisms when agents act fully rationally, and do better than any truthful mechanism if any agent fails to act rationally in any way. This enables the mechanism designer to do better than the revelation principle would suggest, and obviates the need to predict byzantine agents’ irrational behavior. We prove a host of possibility and impossibility results for the concept which have the impression of broadly limiting possibility. These results are largely in line with the revelation principle, although the considerations are more subtle and the impossibility not universal.

  5. Kinematically Optimal Robust Control of Redundant Manipulators

    Science.gov (United States)

    Galicki, M.

    2017-12-01

    This work deals with the problem of the robust optimal task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the endeffector. Furthermore, the movement is to be accomplished in such a way as to minimize both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we derive a class of chattering-free robust kinematically optimal controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.

  6. ProteinShop: A tool for interactive protein manipulation and steering

    Energy Technology Data Exchange (ETDEWEB)

    Crivelli, Silvia; Kreylos, Oliver; Max, Nelson; Hamann, Bernd; Bethel, Wes

    2004-05-25

    We describe ProteinShop, a new visualization tool that streamlines and simplifies the process of determining optimal protein folds. ProteinShop may be used at different stages of a protein structure prediction process. First, it can create protein configurations containing secondary structures specified by the user. Second, it can interactively manipulate protein fragments to achieve desired folds by adjusting the dihedral angles of selected coil regions using an Inverse Kinematics method. Last, it serves as a visual framework to monitor and steer a protein structure prediction process that may be running on a remote machine. ProteinShop was used to create initial configurations for a protein structure prediction method developed by a team that competed in CASP5. ProteinShop's use accelerated the process of generating initial configurations, reducing the time required from days to hours. This paper describes the structure of ProteinShop and discusses its main features.

  7. Optimization of Citric Acid Production through Manipulation of ...

    African Journals Online (AJOL)

    An Aspergillus niger isolate was screened for citric acid production from glucose and the cultural conditions were manipulated for optimum citric acid production. Optimization studies improved citric acid yield by 13.34% from 12.81 g/l obtained during the screening test to 14.52 g/l obtained at the end of the optimization ...

  8. Manipulators

    International Nuclear Information System (INIS)

    Andre, Y.; Routelous, F.; Spina, G.; Perpina, J.; Suquet, J.; Rossi, M.; Zanca, M.; Billiet, A.; Madec, L.; Lemoine, T.; Gaboriaud, G.; Aubert, B.; Rosenwald, J.C.; Neuenschwander, S.; Brisse, H.; Rehel, J.L.; Rebibo, G.; Bensimon, J.L.; Kulski, A.; Serhal, M.; Nguyen, K.V.; Lescure, R.; Cymbalista, M.

    2005-01-01

    Three articles have for purpose the radiation doses optimization in medical imaging. The first one concerns the radiation protection of manipulators working at a PET scan post, the second one concerns more particularly the optimization of doses delivered in pediatric computerized tomography, the third one is devoted to a comparison between radiation dose and image quality through scanners of adult temporal bone. (N.C.)

  9. Optimal security design under asymmetric information and profit manipulation

    OpenAIRE

    Koufopoulos, Kostas; Kozhan, Roman; Trigilia, Giulio

    2014-01-01

    We consider a model of external financing under ex ante asymmetric information and profit manipulation (non verifability). Contrary to conventional wisdom, the optimal contract is not standard debt, and it is not monotonic. Instead, it resembles a contingent convertible (CoCo) bond. In particular: (i) if the profit manipulation and/or adverse selection are not severe, there exists a unique separating equilibrium in CoCos; (ii) in the intermediate region, if the distribution of earnings is unb...

  10. Development and design optimization of water hydraulic manipulator for ITER

    International Nuclear Information System (INIS)

    Kekaelaeinen, Teemu; Mattila, Jouni; Virvalo, Tapio

    2009-01-01

    This paper describes one of the research projects carried out in The Preparation of Remote Handling Engineers for ITER (PREFIT) program within the European Fusion Training Scheme (EFTS). This research project is focusing on the design and optimization of water hydraulic manipulators used to test several remote handling tasks of ITER at Divertor Test Platform 2 (DTP2), Tampere, Finland, and later in ITER. In this project, a water hydraulic manipulator designed and build by Department of Intelligent Hydraulics and Automation in Tampere University of Technology, Finland (TUT/IHA) is further optimized as a case study for a given manipulator requirement specification in order to illustrate and verify developed comprehensive design guidelines and performance metrics. Without meaningful manipulator performance parameters, the evaluation of alternative robot manipulators designs remains ad hoc at best. Therefore, more comprehensive design guidelines and performance metrics are needed for comparing and improving different existing manipulators versus task requirements or for comparing different digital prototypes at early design phase of manipulators. In this paper the description of the project, its background and developments are presented and discussed.

  11. Optimization on Trajectory of Stanford Manipulator based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Han Xi

    2017-01-01

    Full Text Available The optimization of robot manipulator’s trajectory has become a hot topic in academic and industrial fields. In this paper, a method for minimizing the moving distance of robot manipulators is presented. The Stanford Manipulator is used as the research object and the inverse kinematics model is established with Denavit-Hartenberg method. Base on the initial posture matrix, the inverse kinematics model is used to find the initial state of each joint. In accordance with the given beginning moment, cubic polynomial interpolation is applied to each joint variable and the positive kinematic model is used to calculate the moving distance of end effector. Genetic algorithm is used to optimize the sequential order of each joint and the time difference between different starting time of joints. Numerical applications involving a Stanford manipulator are presented.

  12. Trajectory generation for manipulators using linear quadratic optimal tracking

    Directory of Open Access Journals (Sweden)

    Olav Egeland

    1989-04-01

    Full Text Available The reference trajectory is normally known in advance in manipulator control which makes it possible to apply linear quadratic optimal tracking. This gives a control system which rounds corners and generates optimal feedforward. The method may be used for references consisting of straight-line segments as an alternative to the two-step method of using splines to smooth the reference and then applying feedforward. In addition, the method can be used for more complex trajectories. The actual dynamics of the manipulator are taken into account, and this results in smooth and accurate tracking. The method has been applied in combination with the computed torque technique and excellent performance was demonstrated in a simulation study. The method has also been applied experimentally to an industrial spray-painting robot where a saw-tooth reference was tracked. The corner was rounded extremely well, and the steady-state tracking error was eliminated by the optimal feedforward.

  13. Global Energy-Optimal Redundancy Resolution of Hydraulic Manipulators: Experimental Results for a Forestry Manipulator

    Directory of Open Access Journals (Sweden)

    Jarmo Nurmi

    2017-05-01

    Full Text Available This paper addresses the energy-inefficiency problem of four-degrees-of-freedom (4-DOF hydraulic manipulators through redundancy resolution in robotic closed-loop controlled applications. Because conventional methods typically are local and have poor performance for resolving redundancy with respect to minimum hydraulic energy consumption, global energy-optimal redundancy resolution is proposed at the valve-controlled actuator and hydraulic power system interaction level. The energy consumption of the widely popular valve-controlled load-sensing (LS and constant-pressure (CP systems is effectively minimised through cost functions formulated in a discrete-time dynamic programming (DP approach with minimum state representation. A prescribed end-effector path and important actuator constraints at the position, velocity and acceleration levels are also satisfied in the solution. Extensive field experiments performed on a forestry hydraulic manipulator demonstrate the performance of the proposed solution. Approximately 15–30% greater hydraulic energy consumption was observed with the conventional methods in the LS and CP systems. These results encourage energy-optimal redundancy resolution in future robotic applications of hydraulic manipulators.

  14. Stability, Optimality and Manipulation in Matching Problems with Weighted Preferences

    Directory of Open Access Journals (Sweden)

    Maria Silvia Pini

    2013-11-01

    Full Text Available The stable matching problem (also known as the stable marriage problem is a well-known problem of matching men to women, so that no man and woman, who are not married to each other, both prefer each other. Such a problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools or, more generally, to any two-sided market. In the classical stable marriage problem, both men and women express a strict preference order over the members of the other sex, in a qualitative way. Here, we consider stable marriage problems with weighted preferences: each man (resp., woman provides a score for each woman (resp., man. Such problems are more expressive than the classical stable marriage problems. Moreover, in some real-life situations, it is more natural to express scores (to model, for example, profits or costs rather than a qualitative preference ordering. In this context, we define new notions of stability and optimality, and we provide algorithms to find marriages that are stable and/or optimal according to these notions. While expressivity greatly increases by adopting weighted preferences, we show that, in most cases, the desired solutions can be found by adapting existing algorithms for the classical stable marriage problem. We also consider the manipulability properties of the procedures that return such stable marriages. While we know that all procedures are manipulable by modifying the preference lists or by truncating them, here, we consider if manipulation can occur also by just modifying the weights while preserving the ordering and avoiding truncation. It turns out that, by adding weights, in some cases, we may increase the possibility of manipulating, and this cannot be avoided by any reasonable restriction on the weights.

  15. Magnetic manipulation device for the optimization of cell processing conditions.

    Science.gov (United States)

    Ito, Hiroshi; Kato, Ryuji; Ino, Kosuke; Honda, Hiroyuki

    2010-02-01

    Variability in human cell phenotypes make it's advancements in optimized cell processing necessary for personalized cell therapy. Here we propose a strategy of palm-top sized device to assist physically manipulating cells for optimizing cell preparations. For the design of such a device, we combined two conventional approaches: multi-well plate formatting and magnetic cell handling using magnetite cationic liposomes (MCLs). From our previous works, we showed the labeling applications of MCL on adhesive cells for various tissue engineering approaches. To feasibly transfer cells in multi-well plate, we here evaluated the magnetic response of MCL-labeled suspension type cells. The cell handling performance of Jurkat cells proved to be faster and more robust compared to MACS (Magnetic Cell Sorting) bead methods. To further confirm our strategy, prototype palm-top sized device "magnetic manipulation device (MMD)" was designed. In the device, the actual cell transportation efficacy of Jurkat cells was satisfying. Moreover, as a model of the most distributed clinical cell processing, primary peripheral blood mononuclear cells (PBMCs) from different volunteers were evaluated. By MMD, individual PBMCs indicated to have optimum Interleukin-2 (IL-2) concentrations for the expansion. Such huge differences of individual cells indicated that MMD, our proposing efficient and self-contained support tool, could assist the feasible and cost-effective optimization of cell processing in clinical facilities. Copyright (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Manipulators

    International Nuclear Information System (INIS)

    Wilcock, P.D.

    1984-01-01

    The patent concerns a manipulator, which enables operations to be carried out remotely from the operator. The device is suitable for use in handling of radioactive materials and other hazardous liquids or gases. The specifications are given, and the movements of the manipulator arm described. (U.K.)

  17. Cold Atmospheric Plasma Manipulation of Proteins in Food Systems

    DEFF Research Database (Denmark)

    Tolouie, Haniye; Hashemi, Maryam; Mohammadifar, Mohammad Amin

    2017-01-01

    Plasma processing has been getting a lot of attention in recent applications as a novel, eco-friendly, and highly efficient approach. Cold plasma has mostly been used to reduce microbial counts in foodstuff and biological materials, as well as in different levels of packaging, particularly in cases...... of plasma on the conformation and function of proteins with food origin, especially enzymes and allergens, as well as protein-made packaging films. In enzyme manipulation with plasma, deactivation has been reported to be either partial or complete. In addition, an activity increase has been observed in some...... where there is thermal sensitivity. As it is a very recent application, the impact of cold plasma treatment has been studied on the protein structures of food and pharmaceutical systems, as well as in the packaging industry. Proteins, as a food constituent, play a remarkable role in the techno...

  18. Optimization of fluorescent proteins

    NARCIS (Netherlands)

    Bindels, D.S.; Goedhart, J.; Hink, M.A.; van Weeren, L.; Joosen, L.; Gadella (jr.), T.W.J.; Engelborghs, Y.; Visser, A.J.W.G.

    2014-01-01

    Nowadays, fluorescent protein (FP) variants have been engineered to fluoresce in all different colors; to display photoswitchable, or photochromic, behavior; or to show yet other beneficial properties that enable or enhance a still growing set of new fluorescence spectroscopy and microcopy

  19. Manipulating heat shock protein expression in laboratory animals.

    Science.gov (United States)

    Tolson, J Keith; Roberts, Stephen M

    2005-02-01

    Upregulation of heat shock proteins (Hsps) has been observed to impart resistance to a wide variety of physical and chemical insults. Elucidation of the role of Hsps in cellular defense processes depends, in part, on the ability to manipulate Hsp expression in laboratory animals. Simple methods of inducing whole body hyperthermia, such as warm water immersion or heating pad application, are effective in producing generalized expression of Hsps. Hsps can be upregulated locally with focused direct or indirect heating, such as with ultrasound or with laser or microwave radiation. Increased Hsp expression in response to toxic doses of xenobiotics has been commonly observed. Some pharmacologic agents are capable of altering Hsps more specifically by affecting processes involved in Hsp regulation. Gene manipulation offers the ability to selectively increase or decrease individual Hsps. Knockout mouse strains and Hsp-overexpressing transgenics have been used successfully to examine the role of specific Hsps in protection against hyperthermia, chemical insults, and ischemia-reperfusion injury. Gene therapy approaches also offer the possibility of selective alteration of Hsp expression. Some methods of increasing Hsp expression have application in specialized areas of research, such cold response, myocardial protection from exercise, and responses to stressful or traumatic stimuli. Each method of manipulating Hsp expression in laboratory animals has advantages and disadvantages, and selection of the best method depends upon the experimental objectives (e.g., the alteration in Hsp expression needed, its timing, and its location) and resources available.

  20. Techniques applied in design optimization of parallel manipulators

    CSIR Research Space (South Africa)

    Modungwa, D

    2011-11-01

    Full Text Available the desired dexterous workspace " Robot.Comput.Integrated Manuf., vol. 23, pp. 38 - 46, 2007. [12] A.P. Murray, F. Pierrot, P. Dauchez and J.M. McCarthy, "A planar quaternion approach to the kinematic synthesis of a parallel manipulator " Robotica, vol... design of a three translational DoFs parallel manipulator " Robotica, vol. 24, pp. 239, 2005. [15] J. Angeles, "The robust design of parallel manipulators," in 1st Int. Colloquium, Collaborative Research Centre 562, 2002. [16] S. Bhattacharya, H...

  1. Determining the Optimal Number of Spinal Manipulation Sessions for Chronic Low-Back Pain

    Science.gov (United States)

    ... Optimal Number of Spinal Manipulation Sessions for Chronic Low-Back Pain Share: © Matthew Lester Findings from the largest and ... study of spinal manipulative therapy (SMT) for chronic low-back pain suggest that 12 sessions (SMT) may be the ...

  2. Optimization in the design and control of robotic manipulators: A survey

    International Nuclear Information System (INIS)

    Rao, S.S.; Bhatti, P.K.

    1989-01-01

    Robotics is a relatively new and evolving technology being applied to manufacturing automation and is fast replacing the special-purpose machines or hard automation as it is often called. Demands for higher productivity, better and uniform quality products, and better working environments are primary reasons for its development. An industrial robot is a multifunctional and computer-controlled mechanical manipulator exhibiting a complex and highly nonlinear behavior. Even though most current robots have anthropomorphic configurations, they have far inferior manipulating abilities compared to humans. A great deal of research effort is presently being directed toward improving their overall performance by using optimal mechanical structures and control strategies. The optimal design of robot manipulators can include kinematic performance characteristics such as workspace, accuracy, repeatability, and redundancy. The static load capacity as well as dynamic criteria such as generalized inertia ellipsoid, dynamic manipulability, and vibratory response have also been considered in the design stages. The optimal control problems typically involve trajectory planning, time-optimal control, energy-optimal control, and mixed-optimal control. The constraints in a robot manipulator design problem usually involve link stresses, actuator torques, elastic deformation of links, and collision avoidance. This paper presents a review of the literature on the issues of optimum design and control of robotic manipulators and also the various optimization techniques currently available for application to robotics

  3. Error Modeling and Design Optimization of Parallel Manipulators

    DEFF Research Database (Denmark)

    Wu, Guanglei

    /backlash, manufacturing and assembly errors and joint clearances. From the error prediction model, the distributions of the pose errors due to joint clearances are mapped within its constant-orientation workspace and the correctness of the developed model is validated experimentally. ix Additionally, using the screw......, dynamic modeling etc. Next, the rst-order dierential equation of the kinematic closure equation of planar parallel manipulator is obtained to develop its error model both in Polar and Cartesian coordinate systems. The established error model contains the error sources of actuation error...

  4. Protein Structure Refinement by Optimization

    DEFF Research Database (Denmark)

    Carlsen, Martin

    on whether the three-dimensional structure of a homologous sequence is known. Whether or not a protein model can be used for industrial purposes depends on the quality of the predicted structure. A model can be used to design a drug when the quality is high. The overall goal of this project is to assess...... that correlates maximally to a native-decoy distance. The main contribution of this thesis is methods developed for analyzing the performance of metrically trained knowledge-based potentials and for optimizing their performance while making them less dependent on the decoy set used to define them. We focus...... being at-least a local minimum of the potential. To address how far the current functional form of the potential is from an ideal potential we present two methods for finding the optimal metrically trained potential that simultaneous has a number of native structures as a local minimum. Our results...

  5. Work space optimization of a r-r planar manipulator using particle ...

    African Journals Online (AJOL)

    A two link revolute planar robotic manipulator is optimized for maximization of work space covered by its end effector. A mathematical model for optimization is built considering singularities which control the range of design variables. Condition number which is the measure of change in output value (End effector position) ...

  6. Weather and Climate Manipulation as an Optimal Control for Adaptive Dynamical Systems

    Directory of Open Access Journals (Sweden)

    Sergei A. Soldatenko

    2017-01-01

    Full Text Available The weather and climate manipulation is examined as an optimal control problem for the earth climate system, which is considered as a complex adaptive dynamical system. Weather and climate manipulations are actually amorphous operations. Since their objectives are usually formulated vaguely, the expected results are fairly unpredictable and uncertain. However, weather and climate modification is a purposeful process and, therefore, we can formulate operations to manipulate weather and climate as the optimization problem within the framework of the optimal control theory. The complexity of the earth’s climate system is discussed and illustrated using the simplified low-order coupled chaotic dynamical system. The necessary conditions of optimality are derived for the large-scale atmospheric dynamics. This confirms that even a relatively simplified control problem for the atmospheric dynamics requires significant efforts to obtain the solution.

  7. Design of Optimal Hybrid Position/Force Controller for a Robot Manipulator Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Vikas Panwar

    2007-01-01

    Full Text Available The application of quadratic optimization and sliding-mode approach is considered for hybrid position and force control of a robot manipulator. The dynamic model of the manipulator is transformed into a state-space model to contain two sets of state variables, where one describes the constrained motion and the other describes the unconstrained motion. The optimal feedback control law is derived solving matrix differential Riccati equation, which is obtained using Hamilton Jacobi Bellman optimization. The optimal feedback control law is shown to be globally exponentially stable using Lyapunov function approach. The dynamic model uncertainties are compensated with a feedforward neural network. The neural network requires no preliminary offline training and is trained with online weight tuning algorithms that guarantee small errors and bounded control signals. The application of the derived control law is demonstrated through simulation with a 4-DOF robot manipulator to track an elliptical planar constrained surface while applying the desired force on the surface.

  8. The time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng; Lai, Yinping [Department of Automation,Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation,Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China)

    2016-12-15

    In this paper, a new optimization model of time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator is designed. The task of this manipulator is to inspect the components of Tokamak, the inspecting velocity of manipulator must be limited in the operating space in order to get the clear pictures. With the limitation of joint velocity, acceleration and jerk, this optimization model can not only get the minimum working time along a specific path, but also ensure the imaging quality of camera through the constraint of inspecting velocity. The upper bound of the scanning speed is not a constant but changes according to the observation distance of camera in real time. The relation between scanning velocity and observation distance is estimated by curve-fitting. Experiment has been carried out to verify the feasibility of optimization model, moreover, the Laplace image sharpness evaluation method is adopted to evaluate the quality of images obtained by the proposed method.

  9. The time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator

    International Nuclear Information System (INIS)

    Wang, Hesheng; Lai, Yinping; Chen, Weidong

    2016-01-01

    In this paper, a new optimization model of time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator is designed. The task of this manipulator is to inspect the components of Tokamak, the inspecting velocity of manipulator must be limited in the operating space in order to get the clear pictures. With the limitation of joint velocity, acceleration and jerk, this optimization model can not only get the minimum working time along a specific path, but also ensure the imaging quality of camera through the constraint of inspecting velocity. The upper bound of the scanning speed is not a constant but changes according to the observation distance of camera in real time. The relation between scanning velocity and observation distance is estimated by curve-fitting. Experiment has been carried out to verify the feasibility of optimization model, moreover, the Laplace image sharpness evaluation method is adopted to evaluate the quality of images obtained by the proposed method.

  10. Design, modeling and optimization of an underwater manipulator with four-bar mechanism and compliant linkage

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sang Ok; Kim, Ji Hoon; Bae, Jang Ho; Kim, Jong Won [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Seo, Tae Won [School of Mechanical Engineering, Yeungnam University, Gyeongsan (Korea, Republic of)

    2016-09-15

    Underwater manipulators are very important for a robot to perform a specific operation in water. Conventional robot arm manipulators have been suggested for various operations but have not been suitable for repeated motion in gathering something. This paper presents a new underwater manipulator design for gathering things such as starfish on the sea floor. The manipulator is composed of a four-bar linkage to achieve repeated motion along a loop and compliant linkages to enhance the efficiency of the gathering work. Kinematic and quasi-static analyses were performed to calculate the loop path and the reaction force at the actuation point. Based on the analysis, optimal design was performed to maximize the working distance with the height difference and the reaction moments considered as constraints. A prototype was assembled to test the performance of the manipulator, and the empirical loop path was compared to simulation results.

  11. Design, modeling and optimization of an underwater manipulator with four-bar mechanism and compliant linkage

    International Nuclear Information System (INIS)

    Jin, Sang Ok; Kim, Ji Hoon; Bae, Jang Ho; Kim, Jong Won; Seo, Tae Won

    2016-01-01

    Underwater manipulators are very important for a robot to perform a specific operation in water. Conventional robot arm manipulators have been suggested for various operations but have not been suitable for repeated motion in gathering something. This paper presents a new underwater manipulator design for gathering things such as starfish on the sea floor. The manipulator is composed of a four-bar linkage to achieve repeated motion along a loop and compliant linkages to enhance the efficiency of the gathering work. Kinematic and quasi-static analyses were performed to calculate the loop path and the reaction force at the actuation point. Based on the analysis, optimal design was performed to maximize the working distance with the height difference and the reaction moments considered as constraints. A prototype was assembled to test the performance of the manipulator, and the empirical loop path was compared to simulation results

  12. Kinematics and optimization of 2-DOF parallel manipulator with revolute actuators and a passive leg

    International Nuclear Information System (INIS)

    Nam, Yun Joo; Park, Myeong Kwan

    2006-01-01

    In this paper, a 2-DOF planar parallel manipulator with two revolute actuators and one passive constraining leg. The kinematic analysis of the mechanism is analytically performed : the inverse and forward kinematics problems are solved in closed forms, the workspace is derived systematically, and the three kinds of singular configurations are found. The optimal design to determine the geometric parameters and the operating limits of the actuated legs is performed considering the kinematic manipulability and workspace size. These results of the paper show the effectiveness of the presented manipulator

  13. Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Jillian L Blatti

    Full Text Available Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP and thioesterase (TE govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes.

  14. Towards Clinically Optimized MRI-guided Surgical Manipulator for Minimally Invasive Prostate Percutaneous Interventions: Constructive Design*

    Science.gov (United States)

    Eslami, Sohrab; Fischer, Gregory S.; Song, Sang-Eun; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Iordachita, Iulian

    2013-01-01

    This paper undertakes the modular design and development of a minimally invasive surgical manipulator for MRI-guided transperineal prostate interventions. Severe constraints for the MRI-compatibility to hold the minimum artifact on the image quality and dimensions restraint of the bore scanner shadow the design procedure. Regarding the constructive design, the manipulator kinematics has been optimized and the effective analytical needle workspace is developed and followed by proposing the workflow for the manual needle insertion. A study of the finite element analysis is established and utilized to improve the mechanism weaknesses under some inevitable external forces to ensure the minimum structure deformation. The procedure for attaching a sterile plastic drape on the robot manipulator is discussed. The introduced robotic manipulator herein is aimed for the clinically prostate biopsy and brachytherapy applications. PMID:24683502

  15. A study on optimal motion for a robot manipulator amid obstacles

    International Nuclear Information System (INIS)

    Park, Jong Keun

    1997-01-01

    Optimal motion for a robot manipulator is obtained by nonlinear programming. The objective of optimal motion is minimizing energy consumption of manipulator arm with fixed traveling time in the presence of obstacles. The geometric path is not predetermined. The total trajectory is described in terms of cubic B-spline polynomials and the coefficients of them are obtained to minimize a specific performance index. Obstacle avoidance is performed by the method that the square sum of penetration growth distances between every obstacles and robot links is included in the performance index with appropriate weighting coefficient. In all examples tested here, the solutions were converged to unique optimal trajectories from different initial ones. The optimal geometric path obtained in this research can be used in minimum time trajectory planning. (author)

  16. Optimal arm posture control and tendon traction forces of a coupled tendon-driven manipulator

    International Nuclear Information System (INIS)

    Ma, Shugen

    1997-01-01

    In this study, the optimum arm posture of a coupled tendon-driven multijoint manipulator arm (or CT Arm) at maximum payload output was derived and the corresponding tendon traction forces were also analyzed, during management of a heavy payload by the manipulator in a gravity environment. The CT Arm is special tendon traction transmission mechanism in which a pair of tendons used to drive a joint is pulled from base actuators via pulleys mounted on the base-side joints. This mechanism enables optimal utilization of the coupled drive function of tendon traction forces and thus enables the lightweight manipulator to exhibit large payload capability. The properties of the CT Arm mechanism are elucidated by the proposed optimal posture control scheme. Computer simulation was also executed to verify the validity of the proposed control scheme. (author)

  17. Revealing Abrupt and Spontaneous Ruptures of Protein Native Structure under picoNewton Compressive Force Manipulation.

    Science.gov (United States)

    Chowdhury, S Roy; Cao, Jin; He, Yufan; Lu, H Peter

    2018-03-27

    Manipulating protein conformations for exploring protein structure-function relationship has shown great promise. Although protein conformational changes under pulling force manipulation have been extensively studied, protein conformation changes under a compressive force have not been explored quantitatively. The latter is even more biologically significant and relevant in revealing protein functions in living cells associated with protein crowdedness, distribution fluctuations, and cell osmotic stress. Here we report our experimental observations on abrupt ruptures of protein native structures under compressive force, demonstrated and studied by single-molecule AFM-FRET spectroscopic nanoscopy. Our results show that the protein ruptures are abrupt and spontaneous events occurred when the compressive force reaches a threshold of 12-75 pN, a force amplitude accessible from thermal fluctuations in a living cell. The abrupt ruptures are sensitive to local environment, likely a general and important pathway of protein unfolding in living cells.

  18. Rapid optimization of tension distribution for cable-driven parallel manipulators with redundant cables

    Science.gov (United States)

    Ouyang, Bo; Shang, Weiwei

    2016-03-01

    The solution of tension distributions is infinite for cable-driven parallel manipulators(CDPMs) with redundant cables. A rapid optimization method for determining the optimal tension distribution is presented. The new optimization method is primarily based on the geometry properties of a polyhedron and convex analysis. The computational efficiency of the optimization method is improved by the designed projection algorithm, and a fast algorithm is proposed to determine which two of the lines are intersected at the optimal point. Moreover, a method for avoiding the operating point on the lower tension limit is developed. Simulation experiments are implemented on a six degree-of-freedom(6-DOF) CDPM with eight cables, and the results indicate that the new method is one order of magnitude faster than the standard simplex method. The optimal distribution of tension distribution is thus rapidly established on real-time by the proposed method.

  19. Engineered proteins with PUF scaffold to manipulate RNA metabolism

    Science.gov (United States)

    Wang, Yang; Wang, Zefeng; Tanaka Hall, Traci M.

    2013-01-01

    Pumilio/fem-3 mRNA binding factor (FBF) proteins are characterized by a sequence-specific RNA-binding domain. This unique single-stranded RNA recognition module, whose sequence specificity can be reprogrammed, has been fused with functional modules to engineer protein factors with various functions. Here we summarize the advancement in developing RNA regulatory tools and opportunities for the future. PMID:23731364

  20. Manipulation and handling processes off-line programming and optimization with use of K-Roset

    Science.gov (United States)

    Gołda, G.; Kampa, A.

    2017-08-01

    Contemporary trends in development of efficient, flexible manufacturing systems require practical implementation of modern “Lean production” concepts for maximizing customer value through minimizing all wastes in manufacturing and logistics processes. Every FMS is built on the basis of automated and robotized production cells. Except flexible CNC machine tools and other equipments, the industrial robots are primary elements of the system. In the studies, authors look for wastes of time and cost in real tasks of robots, during manipulation processes. According to aspiration for optimization of handling and manipulation processes with use of the robots, the application of modern off-line programming methods and computer simulation, is the best solution and it is only way to minimize unnecessary movements and other instructions. The modelling process of robotized production cell and offline programming of Kawasaki robots in AS-Language will be described. The simulation of robotized workstation will be realized with use of virtual reality software K-Roset. Authors show the process of industrial robot’s programs improvement and optimization in terms of minimizing the number of useless manipulator movements and unnecessary instructions. This is realized in order to shorten the time of production cycles. This will also reduce costs of handling, manipulations and technological process.

  1. Optimal Point-to-Point Trajectory Tracking of Redundant Manipulators using Generalized Pattern Search

    Directory of Open Access Journals (Sweden)

    Thi Rein Myo

    2008-11-01

    Full Text Available Optimal point-to-point trajectory planning for planar redundant manipulator is considered in this study. The main objective is to minimize the sum of the position error of the end-effector at each intermediate point along the trajectory so that the end-effector can track the prescribed trajectory accurately. An algorithm combining Genetic Algorithm and Pattern Search as a Generalized Pattern Search GPS is introduced to design the optimal trajectory. To verify the proposed algorithm, simulations for a 3-D-O-F planar manipulator with different end-effector trajectories have been carried out. A comparison between the Genetic Algorithm and the Generalized Pattern Search shows that The GPS gives excellent tracking performance.

  2. Incoherent Manipulation of the Photoactive Yellow Protein Photocycle with Dispersed Pump-Dump-Probe Spectroscopy

    OpenAIRE

    Larsen, Delmar S.; van Stokkum, Ivo H. M.; Vengris, Mikas; van der Horst, Michael A.; de Weerd, Frank L.; Hellingwerf, Klaas J.; van Grondelle, Rienk

    2004-01-01

    Photoactive yellow protein is the protein responsible for initiating the ``blue-light vision¿¿ of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This ``incoherent¿¿ manipulation of the photocycle allows for the d...

  3. Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.

    Directory of Open Access Journals (Sweden)

    Ali Farshchiansadegh

    2016-04-01

    Full Text Available The laws of physics establish the energetic efficiency of our movements. In some cases, like locomotion, the mechanics of the body dominate in determining the energetically optimal course of action. In other tasks, such as manipulation, energetic costs depend critically upon the variable properties of objects in the environment. Can the brain identify and follow energy-optimal motions when these motions require moving along unfamiliar trajectories? What feedback information is required for such optimal behavior to occur? To answer these questions, we asked participants to move their dominant hand between different positions while holding a virtual mechanical system with complex dynamics (a planar double pendulum. In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our findings demonstrate that participants were capable of finding the energy-optimal paths, but only when provided with veridical visual and haptic information pertaining to the object, lacking which the trajectories were executed along rectilinear paths.

  4. Optimization of potential field method parameters through networks for swarm cooperative manipulation tasks

    Directory of Open Access Journals (Sweden)

    Rocco Furferi

    2016-10-01

    Full Text Available An interesting current research field related to autonomous robots is mobile manipulation performed by cooperating robots (in terrestrial, aerial and underwater environments. Focusing on the underwater scenario, cooperative manipulation of Intervention-Autonomous Underwater Vehicles (I-AUVs is a complex and difficult application compared with the terrestrial or aerial ones because of many technical issues, such as underwater localization and limited communication. A decentralized approach for cooperative mobile manipulation of I-AUVs based on Artificial Neural Networks (ANNs is proposed in this article. This strategy exploits the potential field method; a multi-layer control structure is developed to manage the coordination of the swarm, the guidance and navigation of I-AUVs and the manipulation task. In the article, this new strategy has been implemented in the simulation environment, simulating the transportation of an object. This object is moved along a desired trajectory in an unknown environment and it is transported by four underwater mobile robots, each one provided with a seven-degrees-of-freedom robotic arm. The simulation results are optimized thanks to the ANNs used for the potentials tuning.

  5. Examination and Manipulation of Protein Surface Charge in Solution with Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Gross, Deborah S.; Van Ryswyk, Hal

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool for examining the charge of proteins in solution. The charge can be manipulated through choice of solvent and pH. Furthermore, solution-accessible, protonated lysine side chains can be specifically tagged with 18-crown-6 ether to form noncovalent adducts. Chemical derivatization…

  6. On-Chip Manipulation of Protein-Coated Magnetic Beads via Domain-Wall Conduits

    DEFF Research Database (Denmark)

    Donolato, Marco; Vavassori, Paolo; Gobbi, Marco

    2010-01-01

    Geometrically constrained magnetic domain walls (DWs) in magnetic nanowires can be manipulated at the nanometer scale. The inhomogeneous magnetic stray field generated by a DW can capture a magnetic nanoparticle in solution. On-chip nanomanipulation of individual magnetic beads coated with proteins...

  7. Smooth Jerk-Bounded Optimal Path Planning of Tricycle Wheeled Mobile Manipulators in the Presence of Environmental Obstacles

    Directory of Open Access Journals (Sweden)

    Moharam Habibnejad Korayem

    2012-10-01

    Full Text Available In this work, a computational algorithm is developed for the smooth-jerk optimal path planning of tricycle wheeled mobile manipulators in an obstructed environment. Due to a centred orientable wheel, the tricycle mobile manipulator exhibits more steerability and manoeuvrability over traditional mobile manipulators, especially in the presence of environmental obstacles. This paper presents a general formulation based on the combination of the potential field method and optimal control theory in order to plan the smooth point-to-point path of the tricycle mobile manipulators. The nonholonomic constraints of the tricycle mobile base are taken into account in the dynamic formulation of the system and then the optimality conditions are derived considering jerk restrictions and obstacle avoidance. Furthermore, by means of the potential field method, a new formulation of a repulsive potential function is proposed for collision avoidance between any obstacle and each part of the mobile manipulator. In addition, to ensure the accurate placement of the end effector on the target point an attractive potential function is applied to the optimal control formulation. Next, a mixed analytical-numerical algorithm is proposed to generate the point-to-point optimal path. Finally, the proposed method is verified by a number of simulations on a two-link tricycle manipulator.

  8. Optimal design of a spherical parallel manipulator based on kinetostatic performance using evolutionary techniques

    Energy Technology Data Exchange (ETDEWEB)

    Daneshmand, Morteza [University of Tartu, Tartu (Estonia); Saadatzi, Mohammad Hossein [Colorado School of Mines, Golden (United States); Kaloorazi, Mohammad Hadi [École de Technologie Supérieur, Montréal (Canada); Masouleh, Mehdi Tale [University of Tehran, Tehran (Iran, Islamic Republic of); Anbarjafari, Gholamreza [Hasan Kalyoncu University, Gaziantep (Turkmenistan)

    2016-03-15

    This study aims to provide an optimal design for a Spherical parallel manipulator (SPM), namely, the Agile Eye. This aim is approached by investigating kinetostatic performance and workspace and searching for the most promising design. Previously recommended designs are examined to determine whether they provide acceptable kinetostatic performance and workspace. Optimal designs are provided according to different kinetostatic performance indices, especially kinematic sensitivity. The optimization process is launched based on the concept of the genetic algorithm. A single-objective process is implemented in accordance with the guidelines of an evolutionary algorithm called differential evolution. A multi-objective procedure is then provided following the reasoning of the nondominated sorting genetic algorithm-II. This process results in several sets of Pareto points for reconciliation between kinetostatic performance indices and workspace. The concept of numerous kinetostatic performance indices and the results of optimization algorithms are elaborated. The conclusions provide hints on the provided set of designs and their credibility to provide a well-conditioned workspace and acceptable kinetostatic performance for the SPM under study, which can be well extended to other types of SPMs.

  9. Optimal trajectory planning of free-floating space manipulator using differential evolution algorithm

    Science.gov (United States)

    Wang, Mingming; Luo, Jianjun; Fang, Jing; Yuan, Jianping

    2018-03-01

    The existence of the path dependent dynamic singularities limits the volume of available workspace of free-floating space robot and induces enormous joint velocities when such singularities are met. In order to overcome this demerit, this paper presents an optimal joint trajectory planning method using forward kinematics equations of free-floating space robot, while joint motion laws are delineated with application of the concept of reaction null-space. Bézier curve, in conjunction with the null-space column vectors, are applied to describe the joint trajectories. Considering the forward kinematics equations of the free-floating space robot, the trajectory planning issue is consequently transferred to an optimization issue while the control points to construct the Bézier curve are the design variables. A constrained differential evolution (DE) scheme with premature handling strategy is implemented to find the optimal solution of the design variables while specific objectives and imposed constraints are satisfied. Differ from traditional methods, we synthesize null-space and specialized curve to provide a novel viewpoint for trajectory planning of free-floating space robot. Simulation results are presented for trajectory planning of 7 degree-of-freedom (DOF) kinematically redundant manipulator mounted on a free-floating spacecraft and demonstrate the feasibility and effectiveness of the proposed method.

  10. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    Directory of Open Access Journals (Sweden)

    Fernando Navarro-Garcia

    2013-01-01

    Full Text Available The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology.

  11. Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection.

    Science.gov (United States)

    DeBlasio, Stacy L; Johnson, Richard; Sweeney, Michelle M; Karasev, Alexander; Gray, Stewart M; MacCoss, Michael J; Cilia, Michelle

    2015-06-01

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a nonincorporated protein in concert with numerous insect and plant proteins to regulate virus movement/transmission and tissue tropism. Affinity purification coupled to quantitative MS was used to generate protein interaction networks for a PLRV mutant that is unable to produce the read through domain (RTD) and compared to the known wild-type PLRV protein interaction network. By quantifying differences in the protein interaction networks, we identified four distinct classes of PLRV-plant interactions: those plant and nonstructural viral proteins interacting with assembled coat protein (category I); plant proteins in complex with both coat protein and RTD (category II); plant proteins in complex with the RTD (category III); and plant proteins that had higher affinity for virions lacking the RTD (category IV). Proteins identified as interacting with the RTD are potential candidates for regulating viral processes that are mediated by the RTP such as phloem retention and systemic movement and can potentially be useful targets for the development of strategies to prevent infection and/or viral transmission of Luteoviridae species that infect important crop species. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography Using Surface Acoustic Waves.

    Science.gov (United States)

    Guo, Feng; Zhou, Weijie; Li, Peng; Mao, Zhangming; Yennawar, Neela H; French, Jarrod B; Huang, Tony Jun

    2015-06-01

    Advances in modern X-ray sources and detector technology have made it possible for crystallographers to collect usable data on crystals of only a few micrometers or less in size. Despite these developments, sample handling techniques have significantly lagged behind and often prevent the full realization of current beamline capabilities. In order to address this shortcoming, a surface acoustic wave-based method for manipulating and patterning crystals is developed. This method, which does not damage the fragile protein crystals, can precisely manipulate and pattern micrometer and submicrometer-sized crystals for data collection and screening. The technique is robust, inexpensive, and easy to implement. This method not only promises to significantly increase efficiency and throughput of both conventional and serial crystallography experiments, but will also make it possible to collect data on samples that were previously intractable. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Finding Optimal Independent Grasp Regions of Parallel Manipulators with Additional Applications for Limbed Robot Mobility

    Data.gov (United States)

    National Aeronautics and Space Administration — For the problem of robotic manipulation, wherein a robotic manipulator interacts with objects or its environment using an end-effector (gripper), there have been...

  14. Pregnancy Research on Osteopathic Manipulation Optimizing Treatment Effects: the PROMOTE study.

    Science.gov (United States)

    Hensel, Kendi L; Buchanan, Steve; Brown, Sarah K; Rodriguez, Mayra; Cruser, des Anges

    2015-01-01

    The purpose of this study was to evaluate the efficacy of osteopathic manipulative treatment (OMT) to reduce low back pain and improve functioning during the third trimester in pregnancy and to improve selected outcomes of labor and delivery. Pregnancy research on osteopathic manipulation optimizing treatment effects was a randomized, placebo-controlled trial of 400 women in their third trimester. Women were assigned randomly to usual care only (UCO), usual care plus OMT (OMT), or usual care plus placebo ultrasound treatment (PUT). The study included 7 treatments over 9 weeks. The OMT protocol included specific techniques that were administered by board-certified OMT specialists. Outcomes were assessed with the use of self-report measures for pain and back-related functioning and medical records for delivery outcomes. There were 136 women in the OMT group: 131 women in the PUT group and 133 women in the UCO group. Characteristics at baseline were similar across groups. Findings indicate significant treatment effects for pain and back-related functioning (P < .001 for both groups), with outcomes for the OMT group similar to that of the PUT group; however, both groups were significantly improved compared with the UCO group. For secondary outcome of meconium-stained amniotic fluid, there were no differences among the groups. OMT was effective for mitigating pain and functional deterioration compared with UCO; however, OMT did not differ significantly from PUT. This may be attributed to PUT being a more active treatment than intended. There was no higher likelihood of conversion to high-risk status based on treatment group. Therefore, OMT is a safe, effective adjunctive modality to improve pain and functioning during the third trimester. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Insights into the immune manipulation mechanisms of pollen allergens by protein domain profiling.

    Science.gov (United States)

    Patel, Seema; Rani, Aruna; Goyal, Arun

    2017-10-01

    Plant pollens are airborne allergens, as their inhalation causes immune activation, leading to rhinitis, conjunctivitis, sinusitis and oral allergy syndrome. A myriad of pollen proteins belonging to profilin, expansin, polygalacturonase, glucan endoglucosidase, pectin esterase, and lipid transfer protein class have been identified. In the present in silico study, the protein domains of fifteen pollen sequences were extracted from the UniProt database and submitted to the interactive web tool SMART (Simple Modular Architecture Research Tool), for finding the protein domain profiles. Analysis of the data based on custom-made scripts revealed the conservation of pathogenic domains such as OmpH, PROF, PreSET, Bet_v_1, Cpl-7 and GAS2. Further, the retention of critical domains like CHASE2, Galanin, Dak2, DALR_1, HAMP, PWI, EFh, Excalibur, CT, PbH1, HELICc, and Kelch in pollen proteins, much like cockroach allergens and lethal viruses (such as HIV, HCV, Ebola, Dengue and Zika) was observed. Based on the shared motifs in proteins of taxonomicall-ydispersed organisms, it can be hypothesized that allergens and pathogens manipulate the human immune system in a similar manner. Allergens, being inanimate, cannot replicate in human body, and are neutralized by immune system. But, when the allergens are unremitting, the immune system becomes persistently hyper-sensitized, creating an inflammatory milieu. This study is expected to contribute to the understanding of pollen allergenicity and pathogenicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Simultaneous control and piezoelectric insert optimization for manipulators with flexible link

    OpenAIRE

    Bottega, Valdecir; Pergher, Rejane; Fonseca, Jun S. O.

    2009-01-01

    This work proposes a tracking control model for a flexible link robotic manipulator using simultaneously motor torques and piezoelectric actuators. The dynamic model of manipulator is obtained in a closed form through the Lagrangian approach. The control uses the motor torques for the tracking control of the joints and also to reduce the low frequency vibration induced in the manipulator links. The stability of this control is guaranteed by the Lyapunov stability theory. Piezoelectric actuato...

  17. Incoherent manipulation of the photoactive yellow protein photocycle with dispersed pump-dump-probe spectroscopy.

    Science.gov (United States)

    Larsen, Delmar S; van Stokkum, Ivo H M; Vengris, Mikas; van Der Horst, Michael A; de Weerd, Frank L; Hellingwerf, Klaas J; van Grondelle, Rienk

    2004-09-01

    Photoactive yellow protein is the protein responsible for initiating the "blue-light vision" of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This "incoherent" manipulation of the photocycle allows for the detailed spectroscopic investigation of the underlying photocycle dynamics and the construction of a fully self-consistent dynamical model. This model requires three kinetically distinct excited-state intermediates, two (ground-state) photocycle intermediates, I(0) and pR, and a ground-state intermediate through which the protein, after unsuccessful attempts at initiating the photocycle, returns to the equilibrium ground state. Also observed is a previously unknown two-photon ionization channel that generates a radical and an ejected electron into the protein environment. This second excitation pathway evolves simultaneously with the pathway containing the one-photon photocycle intermediates.

  18. Optimization of elastic elements of a damping devices for cylindrical hinges in crane-manipulating installations of mobile machines

    Directory of Open Access Journals (Sweden)

    Lagerev I.A.

    2016-03-01

    Full Text Available The article considers the problems of designing an original damping devices worn for cylindrical hinges in crane-manipulating installations of mobile machines. These devices can significantly reduce the additional impact load on a steel structure manipulators due to the presence of increased gaps in the hinges. Formulated the general formulation of nonlinear constrained optimization of the sizes of the elastic elements of the damping devices. Considered a promising design variants of elastic elements. For circular and arc elastic elements with circular and rectangular cross-section for-mulated the problems of optimal design including criterion functions and systems of geometric, technological, stiffness and strength penalty constraints. Analysis of the impact of various operating and design parameters on the results of optimal design of elastic elements was performed. Were set to the recommended the use of the constructive types of elastic elements to generate the required stiffness of the damper devices.

  19. DMPD: Manipulation of mitogen-activated protein kinase/nuclear factor-kappaB-signalingcascades during intracellular Toxoplasma gondii infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15361242 Manipulation of mitogen-activated protein kinase/nuclear factor-kappaB-sig...mmunol Rev. 2004 Oct;201:191-205. (.png) (.svg) (.html) (.csml) Show Manipulation of mitogen-activated prote... gondii infection. PubmedID 15361242 Title Manipulation of mitogen-activated protein kinase/nuclear factor-k

  20. A Piecewise Acceleration-Optimal and Smooth-Jerk Trajectory Planning Method for Robot Manipulator along a Predefined Path

    Directory of Open Access Journals (Sweden)

    Yuan Chen

    2011-09-01

    Full Text Available This paper proposes a piecewise acceleration-optimal and smooth-jerk trajectory planning method of robot manipulator. The optimal objective function is given by the weighted sum of two terms having opposite effects: the maximal acceleration and the minimal jerk. Some computing techniques are proposed to determine the optimal solution. These techniques take both the time intervals between two interpolation points and the control points of B-spline function as optimal variables, redefine the kinematic constraints as the constraints of optimal variables, and reformulate the objective function in matrix form. The feasibility of the optimal method is illustrated by simulation and experimental results with pan mechanism for cooking robot.

  1. Identifying the adaptive mechanism in globular proteins: Fluctuations in densely packed regions manipulate flexible parts

    Science.gov (United States)

    Yilmaz, Lutfu Safak; Atilgan, Ali Rana

    2000-09-01

    A low-resolution structural model based on the packing geometry of α-carbons is utilized to establish a connection between the flexible and rigid parts of a folded protein. The former commonly recognizes a complementing molecule for making a complex, while the latter manipulates the necessary conformational change for binding. We attempt analytically to distinguish this control architecture that intrinsically exists in globular proteins. First with two-dimensional simple models, then for a native protein, bovine pancreatic trypsin inhibitor, we explicitly demonstrate that inserting fluctuations in tertiary contacts supported by the stable core, one can regulate the displacement of residues on loop regions. The positional fluctuations of the flexible regions are annihilated by the rest of the protein in conformity with the Le Chatelier-Braun principle. The results indicate that the distortion of the principal nonbonded contacts between highly packed residues is accompanied by that of the slavery fluctuations that are widely distributed over the native structure. These positional arrangements do not appear in a reciprocal relation between a perturbation and the associated response; the effect of a movement of residue i on residue j is not equal to that of the same movement of residue j on residue i.

  2. Identifying yield-optimizing environments for two cowpea breeding lines by manipulating photoperiod and harvest scenario

    Science.gov (United States)

    Ohler, T. A.; Mitchell, C. A.

    1996-01-01

    Photoperiod and harvest scenario of cowpea (Vigna unguiculata L. Walp) canopies were manipulated to optimize productivity for use in future controlled ecological life-support systems. Productivity was measured by edible yield rate (EYR:g m-2 day-1), shoot harvest index (SHI: g edible biomass [g total shoot dry weight]), and yield-efficiency rate (YER:g edible biomass m-2 day-1 per[g nonedible shoot dry weight]). Breeding lines 'IT84S-2246' (S-2246) and "IT82D-889' (D-889) were grown in a greenhouse under 8-, 12-, or 24-h photoperiods. S-2246 was short-day and D-889 was day-neutral for flowering. Under each photoperiod, cowpeas were harvested either for leaves only, seeds only, or leaves plus seeds (mixed harvest). Photoperiod did not affect EYR of either breeding line for any harvest scenario tested. Averaged over both breeding lines, seed harvest gave the highest EYR at 6.7 g m-2 day-1. The highest SHI (65%) and YER (94 mg m-2 day-1 g-1) were achieved for leaf-only harvest of D-889 under an 8-h photoperiod. For leaf-only harvest of S-2246, both SHI and YER increased with increasing photoperiod, but declined for seed-only and mixed harvests. However, photoperiod had no effect on SHI or YER for D-889 for any harvest scenario. A second experiment utilized the short-day cowpea breeding line 'IT89KD-288' (D-288) and the day-neutral breeding line 'IT87D-941-1' (D-941) to compare yield parameters using photoperiod extension under differing lamp types. This experiment confirmed the photoperiod responses of D-889 and S-2246 to a mixed-harvest scenario and indicated that daylength extension with higher irradiance from high pressure sodium lamps further suppressed EYR, SHI, and YER of the short-day breeding line D-288.

  3. Optimization of torque on an optically driven micromotor by manipulation of the index of refraction

    Science.gov (United States)

    Wing, Frank M., III; Mahajan, Satish; Collett, Walter

    2004-12-01

    Since the 1970"s, the focused laser beam has become a familiar tool to manipulate neutral, dielectric micro-objects. A number of authors, including Higurashi and Gauthier, have described the effects of radiation pressure from laser light on microrotors. Collett, et al. developed a wave, rather than a ray optic, approach in the calculation of such forces on a microrotor for the first time. This paper describes a modification to the design of a laser driven, radiation pressure microrotor, intended to improve the optically generated torque. Employing the wave approach, the electric and magnetic fields in the vicinity of the rotor are calculated using the finite difference time domain (FDTD) method, which takes into account the wave nature of the incident light. Forces are calculated from the application of Maxwell"s stress tensor over the surfaces of the rotor. Results indicate a significant increase in torque when the index of refraction of the microrotor is changed from a single value to an inhomogeneous profile. The optical fiber industry has successfully employed a variation in the index of refraction across the cross section of a fiber for the purpose of increasing the efficiency of light transmission. Therefore, it is hoped that various fabrication methods can be utilized for causing desired changes in the index of refraction of an optically driven microrotor. Various profiles of the index of refraction inside a microrotor are considered for optimization of torque. Simulation methodology and results of torque on a microrotor for various profiles of the index of refraction are presented. Guidelines for improvised fabrication of efficient microrotors may then be obtained from these profiles.

  4. Optimal neighborhood indexing for protein similarity search.

    Science.gov (United States)

    Peterlongo, Pierre; Noé, Laurent; Lavenier, Dominique; Nguyen, Van Hoa; Kucherov, Gregory; Giraud, Mathieu

    2008-12-16

    Similarity inference, one of the main bioinformatics tasks, has to face an exponential growth of the biological data. A classical approach used to cope with this data flow involves heuristics with large seed indexes. In order to speed up this technique, the index can be enhanced by storing additional information to limit the number of random memory accesses. However, this improvement leads to a larger index that may become a bottleneck. In the case of protein similarity search, we propose to decrease the index size by reducing the amino acid alphabet. The paper presents two main contributions. First, we show that an optimal neighborhood indexing combining an alphabet reduction and a longer neighborhood leads to a reduction of 35% of memory involved into the process, without sacrificing the quality of results nor the computational time. Second, our approach led us to develop a new kind of substitution score matrices and their associated e-value parameters. In contrast to usual matrices, these matrices are rectangular since they compare amino acid groups from different alphabets. We describe the method used for computing those matrices and we provide some typical examples that can be used in such comparisons. Supplementary data can be found on the website http://bioinfo.lifl.fr/reblosum. We propose a practical index size reduction of the neighborhood data, that does not negatively affect the performance of large-scale search in protein sequences. Such an index can be used in any study involving large protein data. Moreover, rectangular substitution score matrices and their associated statistical parameters can have applications in any study involving an alphabet reduction.

  5. Optimal neighborhood indexing for protein similarity search

    Directory of Open Access Journals (Sweden)

    Nguyen Van

    2008-12-01

    Full Text Available Abstract Background Similarity inference, one of the main bioinformatics tasks, has to face an exponential growth of the biological data. A classical approach used to cope with this data flow involves heuristics with large seed indexes. In order to speed up this technique, the index can be enhanced by storing additional information to limit the number of random memory accesses. However, this improvement leads to a larger index that may become a bottleneck. In the case of protein similarity search, we propose to decrease the index size by reducing the amino acid alphabet. Results The paper presents two main contributions. First, we show that an optimal neighborhood indexing combining an alphabet reduction and a longer neighborhood leads to a reduction of 35% of memory involved into the process, without sacrificing the quality of results nor the computational time. Second, our approach led us to develop a new kind of substitution score matrices and their associated e-value parameters. In contrast to usual matrices, these matrices are rectangular since they compare amino acid groups from different alphabets. We describe the method used for computing those matrices and we provide some typical examples that can be used in such comparisons. Supplementary data can be found on the website http://bioinfo.lifl.fr/reblosum. Conclusion We propose a practical index size reduction of the neighborhood data, that does not negatively affect the performance of large-scale search in protein sequences. Such an index can be used in any study involving large protein data. Moreover, rectangular substitution score matrices and their associated statistical parameters can have applications in any study involving an alphabet reduction.

  6. Foldit Standalone: a video game-derived protein structure manipulation interface using Rosetta.

    Science.gov (United States)

    Kleffner, Robert; Flatten, Jeff; Leaver-Fay, Andrew; Baker, David; Siegel, Justin B; Khatib, Firas; Cooper, Seth

    2017-09-01

    Foldit Standalone is an interactive graphical interface to the Rosetta molecular modeling package. In contrast to most command-line or batch interactions with Rosetta, Foldit Standalone is designed to allow easy, real-time, direct manipulation of protein structures, while also giving access to the extensive power of Rosetta computations. Derived from the user interface of the scientific discovery game Foldit (itself based on Rosetta), Foldit Standalone has added more advanced features and removed the competitive game elements. Foldit Standalone was built from the ground up with a custom rendering and event engine, configurable visualizations and interactions driven by Rosetta. Foldit Standalone contains, among other features: electron density and contact map visualizations, multiple sequence alignment tools for template-based modeling, rigid body transformation controls, RosettaScripts support and an embedded Lua interpreter. Foldit Standalone is available for download at https://fold.it/standalone , under the Rosetta license, which is free for academic and non-profit users. It is implemented in cross-platform C ++ and binary executables are available for Windows, macOS and Linux. scooper@ccs.neu.edu. © The Author(s) 2017. Published by Oxford University Press.

  7. Optimization of protein buffer cocktails using Thermofluor.

    Science.gov (United States)

    Reinhard, Linda; Mayerhofer, Hubert; Geerlof, Arie; Mueller-Dieckmann, Jochen; Weiss, Manfred S

    2013-02-01

    The stability and homogeneity of a protein sample is strongly influenced by the composition of the buffer that the protein is in. A quick and easy approach to identify a buffer composition which increases the stability and possibly the conformational homogeneity of a protein sample is the fluorescence-based thermal-shift assay (Thermofluor). Here, a novel 96-condition screen for Thermofluor experiments is presented which consists of buffer and additive parts. The buffer screen comprises 23 different buffers and the additive screen includes small-molecule additives such as salts and nucleotide analogues. The utilization of small-molecule components which increase the thermal stability of a protein sample frequently results in a protein preparation of higher quality and quantity and ultimately also increases the chances of the protein crystallizing.

  8. Physical manipulation of single-molecule DNA using microbead and its application to analysis of DNA-protein interaction

    International Nuclear Information System (INIS)

    Kurita, Hirofumi; Yasuda, Hachiro; Takashima, Kazunori; Katsura, Shinji; Mizuno, Akira

    2009-01-01

    We carried out an individual DNA manipulation using an optical trapping for a microbead. This manipulation system is based on a fluorescent microscopy equipped with an IR laser. Both ends of linear DNA molecule were labeled with a biotin and a thiol group, respectively. Then the biotinylated end was attached to a microbead, and the other was immobilized on a thiol-linkable glass surface. We controlled the form of an individual DNA molecule by moving the focal point of IR laser, which trapped the microbead. In addition, we applied single-molecule approach to analyze DNA hydrolysis. We also used microchannel for single-molecule observation of DNA hydrolysis. The shortening of DNA in length caused by enzymatic hydrolysis was observed in real-time. The single-molecule DNA manipulation should contribute to elucidate detailed mechanisms of DNA-protein interactions

  9. Manipulation of follicle development to ensure optimal oocyte quality and conception rates in cattle.

    Science.gov (United States)

    Baruselli, P S; Sá Filho, M F; Ferreira, R M; Sales, J N S; Gimenes, L U; Vieira, L M; Mendanha, M F; Bó, G A

    2012-08-01

    Over the last several decades, a number of therapies have been developed that manipulate ovarian follicle growth to improve oocyte quality and conception rates in cattle. Various strategies have been proposed to improve the responses to reproductive biotechnologies following timed artificial insemination (TAI), superovulation (SOV) or ovum pickup (OPU) programmes. During TAI protocols, final follicular growth and size of the ovulatory follicle are key factors that may significantly influence oocyte quality, ovulation, the uterine environment and consequently pregnancy outcomes. Progesterone concentrations during SOV protocols influence follicular growth, oocyte quality and embryo quality; therefore, several adjustments to SOV protocols have been proposed depending on the animal category and breed. In addition, the success of in vitro embryo production is directly related to the number and quality of cumulus oocyte complexes harvested by OPU. Control of follicle development has a significant impact on the OPU outcome. This article discusses a number of key points related to the manipulation of ovarian follicular growth to maximize oocyte quality and improve conception rates following TAI and embryo transfer of in vivo- and in vitro-derived embryos in cattle. © 2012 Blackwell Verlag GmbH.

  10. Work space optimization of a r-r planar manipulator using particle ...

    African Journals Online (AJOL)

    *Corresponding Author (1) E-Mail:chaitanyagoteti16@gmail.com ... presented the variable structure theory for planning and trajectory control of planar ..... Rao S.S., 2009, Engineering Optimization Theory and Practice, 4th edition, Ed., John ...

  11. Codon optimizing for increased membrane protein production

    DEFF Research Database (Denmark)

    Mirzadeh, K.; Toddo, S.; Nørholm, Morten

    2016-01-01

    . As demonstrated with two membrane-embedded transporters in Escherichia coli, the method was more effective than optimizing the entire coding sequence. The method we present is PCR based and requires three simple steps: (1) the design of two PCR primers, one of which is degenerate; (2) the amplification...

  12. Optimal trajectories for flexible-link manipulator slewing using recursive quadratic programming: Experimental verification

    International Nuclear Information System (INIS)

    Parker, G.G.; Eisler, G.R.; Feddema, J.T.

    1994-01-01

    Procedures for trajectory planning and control of flexible link robots are becoming increasingly important to satisfy performance requirements of hazardous waste removal efforts. It has been shown that utilizing link flexibility in designing open loop joint commands can result in improved performance as opposed to damping vibration throughout a trajectory. The efficient use of link compliance is exploited in this work. Specifically, experimental verification of minimum time, straight line tracking using a two-link planar flexible robot is presented. A numerical optimization process, using an experimentally verified modal model, is used for obtaining minimum time joint torque and angle histories. The optimal joint states are used as commands to the proportional-derivative servo actuated joints. These commands are precompensated for the nonnegligible joint servo actuator dynamics. Using the precompensated joint commands, the optimal joint angles are tracked with such fidelity that the tip tracking error is less than 2.5 cm

  13. Optimized cobalt nanowires for domain wall manipulation imaged by in situ Lorentz microscopy

    International Nuclear Information System (INIS)

    Rodríguez, L. A.; Magén, C.; Snoeck, E.; Gatel, C.; Serrano-Ramón, L.

    2013-01-01

    Direct observation of domain wall (DW) nucleation and propagation in focused electron beam induced deposited Co nanowires as a function of their dimensions was carried out by Lorentz microscopy (LTEM) upon in situ application of magnetic field. Optimal dimensions favoring the unambiguous DW nucleation/propagation required for applications were found in 500-nm-wide and 13-nm-thick Co nanowires, with a maximum nucleation field and the largest gap between nucleation and propagation fields. The internal DW structures were resolved using the transport-of-intensity equation formalism in LTEM images and showed that the optimal nanowire dimensions correspond to the crossover between the nucleation of transverse and vortex walls.

  14. Design of turning hydraulic engines for manipulators of mobile machines on the basis of multicriterial optimization

    Directory of Open Access Journals (Sweden)

    Lagerev I.A.

    2016-12-01

    Full Text Available In this paper the mathematical models of the main types of turning hydraulic engines, which at the present time widely used in the construction of handling systems of domestic and foreign mobile transport-technological machines wide functionality. They allow to take into consideration the most significant from the viewpoint of ensuring high technical-economic indicators of hydraulic efficiency criteria – minimum mass (weight, their volume and losses of power. On the basis of these mathematical models the problem of multicriterial constrained optimization of the constructive sizes of turning hydraulic engines are subject to complex constructive, strength and deformation limits. It allows you to de-velop the hydraulic engines in an optimized design which is required for the purpose of designing a comprehensive measure takes into account efficiency criteria. The multicriterial optimization problem is universal in nature, so when designing a turning hydraulic engines allows for one-, two - and three-criteria optimization without making any changes in the solution algorithm. This is a significant advantage for the development of universal software for the automation of design of mobile transport-technological machines.

  15. A Velocity-Level Bi-Criteria Optimization Scheme for Coordinated Path Tracking of Dual Robot Manipulators Using Recurrent Neural Network.

    Science.gov (United States)

    Xiao, Lin; Zhang, Yongsheng; Liao, Bolin; Zhang, Zhijun; Ding, Lei; Jin, Long

    2017-01-01

    A dual-robot system is a robotic device composed of two robot arms. To eliminate the joint-angle drift and prevent the occurrence of high joint velocity, a velocity-level bi-criteria optimization scheme, which includes two criteria (i.e., the minimum velocity norm and the repetitive motion), is proposed and investigated for coordinated path tracking of dual robot manipulators. Specifically, to realize the coordinated path tracking of dual robot manipulators, two subschemes are first presented for the left and right robot manipulators. After that, such two subschemes are reformulated as two general quadratic programs (QPs), which can be formulated as one unified QP. A recurrent neural network (RNN) is thus presented to solve effectively the unified QP problem. At last, computer simulation results based on a dual three-link planar manipulator further validate the feasibility and the efficacy of the velocity-level optimization scheme for coordinated path tracking using the recurrent neural network.

  16. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins

    DEFF Research Database (Denmark)

    Anyaogu, Diana Chinyere; Mortensen, Uffe Hasbro

    2015-01-01

    The medical use of pharmaceutical proteins is rapidly increasing and cheap, fast and efficient production is therefore attractive. Microbial production hosts are promising candidates for development and production of pharmaceutical proteins. However, as most therapeutic proteins are secreted...... to produce proteins with humanlike glycan structures setting the stage for production of pharmaceutical proteins in bacteria, yeasts and algae....

  17. Optimized Diazo Scaffold for Protein Esterification

    Science.gov (United States)

    Mix, Kalie A.

    2015-01-01

    The O-alkylation of carboxylic acids with diazo compounds provides a means to esterify carboxylic acids in aqueous solution. A Hammett analysis of the reactivity of diazo compounds derived from phenylglycinamide revealed that the p-methylphenylglycinamide scaffold has an especially high reaction rate and ester:alcohol product ratio, and esterifies protein carboxyl groups more efficiently than does any known reagent. PMID:25938936

  18. Sensitivity optimization of Bell-Bloom magnetometers by manipulation of atomic spin synchronization

    Science.gov (United States)

    Ranjbaran, M.; Tehranchi, M. M.; Hamidi, S. M.; Khalkhali, S. M. H.

    2018-05-01

    Many efforts have been devoted to the developments of atomic magnetometers for achieving the high sensitivity required in biomagnetic applications. To reach the high sensitivity, many types of atomic magnetometers have been introduced for optimization of the creation and relaxation rates of atomic spin polarization. In this paper, regards to sensitivity optimization techniques in the Mx configuration, we have proposed a novelty approach for synchronization of the spin precession in the Bell-Bloom magnetometers. We have utilized the phenomenological Bloch equations to simulate the spin dynamics when modulation of pumping light and radio frequency magnetic field were both used for atomic spin synchronization. Our results showed that the synchronization process, improved the magnetometer sensitivity respect to the classical configurations.

  19. Reflecting metallic metasurfaces designed with stochastic optimization as waveplates for manipulating light polarization

    Science.gov (United States)

    Haberko, Jakub; Wasylczyk, Piotr

    2018-03-01

    We demonstrate that a stochastic optimization algorithm with a properly chosen, weighted fitness function, following a global variation of parameters upon each step can be used to effectively design reflective polarizing optical elements. Two sub-wavelength metallic metasurfaces, corresponding to broadband half- and quarter-waveplates are demonstrated with simple structure topology, a uniform metallic coating and with the design suited for the currently available microfabrication techniques, such as ion milling or 3D printing.

  20. Optimization and limit of a tilt manipulation stage based on the electrowetting-on-dielectric principle

    Science.gov (United States)

    Tan, Xiao; Tao, Zhi; Suzuki, Kenji; Li, Haiwang

    2017-12-01

    This work designed a new tilt manipulation stage based on the electrowetting-on-dielectric (EWOD) principle as the actuating mechanism and investigated the performance of that stage. The stage was fabricated using a universal MEMS (Micro-Electro-Mechanical System) fabrication method. In the previously demonstrated form of this device, the tilt stage consisted of a top plate that functions as a mirror, a bottom plate that was designed for changing the shape of water droplets, and supporters that were fixed between the top and bottom plate. That device was actuated by a voltage applied to the bottom plate, resulting in a static electric force actuating the shape change in the droplets by moving the top plate in the vertical direction. Previous experimental results indicated that that device can tilt at up to ±1.8°, with a resolution of 7 μm in displacement and 0.05° in angle. By selecting the best combination of the dielectric layer, the tilt angle was maximized. The new device, fabricated using a common and straightforward fabrication method, avoids deflection of the top plate and grounding in the bottom plate. Because of the limit of Teflon and other MEMS materials, this device has a tilt angle in the range of 3.2-3.5° according to the experimental data for friction and the EWOD device limit, which is close to 1.8°. This paper also describe the investigation of the effects of various parameters, e.g., various dielectric materials, thicknesses, and droplet type and volume, on the performance of the stage. The results indicate that the apparent frictions coefficient of the solid-liquid interface may remain constant, i.e., the friction force is proportional to the normal support force and the apparent frictions coefficient.

  1. Manipulating Crop Density to Optimize Nitrogen and Water Use: An Application of Precision Agroecology

    Science.gov (United States)

    Brown, T. T.; Huggins, D. R.; Smith, J. L.; Keller, C. K.; Kruger, C.

    2011-12-01

    Rising levels of reactive nitrogen (Nr) in the environment coupled with increasing population positions agriculture as a major contributor for supplying food and ecosystem services to the world. The concept of Precision Agroecology (PA) explicitly recognizes the importance of time and place by combining the principles of precision farming with ecology creating a framework that can lead to improvements in Nr use efficiency. In the Palouse region of the Pacific Northwest, USA, relationships between productivity, N dynamics and cycling, water availability, and environmental impacts result from intricate spatial and temporal variations in soil, ecosystem processes, and socioeconomic factors. Our research goal is to investigate N use efficiency (NUE) in the context of factors that regulate site-specific environmental and economic conditions and to develop the concept of PA for use in sustainable agroecosystems and science-based Nr policy. Nitrogen and plant density field trials with winter wheat (Triticum aestivum L.) were conducted at the Washington State University Cook Agronomy Farm near Pullman, WA under long-term no-tillage management in 2010 and 2011. Treatments were imposed across environmentally heterogeneous field conditions to assess soil, crop and environmental interactions. Microplots with a split N application using 15N-labeled fertilizer were established in 2011 to examine the impact of N timing on uptake of fertilizer and soil N throughout the growing season for two plant density treatments. Preliminary data show that plant density manipulation combined with precision N applications regulated water and N use and resulted in greater wheat yield with less seed and N inputs. These findings indicate that improvements to NUE and agroecosystem sustainability should consider landscape-scale patterns driving productivity (e.g., spatial and temporal dynamics of water availability and N transformations) and would benefit from policy incentives that promote a PA

  2. Improved hybrid optimization algorithm for 3D protein structure prediction.

    Science.gov (United States)

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.

  3. Simulating quantum search algorithm using vibronic states of I2 manipulated by optimally designed gate pulses

    International Nuclear Information System (INIS)

    Ohtsuki, Yukiyoshi

    2010-01-01

    In this paper, molecular quantum computation is numerically studied with the quantum search algorithm (Grover's algorithm) by means of optimal control simulation. Qubits are implemented in the vibronic states of I 2 , while gate operations are realized by optimally designed laser pulses. The methodological aspects of the simulation are discussed in detail. We show that the algorithm for solving a gate pulse-design problem has the same mathematical form as a state-to-state control problem in the density matrix formalism, which provides monotonically convergent algorithms as an alternative to the Krotov method. The sequential irradiation of separately designed gate pulses leads to the population distribution predicted by Grover's algorithm. The computational accuracy is reduced by the imperfect quality of the pulse design and by the electronic decoherence processes that are modeled by the non-Markovian master equation. However, as long as we focus on the population distribution of the vibronic qubits, we can search a target state with high probability without introducing error-correction processes during the computation. A generalized gate pulse-design scheme to explicitly include decoherence effects is outlined, in which we propose a new objective functional together with its solution algorithm that guarantees monotonic convergence.

  4. Molecular breeding to create optimized crops: from genetic manipulation to potential applications in plant factories

    Directory of Open Access Journals (Sweden)

    Kyoko eHiwasa-Tanase

    2016-04-01

    Full Text Available Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.

  5. Quantum dynamics manipulation using optimal control theory in the presence of laser field noise

    Science.gov (United States)

    Kumar, Praveen; Malinovskaya, Svetlana A.

    2010-08-01

    We discuss recent advances in optimal control theory (OCT) related to the investigation of the impact of control field noise on controllability of quantum dynamics. Two numerical methods, the gradient method and the iteration method, are paid particular attention. We analyze the problem of designing noisy control fields to maximize the vibrational transition probability in diatomic quantum systems, e.g. the HF and OH molecules. White noise is used as an additive random variable in the amplitude of the control field. It is demonstrated that the convergence is faster in the presence of noise and population transfer is increased by 0.04% for small values of noise compared to the field amplitude.

  6. Optimization of protein samples for NMR using thermal shift assays

    International Nuclear Information System (INIS)

    Kozak, Sandra; Lercher, Lukas; Karanth, Megha N.; Meijers, Rob; Carlomagno, Teresa; Boivin, Stephane

    2016-01-01

    Maintaining a stable fold for recombinant proteins is challenging, especially when working with highly purified and concentrated samples at temperatures >20 °C. Therefore, it is worthwhile to screen for different buffer components that can stabilize protein samples. Thermal shift assays or ThermoFluor"® provide a high-throughput screening method to assess the thermal stability of a sample under several conditions simultaneously. Here, we describe a thermal shift assay that is designed to optimize conditions for nuclear magnetic resonance studies, which typically require stable samples at high concentration and ambient (or higher) temperature. We demonstrate that for two challenging proteins, the multicomponent screen helped to identify ingredients that increased protein stability, leading to clear improvements in the quality of the spectra. Thermal shift assays provide an economic and time-efficient method to find optimal conditions for NMR structural studies.

  7. Optimization of protein samples for NMR using thermal shift assays

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, Sandra [European Molecular Biology Laboratory (EMBL), Hamburg Outstation, SPC Facility (Germany); Lercher, Lukas; Karanth, Megha N. [European Molecular Biology Laboratory (EMBL), SCB Unit (Germany); Meijers, Rob [European Molecular Biology Laboratory (EMBL), Hamburg Outstation, SPC Facility (Germany); Carlomagno, Teresa, E-mail: teresa.carlomagno@oci.uni-hannover.de [European Molecular Biology Laboratory (EMBL), SCB Unit (Germany); Boivin, Stephane, E-mail: sboivin77@hotmail.com, E-mail: s.boivin@embl-hamburg.de [European Molecular Biology Laboratory (EMBL), Hamburg Outstation, SPC Facility (Germany)

    2016-04-15

    Maintaining a stable fold for recombinant proteins is challenging, especially when working with highly purified and concentrated samples at temperatures >20 °C. Therefore, it is worthwhile to screen for different buffer components that can stabilize protein samples. Thermal shift assays or ThermoFluor{sup ®} provide a high-throughput screening method to assess the thermal stability of a sample under several conditions simultaneously. Here, we describe a thermal shift assay that is designed to optimize conditions for nuclear magnetic resonance studies, which typically require stable samples at high concentration and ambient (or higher) temperature. We demonstrate that for two challenging proteins, the multicomponent screen helped to identify ingredients that increased protein stability, leading to clear improvements in the quality of the spectra. Thermal shift assays provide an economic and time-efficient method to find optimal conditions for NMR structural studies.

  8. Operon Gene Order Is Optimized for Ordered Protein Complex Assembly

    Science.gov (United States)

    Wells, Jonathan N.; Bergendahl, L. Therese; Marsh, Joseph A.

    2016-01-01

    Summary The assembly of heteromeric protein complexes is an inherently stochastic process in which multiple genes are expressed separately into proteins, which must then somehow find each other within the cell. Here, we considered one of the ways by which prokaryotic organisms have attempted to maximize the efficiency of protein complex assembly: the organization of subunit-encoding genes into operons. Using structure-based assembly predictions, we show that operon gene order has been optimized to match the order in which protein subunits assemble. Exceptions to this are almost entirely highly expressed proteins for which assembly is less stochastic and for which precisely ordered translation offers less benefit. Overall, these results show that ordered protein complex assembly pathways are of significant biological importance and represent a major evolutionary constraint on operon gene organization. PMID:26804901

  9. Human bone marrow mesenchymal progenitors: perspectives on an optimized in vitro manipulation

    Directory of Open Access Journals (Sweden)

    Eric Cordeiro-Spinetti

    2014-03-01

    Full Text Available When it comes to regenerative medicine, mesenchymal stem cells (MSCs are considered one of the most promising cell types for use in many cell therapies and bioengineering protocols. The International Society of Cellular Therapy recommended minimal criteria for defining multipotential MSC is based on adhesion and multipotency in vitro, and the presence or absence of select surface markers. Though these criteria help minimize discrepancies and allow some comparisons of data generated in different laboratories, the conditions in which cells are isolated and expanded are often not considered. Herein, we propose and recommend a few procedures to be followed to facilitate the establishment of quality control standards when working with mesenchymal progenitors isolation and expansion. Following these procedures, the classic Colony-Forming Unit-Fibroblast (CFU-f assay is revisited and three major topics are considered to define conditions and to assist on protocol optimization and data interpretation. We envision that the creation of a guideline will help in the identification and isolation of long-term stem cells and short-term progenitors to better explore their regenerative potential for multiple therapeutic purposes.

  10. Incoherent manipulation of the photoactive yellow protein photocycle with dispersed pump-dump-probe spectroscopy.

    NARCIS (Netherlands)

    Larsen, D.S.; van Stokkum, I.H.M.; Vengris, M.; van der Horst, M.A.; de Weerd, F.; Hellingwerf, K.J.; van Grondelle, R.

    2004-01-01

    Photoactive yellow protein is the protein responsible for initiating the ``blue-light vision¿¿ of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast

  11. Incoherent manipulation of the photoactive yellow protein photocycle with dispersed pump-dump-probe spectroscopy

    NARCIS (Netherlands)

    Larsen, D.S.; van Stokkum, I.H.M.; Vengris, M.; Horst, M.A.; de Weerd, F.L.; Hellingwerf, K.J.; van Grondelle, R.

    2004-01-01

    Photoactive yellow protein is the protein responsible for initiating the "blue-light vision" of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast

  12. Parallel Evolutionary Optimization Algorithms for Peptide-Protein Docking

    Science.gov (United States)

    Poluyan, Sergey; Ershov, Nikolay

    2018-02-01

    In this study we examine the possibility of using evolutionary optimization algorithms in protein-peptide docking. We present the main assumptions that reduce the docking problem to a continuous global optimization problem and provide a way of using evolutionary optimization algorithms. The Rosetta all-atom force field was used for structural representation and energy scoring. We describe the parallelization scheme and MPI/OpenMP realization of the considered algorithms. We demonstrate the efficiency and the performance for some algorithms which were applied to a set of benchmark tests.

  13. Optimization of Protein Hydrolysate Production Process from Jatropha curcas Cake

    OpenAIRE

    Waraporn Apiwatanapiwat; Pilanee Vaithanomsat; Phanu Somkliang; Taweesiri Malapant

    2009-01-01

    This was the first document revealing the investigation of protein hydrolysate production optimization from J. curcas cake. Proximate analysis of raw material showed 18.98% protein, 5.31% ash, 8.52% moisture and 12.18% lipid. The appropriate protein hydrolysate production process began with grinding the J. curcas cake into small pieces. Then it was suspended in 2.5% sodium hydroxide solution with ratio between solution/ J. curcas cake at 80:1 (v/w). The hydrolysis reactio...

  14. Optimized Baxter model of protein solutions : Electrostatics versus adhesion

    NARCIS (Netherlands)

    Prinsen, P.; Odijk, T.

    2004-01-01

    A theory is set up of spherical proteins interacting by screened electrostatics and constant adhesion, in which the effective adhesion parameter is optimized by a variational principle for the free energy. An analytical approach to the second virial coefficient is first outlined by balancing the

  15. Optimal external laryngeal manipulation versus McCoy blade in active position in patients with poor view of glottis on direct laryngoscopy

    Directory of Open Access Journals (Sweden)

    Arumugam Vasudevan

    2010-01-01

    Full Text Available Successful endotracheal intubation requires a clear view of glottis. Optimal external laryngeal manipulation may improve the view of glottis on direct laryngoscopy with Macintosh blade, but it requires another trained hand. Alternatively, McCoy laryngoscope with elevated tip may be useful. This study has been designed to compare the two techniques in patients with poor view of glottis. Two hundred patients with ′Grade 2 or more′ view of glottis on direct laryngoscopy with Macintosh blade are included in the study. Optimal external laryngeal manipulation was applied, followed by laryngoscopy with McCoy blade in activated position; and the view was noted in both situations. The two interventions were compared using Chi-square test. The overall changes, in the views, were analyzed with Wilcoxon signed rank test. Both the techniques improved the view of glottis significantly (P< 0.05. Optimal external laryngeal manipulation was significantly better than McCoy laryngoscope in active position, especially in patients with Grade 3 or 4 baseline view, poor oropharyngeal class, decreased head extension and decreased submandibular space (odds ratio = 2.36, 3.17, 3.22 and 26.48 respectively. To conclude, optimal external laryngeal manipulation is a better technique than McCoy laryngoscope in patients with poor view of glottis on direct laryngoscopy with Macintosh blade.

  16. Reversals and collisions optimize protein exchange in bacterial swarms

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, Aboutaleb; Harvey, Cameron; Buchmann, Amy; Christley, Scott; Shrout, Joshua D.; Aranson, Igor S.; Alber, Mark

    2017-03-01

    Swarming groups of bacteria coordinate their behavior by self-organizing as a population to move over surfaces in search of nutrients and optimal niches for colonization. Many open questions remain about the cues used by swarming bacteria to achieve this self-organization. While chemical cue signaling known as quorum sensing is well-described, swarming bacteria often act and coordinate on time scales that could not be achieved via these extracellular quorum sensing cues. Here, cell-cell contact-dependent protein exchange is explored as amechanism of intercellular signaling for the bacterium Myxococcus xanthus. A detailed biologically calibrated computational model is used to study how M. xanthus optimizes the connection rate between cells and maximizes the spread of an extracellular protein within the population. The maximum rate of protein spreading is observed for cells that reverse direction optimally for swarming. Cells that reverse too slowly or too fast fail to spread extracellular protein efficiently. In particular, a specific range of cell reversal frequencies was observed to maximize the cell-cell connection rate and minimize the time of protein spreading. Furthermore, our findings suggest that predesigned motion reversal can be employed to enhance the collective behavior of biological synthetic active systems.

  17. Protein structure prediction using bee colony optimization metaheuristic

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Paluszewski, Martin; Winter, Pawel

    2010-01-01

    of the proteins structure, an energy potential and some optimization algorithm that ¿nds the structure with minimal energy. Bee Colony Optimization (BCO) is a relatively new approach to solving opti- mization problems based on the foraging behaviour of bees. Several variants of BCO have been suggested......Predicting the native structure of proteins is one of the most challenging problems in molecular biology. The goal is to determine the three-dimensional struc- ture from the one-dimensional amino acid sequence. De novo prediction algorithms seek to do this by developing a representation...... our BCO method to generate good solutions to the protein structure prediction problem. The results show that BCO generally ¿nds better solutions than simulated annealing which so far has been the metaheuristic of choice for this problem....

  18. See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins

    NARCIS (Netherlands)

    van Mameren, J.; Peterman, E.J.G.; Wuite, G.J.L.

    2008-01-01

    Direct visualization of DNA and proteins allows researchers to investigate DNA-protein interactions with great detail. Much progress has been made in this area as a result of increasingly sensitive single-molecule fluorescence techniques. At the same time, methods that control the conformation of

  19. Understanding and Manipulating Electrostatic Fields at the Protein-Protein Interface Using Vibrational Spectroscopy and Continuum Electrostatics Calculations.

    Science.gov (United States)

    Ritchie, Andrew W; Webb, Lauren J

    2015-11-05

    Biological function emerges in large part from the interactions of biomacromolecules in the complex and dynamic environment of the living cell. For this reason, macromolecular interactions in biological systems are now a major focus of interest throughout the biochemical and biophysical communities. The affinity and specificity of macromolecular interactions are the result of both structural and electrostatic factors. Significant advances have been made in characterizing structural features of stable protein-protein interfaces through the techniques of modern structural biology, but much less is understood about how electrostatic factors promote and stabilize specific functional macromolecular interactions over all possible choices presented to a given molecule in a crowded environment. In this Feature Article, we describe how vibrational Stark effect (VSE) spectroscopy is being applied to measure electrostatic fields at protein-protein interfaces, focusing on measurements of guanosine triphosphate (GTP)-binding proteins of the Ras superfamily binding with structurally related but functionally distinct downstream effector proteins. In VSE spectroscopy, spectral shifts of a probe oscillator's energy are related directly to that probe's local electrostatic environment. By performing this experiment repeatedly throughout a protein-protein interface, an experimental map of measured electrostatic fields generated at that interface is determined. These data can be used to rationalize selective binding of similarly structured proteins in both in vitro and in vivo environments. Furthermore, these data can be used to compare to computational predictions of electrostatic fields to explore the level of simulation detail that is necessary to accurately predict our experimental findings.

  20. A Bayesian Sampler for Optimization of Protein Domain Hierarchies

    Science.gov (United States)

    2014-01-01

    Abstract The process of identifying and modeling functionally divergent subgroups for a specific protein domain class and arranging these subgroups hierarchically has, thus far, largely been done via manual curation. How to accomplish this automatically and optimally is an unsolved statistical and algorithmic problem that is addressed here via Markov chain Monte Carlo sampling. Taking as input a (typically very large) multiple-sequence alignment, the sampler creates and optimizes a hierarchy by adding and deleting leaf nodes, by moving nodes and subtrees up and down the hierarchy, by inserting or deleting internal nodes, and by redefining the sequences and conserved patterns associated with each node. All such operations are based on a probability distribution that models the conserved and divergent patterns defining each subgroup. When we view these patterns as sequence determinants of protein function, each node or subtree in such a hierarchy corresponds to a subgroup of sequences with similar biological properties. The sampler can be applied either de novo or to an existing hierarchy. When applied to 60 protein domains from multiple starting points in this way, it converged on similar solutions with nearly identical log-likelihood ratio scores, suggesting that it typically finds the optimal peak in the posterior probability distribution. Similarities and differences between independently generated, nearly optimal hierarchies for a given domain help distinguish robust from statistically uncertain features. Thus, a future application of the sampler is to provide confidence measures for various features of a domain hierarchy. PMID:24494927

  1. Optimization of Xenon Biosensors for Detection of Protein Interactions

    International Nuclear Information System (INIS)

    Lowery, Thomas J.; Garcia, Sandra; Chavez, Lana; Ruiz, E.Janette; Wu, Tom; Brotin, Thierry; Dutasta, Jean-Pierre; King, David S.; Schultz, Peter G.; Pines, Alex; Wemmer, David E.

    2005-08-01

    Hyperpolarized 129Xe NMR can detect the presence of specific low-concentration biomolecular analytes by means of the xenon biosensor, which consists of a water-soluble, targeted cryptophane-A cage that encapsulates xenon. In this work we use the prototypical biotinylated xenon biosensor to determine the relationship between the molecular composition of the xenon biosensor and the characteristics of protein-bound resonances. The effects of diastereomer overlap, dipole-dipole coupling, chemical shift anisotropy, xenon exchange, and biosensor conformational exchange on protein-bound biosensor signal were assessed. It was found that optimal protein-bound biosensor signal can be obtained by minimizing the number of biosensor diastereomers and using a flexible linker of appropriate length. Both the linewidth and sensitivity of chemical shift to protein binding of the xenon biosensor were found to be inversely proportional to linker length

  2. Shrinkage of spray-freeze-dried microparticles of pure protein for ballistic injection by manipulation of freeze-drying cycle.

    Science.gov (United States)

    Straller, Georg; Lee, Geoffrey

    2017-10-30

    Spray-freeze-drying was used to produce shrivelled, partially-collapsed microparticles of pure proteins that may be suitable for use in a ballistic injector. Various modifications of the freeze drying cycle were examined for their effects on collapse of the pure protein microparticles. The use of annealing at a shelf temperature of up to +10°C resulted in no visible particle shrinkage. This was because of the high T g ' of the pure protein. Inclusion of trehalose or sucrose led to particle shrinkage because of the plasticizing effects of the disaccharides on the protein. Only by extending the duration of primary drying from 240 to 2745min at shelf temperatures in the range -12 to -8°C were shrivelled, wrinkled particles of bSA and bCA of reduced porosity obtained. Manipulation of the freeze-drying cycle used for SFD can therefore be used to modify particle morphology and increase particle density. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Blood profiling of proteins and steroids during weight maintenance with manipulation of dietary protein level and glycaemic index

    DEFF Research Database (Denmark)

    Wang, Ping; Holst, Claus; Astrup, Arne

    2012-01-01

    ) blood biomarkers of dietary protein and GI levels during the weight-maintenance phase. Blood samples were collected at baseline, after 8 weeks of low-energy diet-induced weight loss and after a 6-month dietary intervention period from female continued weight losers (n 48) and weight regainers (n 48......), evenly selected from four dietary groups that varied in protein and GI levels. The blood concentrations of twenty-nine proteins and three steroid hormones were measured. The changes in analytes during weight maintenance largely correlated negatively with the changes during weight loss, with some...

  4. Using Simple Manipulatives to Improve Student Comprehension of a Complex Biological Process: Protein Synthesis

    Science.gov (United States)

    Guzman, Karen; Bartlett, John

    2012-01-01

    Biological systems and living processes involve a complex interplay of biochemicals and macromolecular structures that can be challenging for undergraduate students to comprehend and, thus, misconceptions abound. Protein synthesis, or translation, is an example of a biological process for which students often hold many misconceptions. This article…

  5. Optimizing Urine Processing Protocols for Protein and Metabolite Detection.

    Science.gov (United States)

    Siddiqui, Nazema Y; DuBois, Laura G; St John-Williams, Lisa; Will, Thompson J; Grenier, Carole; Burke, Emily; Fraser, Matthew O; Amundsen, Cindy L; Murphy, Susan K

    In urine, factors such as timing of voids, and duration at room temperature (RT) may affect the quality of recovered protein and metabolite data. Additives may aid with detection, but can add more complexity in sample collection or analysis. We aimed to identify the optimal urine processing protocol for clinically-obtained urine samples that allows for the highest protein and metabolite yields with minimal degradation. Healthy women provided multiple urine samples during the same day. Women collected their first morning (1 st AM) void and another "random void". Random voids were aliquotted with: 1) no additive; 2) boric acid (BA); 3) protease inhibitor (PI); or 4) both BA + PI. Of these aliquots, some were immediately stored at 4°C, and some were left at RT for 4 hours. Proteins and individual metabolites were quantified, normalized to creatinine concentrations, and compared across processing conditions. Sample pools corresponding to each processing condition were analyzed using mass spectrometry to assess protein degradation. Ten Caucasian women between 35-65 years of age provided paired 1 st morning and random voided urine samples. Normalized protein concentrations were slightly higher in 1 st AM compared to random "spot" voids. The addition of BA did not significantly change proteins, while PI significantly improved normalized protein concentrations, regardless of whether samples were immediately cooled or left at RT for 4 hours. In pooled samples, there were minimal differences in protein degradation under the various conditions we tested. In metabolite analyses, there were significant differences in individual amino acids based on the timing of the void. For comparative translational research using urine, information about void timing should be collected and standardized. For urine samples processed in the same day, BA does not appear to be necessary while the addition of PI enhances protein yields, regardless of 4°C or RT storage temperature.

  6. Ultra-fast optical manipulation of single proteins binding to the actin cytoskeleton

    Science.gov (United States)

    Capitanio, Marco; Gardini, Lucia; Pavone, Francesco Saverio

    2014-02-01

    In the last decade, forces and mechanical stresses acting on biological systems are emerging as regulatory factors essential for cell life. Emerging evidences indicate that factors such as applied forces or the rigidity of the extracellular matrix (ECM) determine the shape and function of cells and organisms1. Classically, the regulation of biological systems is described through a series of biochemical signals and enzymatic reactions, which direct the processes and cell fate. However, mechanotransduction, i.e. the conversion of mechanical forces into biochemical and biomolecular signals, is at the basis of many biological processes fundamental for the development and differentiation of cells, for their correct function and for the development of pathologies. We recently developed an in vitro system that allows the investigation of force-dependence of the interaction of proteins binding the actin cytoskeleton, at the single molecule level. Our system displays a delay of only ~10 μs between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 μs. Our assay allows direct measurements of load-dependence of lifetimes of single molecular bonds and conformational changes of single proteins and molecular motors. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.

  7. Optimal neural networks for protein-structure prediction

    International Nuclear Information System (INIS)

    Head-Gordon, T.; Stillinger, F.H.

    1993-01-01

    The successful application of neural-network algorithms for prediction of protein structure is stymied by three problem areas: the sparsity of the database of known protein structures, poorly devised network architectures which make the input-output mapping opaque, and a global optimization problem in the multiple-minima space of the network variables. We present a simplified polypeptide model residing in two dimensions with only two amino-acid types, A and B, which allows the determination of the global energy structure for all possible sequences of pentamer, hexamer, and heptamer lengths. This model simplicity allows us to compile a complete structural database and to devise neural networks that reproduce the tertiary structure of all sequences with absolute accuracy and with the smallest number of network variables. These optimal networks reveal that the three problem areas are convoluted, but that thoughtful network designs can actually deconvolute these detrimental traits to provide network algorithms that genuinely impact on the ability of the network to generalize or learn the desired mappings. Furthermore, the two-dimensional polypeptide model shows sufficient chemical complexity so that transfer of neural-network technology to more realistic three-dimensional proteins is evident

  8. Monitoring single membrane protein dynamics in a liposome manipulated in solution by the ABELtrap

    Science.gov (United States)

    Rendler, T.; Renz, M.; Hammann, E.; Ernst, S.; Zarrabi, N.; Börsch, M.

    2011-02-01

    FoF1-ATP synthase is the essential membrane enzyme maintaining the cellular level of adenosine triphosphate (ATP) and comprises two rotary motors. We measure subunit rotation in FoF1-ATP synthase by intramolecular Foerster resonance energy transfer (FRET) between two fluorophores at the rotor and at the stator of the enzyme. Confocal FRET measurements of freely diffusing single enzymes in lipid vesicles are limited to hundreds of milliseconds by the transit times through the laser focus. We evaluate two different methods to trap the enzyme inside the confocal volume in order to extend the observation times. Monte Carlo simulations show that optical tweezers with low laser power are not suitable for lipid vesicles with a diameter of 130 nm. A. E. Cohen (Harvard) and W. E. Moerner (Stanford) have recently developed an Anti-Brownian electrokinetic trap (ABELtrap) which is capable to apparently immobilize single molecules, proteins, viruses or vesicles in solution. Trapping of fluorescent particles is achieved by applying a real time, position-dependent feedback to four electrodes in a microfluidic device. The standard deviation from a given target position in the ABELtrap is smaller than 200 nm. We develop a combination of the ABELtrap with confocal FRET measurements to monitor single membrane enzyme dynamics by FRET for more than 10 seconds in solution.

  9. Guaranteed Discrete Energy Optimization on Large Protein Design Problems.

    Science.gov (United States)

    Simoncini, David; Allouche, David; de Givry, Simon; Delmas, Céline; Barbe, Sophie; Schiex, Thomas

    2015-12-08

    In Computational Protein Design (CPD), assuming a rigid backbone and amino-acid rotamer library, the problem of finding a sequence with an optimal conformation is NP-hard. In this paper, using Dunbrack's rotamer library and Talaris2014 decomposable energy function, we use an exact deterministic method combining branch and bound, arc consistency, and tree-decomposition to provenly identify the global minimum energy sequence-conformation on full-redesign problems, defining search spaces of size up to 10(234). This is achieved on a single core of a standard computing server, requiring a maximum of 66GB RAM. A variant of the algorithm is able to exhaustively enumerate all sequence-conformations within an energy threshold of the optimum. These proven optimal solutions are then used to evaluate the frequencies and amplitudes, in energy and sequence, at which an existing CPD-dedicated simulated annealing implementation may miss the optimum on these full redesign problems. The probability of finding an optimum drops close to 0 very quickly. In the worst case, despite 1,000 repeats, the annealing algorithm remained more than 1 Rosetta unit away from the optimum, leading to design sequences that could differ from the optimal sequence by more than 30% of their amino acids.

  10. Footprints of Optimal Protein Assembly Strategies in the Operonic Structure of Prokaryotes

    Directory of Open Access Journals (Sweden)

    Jan Ewald

    2015-04-01

    Full Text Available In this work, we investigate optimality principles behind synthesis strategies for protein complexes using a dynamic optimization approach. We show that the cellular capacity of protein synthesis has a strong influence on optimal synthesis strategies reaching from a simultaneous to a sequential synthesis of the subunits of a protein complex. Sequential synthesis is preferred if protein synthesis is strongly limited, whereas a simultaneous synthesis is optimal in situations with a high protein synthesis capacity. We confirm the predictions of our optimization approach through the analysis of the operonic organization of protein complexes in several hundred prokaryotes. Thereby, we are able to show that cellular protein synthesis capacity is a driving force in the dissolution of operons comprising the subunits of a protein complex. Thus, we also provide a tested hypothesis explaining why the subunits of many prokaryotic protein complexes are distributed across several operons despite the presumably less precise co-regulation.

  11. Protein homology model refinement by large-scale energy optimization.

    Science.gov (United States)

    Park, Hahnbeom; Ovchinnikov, Sergey; Kim, David E; DiMaio, Frank; Baker, David

    2018-03-20

    Proteins fold to their lowest free-energy structures, and hence the most straightforward way to increase the accuracy of a partially incorrect protein structure model is to search for the lowest-energy nearby structure. This direct approach has met with little success for two reasons: first, energy function inaccuracies can lead to false energy minima, resulting in model degradation rather than improvement; and second, even with an accurate energy function, the search problem is formidable because the energy only drops considerably in the immediate vicinity of the global minimum, and there are a very large number of degrees of freedom. Here we describe a large-scale energy optimization-based refinement method that incorporates advances in both search and energy function accuracy that can substantially improve the accuracy of low-resolution homology models. The method refined low-resolution homology models into correct folds for 50 of 84 diverse protein families and generated improved models in recent blind structure prediction experiments. Analyses of the basis for these improvements reveal contributions from both the improvements in conformational sampling techniques and the energy function.

  12. Nutrition to Support Recovery from Endurance Exercise: Optimal Carbohydrate and Protein Replacement.

    Science.gov (United States)

    Moore, Daniel R

    2015-01-01

    Proper nutrition is vital to optimize recovery after endurance exercise. Dietary carbohydrate and protein provide the requisite substrates to enhance glycogen resynthesis and remodel skeletal muscle proteins, respectively, both of which would be important to rapidly restore muscle function and performance. With short recovery windows (optimal ingestion of both carbohydrate and protein.

  13. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions.

    Directory of Open Access Journals (Sweden)

    Uhna Sung

    Full Text Available FRET (Förster Resonance Energy Transfer-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different "Nabi1" constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms and signal decay (~3 ms. We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP and mRuby2 (acceptor FP to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz.

  14. Manipulation technology optimization for the interim storage of HAW transport and storage containers; Optimierung der Handhabungstechnik zur Zwischenlagerung von HAW-Transport- und Lagerbehaeltern

    Energy Technology Data Exchange (ETDEWEB)

    Emmrich, Uwe; Krueger, Michael; Schulze, Hartmut [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2011-07-01

    The handling of high-level radioactive waste transport and storage containers from reprocessing plants is determined by the cask configuration and the radiation protection measures with respect to the safe enclosure of the radioactive inventory and shielding of gamma and neutron radiation. The new of CASTOR {sup registered} HAW28M was designed for higher radioactive inventories, the heat generation is has rarely been changed with respect to the former design. The essential structural modifications are shock absorbers that have to be demounted before storage in the interim storage facility Gorleben. Due to public acceptance forcings the ALARA principle is not the only basis for manipulation technology optimizations, the minimization of dose rate for the operational personnel is of increasing importance. The authors describe the optimizations and the resulting dose reductions.

  15. Reversed phase liquid chromatography hyphenated to continuous flow-extractive desorption electrospray ionization-mass spectrometry for analysis and charge state manipulation of undigested proteins

    Czech Academy of Sciences Publication Activity Database

    Li, L.; Yang, S.; Vidová, Veronika; Rice, E. M.; Wijeratne, A.; Havlíček, Vladimír; Schug, K. A.

    2015-01-01

    Roč. 21, č. 3 (2015), s. 361-368 ISSN 1469-0667 R&D Projects: GA ČR(CZ) GAP206/12/1150; GA MŠk(CZ) LH14064; GA MŠk LO1509 Institutional support: RVO:61388971 Keywords : protein chromatography * ambient ionization * charge-state manipulation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.011, year: 2015

  16. A manipulator

    International Nuclear Information System (INIS)

    Cole, G.V.; Hofmann, D.A.; Ashby, R.

    1984-01-01

    A manipulator is described, for remote handling of objects within an enclosure, by an operator outside the enclosure. The manipulator consists of a telescopically extensible arm member, the action of which is controlled by a motor-driven lead screw. (U.K.)

  17. Development of a coupled tendon-driven 3D multi-joint manipulator. Investigation of tension transfer efficiency, optimal reel arrangement and tip positioning accuracy

    International Nuclear Information System (INIS)

    Horigome, Atsushi; Yamada, Hiroya; Hirose, Shigeo; Sen, Shin; Endo, Gen

    2017-01-01

    Long-reach robotic manipulators are expected to be used in the space where humans cannot work such as nuclear power plant disaster areas. We suggested a coupled tendon-driven articulated manipulator '3D CT-Arm' and developed a preliminary prototype 'Mini 3D CT-Arm' whose arm had 2.4 m length and 0.3 m width. In order to consider developing '3D CT-Arm' deeply, we discussed tension transfer efficiency of a tendon through pulleys, the arrangement of the maximum number of reels in a limited space and the tip positioning accuracy. Through many transfer efficiency experiments, we conclude that tension transfer efficiency of '3D CT-Arm' can reach over 88% in the worst case. We investigated non-interfering reels' arrangement in the base by full search in cases of up to 10 reels. In all simulations, V-shaped or W-shaped arrangement can support the most reels in a limited space. Therefore, we conclude this is the most optimal reels' arrangement. Finally, we carried out the positioning accuracy experiment with 'Mini 3D CT-Arm' via motion capture system. Although the tip position had a 2 to 41 mm error between the desired value and the measured value by potentiometer, a 29 to 95 mm error between the desired value and the measured value was measured by motion capture system. (author)

  18. Dietary protein content for an optimal diet: a clinical view

    OpenAIRE

    Santarpia, Lidia; Contaldo, Franco; Pasanisi, Fabrizio

    2017-01-01

    Abstract The dietary protein role in different clinical nutritional conditions and some physio?pathological perspectives is a current and hot topic to discuss. Recent Proceedings of the Protein Summit 2, joining more than 60 nutrition scientists, health experts, and nutrition educators, suggest to increase plant but, in particular, animal protein intake because richer in leucine and consequently more effective to influence anabolic protein metabolism. The Panel conclusions are in apparent con...

  19. Manipulating the Gradient

    Science.gov (United States)

    Gaze, Eric C.

    2005-01-01

    We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…

  20. Dietary protein content for an optimal diet: a clinical view.

    Science.gov (United States)

    Santarpia, Lidia; Contaldo, Franco; Pasanisi, Fabrizio

    2017-06-01

    The dietary protein role in different clinical nutritional conditions and some physio-pathological perspectives is a current and hot topic to discuss. Recent Proceedings of the Protein Summit 2, joining more than 60 nutrition scientists, health experts, and nutrition educators, suggest to increase plant but, in particular, animal protein intake because richer in leucine and consequently more effective to influence anabolic protein metabolism. The Panel conclusions are in apparent contradiction with the nutritional ecology statements, which strongly sustain the reduction of animal origin foods in the human diet and are currently concerned about the excessive, mainly animal protein intake in western and westernized Countries. In conclusion, it is time to carefully evaluate protein and aminoacid intake accurately considering quality, digestibility, daily distribution and individual characteristics. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  1. Manipulation of host factors optimizes the pathogenesis of western equine encephalitis virus infections in mice for antiviral drug development

    Science.gov (United States)

    Blakely, Pennelope K.; Delekta, Phillip C.; Miller, David J.; Irani, David N.

    2014-01-01

    While alphaviruses spread naturally via mosquito vectors, some can also be transmitted as aerosols making them potential bioterrorism agents. One such pathogen, western equine encephalitis virus (WEEV), causes fatal human encephalitis via multiple routes of infection and thus presumably via multiple mechanisms. Although WEEV also produces acute encephalitis in non-human primates, a small animal model that recapitulates features of human disease would be useful for both pathogenesis studies and to evaluate candidate antiviral therapies. We have optimized conditions to infect mice with a low passage isolate of WEEV, thereby allowing detailed investigation of virus tropism, replication, neuroinvasion, and neurovirulence. We find that host factors strongly influence disease outcome, and in particular that age, gender and genetic background all have significant effects on disease susceptibility independent of virus tropism or replication within the central nervous system. Our data show that experimental variables can be adjusted in mice to recapitulate disease features known to occur in both non-human primates and humans, thus aiding further study of WEEV pathogenesis and providing a realistic therapeutic window for antiviral drug delivery. PMID:25361697

  2. Global optimization of proteins using a dynamical lattice model: Ground states and energy landscapes

    OpenAIRE

    Dressel, F.; Kobe, S.

    2004-01-01

    A simple approach is proposed to investigate the protein structure. Using a low complexity model, a simple pairwise interaction and the concept of global optimization, we are able to calculate ground states of proteins, which are in agreement with experimental data. All possible model structures of small proteins are available below a certain energy threshold. The exact lowenergy landscapes for the trp cage protein (1L2Y) is presented showing the connectivity of all states and energy barriers.

  3. Bacteria modulate the CD8+ T cell epitope repertoire of host cytosol-exposed proteins to manipulate the host immune response.

    Directory of Open Access Journals (Sweden)

    Yaakov Maman

    2011-10-01

    Full Text Available The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested.

  4. Manipulatives Work!

    Science.gov (United States)

    Moch, Peggy L.

    2001-01-01

    Fifth graders (n=16) engaged in manipulative activities to improve their grasp of math concepts; one-third were identified as exceptional children. Posttest results after 12 lessons showed the overall class average increased from 49% to 59% and all areas improved compared to pretest scores. Attitude changes were also apparent. (Contains 24…

  5. Optimized protein extraction for quantitative proteomics of yeasts.

    Directory of Open Access Journals (Sweden)

    Tobias von der Haar

    2007-10-01

    Full Text Available The absolute quantification of intracellular protein levels is technically demanding, but has recently become more prominent because novel approaches like systems biology and metabolic control analysis require knowledge of these parameters. Current protocols for the extraction of proteins from yeast cells are likely to introduce artifacts into quantification procedures because of incomplete or selective extraction.We have developed a novel procedure for protein extraction from S. cerevisiae based on chemical lysis and simultaneous solubilization in SDS and urea, which can extract the great majority of proteins to apparent completeness. The procedure can be used for different Saccharomyces yeast species and varying growth conditions, is suitable for high-throughput extraction in a 96-well format, and the resulting extracts can easily be post-processed for use in non-SDS compatible procedures like 2D gel electrophoresis.An improved method for quantitative protein extraction has been developed that removes some of the sources of artefacts in quantitative proteomics experiments, while at the same time allowing novel types of applications.

  6. Optimization of translation profiles enhances protein expression and solubility.

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Hess

    Full Text Available mRNA is translated with a non-uniform speed that actively coordinates co-translational folding of protein domains. Using structure-based homology we identified the structural domains in epoxide hydrolases (EHs and introduced slow-translating codons to delineate the translation of single domains. These changes in translation speed dramatically improved the solubility of two EHs of metagenomic origin in Escherichia coli. Conversely, the importance of transient attenuation for the folding, and consequently solubility, of EH was evidenced with a member of the EH family from Agrobacterium radiobacter, which partitions in the soluble fraction when expressed in E. coli. Synonymous substitutions of codons shaping the slow-transiting regions to fast-translating codons render this protein insoluble. Furthermore, we show that low protein yield can be enhanced by decreasing the free folding energy of the initial 5'-coding region, which can disrupt mRNA secondary structure and enhance ribosomal loading. This study provides direct experimental evidence that mRNA is not a mere messenger for translation of codons into amino acids but bears an additional layer of information for folding, solubility and expression level of the encoded protein. Furthermore, it provides a general frame on how to modulate and fine-tune gene expression of a target protein.

  7. Simulating and Optimizing Preparative Protein Chromatography with ChromX

    Science.gov (United States)

    Hahn, Tobias; Huuk, Thiemo; Heuveline, Vincent; Hubbuch, Ju¨rgen

    2015-01-01

    Industrial purification of biomolecules is commonly based on a sequence of chromatographic processes, which are adapted slightly to new target components, as the time to market is crucial. To improve time and material efficiency, modeling is increasingly used to determine optimal operating conditions, thus providing new challenges for current and…

  8. Tuning of Recombinant Protein Expression in Escherichia coli by Manipulating Transcription, Translation Initiation Rates, and Incorporation of Noncanonical Amino Acids.

    Science.gov (United States)

    Schlesinger, Orr; Chemla, Yonatan; Heltberg, Mathias; Ozer, Eden; Marshall, Ryan; Noireaux, Vincent; Jensen, Mogens Høgh; Alfonta, Lital

    2017-06-16

    Protein synthesis in cells has been thoroughly investigated and characterized over the past 60 years. However, some fundamental issues remain unresolved, including the reasons for genetic code redundancy and codon bias. In this study, we changed the kinetics of the Eschrichia coli transcription and translation processes by mutating the promoter and ribosome binding domains and by using genetic code expansion. The results expose a counterintuitive phenomenon, whereby an increase in the initiation rates of transcription and translation lead to a decrease in protein expression. This effect can be rescued by introducing slow translating codons into the beginning of the gene, by shortening gene length or by reducing initiation rates. On the basis of the results, we developed a biophysical model, which suggests that the density of co-transcriptional-translation plays a role in bacterial protein synthesis. These findings indicate how cells use codon bias to tune translation speed and protein synthesis.

  9. An optimal set of features for predicting type IV secretion system effector proteins for a subset of species based on a multi-level feature selection approach.

    Directory of Open Access Journals (Sweden)

    Zhila Esna Ashari

    Full Text Available Type IV secretion systems (T4SS are multi-protein complexes in a number of bacterial pathogens that can translocate proteins and DNA to the host. Most T4SSs function in conjugation and translocate DNA; however, approximately 13% function to secrete proteins, delivering effector proteins into the cytosol of eukaryotic host cells. Upon entry, these effectors manipulate the host cell's machinery for their own benefit, which can result in serious illness or death of the host. For this reason recognition of T4SS effectors has become an important subject. Much previous work has focused on verifying effectors experimentally, a costly endeavor in terms of money, time, and effort. Having good predictions for effectors will help to focus experimental validations and decrease testing costs. In recent years, several scoring and machine learning-based methods have been suggested for the purpose of predicting T4SS effector proteins. These methods have used different sets of features for prediction, and their predictions have been inconsistent. In this paper, an optimal set of features is presented for predicting T4SS effector proteins using a statistical approach. A thorough literature search was performed to find features that have been proposed. Feature values were calculated for datasets of known effectors and non-effectors for T4SS-containing pathogens for four genera with a sufficient number of known effectors, Legionella pneumophila, Coxiella burnetii, Brucella spp, and Bartonella spp. The features were ranked, and less important features were filtered out. Correlations between remaining features were removed, and dimensional reduction was accomplished using principal component analysis and factor analysis. Finally, the optimal features for each pathogen were chosen by building logistic regression models and evaluating each model. The results based on evaluation of our logistic regression models confirm the effectiveness of our four optimal sets of

  10. Fluorescent in situ folding control for rapid optimization of cell-free membrane protein synthesis.

    Directory of Open Access Journals (Sweden)

    Annika Müller-Lucks

    Full Text Available Cell-free synthesis is an open and powerful tool for high-yield protein production in small reaction volumes predestined for high-throughput structural and functional analysis. Membrane proteins require addition of detergents for solubilization, liposomes, or nanodiscs. Hence, the number of parameters to be tested is significantly higher than with soluble proteins. Optimization is commonly done with respect to protein yield, yet without knowledge of the protein folding status. This approach contains a large inherent risk of ending up with non-functional protein. We show that fluorophore formation in C-terminal fusions with green fluorescent protein (GFP indicates the folding state of a membrane protein in situ, i.e. within the cell-free reaction mixture, as confirmed by circular dichroism (CD, proteoliposome reconstitution and functional assays. Quantification of protein yield and in-gel fluorescence intensity imply suitability of the method for membrane proteins of bacterial, protozoan, plant, and mammalian origin, representing vacuolar and plasma membrane localization, as well as intra- and extracellular positioning of the C-terminus. We conclude that GFP-fusions provide an extension to cell-free protein synthesis systems eliminating the need for experimental folding control and, thus, enabling rapid optimization towards membrane protein quality.

  11. A Particle Swarm Optimization-Based Approach with Local Search for Predicting Protein Folding.

    Science.gov (United States)

    Yang, Cheng-Hong; Lin, Yu-Shiun; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2017-10-01

    The hydrophobic-polar (HP) model is commonly used for predicting protein folding structures and hydrophobic interactions. This study developed a particle swarm optimization (PSO)-based algorithm combined with local search algorithms; specifically, the high exploration PSO (HEPSO) algorithm (which can execute global search processes) was combined with three local search algorithms (hill-climbing algorithm, greedy algorithm, and Tabu table), yielding the proposed HE-L-PSO algorithm. By using 20 known protein structures, we evaluated the performance of the HE-L-PSO algorithm in predicting protein folding in the HP model. The proposed HE-L-PSO algorithm exhibited favorable performance in predicting both short and long amino acid sequences with high reproducibility and stability, compared with seven reported algorithms. The HE-L-PSO algorithm yielded optimal solutions for all predicted protein folding structures. All HE-L-PSO-predicted protein folding structures possessed a hydrophobic core that is similar to normal protein folding.

  12. Non-conventional approaches to food processing in CELSS, 1. Algal proteins: Characterization and process optimization

    Science.gov (United States)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine make algal protein isolate a high quality component of closed ecological life support system diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical carbon dioxide resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  13. Non-conventional approaches to food processing in CELSS. I - Algal proteins: Characterization and process optimization

    Science.gov (United States)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of CELSS diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  14. Manipulation of the membrane binding site of vitamin K-dependent proteins: Enhanced biological function of human factor VII

    OpenAIRE

    Shah, Amit M.; Kisiel, Walter; Foster, Donald C.; Nelsestuen, Gary L.

    1998-01-01

    Recent studies suggested that modification of the membrane contact site of vitamin K-dependent proteins may enhance the membrane affinity and function of members of this protein family. The properties of a factor VII mutant, factor VII-Q10E32, relative to wild-type factor VII (VII, containing P10K32), have been compared. Membrane affinity of VII-Q10E32 was about 20-fold higher than that of wild-type factor VII. The rate of autoactivation VII-Q10E32 with soluble tissue factor was 100-fold fast...

  15. Optimization of functionalization conditions for protein analysis by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo-Hernández, María, E-mail: maria.arroyo@ctb.upm.es [Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid (Spain); Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid (Spain); Daza, Rafael; Pérez-Rigueiro, Jose; Elices, Manuel; Nieto-Márquez, Jorge; Guinea, Gustavo V. [Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid (Spain); Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2014-10-30

    Highlights: • Highest fluorescence is obtained for central conditions. • Largest primary amine contribution is obtained for central conditions. • RMS roughness is smaller than 1 nm for all functional films. • Selected deposition conditions lead to proper RMS and functionality values. • LDH proteins adsorbed on AVS-films were observed by AFM. - Abstract: Activated vapor silanization (AVS) is used to functionalize silicon surfaces through deposition of amine-containing thin films. AVS combines vapor silanization and chemical vapor deposition techniques and allows the properties of the functionalized layers (thickness, amine concentration and topography) to be controlled by tuning the deposition conditions. An accurate characterization is performed to correlate the deposition conditions and functional-film properties. In particular, it is shown that smooth surfaces with a sufficient surface density of amine groups may be obtained with this technique. These surfaces are suitable for the study of proteins with atomic force microscopy.

  16. A model of optimal protein allocation during phototrophic growth

    Czech Academy of Sciences Publication Activity Database

    Faizi, M.; Zavřel, Tomáš; Loureiro, C.; Červený, Jan; Steuer, Ralf

    2018-01-01

    Roč. 166, apr (2018), s. 26-36 ISSN 0303-2647 R&D Projects: GA MŠk(CZ) LO1415; GA ČR(CZ) GA15-17367S; GA MŠk(CZ) LM2015055 Institutional support: RVO:86652079 Keywords : Cellular protein economy * Cyanobacteria * Microbial growth laws * Photosynthesis * Resource allocation * Systems biology Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Environmental biotechnology Impact factor: 1.652, year: 2016

  17. Currency Manipulation

    OpenAIRE

    Weithing Zhang; Thomas Mertens; Tarek Hassan

    2014-01-01

    Many central banks manage the stochastic behavior of their currencies' exchange rates by imposing pegs relative to a target currency. We study the effects of such currency manipulation in a multi-country model of exchange rate determination with endogenous capital accumulation. We find that the imposition of an exchange rate peg relative to a given target currency increases the volatility of consumption in the target country and decreases the volatility of the target currency's exchange rate ...

  18. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.

    Science.gov (United States)

    Lee, Kuo Hao; Chen, Jianhan

    2017-06-15

    Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Hydraulic manipulator

    International Nuclear Information System (INIS)

    Sinha, A.K.; Srikrishnamurty, G.

    1990-01-01

    Successful operation of nuclear plant is largely dependent on safe handling of radio-active material. In order to reduce this handling problem and minimise the exposure of radiation, various handling equipment and manipulators have been developed according to the requirements. Manufacture of nuclear fuel, which is the most important part of the nuclear industry, involves handling of uranium ingots weighing approximately 250 kg. This paper describes a specially designed hydraulic manipulator for handling of the ingots in a limited space. It was designed to grab and handle the ingots in any position. This has following drive motions: (1)gripping and releasing, (2)lifting and lowering (z-motion), (3)rotation about the horizontal axis (azimuth drive), (4)rotation about the job axis, and (5)rotation about the vertical axis. For horizontal motion (X and Y axis motion) this equipment is mounted on a motorised trolley, so that it can move inside the workshop. For all drives except the rotation about the job axis, hydraulic cylinders have been used with a battery operated power pack. Trolley drive is also given power from same battery. This paper describes the design aspects of this manipulator. (author). 4 figs

  20. Optimizing scoring function of protein-nucleic acid interactions with both affinity and specificity.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Yan

    Full Text Available Protein-nucleic acid (protein-DNA and protein-RNA recognition is fundamental to the regulation of gene expression. Determination of the structures of the protein-nucleic acid recognition and insight into their interactions at molecular level are vital to understanding the regulation function. Recently, quantitative computational approach has been becoming an alternative of experimental technique for predicting the structures and interactions of biomolecular recognition. However, the progress of protein-nucleic acid structure prediction, especially protein-RNA, is far behind that of the protein-ligand and protein-protein structure predictions due to the lack of reliable and accurate scoring function for quantifying the protein-nucleic acid interactions. In this work, we developed an accurate scoring function (named as SPA-PN, SPecificity and Affinity of the Protein-Nucleic acid interactions for protein-nucleic acid interactions by incorporating both the specificity and affinity into the optimization strategy. Specificity and affinity are two requirements of highly efficient and specific biomolecular recognition. Previous quantitative descriptions of the biomolecular interactions considered the affinity, but often ignored the specificity owing to the challenge of specificity quantification. We applied our concept of intrinsic specificity to connect the conventional specificity, which circumvents the challenge of specificity quantification. In addition to the affinity optimization, we incorporated the quantified intrinsic specificity into the optimization strategy of SPA-PN. The testing results and comparisons with other scoring functions validated that SPA-PN performs well on both the prediction of binding affinity and identification of native conformation. In terms of its performance, SPA-PN can be widely used to predict the protein-nucleic acid structures and quantify their interactions.

  1. A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues.

    Science.gov (United States)

    Guo, Song; Liu, Chunhua; Zhou, Peng; Li, Yanling

    2016-01-01

    Tyrosine sulfation is one of the ubiquitous protein posttranslational modifications, where some sulfate groups are added to the tyrosine residues. It plays significant roles in various physiological processes in eukaryotic cells. To explore the molecular mechanism of tyrosine sulfation, one of the prerequisites is to correctly identify possible protein tyrosine sulfation residues. In this paper, a novel method was presented to predict protein tyrosine sulfation residues from primary sequences. By means of informative feature construction and elaborate feature selection and parameter optimization scheme, the proposed predictor achieved promising results and outperformed many other state-of-the-art predictors. Using the optimal features subset, the proposed method achieved mean MCC of 94.41% on the benchmark dataset, and a MCC of 90.09% on the independent dataset. The experimental performance indicated that our new proposed method could be effective in identifying the important protein posttranslational modifications and the feature selection scheme would be powerful in protein functional residues prediction research fields.

  2. Optimized expression in Pichia pastoris eliminates common protein contaminants from subsequent His-tag purification.

    Science.gov (United States)

    Chen, Yong; Li, Yang; Liu, Peng; Sun, Qun; Liu, Zhu

    2014-04-01

    A weakness of using immobilized metal affinity chromatography (IMAC) to purify recombinant proteins expressed in Pichia pastoris is the co-purification of native proteins that exhibit high affinities for Ni-IMAC. We have determined the elution profiles of P. pastoris proteins and have examined the native proteins that co-purify when eluting with 100 mM imidazole. Four major contaminants were identified: mitochondrial alcohol dehydrogenase isozyme III (mADH), nucleotide excision repair endonuclease, and the hypothetical proteins TPHA_0L01390 and TDEL_0B02190 which are homologous proteins derived from Tetrapisispora phaffii and Torulaspora delbrueckii, respectively. A new P. pastoris expression strain was engineered that eliminated the predominant contaminant, mADH, by gene disruption. The total amount of protein contaminants was reduced by 55 % without effecting cell growth. The present study demonstrates the feasibility of using a proteomic approach to facilitate bioprocess optimization.

  3. Development, Characterization, and Optimization of Protein Level in Date Bars Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    2012-01-01

    Full Text Available This project was designed to produce a nourishing date bar with commercial value especially for school going children to meet their body development requirements. Protein level of date bars was optimized using response surface methodology (RSM. Economical and underutilized sources, that is, whey protein concentrate and vetch protein isolates, were explored for protein supplementation. Fourteen date bar treatments were produced using a central composite design (CCD with 2 variables and 3 levels for each variable. Date bars were then analyzed for nutritional profile. Proximate composition revealed that addition of whey protein concentrate and vetch protein isolates improved the nutritional profile of date bars. Protein level, texture, and taste were considerably improved by incorporating 6.05% whey protein concentrate and 4.35% vetch protein isolates in date bar without affecting any sensory characteristics during storage. Response surface methodology was observed as an economical and effective tool to optimize the ingredient level and to discriminate the interactive effects of independent variables.

  4. [Optimized isolation and purification of non-typeable Haemophilus influenzae Haps protein].

    Science.gov (United States)

    Li, Wan-yi; Kuang, Yu; Li, Ming-yuan; Yang, Yuan; Jiang, Zhong-hua; Yao, Feng; Chen, Chang-chun

    2007-12-01

    To optimize the isolation and purification conditions for Hap(s) protein of non-typeable Haemophilus influenzae. Hap(s) protein was purified by ammonium sulfate precipitation, dialysis desalting and Hitrap weak cation exchange columns of CM Sepharose Fast Flow. The condition of the elution was optimized for pH and ionic strength, the absorbance at 280 nm of the elution samples were detected, and the targeted protein band in the collected samples was observed by SDS-PAGE electrophoresis. The Hitrap ion exchange column was eluted with buffer 1, which resulted in a baseline distribution of absorbance at 280 nm. Buffer 2 elution of the column resulted in the presence of peak absorbance with trails, which was identified to be constituted by some low molecular weight bands by subsequent SDS-PAGE. In serial column elution with buffer 3 with different ionic strength, a peak absorbance was observed with the ionic strength of 100 mmol/L NaCl, and SDS-PAGE confirmed that the peak was generated by the target protein. No obvious peaks or bands in SDS-PAGE occurred with the other ionic strengths. The pH of the buffer only affect the elution of the irrelevant proteins rather than the Hap(s) protein, and elution with the buffer containing 100 mmol/L NaCl can be optimal for eluting the Hap(s) protein.

  5. A divide and conquer approach to determine the Pareto frontier for optimization of protein engineering experiments

    Science.gov (United States)

    He, Lu; Friedman, Alan M.; Bailey-Kellogg, Chris

    2016-01-01

    In developing improved protein variants by site-directed mutagenesis or recombination, there are often competing objectives that must be considered in designing an experiment (selecting mutations or breakpoints): stability vs. novelty, affinity vs. specificity, activity vs. immunogenicity, and so forth. Pareto optimal experimental designs make the best trade-offs between competing objectives. Such designs are not “dominated”; i.e., no other design is better than a Pareto optimal design for one objective without being worse for another objective. Our goal is to produce all the Pareto optimal designs (the Pareto frontier), in order to characterize the trade-offs and suggest designs most worth considering, but to avoid explicitly considering the large number of dominated designs. To do so, we develop a divide-and-conquer algorithm, PEPFR (Protein Engineering Pareto FRontier), that hierarchically subdivides the objective space, employing appropriate dynamic programming or integer programming methods to optimize designs in different regions. This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate PEPFR with three protein engineering case studies: site-directed recombination for stability and diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for activity and immunogenicity via integer programming. We show that PEPFR is able to effectively produce all the Pareto optimal designs, discovering many more designs than previous methods. The characterization of the Pareto frontier provides additional insights into the local stability of design choices as well as global trends leading to trade-offs between competing criteria. PMID:22180081

  6. Optimizing the protein switch: altering nuclear import and export signals, and ligand binding domain

    Science.gov (United States)

    Kakar, Mudit; Davis, James R.; Kern, Steve E.; Lim, Carol S.

    2007-01-01

    Ligand regulated localization controllable protein constructs were optimized in this study. Several constructs were made from a classical nuclear export signal (HIV-rev, MAPKK, or progesterone receptor) in combination with a SV40 T-antigen type nuclear import signal. Different ligand binding domains (LBDs from glucocorticoid receptor or progesterone receptor) were also tested for their ability to impart control over localization of proteins. This study was designed to create constructs which are cytoplasmic in the absence of ligand and nuclear in the presence of ligand, and also to regulate the amount of protein translocating to the nucleus on ligand induction. The balance between the strengths of import and export signals was critical for overall localization of proteins. The amount of protein entering the nucleus was also affected by the dose of ligand (10-100nM). However, the overall import characteristics were determined by the strengths of localization signals and the inherent localization properties of the LBD used. This study established that the amount of protein present in a particular compartment can be regulated by the use of localization signals of various strengths. These optimized localization controllable protein constructs can be used to correct for diseases due to aberrant localization of proteins. PMID:17574289

  7. Managerial Incentives and Stock Price Manipulation

    OpenAIRE

    Peng, Lin; Röell, Ailsa A

    2009-01-01

    This paper presents a rational expectations model of optimal executive compensation in a setting where managers are in a position to manipulate short-term stock prices, and managers' propensity to manipulate is uncertain. Stock-based incentives elicit not only productive effort, but also costly information manipulation. We analyze the tradeoffs involved in conditioning pay on long- versus short-term performance and characterize a second-best optimal compensation scheme. The paper shows manipu...

  8. Pose Space Surface Manipulation

    Directory of Open Access Journals (Sweden)

    Yusuke Yoshiyasu

    2012-01-01

    Full Text Available Example-based mesh deformation techniques produce natural and realistic shapes by learning the space of deformations from examples. However, skeleton-based methods cannot manipulate a global mesh structure naturally, whereas the mesh-based approaches based on a translational control do not allow the user to edit a local mesh structure intuitively. This paper presents an example-driven mesh editing framework that achieves both global and local pose manipulations. The proposed system is built with a surface deformation method based on a two-step linear optimization technique and achieves direct manipulations of a model surface using translational and rotational controls. With the translational control, the user can create a model in natural poses easily. The rotational control can adjust the local pose intuitively by bending and twisting. We encode example deformations with a rotation-invariant mesh representation which handles large rotations in examples. To incorporate example deformations, we infer a pose from the handle translations/rotations and perform pose space interpolation, thereby avoiding involved nonlinear optimization. With the two-step linear approach combined with the proposed multiresolution deformation method, we can edit models at interactive rates without losing important deformation effects such as muscle bulging.

  9. Can earnings manipulation create value?

    OpenAIRE

    Anton Miglo

    2008-01-01

    Existing literature usually considers earnings manipulation to be a negative social phenomenon. We argue that earnings manipulation can be a part of the equilibrium relationships between firm's insiders and outsiders. We consider an optimal contract between an entrepreneur and an investor where the entrepreneur is subject to a double moral hazard problem (one being the choice of production effort and the other being intertemporal substitution, which consists of transferring cash flows between...

  10. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis.

    Science.gov (United States)

    Sugio, Akiko; Kingdom, Heather N; MacLean, Allyson M; Grieve, Victoria M; Hogenhout, Saskia A

    2011-11-29

    Phytoplasmas are insect-transmitted phytopathogenic bacteria that can alter plant morphology and the longevity and reproduction rates and behavior of their insect vectors. There are various examples of animal and plant parasites that alter the host phenotype to attract insect vectors, but it is unclear how these parasites accomplish this. We hypothesized that phytoplasmas produce effectors that modulate specific targets in their hosts leading to the changes in plant development and insect performance. Previously, we sequenced and mined the genome of Aster Yellows phytoplasma strain Witches' Broom (AY-WB) and identified 56 candidate effectors. Here, we report that the secreted AY-WB protein 11 (SAP11) effector modulates plant defense responses to the advantage of the AY-WB insect vector Macrosteles quadrilineatus. SAP11 binds and destabilizes Arabidopsis CINCINNATA (CIN)-related TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTORS 1 and 2 (TCP) transcription factors, which control plant development and promote the expression of lipoxygenase (LOX) genes involved in jasmonate (JA) synthesis. Both the Arabidopsis SAP11 lines and AY-WB-infected plants produce less JA on wounding. Furthermore, the AY-WB insect vector produces more offspring on AY-WB-infected plants, SAP11 transgenic lines, and plants impaired in CIN-TCP and JA synthesis. Thus, SAP11-mediated destabilization of CIN-TCPs leads to the down-regulation of LOX2 expression and JA synthesis and an increase in M. quadrilineatus progeny. Phytoplasmas are obligate inhabitants of their plant host and insect vectors, in which the latter transmits AY-WB to a diverse range of plant species. This finding demonstrates that pathogen effectors can reach beyond the pathogen-host interface to modulate a third organism in the biological interaction.

  11. Automatic rebuilding and optimization of crystallographic structures in the Protein Data Bank.

    NARCIS (Netherlands)

    Joosten, R.P.; Joosten, K.; Cohen, S.X.; Vriend, G.; Perrakis, A.

    2011-01-01

    MOTIVATION: Macromolecular crystal structures in the Protein Data Bank (PDB) are a key source of structural insight into biological processes. These structures, some >30 years old, were constructed with methods of their era. With PDB_REDO, we aim to automatically optimize these structures to better

  12. A proteome-scale study on in vivo protein Nα-acetylation using an optimized method

    DEFF Research Database (Denmark)

    Zhang, Xumin; Ye, Juanying; Engholm-Keller, Kasper

    2011-01-01

    Protein N-terminal acetylation (N(α) -acetylation) is among the most common modifications in eukaryotes. We previously described a simple method to enrich N(α) -modified peptides using CNBr-activated Sepharose resin. A limitation of this method is that an optimal ratio of sample to resin had to b...

  13. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes.

    Science.gov (United States)

    Volkov, Vadim

    2015-01-01

    Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na(+) and K(+) concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and

  14. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes

    Directory of Open Access Journals (Sweden)

    Vadim eVolkov

    2015-10-01

    Full Text Available Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarises current data concerning Na+ and K+ concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows to choose specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX and SOS1 proteins. Comparison between nonselective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is

  15. Protein Tertiary Structure Prediction Based on Main Chain Angle Using a Hybrid Bees Colony Optimization Algorithm

    Science.gov (United States)

    Mahmood, Zakaria N.; Mahmuddin, Massudi; Mahmood, Mohammed Nooraldeen

    Encoding proteins of amino acid sequence to predict classified into their respective families and subfamilies is important research area. However for a given protein, knowing the exact action whether hormonal, enzymatic, transmembranal or nuclear receptors does not depend solely on amino acid sequence but on the way the amino acid thread folds as well. This study provides a prototype system that able to predict a protein tertiary structure. Several methods are used to develop and evaluate the system to produce better accuracy in protein 3D structure prediction. The Bees Optimization algorithm which inspired from the honey bees food foraging method, is used in the searching phase. In this study, the experiment is conducted on short sequence proteins that have been used by the previous researches using well-known tools. The proposed approach shows a promising result.

  16. Review: Optimizing ruminant conversion of feed protein to human food protein.

    Science.gov (United States)

    Broderick, G A

    2017-11-20

    Ruminant livestock have the ability to produce high-quality human food from feedstuffs of little or no value for humans. Balanced essential amino acid composition of meat and milk from ruminants makes those protein sources valuable adjuncts to human diets. It is anticipated that there will be increasing demand for ruminant proteins in the future. Increasing productivity per animal dilutes out the nutritional and environmental costs of maintenance and rearing dairy animals up to production. A number of nutritional strategies improve production per animal such as ration balancing in smallholder operations and small grain supplements to ruminants fed high-forage diets. Greenhouse gas emission intensity is reduced by increased productivity per animal; recent research has developed at least one effective inhibitor of methane production in the rumen. There is widespread over-feeding of protein to dairy cattle; milk and component yields can be maintained, and sometimes even increased, at lower protein intake. Group feeding dairy cows according to production and feeding diets higher in rumen-undegraded protein can improve milk and protein yield. Supplementing rumen-protected essential amino acids will also improve N efficiency in some cases. Better N utilization reduces urinary N, which is the most environmentally unstable form of excretory N. Employing nutritional models to more accurately meet animal requirements improves nutrient efficiency. Although smallholder enterprises, which are concentrated in tropical and semi-tropical regions of developing countries, are subject to different economic pressures, nutritional biology is similar at all production levels. Rather than milk volume, nutritional strategies should maximize milk component yield, which is proportional to market value as well as food value when milk nutrients are consumed directly by farmers and their families. Moving away from Holsteins toward smaller breeds such as Jerseys, Holstein-Jersey crosses or

  17. Water-in-Oil Microemulsions for Protein Delivery: Loading Optimization and Stability.

    Science.gov (United States)

    Perinelli, Diego R; Cespi, Marco; Pucciarelli, Stefania; Vincenzetti, Silvia; Casettari, Luca; Lam, Jenny K W; Logrippo, Serena; Canala, Elisa; Soliman, Mahmoud E; Bonacucina, Giulia; Palmieri, Giovanni F

    2017-01-01

    Microemulsions are attractive delivery systems for therapeutic proteins and peptides due to their ability to enhance bioavailability. Although different proteins and peptides have been successfully delivered through such ternary systems, no information can be found about protein loading and the formulation stability when such microemulsions are prepared with pharmaceuticallyapproved oils and surfactants. The aim of this work was to optimise a ternary system consisting of water/ ethyl oleate/Span® 80-Tween® 80 and to determine its protein loading capacity and stability, using bovine serum albumin (BSA) as a model of biomolecule. The optimization was carried out using a Central Composite Design and all the prepared formulations were characterised through dynamic light scattering, rheology, optical and polarized microscopy. Subsequently, the maximum loading capacity was determined and the stability of the final microemulsion with the highest content of protein was followed over six months. To investigate the structural features of the protein, BSA was recovered from the microemulsion and analysed through fluorescence spectroscopy. After incorporation of the protein in the microemulsion, a decrease of its aqueous solubility was observed. However, the formulation remained stable over six months and the native-like state of the recovered protein was demonstrated by fluorescence spectroscopy Conclusion: This study demonstrated the feasibility of preparing microemulsions with the highest content of protein and their long-term stability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Optimization of proximity ligation assay (PLA) for detection of protein interactions and fusion proteins in non-adherent cells: application to pre-B lymphocytes.

    Science.gov (United States)

    Debaize, Lydie; Jakobczyk, Hélène; Rio, Anne-Gaëlle; Gandemer, Virginie; Troadec, Marie-Bérengère

    2017-01-01

    Genetic abnormalities, including chromosomal translocations, are described for many hematological malignancies. From the clinical perspective, detection of chromosomal abnormalities is relevant not only for diagnostic and treatment purposes but also for prognostic risk assessment. From the translational research perspective, the identification of fusion proteins and protein interactions has allowed crucial breakthroughs in understanding the pathogenesis of malignancies and consequently major achievements in targeted therapy. We describe the optimization of the Proximity Ligation Assay (PLA) to ascertain the presence of fusion proteins, and protein interactions in non-adherent pre-B cells. PLA is an innovative method of protein-protein colocalization detection by molecular biology that combines the advantages of microscopy with the advantages of molecular biology precision, enabling detection of protein proximity theoretically ranging from 0 to 40 nm. We propose an optimized PLA procedure. We overcome the issue of maintaining non-adherent hematological cells by traditional cytocentrifugation and optimized buffers, by changing incubation times, and modifying washing steps. Further, we provide convincing negative and positive controls, and demonstrate that optimized PLA procedure is sensitive to total protein level. The optimized PLA procedure allows the detection of fusion proteins and protein interactions on non-adherent cells. The optimized PLA procedure described here can be readily applied to various non-adherent hematological cells, from cell lines to patients' cells. The optimized PLA protocol enables detection of fusion proteins and their subcellular expression, and protein interactions in non-adherent cells. Therefore, the optimized PLA protocol provides a new tool that can be adopted in a wide range of applications in the biological field.

  19. Sensory optimization of broken-rice based snacks fortified with protein and fiber.

    Science.gov (United States)

    Sriwattana, S; Laokuldilok, N; Prinyawiwatkul, W

    2008-08-01

    A 3-component mixture experiment was used to optimize the formulation of broken-rice based snack fortified with protein and fiber based on consumer sensory acceptability. Soy protein isolate and guar gum were used as a good source of protein and fiber, respectively, according to DRV (daily reference value) based on a 2000-calorie diet. A consumer panel evaluated sensory acceptability of color, crispness, and flavor, and overall liking of 12 experimental broken-rice based snack formulations. Predicted models derived from the restricted nonintercept regression analysis were used to plot mixture response surfaces (MRS) of each sensory attribute. Areas within the MRS plots having predicted acceptability scores of at least 6.5 (on a 9-point hedonic scale) for color, crispness, flavor, and overall liking were selected to derive a predicted optimum formulation range. Flavor acceptability was a limiting factor in attaining the optimum formulation range, which consisted of 40% to 48% broken-rice flour, 8% to 16% guar gum, and 20% to 33% soy protein isolate. To verify the obtained predicted models, the formulation containing 48% broken-rice flour, 8% guar gum, and 20% soy protein isolate, which was located in the optimum area, was chosen to support our effort to utilize and add value to broken rice. Selected physicochemical measurements of the chosen optimized formulation were determined. One serving size (30 g) of the chosen optimized snack product provided 6.58 g protein and 3.80 g dietary fiber, which met the US FDA definition of a good source of protein and dietary fiber.

  20. Protein Folding Free Energy Landscape along the Committor - the Optimal Folding Coordinate.

    Science.gov (United States)

    Krivov, Sergei V

    2018-06-06

    Recent advances in simulation and experiment have led to dramatic increases in the quantity and complexity of produced data, which makes the development of automated analysis tools very important. A powerful approach to analyze dynamics contained in such data sets is to describe/approximate it by diffusion on a free energy landscape - free energy as a function of reaction coordinates (RC). For the description to be quantitatively accurate, RCs should be chosen in an optimal way. Recent theoretical results show that such an optimal RC exists; however, determining it for practical systems is a very difficult unsolved problem. Here we describe a solution to this problem. We describe an adaptive nonparametric approach to accurately determine the optimal RC (the committor) for an equilibrium trajectory of a realistic system. In contrast to alternative approaches, which require a functional form with many parameters to approximate an RC and thus extensive expertise with the system, the suggested approach is nonparametric and can approximate any RC with high accuracy without system specific information. To avoid overfitting for a realistically sampled system, the approach performs RC optimization in an adaptive manner by focusing optimization on less optimized spatiotemporal regions of the RC. The power of the approach is illustrated on a long equilibrium atomistic folding simulation of HP35 protein. We have determined the optimal folding RC - the committor, which was confirmed by passing a stringent committor validation test. It allowed us to determine a first quantitatively accurate protein folding free energy landscape. We have confirmed the recent theoretical results that diffusion on such a free energy profile can be used to compute exactly the equilibrium flux, the mean first passage times, and the mean transition path times between any two points on the profile. We have shown that the mean squared displacement along the optimal RC grows linear with time as for

  1. Optimization of mold wheat bread fortified with soy flour, pea flour and whey protein concentrate.

    Science.gov (United States)

    Erben, Melina; Osella, Carlos A

    2017-07-01

    The objective of this work was to study the effect of replacing a selected wheat flour for defatted soy flour, pea flour and whey protein concentrate on both dough rheological characteristics and the performance and nutritional quality of bread. A mixture design was used to analyze the combination of the ingredients. The optimization process suggested that a mixture containing 88.8% of wheat flour, 8.2% of defatted soy flour, 0.0% of pea flour and 3.0% of whey protein concentrate could be a good combination to achieve the best fortified-bread nutritional quality. The fortified bread resulted in high protein concentration, with an increase in dietary fiber content and higher calcium levels compared with those of control (wheat flour 100%). Regarding protein quality, available lysine content was significantly higher, thus contributing with the essential amino acid requirement.

  2. Tobacco BY-2 Media Component Optimization for a Cost-Efficient Recombinant Protein Production.

    Science.gov (United States)

    Häkkinen, Suvi T; Reuter, Lauri; Nuorti, Ninni; Joensuu, Jussi J; Rischer, Heiko; Ritala, Anneli

    2018-01-01

    Plant cells constitute an attractive platform for production of recombinant proteins as more and more animal-free products and processes are desired. One of the challenges in using plant cells as production hosts has been the costs deriving from expensive culture medium components. In this work, the aim was to optimize the levels of most expensive components in the nutrient medium without compromising the accumulation of biomass and recombinant protein yields. Wild-type BY-2 culture and transgenic tobacco BY-2 expressing green fluorescent protein-Hydrophobin I (GFP-HFBI) fusion protein were used to determine the most inexpensive medium composition. One particularly high-accumulating BY-2 clone, named 'Hulk,' produced 1.1 ± 0.2 g/l GFP-HFBI in suspension and kept its high performance during prolonged subculturing. In addition, both cultures were successfully cryopreserved enabling truly industrial application of this plant cell host. With the optimized culture medium, 43-55% cost reduction with regard to biomass and up to 69% reduction with regard to recombinant protein production was achieved.

  3. Expanded explorations into the optimization of an energy function for protein design

    Science.gov (United States)

    Huang, Yao-ming; Bystroff, Christopher

    2014-01-01

    Nature possesses a secret formula for the energy as a function of the structure of a protein. In protein design, approximations are made to both the structural representation of the molecule and to the form of the energy equation, such that the existence of a general energy function for proteins is by no means guaranteed. Here we present new insights towards the application of machine learning to the problem of finding a general energy function for protein design. Machine learning requires the definition of an objective function, which carries with it the implied definition of success in protein design. We explored four functions, consisting of two functional forms, each with two criteria for success. Optimization was carried out by a Monte Carlo search through the space of all variable parameters. Cross-validation of the optimized energy function against a test set gave significantly different results depending on the choice of objective function, pointing to relative correctness of the built-in assumptions. Novel energy cross-terms correct for the observed non-additivity of energy terms and an imbalance in the distribution of predicted amino acids. This paper expands on the work presented at ACM-BCB, Orlando FL , October 2012. PMID:24384706

  4. Protein folding optimization based on 3D off-lattice model via an improved artificial bee colony algorithm.

    Science.gov (United States)

    Li, Bai; Lin, Mu; Liu, Qiao; Li, Ya; Zhou, Changjun

    2015-10-01

    Protein folding is a fundamental topic in molecular biology. Conventional experimental techniques for protein structure identification or protein folding recognition require strict laboratory requirements and heavy operating burdens, which have largely limited their applications. Alternatively, computer-aided techniques have been developed to optimize protein structures or to predict the protein folding process. In this paper, we utilize a 3D off-lattice model to describe the original protein folding scheme as a simplified energy-optimal numerical problem, where all types of amino acid residues are binarized into hydrophobic and hydrophilic ones. We apply a balance-evolution artificial bee colony (BE-ABC) algorithm as the minimization solver, which is featured by the adaptive adjustment of search intensity to cater for the varying needs during the entire optimization process. In this work, we establish a benchmark case set with 13 real protein sequences from the Protein Data Bank database and evaluate the convergence performance of BE-ABC algorithm through strict comparisons with several state-of-the-art ABC variants in short-term numerical experiments. Besides that, our obtained best-so-far protein structures are compared to the ones in comprehensive previous literature. This study also provides preliminary insights into how artificial intelligence techniques can be applied to reveal the dynamics of protein folding. Graphical Abstract Protein folding optimization using 3D off-lattice model and advanced optimization techniques.

  5. Microseed matrix screening for optimization in protein crystallization: what have we learned?

    Science.gov (United States)

    D'Arcy, Allan; Bergfors, Terese; Cowan-Jacob, Sandra W; Marsh, May

    2014-09-01

    Protein crystals obtained in initial screens typically require optimization before they are of X-ray diffraction quality. Seeding is one such optimization method. In classical seeding experiments, the seed crystals are put into new, albeit similar, conditions. The past decade has seen the emergence of an alternative seeding strategy: microseed matrix screening (MMS). In this strategy, the seed crystals are transferred into conditions unrelated to the seed source. Examples of MMS applications from in-house projects and the literature include the generation of multiple crystal forms and different space groups, better diffracting crystals and crystallization of previously uncrystallizable targets. MMS can be implemented robotically, making it a viable option for drug-discovery programs. In conclusion, MMS is a simple, time- and cost-efficient optimization method that is applicable to many recalcitrant crystallization problems.

  6. Multiplex protein pattern unmixing using a non-linear variable-weighted support vector machine as optimized by a particle swarm optimization algorithm.

    Science.gov (United States)

    Yang, Qin; Zou, Hong-Yan; Zhang, Yan; Tang, Li-Juan; Shen, Guo-Li; Jiang, Jian-Hui; Yu, Ru-Qin

    2016-01-15

    Most of the proteins locate more than one organelle in a cell. Unmixing the localization patterns of proteins is critical for understanding the protein functions and other vital cellular processes. Herein, non-linear machine learning technique is proposed for the first time upon protein pattern unmixing. Variable-weighted support vector machine (VW-SVM) is a demonstrated robust modeling technique with flexible and rational variable selection. As optimized by a global stochastic optimization technique, particle swarm optimization (PSO) algorithm, it makes VW-SVM to be an adaptive parameter-free method for automated unmixing of protein subcellular patterns. Results obtained by pattern unmixing of a set of fluorescence microscope images of cells indicate VW-SVM as optimized by PSO is able to extract useful pattern features by optimally rescaling each variable for non-linear SVM modeling, consequently leading to improved performances in multiplex protein pattern unmixing compared with conventional SVM and other exiting pattern unmixing methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.

    Science.gov (United States)

    Ng, Marcus C K; Fong, Simon; Siu, Shirley W I

    2015-06-01

    Protein-ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon (BFGS) local search method adopted in AutoDock Vina to tackle the conformational search problem in docking. Using a diverse data set of 201 protein-ligand complexes from the PDBbind database and a full set of ligands and decoys for four representative targets from the directory of useful decoys (DUD) virtual screening data set, we assessed the docking performance of PSOVina in comparison to the original Vina program. Our results showed that PSOVina achieves a remarkable execution time reduction of 51-60% without compromising the prediction accuracies in the docking and virtual screening experiments. This improvement in time efficiency makes PSOVina a better choice of a docking tool in large-scale protein-ligand docking applications. Our work lays the foundation for the future development of swarm-based algorithms in molecular docking programs. PSOVina is freely available to non-commercial users at http://cbbio.cis.umac.mo .

  8. Simplified Swarm Optimization-Based Function Module Detection in Protein–Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xianghan Zheng

    2017-04-01

    Full Text Available Proteomics research has become one of the most important topics in the field of life science and natural science. At present, research on protein–protein interaction networks (PPIN mainly focuses on detecting protein complexes or function modules. However, existing approaches are either ineffective or incomplete. In this paper, we investigate detection mechanisms of functional modules in PPIN, including open database, existing detection algorithms, and recent solutions. After that, we describe the proposed approach based on the simplified swarm optimization (SSO algorithm and the knowledge of Gene Ontology (GO. The proposed solution implements the SSO algorithm for clustering proteins with similar function, and imports biological gene ontology knowledge for further identifying function complexes and improving detection accuracy. Furthermore, we use four different categories of species datasets for experiment: fruitfly, mouse, scere, and human. The testing and analysis result show that the proposed solution is feasible, efficient, and could achieve a higher accuracy of prediction than existing approaches.

  9. Improving predicted protein loop structure ranking using a Pareto-optimality consensus method.

    Science.gov (United States)

    Li, Yaohang; Rata, Ionel; Chiu, See-wing; Jakobsson, Eric

    2010-07-20

    Accurate protein loop structure models are important to understand functions of many proteins. Identifying the native or near-native models by distinguishing them from the misfolded ones is a critical step in protein loop structure prediction. We have developed a Pareto Optimal Consensus (POC) method, which is a consensus model ranking approach to integrate multiple knowledge- or physics-based scoring functions. The procedure of identifying the models of best quality in a model set includes: 1) identifying the models at the Pareto optimal front with respect to a set of scoring functions, and 2) ranking them based on the fuzzy dominance relationship to the rest of the models. We apply the POC method to a large number of decoy sets for loops of 4- to 12-residue in length using a functional space composed of several carefully-selected scoring functions: Rosetta, DOPE, DDFIRE, OPLS-AA, and a triplet backbone dihedral potential developed in our lab. Our computational results show that the sets of Pareto-optimal decoys, which are typically composed of approximately 20% or less of the overall decoys in a set, have a good coverage of the best or near-best decoys in more than 99% of the loop targets. Compared to the individual scoring function yielding best selection accuracy in the decoy sets, the POC method yields 23%, 37%, and 64% less false positives in distinguishing the native conformation, indentifying a near-native model (RMSD Pareto optimality and fuzzy dominance, the POC method is effective in distinguishing the best loop models from the other ones within a loop model set.

  10. vProtein: identifying optimal amino acid complements from plant-based foods.

    Directory of Open Access Journals (Sweden)

    Peter J Woolf

    Full Text Available BACKGROUND: Indispensible amino acids (IAAs are used by the body in different proportions. Most animal-based foods provide these IAAs in roughly the needed proportions, but many plant-based foods provide different proportions of IAAs. To explore how these plant-based foods can be better used in human nutrition, we have created the computational tool vProtein to identify optimal food complements to satisfy human protein needs. METHODS: vProtein uses 1251 plant-based foods listed in the United States Department of Agriculture standard release 22 database to determine the quantity of each food or pair of foods required to satisfy human IAA needs as determined by the 2005 daily recommended intake. The quantity of food in a pair is found using a linear programming approach that minimizes total calories, total excess IAAs, or the total weight of the combination. RESULTS: For single foods, vProtein identifies foods with particularly balanced IAA patterns such as wheat germ, quinoa, and cauliflower. vProtein also identifies foods with particularly unbalanced IAA patterns such as macadamia nuts, degermed corn products, and wakame seaweed. Although less useful alone, some unbalanced foods provide unusually good complements, such as Brazil nuts to legumes. Interestingly, vProtein finds no statistically significant bias toward grain/legume pairings for protein complementation. These analyses suggest that pairings of plant-based foods should be based on the individual foods themselves instead of based on broader food group-food group pairings. Overall, the most efficient pairings include sweet corn/tomatoes, apple/coconut, and sweet corn/cherry. The top pairings also highlight the utility of less common protein sources such as the seaweeds laver and spirulina, pumpkin leaves, and lambsquarters. From a public health perspective, many of the food pairings represent novel, low cost food sources to combat malnutrition. Full analysis results are available online

  11. Optimization of expression JTAT protein with emphasis on transformation efficiency and IPTG concentration

    Directory of Open Access Journals (Sweden)

    Endang Tri Margawati

    2017-12-01

    Full Text Available One of small accessory genes between pol and env is tat gene encoding TAT protein. This research was aimed to optimize the expression of Jembrana TAT (JTAT protein with preparing Escherichia coli (E. coli in advance using adopted methods of M1 (MgCl2 + CaCl2 and M2 (CaCl2 + Glycerol. The best transformation efficiency resulting from a better transformation method was used to subsequent expression of JTAT protein. A synthetic tat gene encoding protein JTAT was previously cloned into pBT-hisC. Concentration of 200; 400; 600 µM IPTG was induced to a small volume culture (200 ml; OD600 = 4, incubated for 3 h. Pellets were harvested by centrifugation (4000 rpm; 4 °C; 15 min. Buffer B (10 mM Immidazole was added into pellets, lysed by freeze-thaw followed by sonication. Supernatant was collected by centrifugation (10,000 rpm; 4 °C; 20 min and purified using Ni-NTA Agarose resin, released by elution buffer (E containing 400 mM Immidazole to collect purified protein twice (E1, E2. The protein was characterized by SDS-PAGE and Western Blot (WB, quantified (at λ595 nm with BSA standard method in prior. The result showed that transformation efficiency was better in M2 (2.53 × 106 than M1 (3.10 × 105. The JTAT protein was expressed at a right size of 11.8 kDa. Concentration of 200 µM IPTG produced a significantly better protein yield (1.500 ± 0.089 mg/ml; P < 0.05 than 600 µM IPTG (0.896 ± 0.052 mg/ml and not different to 400 µM IPTG (1.298 ± 0.080 mg/ml. This research indicated that transformation efficiency needs to be taken account in prior of optimization of the protein expression.

  12. Malting process optimization for protein digestibility enhancement in finger millet grain.

    Science.gov (United States)

    Hejazi, Sara Najdi; Orsat, Valérie

    2016-04-01

    Finger millet (Eleusine coracana) is a nutritious, gluten-free, and drought resistant cereal containing high amounts of protein, carbohydrate, and minerals. However, bio-availability of these nutrients is restricted due to the presence of an excessive level of anti-nutrient components, mainly phytic acid, tannin, and oxalate. It has been shown that a well-designed malting/germination process can significantly reduce these anti-nutrients and consequently enhance the nutrient availability. In the present study, the effects of two important germination factors, duration and temperature, on the enhancement of in-vitro protein digestibility of finger millet were thoroughly investigated and optimized. Based on a central composite design, the grains were germinated for 24, 36, and 48 h at 22, 26, and 30 °C. For all factor combinations, protein, peptide, phytic acid, tannin, and oxalate contents were evaluated and digestibility was assessed. It was shown that during the malting/germinating process, both temperature and duration factors significantly influenced the investigated quantities. Germination of finger millet for 48 h at 30 °C increased protein digestibility from 74 % (for native grain) up to 91 %. Besides, it notably decreased phytic acid, tannin, and oxalate contents by 45 %, 46 %, and 29 %, respectively. Linear correlations between protein digestibility and these anti-nutrients were observed.

  13. Optimizing Production of Antigens and Fabs in the Context of Generating Recombinant Antibodies to Human Proteins.

    Directory of Open Access Journals (Sweden)

    Nan Zhong

    Full Text Available We developed and optimized a high-throughput project workflow to generate renewable recombinant antibodies to human proteins involved in epigenetic signalling. Three different strategies to produce phage display compatible protein antigens in bacterial systems were compared, and we found that in vivo biotinylation through the use of an Avi tag was the most productive method. Phage display selections were performed on 265 in vivo biotinylated antigen domains. High-affinity Fabs (<20nM were obtained for 196. We constructed and optimized a new expression vector to produce in vivo biotinylated Fabs in E. coli. This increased average yields up to 10-fold, with an average yield of 4 mg/L. For 118 antigens, we identified Fabs that could immunoprecipitate their full-length endogenous targets from mammalian cell lysates. One Fab for each antigen was converted to a recombinant IgG and produced in mammalian cells, with an average yield of 15 mg/L. In summary, we have optimized each step of the pipeline to produce recombinant antibodies, significantly increasing both efficiency and yield, and also showed that these Fabs and IgGs can be generally useful for chromatin immunoprecipitation (ChIP protocols.

  14. Dynameomics: a multi-dimensional analysis-optimized database for dynamic protein data.

    Science.gov (United States)

    Kehl, Catherine; Simms, Andrew M; Toofanny, Rudesh D; Daggett, Valerie

    2008-06-01

    The Dynameomics project is our effort to characterize the native-state dynamics and folding/unfolding pathways of representatives of all known protein folds by way of molecular dynamics simulations, as described by Beck et al. (in Protein Eng. Des. Select., the first paper in this series). The data produced by these simulations are highly multidimensional in structure and multi-terabytes in size. Both of these features present significant challenges for storage, retrieval and analysis. For optimal data modeling and flexibility, we needed a platform that supported both multidimensional indices and hierarchical relationships between related types of data and that could be integrated within our data warehouse, as described in the accompanying paper directly preceding this one. For these reasons, we have chosen On-line Analytical Processing (OLAP), a multi-dimensional analysis optimized database, as an analytical platform for these data. OLAP is a mature technology in the financial sector, but it has not been used extensively for scientific analysis. Our project is further more unusual for its focus on the multidimensional and analytical capabilities of OLAP rather than its aggregation capacities. The dimensional data model and hierarchies are very flexible. The query language is concise for complex analysis and rapid data retrieval. OLAP shows great promise for the dynamic protein analysis for bioengineering and biomedical applications. In addition, OLAP may have similar potential for other scientific and engineering applications involving large and complex datasets.

  15. Optimal protein library design using recombination or point mutations based on sequence-based scoring functions.

    Science.gov (United States)

    Pantazes, Robert J; Saraf, Manish C; Maranas, Costas D

    2007-08-01

    In this paper, we introduce and test two new sequence-based protein scoring systems (i.e. S1, S2) for assessing the likelihood that a given protein hybrid will be functional. By binning together amino acids with similar properties (i.e. volume, hydrophobicity and charge) the scoring systems S1 and S2 allow for the quantification of the severity of mismatched interactions in the hybrids. The S2 scoring system is found to be able to significantly functionally enrich a cytochrome P450 library over other scoring methods. Given this scoring base, we subsequently constructed two separate optimization formulations (i.e. OPTCOMB and OPTOLIGO) for optimally designing protein combinatorial libraries involving recombination or mutations, respectively. Notably, two separate versions of OPTCOMB are generated (i.e. model M1, M2) with the latter allowing for position-dependent parental fragment skipping. Computational benchmarking results demonstrate the efficacy of models OPTCOMB and OPTOLIGO to generate high scoring libraries of a prespecified size.

  16. Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana.

    Science.gov (United States)

    Shamloul, Moneim; Trusa, Jason; Mett, Vadim; Yusibov, Vidadi

    2014-04-19

    Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).

  17. Properties of the DREAM scheme and its optimization for application to proteins

    International Nuclear Information System (INIS)

    Westfeld, Thomas; Verel, René; Ernst, Matthias; Böckmann, Anja; Meier, Beat H.

    2012-01-01

    The DREAM scheme is an efficient adiabatic homonuclear polarization-transfer method suitable for multi-dimensional experiments in biomolecular solid-state NMR. The bandwidth and dynamics of the polarization transfer in the DREAM experiment depend on a number of experimental and spin-system parameters. In order to obtain optimal results, the dependence of the cross-peak intensity on these parameters needs to be understood and carefully controlled. We introduce a simplified model to semi-quantitatively describe the polarization-transfer patterns for the relevant spin systems. Numerical simulations for all natural amino acids (except tryptophane) show the dependence of the cross-peak intensities as a function of the radio-frequency-carrier position. This dependency can be used as a guide to select the desired conditions in protein spectroscopy. Practical guidelines are given on how to set up a DREAM experiment for optimized Cα/Cβ transfer, which is important in sequential assignment experiments.

  18. Optimization of a process for high fibre and high protein biscuit.

    Science.gov (United States)

    Singh, Parul; Singh, Rakhi; Jha, Alok; Rasane, Prasad; Gautam, Anuj Kumar

    2015-03-01

    Biscuits are popular and convenient food products due to their ready to eat nature. Biscuits were prepared from sorghum and whole wheat flour with the addition of spirulina (Spirulina platensis) powder to produce high fibre and high protein biscuit. Levels of ingredients in biscuits such as spirulina powder, sorghum flour and guar gum were optimized using response surface methodology (RSM) for its sensory, textural and antioxidant attributes. Sensory attributes as colour intensity (R2 = 0.89, P powder and sorghum flour was found to have significant effect on the responses.

  19. Optimizing HIV-1 protease production in Escherichia coli as fusion protein

    Directory of Open Access Journals (Sweden)

    Piubelli Luciano

    2011-06-01

    Full Text Available Abstract Background Human immunodeficiency virus (HIV is the etiological agent in AIDS and related diseases. The aspartyl protease encoded by the 5' portion of the pol gene is responsible for proteolytic processing of the gag-pol polyprotein precursor to yield the mature capsid protein and the reverse transcriptase and integrase enzymes. The HIV protease (HIV-1Pr is considered an attractive target for designing inhibitors which could be used to tackle AIDS and therefore it is still the object of a number of investigations. Results A recombinant human immunodeficiency virus type 1 protease (HIV-1Pr was overexpressed in Escherichia coli cells as a fusion protein with bacterial periplasmic protein dithiol oxidase (DsbA or glutathione S-transferase (GST, also containing a six-histidine tag sequence. Protein expression was optimized by designing a suitable HIV-1Pr cDNA (for E. coli expression and to avoid autoproteolysis and by screening six different E. coli strains and five growth media. The best expression yields were achieved in E. coli BL21-Codon Plus(DE3-RIL host and in TB or M9 medium to which 1% (w/v glucose was added to minimize basal expression. Among the different parameters assayed, the presence of a buffer system (based on phosphate salts and a growth temperature of 37°C after adding IPTG played the main role in enhancing protease expression (up to 10 mg of chimeric DsbA:HIV-1Pr/L fermentation broth. GST:HIVPr was in part (50% produced as soluble protein while the overexpressed DsbA:HIV-1Pr chimeric protein largely accumulated in inclusion bodies as unprocessed fusion protein. A simple refolding procedure was developed on HiTrap Chelating column that yielded a refolded DsbA:HIV-1Pr with a > 80% recovery. Finally, enterokinase digestion of resolubilized DsbA:HIV-1Pr gave more than 2 mg of HIV-1Pr per liter of fermentation broth with a purity ≤ 80%, while PreScission protease cleavage of soluble GST:HIVPr yielded ~ 0.15 mg of pure HIV-1

  20. Algorithm for selection of optimized EPR distance restraints for de novo protein structure determination

    Science.gov (United States)

    Kazmier, Kelli; Alexander, Nathan S.; Meiler, Jens; Mchaourab, Hassane S.

    2010-01-01

    A hybrid protein structure determination approach combining sparse Electron Paramagnetic Resonance (EPR) distance restraints and Rosetta de novo protein folding has been previously demonstrated to yield high quality models (Alexander et al., 2008). However, widespread application of this methodology to proteins of unknown structures is hindered by the lack of a general strategy to place spin label pairs in the primary sequence. In this work, we report the development of an algorithm that optimally selects spin labeling positions for the purpose of distance measurements by EPR. For the α-helical subdomain of T4 lysozyme (T4L), simulated restraints that maximize sequence separation between the two spin labels while simultaneously ensuring pairwise connectivity of secondary structure elements yielded vastly improved models by Rosetta folding. 50% of all these models have the correct fold compared to only 21% and 8% correctly folded models when randomly placed restraints or no restraints are used, respectively. Moreover, the improvements in model quality require a limited number of optimized restraints, the number of which is determined by the pairwise connectivities of T4L α-helices. The predicted improvement in Rosetta model quality was verified by experimental determination of distances between spin labels pairs selected by the algorithm. Overall, our results reinforce the rationale for the combined use of sparse EPR distance restraints and de novo folding. By alleviating the experimental bottleneck associated with restraint selection, this algorithm sets the stage for extending computational structure determination to larger, traditionally elusive protein topologies of critical structural and biochemical importance. PMID:21074624

  1. Coulomb interactions between cytoplasmic electric fields and phosphorylated messenger proteins optimize information flow in cells.

    Directory of Open Access Journals (Sweden)

    Robert A Gatenby

    2010-08-01

    proteins and intracellular electric fields will optimize information transfer from the CM to the NM in cells.

  2. Randomly organized lipids and marginally stable proteins: a coupling of weak interactions to optimize membrane signaling.

    Science.gov (United States)

    Rice, Anne M; Mahling, Ryan; Fealey, Michael E; Rannikko, Anika; Dunleavy, Katie; Hendrickson, Troy; Lohese, K Jean; Kruggel, Spencer; Heiling, Hillary; Harren, Daniel; Sutton, R Bryan; Pastor, John; Hinderliter, Anne

    2014-09-01

    Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Jennifer L.; Kim, Hanseong [Arizona State University, Tempe, AZ 85287-1604 (United States); Markwardt, Michele L. [University of Maryland School of Medicine, Baltimore, MD 21201-1559 (United States); Chen, Liqing; Fromme, Raimund [Arizona State University, Tempe, AZ 85287-1604 (United States); Rizzo, Mark A. [University of Maryland School of Medicine, Baltimore, MD 21201-1559 (United States); Wachter, Rebekka M., E-mail: rwachter@asu.edu [Arizona State University, Tempe, AZ 85287-1604 (United States)

    2013-05-01

    The high resolution X-ray structure of the cyan fluorescent protein mCerulean3 demonstrates that different combinations of correlated residue substitutions can provide near optimum quantum yield values for fluorescence. Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Å resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. β-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed.

  4. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein

    International Nuclear Information System (INIS)

    Watkins, Jennifer L.; Kim, Hanseong; Markwardt, Michele L.; Chen, Liqing; Fromme, Raimund; Rizzo, Mark A.; Wachter, Rebekka M.

    2013-01-01

    The high resolution X-ray structure of the cyan fluorescent protein mCerulean3 demonstrates that different combinations of correlated residue substitutions can provide near optimum quantum yield values for fluorescence. Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Å resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. β-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed

  5. Sequentially Integrated Optimization of the Conditions to Obtain a High-Protein and Low-Antinutritional Factors Protein Isolate from Edible Jatropha curcas Seed Cake.

    Science.gov (United States)

    León-López, Liliana; Dávila-Ortiz, Gloria; Jiménez-Martínez, Cristian; Hernández-Sánchez, Humberto

    2013-01-01

    Jatropha curcas seed cake is a protein-rich byproduct of oil extraction which could be used to produce protein isolates. The purpose of this study was the optimization of the protein isolation process from the seed cake of an edible provenance of J. curcas by an alkaline extraction followed by isoelectric precipitation method via a sequentially integrated optimization approach. The influence of four different factors (solubilization pH, extraction temperature, NaCl addition, and precipitation pH) on the protein and antinutritional compounds content of the isolate was evaluated. The estimated optimal conditions were an extraction temperature of 20°C, a precipitation pH of 4, and an amount of NaCl in the extraction solution of 0.6 M for a predicted protein content of 93.3%. Under these conditions, it was possible to obtain experimentally a protein isolate with 93.21% of proteins, 316.5 mg 100 g(-1) of total phenolics, 2891.84 mg 100 g(-1) of phytates and 168 mg 100 g(-1) of saponins. The protein content of the this isolate was higher than the content reported by other authors.

  6. Protein structure modeling for CASP10 by multiple layers of global optimization.

    Science.gov (United States)

    Joo, Keehyoung; Lee, Juyong; Sim, Sangjin; Lee, Sun Young; Lee, Kiho; Heo, Seungryong; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung

    2014-02-01

    In the template-based modeling (TBM) category of CASP10 experiment, we introduced a new protocol called protein modeling system (PMS) to generate accurate protein structures in terms of side-chains as well as backbone trace. In the new protocol, a global optimization algorithm, called conformational space annealing (CSA), is applied to the three layers of TBM procedure: multiple sequence-structure alignment, 3D chain building, and side-chain re-modeling. For 3D chain building, we developed a new energy function which includes new distance restraint terms of Lorentzian type (derived from multiple templates), and new energy terms that combine (physical) energy terms such as dynamic fragment assembly (DFA) energy, DFIRE statistical potential energy, hydrogen bonding term, etc. These physical energy terms are expected to guide the structure modeling especially for loop regions where no template structures are available. In addition, we developed a new quality assessment method based on random forest machine learning algorithm to screen templates, multiple alignments, and final models. For TBM targets of CASP10, we find that, due to the combination of three stages of CSA global optimizations and quality assessment, the modeling accuracy of PMS improves at each additional stage of the protocol. It is especially noteworthy that the side-chains of the final PMS models are far more accurate than the models in the intermediate steps. Copyright © 2013 Wiley Periodicals, Inc.

  7. Micro-scale NMR Experiments for Monitoring the Optimization of Membrane Protein Solutions for Structural Biology.

    Science.gov (United States)

    Horst, Reto; Wüthrich, Kurt

    2015-07-20

    Reconstitution of integral membrane proteins (IMP) in aqueous solutions of detergent micelles has been extensively used in structural biology, using either X-ray crystallography or NMR in solution. Further progress could be achieved by establishing a rational basis for the selection of detergent and buffer conditions, since the stringent bottleneck that slows down the structural biology of IMPs is the preparation of diffracting crystals or concentrated solutions of stable isotope labeled IMPs. Here, we describe procedures to monitor the quality of aqueous solutions of [ 2 H, 15 N]-labeled IMPs reconstituted in detergent micelles. This approach has been developed for studies of β-barrel IMPs, where it was successfully applied for numerous NMR structure determinations, and it has also been adapted for use with α-helical IMPs, in particular GPCRs, in guiding crystallization trials and optimizing samples for NMR studies (Horst et al ., 2013). 2D [ 15 N, 1 H]-correlation maps are used as "fingerprints" to assess the foldedness of the IMP in solution. For promising samples, these "inexpensive" data are then supplemented with measurements of the translational and rotational diffusion coefficients, which give information on the shape and size of the IMP/detergent mixed micelles. Using microcoil equipment for these NMR experiments enables data collection with only micrograms of protein and detergent. This makes serial screens of variable solution conditions viable, enabling the optimization of parameters such as the detergent concentration, sample temperature, pH and the composition of the buffer.

  8. Manipulation of the rumen to increase ruminant production

    International Nuclear Information System (INIS)

    Nolan, J.V.; Leng, R.A.

    1989-01-01

    Manipulation of the rumen should be undertaken with a view to optimizing the supply of specific nutrients to the host animal. Especially important are the volatile fatty acids (glucogenic and non-glucogenic), and dietary and bypass amino acids and lipids. The animal's requirement for these nutrients varies according to its physiological state (growing, pregnant or lactating), its health (disease or parasite load), previous dietary history and also the prevailing climatic conditions. Often the availability of total protein (amino acids) relative to oxidizable substrates (the protein/energy or P/E ratio) is the primary limitation to voluntary feed intake and to efficient use of absorbed nutrients. In these instances, the first objective should be to maximize the yield of microbial amino acids from the rumen by manipulations that increase the net efficiency of microbial synthesis, e.g. by altering methods of feed processing, supplementing with urea and minerals, or eliminating protozoa. Further improvements in the P/E ratio can be attained by supplementing the animal with a dietary protein source with good rumen bypass characteristics in order to provide additional amino acids for intestinal absorption. Other potential manipulations of the rumen include the use of chemicals to modify rumen fermentation patterns and supplementation with long chain fatty acids (LCFA) (as a dense source of energy supplying substrate) in rumen-inert forms (e.g. as Ca-LCFA). However, when energy dense dietary supplements are given, it may be necessary to include a bypass protein source to maintain the P/E ratio. Novel possibilities for manipulation include the use of molecular biology techniques to create microorganisms with enhanced production of enzymes that promote degradation of structural carbohydrates, or with an ability to secrete chemicals that are toxic to protozoa. (author). 68 refs, 4 figs, 1 tab

  9. Use and optimization of a dual-flowrate loading strategy to maximize throughput in protein-a affinity chromatography.

    Science.gov (United States)

    Ghose, Sanchayita; Nagrath, Deepak; Hubbard, Brian; Brooks, Clayton; Cramer, Steven M

    2004-01-01

    The effect of an alternate strategy employing two different flowrates during loading was explored as a means of increasing system productivity in Protein-A chromatography. The effect of such a loading strategy was evaluated using a chromatographic model that was able to accurately predict experimental breakthrough curves for this Protein-A system. A gradient-based optimization routine is carried out to establish the optimal loading conditions (initial and final flowrates and switching time). The two-step loading strategy (using a higher flowrate during the initial stages followed by a lower flowrate) was evaluated for an Fc-fusion protein and was found to result in significant improvements in process throughput. In an extension of this optimization routine, dynamic loading capacity and productivity were simultaneously optimized using a weighted objective function, and this result was compared to that obtained with the single flowrate. Again, the dual-flowrate strategy was found to be superior.

  10. The Effect of Optimally Timed Osteopathic Manipulative Treatment on Length of Hospital Stay in Moderate and Late Preterm Infants: Results from a RCT

    Directory of Open Access Journals (Sweden)

    Gianfranco Pizzolorusso

    2014-01-01

    Full Text Available Introduction. Little research has been conducted looking at the effects of osteopathic manipulative treatment (OMT on preterm infants. Aim of the Study. This study hypothesized that osteopathic care is effective in reducing length of hospital stay and that early OMT produces the most pronounced benefit, compared to moderately early and late OMT. A secondary outcome was to estimate hospital cost savings by the use of OMT. Methods. 110 newborns ranging from 32- to 37-week gestation were randomized to receive either OMT or usual pediatric care. Early, moderately early, and late OMT were defined as <4, <9, and <14 days from birth, respectively. Result. Hospital stay was shorter in infants receiving late OMT (−2.03; 95% CI −3.15, −0.91; P<0.01 than controls. Subgroup analysis of infants receiving early and moderately early OMT resulted in shorter LOS (early OMT: −4.16; −6.05, −2.27; P<0.001; moderately early OMT: −3.12; −4.36, −1.89; P<0.001. Costs analysis showed that OMT significantly produced a net saving of €740 (−1309.54, −170.33; P=0.01 per newborn per LOS. Conclusions. This study shows evidence that the sooner OMT is provided, the shorter their hospital stay is. There is also a positive association of OMT with overall reduction in cost of care.

  11. A robust algorithm for optimizing protein structures with NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-11-15

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca.

  12. Optimizing nanodiscs and bicelles for solution NMR studies of two β-barrel membrane proteins

    International Nuclear Information System (INIS)

    Kucharska, Iga; Edrington, Thomas C.; Liang, Binyong; Tamm, Lukas K.

    2015-01-01

    Solution NMR spectroscopy has become a robust method to determine structures and explore the dynamics of integral membrane proteins. The vast majority of previous studies on membrane proteins by solution NMR have been conducted in lipid micelles. Contrary to the lipids that form a lipid bilayer in biological membranes, micellar lipids typically contain only a single hydrocarbon chain or two chains that are too short to form a bilayer. Therefore, there is a need to explore alternative more bilayer-like media to mimic the natural environment of membrane proteins. Lipid bicelles and lipid nanodiscs have emerged as two alternative membrane mimetics that are compatible with solution NMR spectroscopy. Here, we have conducted a comprehensive comparison of the physical and spectroscopic behavior of two outer membrane proteins from Pseudomonas aeruginosa, OprG and OprH, in lipid micelles, bicelles, and nanodiscs of five different sizes. Bicelles stabilized with a fraction of negatively charged lipids yielded spectra of almost comparable quality as in the best micellar solutions and the secondary structures were found to be almost indistinguishable in the two environments. Of the five nanodiscs tested, nanodiscs assembled from MSP1D1ΔH5 performed the best with both proteins in terms of sample stability and spectral resolution. Even in these optimal nanodiscs some broad signals from the membrane embedded barrel were severely overlapped with sharp signals from the flexible loops making their assignments difficult. A mutant OprH that had two of the flexible loops truncated yielded very promising spectra for further structural and dynamical analysis in MSP1D1ΔH5 nanodiscs

  13. Statistical distributions of optimal global alignment scores of random protein sequences

    Directory of Open Access Journals (Sweden)

    Tang Jiaowei

    2005-10-01

    Full Text Available Abstract Background The inference of homology from statistically significant sequence similarity is a central issue in sequence alignments. So far the statistical distribution function underlying the optimal global alignments has not been completely determined. Results In this study, random and real but unrelated sequences prepared in six different ways were selected as reference datasets to obtain their respective statistical distributions of global alignment scores. All alignments were carried out with the Needleman-Wunsch algorithm and optimal scores were fitted to the Gumbel, normal and gamma distributions respectively. The three-parameter gamma distribution performs the best as the theoretical distribution function of global alignment scores, as it agrees perfectly well with the distribution of alignment scores. The normal distribution also agrees well with the score distribution frequencies when the shape parameter of the gamma distribution is sufficiently large, for this is the scenario when the normal distribution can be viewed as an approximation of the gamma distribution. Conclusion We have shown that the optimal global alignment scores of random protein sequences fit the three-parameter gamma distribution function. This would be useful for the inference of homology between sequences whose relationship is unknown, through the evaluation of gamma distribution significance between sequences.

  14. Nixtamalized flour from quality protein maize (Zea mays L). optimization of alkaline processing.

    Science.gov (United States)

    Milán-Carrillo, J; Gutiérrez-Dorado, R; Cuevas-Rodríguez, E O; Garzón-Tiznado, J A; Reyes-Moreno, C

    2004-01-01

    Quality of maize proteins is poor, they are deficient in the essential amino acids lysine and tryptophan. Recently, in Mexico were successfully developed nutritionally improved 26 new hybrids and cultivars called quality protein maize (QPM) which contain greater amounts of lysine and tryptophan. Alkaline cooking of maize with lime (nixtamalization) is the first step for producing several maize products (masa, tortillas, flours, snacks). Processors adjust nixtamalization variables based on experience. The objective of this work was to determine the best combination of nixtamalization process variables for producing nixtamalized maize flour (NMF) from QPM V-537 variety. Nixtamalization conditions were selected from factorial combinations of process variables: nixtamalization time (NT, 20-85 min), lime concentration (LC, 3.3-6.7 g Ca(OH)2/l, in distilled water), and steep time (ST, 8-16 hours). Nixtamalization temperature and ratio of grain to cooking medium were 85 degrees C and 1:3 (w/v), respectively. At the end of each cooking treatment the steeping started for the required time. Steeping was finished by draining the cooking liquor (nejayote). Nixtamal (alkaline-cooked maize kernels) was washed with running tap water. Wet nixtamal was dried (24 hours, 55 degrees C) and milled to pass through 80-US mesh screen to obtain NMF. Response surface methodology (RSM) was applied as optimization technique, over four response variables: In vitro protein digestibility (PD), total color difference (deltaE), water absorption index (WAI), and pH. Predictive models for response variables were developed as a function of process variables. Conventional graphical method was applied to obtain maximum PD, WAI and minimum deltaE, pH. Contour plots of each of the response variables were utilized applying superposition surface methodology, to obtain three contour plots for observation and selection of best combination of NT (31 min), LC (5.4 g Ca(OH)2/l), and ST (8.1 hours) for producing

  15. Differential stability of TATA box binding proteins from archaea with different optimal growth temperatures

    Science.gov (United States)

    Kopitz, Annette; Soppa, Jörg; Krejtschi, Carsten; Hauser, Karin

    2009-09-01

    The TATA box binding protein (TBP) is involved in promoter recognition, the first step of transcription initiation. TBP is universally conserved and essential in archaea and eukaryotes. In archaea, TBPs have to be stable and to function in species that cover an extremely wide range of optimal growth temperatures (OGTs), from below 0 °C to more than 100 °C. Thus, the archaeal TBP family is ideally suited to study the evolutionary adaptation of proteins to an extremely wide range of temperatures. We characterized the thermostability of one mesophilic and one thermophilic TBP by infrared spectroscopy. Transition temperatures ( Tms) of thermal unfolding have been determined using TBPs from Methanosarcina mazei (OGT 37 °C) and from Methanothermobacter thermautotrophicus (OGT 65 °C). Furthermore, the influence of protein and salt concentration on thermostability has been characterized. Together with previous studies, our results reveal that the Tms of archaeal TBPs are closely correlated with the OGTs of the respective species. Noteworthy, this is also true for the TBP from M. mazei representing the first characterized TBP from a mesophilic archaeon. In contrast, the only characterized eukaryotic TBP of the mesophilic plant Arabidopsis thaliana has a Tm more than 40 °C above the OGT.

  16. Task based synthesis of serial manipulators

    Directory of Open Access Journals (Sweden)

    Sarosh Patel

    2015-05-01

    Full Text Available Computing the optimal geometric structure of manipulators is one of the most intricate problems in contemporary robot kinematics. Robotic manipulators are designed and built to perform certain predetermined tasks. There is a very close relationship between the structure of the manipulator and its kinematic performance. It is therefore important to incorporate such task requirements during the design and synthesis of the robotic manipulators. Such task requirements and performance constraints can be specified in terms of the required end-effector positions, orientations and velocities along the task trajectory. In this work, we present a comprehensive method to develop the optimal geometric structure (DH parameters of a non-redundant six degree of freedom serial manipulator from task descriptions. In this work we define, develop and test a methodology to design optimal manipulator configurations based on task descriptions. This methodology is devised to investigate all possible manipulator configurations that can satisfy the task performance requirements under imposed joint constraints. Out of all the possible structures, the structures that can reach all the task points with the required orientations are selected. Next, these candidate structures are tested to see whether they can attain end-effector velocities in arbitrary directions within the user defined joint constraints, so that they can deliver the best kinematic performance. Additionally least power consuming configurations are also identified.

  17. Currency Manipulation versus Current Account Manipulation

    OpenAIRE

    Junning Cai

    2005-01-01

    It is said that a country’s currency peg can become currency manipulation representing protracted government intervention in the foreign exchange market that gives it unfair competitive advantage in international trade yet prevents effective balance of payments in its trade partners. Regarding this widespread fallacy, this paper explains why currency peg is not currency manipulation even when it keeps a country’s currency undervalued. We clarify that 1) government is inherently a major player...

  18. Protein-Bound Uremic Toxin Profiling as a Tool to Optimize Hemodialysis.

    Directory of Open Access Journals (Sweden)

    Sunny Eloot

    Full Text Available We studied various hemodialysis strategies for the removal of protein-bound solutes, which are associated with cardiovascular damage.This study included 10 patients on standard (3 x 4 h/week high-flux hemodialysis. Blood was collected at the dialyzer inlet and outlet at several time points during a midweek session. Total and free concentration of several protein-bound solutes was determined as well as urea concentration. Per solute, a two-compartment kinetic model was fitted to the measured concentrations, estimating plasmatic volume (V1, total distribution volume (V tot and intercompartment clearance (K21. This calibrated model was then used to calculate which hemodialysis strategy offers optimal removal. Our own in vivo data, with the strategy variables entered into the mathematical simulations, was then validated against independent data from two other clinical studies.Dialyzer clearance K, V1 and V tot correlated inversely with percentage of protein binding. All Ks were different from each other. Of all protein-bound solutes, K21 was 2.7-5.3 times lower than that of urea. Longer and/or more frequent dialysis that processed the same amount of blood per week as standard 3 x 4 h dialysis at 300 mL/min blood flow showed no difference in removal of strongly bound solutes. However, longer and/or more frequent dialysis strategies that processed more blood per week than standard dialysis were markedly more adequate. These conclusions were successfully validated.When blood and dialysate flow per unit of time and type of hemodialyzer are kept the same, increasing the amount of processed blood per week by increasing frequency and/or duration of the sessions distinctly increases removal.

  19. Protein-Bound Uremic Toxin Profiling as a Tool to Optimize Hemodialysis.

    Science.gov (United States)

    Eloot, Sunny; Schneditz, Daniel; Cornelis, Tom; Van Biesen, Wim; Glorieux, Griet; Dhondt, Annemie; Kooman, Jeroen; Vanholder, Raymond

    2016-01-01

    We studied various hemodialysis strategies for the removal of protein-bound solutes, which are associated with cardiovascular damage. This study included 10 patients on standard (3 x 4 h/week) high-flux hemodialysis. Blood was collected at the dialyzer inlet and outlet at several time points during a midweek session. Total and free concentration of several protein-bound solutes was determined as well as urea concentration. Per solute, a two-compartment kinetic model was fitted to the measured concentrations, estimating plasmatic volume (V1), total distribution volume (V tot) and intercompartment clearance (K21). This calibrated model was then used to calculate which hemodialysis strategy offers optimal removal. Our own in vivo data, with the strategy variables entered into the mathematical simulations, was then validated against independent data from two other clinical studies. Dialyzer clearance K, V1 and V tot correlated inversely with percentage of protein binding. All Ks were different from each other. Of all protein-bound solutes, K21 was 2.7-5.3 times lower than that of urea. Longer and/or more frequent dialysis that processed the same amount of blood per week as standard 3 x 4 h dialysis at 300 mL/min blood flow showed no difference in removal of strongly bound solutes. However, longer and/or more frequent dialysis strategies that processed more blood per week than standard dialysis were markedly more adequate. These conclusions were successfully validated. When blood and dialysate flow per unit of time and type of hemodialyzer are kept the same, increasing the amount of processed blood per week by increasing frequency and/or duration of the sessions distinctly increases removal.

  20. [Optimization of prokaryotic expression conditions of Leptospira interrogans trigeminy genus-specific protein antigen based on surface response analysis].

    Science.gov (United States)

    Wang, Jiang; Luo, Dongjiao; Sun, Aihua; Yan, Jie

    2008-07-01

    Lipoproteins LipL32 and LipL21 and transmembrane protein OMPL1 have been confirmed as the superficial genus-specific antigens of Leptospira interrogans, which can be used as antigens for developing a universal genetic engineering vaccine. In order to obtain high expression of an artificial fusion gene lipL32/1-lipL21-ompL1/2, we optimized prokaryotic expression conditions. We used surface response analysis based on the central composite design to optimize culture conditions of a new antigen protein by recombinant Escherichia coli DE3.The culture conditions included initial pH, induction start time, post-induction time, Isopropyl beta-D-thiogalactopyranoside (IPTG) concentration, and temperature. The maximal production of antigen protein was 37.78 mg/l. The optimal culture conditions for high recombinant fusion protein was determined: initial pH 7.9, induction start time 2.5 h, a post-induction time of 5.38 h, 0.20 mM IPTG, and a post-induction temperature of 31 degrees C. Surface response analysis based on CCD increased the target production. This statistical method reduced the number of experiments required for optimization and enabled rapid identification and integration of the key culture condition parameters for optimizing recombinant protein expression.

  1. Multivariate-parameter optimization of aroma compound release from carbohydrate-oil-protein model emulsions.

    Science.gov (United States)

    Samavati, Vahid; D-jomeh, Zahra Emam

    2013-11-06

    Optimization for retention and partition coefficient of ethyl acetate in emulsion model systems was investigated using response surface methodology in this paper. The effects of emulsion model ingredients, tragacanth gum (TG) (0.5-1 wt%), whey protein isolate (WPI) (2-4 wt%) and oleic acid (5-10%, v/v) on retention and partition coefficient of ethyl acetate were studied using a five-level three-factor central composite rotatable design (CCRD). Results showed that the regression models generated adequately explained the data variation and significantly represented the actual relationships between the independent and response parameters. The results showed that the highest retention (97.20±0.51%) and lowest partition coefficient (4.51±0.13%) of ethyl acetate were reached at the TG concentration 1 wt%, WPI concentration 4 wt% and oleic acid volume fraction 10% (v/v). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Aligator: A computational tool for optimizing total chemical synthesis of large proteins.

    Science.gov (United States)

    Jacobsen, Michael T; Erickson, Patrick W; Kay, Michael S

    2017-09-15

    The scope of chemical protein synthesis (CPS) continues to expand, driven primarily by advances in chemical ligation tools (e.g., reversible solubilizing groups and novel ligation chemistries). However, the design of an optimal synthesis route can be an arduous and fickle task due to the large number of theoretically possible, and in many cases problematic, synthetic strategies. In this perspective, we highlight recent CPS tool advances and then introduce a new and easy-to-use program, Aligator (Automated Ligator), for analyzing and designing the most efficient strategies for constructing large targets using CPS. As a model set, we selected the E. coli ribosomal proteins and associated factors for computational analysis. Aligator systematically scores and ranks all feasible synthetic strategies for a particular CPS target. The Aligator script methodically evaluates potential peptide segments for a target using a scoring function that includes solubility, ligation site quality, segment lengths, and number of ligations to provide a ranked list of potential synthetic strategies. We demonstrate the utility of Aligator by analyzing three recent CPS projects from our lab: TNFα (157 aa), GroES (97 aa), and DapA (312 aa). As the limits of CPS are extended, we expect that computational tools will play an increasingly important role in the efficient execution of ambitious CPS projects such as production of a mirror-image ribosome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Inter-laboratory optimization of protein extraction, separation, and fluorescent detection of endogenous rice allergens.

    Science.gov (United States)

    Satoh, Rie; Teshima, Reiko; Kitta, Kazumi; Lang, Gang-Hua; Schegg, Kathleen; Blumenthal, Kenneth; Hicks, Leslie; Labory-Carcenac, Bénédicte; Rouquié, David; Herman, Rod A; Herouet-Guicheney, Corinne; Ladics, Gregory S; McClain, Scott; Poulsen, Lars K; Privalle, Laura; Ward, Jason M; Doerrer, Nancy; Rascle, Jean-Baptiste

    2016-07-11

    In rice, several allergens have been identified such as the non-specific lipid transfer protein-1, the α-amylase/trypsin-inhibitors, the α-globulin, the 33 kDa glyoxalase I (Gly I), the 52-63 kDa globulin, and the granule-bound starch synthetase. The goal of the present study was to define optimal rice extraction and detection methods that would allow a sensitive and reproducible measure of several classes of known rice allergens. In a three-laboratory ring-trial experiment, several protein extraction methods were first compared and analyzed by 1D multiplexed SDS-PAGE. In a second phase, an inter-laboratory validation of 2D-DIGE analysis was conducted in five independent laboratories, focusing on three rice allergens (52 kDa globulin, 33 kDa glyoxalase I, and 14-16 kDa α-amylase/trypsin inhibitor family members). The results of the present study indicate that a combination of 1D multiplexed SDS-PAGE and 2D-DIGE methods would be recommended to quantify the various rice allergens.

  4. Differential Proteome Analysis of the Preeclamptic Placenta Using Optimized Protein Extraction

    Directory of Open Access Journals (Sweden)

    Magnus Centlow

    2010-01-01

    Full Text Available The human placenta is a difficult tissue to work with using proteomic technology since it contains large amounts of lipids and glycogen. Both lipids and glycogen are known to interfere with the first step in the two-dimensional polyacrylamide gel electrophoresis (2D-PAGE, the isoelectric focusing. In order to gain the best possible protein separation on 2D-PAGE, an optimized sample preparation protocol for placental proteins was developed. Two different buffers, urea/CHAPS and Hepes, were used for solubilization in combination with six different precipitation methods. The removal of glycogen from the samples by centrifugation was crucial for the final proteome maps. Solubilization with urea/CHAPS in combination with dichloromethane/methanol or acidified acetone proved to be the best precipitation procedures. When applied to clinical placenta samples apolipoprotein A1 was found to be accumulated in the preeclamptic placenta, where it may either have a nutritional effect or act as a modifier of signal transduction.

  5. A divide-and-conquer approach to determine the Pareto frontier for optimization of protein engineering experiments.

    Science.gov (United States)

    He, Lu; Friedman, Alan M; Bailey-Kellogg, Chris

    2012-03-01

    In developing improved protein variants by site-directed mutagenesis or recombination, there are often competing objectives that must be considered in designing an experiment (selecting mutations or breakpoints): stability versus novelty, affinity versus specificity, activity versus immunogenicity, and so forth. Pareto optimal experimental designs make the best trade-offs between competing objectives. Such designs are not "dominated"; that is, no other design is better than a Pareto optimal design for one objective without being worse for another objective. Our goal is to produce all the Pareto optimal designs (the Pareto frontier), to characterize the trade-offs and suggest designs most worth considering, but to avoid explicitly considering the large number of dominated designs. To do so, we develop a divide-and-conquer algorithm, Protein Engineering Pareto FRontier (PEPFR), that hierarchically subdivides the objective space, using appropriate dynamic programming or integer programming methods to optimize designs in different regions. This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate PEPFR with three protein engineering case studies: site-directed recombination for stability and diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for activity and immunogenicity via integer programming. We show that PEPFR is able to effectively produce all the Pareto optimal designs, discovering many more designs than previous methods. The characterization of the Pareto frontier provides additional insights into the local stability of design choices as well as global trends leading to trade-offs between competing criteria. Copyright © 2011 Wiley Periodicals, Inc.

  6. Optimizing FRET-FLIM Labeling Conditions to Detect Nuclear Protein Interactions at Native Expression Levels in Living Arabidopsis Roots

    KAUST Repository

    Long, Yuchen

    2018-05-15

    Protein complex formation has been extensively studied using Förster resonance energy transfer (FRET) measured by Fluorescence Lifetime Imaging Microscopy (FLIM). However, implementing this technology to detect protein interactions in living multicellular organism at single-cell resolution and under native condition is still difficult to achieve. Here we describe the optimization of the labeling conditions to detect FRET-FLIM in living plants. This study exemplifies optimization procedure involving the identification of the optimal position for the labels either at the N or C terminal region and the selection of the bright and suitable, fluorescent proteins as donor and acceptor labels for the FRET study. With an effective optimization strategy, we were able to detect the interaction between the stem cell regulators SHORT-ROOT and SCARECROW at endogenous expression levels in the root pole of living Arabidopsis embryos and developing lateral roots by FRET-FLIM. Using this approach we show that the spatial profile of interaction between two transcription factors can be highly modulated in reoccurring and structurally resembling organs, thus providing new information on the dynamic redistribution of nuclear protein complex configurations in different developmental stages. In principle, our optimization procedure for transcription factor complexes is applicable to any biological system.

  7. Getting Manipulative about Math.

    Science.gov (United States)

    Scheer, Janet K.; And Others

    1984-01-01

    Math manipulatives that are made from inexpensive, common items help students understand basic mathematics concepts. Learning activities using Cheerios, jellybeans, and clay as teaching materials are suggested. (DF)

  8. Manipulators in teleoperation

    International Nuclear Information System (INIS)

    Hamel, W.R.

    1985-01-01

    Teleoperated manipulators represent a mature technology which has evolved over nearly 40 years of applications experience. The wide range of manipulator concepts developed thus far reflect differing applications, priorities, and philosophies. The technology of teleoperated manipulators is in a rapid state of change (just as are industrial robotics) fueled by microelectronics and materials advances. Large strides in performance and dexterity are now practical and advantageous. Even though improved controls and sensory feedback will increase functionality, overall costs should be reduced as manipulator fabrication and assembly labor costs are reduced through improved manufacturing technology. As these advances begin to materialize, broader applications in nonnuclear areas should occur

  9. Combination of the Endogenous lhcsr1 Promoter and Codon Usage Optimization Boosts Protein Expression in the Moss Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Manuel Hiss

    2017-10-01

    Full Text Available The moss Physcomitrella patens is used both as an evo-devo model and biotechnological production system for metabolites and pharmaceuticals. Strong in vivo expression of genes of interest is important for production of recombinant proteins, e.g., selectable markers, fluorescent proteins, or enzymes. In this regard, the choice of the promoter sequence as well as codon usage optimization are two important inside factors to consider in order to obtain optimum protein accumulation level. To reliably quantify fluorescence, we transfected protoplasts with promoter:GFP fusion constructs and measured fluorescence intensity of living protoplasts in a plate reader system. We used the red fluorescent protein mCherry under 2x 35S promoter control as second reporter to normalize for different transfection efficiencies. We derived a novel endogenous promoter and compared deletion variants with exogenous promoters. We used different codon-adapted green fluorescent protein (GFP genes to evaluate the influence of promoter choice and codon optimization on protein accumulation in P. patens, and show that the promoter of the gene of P. patens chlorophyll a/b binding protein lhcsr1 drives expression of GFP in protoplasts significantly (more than twofold better than the commonly used 2x 35S promoter or the rice actin1 promoter. We identified a shortened 677 bp version of the lhcsr1 promoter that retains full activity in protoplasts. The codon optimized GFP yields significantly (more than twofold stronger fluorescence signals and thus demonstrates that adjusting codon usage in P. patens can increase expression strength. In combination, new promotor and codon optimized GFP conveyed sixfold increased fluorescence signal.

  10. Optimized sample preparation for two-dimensional gel electrophoresis of soluble proteins from chicken bursa of Fabricius

    Directory of Open Access Journals (Sweden)

    Zheng Xiaojuan

    2009-10-01

    Full Text Available Abstract Background Two-dimensional gel electrophoresis (2-DE is a powerful method to study protein expression and function in living organisms and diseases. This technique, however, has not been applied to avian bursa of Fabricius (BF, a central immune organ. Here, optimized 2-DE sample preparation methodologies were constructed for the chicken BF tissue. Using the optimized protocol, we performed further 2-DE analysis on a soluble protein extract from the BF of chickens infected with virulent avibirnavirus. To demonstrate the quality of the extracted proteins, several differentially expressed protein spots selected were cut from 2-DE gels and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS. Results An extraction buffer containing 7 M urea, 2 M thiourea, 2% (w/v 3-[(3-cholamidopropyl-dimethylammonio]-1-propanesulfonate (CHAPS, 50 mM dithiothreitol (DTT, 0.2% Bio-Lyte 3/10, 1 mM phenylmethylsulfonyl fluoride (PMSF, 20 U/ml Deoxyribonuclease I (DNase I, and 0.25 mg/ml Ribonuclease A (RNase A, combined with sonication and vortex, yielded the best 2-DE data. Relative to non-frozen immobilized pH gradient (IPG strips, frozen IPG strips did not result in significant changes in the 2-DE patterns after isoelectric focusing (IEF. When the optimized protocol was used to analyze the spleen and thymus, as well as avibirnavirus-infected bursa, high quality 2-DE protein expression profiles were obtained. 2-DE maps of BF of chickens infected with virulent avibirnavirus were visibly different and many differentially expressed proteins were found. Conclusion These results showed that method C, in concert extraction buffer IV, was the most favorable for preparing samples for IEF and subsequent protein separation and yielded the best quality 2-DE patterns. The optimized protocol is a useful sample preparation method for comparative proteomics analysis of chicken BF tissues.

  11. A proteome-scale study on in vivo protein N(α)-acetylation using an optimized method

    DEFF Research Database (Denmark)

    Zhang, Xumin; Engholm-Keller, Kasper; Højrup, Peter

    2011-01-01

    Protein N-terminal acetylation (N(α)-acetylation) is among the most common modifications in eukaryotes. We previously described a simple method to enrich N(α)-modified peptides using CNBr-activated Sepharose resin. A limitation of this method is that an optimal ratio of sample to resin had to be ...

  12. Designing a fully automated multi-bioreactor plant for fast DoE optimization of pharmaceutical protein production.

    Science.gov (United States)

    Fricke, Jens; Pohlmann, Kristof; Jonescheit, Nils A; Ellert, Andree; Joksch, Burkhard; Luttmann, Reiner

    2013-06-01

    The identification of optimal expression conditions for state-of-the-art production of pharmaceutical proteins is a very time-consuming and expensive process. In this report a method for rapid and reproducible optimization of protein expression in an in-house designed small-scale BIOSTAT® multi-bioreactor plant is described. A newly developed BioPAT® MFCS/win Design of Experiments (DoE) module (Sartorius Stedim Systems, Germany) connects the process control system MFCS/win and the DoE software MODDE® (Umetrics AB, Sweden) and enables therefore the implementation of fully automated optimization procedures. As a proof of concept, a commercial Pichia pastoris strain KM71H has been transformed for the expression of potential malaria vaccines. This approach has allowed a doubling of intact protein secretion productivity due to the DoE optimization procedure compared to initial cultivation results. In a next step, robustness regarding the sensitivity to process parameter variability has been proven around the determined optimum. Thereby, a pharmaceutical production process that is significantly improved within seven 24-hour cultivation cycles was established. Specifically, regarding the regulatory demands pointed out in the process analytical technology (PAT) initiative of the United States Food and Drug Administration (FDA), the combination of a highly instrumented, fully automated multi-bioreactor platform with proper cultivation strategies and extended DoE software solutions opens up promising benefits and opportunities for pharmaceutical protein production. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Genes adopt non-optimal codon usage to generate cell cycle-dependent oscillations in protein levels

    DEFF Research Database (Denmark)

    Frenkel-Morgenstern, Milana; Danon, Tamar; Christian, Thomas

    2012-01-01

    The cell cycle is a temporal program that regulates DNA synthesis and cell division. When we compared the codon usage of cell cycle-regulated genes with that of other genes, we discovered that there is a significant preference for non-optimal codons. Moreover, genes encoding proteins that cycle a...

  14. Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions.

    Science.gov (United States)

    Assadpour, Elham; Maghsoudlou, Yahya; Jafari, Seid-Mahdi; Ghorbani, Mohammad; Aalami, Mehran

    2016-05-01

    Due to susceptibility of folic acid like many other vitamins to environmental and processing conditions, it is necessary to protect it by highly efficient methods such as micro/nano-encapsulation. Our aim was to prepare and optimize real water in oil nano-emulsions containing folic acid by a low energy (spontaneous) emulsification technique so that the final product could be encapsulated within maltodextrin-whey protein double emulsions. A non ionic surfactant (Span 80) was used for making nano-emulsions at three dispersed phase/surfactant ratios of 0.2, 0.6, and 1.0. Folic acid content was 1.0, 2.0, and 3.0mg/mL of dispersed phase by a volume fraction of 5.0, 8.5, and 12%. The final optimum nano-emulsion formulation with 12% dispersed phase, a water to surfactant ratio of 0.9 and folic acid content of 3mg/mL in dispersed phase was encapsulated within maltodextrin-whey protein double emulsions. It was found that the emulsification time for preparing nano-emulsions was between 4 to 16 h based on formulation variables. Droplet size decreased at higher surfactant contents and final nano-emulsions had a droplet size<100 nm. Shear viscosity was higher for those formulations containing more surfactant. Our results revealed that spontaneous method could be used successfully for preparing stable W/O nano-emulsions containing folic acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Optimizing ultrasound molecular imaging of secreted frizzled related protein 2 expression in angiosarcoma.

    Directory of Open Access Journals (Sweden)

    James K Tsuruta

    Full Text Available Secreted frizzled related protein 2 (SFRP2 is a tumor endothelial marker expressed in angiosarcoma. Previously, we showed ultrasound molecular imaging with SFRP2-targeted contrast increased average video pixel intensity (VI of angiosarcoma vessels by 2.2 ± 0.6 VI versus streptavidin contrast. We hypothesized that redesigning our contrast agents would increase imaging performance. Improved molecular imaging reagents were created by combining NeutrAvidin™-functionalized microbubbles with biotinylated SFRP2 or IgY control antibodies. When angiosarcoma tumors in nude mice reached 8 mm, time-intensity, antibody loading, and microbubble dose experiments optimized molecular imaging. 10 minutes after injection, the control-subtracted time-intensity curve (TIC for SFRP2-targeted contrast reached a maximum, after subtracting the contribution of free-flowing contrast. SFRP2 antibody-targeted VI was greater when contrast was formulated with 10-fold molar excess of maleimide-activated NeutrAvidin™ versus 3-fold (4.5 ± 0.18 vs. 0.32 ± 0.15, VI ± SEM, 5 x 106 dose, p < 0.001. Tumor vasculature returned greater average video pixel intensity using 5 x 107 versus 5 x 106 microbubbles (21.2 ± 2.5 vs. 4.5 ± 0.18, p = 0.0011. Specificity for tumor vasculature was confirmed by low VI for SFRP2-targeted, and control contrast in peri-tumoral vasculature (3.2 ± 0.52 vs. 1.6 ± 0.71, p = 0.92. After optimization, average video pixel intensity of tumor vasculature was 14.2 ± 3.0 VI units higher with SFRP2-targeted contrast versus IgY-targeted control (22.1 ± 2.5 vs. 7.9 ± 1.6, p < 0.001. After log decompression, 14.2 ΔVI was equal to ~70% higher signal, in arbitray acoustic units (AU, for SFRP2 versus IgY. This provided ~18- fold higher acoustic signal enhancement than provided previously by 2.2 ΔVI. Basing our targeted contrast on NeutrAvidin™-functionalized microbubbles, using IgY antibodies for our control contrast, and optimizing our imaging protocol

  16. Master-slave manipulator

    International Nuclear Information System (INIS)

    Haaker, L.W.; Jelatis, D.G.

    1981-01-01

    A remote control master-slave manipulator for performing work on the opposite side of a barrier wall, is described. The manipulator consists of a rotatable horizontal support adapted to extend through the wall and two longitudinally extensible arms, a master and a slave, pivotally connected one to each end of the support. (U.K.)

  17. In Praise of Manipulation

    NARCIS (Netherlands)

    Dowding, Keith; Van Hees, Martin

    Many theorists believe that the manipulation of voting procedures is a serious problem. Accordingly, much of social choice theory examines the conditions under which strategy-proofness can be ensured, and what kind of procedures do a better job of preventing manipulation. This article argues that

  18. Optimized Mitochondrial Targeting of Proteins Encoded by Modified mRNAs Rescues Cells Harboring Mutations in mtATP6

    Directory of Open Access Journals (Sweden)

    Randall Marcelo Chin

    2018-03-01

    Full Text Available Summary: Mitochondrial disease may be caused by mutations in the protein-coding genes of the mitochondrial genome. A promising strategy for treating such diseases is allotopic expression—the translation of wild-type copies of these proteins in the cytosol, with subsequent translocation into the mitochondria, resulting in rescue of mitochondrial function. In this paper, we develop an automated, quantitative, and unbiased screening platform to evaluate protein localization and mitochondrial morphology. This platform was used to compare 31 mitochondrial targeting sequences and 15 3′ UTRs in their ability to localize up to 9 allotopically expressed proteins to the mitochondria and their subsequent impact on mitochondrial morphology. Taking these two factors together, we synthesized chemically modified mRNAs that encode for an optimized allotopic expression construct for mtATP6. These mRNAs were able to functionally rescue a cell line harboring the 8993T > G point mutation in the mtATP6 gene. : Allotopic expression of proteins normally encoded by mtDNA is a promising therapy for mitochondrial disease. Chin et al. use an unbiased and high-content imaging-based screening platform to optimize allotopic expression. Modified mRNAs encoding for the optimized allotopic expression constructs rescued the respiration and growth of mtATP6-deficient cells. Keywords: mitochondria, mitochondrial disease, mRNA, modified mRNA, ATP6, allotopic expression, rare disease, gene therapy, screening, high content imaging

  19. Cell manipulation in microfluidics

    International Nuclear Information System (INIS)

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2013-01-01

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available. (topical review)

  20. Manipulator comparative testing program

    International Nuclear Information System (INIS)

    Draper, J.V.; Handel, S.J.; Sundstrom, E.; Herndon, J.N.; Fujita, Y.; Maeda, M.

    1986-01-01

    The Manipulator Comparative Testing Program examined differences among manipulator systems from the United States and Japan. The manipulator systems included the Meidensha BILARM 83A, the Model M-2 of Central Research Laboratories Division of Sargent Industries (CRL), and the GCA Corporation PaR Systems Model 6000. The site of testing was the Remote Operations Maintenance Demonstration (ROMD) facility, operated by the Fuel Recycle Division in the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory (ORNL). In all stages of testing, operators using the CRL Model M-2 manipulator had consistently lower times to completion and error rates than they did using other machines. Performance was second best with the Meidensha BILARM 83A in master-slave mode. Performance with the BILARM in switchbox mode and the PaR 6000 manipulator was approximately equivalent in terms of criteria recorded in testing. These data show no impact of force reflection on task performance

  1. Protein structure modeling and refinement by global optimization in CASP12.

    Science.gov (United States)

    Hong, Seung Hwan; Joung, InSuk; Flores-Canales, Jose C; Manavalan, Balachandran; Cheng, Qianyi; Heo, Seungryong; Kim, Jong Yun; Lee, Sun Young; Nam, Mikyung; Joo, Keehyoung; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung

    2018-03-01

    For protein structure modeling in the CASP12 experiment, we have developed a new protocol based on our previous CASP11 approach. The global optimization method of conformational space annealing (CSA) was applied to 3 stages of modeling: multiple sequence-structure alignment, three-dimensional (3D) chain building, and side-chain re-modeling. For better template selection and model selection, we updated our model quality assessment (QA) method with the newly developed SVMQA (support vector machine for quality assessment). For 3D chain building, we updated our energy function by including restraints generated from predicted residue-residue contacts. New energy terms for the predicted secondary structure and predicted solvent accessible surface area were also introduced. For difficult targets, we proposed a new method, LEEab, where the template term played a less significant role than it did in LEE, complemented by increased contributions from other terms such as the predicted contact term. For TBM (template-based modeling) targets, LEE performed better than LEEab, but for FM targets, LEEab was better. For model refinement, we modified our CASP11 molecular dynamics (MD) based protocol by using explicit solvents and tuning down restraint weights. Refinement results from MD simulations that used a new augmented statistical energy term in the force field were quite promising. Finally, when using inaccurate information (such as the predicted contacts), it was important to use the Lorentzian function for which the maximal penalty arising from wrong information is always bounded. © 2017 Wiley Periodicals, Inc.

  2. Automatic rebuilding and optimization of crystallographic structures in the Protein Data Bank.

    Science.gov (United States)

    Joosten, Robbie P; Joosten, Krista; Cohen, Serge X; Vriend, Gert; Perrakis, Anastassis

    2011-12-15

    Macromolecular crystal structures in the Protein Data Bank (PDB) are a key source of structural insight into biological processes. These structures, some >30 years old, were constructed with methods of their era. With PDB_REDO, we aim to automatically optimize these structures to better fit their corresponding experimental data, passing the benefits of new methods in crystallography on to a wide base of non-crystallographer structure users. We developed new algorithms to allow automatic rebuilding and remodeling of main chain peptide bonds and side chains in crystallographic electron density maps, and incorporated these and further enhancements in the PDB_REDO procedure. Applying the updated PDB_REDO to the oldest, but also to some of the newest models in the PDB, corrects existing modeling errors and brings these models to a higher quality, as judged by standard validation methods. The PDB_REDO database and links to all software are available at http://www.cmbi.ru.nl/pdb_redo. r.joosten@nki.nl; a.perrakis@nki.nl Supplementary data are available at Bioinformatics online.

  3. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli.

    Science.gov (United States)

    Biggs, Bradley Walters; Lim, Chin Giaw; Sagliani, Kristen; Shankar, Smriti; Stephanopoulos, Gregory; De Mey, Marjan; Ajikumar, Parayil Kumaran

    2016-03-22

    Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature's favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (∼570 ± 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities.

  4. A novel Meloidogyne graminicola effector, MgMO237, interacts with multiple host defence-related proteins to manipulate plant basal immunity and promote parasitism.

    Science.gov (United States)

    Chen, Jiansong; Hu, Lili; Sun, Longhua; Lin, Borong; Huang, Kun; Zhuo, Kan; Liao, Jinling

    2018-02-27

    Plant-parasitic nematodes can secrete effector proteins into the host tissue to facilitate their parasitism. In this study, we report a novel effector protein, MgMO237, from Meloidogyne graminicola, which is exclusively expressed within the dorsal oesophageal gland cell and markedly up-regulated in parasitic third-/fourth-stage juveniles of M. graminicola. Transient expression of MgMO237 in protoplasts from rice roots showed that MgMO237 was localized in the cytoplasm and nucleus of the host cells. Rice plants overexpressing MgMO237 showed an increased susceptibility to M. graminicola. In contrast, rice plants expressing RNA interference vectors targeting MgMO237 showed an increased resistance to M. graminicola. In addition, yeast two-hybrid and co-immunoprecipitation assays showed that MgMO237 interacted specifically with three rice endogenous proteins, i.e. 1,3-β-glucan synthase component (OsGSC), cysteine-rich repeat secretory protein 55 (OsCRRSP55) and pathogenesis-related BetvI family protein (OsBetvI), which are all related to host defences. Moreover, MgMO237 can suppress host defence responses, including the expression of host defence-related genes, cell wall callose deposition and the burst of reactive oxygen species. These results demonstrate that the effector MgMO237 probably promotes the parasitism of M. graminicola by interacting with multiple host defence-related proteins and suppressing plant basal immunity in the later parasitic stages of nematodes. © 2018 BSPP AND JOHN WILEY & SONS LTD.

  5. Manipulation, salience, and nudges.

    Science.gov (United States)

    Noggle, Robert

    2018-03-01

    Cass Sunstein and Richard Thaler recommend helping people make better decisions by employing 'nudges', which they define as noncoercive methods of influencing choice for the better. Not surprisingly, healthcare practitioners and public policy professionals have become interested in whether nudges might be a promising method of improving health-related behaviors without resorting to heavy-handed methods such as coercion, deception, or government regulation. Many nudges seem unobjectionable as they merely improve the quality and quantity available for the decision-maker. However, other nudges influence decision-making in ways that do not involve providing more and better information. Nudges of this sort raise concerns about manipulation. This paper will focus on noninformational nudges that operate by changing the salience of various options. It will survey two approaches to understanding manipulation, one which sees manipulation as a kind of pressure, and one that sees it as a kind of trickery. On the pressure view, salience nudges do not appear to be manipulative. However, on the trickery view (which the author favors), salience nudges will be manipulative if they increase the salience so that it is disproportionate to that fact's true relevance and importance for the decision at hand. By contrast, salience nudges will not be manipulative if they merely highlight some fact that is true and important for the decision at hand. The paper concludes by providing examples of both manipulative and nonmanipulative salience nudges. © 2017 John Wiley & Sons Ltd.

  6. Manipulators for production and research

    International Nuclear Information System (INIS)

    Munro, Ian

    1987-01-01

    The development of caves or cells and master-slave manipulators to handle radioactive materials is discussed. Some of the most recent advances are described. A manipulator arm, a master-slave manipulator and a servomanipulator mounted on a manipulator are illustrated. Future developments are discussed - these include resolved tip control for the manipulator. (UK)

  7. Powered manipulator control arm

    International Nuclear Information System (INIS)

    Le Mouee, Theodore; Vertut, Jean; Marchal, Paul; Germon, J.C.; Petit, Michel

    1975-01-01

    A remote operated control arm for powered manipulators is described. It includes an assembly allowing several movements with position sensors for each movement. The number of possible arm movements equals the number of possible manipulator movements. The control systems may be interrupted as required. One part of the arm is fitted with a system to lock it with respect to another part of the arm without affecting the other movements, so long as the positions of the manipulator and the arm have not been brought into complete coincidence. With this system the locking can be ended when complete concordance is achieved [fr

  8. Simulation of robot manipulators

    International Nuclear Information System (INIS)

    Kress, R.L.; Babcock, S.M.; Bills, K.C.; Kwon, D.S.; Schoenwald, D.A.

    1995-01-01

    This paper describes Oak Ridge National Laboratory's development of an environment for the simulation of robotic manipulators. Simulation includes the modeling of kinematics, dynamics, sensors, actuators, control systems, operators, and environments. Models will be used for manipulator design, proposal evaluation, control system design and analysis, graphical preview of proposed motions, safety system development, and training. Of particular interest is the development of models for robotic manipulators having at least one flexible link. As a first application, models have been developed for the Pacific Northwest Laboratories' Flexible Beam Testbed which is a one-Degree-Of-Freedom, flexible arm with a hydraulic base actuator. Initial results show good agreement between model and experiment

  9. The direct manipulation shell

    International Nuclear Information System (INIS)

    Allen, M.E.; Christiansen, M.

    1992-01-01

    Accelerator controls systems provide parameter display pages which allow the operator to monitor and manipulate selected control points in the system. Display pages are generally implemented as either hand-crafted, purpose-built programs; or by using a specialized display page layout tool. These two methods of display page development exhibit the classic trade-off between functionality vs. ease of implementation. In the Direct Manipulation Shell we approach the process of developing a display page in a manifestly object-oriented manner. This is done by providing a general framework for interactively instantiating and manipulating display objects. (author)

  10. Manipulating early pig embryos.

    Science.gov (United States)

    Niemann, H; Reichelt, B

    1993-01-01

    On the basis of established surgical procedures for embryo recovery and transfer, the early pig embryo can be subjected to various manipulations aimed at a long-term preservation of genetic material, the generation of identical multiplets, the early determination of sex or the alteration of the genetic make-up. Most of these procedures are still at an experimental stage and despite recent considerable progress are far from practical application. Normal piglets have been obtained after cryopreservation of pig blastocysts hatched in vitro, whereas all attempts to freeze embryos with intact zona pellucida have been unsuccessful. Pig embryos at the morula and blastocyst stage can be bisected microsurgically and the resulting demi-embryos possess a high developmental potential in vitro, whereas their development in vivo is impaired. Pregnancy rates are similar (80%) but litter size is reduced compared with intact embryos and twinning rate is approximately 2%. Pig blastomeres isolated from embryos up to the 16-cell stage can be grown in culture and result in normal blastocysts. Normal piglets have been born upon transfer of blastocysts derived from isolated eight-cell blastomeres, clearly underlining the totipotency of this developmental stage. Upon nuclear transfer the developmental capacity of reconstituted pig embryos is low and culture. Sex determination can be achieved either by separation of X and Y chromosome bearing spermatozoa by flow cytometry or by analysing the expression of the HY antigen in pig embryos from the eight-cell to morula stage. Microinjection of foreign DNA has been successfully used to alter growth and development of transgenic pigs, and to produce foreign proteins in the mammary gland or in the bloodstream, indicating that pigs can be used as donors for valuable human pharmaceutical proteins. Another promising area of gene transfer is the increase of disease resistance in transgenic lines of pigs. Approximately 30% of pig spermatozoa bind

  11. Optimization of the Expression of DT386-BR2 Fusion Protein in Escherichia coli using Response Surface Methodology.

    Science.gov (United States)

    Shafiee, Fatemeh; Rabbani, Mohammad; Jahanian-Najafabadi, Ali

    2017-01-01

    The aim of this study was to determine the best condition for the production of DT386-BR2 fusion protein, an immunotoxin consisting of catalytic and translocation domains of diphtheria toxin fused to BR2, a cancer specific cell penetrating peptide, for targeted eradication of cancer cells, in terms of the host, cultivation condition, and culture medium. Recombinant pET28a vector containing the codons optimized for the expression of the DT386-BR2 gene was transformed to different strains of Escherichia coli ( E. coli BL21 DE3, E. coli Rosetta DE3 and E. coli Rosetta-gami 2 DE3), followed by the induction of expression using 1 mM IPTG. Then, the strain with the highest ability to produce recombinant protein was selected and used to determine the best expression condition using response surface methodology (RSM). Finally, the best culture medium was selected. Densitometry analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the expressed fusion protein showed that E. coli Rosetta DE3 produced the highest amounts of the recombinant fusion protein when quantified by 1 mg/ml bovine serum albumin (178.07 μg/ml). Results of RSM also showed the best condition for the production of the recombinant fusion protein was induction with 1 mM IPTG for 2 h at 37°C. Finally, it was established that terrific broth could produce higher amounts of the fusion protein when compared to other culture media. In this study, we expressed the recombinant DT386-BR2 fusion protein in large amounts by optimizing the expression host, cultivation condition, and culture medium. This fusion protein will be subjected to purification and evaluation of its cytotoxic effects in future studies.

  12. Optimization of the Expression of DT386-BR2 Fusion Protein in Escherichia coli using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Fatemeh Shafiee

    2017-01-01

    Full Text Available Background: The aim of this study was to determine the best condition for the production of DT386-BR2 fusion protein, an immunotoxin consisting of catalytic and translocation domains of diphtheria toxin fused to BR2, a cancer specific cell penetrating peptide, for targeted eradication of cancer cells, in terms of the host, cultivation condition, and culture medium. Materials and Methods: Recombinant pET28a vector containing the codons optimized for the expression of the DT386-BR2 gene was transformed to different strains of Escherichia coli (E. coli BL21 DE3, E. coli Rosetta DE3 and E. coli Rosetta-gami 2 DE3, followed by the induction of expression using 1 mM IPTG. Then, the strain with the highest ability to produce recombinant protein was selected and used to determine the best expression condition using response surface methodology (RSM. Finally, the best culture medium was selected. Results: Densitometry analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the expressed fusion protein showed that E. coli Rosetta DE3 produced the highest amounts of the recombinant fusion protein when quantified by 1 mg/ml bovine serum albumin (178.07 μg/ml. Results of RSM also showed the best condition for the production of the recombinant fusion protein was induction with 1 mM IPTG for 2 h at 37°C. Finally, it was established that terrific broth could produce higher amounts of the fusion protein when compared to other culture media. Conclusion: In this study, we expressed the recombinant DT386-BR2 fusion protein in large amounts by optimizing the expression host, cultivation condition, and culture medium. This fusion protein will be subjected to purification and evaluation of its cytotoxic effects in future studies.

  13. Geometric control of manipulators

    International Nuclear Information System (INIS)

    Thiruarooran, C.

    1996-01-01

    Resolved motion control enables the end effector to be moved as a rigid body in space without having to work out manually the joint combinations needed. Since a rigid body in space has three independent translational and three independent rotational movements, a manipulator with at least six joints can be controlled in this way. Normally the manipulator has more than six joints providing an infinite number of ways of moving the tip in the desired direction and this redundancy can be exploited in a variety of ways. Resolved motion tests performed on a hydraulically operated heavy duty manipulator at the Dungeness nuclear power plant are described. The results have shown that manipulators with as many as ten joints can be controlled under resolved tip motion and the areas which are critical to the performance of this type of control have been identified. (UK)

  14. MATHEMATICAL MODEL MANIPULATOR ROBOTS

    Directory of Open Access Journals (Sweden)

    O. N. Krakhmalev

    2015-12-01

    Full Text Available A mathematical model to describe the dynamics of manipulator robots. Mathematical model are the implementation of the method based on the Lagrange equation and using the transformation matrices of elastic coordinates. Mathematical model make it possible to determine the elastic deviations of manipulator robots from programmed motion trajectories caused by elastic deformations in hinges, which are taken into account in directions of change of the corresponding generalized coordinates. Mathematical model is approximated and makes it possible to determine small elastic quasi-static deviations and elastic vibrations. The results of modeling the dynamics by model are compared to the example of a two-link manipulator system. The considered model can be used when performing investigations of the mathematical accuracy of the manipulator robots.

  15. Compliant Aerial Manipulators

    DEFF Research Database (Denmark)

    Bartelds, T.; Capra, A.; Hamaza, S.

    2016-01-01

    joints. The approach aims at limiting the influence of impacts on the controlled attitude dynamics in order to allow the aerial manipulator to remain stable during and after impact. The developed concept is intended to convert kinetic energy into potential energy, which is permanently stored into elastic...... elements by means of directional locking mechanisms. The proposed approach has been tested on a 2 d.o.f. manipulator mounted on a quadrotor UAV. The manipulation system has one active rotational d.o.f. compensating for pitch movements of the UAV and one passive linear joint which is in charge of absorbing...... the impact energy. The device has been used to validate the method through experiments, in comparison with a rigid manipulator. The results show that the proposed approach and the developed mechanical system achieve stable impact absorption without bouncing away from the interacting environment. Our work has...

  16. Manipulating Strings in Python

    Directory of Open Access Journals (Sweden)

    William J. Turkel

    2012-07-01

    Full Text Available This lesson is a brief introduction to string manipulation techniques in Python. Knowing how to manipulate strings plays a crucial role in most text processing tasks. If you’d like to experiment with the following lessons, you can write and execute short programs as we’ve been doing, or you can open up a Python shell / Terminal to try them out on the command line.

  17. Constraint solving for direct manipulation of features

    NARCIS (Netherlands)

    Lourenco, D.; Oliveira, P.; Noort, A.; Bidarra, R.

    2006-01-01

    In current commercial feature modeling systems, support for direct manipulation of features is not commonly available. This is partly due to the strong reliance of such systems on constraints, but also to the lack of speed of current constraint solvers. In this paper, an approach to the optimization

  18. Design and Transmission Analysis of an Asymmetrical Spherical Parallel Manipulator

    DEFF Research Database (Denmark)

    Wu, Guanglei; Caro, Stéphane; Wang, Jiawei

    2015-01-01

    analysis and optimal design of the proposed manipulator based on its kinematic analysis. The input and output transmission indices of the manipulator are defined for its optimum design based on the virtual coefficient between the transmission wrenches and twist screws. The sets of optimal parameters......This paper presents an asymmetrical spherical parallel manipulator and its transmissibility analysis. This manipulator contains a center shaft to both generate a decoupled unlimited-torsion motion and support the mobile platform for high positioning accuracy. This work addresses the transmission...... are identified and the distribution of the transmission index is visualized. Moreover, a comparative study regarding to the performances with the symmetrical spherical parallel manipulators is conducted and the comparison shows the advantages of the proposed manipulator with respect to its spherical parallel...

  19. Proteins and amino acids are fundamental to optimal nutrition support in critically ill patients

    NARCIS (Netherlands)

    Weijs, P.J.M.; Cynober, L.; DeLegge, M.; Kreymann, G.; Wernerman, J.; Wolfe, R.R.

    2014-01-01

    Proteins and amino acids are widely considered to be subcomponents in nutritional support. However, proteins and amino acids are fundamental to recovery and survival, not only for their ability to preserve active tissue (protein) mass but also for a variety of other functions. Understanding the

  20. Analysis of different thermal processing methods of foodstuffs to optimize protein, calcium, and phosphorus content for dialysis patients.

    Science.gov (United States)

    Vrdoljak, Ivica; Panjkota Krbavčić, Ines; Bituh, Martina; Vrdoljak, Tea; Dujmić, Zoran

    2015-05-01

    To analyze how different thermal processing methods affect the protein, calcium, and phosphorus content of hospital food served to dialysis patients and to generate recommendations for preparing menus that optimize nutritional content while minimizing the risk of hyperphosphatemia. Standard Official Methods of Analysis (AOAC) methods were used to determine dry matter, protein, calcium, and phosphorus content in potatoes, fresh and frozen carrots, frozen green beans, chicken, beef and pork, frozen hake, pasta, and rice. These levels were determined both before and after boiling in water, steaming, stewing in oil or water, or roasting. Most of the thermal processing methods did not significantly reduce protein content. Boiling increased calcium content in all foodstuffs because of calcium absorption from the hard water. In contrast, stewing in oil containing a small amount of water decreased the calcium content of vegetables by 8% to 35% and of chicken meat by 12% to 40% on a dry weight basis. Some types of thermal processing significantly reduced the phosphorus content of the various foodstuffs, with levels decreasing by 27% to 43% for fresh and frozen vegetables, 10% to 49% for meat, 7% for pasta, and 22.8% for rice on a dry weight basis. On the basis of these results, we modified the thermal processing methods used to prepare a standard hospital menu for dialysis patients. Foodstuffs prepared according to the optimized menu were similar in protein content, higher in calcium, and significantly lower in phosphorus than foodstuffs prepared according to the standard menu. Boiling in water and stewing in oil containing some water significantly reduced phosphorus content without affecting protein content. Soaking meat in cold water for 1 h before thermal processing reduced phosphorus content even more. These results may help optimize the design of menus for dialysis patients. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights

  1. Using the multi-objective optimization replica exchange Monte Carlo enhanced sampling method for protein-small molecule docking.

    Science.gov (United States)

    Wang, Hongrui; Liu, Hongwei; Cai, Leixin; Wang, Caixia; Lv, Qiang

    2017-07-10

    In this study, we extended the replica exchange Monte Carlo (REMC) sampling method to protein-small molecule docking conformational prediction using RosettaLigand. In contrast to the traditional Monte Carlo (MC) and REMC sampling methods, these methods use multi-objective optimization Pareto front information to facilitate the selection of replicas for exchange. The Pareto front information generated to select lower energy conformations as representative conformation structure replicas can facilitate the convergence of the available conformational space, including available near-native structures. Furthermore, our approach directly provides min-min scenario Pareto optimal solutions, as well as a hybrid of the min-min and max-min scenario Pareto optimal solutions with lower energy conformations for use as structure templates in the REMC sampling method. These methods were validated based on a thorough analysis of a benchmark data set containing 16 benchmark test cases. An in-depth comparison between MC, REMC, multi-objective optimization-REMC (MO-REMC), and hybrid MO-REMC (HMO-REMC) sampling methods was performed to illustrate the differences between the four conformational search strategies. Our findings demonstrate that the MO-REMC and HMO-REMC conformational sampling methods are powerful approaches for obtaining protein-small molecule docking conformational predictions based on the binding energy of complexes in RosettaLigand.

  2. Extensive co-operation between the Epstein-Barr virus EBNA3 proteins in the manipulation of host gene expression and epigenetic chromatin modification.

    Directory of Open Access Journals (Sweden)

    Robert E White

    2010-11-01

    Full Text Available Epstein-Barr virus (EBV is able to drive the transformation of B-cells, resulting in the generation of lymphoblastoid cell lines (LCLs in vitro. EBV nuclear proteins EBNA3A and EBNA3C are necessary for efficient transformation, while EBNA3B is dispensable. We describe a transcriptome analysis of BL31 cells infected with a series of EBNA3-knockout EBVs, including one deleted for all three EBNA3 genes. Using Affymetrix Exon 1.0 ST microarrays analysed with the MMBGX algorithm, we have identified over 1000 genes whose regulation by EBV requires one of the EBNA3s. Remarkably, a third of the genes identified require more than one EBNA3 for their regulation, predominantly EBNA3C co-operating with either EBNA3B, EBNA3A or both. The microarray was validated by real-time PCR, while ChIP analysis of a selection of co-operatively repressed promoters indicates a role for polycomb group complexes. Targets include genes involved in apoptosis, cell migration and B-cell differentiation, and show a highly significant but subtle alteration in genes involved in mitosis. In order to assess the relevance of the BL31 system to LCLs, we analysed the transcriptome of a set of EBNA3B knockout (3BKO LCLs. Around a third of the genes whose expression level in LCLs was altered in the absence of EBNA3B were also altered in 3BKO-BL31 cell lines.Among these are TERT and TCL1A, implying that EBV-induced changes in the expression of these genes are not required for B-cell transformation. We also identify 26 genes that require both EBNA3A and EBNA3B for their regulation in LCLs. Together, this shows the complexity of the interaction between EBV and its host, whereby multiple EBNA3 proteins co-operate to modulate the behaviour of the host cell.

  3. Dynamic whole-body robotic manipulation

    Science.gov (United States)

    Abe, Yeuhi; Stephens, Benjamin; Murphy, Michael P.; Rizzi, Alfred A.

    2013-05-01

    The creation of dynamic manipulation behaviors for high degree of freedom, mobile robots will allow them to accomplish increasingly difficult tasks in the field. We are investigating how the coordinated use of the body, legs, and integrated manipulator, on a mobile robot, can improve the strength, velocity, and workspace when handling heavy objects. We envision that such a capability would aid in a search and rescue scenario when clearing obstacles from a path or searching a rubble pile quickly. Manipulating heavy objects is especially challenging because the dynamic forces are high and a legged system must coordinate all its degrees of freedom to accomplish tasks while maintaining balance. To accomplish these types of manipulation tasks, we use trajectory optimization techniques to generate feasible open-loop behaviors for our 28 dof quadruped robot (BigDog) by planning trajectories in a 13 dimensional space. We apply the Covariance Matrix Adaptation (CMA) algorithm to solve for trajectories that optimize task performance while also obeying important constraints such as torque and velocity limits, kinematic limits, and center of pressure location. These open-loop behaviors are then used to generate desired feed-forward body forces and foot step locations, which enable tracking on the robot. Some hardware results for cinderblock throwing are demonstrated on the BigDog quadruped platform augmented with a human-arm-like manipulator. The results are analogous to how a human athlete maximizes distance in the discus event by performing a precise sequence of choreographed steps.

  4. Advanced manipulator system for large hot cells

    International Nuclear Information System (INIS)

    Vertut, J.; Moreau, C.; Brossard, J.P.

    1981-01-01

    Large hot cells can be approached as extrapolated from smaller ones as wide, higher or longer in size with the same concept of using mechanical master slave manipulators and high density windows. This concept leads to a large number of working places and corresponding equipments, with a number of penetrations through the biological protection. When the large cell does not need a permanent operation of number of work places, as in particular to serve PIE machines and maintain the facility, use of servo manipulators with a large supporting unit and extensive use of television appears optimal. The advance on MA 23 and supports will be described including the extra facilities related to manipulators introduction and maintenance. The possibility to combine a powered manipulator and MA 23 (single or pair) on the same boom crane system will be described. An advance control system to bring the minimal dead time to control support movement, associated to the master slave arm operation is under development. The general television system includes over view cameras, associated with the limited number of windows, and manipulators camera. A special new system will be described which brings an automatic control of manipulator cameras and saves operator load and dead time. Full scale tests with MA 23 and support will be discussed. (author)

  5. Optimized Protocol for Protein Extraction from the Breast Tissue that is Compatible with Two-Dimensional Gel Electrophoresis

    Directory of Open Access Journals (Sweden)

    Olena Zakharchenko

    2011-01-01

    Full Text Available Proteomics is a highly informative approach to analyze cancer-associated transformation in tissues. The main challenge to use a tissue for proteomics studies is the small sample size and difficulties to extract and preserve proteins. The choice of a buffer compatible with proteomics applications is also a challenge. Here we describe a protocol optimized for the most efficient extraction of proteins from the human breast tissue in a buffer compatible with two-dimensional gel electrophoresis (2D-GE. This protocol is based on mechanically assisted disintegration of tissues directly in the 2D-GE buffer. Our method is simple, robust and easy to apply in clinical practice. We demonstrate high quality of separation of proteins prepared according to the reported here protocol.

  6. Increasing the sampling efficiency of protein conformational transition using velocity-scaling optimized hybrid explicit/implicit solvent REMD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yuqi; Wang, Jinan; Shao, Qiang, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn; Zhu, Weiliang, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn [ACS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203 (China); Shi, Jiye, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn [UCB Pharma, 216 Bath Road, Slough SL1 4EN (United Kingdom)

    2015-03-28

    The application of temperature replica exchange molecular dynamics (REMD) simulation on protein motion is limited by its huge requirement of computational resource, particularly when explicit solvent model is implemented. In the previous study, we developed a velocity-scaling optimized hybrid explicit/implicit solvent REMD method with the hope to reduce the temperature (replica) number on the premise of maintaining high sampling efficiency. In this study, we utilized this method to characterize and energetically identify the conformational transition pathway of a protein model, the N-terminal domain of calmodulin. In comparison to the standard explicit solvent REMD simulation, the hybrid REMD is much less computationally expensive but, meanwhile, gives accurate evaluation of the structural and thermodynamic properties of the conformational transition which are in well agreement with the standard REMD simulation. Therefore, the hybrid REMD could highly increase the computational efficiency and thus expand the application of REMD simulation to larger-size protein systems.

  7. In Silico Generation of Peptides by Replica Exchange Monte Carlo: Docking-Based Optimization of Maltose-Binding-Protein Ligands.

    Directory of Open Access Journals (Sweden)

    Anna Russo

    Full Text Available Short peptides can be designed in silico and synthesized through automated techniques, making them advantageous and versatile protein binders. A number of docking-based algorithms allow for a computational screening of peptides as binders. Here we developed ex-novo peptides targeting the maltose site of the Maltose Binding Protein, the prototypical system for the study of protein ligand recognition. We used a Monte Carlo based protocol, to computationally evolve a set of octapeptides starting from a polialanine sequence. We screened in silico the candidate peptides and characterized their binding abilities by surface plasmon resonance, fluorescence and electrospray ionization mass spectrometry assays. These experiments showed the designed binders to recognize their target with micromolar affinity. We finally discuss the obtained results in the light of further improvement in the ex-novo optimization of peptide based binders.

  8. Structural optimization and structure-functional selectivity relationship studies of G protein-biased EP2 receptor agonists.

    Science.gov (United States)

    Ogawa, Seiji; Watanabe, Toshihide; Moriyuki, Kazumi; Goto, Yoshikazu; Yamane, Shinsaku; Watanabe, Akio; Tsuboi, Kazuma; Kinoshita, Atsushi; Okada, Takuya; Takeda, Hiroyuki; Tani, Kousuke; Maruyama, Toru

    2016-05-15

    The modification of the novel G protein-biased EP2 agonist 1 has been investigated to improve its G protein activity and develop a better understanding of its structure-functional selectivity relationship (SFSR). The optimization of the substituents on the phenyl ring of 1, followed by the inversion of the hydroxyl group on the cyclopentane moiety led to compound 9, which showed a 100-fold increase in its G protein activity compared with 1 without any increase in β-arrestin recruitment. Furthermore, SFSR studies revealed that the combination of meta and para substituents on the phenyl moiety was crucial to the functional selectivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Parametric Approach to Trajectory Tracking Control of Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Shijie Zhang

    2013-01-01

    Full Text Available The mathematic description of the trajectory of robot manipulators with the optimal trajectory tracking problem is formulated as an optimal control problem, and a parametric approach is proposed for the optimal trajectory tracking control problem. The optimal control problem is first solved as an open loop optimal control problem by using a time scaling transform and the control parameterization method. Then, by virtue of the relationship between the optimal open loop control and the optimal closed loop control along the optimal trajectory, a practical method is presented to calculate an approximate optimal feedback gain matrix, without having to solve an optimal control problem involving the complex Riccati-like matrix differential equation coupled with the original system dynamics. Simulation results of 2-link robot manipulator are presented to show the effectiveness of the proposed method.

  10. Using magnetic nanoparticles to manipulate biological objects

    International Nuclear Information System (INIS)

    Liu Yi; Gao Yu; Xu Chenjie

    2013-01-01

    The use of magnetic nanoparticles (MNPs) for the manipulation of biological objects, including proteins, genes, cellular organelles, bacteria, cells, and organs, are reviewed. MNPs are popular candidates for controlling and probing biological objects with a magnetic force. In the past decade, progress in the synthesis and surface engineering of MNPs has further enhanced this popularity. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  11. Prediction of the optimal set of contacts to fold the smallest knotted protein

    Science.gov (United States)

    Dabrowski-Tumanski, P.; Jarmolinska, A. I.; Sulkowska, J. I.

    2015-09-01

    Knotted protein chains represent a new motif in protein folds. They have been linked to various diseases, and recent extensive analysis of the Protein Data Bank shows that they constitute 1.5% of all deposited protein structures. Despite thorough theoretical and experimental investigations, the role of knots in proteins still remains elusive. Nonetheless, it is believed that knots play an important role in mechanical and thermal stability of proteins. Here, we perform a comprehensive analysis of native, shadow-specific and non-native interactions which describe free energy landscape of the smallest knotted protein (PDB id 2efv). We show that the addition of shadow-specific contacts in the loop region greatly enhances folding kinetics, while the addition of shadow-specific contacts along the C-terminal region (H3 or H4) results in a new folding route with slower kinetics. By means of direct coupling analysis (DCA) we predict non-native contacts which also can accelerate kinetics. Next, we show that the length of the C-terminal knot tail is responsible for the shape of the free energy barrier, while the influence of the elongation of the N-terminus is not significant. Finally, we develop a concept of a minimal contact map sufficient for 2efv protein to fold and analyze properties of this protein using this map.

  12. Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle.

    Science.gov (United States)

    Burd, Nicholas A; Tardif, Nicolas; Rooyackers, Olav; van Loon, Luc J C

    2015-01-01

    The measurement of mitochondrial protein synthesis after food ingestion, contractile activity, and/or disease is often used to provide insight into skeletal muscle adaptations that occur in the longer term. Studies have shown that protein ingestion stimulates mitochondrial protein synthesis in human skeletal muscle. Minor differences in the stimulation of mitochondrial protein synthesis occur after a single bout of resistance or endurance exercise. There appear to be no measurable differences in mitochondrial protein synthesis between critically ill patients and aged-matched controls. However, the mitochondrial protein synthetic response is reduced at a more advanced age. In this paper, we discuss the challenges involved in the measurement of human skeletal muscle mitochondrial protein synthesis rates based on stable isotope amino acid tracer methods. Practical guidelines are discussed to improve the reliability of the measurement of mitochondrial protein synthesis rates. The value of the measurement of mitochondrial protein synthesis after a single meal or exercise bout on the prediction of the longer term skeletal muscle mass and performance outcomes in both the healthy and disease populations requires more work, but we emphasize that the measurements need to be reliable to be of any value to the field.

  13. Prediction of the optimal set of contacts to fold the smallest knotted protein

    International Nuclear Information System (INIS)

    Dabrowski-Tumanski, P; Jarmolinska, A I; Sulkowska, J I

    2015-01-01

    Knotted protein chains represent a new motif in protein folds. They have been linked to various diseases, and recent extensive analysis of the Protein Data Bank shows that they constitute 1.5% of all deposited protein structures. Despite thorough theoretical and experimental investigations, the role of knots in proteins still remains elusive. Nonetheless, it is believed that knots play an important role in mechanical and thermal stability of proteins. Here, we perform a comprehensive analysis of native, shadow-specific and non-native interactions which describe free energy landscape of the smallest knotted protein (PDB id 2efv). We show that the addition of shadow-specific contacts in the loop region greatly enhances folding kinetics, while the addition of shadow-specific contacts along the C-terminal region (H3 or H4) results in a new folding route with slower kinetics. By means of direct coupling analysis (DCA) we predict non-native contacts which also can accelerate kinetics. Next, we show that the length of the C-terminal knot tail is responsible for the shape of the free energy barrier, while the influence of the elongation of the N-terminus is not significant. Finally, we develop a concept of a minimal contact map sufficient for 2efv protein to fold and analyze properties of this protein using this map. (paper)

  14. Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids

    International Nuclear Information System (INIS)

    Nucci, Nathaniel V.; Marques, Bryan S.; Bédard, Sabrina; Dogan, Jakob; Gledhill, John M.; Moorman, Veronica R.; Peterson, Ronald W.; Valentine, Kathleen G.; Wand, Alison L.; Wand, A. Joshua

    2011-01-01

    Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ∼23 to ∼10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 43 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect.

  15. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  16. Balanced articulated manipulator

    International Nuclear Information System (INIS)

    Francois, Daniel; Germond, J.-C.; Marchal, Paul; Vertut, Jean.

    1976-01-01

    The description is given of a manipulator of the type comprising a master arm and a slave arm, capable of working in a containment restricted by a wall fitted with an aperture to introduce the slave arm into the containment. According to the invention this manipulator is permanently balanced irrespective of its distortions when it is secured to the wall of the containment in which it is desired to work. The entire manipulator is also balanced when being set up and when moved outside the containment, in relation to a supporting axle. This result is achieved in a simplified manner by giving homothetic shapes to the various component parts of the slave and master arms, the master arm having at least one balancing weight [fr

  17. Stainless steel decontamination manipulators

    International Nuclear Information System (INIS)

    Sullivan, R.J.

    1986-01-01

    Three, large-volume coverage manipulator systems were designed and built for the Defense Water Processing Facility at the Savannah River Laboratory. These stainless steel systems will be used for high-pressure spray decontamination of waste containers and large process equipment modules. Each system has a manipulator arm, folding boom, and vertical drive and guide structure. Handling capacity is 45 kg, horizontal reach is 4.6 m with a 180-deg swing motion, and the vertical travel is 6 m. The system is remotely removable and replaceable in modules using an overhead crane and an impact wrench. The manipulator arm has seven motions: Shoulder rotation and pivot, elbow pivot, wrist pivot and rotation, and grip open-close. All motions are variable speed and are slip-clutch protected to prevent overloading from external forces (collisions)

  18. Data manipulation with R

    CERN Document Server

    Abedin, Jaynal

    2014-01-01

    This book is a step-by step, example-oriented tutorial that will show both intermediate and advanced users how data manipulation is facilitated smoothly using R.This book is aimed at intermediate to advanced level users of R who want to perform data manipulation with R, and those who want to clean and aggregate data effectively. Readers are expected to have at least an introductory knowledge of R and some basic administration work in R, such as installing packages and calling them when required.

  19. Cellular recovery from exposure to sub-optimal concentrations of AB toxins that inhibit protein synthesis

    Science.gov (United States)

    Shiga toxin 1, exotoxin A, diphtheria toxin and ricin are all AB-type protein toxins that act within the host cytosol to kill the host cell through a pathway involving the inhibition of protein synthesis. It is thought that a single molecule of cytosolic toxin is sufficient to kill the host cell. In...

  20. Economic Optimizing Control for Single-Cell Protein Production in a U-Loop Reactor

    DEFF Research Database (Denmark)

    Drejer, André; Ritschel, Tobias Kasper Skovborg; Jørgensen, Sten Bay

    2017-01-01

    The production of single-cell protein (SCP) in a U-loop reactor by a methanotroph is a cost efficient sustainable alternative to protein from fish meal obtained by over-fishing the oceans. SCP serves as animal feed. In this paper, we present a mathematical model that describes the dynamics of SCP...

  1. Protein Consumption and the Elderly: What Is the Optimal Level of Intake?

    Directory of Open Access Journals (Sweden)

    Jamie I. Baum

    2016-06-01

    Full Text Available Maintaining independence, quality of life, and health is crucial for elderly adults. One of the major threats to living independently is the loss of muscle mass, strength, and function that progressively occurs with aging, known as sarcopenia. Several studies have identified protein (especially the essential amino acids as a key nutrient for muscle health in elderly adults. Elderly adults are less responsive to the anabolic stimulus of low doses of amino acid intake compared to younger individuals. However, this lack of responsiveness in elderly adults can be overcome with higher levels of protein (or essential amino acid consumption. The requirement for a larger dose of protein to generate responses in elderly adults similar to the responses in younger adults provides the support for a beneficial effect of increased protein in older populations. The purpose of this review is to present the current evidence related to dietary protein intake and muscle health in elderly adults.

  2. Optimization of the silk scaffold sericin removal process for retention of silk fibroin protein structure and mechanical properties

    International Nuclear Information System (INIS)

    Teh, Thomas K H; Toh, Siew-Lok; Goh, James C H

    2010-01-01

    In the process of removing sericin (degumming) from a raw silk scaffold, the fibroin structural integrity is often challenged, leading to mechanical depreciation. This study aims to identify the factors and conditions contributing to fibroin degradation during alkaline degumming and to perform an optimization study of the parameters involved to achieve preservation of fibroin structure and properties. The methodology involves degumming knitted silk scaffolds for various durations (5-90 min) and temperatures (60-100 0 C). Mechanical agitation and use of the refreshed solution during degumming are included to investigate how these factors contribute to degumming efficiency and fibroin preservation. Characterizations of silk fibroin morphology, mechanical properties and protein components are determined by scanning electron microscopy (SEM), single fiber tensile tests and gel electrophoresis (SDS-PAGE), respectively. Sericin removal is ascertained via SEM imaging and a protein fractionation method involving SDS-PAGE. The results show that fibroin fibrillation, leading to reduced mechanical integrity, is mainly caused by prolonged degumming duration. Through a series of optimization, knitted scaffolds are observed to be optimally degummed and experience negligible mechanical and structural degradation when subjected to alkaline degumming with mechanical agitation for 30 min at 100 0 C.

  3. Optimization of the silk scaffold sericin removal process for retention of silk fibroin protein structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Teh, Thomas K H; Toh, Siew-Lok; Goh, James C H, E-mail: dosgohj@nus.edu.s, E-mail: dostkh@nus.edu.s, E-mail: bietohsl@nus.edu.s [Division of Bioengineering, National University of Singapore (Singapore)

    2010-06-01

    In the process of removing sericin (degumming) from a raw silk scaffold, the fibroin structural integrity is often challenged, leading to mechanical depreciation. This study aims to identify the factors and conditions contributing to fibroin degradation during alkaline degumming and to perform an optimization study of the parameters involved to achieve preservation of fibroin structure and properties. The methodology involves degumming knitted silk scaffolds for various durations (5-90 min) and temperatures (60-100 {sup 0}C). Mechanical agitation and use of the refreshed solution during degumming are included to investigate how these factors contribute to degumming efficiency and fibroin preservation. Characterizations of silk fibroin morphology, mechanical properties and protein components are determined by scanning electron microscopy (SEM), single fiber tensile tests and gel electrophoresis (SDS-PAGE), respectively. Sericin removal is ascertained via SEM imaging and a protein fractionation method involving SDS-PAGE. The results show that fibroin fibrillation, leading to reduced mechanical integrity, is mainly caused by prolonged degumming duration. Through a series of optimization, knitted scaffolds are observed to be optimally degummed and experience negligible mechanical and structural degradation when subjected to alkaline degumming with mechanical agitation for 30 min at 100 {sup 0}C.

  4. Mass spectrometry compatible surfactant for optimized in-gel protein digestion.

    Science.gov (United States)

    Saveliev, Sergei V; Woodroofe, Carolyn C; Sabat, Grzegorz; Adams, Christopher M; Klaubert, Dieter; Wood, Keith; Urh, Marjeta

    2013-01-15

    Identification of proteins resolved by SDS-PAGE depends on robust in-gel protein digestion and efficient peptide extraction, requirements that are often difficult to achieve. A lengthy and laborious procedure is an additional challenge of protein identification in gel. We show here that with the use of the mass spectrometry compatible surfactant sodium 3-((1-(furan-2-yl)undecyloxy)carbonylamino)propane-1-sulfonate, the challenges of in-gel protein digestion are effectively addressed. Peptide quantitation based on stable isotope labeling showed that the surfactant induced 1.5-2 fold increase in peptide recovery. Consequently, protein sequence coverage was increased by 20-30%, on average, and the number of identified proteins saw a substantial boost. The surfactant also accelerated the digestion process. Maximal in-gel digestion was achieved in as little as one hour, depending on incubation temperature, and peptides were readily recovered from gel eliminating the need for postdigestion extraction. This study shows that the surfactant provides an efficient means of improving protein identification in gel and streamlining the in-gel digestion procedure requiring no extra handling steps or special equipment.

  5. Optimization of protein and peptide drugs based on the mechanisms of kidney clearance.

    Science.gov (United States)

    Huang, Jiaguo; Wu, Huizi

    2018-05-30

    Development of proteins and peptides into drugs has been considered as a promising strategy to target certain diseases. However, only few proteins and peptides has been approved as new drugs into the market each year. One major problem is that proteins and peptides often exhibit short plasma half-life times, which limits the application for their clinical use. In most cases a short half-life time is not effective to deliver sufficient amount of drugs to the target organs and tissues, which is generally caused by fast renal clearance and low plasma stability due to proteolytic degradation during systemic circulation, because the most common clearance pathway of small proteins and peptides is through glomerular filtration by the kidneys. In this review, enzymatic degradation of proteins and peptides were discussed. Furthermore, several approaches to lengthen the half-life of peptides and proteins drugs based on the unique structures of glomerular capillary wall and the mechanisms of glomerular filtration were summarized, such as increasing the size and hydrodynamic diameter; increasing the negative charge to delay the filtration; increasing plasma protein binding to decrease plasma clearance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. MANIPULATING CONSUMERS THROUGH ADVERTISING

    Directory of Open Access Journals (Sweden)

    Nicoleta -Andreea Neacşu

    2012-12-01

    Full Text Available Marketing communication has evolved steadily in the direction of increasing complexity and increasing volume of funds needed to run their own actions. More than ever, consumers are exposed to an overwhelming variety of sources and communication tehniques, the information received being numerous, diverse and polyvalent. The desire to make more efficient the marketing communication activity urges the broadcasters to encode messages, to use effective means of propagation in order to obtain a high degree of control on receptors and to influence the consumption attitudes. Between the means used for this purpose, manipulation tehniques are well known. This paper highlights the main conclusions drawn as a result of a quantitative marketing research on the adult population from Braşov in order to identify the attitudes and opinions of consumers from Braşov regarding the manipulation techniques used by commercial practices and advertising.The results of the research have shown that 82% of the respondents buy products in promotional offers, and 18% choose not to buy these products and 61% of the respondents consider that they have not been manipulated not even once, while only 39% believe that they have been manipulated at least once through advertising or commercial practices. Advertisements on TV have a strong influence on consumers, 81% of the respondents considering that at least once they have bought a product because of a TV commercial.

  7. Microrobots to Manipulate Cells

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    At DTU Fotonik we developed and harnessed the new and emerging research area of so-called Light Robotics including the 3D-printed micro-tools coined Wave-guided Optical Waveguides that can be real-time laser-manipulated in a 3D-volume with six-degrees-of-freedom. To be exploring the full potentia...

  8. Automated visual attention manipulation

    NARCIS (Netherlands)

    Bosse, T.; Lambalgen, R. van; Maanen, P.P. van; Treur, J.

    2009-01-01

    In this paper a system for visual attention manipulation is introduced and formally described. This system is part of the design of a software agent that supports naval crew in her task to compile a tactical picture of the situation in the field. A case study is described in hich the system is used

  9. Data manipulation with R

    CERN Document Server

    Abedin, Jaynal

    2015-01-01

    This book is for all those who wish to learn about data manipulation from scratch and excel at aggregating data effectively. It is expected that you have basic knowledge of R and have previously done some basic administration work with R.

  10. The TFTR maintenance manipulator

    International Nuclear Information System (INIS)

    Kungl, D.; Loesser, D.; Heitzenroeder, P.; Cerdan, G.

    1989-01-01

    TFTR plans to begin D-T experiments in mid 1990. The D-T experimental program will produce approximately one hundred shots, with a neutron generation rate of 10 19 neutrons per shot. This will result in high levels of activation in TFTR, especially in the vacuum vessel. The primary purpose of the Maintenance Manipulator is to provide a means of remotely performing certain defined maintenance and inspection tasks inside the vacuum torus so as to minimize personnel exposure to radiation. The manipulator consists of a six-link folding boom connected to a fixed boom on a movable carriage. The entire manipulator is housed in a vacuum antechamber connected to the vacuum torus, through a port formerly used for a vacuum pumping duct. The configuration extends 180 0 in either direction to provide complete coverage of the torus. The four 3500 l/s turbopumps which were formerly used in the pumping duct will be mounted on the antechamber. The manipulator will utilize two end effectors. The first, called a General Inspection Arm (GIA) provides a movable platform to an inspection camera and an in-vacuum leak detector. The second is a bilateral, force-reflecting pair of slave arms which utilize specially developed tools to perform several maintenance functions. All components except the slave arms are capable of operating in TFTR's vacuum environment and during 150 0 C bakeout of the torus. (orig.)

  11. Manipulating Combinatorial Structures.

    Science.gov (United States)

    Labelle, Gilbert

    This set of transparencies shows how the manipulation of combinatorial structures in the context of modern combinatorics can easily lead to interesting teaching and learning activities at every level of education from elementary school to university. The transparencies describe: (1) the importance and relations of combinatorics to science and…

  12. Optimal combinations of acute phase proteins for detecting infectious disease in pigs

    DEFF Research Database (Denmark)

    Heegaard, Peter M. H.; Stockmarr, Anders; Piñeiro, Matilde

    2011-01-01

    The acute phase protein (APP) response is an early systemic sign of disease, detected as substantial changes in APP serum concentrations and most disease states involving inflammatory reactions give rise to APP responses. To obtain a detailed picture of the general utility of porcine APPs to detect...... gondii) and one viral (porcine respiratory and reproductive syndrome virus) infection and one aseptic inflammation. Immunochemical analyses of seven APPs, four positive (C-reactive protein (CRP), haptoglobin (Hp), pig major acute phase protein (pigMAP) and serum amyloid A (SAA)) and three negative...

  13. Multidiscipline simulation of elastic manipulators

    Directory of Open Access Journals (Sweden)

    T. Rølvåg

    1992-10-01

    Full Text Available This paper contributes to multidiscipline simulation of elastic robot manipulators in FEDEM. All developments presented in this paper are based on the formulations in FEDEM, a simulation system developed by the authors which combines finite element, mechanism and control analysis. In order to establish this general simulation system as an efficient multidiscipline robot design tool a robot control system including a high level robot programming language, interpolation algorithms, path generation algorithms, forward and inverse kinematics, control systems, gear and transmission models are implemented. These new features provide a high level of integration between traditionally separate design disciplines from the very beginning of the design and optimization process. Several simulations have shown that high fidelity mathematical models can be derived and used as a basis for dynamic analysis and controller design in FEDEM.

  14. Detection of C',Cα correlations in proteins using a new time- and sensitivity-optimal experiment

    International Nuclear Information System (INIS)

    Lee, Donghan; Voegeli, Beat; Pervushin, Konstantin

    2005-01-01

    Sensitivity- and time-optimal experiment, called COCAINE (CO-CA In- and aNtiphase spectra with sensitivity Enhancement), is proposed to correlate chemical shifts of 13 C' and 13 C α spins in proteins. A comparison of the sensitivity and duration of the experiment with the corresponding theoretical unitary bounds shows that the COCAINE experiment achieves maximum possible transfer efficiency in the shortest possible time, and in this sense the sequence is optimal. Compared to the standard HSQC, the COCAINE experiment delivers a 2.7-fold gain in sensitivity. This newly proposed experiment can be used for assignment of backbone resonances in large deuterated proteins effectively bridging 13 C' and 13 C α resonances in adjacent amino acids. Due to the spin-state selection employed, the COCAINE experiment can also be used for efficient measurements of one-bond couplings (e.g. scalar and residual dipolar couplings) in any two-spin system (e.g. the N/H in the backbone of protein)

  15. Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition

    International Nuclear Information System (INIS)

    Shen Hongbin; Chou Kuochen

    2005-01-01

    The nucleus is the brain of eukaryotic cells that guides the life processes of the cell by issuing key instructions. For in-depth understanding of the biochemical process of the nucleus, the knowledge of localization of nuclear proteins is very important. With the avalanche of protein sequences generated in the post-genomic era, it is highly desired to develop an automated method for fast annotating the subnuclear locations for numerous newly found nuclear protein sequences so as to be able to timely utilize them for basic research and drug discovery. In view of this, a novel approach is developed for predicting the protein subnuclear location. It is featured by introducing a powerful classifier, the optimized evidence-theoretic K-nearest classifier, and using the pseudo amino acid composition [K.C. Chou, PROTEINS: Structure, Function, and Genetics, 43 (2001) 246], which can incorporate a considerable amount of sequence-order effects, to represent protein samples. As a demonstration, identifications were performed for 370 nuclear proteins among the following 9 subnuclear locations: (1) Cajal body, (2) chromatin, (3) heterochromatin, (4) nuclear diffuse, (5) nuclear pore, (6) nuclear speckle, (7) nucleolus, (8) PcG body, and (9) PML body. The overall success rates thus obtained by both the re-substitution test and jackknife cross-validation test are significantly higher than those by existing classifiers on the same working dataset. It is anticipated that the powerful approach may also become a useful high throughput vehicle to bridge the huge gap occurring in the post-genomic era between the number of gene sequences in databases and the number of gene products that have been functionally characterized. The OET-KNN classifier will be available at www.pami.sjtu.edu.cn/people/hbshen

  16. Proteins and amino acids are fundamental to optimal nutrition support in critically ill patients

    NARCIS (Netherlands)

    Weijs, Peter JM; Cynober, Luc; DeLegge, Mark; Kreymann, Georg; Wernerman, Jan; Wolfe, Robert R

    2014-01-01

    In this review, we present the growing scientific evidence showing the importance of protein and amino acid provision in nutritional support and their impact on preservation of muscle mass and patient outcomes.

  17. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field.

    Science.gov (United States)

    Xu, Dong; Zhang, Yang

    2012-07-01

    Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Copyright © 2012 Wiley Periodicals, Inc.

  18. Optimization of analytical and pre-analytical conditions for MALDI-TOF-MS human urine protein profiles.

    Science.gov (United States)

    Calvano, C D; Aresta, A; Iacovone, M; De Benedetto, G E; Zambonin, C G; Battaglia, M; Ditonno, P; Rutigliano, M; Bettocchi, C

    2010-03-11

    Protein analysis in biological fluids, such as urine, by means of mass spectrometry (MS) still suffers for insufficient standardization in protocols for sample collection, storage and preparation. In this work, the influence of these variables on healthy donors human urine protein profiling performed by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was studied. A screening of various urine sample pre-treatment procedures and different sample deposition approaches on the MALDI target was performed. The influence of urine samples storage time and temperature on spectral profiles was evaluated by means of principal component analysis (PCA). The whole optimized procedure was eventually applied to the MALDI-TOF-MS analysis of human urine samples taken from prostate cancer patients. The best results in terms of detected ions number and abundance in the MS spectra were obtained by using home-made microcolumns packed with hydrophilic-lipophilic balance (HLB) resin as sample pre-treatment method; this procedure was also less expensive and suitable for high throughput analyses. Afterwards, the spin coating approach for sample deposition on the MALDI target plate was optimized, obtaining homogenous and reproducible spots. Then, PCA indicated that low storage temperatures of acidified and centrifuged samples, together with short handling time, allowed to obtain reproducible profiles without artifacts contribution due to experimental conditions. Finally, interesting differences were found by comparing the MALDI-TOF-MS protein profiles of pooled urine samples of healthy donors and prostate cancer patients. The results showed that analytical and pre-analytical variables are crucial for the success of urine analysis, to obtain meaningful and reproducible data, even if the intra-patient variability is very difficult to avoid. It has been proven how pooled urine samples can be an interesting way to make easier the comparison between

  19. Exploring structural variability in X-ray crystallographic models using protein local optimization by torsion-angle sampling

    International Nuclear Information System (INIS)

    Knight, Jennifer L.; Zhou, Zhiyong; Gallicchio, Emilio; Himmel, Daniel M.; Friesner, Richard A.; Arnold, Eddy; Levy, Ronald M.

    2008-01-01

    Torsion-angle sampling, as implemented in the Protein Local Optimization Program (PLOP), is used to generate multiple structurally variable single-conformer models which are in good agreement with X-ray data. An ensemble-refinement approach to differentiate between positional uncertainty and conformational heterogeneity is proposed. Modeling structural variability is critical for understanding protein function and for modeling reliable targets for in silico docking experiments. Because of the time-intensive nature of manual X-ray crystallographic refinement, automated refinement methods that thoroughly explore conformational space are essential for the systematic construction of structurally variable models. Using five proteins spanning resolutions of 1.0–2.8 Å, it is demonstrated how torsion-angle sampling of backbone and side-chain libraries with filtering against both the chemical energy, using a modern effective potential, and the electron density, coupled with minimization of a reciprocal-space X-ray target function, can generate multiple structurally variable models which fit the X-ray data well. Torsion-angle sampling as implemented in the Protein Local Optimization Program (PLOP) has been used in this work. Models with the lowest R free values are obtained when electrostatic and implicit solvation terms are included in the effective potential. HIV-1 protease, calmodulin and SUMO-conjugating enzyme illustrate how variability in the ensemble of structures captures structural variability that is observed across multiple crystal structures and is linked to functional flexibility at hinge regions and binding interfaces. An ensemble-refinement procedure is proposed to differentiate between variability that is a consequence of physical conformational heterogeneity and that which reflects uncertainty in the atomic coordinates

  20. Simulation, Control and Optimization of Single Cell Protein Production in a U-Loop Reactor

    DEFF Research Database (Denmark)

    Engoulevent, Franck Guillaume; Jørgensen, John Bagterp

    2012-01-01

    In 2011, the world population passed 7 billions inhabitants. While this number witnesses the success of humankind on earth, it also rises among other things questions about food supply. Declining live stock in the wild, rising price of energy combined with climatic change give a new economic pote......-time optimization (RTO) part of the control system....

  1. Optimal Design of Algae Biorefinery Processing Networks for the production of Protein, Ethanol and Biodiesel

    DEFF Research Database (Denmark)

    Cheali, Peam; Vivion, Anthony; Gernaey, Krist V.

    2015-01-01

    analysis such as microalgae production cost, composition of microalgae (e.g. oil content) and biodiesel/bioethanol market prices is considered. New optimal processing paths are found with potential of producing higher amount of biodiesel. Last, the methodology is intended as decision support tool for early...

  2. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  3. High degree-of-freedom dynamic manipulation

    Science.gov (United States)

    Murphy, Michael P.; Stephens, Benjamin; Abe, Yeuhi; Rizzi, Alfred A.

    2012-06-01

    The creation of high degree of freedom dynamic mobile manipulation techniques and behaviors will allow robots to accomplish difficult tasks in the field. We are investigating the use of the body and legs of legged robots to improve the strength, velocity, and workspace of an integrated manipulator to accomplish dynamic manipulation. This is an especially challenging task, as all of the degrees of freedom are active at all times, the dynamic forces generated are high, and the legged system must maintain robust balance throughout the duration of the tasks. To accomplish this goal, we are utilizing trajectory optimization techniques to generate feasible open-loop behaviors for our 28 dof quadruped robot (BigDog) by planning the trajectories in a 13 dimensional space. Covariance Matrix Adaptation techniques are utilized to optimize for several criteria such as payload capability and task completion speed while also obeying constraints such as torque and velocity limits, kinematic limits, and center of pressure location. These open-loop behaviors are then used to generate feed-forward terms, which are subsequently used online to improve tracking and maintain low controller gains. Some initial results on one of our existing balancing quadruped robots with an additional human-arm-like manipulator are demonstrated on robot hardware, including dynamic lifting and throwing of heavy objects 16.5kg cinder blocks, using motions that resemble a human athlete more than typical robotic motions. Increased payload capacity is accomplished through coordinated body motion.

  4. Cell-Free Systems Based on CHO Cell Lysates: Optimization Strategies, Synthesis of "Difficult-to-Express" Proteins and Future Perspectives.

    Directory of Open Access Journals (Sweden)

    Lena Thoring

    Full Text Available Nowadays, biotechnological processes play a pivotal role in target protein production. In this context, Chinese Hamster Ovary (CHO cells are one of the most prominent cell lines for the expression of recombinant proteins and revealed as a safe host for nearly 40 years. Nevertheless, the major bottleneck of common in vivo protein expression platforms becomes obvious when looking at the production of so called "difficult-to-express" proteins. This class of proteins comprises in particular several ion channels and multipass membrane proteins as well as cytotoxic proteins. To enhance the production of "difficult-to-express" proteins, alternative technologies were developed, mainly based on translationally active cell lysates. These so called "cell-free" protein synthesis systems enable an efficient production of different classes of proteins. Eukaryotic cell-free systems harboring endogenous microsomal structures for the synthesis of functional membrane proteins and posttranslationally modified proteins are of particular interest for future applications. Therefore, we present current developments in cell-free protein synthesis based on translationally active CHO cell extracts, underlining the high potential of this platform. We present novel results highlighting the optimization of protein yields, the synthesis of various "difficult-to-express" proteins and the cotranslational incorporation of non-standard amino acids, which was exemplarily demonstrated by residue specific labeling of the glycoprotein Erythropoietin and the multimeric membrane protein KCSA.

  5. Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis

    DEFF Research Database (Denmark)

    Leon, Ileana R; Schwämmle, Veit; Jensen, Ole N

    2013-01-01

    a combination of qualitative and quantitative LC-MS/MS methods and statistical data analysis. In contrast to previous studies we employed both standard qualitative as well as data-independent quantitative workflows to systematically assess trypsin digestion efficiency and bias using mitochondrial protein...... conditions (buffer, RapiGest, deoxycholate, urea), and two methods for removal of detergents prior to analysis of peptides (acid precipitation or phase separation with ethyl acetate). Our data-independent quantitative LC-MS/MS workflow quantified over 3700 distinct peptides with 96% completeness between all...... protocols and replicates, with an average 40% protein sequence coverage and an average of 11 peptides identified per protein. Systematic quantitative and statistical analysis of physicochemical parameters demonstrated that deoxycholate-assisted in-solution digestion combined with phase transfer allows...

  6. Estimating the wound healing ability of bioactive milk proteins using an optimized cell based assay

    DEFF Research Database (Denmark)

    Nyegaard, Steffen; Andreasen, Trine; Rasmussen, Jan Trige

    Milk contains many different proteins of which the larger constituents like the caseins and major whey constituents are well characterized. We have for some time been studying the structure and function of proteins associated with the milk fat globule membrane like lactadherin, MUC1/15, xanthine...... oxidoreductase along with minor whey constituents like osteopontin, EPV20 etc. The enterocyte migration rate is a key parameter in maintaining intestinal homeostasis and intestinal repair when recovering from infection or intestinal diseases like Crohns and ulcerative colitis. We developed a novel in vitro wound...... healing assay to determine the bioactive effects of various milk proteins using human small intestine cells grown on extracellular matrix. Silicone inserts are placed in a 96-well plate and enterocytes seeded around it, creating a monolayer with a cell free area. In current ongoing experiments, various...

  7. A universal microscope manipulator

    Directory of Open Access Journals (Sweden)

    Peter S. Boyadzhiev

    2012-03-01

    Full Text Available A modified and improved model of a mechanical manipulator for observation of pinned and mounted insects is described. This device allows movement of the observed object around three perpendicular axes in the field of vision at all magnifications of stereomicroscopes. The main improvement of this new model is positioning of the guiding knobs for rotating around two of the axes next to each other, allowing faster and easier manipulation of the studied object. Thus, one of the main advantages of this device is the possibility to rotate the specimen without the need to refocus. The device enables easily reaching a precession deviation in the intersection point of axes up to 0.5 mm in the process of assembling.

  8. Microradiographic microsphere manipulator

    International Nuclear Information System (INIS)

    Singleton, R.M.

    1980-01-01

    A method and apparatus are provided for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres

  9. Manipulation of quantum evolution

    Science.gov (United States)

    Cabera, David Jose Fernandez; Mielnik, Bogdan

    1994-01-01

    The free evolution of a non-relativistic charged particle is manipulated using time-dependent magnetic fields. It is shown that the application of a programmed sequence of magnetic pulses can invert the free evolution process, forcing an arbitrary wave packet to 'go back in time' to recover its past shape. The possibility of more general operations upon the Schrodinger wave packet is discussed.

  10. Manipulating atoms with photons

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, C.N.

    1998-01-01

    The article is a translation of the lecture delivered on the occasion of the 1997 Nobel Prize awarding ceremony. The physical mechanisms which allow manipulating of neutral atoms with laser photons are described. A remark is also made concerning several possible applications of ultra-cool atoms and streams of future research. The article is completed by Prof. Cohen-Tannoudji's autobiography. (Z.J.)

  11. Protozoa manipulation by ultrasound

    Directory of Open Access Journals (Sweden)

    Yancy Milena Porras Rodríguez

    2004-01-01

    Full Text Available Microorganism manipulation, considered as controlled motion and positioning, is one of the most important activities in microbiology and medicine. To achieve this goal there are some techniques such as those which and optical forces, among others. These techniques are usually sophisticated, and some of them can induce irreversible alterations on the microorganisms which prevents their use in another tests. Thus, there is justified the study of technological alternatives to manipulate microorganisms in an easy and cost-effective way. This work shows the interaction between protozoa and air microbubbles when they are under the influence of an ultrasonic field of 5.8 mW. At the microbubbles resonant frequencies, microorganisms were attracted toward the bubbles' frontier remaining there while the ultrasonic field was applied. Once the ultrasound disappears, protozoa recover their freedom of movement. The observed effects could be used as the actuation principle of devices capable to trap, hold and release microorganisms of high mobility without any apparent damage. Microbubbles are generated by electrolysis which take place on the surface of an electrode array, while the ultrasound is originated by means of a piezoelectric transducer. As microorganisms there were employed those present in stagnated water, and were observed through an stereomicroscope. Key words: manipulator; protozoa; ultrasonic; transducer; piezoelectric.

  12. Novel synthetic approach to the prion protein: Kinetic study optimization of a native chemical ligation

    Czech Academy of Sciences Publication Activity Database

    Zawada, Zbigniew; Šebestík, Jaroslav; Bouř, Petr; Hlaváček, Jan; Stibor, Ivan

    2008-01-01

    Roč. 14, č. 8 (2008), s. 76-77 ISSN 1075-2617. [European Peptide Symposium /30./. 31.08.2008-05.09.2008, Helsinki] R&D Projects: GA ČR GA203/07/1517 Institutional research plan: CEZ:AV0Z40550506 Keywords : prion protein * neurodegenerative diseases * chemical synthesis * ligation conditions Subject RIV: CC - Organic Chemistry

  13. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    Energy Technology Data Exchange (ETDEWEB)

    Papa, Antonio [Institute for Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), V.le Kennedy 54, Naples 80125 (Italy); IMAST SCaRL, Piazza Bovio 22, 80133 Naples (Italy); Guarino, Vincenzo, E-mail: vincenzo.guarino@cnr.it; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi [Institute for Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), V.le Kennedy 54, Naples 80125 (Italy)

    2015-12-17

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.

  14. Inter-laboratory optimization of protein extraction, separation, and fluorescent detection of endogenous rice allergens

    DEFF Research Database (Denmark)

    Satoh, Rie; Teshima, Reiko; Kitta, Kazumi

    2016-01-01

    In rice, several allergens have been identified such as the non-specific lipid transfer protein-1, the α-amylase/trypsin-inhibitors, the α-globulin, the 33 kDa glyoxalase I (Gly I), the 52-63 kDa globulin, and the granule-bound starch synthetase. The goal of the present study was to define optima...

  15. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    International Nuclear Information System (INIS)

    Papa, Antonio; Guarino, Vincenzo; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi

    2015-01-01

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response

  16. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    Science.gov (United States)

    Papa, Antonio; Guarino, Vincenzo; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi

    2015-12-01

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.

  17. Is there an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors? Part II

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huajie, E-mail: wanghuajie972001@163.com; Sun Yuanyuan; Cao Ying, E-mail: caoying1130@sina.com; Wang Kui; Yang Lin [Henan Normal University, College of Chemistry and Environmental Science (China); Zhang Yidong; Zheng Zhi [Xuchang University, Institute of Surface Micro and Nano Materials (China)

    2012-05-15

    Although nano-structured surfaces exhibit superior biological activities to the smooth or micro-structured surfaces, whether there is an optimal topographical surface in nano-scale affecting protein adsorption and cell behaviors is still controversial. In this study, porous aluminum oxide membranes with different pore sizes ranging from 25 to 120 nm were prepared by the anodic oxidation technique. The surface morphology, topography and wettability were analyzed by scanning electron microscope, atomic force microscope and water contact angle measurement, respectively. The results indicated that the synergistic action of the nano-topography structure and hydrophilic/hydrophobic properties resulted in a highest protein adsorption on the aluminum oxide membrane with 80 nm pore size. Additionally, the morphological, metabolic and cell counting methods showed that cells had different sensitivity to porous aluminum oxide membranes with different surface features. Furthermore, this sensitivity was cell type dependent. The optimal pore size of aluminum oxide membranes for cell growth was 80 nm for PC12 cells and 50 nm for NIH 3T3 cells.

  18. Optimization of Maillard reaction with ribose for enhancing anti-allergy effect of fish protein hydrolysates using response surface methodology.

    Science.gov (United States)

    Yang, Sung-Yong; Kim, Se-Wook; Kim, Yoonsook; Lee, Sang-Hoon; Jeon, Hyeonjin; Lee, Kwang-Won

    2015-06-01

    Halibut is served on sushi and as sliced raw fish fillets. We investigated the optimal conditions of the Maillard reaction (MR) with ribose using response surface methodology to reduce the allergenicity of its protein. A 3-factored and 5-leveled central composite design was used, where the independent variables were substrate (ribose) concentration (X1, %), reaction time (X2, min), and pH (X3), while the dependent variables were browning index (Y1, absorbance at 420nm), DPPH scavenging (Y2, EC50 mg/mL), FRAP (Y3, mM FeSO4/mg extract) and β-hexosaminidase release (Y4, %). The optimal conditions were obtained as follows: X1, 28.36%; X2, 38.09min; X3, 8.26. Maillard reaction products of fish protein hydrolysate (MFPH) reduced the amount of nitric oxide synthesis compared to the untreated FPH, and had a significant anti-allergy effect on β-hexosaminidase and histamine release, compared with that of the FPH control. We concluded that MFPH, which had better antioxidant and anti-allergy activities than untreated FPH, can be used as an improved dietary source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Immobilized enzyme reactor chromatography: Optimization of protein retention and enzyme activity in monolithic silica stationary phases

    International Nuclear Information System (INIS)

    Besanger, Travis R.; Hodgson, Richard J.; Green, James R.A.; Brennan, John D.

    2006-01-01

    Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low μL/min range. Using the enzyme γ-glutamyl transpeptidase (γ-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by ∼2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in k cat and decreases in K M , switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography

  20. Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.

    Science.gov (United States)

    Jørgensen, Camilla Elise; Abrahamsen, Roger K; Rukke, Elling-Olav; Johansen, Anne-Grethe; Schüller, Reidar B; Skeie, Siv B

    2016-08-01

    The objective of this study was to investigate how ceramic membrane pore size and filtration temperature influence the protein fractionation of skim milk by cross flow microfiltration (MF). Microfiltration was performed at a uniform transmembrane pressure with constant permeate flux to a volume concentration factor of 2.5. Three different membrane pore sizes, 0.05, 0.10, and 0.20µm, were used at a filtration temperature of 50°C. Furthermore, at pore size 0.10µm, 2 different filtration temperatures were investigated: 50 and 60°C. The transmission of proteins increased with increasing pore size, giving the permeate from MF with the 0.20-µm membrane a significantly higher concentration of native whey proteins compared with the permeates from the 0.05- and 0.10-µm membranes (0.50, 0.24, and 0.39%, respectively). Significant amounts of caseins permeated the 0.20-µm membrane (1.4%), giving a permeate with a whitish appearance and a casein distribution (αS2-CN: αS1-CN: κ-CN: β-CN) similar to that of skim milk. The 0.05- and 0.10-µm membranes were able to retain all caseins (only negligible amounts were detected). A permeate free from casein is beneficial in the production of native whey protein concentrates and in applications where transparency is an important functional characteristic. Microfiltration of skim milk at 50°C with the 0.10-µm membrane resulted in a permeate containing significantly more native whey proteins than the permeate from MF at 60°C. The more rapid increase in transmembrane pressure and the significantly lower concentration of caseins in the retentate at 60°C indicated that a higher concentration of caseins deposited on the membrane, and consequently reduced the native whey protein transmission. Optimal protein fractionation of skim milk into a casein-rich retentate and a permeate with native whey proteins were obtained by 0.10-µm MF at 50°C. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All

  1. Using Manipulatives in Math Instruction.

    Science.gov (United States)

    Marzola, Eileen S.

    1987-01-01

    Guidelines for teachers to better use manipulatives in the teaching of mathematics to learning disabled learners are offered including a rationale for manipulatives, selection crteria, principles underlying productive use of manipulatives, and making the transition from the concrete to the symbolic. Suggested materials and distributors are listed.…

  2. Coping with complexity: machine learning optimization of cell-free protein synthesis.

    Science.gov (United States)

    Caschera, Filippo; Bedau, Mark A; Buchanan, Andrew; Cawse, James; de Lucrezia, Davide; Gazzola, Gianluca; Hanczyc, Martin M; Packard, Norman H

    2011-09-01

    Biological systems contain complex metabolic pathways with many nonlinearities and synergies that make them difficult to predict from first principles. Protein synthesis is a canonical example of such a pathway. Here we show how cell-free protein synthesis may be improved through a series of iterated high-throughput experiments guided by a machine-learning algorithm implementing a form of evolutionary design of experiments (Evo-DoE). The algorithm predicts fruitful experiments from statistical models of the previous experimental results, combined with stochastic exploration of the experimental space. The desired experimental response, or evolutionary fitness, was defined as the yield of the target product, and new experimental conditions were discovered to have ∼ 350% greater yield than the standard. An analysis of the best experimental conditions discovered indicates that there are two distinct classes of kinetics, thus showing how our evolutionary design of experiments is capable of significant innovation, as well as gradual improvement. Copyright © 2011 Wiley Periodicals, Inc.

  3. Protein-Based Graphene Biosensors: Optimizing Artificial Chemoreception in Bilayer Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Christina G. Siontorou

    2016-09-01

    Full Text Available Proteinaceous moieties are critical elements in most detection systems, including biosensing platforms. Their potential is undoubtedly vast, yet many issues regarding their full exploitation remain unsolved. On the other hand, the biosensor formats with the higher marketability probabilities are enzyme in nature and electrochemical in concept. To no surprise, alternative materials for hosting catalysis within an electrode casing have received much attention lately to demonstrate a catalysis-coated device. Graphene and ZnO are presented as ideal materials to modify electrodes and biosensor platforms, especially in protein-based detection. Our group developed electrochemical sensors based on these nanomaterials for the sensitive detection of cholesterol using cholesterol oxidase incorporated in stabilized lipid films. A comparison between the two platforms is provided and discussed. In a broader sense, the not-so-remote prospect of quickly assembling a protein-based flexible biosensing detector to fulfill site-specific requirements is appealing to both university researchers and industry developers.

  4. Optimized localization of bacterial infections with technetium-99m labelled human immunoglobulin after protein charge selection

    International Nuclear Information System (INIS)

    Welling, M.; Feitsma, H.I.J.; Calame, W.; Ensing, G.J.; Goedemans, W.; Pauwels, E.K.J.

    1994-01-01

    To improve the scintigraphic detection of bacterial infections a protein charge-purified fraction of polyclonal human immunoglobulin was applied as a radiopharmaceutical. This purification was achieved by attaching the immunoglobulin to an anion-exchanger column and by obtaining the column-bound fraction with buffer. The binding to bacteria in vitro and the target to non-target ratios of an experimental thigh infection with Staphylococcus aureus or Klebsiella pneumoniae in mice were evaluated to compare the purified and the unpurified immunoglobulin. The percentage of binding to all gram-positive and gram-negative bacteria used in this study was significantly (P 99m Tc-labelled protein charge-purified polyclonal human immunoglobulin was administered intravenously. At all time intervals the target (infected thighs) to non-target (non-infected thighs) ratios for both infections were significantly higher (P 99m Tc-labelled protein charge-purified immunoglobulin localizes both a gram-positive and a gram-negative thigh infection more intensely and faster than 99m Tc-labelled unpurified immunoglobulin. (orig.)

  5. Optimization of the formulation for preparing Lactobacillus casei loaded whey protein-Ca-alginate microparticles using full-factorial design.

    Science.gov (United States)

    Smilkov, Katarina; Petreska Ivanovska, Tanja; Petrushevska Tozi, Lidija; Petkovska, Rumenka; Hadjieva, Jasmina; Popovski, Emil; Stafilov, Trajce; Grozdanov, Anita; Mladenovska, Kristina

    2014-01-01

    This article presents specific approach for microencapsulation of Lactobacillus casei using emulsion method followed by additional coating with whey protein. Experimental design was employed using polynomial regression model at 2nd level with three independent variables, concentrations of alginate, whey protein and CaCl2. Physicochemical, biopharmaceutical and biological properties were investigated. In 11 series generated, negatively charged microparticles were obtained, with size 6.99-9.88 µm, Ca-content 0.29-0.47 mg per 10 mg microparticles, and viability of the probiotic 9.30-10.87 log10CFU/g. The viability after 24 hours in simulated gastrointestinal conditions was between 3.60 and 8.32 log10CFU/g. Optimal formulation of the microparticles that ensures survival of the probiotic and achieves controlled delivery was determined: 2.5% (w/w) alginate, 3% (w/w) CaCl2 and 3% (w/w) whey protein. The advantageous properties of the L. casei-loaded microparticles make them suitable for incorporation in functional food and/or pharmaceutical products.

  6. Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin β1

    Directory of Open Access Journals (Sweden)

    Cordula Klockenbusch

    2010-01-01

    Full Text Available Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively.

  7. Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin β1

    Science.gov (United States)

    Klockenbusch, Cordula; Kast, Juergen

    2010-01-01

    Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively. PMID:20634879

  8. Low-fat meat sausages with fish oil: optimization of milk proteins and carrageenan contents using response surface methodology.

    Science.gov (United States)

    Marchetti, L; Andrés, S C; Califano, A N

    2014-03-01

    Response surface methodology was used to analyze the effect of milk proteins and 2:1 κ:ι-carrageenans on cooking loss (CL), weight lost by centrifugation (WLC) and texture attributes of low-fat meat sausages with pre-emulsified fish oil. A central-composite design was used to develop models for the objective responses. Changes in carrageenans affected more the responses than milk proteins levels. Convenience functions were calculated for CL, WLC, hardness, and springiness of the product. Responses were optimized simultaneously minimizing CL and WLC; ranges for hardness and springiness corresponded to commercial products (20 g of pork fat/100 g). The optimum corresponded to 0.593 g of carrageenans/100 g and 0.320 g of milk proteins and its total lipid content was 6.3 g/100 g. This formulation was prepared and evaluated showing a good agreement between predicted and experimental responses. These additives could produce low-fat meat sausages with pre-emulsified fish oil with good nutritional quality and similar characteristics than traditional ones. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A stochastic algorithm for global optimization and for best populations: A test case of side chains in proteins

    Science.gov (United States)

    Glick, Meir; Rayan, Anwar; Goldblum, Amiram

    2002-01-01

    The problem of global optimization is pivotal in a variety of scientific fields. Here, we present a robust stochastic search method that is able to find the global minimum for a given cost function, as well as, in most cases, any number of best solutions for very large combinatorial “explosive” systems. The algorithm iteratively eliminates variable values that contribute consistently to the highest end of a cost function's spectrum of values for the full system. Values that have not been eliminated are retained for a full, exhaustive search, allowing the creation of an ordered population of best solutions, which includes the global minimum. We demonstrate the ability of the algorithm to explore the conformational space of side chains in eight proteins, with 54 to 263 residues, to reproduce a population of their low energy conformations. The 1,000 lowest energy solutions are identical in the stochastic (with two different seed numbers) and full, exhaustive searches for six of eight proteins. The others retain the lowest 141 and 213 (of 1,000) conformations, depending on the seed number, and the maximal difference between stochastic and exhaustive is only about 0.15 Kcal/mol. The energy gap between the lowest and highest of the 1,000 low-energy conformers in eight proteins is between 0.55 and 3.64 Kcal/mol. This algorithm offers real opportunities for solving problems of high complexity in structural biology and in other fields of science and technology. PMID:11792838

  10. Burkholderia thailandensis: Genetic Manipulation.

    Science.gov (United States)

    Garcia, Erin C

    2017-05-16

    Burkholderia thailandensis is a Gram-negative bacterium endemic to Southeast Asian and northern Australian soils. It is non-pathogenic; therefore, it is commonly used as a model organism for the related human pathogens Burkholderia mallei and Burkholderia pseudomallei. B. thailandensis is relatively easily genetically manipulated and a variety of robust genetic tools can be used in this organism. This unit describes protocols for conjugation, natural transformation, mini-Tn7 insertion, and allelic exchange in B. thailandensis. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  11. Spatial manipulation with microfluidics

    Directory of Open Access Journals (Sweden)

    Benjamin eLin

    2015-04-01

    Full Text Available Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well controlled environments at cellular length scales. This minireview will highlight their utility for studying gradient sensing along with relevant applications to biology.

  12. Nanodisc-Tm: Rapid functional assessment of nanodisc reconstituted membrane proteins by CPM assay.

    Science.gov (United States)

    Ashok, Yashwanth; Jaakola, Veli-Pekka

    2016-01-01

    Membrane proteins are generally unstable in detergents. Therefore, biochemical and biophysical studies of membrane proteins in lipidic environments provides a near native-like environment suitable for membrane proteins. However, manipulation of proteins embedded in lipid bilayer has remained difficult. Methods such as nanodiscs and lipid cubic phase have been developed for easy manipulation of membrane proteins and have yielded significant insights into membrane proteins. Traditionally functional reconstitution of receptors in nanodiscs has been studied with radioligands. We present a simple and faster method for studying the functionality of reconstituted membrane proteins for routine characterization of protein batches after initial optimization of suitable conditions using radioligands. The benefits of the method are •Faster and generic method to assess functional reconstitution of membrane proteins.•Adaptable in high throughput format (≥96 well format).•Stability measurement in near-native lipid environment and lipid dependent melting temperatures.

  13. Optimization of the protein concentration process from residual peanut oil-cake

    Directory of Open Access Journals (Sweden)

    Gayol, M. F.

    2013-12-01

    Full Text Available The objective of this study was to find the best process conditions for preparing protein concentrate from residual peanut oil-cake (POC. The study was carried out on POC from industrial peanut oil extraction. Different protein extraction and precipitation conditions were used: water/ flour ratio (10:1, 20:1 and 30:1, pH (8, 9 and 10, NaCl concentration (0 and 0.5 M, extraction time (30, 60 and 120 min, temperature (25, 40 and 60 °C, extraction stages (1, 2 and 3, and precipitation pH (4, 4.5 and 5. The extraction and precipitation conditions which showed the highest protein yield were 10:1 water/flour ratio, extraction at pH 9, no NaCl, 2 extraction stages of 30 min at 40 °C and precipitation at pH 4.5. Under these conditions, the peanut protein concentrate (PC contained 86.22% protein, while the initial POC had 38.04% . POC is an alternative source of protein that can be used for human consumption or animal nutrition. Therefore, it adds value to an industry residue.El objetivo de este trabajo fue encontrar las mejores condiciones para obtener un concentrado de proteínas a partir de la torta residual de maní (POC. El estudio se llevó a cabo en POC provenientes de la extracción industrial de aceite de maní. Se utilizaron distintas condiciones para la extracción y precipitación de proteínas: relación agua / harina (10:1, 20:1 y 30:1, pH de extracción (8, 9 y 10, concentración de NaCl (0 y 0,5 M, tiempo de extracción (30, 60 y 120 min, temperatura (25, 40 y 60 °C, número de etapas de extracción (1, 2 y 3, y el pH de precipitación (4, 4,5 y 5. Las condiciones de extracción y de precipitación que mostraron mayor rendimiento de proteína fueron: relación de 10:1 en agua / harina, pH de extracción de 9, en ausencia de NaCl, 2 etapas de extracción de 30 min cada una a 40 °C y el pH de precipitación de 4,5. En estas condiciones, el concentrado de proteína de maní (PC fue de 86,22%, mientras que el porcentaje de proteínas de

  14. Plasticity of the Binding Site of Renin: Optimized Selection of Protein Structures for Ensemble Docking.

    Science.gov (United States)

    Strecker, Claas; Meyer, Bernd

    2018-05-02

    Protein flexibility poses a major challenge to docking of potential ligands in that the binding site can adopt different shapes. Docking algorithms usually keep the protein rigid and only allow the ligand to be treated as flexible. However, a wrong assessment of the shape of the binding pocket can prevent a ligand from adapting a correct pose. Ensemble docking is a simple yet promising method to solve this problem: Ligands are docked into multiple structures, and the results are subsequently merged. Selection of protein structures is a significant factor for this approach. In this work we perform a comprehensive and comparative study evaluating the impact of structure selection on ensemble docking. We perform ensemble docking with several crystal structures and with structures derived from molecular dynamics simulations of renin, an attractive target for antihypertensive drugs. Here, 500 ns of MD simulations revealed binding site shapes not found in any available crystal structure. We evaluate the importance of structure selection for ensemble docking by comparing binding pose prediction, ability to rank actives above nonactives (screening utility), and scoring accuracy. As a result, for ensemble definition k-means clustering appears to be better suited than hierarchical clustering with average linkage. The best performing ensemble consists of four crystal structures and is able to reproduce the native ligand poses better than any individual crystal structure. Moreover this ensemble outperforms 88% of all individual crystal structures in terms of screening utility as well as scoring accuracy. Similarly, ensembles of MD-derived structures perform on average better than 75% of any individual crystal structure in terms of scoring accuracy at all inspected ensembles sizes.

  15. Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Lewis A.; Habershon, Scott, E-mail: S.Habershon@warwick.ac.uk [Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-09-14

    Pigment-protein complexes (PPCs) play a central role in facilitating excitation energy transfer (EET) from light-harvesting antenna complexes to reaction centres in photosynthetic systems; understanding molecular organisation in these biological networks is key to developing better artificial light-harvesting systems. In this article, we combine quantum-mechanical simulations and a network-based picture of transport to investigate how chromophore organization and protein environment in PPCs impacts on EET efficiency and robustness. In a prototypical PPC model, the Fenna-Matthews-Olson (FMO) complex, we consider the impact on EET efficiency of both disrupting the chromophore network and changing the influence of (local and global) environmental dephasing. Surprisingly, we find a large degree of resilience to changes in both chromophore network and protein environmental dephasing, the extent of which is greater than previously observed; for example, FMO maintains EET when 50% of the constituent chromophores are removed, or when environmental dephasing fluctuations vary over two orders-of-magnitude relative to the in vivo system. We also highlight the fact that the influence of local dephasing can be strongly dependent on the characteristics of the EET network and the initial excitation; for example, initial excitations resulting in rapid coherent decay are generally insensitive to the environment, whereas the incoherent population decay observed following excitation at weakly coupled chromophores demonstrates a more pronounced dependence on dephasing rate as a result of the greater possibility of local exciton trapping. Finally, we show that the FMO electronic Hamiltonian is not particularly optimised for EET; instead, it is just one of many possible chromophore organisations which demonstrate a good level of EET transport efficiency following excitation at different chromophores. Overall, these robustness and efficiency characteristics are attributed to the highly

  16. Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex

    International Nuclear Information System (INIS)

    Baker, Lewis A.; Habershon, Scott

    2015-01-01

    Pigment-protein complexes (PPCs) play a central role in facilitating excitation energy transfer (EET) from light-harvesting antenna complexes to reaction centres in photosynthetic systems; understanding molecular organisation in these biological networks is key to developing better artificial light-harvesting systems. In this article, we combine quantum-mechanical simulations and a network-based picture of transport to investigate how chromophore organization and protein environment in PPCs impacts on EET efficiency and robustness. In a prototypical PPC model, the Fenna-Matthews-Olson (FMO) complex, we consider the impact on EET efficiency of both disrupting the chromophore network and changing the influence of (local and global) environmental dephasing. Surprisingly, we find a large degree of resilience to changes in both chromophore network and protein environmental dephasing, the extent of which is greater than previously observed; for example, FMO maintains EET when 50% of the constituent chromophores are removed, or when environmental dephasing fluctuations vary over two orders-of-magnitude relative to the in vivo system. We also highlight the fact that the influence of local dephasing can be strongly dependent on the characteristics of the EET network and the initial excitation; for example, initial excitations resulting in rapid coherent decay are generally insensitive to the environment, whereas the incoherent population decay observed following excitation at weakly coupled chromophores demonstrates a more pronounced dependence on dephasing rate as a result of the greater possibility of local exciton trapping. Finally, we show that the FMO electronic Hamiltonian is not particularly optimised for EET; instead, it is just one of many possible chromophore organisations which demonstrate a good level of EET transport efficiency following excitation at different chromophores. Overall, these robustness and efficiency characteristics are attributed to the highly

  17. Optimizing atomic force microscopy for characterization of diamond-protein interfaces

    Czech Academy of Sciences Publication Activity Database

    Rezek, Bohuslav; Ukraintsev, Egor; Kromka, Alexander

    2011-01-01

    Roč. 6, Apr. (2011), 337/1-337/10 ISSN 1931-7573 R&D Projects: GA MŠk(CZ) LC06040; GA ČR(CZ) GAP108/11/0794; GA AV ČR KAN400100701; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : atomic force microscopy (AFM) * nanocrystalline diamond * oxygen-terminated diamond * hydrogen-terminated diamond * proteins * fetal bovine serum (FBS) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.726, year: 2011

  18. Optimization of crude protein in diets for Nile tilapia reared in net pens: performance, hematology, and water quality

    Directory of Open Access Journals (Sweden)

    Débora Del Puppo

    Full Text Available ABSTRACT: Two experiments were conducted to evaluate the effects of reducing dietary crude protein (CP, based on the ideal protein concept for Nile tilapia reared in net pens. The experimental (isocaloric, isocalcium, and isophosphoric diets were formulated to contain 270, 300, 330, and 360g kg-1 CP. In experiment 1, 4320 Nile tilapia (13.5±0.82g were used to evaluate the performance and hematological parameters. The experimental design was completely randomized and the fish were distributed in 24 net pens (1.0m3, with four diets, six replicates, and 180 fishes per experimental unit. In experiment 2, 40 Nile tilapia (22.5±0.56g were used to evaluate the ammonia excretion. Fish were distributed in 40 aquaria (3.0L, with one fish per aquarium (n=10. No protein reduction effect was observed in feed intake and the hematocrit and hemoglobin values. Regarding the statistic models used in the present study, difference was observed between CP values. The optimal level estimated by the quadratic equation first interception with the linear response plateau (LRP as a response to CP changes in the diet was determined for weight gain (324.3g kg-1 and feed conversion (317.8g kg-1. After reduction in the CP levels, a linear reduction was observed in the ammonia excretion in water. Based on the ideal protein concept for Nile tilapia reared in net pens, reducing the CP levels in the diets is possible, without change in the performance and hematological parameters, and with a reduction in the levels of ammonia excretion in water, since amino acids are supplemented.

  19. Remote control manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, T

    1970-02-28

    A prior-art remote control manipulator comprises a horizontal suspension section, a master arm and a slave arm which are coupled to ends of the suspension section in a manner to pivotally move relative to the suspension section, and a connecting device which includes a tape and which joins both the arms. When the connecting device malfunctions, the slave arm can neither be extended nor contracted. Means to keep the tension of the tape is required which restricts the extension length of the slave arm. Further, the slave arm can be moved only in the axial direction. The invention described provides an improved remote control manipulator of the specified type. A moving device which moves the slave arm relative to the master arm without the intervention of the connecting device is mounted on a movable part of the slave arm, while pulleys which maintain the joining relationship of the connecting device are mounted on the movable part and fixed part of the slave arm. Owing to this construction, movement of the slave arm is assured despite troubles which may arise in the connecting device. In addition, no slack arises in the tape. By applying a similar construction to the horizontal suspension section, the suspension section can be stretched, and hence, the slave arm can be moved in a direction orthogonal to its axis.

  20. RBSURFpred: Modeling protein accessible surface area in real and binary space using regularized and optimized regression.

    Science.gov (United States)

    Tarafder, Sumit; Toukir Ahmed, Md; Iqbal, Sumaiya; Tamjidul Hoque, Md; Sohel Rahman, M

    2018-03-14

    Accessible surface area (ASA) of a protein residue is an effective feature for protein structure prediction, binding region identification, fold recognition problems etc. Improving the prediction of ASA by the application of effective feature variables is a challenging but explorable task to consider, specially in the field of machine learning. Among the existing predictors of ASA, REGAd 3 p is a highly accurate ASA predictor which is based on regularized exact regression with polynomial kernel of degree 3. In this work, we present a new predictor RBSURFpred, which extends REGAd 3 p on several dimensions by incorporating 58 physicochemical, evolutionary and structural properties into 9-tuple peptides via Chou's general PseAAC, which allowed us to obtain higher accuracies in predicting both real-valued and binary ASA. We have compared RBSURFpred for both real and binary space predictions with state-of-the-art predictors, such as REGAd 3 p and SPIDER2. We also have carried out a rigorous analysis of the performance of RBSURFpred in terms of different amino acids and their properties, and also with biologically relevant case-studies. The performance of RBSURFpred establishes itself as a useful tool for the community. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. How to Obtain Forty Percent Less Environmental Impact by Healthy, Protein-Optimized Snacks for Older Adults

    DEFF Research Database (Denmark)

    Saxe, Henrik; Okkels, Signe Loftager; Jensen, Jørgen Dejgård

    2017-01-01

    It is well known that meals containing less meat are more sustainable, but little is known about snack-meals, which typically do not contain meat. This study investigates the diversity in environmental impacts associated with snack production based on 20 common recipes optimized for protein content......, energy content and sensory aspects for older adults. The purpose is to improve sustainability of public procurement by serving more sustainable snack-meals. Public procurement serves Danish older adults over millions of snack-meals every year, and millions more are served in countries with a similar...... social service. The environmental impact of snack production was estimated by consequential life cycle assessment. The average impact of producing the 10 least environmentally harmful snacks was 40% less than the average impact of producing the 10 most harmful snacks. This is true whether the functional...

  2. Optimization of protein extraction process from jackfruit seed flour by reverse micelle system

    Directory of Open Access Journals (Sweden)

    Maycon Fagundes Teixeira Reis

    2016-06-01

    Full Text Available The extraction of protein from flour of jackfruit seeds by reverse micelles was evaluated. Reverse micelle system was composed of sodium dodecyl sulfate (SDS as surfactant, butanol as solvent, and water. The effects of stirring time, temperature, molar ratio H2O SDS-1, concentration of butanol (mass percentage and flour mass were tested in batch systems. Based on the adjusted linear regression model, only butanol concentration provided optimum extraction conditions (41.16%. Based on the analysis of surface response, the best extraction yield could be obtained at 25°C, stirring time of 120 min, mass of flour of 100 mg, and a ratio H2O SDS-1 of 50. Experimental results showed that a 79.00% extraction yield could be obtained.

  3. A Clostridium difficile-Specific, Gel-Forming Protein Required for Optimal Spore Germination

    Directory of Open Access Journals (Sweden)

    M. Lauren Donnelly

    2017-01-01

    Full Text Available Clostridium difficile is a Gram-positive spore-forming obligate anaerobe that is a leading cause of antibiotic-associated diarrhea worldwide. In order for C. difficile to initiate infection, its aerotolerant spore form must germinate in the gut of mammalian hosts. While almost all spore-forming organisms use transmembrane germinant receptors to trigger germination, C. difficile uses the pseudoprotease CspC to sense bile salt germinants. CspC activates the related subtilisin-like protease CspB, which then proteolytically activates the cortex hydrolase SleC. Activated SleC degrades the protective spore cortex layer, a step that is essential for germination to proceed. Since CspC incorporation into spores also depends on CspA, a related pseudoprotease domain, Csp family proteins play a critical role in germination. However, how Csps are incorporated into spores remains unknown. In this study, we demonstrate that incorporation of the CspC, CspB, and CspA germination regulators into spores depends on CD0311 (renamed GerG, a previously uncharacterized hypothetical protein. The reduced levels of Csps in gerG spores correlate with reduced responsiveness to bile salt germinants and increased germination heterogeneity in single-spore germination assays. Interestingly, asparagine-rich repeat sequences in GerG’s central region facilitate spontaneous gel formation in vitro even though they are dispensable for GerG-mediated control of germination. Since GerG is found exclusively in C. difficile, our results suggest that exploiting GerG function could represent a promising avenue for developing C. difficile-specific anti-infective therapies.

  4. Hydraulic manipulator research at ORNL

    International Nuclear Information System (INIS)

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1997-01-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL's flexible/prismatic test stand

  5. Hydraulic manipulator research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  6. Optimization of foaming properties of sludge protein solution by 60Co γ-ray/H2O2 using response surface methodology

    International Nuclear Information System (INIS)

    Xiang, Yulin; Xiang, Yuxiu; Wang, Lipeng; Zhang, Zhifang

    2016-01-01

    Response surface methodology and Box-Behnken experimental design were used to model and optimize the operational parameters of foaming properties of the sludge protein solution by 60 Co γ-ray/H 2 O 2 treatment. The four variables involved in this research were the protein solution concentration, H 2 O 2 , pH and dose. In the range studied, statistical analysis of the results showed that selected variables had a significant effect on protein foaming properties. The optimized conditions contained: protein solution concentration 26.50% (v/v), H 2 O 2 concentration 0.30% (v/v), pH value 9.0, and dose 4.81 kGy. Under optimal conditions, the foamability and foam stability approached 23.3 cm and 21.3 cm, respectively. Regression analysis with R 2 value of 0.9923 (foamability) and 0.9922 (foam stability) indicated a satisfactory correlation between the experimental data and predicted values (response). In addition, based on a feasibility analysis, the 60 Co γ-ray/H 2 O 2 method can improve odor and color of the protein foaming solution. - Highlights: • Effects of 60 Co γ-ray/H 2 O 2 on foaming properties of sludge protein were studied. • Response surface methodology and Box-Behnken experimental design were applied. • 60 Co γ-ray/H 2 O 2 method can improve foaming properties of protein solution.

  7. Key composition optimization of meat processed protein source by vacuum freeze-drying technology

    Directory of Open Access Journals (Sweden)

    Yan Ma

    2018-05-01

    Full Text Available Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined. Keywords: Ham, Tenderloin, Vacuum freeze-dry, Processing, Optimization

  8. Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Gasser Brigitte

    2006-12-01

    Full Text Available Abstract Background Secretion of heterologous proteins depends both on biomass concentration and on the specific product secretion rate, which in turn is not constant at varying specific growth rates. As fed batch processes usually do not maintain a steady state throughout the feed phase, it is not trivial to model and optimize such a process by mathematical means. Results We have developed a model for product accumulation in fed batch based on iterative calculation in Microsoft Excel spreadsheets, and used the Solver software to optimize the time course of the media feed in order to maximize the volumetric productivity. The optimum feed phase consisted of an exponential feed at maximum specific growth rate, followed by a phase with linearly increasing feed rate and consequently steadily decreasing specific growth rate. The latter phase could be modeled also by exact mathematical treatment by the calculus of variations, yielding the explicit shape of the growth function, however, with certain indeterminate parameters. To evaluate the latter, one needs a numerical optimum search algorithm. The explicit shape of the growth function provides additional evidence that the Excel model results in correct data. Experimental evaluation in two independent fed batch cultures resulted in a good correlation to the optimized model data, and a 2.2 fold improvement of the volumetric productivity. Conclusion The advantages of the procedure we describe here are the ease of use and the flexibility, applying software familiar to every scientist and engineer, and rapid calculation which makes predictions extremely easy, so that many options can be tested in silico quickly. Additional options like further biological and technological constraints or different functions for specific productivity and biomass yield can easily be integrated.

  9. [Language Manipulation, Surrogacy, Altruism].

    Science.gov (United States)

    Serrano Ruiz-Calderón, José Miguel

    2017-01-01

    The Newspeak propitiates a change of the sense of the words and next to the double thinking forms the picture of totalitarianism described by Orwell in 1984. The purpose of the Newspeak is to make all other forms of thought impossible. In bioethics the Newspeak is applied, not because Bioethics is a new science but by the manipulative intention. The twentieth-century political language has, according to Orwell, the intention to remove the ″mental image ″ of what really happens. This is clear in the terms ″surrogacy ″. On the one hand, the mother is deprived of her child. On the other, there is no legal subrogation. As has been said the technique reduces a woman to the condition of a vessel. The excuse of gratuity does not change the exploitative relationship, since gratuitousness in the provision of women is not the altruism of all those involved in surrogacy.

  10. Media and manipulation

    Directory of Open Access Journals (Sweden)

    Kovačević Braco

    2013-01-01

    Full Text Available The role and importance of the media are huge, both in everyday life and in cultural, spiritual and political life of modern man. Their power in the sense of political shaping of people and shaping of public opinion is very distinctive. In the process of propaganda to influence public opinion, they use various manipulative procedures in order to accomplish certain interests and objectives. Through the media, politics realizes its economic, ideological, political and even military activities. The war in the former Yugoslavia and former Bosnia and Herzegovina was also waged through the media. This media war still is spreading the hate speech, thus still causing conflicts and disintegration processes in the Balkans.

  11. Characteristics of manipulative in mathematics laboratory

    Science.gov (United States)

    Istiandaru, A.; Istihapsari, V.; Prahmana, R. C. I.; Setyawan, F.; Hendroanto, A.

    2017-12-01

    A manipulative is a teaching aid designed such that students could understand mathematical concepts by manipulating it. This article aims to provide an insight to the characteristics of manipulatives produced in the mathematics laboratory of Universitas Ahmad Dahlan, Indonesia. A case study was conducted to observe the existing manipulatives produced during the latest three years and classified the manipulatives based on the characteristics found. There are four kinds of manipulatives: constructivism manipulative, virtual manipulative, informative manipulative, and game-based manipulative. Each kinds of manipulative has different characteristics and impact towards the mathematics learning.

  12. How to Obtain Forty Percent Less Environmental Impact by Healthy, Protein-Optimized Snacks for Older Adults.

    Science.gov (United States)

    Saxe, Henrik; Loftager Okkels, Signe; Jensen, Jørgen Dejgård

    2017-12-06

    It is well known that meals containing less meat are more sustainable, but little is known about snack-meals, which typically do not contain meat. This study investigates the diversity in environmental impacts associated with snack production based on 20 common recipes optimized for protein content, energy content and sensory aspects for older adults. The purpose is to improve sustainability of public procurement by serving more sustainable snack-meals. Public procurement serves Danish older adults over millions of snack-meals every year, and millions more are served in countries with a similar social service. The environmental impact of snack production was estimated by consequential life cycle assessment. The average impact of producing the 10 least environmentally harmful snacks was 40% less than the average impact of producing the 10 most harmful snacks. This is true whether the functional unit was mass, energy, or protein content, and whether the environmental impact was measured as global warming potential or the monetized value of 16 impact categories. We conclude that large-scale public procurement of snack-meals by private and municipal kitchens can be reduced by up to 40% if the kitchens evaluate the environmental impact of all their snacks and serve the better half more frequently.

  13. How to Obtain Forty Percent Less Environmental Impact by Healthy, Protein-Optimized Snacks for Older Adults

    Directory of Open Access Journals (Sweden)

    Henrik Saxe

    2017-12-01

    Full Text Available It is well known that meals containing less meat are more sustainable, but little is known about snack-meals, which typically do not contain meat. This study investigates the diversity in environmental impacts associated with snack production based on 20 common recipes optimized for protein content, energy content and sensory aspects for older adults. The purpose is to improve sustainability of public procurement by serving more sustainable snack-meals. Public procurement serves Danish older adults over millions of snack-meals every year, and millions more are served in countries with a similar social service. The environmental impact of snack production was estimated by consequential life cycle assessment. The average impact of producing the 10 least environmentally harmful snacks was 40% less than the average impact of producing the 10 most harmful snacks. This is true whether the functional unit was mass, energy, or protein content, and whether the environmental impact was measured as global warming potential or the monetized value of 16 impact categories. We conclude that large-scale public procurement of snack-meals by private and municipal kitchens can be reduced by up to 40% if the kitchens evaluate the environmental impact of all their snacks and serve the better half more frequently.

  14. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system.

    Science.gov (United States)

    Zhang, Kang; Su, Lingqia; Duan, Xuguo; Liu, Lina; Wu, Jing

    2017-02-20

    We recently constructed a Bacillus subtilis strain (CCTCC M 2016536) from which we had deleted the srfC, spoIIAC, nprE, aprE and amyE genes. This strain is capable of robust recombinant protein production and amenable to high-cell-density fermentation. Because the promoter is among the factors that influence the production of target proteins, optimization of the initial promoter, P amyQ from Bacillus amyloliquefaciens, should improve protein expression using this strain. This study was undertaken to develop a new, high-level expression system in B. subtilis CCTCC M 2016536. Using the enzyme β-cyclodextrin glycosyltransferase (β-CGTase) as a reporter protein and B. subtilis CCTCC M 2016536 as the host, nine plasmids equipped with single promoters were screened using shake-flask cultivation. The plasmid containing the P amyQ' promoter produced the greatest extracellular β-CGTase activity; 24.1 U/mL. Subsequently, six plasmids equipped with dual promoters were constructed and evaluated using this same method. The plasmid containing the dual promoter P HpaII -P amyQ' produced the highest extracellular β-CGTase activity (30.5 U/mL) and was relatively glucose repressed. The dual promoter P HpaII -P amyQ' also mediated substantial extracellular pullulanase (90.7 U/mL) and α-CGTase expression (9.5 U/mL) during shake-flask cultivation, demonstrating the general applicability of this system. Finally, the production of β-CGTase using the dual-promoter P HpaII -P amyQ' system was investigated in a 3-L fermenter. Extracellular expression of β-CGTase reached 571.2 U/mL (2.5 mg/mL), demonstrating the potential of this system for use in industrial applications. The dual-promoter P HpaII -P amyQ' system was found to support superior expression of extracellular proteins in B. subtilis CCTCC M 2016536. This system appears generally applicable and is amenable to scale-up.

  15. Adaptive control of robotic manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    The author presents a novel approach to adaptive control of manipulators to achieve trajectory tracking by the joint angles. The central concept in this approach is the utilization of the manipulator inverse as a feedforward controller. The desired trajectory is applied as an input to the feedforward controller which behaves as the inverse of the manipulator at any operating point; the controller output is used as the driving torque for the manipulator. The controller gains are then updated by an adaptation algorithm derived from MRAC (model reference adaptive control) theory to cope with variations in the manipulator inverse due to changes of the operating point. An adaptive feedback controller and an auxiliary signal are also used to enhance closed-loop stability and to achieve faster adaptation. The proposed control scheme is computationally fast and does not require a priori knowledge of the complex dynamic model or the parameter values of the manipulator or the payload.

  16. Optimization of Search Engines and Postprocessing Approaches to Maximize Peptide and Protein Identification for High-Resolution Mass Data.

    Science.gov (United States)

    Tu, Chengjian; Sheng, Quanhu; Li, Jun; Ma, Danjun; Shen, Xiaomeng; Wang, Xue; Shyr, Yu; Yi, Zhengping; Qu, Jun

    2015-11-06

    The two key steps for analyzing proteomic data generated by high-resolution MS are database searching and postprocessing. While the two steps are interrelated, studies on their combinatory effects and the optimization of these procedures have not been adequately conducted. Here, we investigated the performance of three popular search engines (SEQUEST, Mascot, and MS Amanda) in conjunction with five filtering approaches, including respective score-based filtering, a group-based approach, local false discovery rate (LFDR), PeptideProphet, and Percolator. A total of eight data sets from various proteomes (e.g., E. coli, yeast, and human) produced by various instruments with high-accuracy survey scan (MS1) and high- or low-accuracy fragment ion scan (MS2) (LTQ-Orbitrap, Orbitrap-Velos, Orbitrap-Elite, Q-Exactive, Orbitrap-Fusion, and Q-TOF) were analyzed. It was found combinations involving Percolator achieved markedly more peptide and protein identifications at the same FDR level than the other 12 combinations for all data sets. Among these, combinations of SEQUEST-Percolator and MS Amanda-Percolator provided slightly better performances for data sets with low-accuracy MS2 (ion trap or IT) and high accuracy MS2 (Orbitrap or TOF), respectively, than did other methods. For approaches without Percolator, SEQUEST-group performs the best for data sets with MS2 produced by collision-induced dissociation (CID) and IT analysis; Mascot-LFDR gives more identifications for data sets generated by higher-energy collisional dissociation (HCD) and analyzed in Orbitrap (HCD-OT) and in Orbitrap Fusion (HCD-IT); MS Amanda-Group excels for the Q-TOF data set and the Orbitrap Velos HCD-OT data set. Therefore, if Percolator was not used, a specific combination should be applied for each type of data set. Moreover, a higher percentage of multiple-peptide proteins and lower variation of protein spectral counts were observed when analyzing technical replicates using Percolator

  17. Optimization of elution salt concentration in stepwise elution of protein chromatography using linear gradient elution data. Reducing residual protein A by cation-exchange chromatography in monoclonal antibody purification.

    Science.gov (United States)

    Ishihara, Takashi; Kadoya, Toshihiko; Endo, Naomi; Yamamoto, Shuichi

    2006-05-05

    Our simple method for optimization of the elution salt concentration in stepwise elution was applied to the actual protein separation system, which involves several difficulties such as detection of the target. As a model separation system, reducing residual protein A by cation-exchange chromatography in human monoclonal antibody (hMab) purification was chosen. We carried out linear gradient elution experiments and obtained the data for the peak salt concentration of hMab and residual protein A, respectively. An enzyme-linked immunosorbent assay was applied to the measurement of the residual protein A. From these data, we calculated the distribution coefficient of the hMab and the residual protein A as a function of salt concentration. The optimal salt concentration of stepwise elution to reduce the residual protein A from the hMab was determined based on the relationship between the distribution coefficient and the salt concentration. Using the optimized condition, we successfully performed the separation, resulting in high recovery of hMab and the elimination of residual protein A.

  18. Micro-coil NMR to monitor optimization of the reconstitution conditions for the integral membrane protein OmpW in detergent micelles

    International Nuclear Information System (INIS)

    Stanczak, Pawel; Zhang Qinghai; Horst, Reto; Serrano, Pedro; Wüthrich, Kurt

    2012-01-01

    Optimization of aqueous solutions of the integral membrane protein (IMP) OmpW for NMR structure determination has been monitored with micro-coil NMR, which enables the acquisition of NMR spectra using only micrograms of protein and detergent. The detergent 30-Fos (2-undecylphosphocholine) was found to yield the best 2D [ 15 N, 1 H]-TROSY correlation NMR spectra of [ 2 H, 15 N]-labeled OmpW. For the OmpW structure determination we then optimized the 30-Fos concentration, the sample temperature and long-time stability, and the deuteration level of the protein. Some emerging guidelines for reconstitution of β-barrel integral membrane proteins in structural biology are discussed.

  19. Image manipulation as research misconduct.

    Science.gov (United States)

    Parrish, Debra; Noonan, Bridget

    2009-06-01

    A growing number of research misconduct cases handled by the Office of Research Integrity involve image manipulations. Manipulations may include simple image enhancements, misrepresenting an image as something different from what it is, and altering specific features of an image. Through a study of specific cases, the misconduct findings associated with image manipulation, detection methods and those likely to identify such manipulations, are discussed. This article explores sanctions imposed against guilty researchers and the factors that resulted in no misconduct finding although relevant images clearly were flawed. Although new detection tools are available for universities and journals to detect questionable images, this article explores why these tools have not been embraced.

  20. The Manipulative Discourse of Gandalf

    Directory of Open Access Journals (Sweden)

    Farid Mohammadi

    2014-07-01

    Full Text Available The aim of this essay is to investigate discursive, cognitive and social aspects of manipulation in regard to the dialogues of the literary fictional character of Gandalf in the trilogy of The Lord of the Rings. Accordingly, the researcher has taken a multidisciplinary approach to an account of discursive manipulation, and focuses on the cognitive dimensions of manipulation. As a result, the researcher demonstrates meticulously how manipulation involves intensifying the power, moral superiority and the credibility of the speaker(s, while abusing the others (recipients, along with an emotional and attractive way of expression, and supplemented by reasonable facts and documents in regard to a specific issue.

  1. A Geometry Deformation Model for Braided Continuum Manipulators

    Directory of Open Access Journals (Sweden)

    S. M. Hadi Sadati

    2017-06-01

    Full Text Available Continuum manipulators have gained significant attention in the robotic community due to their high dexterity, deformability, and reachability. Modeling of such manipulators has been shown to be very complex and challenging. Despite many research attempts, a general and comprehensive modeling method is yet to be established. In this paper, for the first time, we introduce the bending effect in the model of a braided extensile pneumatic actuator with both stiff and bendable threads. Then, the effect of the manipulator cross-section deformation on the constant curvature and variable curvature models is investigated using simple analytical results from a novel geometry deformation method and is compared to experimental results. We achieve 38% mean reference error simulation accuracy using our constant curvature model for a braided continuum manipulator in presence of body load and 10% using our variable curvature model in presence of extensive external loads. With proper model assumptions and taking to account the cross-section deformation, a 7–13% increase in the simulation mean error accuracy is achieved compared to a fixed cross-section model. The presented models can be used for the exact modeling and design optimization of compound continuum manipulators by providing an analytical tool for the sensitivity analysis of the manipulator performance. Our main aim is the application in minimal invasive manipulation with limited workspaces and manipulators with regional tunable stiffness in their cross section.

  2. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins.

    Science.gov (United States)

    Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi

    2017-05-05

    Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.

  3. Tree manipulation experiment

    Science.gov (United States)

    Nishina, K.; Takenaka, C.; Ishizuka, S.; Hashimoto, S.; Yagai, Y.

    2012-12-01

    Some forest operations such as thinning and harvesting management could cause changes in N cycling and N2O emission from soils, since thinning and harvesting managements are accompanied with changes in aboveground environments such as an increase of slash falling and solar radiation on the forest floor. However, a considerable uncertainty exists in effects of thinning and harvesting on N2O fluxes regarding changes in belowground environments by cutting trees. To focus on the effect of changes in belowground environments on the N2O emissions from soils, we conducted a tree manipulation experiment in Japanese cedar (Cryptomeria japonica) stand without soil compaction and slash falling near the chambers and measured N2O flux at 50 cm and 150 cm distances from the tree trunk (stump) before and after cutting. We targeted 5 trees for the manipulation and established the measurement chambers to the 4 directions around each targeted tree relative to upper slope (upper, left, right, lower positions). We evaluated the effect of logging on the emission by using hierarchical Bayesian model. HB model can evaluate the variability in observed data and their uncertainties in the estimation with various probability distributions. Moreover, the HB model can easily accommodate the non-linear relationship among the N2O emissions and the environmental factors, and explicitly take non-independent data (nested structure of data) for the estimation into account by using random effects in the model. Our results showed tree cutting stimulated N2O emission from soils, and also that the increase of N2O flux depended on the distance from the trunk (stump): the increase of N2O flux at 50 cm from the trunk (stump) was greater than that of 150 cm from the trunk. The posterior simulation of the HB model indicated that the stimulation of N2O emission by tree cut- ting could reach up to 200 cm in our experimental plot. By tree cutting, the estimated N2O emission at 0-40 cm from the trunk doubled

  4. Remote inspection manipulators for AGR II: Babcock Power's interstitial manipulator

    International Nuclear Information System (INIS)

    Whyley, S.R.

    1985-01-01

    The interstitial manipulator has been designed and built by Babcock Power for the remote visual inspection of AGR II reactors at Heysham and Torness. Its five drives are operated from a console local to the manipulator on the pile cap, or from a similar console located remotely. The need to operate from an interstitial ISI standpipe has restricted the size of the components entering the reactor, and this has consequently provided the major design constraint. A detailed structural assessment of the manipulator was carried out to demonstrate the ability to operate with payloads in excess of the largest camera weight of 13.6 kg. The manipulator finite element model was also used to determine static deflections, and, as a consequence, has provided data from which the control system is able to predict accurately the camera's position. Other computer aided design techniques have enabled the step by step sequences of manipulator deployment, in the restricted space available, to be successfully demonstrated. (author)

  5. Stereoscopically Observing Manipulative Actions.

    Science.gov (United States)

    Ferri, S; Pauwels, K; Rizzolatti, G; Orban, G A

    2016-08-01

    The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors "stimulus type" (action, static control, and dynamic control), "stereopsis" (present, absent) and "viewpoint" (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior. © The Author 2016. Published by Oxford University Press.

  6. ADVERTISING AND LANGUAGE MANIPULATION

    Directory of Open Access Journals (Sweden)

    Cristina-Maria PRELIPCEANU

    2013-11-01

    Full Text Available Research has revealed that much of what happens in our minds as a result of language use is still hidden from our conscious awareness. Advertisers know this phenomenon better. They use the manipulation of language to suggest something about their products without directly claiming it to be true. Although the advertisers use colours, symbols, and imagery in advertisements, “the most direct way to study ads is through an analysis of the language employed” as all the other aspects are meant to reinforce the language message. Ads are designed to have an effect on consumers while being laughed at, belittle and all but ignored. Some modern advertisements appear to be almost dissuading consumers from the product – but this is just a modern technique. This paper is going to analyze a series of language techniques used by advertisers to arrest our attention, to arouse our interest, to stimulate desire for a product and ultimately to motivate us to buy it. Once we become familiar with the language strategies used in advertising messages we will be more able to make our own buying decisions.

  7. Stud manipulating device

    International Nuclear Information System (INIS)

    Bunyan, T.W.

    1980-01-01

    A device for inserting and removing studs from bores in a workpiece, for example a nuclear reactor vessel, comprises manipulating devices for operating on individual studs, each capable of tensioning a stud slackening a working nut on the stud, and subsequently removing the stud from the bore. A ring has dogs which can engage working nut recesses to interlock with the nut against relative rotation. Motors coupled to the ring rotate the working nut. A top nut is coupled to the motors to rotate the nut and screw it onto the stud. The top nut with other device parts can be raised and lowered on a tube by a hydraulic actuator. A hydraulic load cell between the top nut and a stool on the workpiece is pressurised to tension the stud by means of the top nut and thus facilitate rotation of the working nut when tightening or slackening. A dog clutch mechanism engages a stud end fitting against relative axial and rotational movement. The mechanism is raised and lowered on a guide member by an actuator. The mechanism has a tubular member and the drive coupling for the motors to the top nut includes a tubular member. Tubular members carry teeth which are engaged when the top nut is raised and the clutch mechanism is lowered, to provide a coupling between the motors and the mechanism for rotating the stud. (U.K.)

  8. Manipulation Robustness of Collaborative Filtering

    OpenAIRE

    Benjamin Van Roy; Xiang Yan

    2010-01-01

    A collaborative filtering system recommends to users products that similar users like. Collaborative filtering systems influence purchase decisions and hence have become targets of manipulation by unscrupulous vendors. We demonstrate that nearest neighbors algorithms, which are widely used in commercial systems, are highly susceptible to manipulation and introduce new collaborative filtering algorithms that are relatively robust.

  9. CLIMAN - a mobile manipulator concept

    International Nuclear Information System (INIS)

    Noltingk, B.E.; Owen, C.K.V.

    With increasing age the integrity of more remote parts of reactors, such as the core restraints, is questioned so there is a need for a means of access to these places to carry out inspection, minor repairs and alterations. Conventional standpipe manipulators are about 20 m long so that extending them further presents difficulties of load capacity, rigidity, dexterity and control which must increase steeply with range. The proposal outlined here is for a mobile manipulator which can climb at the end of a cable (CLImbing MANipulator - CLIMAN) into a reactor and reach well beyond the range of a fixed base machine. In addition to virtually unlimited range such a mobile manipulator has twice as many degrees of freedom as a fixed base machine. Its body or base can be manoeuvred with six degrees of freedom so as to obtain the maximum coverage and obstacle avoidance for its manipulator. It is proposed that it should be manually controlled. (author)

  10. Pharmacological and protein profiling suggest venetoclax (ABT-199) as optimal partner with ibrutinib in chronic lymphocytic leukemia

    Science.gov (United States)

    Cervantes-Gomez, Fabiola; Lamothe, Betty; Woyach, Jennifer A.; Wierda, William G.; Keating, Michael J.; Balakrishnan, Kumudha; Gandhi, Varsha

    2015-01-01

    Purpose Bruton’s tyrosine kinase (BTK) is a critical enzyme in the B-cell receptor pathway and is inhibited by ibrutinib due to covalent binding to the kinase domain. Though ibrutinib results in impressive clinical activity in chronic lymphocytic leukemia (CLL), most patients achieve only partial remission due to residual disease. We performed a pharmacologic profiling of residual circulating CLL cells from patients receiving ibrutinib to identify optimal agents that could induce cell death of these lymphocytes. Experimental design Ex vivo serial samples of CLL cells from patients on ibrutinib were obtained prior and after (weeks 2, 4, and 12) the start of treatment. These cells were incubated with PI3K inhibitors (idelalisib or IPI-145), bendamustine, additional ibrutinib, or BCL-2 antagonists (ABT-737 or ABT-199) and cell death was measured. In vitro investigations complemented ex vivo studies. Immunoblots for BTK signaling pathway and antiapoptotic proteins were performed. Results The BCL-2 antagonists, especially ABT-199, induced high cell death during ex vivo incubations. In concert with the ex vivo data, in vitro combinations also resulted highly cytotoxicity. Serial samples of CLL cells obtained before and 2, 4, 12, or 36 weeks after the start of ibrutinib showed inhibition of BTK activity and sensitivity to ABTs. Among the three BCL-2 family anti-apoptotic proteins that are overexpressed in CLL, levels of MCL-1 and BCL-XL were decreased after ibrutinib while ABT-199 selectively antagonizes BCL-2. Conclusions Our biological and molecular results suggest that ibrutinib and ABT-199 combination should be tested clinically against CLL. PMID:25829398

  11. Pharmacological and Protein Profiling Suggests Venetoclax (ABT-199) as Optimal Partner with Ibrutinib in Chronic Lymphocytic Leukemia.

    Science.gov (United States)

    Cervantes-Gomez, Fabiola; Lamothe, Betty; Woyach, Jennifer A; Wierda, William G; Keating, Michael J; Balakrishnan, Kumudha; Gandhi, Varsha

    2015-08-15

    Bruton's tyrosine kinase (BTK) is a critical enzyme in the B-cell receptor pathway and is inhibited by ibrutinib due to covalent binding to the kinase domain. Though ibrutinib results in impressive clinical activity in chronic lymphocytic leukemia (CLL), most patients achieve only partial remission due to residual disease. We performed a pharmacologic profiling of residual circulating CLL cells from patients receiving ibrutinib to identify optimal agents that could induce cell death of these lymphocytes. Ex vivo serial samples of CLL cells from patients on ibrutinib were obtained prior and after (weeks 2, 4, and 12) the start of treatment. These cells were incubated with PI3K inhibitors (idelalisib or IPI-145), bendamustine, additional ibrutinib, or BCL-2 antagonists (ABT-737 or ABT-199), and cell death was measured. In vitro investigations complemented ex vivo studies. Immunoblots for BTK signaling pathway and antiapoptotic proteins were performed. The BCL-2 antagonists, especially ABT-199, induced high cell death during ex vivo incubations. In concert with the ex vivo data, in vitro combinations also resulted in high cytotoxicity. Serial samples of CLL cells obtained before and 2, 4, 12, or 36 weeks after the start of ibrutinib showed inhibition of BTK activity and sensitivity to ABTs. Among the three BCL-2 family antiapoptotic proteins that are overexpressed in CLL, levels of MCL-1 and BCL-XL were decreased after ibrutinib while ABT-199 selectively antagonizes BCL-2. Our biologic and molecular results suggest that ibrutinib and ABT-199 combination should be tested clinically against CLL. ©2015 American Association for Cancer Research.

  12. Haptic rendering for simulation of fine manipulation

    CERN Document Server

    Wang, Dangxiao; Zhang, Yuru

    2014-01-01

    This book introduces the latest progress in six degrees of freedom (6-DoF) haptic rendering with the focus on a new approach for simulating force/torque feedback in performing tasks that require dexterous manipulation skills. One of the major challenges in 6-DoF haptic rendering is to resolve the conflict between high speed and high fidelity requirements, especially in simulating a tool interacting with both rigid and deformable objects in a narrow space and with fine features. The book presents a configuration-based optimization approach to tackle this challenge. Addressing a key issue in man

  13. Optimization of Protein Extraction from Spirulina platensis to Generate a Potential Co-Product and a Biofuel Feedstock with Reduced Nitrogen Content

    Energy Technology Data Exchange (ETDEWEB)

    Parimi, Naga Sirisha; Singh, Manjinder; Kastner, James R.; Das, Keshav C., E-mail: kdas@engr.uga.edu [College of Engineering, The University of Georgia, Athens, GA (United States); Forsberg, Lennart S.; Azadi, Parastoo [Complex Carbohydrate Research Center, The University of Georgia, Athens, GA (United States)

    2015-06-23

    The current work reports protein extraction from Spirulina platensis cyanobacterial biomass in order to simultaneously generate a potential co-product and a biofuel feedstock with reduced nitrogen content. S. platensis cells were subjected to cell disruption by high-pressure homogenization and subsequent protein isolation by solubilization at alkaline pH followed by precipitation at acidic pH. Response surface methodology was used to optimize the process parameters – pH, extraction (solubilization/precipitation) time and biomass concentration for obtaining maximum protein yield. The optimized process conditions were found to be pH 11.38, solubilization time of 35 min and biomass concentration of 3.6% (w/w) solids for the solubilization step, and pH 4.01 and precipitation time of 60 min for the precipitation step. At the optimized conditions, a high protein yield of 60.7% (w/w) was obtained. The protein isolate (co-product) had a higher protein content [80.6% (w/w)], lower ash [1.9% (w/w)] and mineral content and was enriched in essential amino acids, the nutritious γ-linolenic acid and other high-value unsaturated fatty acids compared to the original biomass. The residual biomass obtained after protein extraction had lower nitrogen content and higher total non-protein content than the original biomass. The loss of about 50% of the total lipids from this fraction did not impact its composition significantly owing to the low lipid content of S. platensis (8.03%).

  14. Optimization of Protein Extraction from Spirulina platensis to Generate a Potential Co-Product and a Biofuel Feedstock with Reduced Nitrogen Content

    International Nuclear Information System (INIS)

    Parimi, Naga Sirisha; Singh, Manjinder; Kastner, James R.; Das, Keshav C.; Forsberg, Lennart S.; Azadi, Parastoo

    2015-01-01

    The current work reports protein extraction from Spirulina platensis cyanobacterial biomass in order to simultaneously generate a potential co-product and a biofuel feedstock with reduced nitrogen content. S. platensis cells were subjected to cell disruption by high-pressure homogenization and subsequent protein isolation by solubilization at alkaline pH followed by precipitation at acidic pH. Response surface methodology was used to optimize the process parameters – pH, extraction (solubilization/precipitation) time and biomass concentration for obtaining maximum protein yield. The optimized process conditions were found to be pH 11.38, solubilization time of 35 min and biomass concentration of 3.6% (w/w) solids for the solubilization step, and pH 4.01 and precipitation time of 60 min for the precipitation step. At the optimized conditions, a high protein yield of 60.7% (w/w) was obtained. The protein isolate (co-product) had a higher protein content [80.6% (w/w)], lower ash [1.9% (w/w)] and mineral content and was enriched in essential amino acids, the nutritious γ-linolenic acid and other high-value unsaturated fatty acids compared to the original biomass. The residual biomass obtained after protein extraction had lower nitrogen content and higher total non-protein content than the original biomass. The loss of about 50% of the total lipids from this fraction did not impact its composition significantly owing to the low lipid content of S. platensis (8.03%).

  15. Dexterous Manipulation: Making Remote Manipulators Easy to Use

    International Nuclear Information System (INIS)

    HARRIGAN, RAYMOND W.; BENNETT, PHIL C.

    2001-01-01

    Perhaps the most basic barrier to the widespread deployment of remote manipulators is that they are very difficult to use. Remote manual operations are fatiguing and tedious, while fully autonomous systems are seldom able to function in changing and unstructured environments. An alternative approach to these extremes is to exploit computer control while leaving the operator in the loop to take advantage of the operator's perceptual and decision-making capabilities. This report describes research that is enabling gradual introduction of computer control and decision making into operator-supervised robotic manipulation systems, and its integration on a commercially available, manually controlled mobile manipulator

  16. Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins.

    Science.gov (United States)

    Schaffer, Miroslava; Mahamid, Julia; Engel, Benjamin D; Laugks, Tim; Baumeister, Wolfgang; Plitzko, Jürgen M

    2017-02-01

    While cryo-electron tomography (cryo-ET) can reveal biological structures in their native state within the cellular environment, it requires the production of high-quality frozen-hydrated sections that are thinner than 300nm. Sample requirements are even more stringent for the visualization of membrane-bound protein complexes within dense cellular regions. Focused ion beam (FIB) sample preparation for transmission electron microscopy (TEM) is a well-established technique in material science, but there are only few examples of biological samples exhibiting sufficient quality for high-resolution in situ investigation by cryo-ET. In this work, we present a comprehensive description of a cryo-sample preparation workflow incorporating additional conductive-coating procedures. These coating steps eliminate the adverse effects of sample charging on imaging with the Volta phase plate, allowing data acquisition with improved contrast. We discuss optimized FIB milling strategies adapted from material science and each critical step required to produce homogeneously thin, non-charging FIB lamellas that make large areas of unperturbed HeLa and Chlamydomonas cells accessible for cryo-ET at molecular resolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Direct Manipulation in Virtual Reality

    Science.gov (United States)

    Bryson, Steve

    2003-01-01

    Virtual Reality interfaces offer several advantages for scientific visualization such as the ability to perceive three-dimensional data structures in a natural way. The focus of this chapter is direct manipulation, the ability for a user in virtual reality to control objects in the virtual environment in a direct and natural way, much as objects are manipulated in the real world. Direct manipulation provides many advantages for the exploration of complex, multi-dimensional data sets, by allowing the investigator the ability to intuitively explore the data environment. Because direct manipulation is essentially a control interface, it is better suited for the exploration and analysis of a data set than for the publishing or communication of features found in that data set. Thus direct manipulation is most relevant to the analysis of complex data that fills a volume of three-dimensional space, such as a fluid flow data set. Direct manipulation allows the intuitive exploration of that data, which facilitates the discovery of data features that would be difficult to find using more conventional visualization methods. Using a direct manipulation interface in virtual reality, an investigator can, for example, move a data probe about in space, watching the results and getting a sense of how the data varies within its spatial volume.

  18. Repetitive motion planning and control of redundant robot manipulators

    CERN Document Server

    Zhang, Yunong

    2013-01-01

    Repetitive Motion Planning and Control of Redundant Robot Manipulators presents four typical motion planning schemes based on optimization techniques, including the fundamental RMP scheme and its extensions. These schemes are unified as quadratic programs (QPs), which are solved by neural networks or numerical algorithms. The RMP schemes are demonstrated effectively by the simulation results based on various robotic models; the experiments applying the fundamental RMP scheme to a physical robot manipulator are also presented. As the schemes and the corresponding solvers presented in the book have solved the non-repetitive motion problems existing in redundant robot manipulators, it is of particular use in applying theoretical research based on the quadratic program for redundant robot manipulators in industrial situations. This book will be a valuable reference work for engineers, researchers, advanced undergraduate and graduate students in robotics fields. Yunong Zhang is a professor at The School of Informa...

  19. Robotic design analysis based on teleoperated manipulator data collection

    International Nuclear Information System (INIS)

    Stoughton, R.S.; Martin, H.L.

    1985-01-01

    Extensive data collection was performed on a servomanipulator system (TeleOperator Systems SM-229) to determine the motion range and mechanical power usage of the manipulator under direct human control. More than 50 hours of various manipulation operations were performed while joint positions and motor currents were recorded. Reduction of these data yielded histograms of the manipulator usage patterns revealing areas where future manipulator motion ranges and drive systems could be optimized. This report develops a graphical representation of mechanical power usage that relates torque and velocity to the total usage time. Methods of interpreting this representation are discussed and generalized for use in analyzing robotic systems. The resulting technique will allow designers to reevaluate an operating system and determine how to improve that system's design

  20. Kinematic sensitivity of robot manipulators

    Science.gov (United States)

    Vuskovic, Marko I.

    1989-01-01

    Kinematic sensitivity vectors and matrices for open-loop, n degrees-of-freedom manipulators are derived. First-order sensitivity vectors are defined as partial derivatives of the manipulator's position and orientation with respect to its geometrical parameters. The four-parameter kinematic model is considered, as well as the five-parameter model in case of nominally parallel joint axes. Sensitivity vectors are expressed in terms of coordinate axes of manipulator frames. Second-order sensitivity vectors, the partial derivatives of first-order sensitivity vectors, are also considered. It is shown that second-order sensitivity vectors can be expressed as vector products of the first-order sensitivity vectors.

  1. Modeling manipulation in medical education.

    Science.gov (United States)

    Dailey, Jason I

    2010-05-01

    As residents and medical students progress through their medical training, they are presented with multiple instances in which they feel they must manipulate the healthcare system and deceive others in order to efficiently treat their patients. This, however, creates a culture of manipulation resulting in untoward effects on trainees' ethical and professional development. Yet manipulation need not be a skill necessary to practice medicine, and steps should be taken by both individuals and institutions to combat the view that the way medicine must be practiced "in the real world" is somehow different from what one's affective moral sense implores.

  2. High yield expression in a recombinant E. coli of a codon optimized chicken anemia virus capsid protein VP1 useful for vaccine development

    Directory of Open Access Journals (Sweden)

    You Bang-Jau

    2011-07-01

    Full Text Available Abstract Background Chicken anemia virus (CAV, the causative agent chicken anemia, is the only member of the genus Gyrovirus of the Circoviridae family. CAV is an immune suppressive virus and causes anemia, lymph organ atrophy and immunodeficiency. The production and biochemical characterization of VP1 protein and its use in a subunit vaccine or as part of a diagnostic kit would be useful to CAV infection prevention. Results Significantly increased expression of the recombinant full-length VP1 capsid protein from chicken anemia virus was demonstrated using an E. coli expression system. The VP1 gene was cloned into various different expression vectors and then these were expressed in a number of different E. coli strains. The expression of CAV VP1 in E. coli was significantly increased when VP1 was fused with GST protein rather than a His-tag. By optimizing the various rare amino acid codons within the N-terminus of the VP1 protein, the expression level of the VP1 protein in E. coli BL21(DE3-pLysS was further increased significantly. The highest protein expression level obtained was 17.5 g/L per liter of bacterial culture after induction with 0.1 mM IPTG for 2 h. After purification by GST affinity chromatography, the purified full-length VP1 protein produced in this way was demonstrated to have good antigenicity and was able to be recognized by CAV-positive chicken serum in an ELISA assay. Conclusions Purified recombinant VP1 protein with the gene's codons optimized in the N-terminal region has potential as chimeric protein that, when expressed in E. coli, may be useful in the future for the development of subunit vaccines and diagnostic tests.

  3. Optimal Hydrophobicity in Ring-Opening Metathesis Polymerization-Based Protein Mimics Required for siRNA Internalization.

    Science.gov (United States)

    deRonde, Brittany M; Posey, Nicholas D; Otter, Ronja; Caffrey, Leah M; Minter, Lisa M; Tew, Gregory N

    2016-06-13

    Exploring the role of polymer structure for the internalization of biologically relevant cargo, specifically siRNA, is of critical importance to the development of improved delivery reagents. Herein, we report guanidinium-rich protein transduction domain mimics (PTDMs) based on a ring-opening metathesis polymerization scaffold containing tunable hydrophobic moieties that promote siRNA internalization. Structure-activity relationships using Jurkat T cells and HeLa cells were explored to determine how the length of the hydrophobic block and the hydrophobic side chain compositions of these PTDMs impacted siRNA internalization. To explore the hydrophobic block length, two different series of diblock copolymers were synthesized: one series with symmetric block lengths and one with asymmetric block lengths. At similar cationic block lengths, asymmetric and symmetric PTDMs promoted siRNA internalization in the same percentages of the cell population regardless of the hydrophobic block length; however, with 20 repeat units of cationic charge, the asymmetric block length had greater siRNA internalization, highlighting the nontrivial relationships between hydrophobicity and overall cationic charge. To further probe how the hydrophobic side chains impacted siRNA internalization, an additional series of asymmetric PTDMs was synthesized that featured a fixed hydrophobic block length of five repeat units that contained either dimethyl (dMe), methyl phenyl (MePh), or diphenyl (dPh) side chains and varied cationic block lengths. This series was further expanded to incorporate hydrophobic blocks consisting of diethyl (dEt), diisobutyl (diBu), and dicyclohexyl (dCy) based repeat units to better define the hydrophobic window for which our PTDMs had optimal activity. High-performance liquid chromatography retention times quantified the relative hydrophobicities of the noncationic building blocks. PTDMs containing the MePh, diBu, and dPh hydrophobic blocks were shown to have superior

  4. Kinematics and trajectory synthesis of manipulation robots

    CERN Document Server

    Vukobratović, Miomir

    1986-01-01

    A few words about the series "Scientific Fundamentals of Robotics" should be said on the occasion of publication of the present monograph. This six-volume series has been conceived so as to allow the readers to master a contemporary approach to the construction and synthesis of con­ trol for manipulation ~obots. The authors' idea was to show how to use correct mathematical models of the dynamics of active spatial mecha­ nisms for dynamic analysis of robotic systems, optimal design of their mechanical parts based on the accepted criteria and imposed constraints, optimal choice of actuators, synthesis of dynamic control algorithms and their microcomputer implementation. In authors' oppinion this idea has been relatively successfully realized within the six-volume mono­ graphic series. Let us remind the readers of the books of this series. Volumes 1 and 2 are devoted to the dynamics and control algorithms of manipulation ro­ bots, respectively. They form the first part of the series which has a certain topic...

  5. Computational simulator of robotic manipulators

    International Nuclear Information System (INIS)

    Leal, Alexandre S.; Campos, Tarcisio P.R.

    1995-01-01

    Robotic application for industrial plants is discussed and a computational model for a mechanical manipulator of three links is presented. A neural network feed-forward type has been used to model the dynamic control of the manipulator. A graphic interface was developed in C programming language as a virtual world in order to visualize and simulate the arm movements handling radioactive waste environment. (author). 7 refs, 5 figs

  6. Improved genetic manipulation of human embryonic stem cells.

    NARCIS (Netherlands)

    Braam, S.R.; Denning, C.; van den Brink, S.; Kats, P.; Hochstenbach, R.; Passier, R.; Mummery, C.L.

    2008-01-01

    Low efficiency of transfection limits the ability to genetically manipulate human embryonic stem cells (hESCs), and differences in cell derivation and culture methods require optimization of transfection protocols. We transiently transferred multiple independent hESC lines with different growth

  7. Low manipulation prevalence following fast-track total knee arthroplasty

    DEFF Research Database (Denmark)

    Husted, Henrik; Jørgensen, Christoffer C.; Gromov, Kirill

    2015-01-01

    BACKGROUND AND PURPOSE: Postoperative joint stiffness following total knee arthroplasty (TKA) may compromise the outcome and necessitate manipulation. Previous studies have not been in a fast-track setting with optimized pain treatment, early mobilization, and short length of stay (LOS), which ma...

  8. Overexpression and Purification of C-terminal Fragment of the Passenger Domain of Hap Protein from Nontypeable Haemophilus influenzae in a Highly Optimized Escherichia coli Expression System

    Science.gov (United States)

    Tabatabaee, Akram; Siadat, Seyed Davar; Moosavi, Seyed Fazllolah; Aghasadeghi, Mohammad Reza; Memarnejadian, Arash; Pouriayevali, Mohammad Hassan; Yavari, Neda

    2013-01-01

    Background Nontypeable Haemophilus influenzae (NTHi) is a common cause of respiratory tract disease and initiates infection by colonization in nasopharynx. The Haemophilus influenzae (H. influenzae) Hap adhesin is an auto transporter protein that promotes initial interaction with human epithelial cells. Hap protein contains a 110 kDa internal passenger domain called “HapS” and a 45 kDa C-terminal translocator domain called “Hapβ”. Hap adhesive activity has been recently reported to be connected to its Cell Binding Domain (CBD) which resides within the 311 C-terminal residues of the internal passenger domain of the protein. Furthermore, immunization with this CBD protein has been shown to prevent bacterial nasopharynx colonization in animal models. Methods To provide enough amounts of pure HapS protein for vaccine studies, we sought to develop a highly optimized system to overexpress and purify the protein in large quantities. To this end, pET24a-cbd plasmid harboring cbd sequence from NTHi ATCC49766 was constructed and its expression was optimized by testing various expression parameters such as growth media, induction temperature, IPTG inducer concentration, induction stage and duration. SDS-PAGE and Western-blotting were used for protein analysis and confirmation and eventually the expressed protein was easily purified via immobilized metal affinity chromatography (IMAC) using Ni-NTA columns. Results The highest expression level of target protein was achieved when CBD expressing E. coli BL21 (DE3) cells were grown at 37°C in 2xTY medium with 1.0 mM IPTG at mid-log phase (OD600 nm equal to 0.6) for 5 hrs. Amino acid sequence alignment of expressed CBD protein with 3 previously published CBD amino acid sequences were more than %97 identical and antigenicity plot analysis further revealed 9 antigenic domains which appeared to be well conserved among different analyzed CBD sequences. Conclusion Due to the presence of high similarity among CBD from NTHi ATCC

  9. The effects of spatially displaced visual feedback on remote manipulator performance

    Science.gov (United States)

    Smith, Randy L.; Stuart, Mark A.

    1993-01-01

    The results of this evaluation have important implications for the arrangement of remote manipulation worksites and the design of workstations for telerobot operations. This study clearly illustrates the deleterious effects that can accompany the performance of remote manipulator tasks when viewing conditions are less than optimal. Future evaluations should emphasize telerobot camera locations and the use of image/graphical enhancement techniques in an attempt to lessen the adverse effects of displaced visual feedback. An important finding in this evaluation is the extent to which results from previously performed direct manipulation studies can be generalized to remote manipulation studies. Even though the results obtained were very similar to those of the direct manipulation evaluations, there were differences as well. This evaluation has demonstrated that generalizations to remote manipulation applications based upon the results of direct manipulation studies are quite useful, but they should be made cautiously.

  10. Optimizing FRET-FLIM Labeling Conditions to Detect Nuclear Protein Interactions at Native Expression Levels in Living Arabidopsis Roots

    KAUST Repository

    Long, Yuchen; Stahl, Yvonne; Weidtkamp-Peters, Stefanie; Smet, Wouter; Du, Yujuan; Gadella, Theodorus W. J.; Goedhart, Joachim; Scheres, Ben; Blilou, Ikram

    2018-01-01

    Protein complex formation has been extensively studied using Förster resonance energy transfer (FRET) measured by Fluorescence Lifetime Imaging Microscopy (FLIM). However, implementing this technology to detect protein interactions in living

  11. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC.

    Science.gov (United States)

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2017-09-10

    Knowledge of subcellular locations of proteins is crucially important for in-depth understanding their functions in a cell. With the explosive growth of protein sequences generated in the postgenomic age, it is highly demanded to develop computational tools for timely annotating their subcellular locations based on the sequence information alone. The current study is focused on virus proteins. Although considerable efforts have been made in this regard, the problem is far from being solved yet. Most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions. This kind of multiplex proteins is particularly important for both basic research and drug design. Using the multi-label theory, we present a new predictor called "pLoc-mVirus" by extracting the optimal GO (Gene Ontology) information into the general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validation on a same stringent benchmark dataset indicated that the proposed pLoc-mVirus predictor is remarkably superior to iLoc-Virus, the state-of-the-art method in predicting virus protein subcellular localization. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc-mVirus/, by which users can easily get their desired results without the need to go through the complicated mathematics involved. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC.

    Science.gov (United States)

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2017-08-22

    One of the fundamental goals in cellular biochemistry is to identify the functions of proteins in the context of compartments that organize them in the cellular environment. To realize this, it is indispensable to develop an automated method for fast and accurate identification of the subcellular locations of uncharacterized proteins. The current study is focused on plant protein subcellular location prediction based on the sequence information alone. Although considerable efforts have been made in this regard, the problem is far from being solved yet. Most of the existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions. This kind of multiplex protein is particularly important for both basic research and drug design. Using the multi-label theory, we present a new predictor called "pLoc-mPlant" by extracting the optimal GO (Gene Ontology) information into the Chou's general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validation on the same stringent benchmark dataset indicated that the proposed pLoc-mPlant predictor is remarkably superior to iLoc-Plant, the state-of-the-art method for predicting plant protein subcellular localization. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at , by which users can easily get their desired results without the need to go through the complicated mathematics involved.

  13. Profiling and quantitative evaluation of three Nickel-Coated magnetic matrices for purification of recombinant proteins: lelpful hints for the optimized nanomagnetisable matrix preparation

    Directory of Open Access Journals (Sweden)

    Zarei Saeed

    2011-08-01

    Full Text Available Abstract Background Several materials are available in the market that work on the principle of protein magnetic fishing by their histidine (His tags. Little information is available on their performance and it is often quoted that greatly improved purification of histidine-tagged proteins from crude extracts could be achieved. While some commercial magnetic matrices could be used successfully for purification of several His-tagged proteins, there are some which have been proved to operate just for a few extent of His-tagged proteins. Here, we address quantitative evaluation of three commercially available Nickel nanomagnetic beads for purification of two His-tagged proteins expressed in Escherichia coli and present helpful hints for optimized purification of such proteins and preparation of nanomagnetisable matrices. Results Marked differences in the performance of nanomagnetic matrices, principally on the basis of their specific binding capacity, recovery profile, the amount of imidazole needed for protein elution and the extent of target protein loss and purity were obtained. Based on the aforesaid criteria, one of these materials featured the best purification results (SiMAG/N-NTA/Nickel for both proteins at the concentration of 4 mg/ml, while the other two (SiMAC-Nickel and SiMAG/CS-NTA/Nickel did not work well with respect to specific binding capacity and recovery profile. Conclusions Taken together, functionality of different types of nanomagnetic matrices vary considerably. This variability may not only be dependent upon the structure and surface chemistry of the matrix which in turn determine the affinity of interaction, but, is also influenced to a lesser extent by the physical properties of the protein itself. Although the results of the present study may not be fully applied for all nanomagnetic matrices, but provide a framework which could be used to profiling and quantitative evaluation of other magnetisable matrices and also

  14. Recovery of insulin sensitivity and optimal body composition after rapid weight loss in obese dogs fed a high-protein medium-carbohydrate diet.

    Science.gov (United States)

    André, A; Leriche, I; Chaix, G; Thorin, C; Burger, M; Nguyen, P

    2017-06-01

    This study investigated the effects of an experimental high-protein medium-carbohydrate diet (protein level, 46% metabolizable energy, ME). First, postprandial plasma glucose and insulin kinetics were determined in steady-state overweight/obese Beagle dogs (28%-41% excess body weight) for an experimental high-protein medium-carbohydrate diet (protein level, 46% ME) and a commercial high-carbohydrate medium-protein diet (protein level, 24%ME) in obese dogs. Secondly, all the dogs were included in a weight loss programme. They were fed the high-protein medium-carbohydrate diet, and the energy allocation was gradually reduced until they reached their optimal body weight. Insulin sensitivity and body composition were evaluated before and after weight loss using a euglycaemic-hyperinsulinaemic clamp and the deuterium oxide dilution technique respectively. For statistical analysis, linear mixed effect models were used with a significance level of 5%. Postprandial plasma glucose and insulin concentrations were substantially lower with the high-protein medium-carbohydrate diet than the high-carbohydrate medium-protein diet. These differences can be explained mainly by the difference in carbohydrate content between the two diets. Energy restriction (35% lower energy intake than in the obese state) resulted in a 2.23 ± 0.05% loss in body weight/week, and the dogs reached their optimal body weight in 12-16 weeks. Weight loss was associated with a significant increase in insulin sensitivity. The high-protein medium-carbohydrate diet allowed fat-free mass preservation despite a relatively high rate of weekly weight loss. The increase in insulin sensitivity indicated improved control of carbohydrate metabolism, possible due to weight loss and to the nature of the diet. Thus, a high-protein medium-carbohydrate diet is a good nutritional solution for managing the weight of overweight dogs. This diet may improve glycaemic control, which could be beneficial for preventing or

  15. High precision redundant robotic manipulator

    International Nuclear Information System (INIS)

    Young, K.K.D.

    1998-01-01

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs

  16. Multiobjective Optimum Design of a 3-RRR Spherical Parallel Manipulator with Kinematic and Dynamic Dexterities

    DEFF Research Database (Denmark)

    Wu, Guanglei

    2012-01-01

    parameters of the spherical parallel manipulator. The proposed approach is illustrated with the optimum design of a special spherical parallel manipulator with unlimited rolling motion. The corresponding optimization problem aims to maximize the kinematic and dynamic dexterities over its regular shaped...

  17. Detailed solution to a complex kinematics chain manipulator

    International Nuclear Information System (INIS)

    March-Leuba, S.; Jansen, J.F.; Kress, R.L.; Babcock, S.M.

    1992-01-01

    This paper presents a relatively simple method based on planar geometry to analyze the inverse kinematics for closed kinematics chain (CKC) mechanisms. Although the general problem and method of approach are well defined, the study of the inverse kinematics of a closed-chain mechanism is a very complicated one. The current methodology allows closed-form solutions to be found, if a solution exists, for the displacements and velocities of all manipulator joints. Critical design parameters can be identified and optimized by using symbolic models. This paper will focus on planar closed-chain structures extended with a rotational base. However, with open and CKC mechanisms combined in different planes, the extension to the case is straightforward. Further, real-time algorithms are developed that can be handled by existing microprocessor technology. To clarify the methodology, the Soldier Robot Interface Project (SRIP) manipulator is analyzed, and a graphic simulation is presented as a verification of the results. This manipulator has 17 links, 24 one-degree-of-freedom (DOF) joints, and 7 CKC loops working in a plane and a rotational base, which determine its 3 DOFs. The SRIP manipulator allows a decoupled linear motion along the vertical or horizontal directions using only one of its linear actuators. The symbolic solution for the inverse kinematics allows optimization to be performed to further decouple the Cartesian motions by changing link lengths of the manipulator. The conclusion achieved by the optimization is that only two link lengths need to be changed to tune the manipulator for a perfect decoupling at each area of the workspace

  18. Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation.

    Science.gov (United States)

    Paiva, Joana S; Jorge, Pedro A S; Rosa, Carla C; Cunha, João P S

    2018-05-01

    The tip of an optical fiber has been considered an attractive platform in Biology. The simple cleaved end of an optical fiber can be machined, patterned and/or functionalized, acquiring unique properties enabling the exploitation of novel optical phenomena. Prompted by the constant need to measure and manipulate nanoparticles, the invention of the Scanning Near-field Optical Microscopy (SNOM) triggered the optimization and development of novel fiber tip microfabrication methods. In fact, the fiber tip was soon considered a key element in SNOM by confining light to sufficiently small extensions, challenging the diffraction limit. As result and in consequence of the newly proposed "Lab On Tip" concept, several geometries of fiber tips were applied in three main fields: imaging (in Microscopy/Spectroscopy), biosensors and micromanipulation (Optical Fiber Tweezers, OFTs). These are able to exert forces on microparticles, trap and manipulate them for relevant applications, as biomolecules mechanical study or protein aggregates unfolding. This review presents an overview of the main achievements, most impactful studies and limitations of fiber tip-based configurations within the above three fields, along the past 10 years. OFTs could be in future a valuable tool for studying several cellular phenomena such as neurodegeneration caused by abnormal protein fibrils or manipulating organelles within cells. This could contribute to understand the mechanisms of some diseases or biophenomena, as the axonal growth in neurons. To the best of our knowledge, no other review article has so far provided such a broad view. Despite of the limitations, fiber tips have key roles in Biology/Medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The genetic manipulation of the yeast Saccharomyces cerevisiae with the aim of converting polysaccharide-rich agricultural crops and industrial waste to single-cell protein and fuel ethanol

    Directory of Open Access Journals (Sweden)

    I. S. Pretorius

    1994-07-01

    Full Text Available The world’s problem with overpopulation and environmental pollution has created an urgent demand for alternative protein and energy sources. One way of addressing these burning issues is to produce single-cell protein (for food and animal feed supplements and fuel ethanol from polysaccharide-rich agricultural crops and industrial waste by using baker’s yeast.

  20. Autonomous Industrial Mobile Manipulation (AIMM)

    DEFF Research Database (Denmark)

    Hvilshøj, Mads; Bøgh, Simon; Nielsen, Oluf Skov

    2012-01-01

    Purpose - The purpose of this paper is to provide a review of the interdisciplinary research field Autonomous Industrial Mobile Manipulation (AIMM), with an emphasis on physical implementations and applications. Design/methodology/approach - Following an introduction to AIMM, this paper investiga......Purpose - The purpose of this paper is to provide a review of the interdisciplinary research field Autonomous Industrial Mobile Manipulation (AIMM), with an emphasis on physical implementations and applications. Design/methodology/approach - Following an introduction to AIMM, this paper......; sustainability, configuration, adaptation, autonomy, positioning, manipulation and grasping, robot-robot interaction, human-robot interaction, process quality, dependability, and physical properties. Findings - The concise yet comprehensive review provides both researchers (academia) and practitioners (industry......) with a quick and gentle overview of AIMM. Furthermore, the paper identifies key open issues and promising research directions to realize real-world integration and maturation of the AIMM technology. Originality/value - This paper reviews the interdisciplinary research field Autonomous Industrial Mobile...

  1. Understanding pharmaceutical research manipulation in the context of accounting manipulation.

    Science.gov (United States)

    Brown, Abigail

    2013-01-01

    The problem of the manipulation of data that arises when there is both opportunity and incentive to mislead is better accepted and studied - though by no means solved - in financial accounting than in medicine. This article analyzes pharmaceutical company manipulation of medical research as part of a broader problem of corporate manipulation of data in the creation of accounting profits. The article explores how our understanding of accounting fraud and misinformation helps us understand the risk of similar information manipulation in the medical sciences. This understanding provides a framework for considering how best to improve the quality of medical research and analysis in light of the current system of medical information production. I offer three possible responses: (1) use of the Dodd-Frank whistleblower provisions to encourage reporting of medical research fraud; (2) a two-step academic journal review process for clinical trials; and (3) publicly subsidized trial-failure insurance. These would improve the release of negative information about drugs, thereby increasing the reliability of positive information. © 2013 American Society of Law, Medicine & Ethics, Inc.

  2. Subwavelength image manipulation through oblique and herringbone layered acoustic systems

    International Nuclear Information System (INIS)

    Li, Chunhui; Jia, Han; Ke, Manzhu; Li, Yixiang; Liu, Zhengyou

    2014-01-01

    In this paper, an oblique and a herringbone layered acoustic structure are experimentally and theoretically demonstrated to manipulate acoustic subwavelength images. An imaging resolution of less than one tenth of a wavelength is achieved with both optimized systems, and lateral image shift has been realized by an oblique layered system. The thicknesses of both the oblique and the herringbone layered acoustic systems are largely reduced through utilizing the oblique or herringbone wave propagation path instead of the vertical wave propagation path in the rectangular layered planar acoustic system. With smaller size and subwavelength image manipulation, the acoustic systems are more favourable for practical application. (paper)

  3. Rational manipulation of digital EEG: pearls and pitfalls.

    Science.gov (United States)

    Seneviratne, Udaya

    2014-12-01

    The advent of digital EEG has provided greater flexibility and more opportunities in data analysis to optimize the diagnostic yield. Changing the filter settings, sensitivity, montages, and time-base are possible rational manipulations to achieve this goal. The options to use polygraphy, video, and quantification are additional useful features. Aliasing and loss of data are potential pitfalls in the use of digital EEG. This review illustrates some common clinical scenarios where rational manipulations can enhance the diagnostic EEG yield and potential pitfalls in the process.

  4. Learning Area and Perimeter with Virtual Manipulatives

    Science.gov (United States)

    Bouck, Emily; Flanagan, Sara; Bouck, Mary

    2015-01-01

    Manipulatives are considered a best practice for educating students with disabilities, but little research exists which examines virtual manipulatives as tool for supporting students in mathematics. This project investigated the use of a virtual manipulative through the National Library of Virtual Manipulatives--polynominoes (i.e., tiles)--as a…

  5. A six degrees of freedom mems manipulator

    NARCIS (Netherlands)

    de Jong, B.R.

    2006-01-01

    This thesis reports about a six degrees of freedom (DOF) precision manipulator in MEMS, concerning concept generation for the manipulator followed by design and fabrication (of parts) of the proposed manipulation concept in MEMS. Researching the abilities of 6 DOF precision manipulation in MEMS is

  6. A potential new selection criterion for breeding winter barley optimal protein and amino acid profiles for liquid pig feed

    DEFF Research Database (Denmark)

    Christensen, Jesper Bjerg; Blaabjerg, Karoline; Poulsen, Hanne Damgaard

    The hypothesis is that cereal proteases in liquid feed degrade and convert water insoluble storage protein into water soluble protein, which may improve the digestibility of protein in pigs compared with dry feeding. Protein utilization is increased by matching the amino acid (AAs) content...... of the diet as close as possible to the pigs’ requirement. By improving the availability of isoleucine, leucine, histidine and phenylalanine, which are limiting and commercial unavailable, the amount of crude protein in the pig feed can be reduced, resulting in a decreased excretion of nitrogen. The aim...... of glutamic acid revealed differences between the cultivars and the solubilised protein at all three times. These preliminary results may indicate that improvements of the nitrogen utilization in pigs fed soaked winter barley depends on the choice of cultivar and soaking time, and may serve as a new selection...

  7. Manipulator vehicles and loading shovels

    International Nuclear Information System (INIS)

    Brudermueller, G.; Krueger, W.

    1992-01-01

    Kerntechnische Hilfsdienst GmbH (KHG) is an institution jointly founded by electricity utilities, fuel cycle industries, and national research centers to provide specialist equipment for removing the consequences of accidents inside plants and recognizing damage in the immediate vicinity of such plants, maintain such equipment in an operational condition, and provide personnel instructed in work of this kind. The specialized technical equipment developed includes carriages, carrier vehicles for manipulators, grabs, TV cameras or measuring gear. In addition to manipulator vehicles, especially loading shovels are used. Radio-controlled vehicles are used where cable operation is either not reliable enough or has failed. (orig.) [de

  8. Optimal expression of a Fab-effector fusion protein in Escherichia coli by removing the cysteine residues responsible for an interchain disulfide bond of a Fab molecule.

    Science.gov (United States)

    Kang, Hyeon-Ju; Kim, Hye-Jin; Jung, Mun-Sik; Han, Jae-Kyu; Cha, Sang-Hoon

    2017-04-01

    Development of novel bi-functional or even tri-functional Fab-effector fusion proteins would have a great potential in the biomedical sciences. However, the expression of Fab-effector fusion proteins in Escherichia coli is problematic especially when a eukaryotic effector moiety is genetically linked to a Fab due to the lack of proper chaperone proteins and an inappropriate physicochemical environment intrinsic to the microbial hosts. We previously reported that a human Fab molecule, referred to as SL335, reactive to human serum albumin has a prolonged in vivo serum half-life in rats. We, herein, tested six discrete SL335-human growth hormone (hGH) fusion constructs as a model system to define an optimal Fab-effector fusion format for E. coli expression. We found that one variant, referred to as HserG/Lser, outperformed the others in terms of a soluble expression yield and functionality in that HserG/Lser has a functional hGH bioactivity and possesses an serum albumin-binding affinity comparable to SL335. Our results clearly demonstrated that the genetic linkage of an effector domain to the C-terminus of Fd (V H +C H1 ) and the removal of cysteine (Cys) residues responsible for an interchain disulfide bond (IDB) ina Fab molecule optimize the periplasmic expression of a Fab-effector fusion protein in E. coli. We believe that our approach can contribute the development of diverse bi-functional Fab-effector fusion proteins by providing a simple strategy that enables the reliable expression of a functional fusion proteins in E. coli. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  9. PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality

    Directory of Open Access Journals (Sweden)

    Rooman Marianne

    2011-05-01

    Full Text Available Abstract Background The rational design of modified proteins with controlled stability is of extreme importance in a whole range of applications, notably in the biotechnological and environmental areas, where proteins are used for their catalytic or other functional activities. Future breakthroughs in medical research may also be expected from an improved understanding of the effect of naturally occurring disease-causing mutations on the molecular level. Results PoPMuSiC-2.1 is a web server that predicts the thermodynamic stability changes caused by single site mutations in proteins, using a linear combination of statistical potentials whose coefficients depend on the solvent accessibility of the mutated residue. PoPMuSiC presents good prediction performances (correlation coefficient of 0.8 between predicted and measured stability changes, in cross validation, after exclusion of 10% outliers. It is moreover very fast, allowing the prediction of the stability changes resulting from all possible mutations in a medium size protein in less than a minute. This unique functionality is user-friendly implemented in PoPMuSiC and is particularly easy to exploit. Another new functionality of our server concerns the estimation of the optimality of each amino acid in the sequence, with respect to the stability of the structure. It may be used to detect structural weaknesses, i.e. clusters of non-optimal residues, which represent particularly interesting sites for introducing targeted mutations. This sequence optimality data is also expected to have significant implications in the prediction and the analysis of particular structural or functional protein regions. To illustrate the interest of this new functionality, we apply it to a dataset of known catalytic sites, and show that a much larger than average concentration of structural weaknesses is detected, quantifying how these sites have been optimized for function rather than stability. Conclusion The

  10. Leadership Manipulation and Ethics in Storytelling

    OpenAIRE

    Auvinen, Tommi; Lämsä, Anna-Maija; Sintonen, Teppo; Takala, Tuomo

    2013-01-01

    This article focuses on exerting influence in leadership, namely manipulation in storytelling. Manipulation is usually considered an unethical approach to leadership. We will argue that manipulation is a more complex phenomenon than just an unethical way of acting in leadership. We will demonstrate through an empirical qualitative study that there are various types of manipulation through storytelling. This article makes a contribution to the literature on manipulation through leadership stor...

  11. Dynamic Control of Kinematically Redundant Robotic Manipulators

    Directory of Open Access Journals (Sweden)

    Erling Lunde

    1987-07-01

    Full Text Available Several methods for task space control of kinematically redundant manipulators have been proposed in the literature. Most of these methods are based on a kinematic analysis of the manipulator. In this paper we propose a control algorithm in which we are especially concerned with the manipulator dynamics. The algorithm is particularly well suited for the class of redundant manipulators consisting of a relatively small manipulator mounted on a larger positioning part.

  12. BioWord: A sequence manipulation suite for Microsoft Word

    Directory of Open Access Journals (Sweden)

    Anzaldi Laura J

    2012-06-01

    Full Text Available Abstract Background The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. Results BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. Conclusions BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms.

  13. BioWord: A sequence manipulation suite for Microsoft Word

    Science.gov (United States)

    2012-01-01

    Background The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. Results BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. Conclusions BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms. PMID:22676326

  14. BioWord: a sequence manipulation suite for Microsoft Word.

    Science.gov (United States)

    Anzaldi, Laura J; Muñoz-Fernández, Daniel; Erill, Ivan

    2012-06-07

    The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms.

  15. Manipulations to regenerate aspen ecosystems

    Science.gov (United States)

    Wayne D. Shepperd

    2001-01-01

    Vegetative regeneration of aspen can be initiated through manipulations that provide hormonal stimulation, proper growth environment, and sucker protection - the three elements of the aspen regeneration triangle. The correct course of action depends upon a careful evaluation of the size, vigor, age, and successional status of the existing clone. Soils and site...

  16. Adaptive Control Of Remote Manipulator

    Science.gov (United States)

    Seraji, Homayoun

    1989-01-01

    Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.

  17. Indicial tensor manipulation on MACSYMA

    International Nuclear Information System (INIS)

    Bogen, R.A.; Pavelle, R.

    1977-01-01

    A new computational tool for physical calculations is described. It is the first computer system capable of performing indicial tensor calculus (as opposed to component tensor calculus). It is now operational on the symbolic manipulation system MACSYMA. The authors outline the capabilities of the system and describe some of the physical problems considered as well as others being examined at this time. (Auth.)

  18. Manipulations of Totalitarian Nazi Architecture

    Science.gov (United States)

    Antoszczyszyn, Marek

    2017-10-01

    The paper takes under considerations controversies surrounding German architecture designed during Nazi period between 1933-45. This architecture is commonly criticized for being out of innovation, taste & elementary sense of beauty. Moreover, it has been consequently wiped out from architectural manuals, probably for its undoubted associations with the totalitarian system considered as the most maleficent in the whole history. But in the meantime the architecture of another totalitarian system which appeared to be not less sinister than Nazi one is not stigmatized with such verve. It is Socrealism architecture, developed especially in East Europe & reportedly containing lots of similarities with Nazi architecture. Socrealism totalitarian architecture was never condemned like Nazi one, probably due to politically manipulated propaganda that influenced postwar public opinion. This observation leads to reflection that maybe in the same propaganda way some values of Nazi architecture are still consciously dissembled in order to hide the fact that some rules used by Nazi German architects have been also consciously used after the war. Those are especially manipulations that allegedly Nazi architecture consisted of. The paper provides some definitions around totalitarian manipulations as well as ideological assumptions for their implementation. Finally, the register of confirmed manipulations is provided with use of photo case study.

  19. Mapping and Manipulating Facial Expression

    Science.gov (United States)

    Theobald, Barry-John; Matthews, Iain; Mangini, Michael; Spies, Jeffrey R.; Brick, Timothy R.; Cohn, Jeffrey F.; Boker, Steven M.

    2009-01-01

    Nonverbal visual cues accompany speech to supplement the meaning of spoken words, signify emotional state, indicate position in discourse, and provide back-channel feedback. This visual information includes head movements, facial expressions and body gestures. In this article we describe techniques for manipulating both verbal and nonverbal facial…

  20. Topics in Semantics-based Program Manipulation

    DEFF Research Database (Denmark)

    Grobauer, Bernt

    four articles in the field of semantics-based techniques for program manipulation: three articles are about partial evaluation, a method for program specialization; the fourth article treats an approach to automatic cost analysis. Partial evaluation optimizes programs by specializing them with respect...... article in this dissertation describes how the second Futamura projection can be achieved for type-directed partial evaluation (TDPE), a relatively recent approach to partial evaluation: We derive an ML implementation of the second Futamura projection for TDPE. Due to the differences between ‘traditional...... denotational semantics—allows us to relate various possible semantics to each other both conceptually and formally. We thus are able to explain goal-directed evaluation using an intuitive list-based semantics, while using a continuation semantics for semantics-based compilation through partial evaluation...

  1. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Joseph W. Geisinger, Ph.D.

    2001-07-31

    ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.

  2. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    International Nuclear Information System (INIS)

    Geisinger, Joseph W. Ph.D.

    2001-01-01

    ARM Automation, Inc. is developing a FR-amework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator FR-om these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC(trademark)s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost

  3. Holographic acoustic elements for manipulation of levitated objects

    Science.gov (United States)

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-10-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

  4. Manipulating parameters of reinforcement to reduce problem behavior without extinction.

    Science.gov (United States)

    Kunnavatana, S Shanun; Bloom, Sarah E; Samaha, Andrew L; Slocum, Timothy A; Clay, Casey J

    2018-04-01

    Differential reinforcement of alternative behavior (DRA) most often includes extinction as a treatment component. However, extinction is not always feasible and it can be counter-therapeutic if implemented without optimal treatment integrity. Researchers have successfully implemented DRA without extinction by manipulating various parameters of reinforcement such that alternative behavior is favored. We extended previous research by assessing three participants' sensitivities to quality, magnitude, and immediacy using arbitrary responses and reinforcers that maintain problem behavior. The results were used to implement an intervention for problem behavior using DRA without extinction. Our findings indicate that arbitrary responses can be used to identify individual and relative sensitivity to parameters of reinforcement for reinforcers that maintain problem behavior. Treatment was effective for all participants when we manipulated parameters of reinforcement to which they were most sensitive, and, for two participants, the treatment was less effective when we manipulated parameters to which they were least sensitive. © 2018 Society for the Experimental Analysis of Behavior.

  5. Effective translation of current dietary guidance: understanding and communicating the concepts of minimal and optimal levels of dietary protein.

    Science.gov (United States)

    Rodriguez, Nancy R; Miller, Sharon L

    2015-04-29

    Dietitians and health care providers have critical roles in the translation of the dietary guidance to practice. The protein content of diets for adults can be based on the Recommended Dietary Allowance (RDA) of 0.80 g/kg per day. Alternatively, the most recent Dietary Reference Intakes (DRIs) for macronutrients reflect expanded guidance for assessing protein needs and consider the relative relation of absolute amounts of protein, carbohydrate, and fat to total energy intake in the context of chronic disease prevention. The Acceptable Macronutrient Distribution Range (AMDR) reflects the interrelation between the macronutrients and affords dietitians and clinicians additional flexibility in diet planning. Accounting for the caloric value of RDAs for carbohydrate and fat, "flexible calories" emerge as an opportunity to create varied eating plans that provide for protein intakes in excess of the RDA but within the AMDR. Protein Summit 2.0 highlighted the growing body of scientific evidence documenting the benefits of higher protein intakes at amounts approximating twice the RDA, which include promotion of healthy body weight and preservation of lean body mass and functional ability with age. The essential amino acid (EAA) density of a food also emerged as a novel concept analogous to "nutrient density," which can enable the practitioner to calculate the caloric cost associated with a specific protein source to attain the daily requirement of EAAs to accomplish various health outcomes because these indispensable nutrients have a significant role in protein utilization and metabolic regulation. Tailoring recommendations unique to an individual's varying goals and needs remains a challenge. However, flexibility within the application of DRIs to include consideration of the AMDR provides a sound framework to guide practitioners in effective translation of current dietary guidance with a specific regard for the documented benefits of higher protein intakes. © 2015

  6. Trajectory Planning of 7-DOF Space Manipulator for Minimizing Base Disturbance

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2016-03-01

    Full Text Available In the free-floating mode, there is intense dynamic coupling existing between the space manipulator and the base, and the base attitude may change while performing a motion with its manipulator. Therefore, it is necessary to reduce the interference that resulted from the manipulator movement. For planning trajectories of the space manipulator with 7 degrees of freedom (7-DOF, simulated annealing particle swarm optimization (SAPSO algorithm is presented in the paper. Firstly, kinematics equations are setup. Secondly, the joint functions are parameterized by sinusoidal functions, and the objective function is defined according to the motion constraints of manipulator and accuracy requirements of the base attitude. Finally, SAPSO algorithm is used to search the optimal trajectory. The simulation results verify the proposed method.

  7. Manipulators

    International Nuclear Information System (INIS)

    Papet, I.; Lune, P.; Pellerin, O.; Sapoval, M.; Brisse, H.; Clement, J.P.; Ribeiro, A.; Gomes, H.; Marcus, C.; Rehel, J.L.

    2005-01-01

    These two articles bring notions relative to the safety of procedures, specially in term of irradiation, they give information on different methods in order to reduce the radiation doses delivered to the patients, especially when the examinations concern children or young patients. (N.C.)

  8. Manipulation and quantification of microtubule lattice integrity

    Directory of Open Access Journals (Sweden)

    Taylor A. Reid

    2017-08-01

    Full Text Available Microtubules are structural polymers that participate in a wide range of cellular functions. The addition and loss of tubulin subunits allows the microtubule to grow and shorten, as well as to develop and repair defects and gaps in its cylindrical lattice. These lattice defects act to modulate the interactions of microtubules with molecular motors and other microtubule-associated proteins. Therefore, tools to control and measure microtubule lattice structure will be invaluable for developing a quantitative understanding of how the structural state of the microtubule lattice may regulate its interactions with other proteins. In this work, we manipulated the lattice integrity of in vitro microtubules to create pools of microtubules with common nucleotide states, but with variations in structural states. We then developed a series of novel semi-automated analysis tools for both fluorescence and electron microscopy experiments to quantify the type and severity of alterations in microtubule lattice integrity. These techniques will enable new investigations that explore the role of microtubule lattice structure in interactions with microtubule-associated proteins.

  9. Modeling the manipulator and flipper pose effects on tip over stability of a tracked mobile manipulator

    CSIR Research Space (South Africa)

    Dube, C

    2011-11-01

    Full Text Available Mobile manipulators are used in a number of different applications such as bomb disposal, mining robotics, and search and rescue operations. These mobile manipulators are highly susceptible to tip over due to the motion of the manipulator...

  10. Deception studies manipulating centrally acting performance modifiers: a review.

    Science.gov (United States)

    Williams, Emily L; Jones, Hollie S; Sparks, Sandy; Marchant, David C; Micklewright, Dominic; McNaughton, Lars R

    2014-07-01

    Athletes anticipatorily set and continuously adjust pacing strategies before and during events to produce optimal performance. Self-regulation ensures maximal effort is exerted in correspondence with the end point of exercise, while preventing physiological changes that are detrimental and disruptive to homeostatic control. The integration of feedforward and feedback information, together with the proposed brain's performance modifiers is said to be fundamental to this anticipatory and continuous regulation of exercise. The manipulation of central, regulatory internal and external stimuli has been a key focus within deception research, attempting to influence the self-regulation of exercise and induce improvements in performance. Methods of manipulating performance modifiers such as unknown task end point, deceived duration or intensity feedback, self-belief, or previous experience create a challenge within research, as although they contextualize theoretical propositions, there are few ecological and practical approaches which integrate theory with practice. In addition, the different methods and measures demonstrated in manipulation studies have produced inconsistent results. This review examines and critically evaluates the current methods of how specific centrally controlled performance modifiers have been manipulated, within previous deception studies. From the 31 studies reviewed, 10 reported positive effects on performance, encouraging future investigations to explore the mechanisms responsible for influencing pacing and consequently how deceptive approaches can further facilitate performance. The review acts to discuss the use of expectation manipulation not only to examine which methods of deception are successful in facilitating performance but also to understand further the key components used in the regulation of exercise and performance.

  11. Practical cell labeling with magnetite cationic liposomes for cell manipulation.

    Science.gov (United States)

    Ito, Hiroshi; Nonogaki, Yurika; Kato, Ryuji; Honda, Hiroyuki

    2010-07-01

    Personalization of the cell culture process for cell therapy is an ideal strategy to obtain maximum treatment effects. In a previous report, we proposed a strategy using a magnetic manipulation device that combined a palm-top size device and a cell-labeling method using magnetite cationic liposomes (MCLs) to enable feasible personalized cell processing. In the present study, we focused on optimizing the MCL-labeling technique with respect to cell manipulation in small devices. From detailed analysis with different cell types, 4 pg/cell of MCL-label was found to be obtained immediately after mixing with MCLs, which was sufficient for magnetic cell manipulation. The amount of label increased within 24 h depending on cell type, although in all cases it decreased along with cell doubling, indicating that the labeling potential of MCLs was limited. The role of free MCLs not involved in labeling was also investigated; MCLs' role was found to be a supportive one that maximized the manipulation performance up to 100%. We also determined optimum conditions to manipulate adherent cells by MCL labeling using the MCL dispersed in trypsin solution. Considering labeling feasibility and practical performance with 10(3)-10(5) cells for personalized cell processing, we determined that 10 microg/ml of label without incubation time (0 h incubation) was the universal MCL-labeling condition. We propose the optimum specifications for a device to be combined with this method. 2010. Published by Elsevier B.V.

  12. Optimization of memory use of fragment extension-based protein-ligand docking with an original fast minimum cost flow algorithm.

    Science.gov (United States)

    Yanagisawa, Keisuke; Komine, Shunta; Kubota, Rikuto; Ohue, Masahito; Akiyama, Yutaka

    2018-03-16

    The need to accelerate large-scale protein-ligand docking in virtual screening against a huge compound database led researchers to propose a strategy that entails memorizing the evaluation result of the partial structure of a compound and reusing it to evaluate other compounds. However, the previous method required frequent disk accesses, resulting in insufficient acceleration. Thus, more efficient memory usage can be expected to lead to further acceleration, and optimal memory usage could be achieved by solving the minimum cost flow problem. In this research, we propose a fast algorithm for the minimum cost flow problem utilizing the characteristics of the graph generated for this problem as constraints. The proposed algorithm, which optimized memory usage, was approximately seven times faster compared to existing minimum cost flow algorithms. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. A control method for manipulators with redundancy

    International Nuclear Information System (INIS)

    Furusho, Junji; Usui, Hiroyuki

    1989-01-01

    Redundant manipulators have more ability than nonredundant ones in many aspects such as avoiding obstacles, avoiding singular states, etc. In this paper, a control algorithm for redundant manipulators working under the circumstance in the presence of obstacles is presented. First, the measure of manipulability for robot manipulators under obstacle circumstances is defined. Then, the control algorithm for the obstacle avoidance is derived by using this measure of manipulability. The obstacle avoidance and the maintenance of good posture are simultaneously achieved by this algorithm. Lastly, an experiment and simulation results using an eight degree of freedom manipulator are shown. (author)

  14. Optimization of extraction parameters of PTP1β (protein tyrosine phosphatase 1β), inhibitory polyphenols, and anthocyanins from Zea mays L. using response surface methodology (RSM).

    Science.gov (United States)

    Hwang, Seung Hwan; Kwon, Shin Hwa; Wang, Zhiqiang; Kim, Tae Hyun; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung

    2016-08-26

    Protein tyrosine phosphatase expressed in insulin-sensitive tissues (such as liver, muscle, and adipose tissue) has a key role in the regulation of insulin signaling and pathway activation, making protein tyrosine phosphatase a promising target for the treatment of type 2 diabetes mellitus and obesity and response surface methodology (RSM) is an effective statistical technique for optimizing complex processes using a multi-variant approach. In this study, Zea mays L. (Purple corn kernel, PCK) and its constituents were investigated for protein tyrosine phosphatase 1β (PTP1β) inhibitory activity including enzyme kinetic study and to improve total yields of anthocyanins and polyphenols, four extraction parameters, including temperature, time, solid-liquid ratio, and solvent volume, were optimized by RSM. Isolation of seven polyphenols and five anthocyanins was achieved by PTP1β assay. Among them, cyanidin-3-(6"malonylglucoside) and 3'-methoxyhirsutrin showed the highest PTP1β inhibition with IC50 values of 54.06 and 64.04 μM, respectively and 4.52 mg gallic acid equivalent/g (GAE/g) of total polyphenol content (TPC) and 43.02 mg cyanidin-3-glucoside equivalent/100 g (C3GE/100g) of total anthocyanin content (TAC) were extracted at 40 °C for 8 h with a 33 % solid-liquid ratio and a 1:15 solvent volume. Yields were similar to predictions of 4.58 mg GAE/g of TPC and 42.28 mg C3GE/100 g of TAC. These results indicated that PCK and 3'-methoxyhirsutrin and cyanidin-3-(6"malonylglucoside) might be active natural compounds and could be apply by optimizing of extraction process using response surface methodology.

  15. Adaptive hybrid control of manipulators

    Science.gov (United States)

    Seraji, H.

    1987-01-01

    Simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecuture is presented. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal and a force feedforward term, and it achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers and an auxiliary signal, and it accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in on-line control with high sampling rates.

  16. Master-slave type manipulator

    International Nuclear Information System (INIS)

    Haaker, L.W.; Jelatis, D.G.

    1979-01-01

    Remote control manipulator of the master-slave type for carrying out work on the other side of a shield wall. This appliance allows a Y movement relative displacement, the function of which is to extend the range of the manipulator towards the front and also to facilitate its installation, the lateral rotation or inclination of the slave arm in relation to the master arm, and the Z movement extension through which the length of the slave arm is increased in comparison with that of the master arm. Devices have been developed which transform the linear movements into rotational movements to enable these movements to be transmitted through rotational seal fittings capable of ensuring the safety of the separation between the operator's environment and that in the work area. Particular improvements have been made to the handles, handle seals, pincer mechanisms, etc [fr

  17. Genetic manipulation of Francisella tularensis

    Directory of Open Access Journals (Sweden)

    Xhavit eZogaj

    2011-01-01

    Full Text Available Francisella tularensis is a facultative intracellular pathogen that causes the disease tularemia. F. tularensis subsp. tularensis causes the most severe disease in humans and has been classified as a select A agent and potential bioweapon. There is currently no vaccine approved for human use, making genetic manipulation of this organism critical to unraveling the genetic basis of pathogenesis and developing countermeasures against tularemia. The development of genetic techniques applicable to F. tularensis have lagged behind those routinely used for other bacteria, primarily due to lack of research and the restricted nature of the biocontainment required for studying this pathogen. However, in recent years, genetic techniques, such as transposon mutagenesis and targeted gene disruption, have been developed, that have had a dramatic impact on our understanding of the genetic basis of F. tularensis virulence. In this review, we describe some of the methods developed for genetic manipulation of F. tularensis.

  18. Treatment of metabolic syndrome by combination of physical activity and diet needs an optimal protein intake: a randomized controlled trial.

    Science.gov (United States)

    Dutheil, Frédéric; Lac, Gérard; Courteix, Daniel; Doré, Eric; Chapier, Robert; Roszyk, Laurence; Sapin, Vincent; Lesourd, Bruno

    2012-09-17

    The recommended dietary allowance (RDA) for protein intake has been set at 1.0-1.3 g/kg/day for senior. To date, no consensus exists on the lower threshold intake (LTI = RDA/1.3) for the protein intake (PI) needed in senior patients ongoing both combined caloric restriction and physical activity treatment for metabolic syndrome. Considering that age, caloric restriction and exercise are three increasing factors of protein need, this study was dedicated to determine the minimal PI in this situation, through the determination of albuminemia that is the blood marker of protein homeostasis. Twenty eight subjects (19 M, 9 F, 61.8 ± 6.5 years, BMI 33.4 ± 4.1 kg/m²) with metabolic syndrome completed a three-week residential programme (Day 0 to Day 21) controlled for nutrition (energy balance of -500 kcal/day) and physical activity (3.5 hours/day). Patients were randomly assigned in two groups: Normal-PI (NPI: 1.0 g/kg/day) and High-PI (HPI: 1.2 g/kg/day). Then, patients returned home and were followed for six months. Albuminemia was measured at D0, D21, D90 and D180. At baseline, PI was spontaneously 1.0 g/kg/day for both groups. Albuminemia was 40.6 g/l for NPI and 40.8 g/l for HPI. A marginal protein under-nutrition appeared in NPI with a decreased albuminemia at D90 below 35 g/l (34.3 versus 41.5 g/l for HPI, p treatment based on restricted diet and exercise in senior people with metabolic syndrome, the lower threshold intake for protein must be set at 1.2 g/kg/day to maintain blood protein homeostasis.

  19. Viruses manipulate the marine environment.

    Science.gov (United States)

    Rohwer, Forest; Thurber, Rebecca Vega

    2009-05-14

    Marine viruses affect Bacteria, Archaea and eukaryotic organisms and are major components of the marine food web. Most studies have focused on their role as predators and parasites, but many of the interactions between marine viruses and their hosts are much more complicated. A series of recent studies has shown that viruses have the ability to manipulate the life histories and evolution of their hosts in remarkable ways, challenging our understanding of this almost invisible world.

  20. Manipulating a stated choice experiment

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Borjesson, Maria

    2015-01-01

    This paper considers the design of a stated choice experiment intended to measure the marginal rate of substitution (MRS) between cost and an attribute such as time using a conventional logit model. Focusing the experimental design on some target MRS will bias estimates towards that value....... The paper shows why this happens. The resulting estimated MRS can then be manipulated by adapting the target MRS in the experimental design. (C) 2015 Elsevier Ltd. All rights reserved....

  1. List manipulation in Turbo Prolog

    Directory of Open Access Journals (Sweden)

    V.Cotelea

    1995-06-01

    Full Text Available The present paper is concerned with list processing in Turbo Prolog language. It doesn't claim to be an exhaustive description of operations which can be performed upon lists. Nevertheless adduced programs are most representative, more or less known to specialists in logic programming domain. By means of examples are explained the list manipulation techniques, use of recursion, declarative comparison of predicates, analysis and fixation of acceptable prototypes and some problems of predicates' inconsistency. Index terms. Prolog, list, recursion.

  2. Manipulation of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  3. Optimization of scAAVIL-1ra In Vitro and In Vivo to Deliver High Levels of Therapeutic Protein for Treatment of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Laurie R Goodrich

    2013-01-01

    Full Text Available Osteoarthritis (OA affects over 40 million people annually. We evaluated interleukin-1 receptor antagonist (IL-1ra gene transfer in an equine model based on IL-1ra protein therapy which inhibits inflammation through blocking IL-1. Using the self-complementary adeno-associated virus (scAAVIL-1ra equine gene as a starting construct, we optimized the transgene cassette by analyzing promoters (cytomegalovirus (CMV versus chicken β-actin hybrid (CBh, coding sequences (optimized versus unoptimized, vector capsid (serotype 2 versus chimeric capsid, and biological activity in vitro. AAV serotypes 2 and 2.5 CMV scAAVoptIL-1ra were tested in equine joints. We evaluated two doses of scAAVIL-1ra, scAAVGFP, and saline. We developed a novel endoscopy procedure and confirmed vector-derived transgene expression (GFP in chondrocytes 6 months post-injection. AAVIL-1ra therapeutic protein levels were 200–800 ng/ml of synovial fluid over 23 and 186 days, respectively. No evidence of intra-articular toxicity was detected and no vector genomes were found in contralateral joints based on GFP fluorescence microscopy and quantitative PCR. Finally, we assayed vector-derived IL-1ra activity based on functional assays which supported anti-inflammatory activity of our protein. These studies represent the first large animal intra-articular gene transfer approach with a therapeutic gene using scAAV and demonstrate high levels of protein production over extended time supporting further clinical investigation using scAAV gene therapy for OA.

  4. Cyanobacterial flv4-2 Operon-Encoded Proteins Optimize Light Harvesting and Charge Separation in Photosystem II.

    Science.gov (United States)

    Chukhutsina, Volha; Bersanini, Luca; Aro, Eva-Mari; van Amerongen, Herbert

    2015-05-01

    Photosystem II (PSII) complexes drive the water-splitting reaction necessary to transform sunlight into chemical energy. However, too much light can damage and disrupt PSII. In cyanobacteria, the flv4-2 operon encodes three proteins (Flv2, Flv4, and Sll0218), which safeguard PSII activity under air-level CO2 and in high light conditions. However, the exact mechanism of action of these proteins has not been clarified yet. We demonstrate that the PSII electron transfer properties are influenced by the flv4-2 operon-encoded proteins. Accelerated secondary charge separation kinetics was observed upon expression/overexpression of the flv4-2 operon. This is likely induced by docking of the Flv2/Flv4 heterodimer in the vicinity of the QB pocket of PSII, which, in turn, increases the QB redox potential and consequently stabilizes forward electron transfer. The alternative electron transfer route constituted by Flv2/Flv4 sequesters electrons from QB(-) guaranteeing the dissipation of excess excitation energy in PSII under stressful conditions. In addition, we demonstrate that in the absence of the flv4-2 operon-encoded proteins, about 20% of the phycobilisome antenna becomes detached from the reaction centers, thus decreasing light harvesting. Phycobilisome detachment is a consequence of a decreased relative content of PSII dimers, a feature observed in the absence of the Sll0218 protein. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  5. Determining the amount of rumen-protected methionine supplement that corresponds to the optimal levels of methionine in metabolizable protein for maximizing milk protein production and profit on dairy farms.

    Science.gov (United States)

    Cho, J; Overton, T R; Schwab, C G; Tauer, L W

    2007-10-01

    The profitability of feeding rumen-protected Met (RPMet) sources to produce milk protein was estimated using a 2-step procedure: First, the effect of Met in metabolizable protein (MP) on milk protein production was estimated by using a quadratic Box-Cox functional form. Then, using these estimation results, the amounts of RPMet supplement that corresponded to the optimal levels of Met in MP for maximizing milk protein production and profit on dairy farms were determined. The data used in this study were modified from data used to determine the optimal level of Met in MP for lactating cows in the Nutrient Requirements of Dairy Cattle (NRC, 2001). The data used in this study differ from that in the NRC (2001) data in 2 ways. First, because dairy feed generally contains 1.80 to 1.90% Met in MP, this study adjusts the reference production value (RPV) from 2.06 to 1.80 or 1.90%. Consequently, the milk protein production response is also modified to an RPV of 1.80 or 1.90% Met in MP. Second, because this study is especially interested in how much additional Met, beyond the 1.80 or 1.90% already contained in the basal diet, is required to maximize farm profits, the data used are limited to concentrations of Met in MP above 1.80 or 1.90%. This allowed us to calculate any additional cost to farmers based solely on the price of an RPMet supplement and eliminated the need to estimate the dollar value of each gram of Met already contained in the basal diet. Results indicated that the optimal level of Met in MP for maximizing milk protein production was 2.40 and 2.42%, where the RPV was 1.80 and 1.90%, respectively. These optimal levels were almost identical to the recommended level of Met in MP of 2.40% in the NRC (2001). The amounts of RPMet required to increase the percentage of Met in MP from each RPV to 2.40 and 2.42% were 21.6 and 18.5 g/d, respectively. On the other hand, the optimal levels of Met in MP for maximizing profit were 2.32 and 2.34%, respectively. The amounts

  6. Enhanced Protein Production in Escherichia coli by Optimization of Cloning Scars at the Vector-Coding Sequence Junction

    DEFF Research Database (Denmark)

    Mirzadeh, Kiavash; Martinez, Virginia; Toddo, Stephen

    2015-01-01

    are poorly expressed even when they are codon-optimized and expressed from vectors with powerful genetic elements. In this study, we show that poor expression can be caused by certain nucleotide sequences (e.g., cloning scars) at the junction between the vector and the coding sequence. Since these sequences...

  7. Optimizing the transient transfection process of HEK-293 suspension cells for protein production by nucleotide ratio monitoring

    DEFF Research Database (Denmark)

    de Los Milagros Bassani Molinas, Maria; Beer, Christiane; Hesse, F

    2014-01-01

    Large scale, transient gene expression (TGE) is highly dependent of the physiological status of a cell line. Therefore, intracellular nucleotide pools and ratios were used for identifying and monitoring the optimal status of a suspension cell line used for TGE. The transfection efficiency upon po...

  8. Heterologous production of peptides in plants: fusion proteins and beyond.

    Science.gov (United States)

    Viana, Juliane Flávia Cançado; Dias, Simoni Campos; Franco, Octávio Luiz; Lacorte, Cristiano

    2013-11-01

    Recombinant DNA technology has allowed the ectopic production of proteins and peptides of different organisms leading to biopharmaceutical production in large cultures of bacterial, yeasts and mammalian cells. Otherwise, the expression of recombinant proteins and peptides in plants is an attractive alternative presenting several advantages over the commonly used expression systems including reduced production costs, easy scale-up and reduced risks of pathogen contamination. Different types of proteins and peptides have been expressed in plants, including antibodies, antigens, and proteins and peptides of medical, veterinary and industrial applications. However, apart from providing a proof of concept, the use of plants as platforms for heterologous protein and peptide production still depends on key steps towards optimization including the enhancement of expression levels, manipulation of post-transcriptional modifications and improvements in purification methods. In this review, strategies to increase heterologous protein and peptide stability and accumulation are discussed, focusing on the expression of peptides through the use of gene fusions.

  9. Development of Texturized Vegetable Protein from Lima Bean (Phaseolus lunatus and African Oil Bean Seed [Pentaclethrama crophylla (Benth]: Optimization Approach

    Directory of Open Access Journals (Sweden)

    Arueya Gibson. L.

    2017-06-01

    Full Text Available As part of measures to combat protein shortages in form of meat analogues, extrusion processing conditions for the development of Texturized Vegetable Protein (TVP from under-utilized sources (Lima bean and African oil bean seed are analysed. Optimum parameters for processing were established as being: barrel temperature (92.45°C, screw speed (101.48 rpm, feed moisture (59.63% and African oil bean seed protein concentrates (AOBSPC of 1%. Concentrations of essential amino-acids were also found to be significant (0.90-7.3% with a near absence of anti-nutritional factors (0.0022–1.0008 g/kg. Sensory evaluation showed that TVP5 (100% LBPC compared favourably with the control sample (cooked meat in overall acceptability. An Acceptable and nutritious meat analogue had been developed.

  10. Optimization of photoactive protein Z for fast and efficient site-specific conjugation of native IgG.

    Science.gov (United States)

    Hui, James Z; Tsourkas, Andrew

    2014-09-17

    Antibody conjugates have been used in a variety of applications from immunoassays to drug conjugates. However, it is becoming increasingly clear that in order to maximize an antibody's antigen binding ability and to produce homogeneous antibody-conjugates, the conjugated molecule should be attached onto IgG site-specifically. We previously developed a facile method for the site-specific modification of full length, native IgGs by engineering a recombinant Protein Z that forms a covalent link to the Fc domain of IgG upon exposure to long wavelength UV light. To further improve the efficiency of Protein Z production and IgG conjugation, we constructed a panel of 13 different Protein Z variants with the UV-active amino acid benzoylphenylalanine (BPA) in different locations. By using this panel of Protein Z to cross-link a range of IgGs from different hosts, including human, mouse, and rat, we discovered two previously unknown Protein Z variants, L17BPA and K35BPA, that are capable of cross-linking many commonly used IgG isotypes with efficiencies ranging from 60% to 95% after only 1 h of UV exposure. When compared to existing site-specific methods, which often require cloning or enzymatic reactions, the Protein Z-based method described here, utilizing the L17BPA, K35BPA, and the previously described Q32BPA variants, represents a vastly more accessible and efficient approach that is compatible with nearly all native IgGs, thus making site-specific conjugation more accessible to the general research community.

  11. Particle Manipulation Methods in Droplet Microfluidics.

    Science.gov (United States)

    Tenje, Maria; Fornell, Anna; Ohlin, Mathias; Nilsson, Johan

    2018-02-06

    This Feature describes the different particle manipulation techniques available in the droplet microfluidics toolbox to handle particles encapsulated inside droplets and to manipulate whole droplets. We address the advantages and disadvantages of the different techniques to guide new users.

  12. Physics Based Vision Systems for Robotic Manipulation

    Data.gov (United States)

    National Aeronautics and Space Administration — With the increase of robotic manipulation tasks (TA4.3), specifically dexterous manipulation tasks (TA4.3.2), more advanced computer vision algorithms will be...

  13. Self-repairing control for damaged robotic manipulators

    International Nuclear Information System (INIS)

    Eisler, G.R.; Robinett, R.D.; Dohrmann, C.R.; Driessen, B.J.

    1997-03-01

    Algorithms have been developed allowing operation of robotic systems under damaged conditions. Specific areas addressed were optimal sensor location, adaptive nonlinear control, fault-tolerant robot design, and dynamic path-planning. A seven-degree-of-freedom, hydraulic manipulator, with fault-tolerant joint design was also constructed and tested. This report completes this project which was funded under the Laboratory Directed Research and Development program

  14. Optimal definition of inter-residual contact in globular proteins based on pairwise interaction energy calculations, its robustness, and applications.

    Science.gov (United States)

    Fačkovec, Boris; Vondrášek, Jiří

    2012-10-25

    Although a contact is an essential measurement for the topology as well as strength of non-covalent interactions in biomolecules and their complexes, there is no general agreement in the definition of this feature. Most of the definitions work with simple geometric criteria which do not fully reflect the energy content or ability of the biomolecular building blocks to arrange their environment. We offer a reasonable solution to this problem by distinguishing between "productive" and "non-productive" contacts based on their interaction energy strength and properties. We have proposed a method which converts the protein topology into a contact map that represents interactions with statistically significant high interaction energies. We do not prove that these contacts are exclusively stabilizing, but they represent a gateway to thermodynamically important rather than geometry-based contacts. The process is based on protein fragmentation and calculation of interaction energies using the OPLS force field and relies on pairwise additivity of amino acid interactions. Our approach integrates the treatment of different types of interactions, avoiding the problems resulting from different contributions to the overall stability and the different effect of the environment. The first applications on a set of homologous proteins have shown the usefulness of this classification for a sound estimate of protein stability.

  15. Optimized labeling of membrane proteins for applications to super-resolution imaging in confined cellular environments using monomeric streptavidin.

    Science.gov (United States)

    Chamma, Ingrid; Rossier, Olivier; Giannone, Grégory; Thoumine, Olivier; Sainlos, Matthieu

    2017-04-01

    Recent progress in super-resolution imaging (SRI) has created a strong need to improve protein labeling with probes of small size that minimize the target-to-label distance, increase labeling density, and efficiently penetrate thick biological tissues. This protocol describes a method for labeling genetically modified proteins incorporating a small biotin acceptor peptide with a 3-nm fluorescent probe, monomeric streptavidin. We show how to express, purify, and conjugate the probe to organic dyes with different fluorescent properties, and how to label selectively biotinylated membrane proteins for SRI techniques (point accumulation in nanoscale topography (PAINT), stimulated emission depletion (STED), stochastic optical reconstruction microscopy (STORM)). This method is complementary to the previously described anti-GFP-nanobody/SNAP-tag strategies, with the main advantage being that it requires only a short 15-amino-acid tag, and can thus be used with proteins resistant to fusion with large tags and for multicolor imaging. The protocol requires standard molecular biology/biochemistry equipment, making it easily accessible for laboratories with only basic skills in cell biology and biochemistry. The production/purification/conjugation steps take ∼5 d, and labeling takes a few minutes to an hour.

  16. An evolutionary resolution of manipulation conflict.

    Science.gov (United States)

    González-Forero, Mauricio

    2014-07-01

    Individuals can manipulate the behavior of social partners. However, manipulation may conflict with the fitness interests of the manipulated individuals. Manipulated individuals can then be favored to resist manipulation, possibly reducing or eliminating the manipulated behavior in the long run. I use a mathematical model to show that conflicts where manipulation and resistance coevolve can disappear as a result of the coevolutionary process. I find that while manipulated individuals are selected to resist, they can simultaneously be favored to express the manipulated behavior at higher efficiency (i.e., providing increasing fitness effects to recipients of the manipulated behavior). Efficiency can increase to a point at which selection for resistance disappears. This process yields an efficient social behavior that is induced by social partners, and over which the inducing and induced individuals are no longer in conflict. A necessary factor is costly inefficiency. I develop the model to address the evolution of advanced eusociality via maternal manipulation (AEMM). The model predicts AEMM to be particularly likely in taxa with ancestrally imperfect resistance to maternal manipulation. Costly inefficiency occurs if the cost of delayed dispersal is larger than the benefit of exploiting the maternal patch. I discuss broader implications of the process. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  17. Using Manipulatives to Teach Elementary Mathematics

    Science.gov (United States)

    Boggan, Matthew; Harper, Sallie; Whitmire, Anna

    2010-01-01

    The purpose of this paper is to explain the importance and benefits of math manipulatives. For decades, the National Council of Teachers of Mathematics has encouraged school districts nationwide to use manipulatives in mathematical instruction. The value of manipulatives has been recognized for many years, but some teachers are reluctant to use…

  18. TAX OPTIMIZATION THROUGH TRANSFER PRICING, COMMON AND MANIPULATIVE PRACTICE

    Directory of Open Access Journals (Sweden)

    Jurcau Anca Sabina

    2009-05-01

    Full Text Available This paper is about how multinational enterprises choose transfer prices in the presence of differential corporate income tax rates. A transfer prince is a value placed on the goods which are traded between divisions of an organization. We review and exte

  19. Analysis of damaged DNA / proteins interactions: Methodological optimizations and applications to DNA lesions induced by platinum anticancer drugs

    International Nuclear Information System (INIS)

    Bounaix Morand du Puch, Ch

    2010-10-01

    DNA lesions contribute to the alteration of DNA structure, thereby inhibiting essential cellular processes. Such alterations may be beneficial for chemotherapies, for example in the case of platinum anticancer agents. They generate bulky adducts that, if not repaired, ultimately cause apoptosis. A better understanding of the biological response to such molecules can be obtained through the study of proteins that directly interact with the damages. These proteins constitute the DNA lesions interactome. This thesis presents the development of tools aiming at increasing the list of platinum adduct-associated proteins. Firstly, we designed a ligand fishing system made of damaged plasmids immobilized onto magnetic beads. Three platinum drugs were selected for our study: cisplatin, oxali-platin and satra-platin. Following exposure of the trap to nuclear extracts from HeLa cancer cells and identification of retained proteins by proteomics, we obtained already known candidates (HMGB1, hUBF, FACT complex) but also 29 new members of the platinated-DNA interactome. Among them, we noted the presence of PNUTS, TOX4 and WDR82, which associate to form the recently-discovered PTW/PP complex. Their capture was then confirmed with a second model, namely breast cancer cell line MDA MB 231, and the biological consequences of such an interaction now need to be elucidated. Secondly, we adapted a SPRi bio-chip to the study of platinum-damaged DNA/proteins interactions. Affinity of HMGB1 and newly characterized TOX4 for adducts generated by our three platinum drugs could be validated thanks to the bio-chip. Finally, we used our tools, as well as analytical chemistry and biochemistry methods, to evaluate the role of DDB2 (a factor involved in the recognition of UV-induced lesions) in the repair of cisplatin adducts. Our experiments using MDA MB 231 cells differentially expressing DDB2 showed that this protein is not responsible for the repair of platinum damages. Instead, it appears to act

  20. Optimal Definition of Inter-Residual Contact in Globular Proteins Based on Pairwise Interaction Energy Calculations, Its Robustness, and Applications

    Czech Academy of Sciences Publication Activity Database

    Fačkovec, Boris; Vondrášek, Jiří

    2012-01-01

    Roč. 116, č. 42 (2012), s. 12651-12660 ISSN 1520-6106 R&D Projects: GA ČR GAP208/10/0725; GA MŠk(CZ) LH11020 Institutional support: RVO:61388963 Keywords : egg-white lysozyme * force-field * 3-dimensional structure * thermophilic proteins * thermal-stability * mutant Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.607, year: 2012

  1. Development and optimization of a cell-based assay for the selection of synthetic compounds that potentiate bone morphogenetic protein-2 activity.

    Science.gov (United States)

    Okada, Motohiro; Sangadala, Sreedhara; Liu, Yunshan; Yoshida, Munehito; Reddy, Boojala Vijay B; Titus, Louisa; Boden, Scott D

    2009-12-01

    The requirement of large amounts of the recombinant human bone morphogenetic protein-2 (BMP-2) produces a huge translational barrier for its routine clinical use due to high cost. This leads to an urgent need to develop alternative methods to lower costs and/or increase efficacies for using BMP-2. In this study, we describe the development and optimization of a cell-based assay that is sensitive, reproducible, and reliable in identifying reagents that potentiate the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. The assay is based on a BMP-responsive Smad1-driven luciferase reporter gene. LIM mineralization protein-1 (LMP-1) is a novel intracellular LIM domain protein that has been shown by our group to enhance cellular responsiveness to BMP-2. Our previous report elucidated that the binding of LMP-1 with the WW2 domain in Smad ubiquitin regulatory factor-1 (Smurf1) rescues the osteogenic Smads from degradation. Here, using the optimized cell-based assay, we first evaluated the activity of the recombinantly prepared proteins, LMP-1, and its mutant (LMP-1DeltaSmurf1) that lacks the Smurf1-WW2 domain-binding motif. Both the wild type and the mutant proteins were engineered to contain an 11-amino acid HIV-TAT protein derived membrane transduction domain to aid the cellular delivery of recombinant proteins. The cell-based reporter assay confirmed that LMP-1 potentiates the BMP-induced stimulation of C2C12 cells towards the osteoblastic phenotype. The potentiating effect of LMP-1 was significantly reduced when a specific-motif known to interact with Smurf1 was mutated. We validated the results obtained in the reporter assay by also monitoring the expression of mRNA for osteocalcin and alkaline phosphatase (ALP) which is widely accepted osteoblast differentiation marker genes. Finally, we provide further confirmation of our results by measuring the activity of alkaline phosphatase in support of the accuracy and

  2. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mote, Kaustubh R. [University of Minnesota, Department of Chemistry (United States); Gopinath, T. [University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics (United States); Veglia, Gianluigi, E-mail: vegli001@umn.edu [University of Minnesota, Department of Chemistry (United States)

    2013-10-15

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD {approx}0.44 A, a tilt angle of 24 Degree-Sign {+-} 1 Degree-Sign , and an azimuthal angle of 55 Degree-Sign {+-} 6 Degree-Sign . This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.

  3. Determining Optimal Microwave Antigen Retrieval Conditions for Microtubule-Associated Protein 2 Immunohistochemistry in the Guinea Pig Brain

    Science.gov (United States)

    2002-12-01

    sections of formalin-fixed guinea pig brains using different MAP-2 monoclonal antibodies. Brain sections were boiled in sodium citrate, citric acid...citric acid solution at pH 6.0 is the optimal microwave-assisted AR method for immunolabeling MAP-2 in formalin-fixed, paraffin-processed guinea pig brain...studies on archival guinea pig brain paraffin blocks, ultimately relaxing the use of additional animals to evaluate changes in MAP-2 expression between chemical warfare nerve agent-treated and control samples.

  4. Interpersonal relationship manipulation at a personal level

    Directory of Open Access Journals (Sweden)

    Andreja Hribernik

    2010-12-01

    Full Text Available Manipulation is not unknown or strange to any of us. We have all experienced it, or perhaps even practiced it. It is wrong not to recognize it, to find excuses for it, and, above all, it is wrong not to decide to change one’s behaviour. Long-lasting use of manipulation leaves consequences on all the parties involved: the victim, the observer and the perpetrator. Manipulation is a relation between persons which does not consider the needs of everybody involved. It means exploitation and misleading, inhumane and unethical behaviour on the part of the manipulator, which he uses in order gain success, self-confirmation and to achieve his goals. In the act of manipulation personal boundaries of the other person are violated since the manipulator enforces his dominance and subjectedness of the victim. The manipulator invades the victim’s personal integrity, limiting their potential. He isolates, controls and intimidates them; by devises a system to catch the victims, to entangle them in his net and suck them up like a spider. If the manipulation is very successful, the other person does not recognize it as such; they consider themselves happy to be cooperating with the manipulator, as they identify his goals as their own. Therefore, the manipulator can be said to have stolen the manipulated person’s soul.

  5. Genetic manipulation of Methanosarcina spp.

    Directory of Open Access Journals (Sweden)

    Petra Regine Adelheid Kohler

    2012-07-01

    Full Text Available The discovery of the third domain of life, the Archaea, is one of the most exciting findings of the last century. These remarkable prokaryotes are well known for their adaptations to extreme environments; however, Archaea have also conquered moderate environments. Many of the archaeal biochemical processes, such as methane production, are unique in nature and therefore of great scientific interest. Although formerly restricted to biochemical and physiological studies, sophisticated systems for genetic manipulation have been developed during the last two decades for methanogenic archaea, halophilic archaea and thermophilic, sulfur-metabolizing archaea. The availability of these tools has allowed for more complete studies of archaeal physiology and metabolism and most importantly provides the basis for the investigation of gene expression, regulation and function. In this review we provide an overview of methods for genetic manipulation of Methanosarcina spp., a group of methanogenic archaea that are key players in the global carbon cycle and which can be found in a variety of anaerobic environments.

  6. Covariance Manipulation for Conjunction Assessment

    Science.gov (United States)

    Hejduk, M. D.

    2016-01-01

    The manipulation of space object covariances to try to provide additional or improved information to conjunction risk assessment is not an uncommon practice. Types of manipulation include fabricating a covariance when it is missing or unreliable to force the probability of collision (Pc) to a maximum value ('PcMax'), scaling a covariance to try to improve its realism or see the effect of covariance volatility on the calculated Pc, and constructing the equivalent of an epoch covariance at a convenient future point in the event ('covariance forecasting'). In bringing these methods to bear for Conjunction Assessment (CA) operations, however, some do not remain fully consistent with best practices for conducting risk management, some seem to be of relatively low utility, and some require additional information before they can contribute fully to risk analysis. This study describes some basic principles of modern risk management (following the Kaplan construct) and then examines the PcMax and covariance forecasting paradigms for alignment with these principles; it then further examines the expected utility of these methods in the modern CA framework. Both paradigms are found to be not without utility, but only in situations that are somewhat carefully circumscribed.

  7. A nuclear localization of the infectious haematopoietic necrosis virus NV protein is necessary for optimal viral growth.

    Directory of Open Access Journals (Sweden)

    Myeong Kyu Choi

    Full Text Available The nonvirion (NV protein of infectious hematopoietic necrosis virus (IHNV has been previously reported to be essential for efficient growth and pathogenicity of IHNV. However, little is known about the mechanism by which the NV supports the viral growth. In this study, cellular localization of NV and its role in IHNV growth in host cells was investigated. Through transient transfection in RTG-2 cells of NV fused to green fluorescent protein (GFP, a nuclear localization of NV was demonstrated. Deletion analyses showed that the (32EGDL(35 residues were essential for nuclear localization of NV protein, and fusion of these 4 amino acids to GFP directed its transport to the nucleus. We generated a recombinant IHNV, rIHNV-NV-ΔEGDL in which the (32EGDL(35 was deleted from the NV. rIHNVs with wild-type NV (rIHNV-NV or with the NV gene replaced with GFP (rIHNV-ΔNV-GFP were used as controls. RTG-2 cells infected with rIHNV-ΔNV-GFP and rIHNV-NV-ΔEGDL yielded 12- and 5-fold less infectious virion, respectively, than wild type rIHNV-infected cells at 48 h post-infection (p.i.. While treatment with poly I∶C at 24 h p.i. did not inhibit replication of wild-type rIHNVs, replication rates of rIHNV-ΔNV-GFP and rIHNV-NV-ΔEGDL were inhibited by poly I∶C. In addition, both rIHNV-ΔNV and rIHNV-NV-ΔEGDL induced higher levels of expressions of both IFN1 and Mx1 than wild-type rIHNV. These data suggest that the IHNV NV may support the growth of IHNV through inhibition of the INF system and the amino acid residues of (32EGDL(35 responsible for nuclear localization are important for the inhibitory activity of NV.

  8. Active cooling system for Tokamak in-vessel operation manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jianjun, E-mail: yuanjj@sjtu.edu.cn; Chen, Tan; Li, Fashe; Zhang, Weijun; Du, Liang

    2015-10-15

    Highlights: • We summarized most of the challenges of fusion devices to robot systems. • Propose an active cooling system to protect all of the necessary components. • Trial design test and theoretical analysis were conducted. • Overall implementation of the active cooling system was demonstrated. - Abstract: In-vessel operation/inspection is an indispensable task for Tokamak experimental reactor, for a robot/manipulator is more capable in doing this than human being with more precise motion and less risk of damaging the ambient equipment. Considering the demanding conditions of Tokamak, the manipulator should be adaptable to rapid response in the extreme conditions such as high temperature, vacuum and so on. In this paper, we propose an active cooling system embedded into such manipulator. Cameras, motors, gearboxes, sensors, and other mechanical/electrical components could then be designed under ordinary conditions. The cooling system cannot only be a thermal shield since the components are also heat sources in dynamics. We carry out a trial test to verify our proposal, and analyze the active cooling system theoretically, which gives a direction on the optimization by varying design parameters, components and distribution. And based on thermal sensors monitoring and water flow adjusting a closed-loop feedback control of temperature is added to the system. With the preliminary results, we believe that the proposal gives a way to robust and inexpensive design in extreme environment. Further work will concentrate on overall implementation and evaluation of this cooling system with the whole inspection manipulator.

  9. Advantage of redundancy in the controllability of remote handling manipulator

    International Nuclear Information System (INIS)

    Muhammad, Ali; Mattila, Jouni; Vilenius, Matti; Siuko, Mikko; Semeraro, Luigi

    2011-01-01

    To carry out a variety of remote handling operations inside the ITER divertor a Water Hydraulic MANipulator (WHMAN) and its control system have been designed and developed at Tampere University of Technology. The manipulator is installed on top of Cassette Multifunctional Mover (CMM) to assist during the cassette removal and installation operations. While CMM is designed to carry heavy components such as cassettes through the service ducts relying on positioning accuracy and repeatability, WHMAN is designed to execute a mix of remote handling operations using position trajectories and master-slave telemanipulation. WHMAN is composed of eight joints: six rotational and two translational. Since a manipulator requires only six joints to acquire the desired position and orientation in operational-space, the two additional joints of WHMAN provide the redundant degrees of mobility. This paper presents how this redundancy of WHMAN can be an advantage to optimize the execution of remote handling tasks. The paper also discusses an effective way to practically exploit the redundancy. The results show that the additional degrees of freedom can be utilized to improve the dynamic behavior of the manipulator.

  10. Task-oriented structural design of manipulators based on operability evaluation

    International Nuclear Information System (INIS)

    Kotosaka, Shin-ya; Asama, Hajime; Takata, Shozo; Hiraoka, Hiroyuki; Kohda, Takehisa; Matsumoto, Akihiro; Endo, Isao.

    1995-01-01

    In this paper, a new method for designing the structure of manipulators based on evaluation of their adaptability to tasks is proposed. In the method, task directions are classified into three kinds of direction; operational direction, constrained direction and free direction. On each direction, condition of constraints by task environment is represented. The tasks are represented by a set of direction and condition of constraints. A new criterion, operability, is defined to quantify adaptability of manipulator to tasks, taking account of mobility in operational directions and immobility in constrained directions. The mobility and immobility is calculated based on the Jacobian matrix of manipulator. The operability evaluation method is implemented, and applied to structural design of manipulators, in which link parameters are optimized by the genetic algorithm. This system can derive suitable structure of manipulator to various tasks. The effectiveness of the system is shown concerning examples of welding tasks. (author)

  11. Introduction to autonomous manipulation case study with an underwater robot, SAUVIM

    CERN Document Server

    Marani, Giacomo

    2014-01-01

    “Autonomous manipulation” is a challenge in robotic technologies. It refers to the capability of a mobile robot system with one or more manipulators that performs intervention tasks requiring physical contacts in unstructured environments and without continuous human supervision. Achieving autonomous manipulation capability is a quantum leap in robotic technologies as it is currently beyond the state of the art in robotics. This book addresses issues with the complexity of the problems encountered in autonomous manipulation including representation and modeling of robotic structures, kinematic and dynamic robotic control, kinematic and algorithmic singularity avoidance, dynamic task priority, workspace optimization and environment perception. Further development in autonomous manipulation should be able to provide robust improvements of the solutions for all of the above issues. The book provides an extensive tract on sensory-based autonomous manipulation for intervention tasks in unstructured environment...

  12. Defining Optimized Properties of Modified mRNA to Enhance Virus- and DNA- Independent Protein Expression in Adult Stem Cells and Fibroblasts

    Directory of Open Access Journals (Sweden)

    Frauke Hausburg

    2015-02-01

    Full Text Available Background: By far, most strategies for cell reprogramming and gene therapy are based on the introduction of DNA after viral delivery. To avoid the high risks accompanying these goals, non-viral and DNA-free delivery methods for various cell types are required. Methods: Relying on an initially established PCR-based protocol for convenient template DNA production, we synthesized five differently modified EGFP mRNA (mmRNA species, incorporating various degrees of 5-methylcytidine-5'-triphosphate (5mC and pseudouridine-5'-triphosphate (Ψ. We then investigated their effect on i protein expression efficiencies and ii cell viability for human mesenchymal stem cells (hMSCs and fibroblasts from different origins. Results: Our protocol allows highly efficient mmRNA production in vitro, enabling rapid and stable protein expression after cell transfection. However, our results also demonstrate that the terminally optimal modification needs to be defined in pilot experiments for each particular cell type. Transferring our approach to the conversion of fibroblasts into skeletal myoblasts using mmRNA encoding MyoD, we confirm the huge potential of mmRNA based protein expression for virus- and DNA-free reprogramming strategies. Conclusion: The achieved high protein expression levels combined with good cell viability not only in fibroblasts but also in hMSCs provides a promising option for mmRNA based modification of various cell types including slowly proliferating adult stem cells. Therefore, we are confident that our findings will substantially contribute to the improvement of efficient cell reprogramming and gene therapy approaches.

  13. Development of C-reactive protein certified reference material NMIJ CRM 6201-b: optimization of a hydrolysis process to improve the accuracy of amino acid analysis.

    Science.gov (United States)

    Kato, Megumi; Kinumi, Tomoya; Yoshioka, Mariko; Goto, Mari; Fujii, Shin-Ichiro; Takatsu, Akiko

    2015-04-01

    To standardize C-reactive protein (CRP) assays, the National Metrology Institute of Japan (NMIJ) has developed a C-reactive protein solution certified reference material, CRM 6201-b, which is intended for use as a primary reference material to enable the SI-traceable measurement of CRP. This study describes the development process of CRM 6201-b. As a candidate material of the CRM, recombinant human CRP solution was selected because of its higher purity and homogeneity than the purified material from human serum. Gel filtration chromatography was used to examine the homogeneity and stability of the present CRM. The total protein concentration of CRP in the present CRM was determined by amino acid analysis coupled to isotope-dilution mass spectrometry (IDMS-AAA). To improve the accuracy of IDMS-AAA, we optimized the hydrolysis process by examining the effect of parameters such as the volume of protein samples taken for hydrolysis, the procedure of sample preparation prior to the hydrolysis, hydrolysis temperature, and hydrolysis time. Under optimized conditions, we conducted two independent approaches in which the following independent hydrolysis and liquid chromatography-isotope dilution mass spectrometry (LC-IDMS) were combined: one was vapor-phase acid hydrolysis (130 °C, 24 h) and hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) method, and the other was microwave-assisted liquid-phase acid hydrolysis (150 °C, 3 h) and pre-column derivatization liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The quantitative values of the two different amino acid analyses were in agreement within their uncertainties. The certified value was the weighted mean of the results of the two methods. Uncertainties from the value-assignment method, between-method variance, homogeneity, long-term stability, and short-term stability were taken into account in evaluating the uncertainty for a certified value. The certified value and the

  14. Modelling and Intelligent Control of an Elastic Link Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Malik Loudini

    2013-01-01

    Full Text Available In this paper, precise control of the end-point position of a planar single-link elastic manipulator robot is discussed. The Timoshenko beam theory (TBT has been used to characterize the structural link elasticity including important damping mechanisms. A suitable nonlinear model is derived based on the Lagrangian assumed modes method. Elastic link manipulators are classified as systems possessing highly complex dynamics. In addition, the environment in which they operate may have a lot of disturbances. These give rise to special problems that may be solved using intelligent control techniques. The application of two advanced control strategies based on fuzzy set theory is investigated. The first closed-loop control scheme to be applied is the standard Proportional-Derivative (PD type fuzzy logic controller (FLC, also known as PD-type Mamdani's FLC (MPDFLC. Then, a genetic algorithm (GA is used to optimize the MPDFLC parameters with innovative tuning procedures. Both the MPDFLC and the GA optimized FLC (GAOFLC are implemented and tested to achieve a precise control of the manipulator end-point. The performances of the adopted closed-loop intelligent control strategies are examined via simulation experiments.

  15. Force Reflection Control for Master/Slave Tele-manipulators

    International Nuclear Information System (INIS)

    Kang, Min Sig; Kim, Doo Ho; Choi, Sun Il; Kim, Nam Hyung; Lee, Jong Bee

    2009-04-01

    This report concerns on a master/slave tele-manipulator which is used in highly hazardous hot cell. To design a force reflection and fine tracking control for the master-slave telemanipulator, the following has been carried out. (1) Variation of the moment of inertia of each link in the operating angle range, (2) Variation of the gratitational torque of each link in the operating angle range, (3) Dynamic characteristic analysis of the master-slave manipulator controlled by an output PD-control through a modal analysis, (4) Optimal static output feedback PD-control design by using modal analysis, (5) Controller design for each joint, (6) Adams-MatLab Simulink simulation model development. The results this project are as follows: (1) Program for analysis of the moment of inertia of each link in the operating angle range and simulation results, (2) Program for analysis of the gratitational torque of each link in the operating angle range and simulation results, (3) Dynamic characteristic of the master-slave manipulator controlled by an output PD-control through a modal analysis, (4) Program for designing optimal output PD-control by using modal analysis, (5) Controller designed for each joint, (6) Adams-MatLab Simulink simulation model, (7) Simulation results form output PD-control, etc

  16. Ion manipulation method and device

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Gordon A.; Baker, Erin M.; Smith, Richard D.; Ibrahim, Yehia M.

    2017-11-07

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area.

  17. FBXO22 Protein Is Required for Optimal Synthesis of the N-Methyl-d-Aspartate (NMDA) Receptor Coagonist d-Serine

    DEFF Research Database (Denmark)

    Dikopoltsev, Elena; Foltyn, Veronika N; Zehl, Martin

    2014-01-01

    d-Serine is a physiological activator of NMDA receptors (NMDARs) in the nervous system that mediates several NMDAR-mediated processes ranging from normal neurotransmission to neurodegeneration. d-Serine is synthesized from l-serine by serine racemase (SR), a brain-enriched enzyme. However, little......, SR interacts preferentially with free FBXO22 species. In vivo ubiquitination and SR half-life determination indicate that FBXO22 does not target SR to the proteasome system. FBXO22 primarily affects SR subcellular localization and seems to increase d-serine synthesis by preventing the association...... is known about the regulation of d-serine synthesis. We now demonstrate that the F-box only protein 22 (FBXO22) interacts with SR and is required for optimal d-serine synthesis in cells. Although FBXO22 is classically associated with the ubiquitin system and is recruited to the Skip1-Cul1-F-box E3 complex...

  18. Low levels of foot-and-mouth disease virus 3C protease expression are required to achieve optimal capsid protein expression and processing in mammalian cells

    DEFF Research Database (Denmark)

    Polacek, Charlotta; Gullberg, Maria; Li, Jiong

    2013-01-01

    transient-expression assays, within mammalian cells, it is possible to modify the relative amounts of the substrate and protease. It has now been shown that optimal production of the processed capsid proteins from P1-2A is achieved with reduced levels of 3Cpro expression, relative to the P1-2A, compared...... detected by FMDV antigen detection assays. Furthermore, the P1-2A and the processed forms each bind to the integrin αvβ6, the major FMDV receptor. These results contribute to the development of systems which efficiently express the components of empty capsid particles and may represent the basis for safer...... production of diagnostic reagents and improved vaccines against foot-and-mouth disease....

  19. Dietary manipulations for improving productivity in ruminant livestock

    International Nuclear Information System (INIS)

    Beever, D.E.

    1989-01-01

    Against a background of the major aspects of forage utilization by the rumen ecosystem and host animal metabolism, the need to manipulate the nature of the diet in order to improve animal productivity is reviewed. A number of criteria by which possible dietary manipulants should be considered are provided. The role of feed additives to manipulate rumen fermentation characteristics with respect to volatile fatty acid production, suppression of methanogenesis, and stimulation of microbial protein synthesis is discussed, and the possible benefits of changing the rumen microflora (e.g. by defaunation) are considered. The potential of nitrogen, energy and specific amino acid supplements to enhance rumen fermentation and/or nutrient absorption is examined and the paper concludes with consideration of possible areas where dietary manipulation could be beneficial, but to date suitable technology has not been satisfactorily developed. In this context, the nutritional effect of tannins, including enhancement of pronutritional and diminution of antinutritional factors, the suppression of rumen proteolysis and the ruminal protection of starch are examined. (author). 74 refs, 1 tab

  20. Mouse manipulation through single-switch scanning.

    Science.gov (United States)

    Blackstien-Adler, Susie; Shein, Fraser; Quintal, Janet; Birch, Shae; Weiss, Patrice L Tamar

    2004-01-01

    Given the current extensive reliance on the graphical user interface, independent access to computer software requires that users be able to manipulate a pointing device of some type (e.g., mouse, trackball) or be able to emulate a mouse by some other means (e.g., scanning). The purpose of the present study was to identify one or more optimal single-switch scanning mouse emulation strategies. Four alternative scanning strategies (continuous Cartesian, discrete Cartesian, rotational, and hybrid quadrant/continuous Cartesian) were selected for testing based on current market availability as well as on theoretical considerations of their potential speed and accuracy. Each strategy was evaluated using a repeated measures study design by means of a test program that permitted mouse emulation via any one of four scanning strategies in a motivating environment; response speed and accuracy could be automatically recorded and considered in view of the motor, cognitive, and perceptual demands of each scanning strategy. Ten individuals whose disabilities required them to operate a computer via single-switch scanning participated in the study. Results indicated that Cartesian scanning was the preferred and most effective scanning strategy. There were no significant differences between results from the Continuous Cartesian and Discrete Cartesian scanning strategies. Rotational scanning was quite slow with respect to the other strategies, although it was equally accurate. Hybrid Quadrant scanning improved access time but at the cost of fewer correct selections. These results demonstrated the importance of testing and comparing alternate single-switch scanning strategies.

  1. Thermodynamics of complexity and pattern manipulation

    Science.gov (United States)

    Garner, Andrew J. P.; Thompson, Jayne; Vedral, Vlatko; Gu, Mile

    2017-04-01

    Many organisms capitalize on their ability to predict the environment to maximize available free energy and reinvest this energy to create new complex structures. This functionality relies on the manipulation of patterns—temporally ordered sequences of data. Here, we propose a framework to describe pattern manipulators—devices that convert thermodynamic work to patterns or vice versa—and use them to build a "pattern engine" that facilitates a thermodynamic cycle of pattern creation and consumption. We show that the least heat dissipation is achieved by the provably simplest devices, the ones that exhibit desired operational behavior while maintaining the least internal memory. We derive the ultimate limits of this heat dissipation and show that it is generally nonzero and connected with the pattern's intrinsic crypticity—a complexity theoretic quantity that captures the puzzling difference between the amount of information the pattern's past behavior reveals about its future and the amount one needs to communicate about this past to optimally predict the future.

  2. A links manipulator simulation program interim report

    International Nuclear Information System (INIS)

    Noble, R.A.

    1987-04-01

    A computer program to simulate the performance of the Heysham II rail-following manipulator has been developed. The program is being used to develop and test the rail-following control algorithms which will be used to control movements of the manipulator when it is operating below the gas baffle dome. The simulation includes the dynamic responses of the manipulator joint drives, excluding friction, backlash and compliance. It also includes full details of the manipulator's geometry. A method is given whereby the actual manipulator dynamics can be written into the program once these have been established by measurement. The program is written in FORTRAN and runs on a Perkin-Elmer 3220 mini-computer. The simulation program responds to velocity demands on the individual joints. These will normally come from the control program, in which they will be manually controlled by a joystick. A sigma 5664 colour graphics generator is programmed to display the current position of the manipulator. (UK)

  3. Probabilistic approach to manipulator kinematics and dynamics

    International Nuclear Information System (INIS)

    Rao, S.S.; Bhatti, P.K.

    2001-01-01

    A high performance, high speed robotic arm must be able to manipulate objects with a high degree of accuracy and repeatability. As with any other physical system, there are a number of factors causing uncertainties in the behavior of a robotic manipulator. These factors include manufacturing and assembling tolerances, and errors in the joint actuators and controllers. In order to study the effect of these uncertainties on the robotic end-effector and to obtain a better insight into the manipulator behavior, the manipulator kinematics and dynamics are modeled using a probabilistic approach. Based on the probabilistic model, kinematic and dynamic performance criteria are defined to provide measures of the behavior of the robotic end-effector. Techniques are presented to compute the kinematic and dynamic reliabilities of the manipulator. The effects of tolerances associated with the various manipulator parameters on the reliabilities are studied. Numerical examples are presented to illustrate the procedures

  4. Collision Detection for Underwater ROV Manipulator Systems

    Directory of Open Access Journals (Sweden)

    Satja Sivčev

    2018-04-01

    Full Text Available Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations.

  5. Optimization of growth and bacteriocin activity of the food bioprotective Carnobacterium divergens V41 in an animal origin protein free medium

    Directory of Open Access Journals (Sweden)

    Anne BRILLET-VIEL

    2016-08-01

    Full Text Available Optimization of Carnobacterium divergens V41 growth and bacteriocin activity in a culture medium deprived of animal protein, needs for food bioprotection, was performed by using a statistical approach. In a screening experiment, twelve factors (pH, temperature, carbohydrates, NaCl, yeast extract, soy peptone, sodium acetate, ammonium citrate, magnesium sulphate, manganese sulphate, ascorbic acid and thiamine were tested for their influence on the maximal growth and bacteriocin activity using a two-level incomplete factorial design with 192 experiments performed in microtiter plate wells. Based on results, a basic medium was developed and three variables (pH, temperature and carbohydrates concentration were selected for a scale-up study in bioreactor. A 23 complete factorial design was performed, allowing the estimation of linear effects of factors and all the first order interactions. The best conditions for the cell production were obtained with a temperature of 15°C and a carbohydrates concentration of 20 g/l whatever the pH (in the range 6.5-8, and the best conditions for bacteriocin activity were obtained at 15°C and pH 6.5 whatever the carbohydrates concentration (in the range 2-20 g/l. The predicted final count of C. divergens V41 and the bacteriocin activity under the optimized conditions (15°C, pH 6.5, 20 g/l carbohydrates were 2.4 x 1010 CFU/ml and 819200 AU/ml respectively. C. divergens V41 cells cultivated in the optimized conditions were able to grow in cold-smoked salmon and totally inhibited the growth of Listeria monocytogenes (< 50 CFU g-1 during five weeks of vacuum storage at 4° and 8°C.

  6. Master-slave-manipulator 'EMSM I'

    International Nuclear Information System (INIS)

    Koehler, G.W.; Salaske, M.

    1976-01-01

    A master-slave manipulator with electric force transmission and reflection was developed for the first time in the German Federal Republic. The apparatus belongs to the class of 200 N carrying capacity. It is intended mainly for nuclear purposes and especially for use in large hot cells and also for medium and heavy manipulator vehicles. The most innovations compared with previously known foreign electric master-slave manipulators are two additional possibilities of movement and the electric dead weight compensation. (orig.) [de

  7. Master-slave-manipulator EMSM I

    International Nuclear Information System (INIS)

    Koehler, G.W.; Salaske, M.

    1976-01-01

    A master-slave manipulator with electric force transmission and reflection was developed for the first time in the German Federal Republic. The aparatus belongs to the class of 200 N carrying capacity. It is intended mainly for nuclear purposes and especially for use in large hot cells and also for medium and heavy manipulator vehicles. The most obvious innovations compared with previously known foreign electric master-slave manipulators are two additional possibilities of movement and the electric dead weightcompensation. (orig.) [de

  8. Positional control of space robot manipulator

    Science.gov (United States)

    Kurochkin, Vladislav; Shymanchuk, Dzmitry

    2018-05-01

    In this article the mathematical model of a planar space robot manipulator is under study. The space robot manipulator represents a solid body with attached manipulators. The system of equations of motion is determined using the Lagrange's equations. The control problem concerning moving the robot to a given point and return it to a given trajectory in the phase space is solved. Changes of generalized coordinates and necessary control actions are plotted for a specific model.

  9. Seismic qualification of existing safety class manipulators

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Moran, T.J.

    1992-01-01

    There are two bridge type electromechanical manipulators within a nuclear fuel handling facility which were constructed over twenty-five years ago. At that time, there were only minimal seismic considerations. These manipulators together with the facility are being reactivated. Detailed analyses have shown that the manipulators will satisfy the requirements of ANSI/AISC N690-1984 when they are subjected to loadings including the site specific design basis earthquake. 4 refs

  10. Active manipulation of the selective alignment by two laser pulses

    International Nuclear Information System (INIS)

    Zeng-Qiang, Yang; Zhi-Rong, Guo; Gui-Xian, Ge

    2010-01-01

    This paper solves numerically the full time-dependent Schrödinger equation based on the rigid rotor model, and proposes a novel strategy to determine the optimal time delay of the two laser pulses to manipulate the molecular selective alignment. The results illustrate that the molecular alignment generated by the first pulse can be suppressed or enhanced selectively, the relative populations of even and odd rotational states in the final rotational wave packet can be manipulated selectively by precisely inserting the peak of the second laser pulse at the time when the slope for the alignment parameter by the first laser locates a local maximum for the even rotational states and a local minimum for the odds, and vice versa. The selective alignment can be further optimised by selecting the intensity ratio of the two laser pulses on the condition that the total laser intensity and pulse duration are kept constant. (atomic and molecular physics)

  11. 3D Laser Scanner for Underwater Manipulation

    Directory of Open Access Journals (Sweden)

    Albert Palomer

    2018-04-01

    Full Text Available Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS is used to autonomously grasp an object from the bottom of a water tank.

  12. Long-reach manipulators for decommissioning

    International Nuclear Information System (INIS)

    Webster, D.A.; Challinor, S.F.

    1993-01-01

    A survey of redundant facilities at Sellafield has identified that in many cases the conventional means of deploying remote handling equipment are not appropriate and that novel means must be employed. However, decommissioning is not a value adding activity and so expensive one off designs must be avoided. The paper will describe BNFL's approach to the synthesis from proprietary parts of a manipulator which can lift 3 te at a horizontal reach of over 5 metres and yet can still perform the dextrous manipulation necessary to remove small items. It will also cover the development of the manipulator control systems and the adaption of commercial handtools to be manipulator friendly. (author)

  13. Nano-manipulation of single DNA molecules

    International Nuclear Information System (INIS)

    Hu Jun; Shanghai Jiaotong Univ., Shanghai; Lv Junhong; Wang Guohua; Wang Ying; Li Minqian; Zhang Yi; Li Bin; Li Haikuo; An Hongjie

    2004-01-01

    Nano-manipulation of single atoms and molecules is a critical technique in nanoscience and nanotechnology. This review paper will focus on the recent development of the manipulation of single DNA molecules based on atomic force microscopy (AFM). Precise manipulation has been realized including varied manipulating modes such as 'cutting', 'pushing', 'folding', 'kneading', 'picking up', 'dipping', etc. The cutting accuracy is dominated by the size of the AFM tip, which is usually 10 nm or less. Single DNA fragments can be cut and picked up and then amplified by single molecule PCR. Thus positioning isolation and sequencing can be performed. (authors)

  14. Bioprinting Living Biofilms through Optogenetic Manipulation.

    Science.gov (United States)

    Huang, Yajia; Xia, Aiguo; Yang, Guang; Jin, Fan

    2018-04-18

    In this paper, we present a new strategy for microprinting dense bacterial communities with a prescribed organization on a substrate. Unlike conventional bioprinting techniques that require bioinks, through optogenetic manipulation, we directly manipulated the behaviors of Pseudomonas aeruginosa to allow these living bacteria to autonomically form patterned biofilms following prescribed illumination. The results showed that through optogenetic manipulation, patterned bacterial communities with high spatial resolution (approximately 10 μm) could be constructed in 6 h. Thus, optogenetic manipulation greatly increases the range of available bioprinting techniques.

  15. 3D Laser Scanner for Underwater Manipulation.

    Science.gov (United States)

    Palomer, Albert; Ridao, Pere; Youakim, Dina; Ribas, David; Forest, Josep; Petillot, Yvan

    2018-04-04

    Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF) fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS) is used to autonomously grasp an object from the bottom of a water tank.

  16. Critical element study on autonomous position control of articulated-arm type manipulator

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Kakudate, Satoshi; Nakahira, Masataka

    1994-10-01

    An articulated-arm type manipulator can be operated effectively in a restricted space due to its flexibility and it can be attractive for a wide range of in-vessel maintenance such as viewing, inspection and limiter handling in fusion experimental reactors. In case of the in-vessel maintenance using a flexible manipulator, it is quite essential to develop an autonomous control method for compensating a deflection of manipulator so as to minimize the maintenance time with high precision. For this purpose, a new position control method using a combination of neural network predictor with a rigid inverse kinematics is being developed. The key features of this method are to simplify a kinematics modeling of flexible manipulator, to enable quick position compensation in stead of ordinary large matrix compensation, and to be applicable to a wide variety of manipulator characteristics. A sub-scaled model of flexible manipulator with 4 joints has been fabricated for a benchmark experiments of the autonomous position control. Comparing analytical simulation with experiments using the flexible manipulator, it has been demonstrated that the new position control method gives significant improvement in control performance with high precision in order of a figure. In addition, further optimization can be possible by adding other non-linear predictors such as radial basis function and fuzzy modeling. This paper describes the details of a sub-scaled flexible manipulator and a neural network position control system as well as results of analytical simulation and benchmark experiments. (author)

  17. Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm

    International Nuclear Information System (INIS)

    Hefke, Frederik; Bagaria, Anurag; Reckel, Sina; Ullrich, Sandra Johanna; Dötsch, Volker; Glaubitz, Clemens; Güntert, Peter

    2011-01-01

    We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273–6279 (1982)), types of amino acids are labeled with 13 C or/and 15 N such that cross peaks between 13 CO(i – 1) and 15 NH(i) result only for pairs of sequentially adjacent amino acids of which the first is labeled with 13 C and the second with 15 N. In this way, unambiguous sequence-specific assignments can be obtained for unique pairs of amino acids that occur exactly once in the sequence of the protein. To be practical, it is crucial to limit the number of differently labeled protein samples that have to be prepared while obtaining an optimal extent of labeled unique amino acid pairs. Our computer algorithm UPLABEL for optimal unique pair labeling, implemented in the program CYANA and in a standalone program, and also available through a web portal, uses combinatorial optimization to find for a given amino acid sequence labeling patterns that maximize the number of unique pair assignments with a minimal number of differently labeled protein samples. Various auxiliary conditions, including labeled amino acid availability and price, previously known partial assignments, and sequence regions of particular interest can be taken into account when determining optimal amino acid type-specific labeling patterns. The method is illustrated for the assignment of the human G-protein coupled receptor bradykinin B2 (B 2 R) and applied as a starting point for the backbone assignment of the membrane protein proteorhodopsin.

  18. Optimal response of key enzymes and uncoupling protein to cold in BAT depends on local T3 generation

    International Nuclear Information System (INIS)

    Bianco, A.C.; Silva, J.E.

    1987-01-01

    The authors have examined the activity of three lipogenic enzymes [malic enzyme (ME), glucose-6-phosphate dehydrogenase (G-6-PD), and acetyl coenzyme A (CoA) carboxylase], the activity of the mitochondrial FAD-dependent α-glycerolphosphate dehydrogenase (α-GPD), and the mitochondrial concentration of uncoupling protein (UCP) in brown adipose tissue (BAT) of euthyroid and hypothyroid rats, both at room temperature and in response to acute cold stress. These enzymes and UCP are important for the thermogenic response of BAT in adaptation to cold. The basal level of the lipogenic enzymes was normal or slightly elevated in hypothyroid rats maintained at 23 0 C, but the levels of α-GPD and UCP were markedly reduced. Forty-eight hours at 4 0 C resulted in an increase in the activity of G-6-PD, acetyl-CoA carboxylase, and α-GPD and in the concentration of UCP both in euthyroid and hypothyroid animals, but the levels reached were invariably less in hypothyroid animals, indicating that thyroid hormone is necessary for a full metabolic response of BAT under maximal demands. Of all variables measured, the most affected was UCP followed by α-GDP. Dose-response relationship analysis of the UCP response to T 3 indicated that the normalization of the response to cold requires saturation of the nuclear T 3 receptors. They concluded, therefore, that the activation of the BAT 5'-deiodinase induced by cold exposure is essential to provide the high levels of nuclear T 3 required for the full expression of BAT thermogenic potential

  19. A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in {sup 19}F NMR studies of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Libin; Larda, Sacha Thierry; Frank Li, Yi Feng [University of Toronto, UTM, Department of Chemistry (Canada); Manglik, Aashish [Stanford University School of Medicine, Department of Molecular and Cellular Physiology (United States); Prosser, R. Scott, E-mail: scott.prosser@utoronto.ca [University of Toronto, UTM, Department of Chemistry (Canada)

    2015-05-15

    The elucidation of distinct protein conformers or states by fluorine ({sup 19}F) NMR requires fluorinated moieties whose chemical shifts are most sensitive to subtle changes in the local dielectric and magnetic shielding environment. In this study we evaluate the effective chemical shift dispersion of a number of thiol-reactive trifluoromethyl probes [i.e. 2-bromo-N-(4-(trifluoromethyl)phenyl)acetamide (BTFMA), N-(4-bromo-3-(trifluoromethyl)phenyl)acetamide (3-BTFMA), 3-bromo-1,1,1-trifluoropropan-2-ol (BTFP), 1-bromo-3,3,4,4,4-pentafluorobutan-2-one (BPFB), 3-bromo-1,1,1-trifluoropropan-2-one (BTFA), and 2,2,2-trifluoroethyl-1-thiol (TFET)] under conditions of varying polarity. In considering the sensitivity of the {sup 19}F NMR chemical shift to the local environment, a series of methanol/water mixtures were prepared, ranging from relatively non-polar (MeOH:H{sub 2}O = 4) to polar (MeOH:H{sub 2}O = 0.25). {sup 19}F NMR spectra of the tripeptide, glutathione ((2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl] -2-sulfanylethyl]carbamoyl}butanoic acid), conjugated to each of the above trifluoromethyl probes, revealed that the BTFMA tag exhibited a significantly greater range of chemical shift as a function of solvent polarity than did either BTFA or TFET. DFT calculations using the B3LYP hybrid functional and the 6-31G(d,p) basis set, confirmed the observed trend in chemical shift dispersion with solvent polarity.

  20. The Escherichia coli small protein MntS and exporter MntP optimize the intracellular concentration of manganese.

    Directory of Open Access Journals (Sweden)

    Julia E Martin

    2015-03-01

    Full Text Available Escherichia coli does not routinely import manganese, but it will do so when iron is unavailable, so that manganese can substitute for iron as an enzyme cofactor. When intracellular manganese levels are low, the cell induces the MntH manganese importer plus MntS, a small protein of unknown function; when manganese levels are high, the cell induces the MntP manganese exporter and reduces expression of MntH and MntS. The role of MntS has not been clear. Previous work showed that forced MntS synthesis under manganese-rich conditions caused bacteriostasis. Here we find that when manganese is scarce, MntS helps manganese to activate a variety of enzymes. Its overproduction under manganese-rich conditions caused manganese to accumulate to very high levels inside the cell; simultaneously, iron levels dropped precipitously, apparently because manganese-bound Fur blocked the production of iron importers. Under these conditions, heme synthesis stopped, ultimately depleting cytochrome oxidase activity and causing the failure of aerobic metabolism. Protoporphyrin IX accumulated, indicating that the combination of excess manganese and iron deficiency had stalled ferrochelatase. The same chain of events occurred when mutants lacking MntP, the manganese exporter, were exposed to manganese. Genetic analysis suggested the possibility that MntS exerts this effect by inhibiting MntP. We discuss a model wherein during transitions between low- and high-manganese environments E. coli uses MntP to compensate for MntH overactivity, and MntS to compensate for MntP overactivity.

  1. Pneumatic artificial muscle actuators for compliant robotic manipulators

    Science.gov (United States)

    Robinson, Ryan Michael

    Robotic systems are increasingly being utilized in applications that require interaction with humans. In order to enable safe physical human-robot interaction, light weight and compliant manipulation are desirable. These requirements are problematic for many conventional actuation systems, which are often heavy, and typically use high stiffness to achieve high performance, leading to large impact forces upon collision. However, pneumatic artificial muscles (PAMs) are actuators that can satisfy these safety requirements while offering power-to-weight ratios comparable to those of conventional actuators. PAMs are extremely lightweight actuators that produce force in response to pressurization. These muscles demonstrate natural compliance, but have a nonlinear force-contraction profile that complicates modeling and control. This body of research presents solutions to the challenges associated with the implementation of PAMs as actuators in robotic manipulators, particularly with regard to modeling, design, and control. An existing PAM force balance model was modified to incorporate elliptic end geometry and a hyper-elastic constitutive relationship, dramatically improving predictions of PAM behavior at high contraction. Utilizing this improved model, two proof-of-concept PAM-driven manipulators were designed and constructed; design features included parallel placement of actuators and a tendon-link joint design. Genetic algorithm search heuristics were employed to determine an optimal joint geometry; allowing a manipulator to achieve a desired torque profile while minimizing the required PAM pressure. Performance of the manipulators was evaluated in both simulation and experiment employing various linear and nonlinear control strategies. These included output feedback techniques, such as proportional-integral-derivative (PID) and fuzzy logic, a model-based control for computed torque, and more advanced controllers, such as sliding mode, adaptive sliding mode, and

  2. Molecular genetic techniques for gene manipulation in Candida albicans.

    Science.gov (United States)

    Xu, Qiu-Rong; Yan, Lan; Lv, Quan-Zhen; Zhou, Mi; Sui, Xue; Cao, Yong-Bing; Jiang, Yuan-Ying

    2014-05-15

    Candida albicans is one of the most common fungal pathogen in humans due to its high frequency as an opportunistic and pathogenic fungus causing superficial as well as invasive infections in immunocompromised patients. An understanding of gene function in C. albicans is necessary to study the molecular basis of its pathogenesis, virulence and drug resistance. Several manipulation techniques have been used for investigation of gene function in C. albicans, including gene disruption, controlled gene expression, protein tagging, gene reintegration, and overexpression. In this review, the main cassettes containing selectable markers used for gene manipulation in C. albicans are summarized; the advantages and limitations of these cassettes are discussed concerning the influences on the target gene expression and the virulence of the mutant strains.

  3. Dielectric nanoresonators for light manipulation

    Science.gov (United States)

    Yang, Zhong-Jian; Jiang, Ruibin; Zhuo, Xiaolu; Xie, Ya-Ming; Wang, Jianfang; Lin, Hai-Qing

    2017-07-01

    Nanostructures made of dielectric materials with high or moderate refractive indexes can support strong electric and magnetic resonances in the optical region. They can therefore function as nanoresonators. In addition to plasmonic metal nanostructures that have been widely investigated, dielectric nanoresonators provide a new type of building blocks for realizing powerful and versatile nanoscale light manipulation. In contrast to plasmonic metal nanostructures, nanoresonators made of appropriate dielectric materials are low-cost, earth-abundant and have very small or even negligible light energy losses. As a result, they will find potential applications in a number of photonic devices, especially those that require low energy losses. In this review, we describe the recent progress on the experimental and theoretical studies of dielectric nanoresonators. We start from the basic theory of the electromagnetic responses of dielectric nanoresonators and their fabrication methods. The optical properties of individual dielectric nanoresonators are then elaborated, followed by the coupling behaviors between dielectric nanoresonators, between dielectric nanoresonators and substrates, and between dielectric nanoresonators and plasmonic metal nanostructures. The applications of dielectric nanoresonators are further described. Finally, the challenges and opportunities in this field are discussed.

  4. Manipulation or Mobilisation for Neck Pain

    NARCIS (Netherlands)

    Gross, Anita; Miller, Jordan; D'Sylva, Jonathan; Burnie, Stephen J.; Goldsmith, Charles H.; Graham, Nadine; Haines, Ted; Brønfort, Gert; Hoving, Jan L.

    2010-01-01

    Background Manipulation and mobilisation are often used, either alone or combined with other treatment approaches, to treat neck pain. Objectives To assess if manipulation or mobilisation improves pain, function/disability, patient satisfaction, quality of life, and global perceived effect in adults

  5. Analysis of singularity in redundant manipulators

    International Nuclear Information System (INIS)

    Watanabe, Koichi

    2000-03-01

    In the analysis of arm positions and configurations of redundant manipulators, the singularity avoidance problems are important themes. This report presents singularity avoidance computations of a 7 DOF manipulator by using a computer code based on human-arm models. The behavior of the arm escaping from the singular point can be identified satisfactorily through the use of 3-D plotting tools. (author)

  6. Managing collaboration in the nanoManipulator

    DEFF Research Database (Denmark)

    Hudson, Thomas C.; Helser, Aren T.; Sonnenwald, Diane H.

    2004-01-01

    We designed, developed, deployed, and evaluated the Collaborative nanoManipulator (CnM), a distributed, collaborative virtual environment system supporting remote scientific collaboration between users of the nanoManipulator interface to atomic force microscopes. This paper describes the entire...

  7. Even Middle Graders Can Learn with Manipulatives.

    Science.gov (United States)

    Holden, Linda

    1987-01-01

    Math manipulatives let students see the components of an abstract problem, help build a concrete language for talking about math concepts, and encourage students to gain confidence in their ability to figure things out. Many suggestions for using manipulatives in math instruction are offered. (MT)

  8. Lazy motion planning for robotic manipulators

    NARCIS (Netherlands)

    Andrien, A.R.P.; van de Molengraft, M.J.G.; Bruyninckx, H.P.J.

    2017-01-01

    Robotic manipulators are making a shift towards mobile bases in both industry and domestic environments, which puts high demands on efficient use of the robot’s limited energy resources. In this work, the problem of reducing energy usage of a robot manipulator during a task is investigated. We

  9. Judging Nudging : Answering the Manipulation Objection

    NARCIS (Netherlands)

    Nys, Thomas; Engelen, Bart

    2017-01-01

    Is it ever justified to ‘nudge’ people towards their own health? In this article, we argue that it is. We do so by arguing (1) that nudges are not necessarily – as is commonly thought – manipulative; (2) that even those nudges that are manipulative can be justified, for instance, when they preserve

  10. Tools for Manipulation and Characterisation of Nanostructures

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Bøggild, Peter

    grippers, which were then successfully used for pick-and-place manipulation of silicon nanowires. For increased gripping force and control over the manipulation process, microfabricated grippers with integrated force-feedback were also demonstrated. Environmental electron beam deposition (EEBD...... components that are some 10000 times smaller....

  11. MEMS 6 degrees of freedom parallel micro manipulator for TEM sample manipulation

    NARCIS (Netherlands)

    Brouwer, Dannis Michel; de Jong, B.R.; Soemers, Herman

    2005-01-01

    Up till now MEMS actuators acted either only in-plane or only out-of plane restricting to 3 DOF manipulation. A design for a millimeter-sized manipulator with 6 degrees of freedom to manipulate a micron-sized substrate at nanometer resolution over strokes of 10 microns with a position stability

  12. Interaction control of a redundant mobile manipulator

    International Nuclear Information System (INIS)

    Chung, J.H.; Velinsky, S.A.; Hess, R.A.

    1998-01-01

    This paper discusses the modeling and control of a spatial mobile manipulator that consists of a robotic manipulator mounted on a wheeled mobile platform. The Lagrange-d'Alembert formulation is used to obtain a concise description of the dynamics of the system, which is subject to nonholonomic constraints. The complexity of the model is increased by introducing kinematic redundancy, which is created when a multilinked manipulator is used. The kinematic redundancy is resolved by decomposing the mobile manipulator into two subsystems: the mobile platform and the manipulator. The redundancy resolution scheme employs a nonlinear interaction-control algorithm, which is developed and applied to coordinate the two subsystems' controllers. The subsystem controllers are independently designed, based on each subsystem's dynamic characteristics. Simulation results show the promise of the developed algorithm

  13. Maximum allowable load on wheeled mobile manipulators

    International Nuclear Information System (INIS)

    Habibnejad Korayem, M.; Ghariblu, H.

    2003-01-01

    This paper develops a computational technique for finding the maximum allowable load of mobile manipulator during a given trajectory. The maximum allowable loads which can be achieved by a mobile manipulator during a given trajectory are limited by the number of factors; probably the dynamic properties of mobile base and mounted manipulator, their actuator limitations and additional constraints applied to resolving the redundancy are the most important factors. To resolve extra D.O.F introduced by the base mobility, additional constraint functions are proposed directly in the task space of mobile manipulator. Finally, in two numerical examples involving a two-link planar manipulator mounted on a differentially driven mobile base, application of the method to determining maximum allowable load is verified. The simulation results demonstrates the maximum allowable load on a desired trajectory has not a unique value and directly depends on the additional constraint functions which applies to resolve the motion redundancy

  14. Laser Diode Beam Basics, Manipulations and Characterizations

    CERN Document Server

    Sun, Haiyin

    2012-01-01

    Many optical design technical books are available for many years which mainly deal with image optics design based on geometric optics and using sequential raytracing technique. Some books slightly touched laser beam manipulation optics design. On the other hand many books on laser diodes have been published that extensively deal with laser diode physics with little touching on laser diode beam manipulations and characterizations. There are some internet resources dealing with laser diode beams. However, these internet resources have not covered enough materials with enough details on laser diode beam manipulations and characterizations. A technical book concentrated on laser diode beam manipulations and characterizations can fit in to the open and provide useful information to laser diode users. Laser Diode Beam Basics, Manipulations and  Characterizations is concentrated on the very practical side of the subject, it only discusses the basic physics and mathematics that are necessary for the readers in order...

  15. SETS, Boolean Manipulation for Network Analysis and Fault Tree Analysis

    International Nuclear Information System (INIS)

    Worrell, R.B.

    1985-01-01

    Description of problem or function - SETS is used for symbolic manipulation of set (or Boolean) equations, particularly the reduction of set equations by the application of set identities. It is a flexible and efficient tool for performing probabilistic risk analysis (PRA), vital area analysis, and common cause analysis. The equation manipulation capabilities of SETS can also be used to analyze non-coherent fault trees and determine prime implicants of Boolean functions, to verify circuit design implementation, to determine minimum cost fire protection requirements for nuclear reactor plants, to obtain solutions to combinatorial optimization problems with Boolean constraints, and to determine the susceptibility of a facility to unauthorized access through nullification of sensors in its protection system. 4. Method of solution - The SETS program is used to read, interpret, and execute the statements of a SETS user program which is an algorithm that specifies the particular manipulations to be performed and the order in which they are to occur. 5. Restrictions on the complexity of the problem - Any properly formed set equation involving the set operations of union, intersection, and complement is acceptable for processing by the SETS program. Restrictions on the size of a set equation that can be processed are not absolute but rather are related to the number of terms in the disjunctive normal form of the equation, the number of literals in the equation, etc. Nevertheless, set equations involving thousands and even hundreds of thousands of terms can be processed successfully

  16. All-Round Manipulation of the Actin Cytoskeleton by HIV.

    Science.gov (United States)

    Ospina Stella, Alberto; Turville, Stuart

    2018-02-05

    While significant progress has been made in terms of human immunodeficiency virus (HIV) therapy, treatment does not represent a cure and remains inaccessible to many people living with HIV. Continued mechanistic research into the viral life cycle and its intersection with many aspects of cellular biology are not only fundamental in the continued fight against HIV, but also provide many key observations of the workings of our immune system. Decades of HIV research have testified to the integral role of the actin cytoskeleton in both establishing and spreading the infection. Here, we review how the virus uses different strategies to manipulate cellular actin networks and increase the efficiency of various stages of its life cycle. While some HIV proteins seem able to bind to actin filaments directly, subversion of the cytoskeleton occurs indirectly by exploiting the power of actin regulatory proteins, which are corrupted at multiple levels. Furthermore, this manipulation is not restricted to a discrete class of proteins, but rather extends throughout all layers of the cytoskeleton. We discuss prominent examples of actin regulators that are exploited, neutralized or hijacked by the virus, and address how their coordinated deregulation can lead to changes in cellular behavior that promote viral spreading.

  17. Manipulation of Unknown Objects to Improve the Grasp Quality Using Tactile Information.

    Science.gov (United States)

    Montaño, Andrés; Suárez, Raúl

    2018-05-03

    This work presents a novel and simple approach in the area of manipulation of unknown objects considering both geometric and mechanical constraints of the robotic hand. Starting with an initial blind grasp, our method improves the grasp quality through manipulation considering the three common goals of the manipulation process: improving the hand configuration, the grasp quality and the object positioning, and, at the same time, prevents the object from falling. Tactile feedback is used to obtain local information of the contacts between the fingertips and the object, and no additional exteroceptive feedback sources are considered in the approach. The main novelty of this work lies in the fact that the grasp optimization is performed on-line as a reactive procedure using the tactile and kinematic information obtained during the manipulation. Experimental results are shown to illustrate the efficiency of the approach.

  18. X-ray structural analysis of Plasmodium falciparum enoyl acyl carrier protein reductase as a pathway toward the optimization of triclosan antimalarial efficacy.

    Science.gov (United States)

    Freundlich, Joel S; Wang, Feng; Tsai, Han-Chun; Kuo, Mack; Shieh, Hong-Ming; Anderson, John W; Nkrumah, Louis J; Valderramos, Juan-Carlos; Yu, Min; Kumar, T R Santha; Valderramos, Stephanie G; Jacobs, William R; Schiehser, Guy A; Jacobus, David P; Fidock, David A; Sacchettini, James C

    2007-08-31

    The x-ray crystal structures of five triclosan analogs, in addition to that of the isoniazid-NAD adduct, are described in relation to their integral role in the design of potent inhibitors of the malarial enzyme Plasmodium falciparum enoyl acyl carrier protein reductase (PfENR). Many of the novel 5-substituted analogs exhibit low micromolar potency against in vitro cultures of drug-resistant and drug-sensitive strains of the P. falciparum parasite and inhibit purified PfENR enzyme with IC50 values of <200 nM. This study has significantly expanded the knowledge base with regard to the structure-activity relationship of triclosan while affording gains against cultured parasites and purified PfENR enzyme. In contrast to a recent report in the literature, these results demonstrate the ability to improve the in vitro potency of triclosan significantly by replacing the suboptimal 5-chloro group with larger hydrophobic moieties. The biological and x-ray crystallographic data thus demonstrate the flexibility of the active site and point to future rounds of optimization to improve compound potency against purified enzyme and intracellular Plasmodium parasites.

  19. Completion of the Heysham 2 peripheral manipulator

    International Nuclear Information System (INIS)

    Shipp, R.; Ewen, R.O.

    1996-01-01

    The in-service inspection strategy for the AGR power station at Heysham 2 envisaged a suite of five manipulators to be used for inserting TRIUMPH television cameras into the reactor vessel. Prior to power raising, four of the five had been successfully commissioned and have been in regular use during the subsequent statutory outages. The final device, the Peripheral Manipulator (PM), was eventually completed prior to the 1994 outage and has been successfully deployed on reactor for both the 1994 and 1995 outages. The paper describes the design of the manipulator, its operation and scope of use in the Heysham 2 reactors. (Author)

  20. W-026, acceptance test report manipulator system

    International Nuclear Information System (INIS)

    Watson, T.L.

    1997-01-01

    The purpose of the WRAP Manipulator System Acceptance Test Plan (ATP) is to verify that the 4 glovebox sets of WRAP manipulator components, including rail/carriage, slave arm, master controller and auxiliary equipment, meets the requirements of the functional segments of 14590 specification. The demonstration of performance elements of the ATP are performed as a part of the Assembly specifications. Manipulator integration is integrated in the performance testing of the gloveboxes. Each requirement of the Assembly specification will be carried out in conjunction with glovebox performance tests