WorldWideScience

Sample records for proteins lipids carbohydrates

  1. Interactions of polyphenols with carbohydrates, lipids and proteins.

    Science.gov (United States)

    Jakobek, Lidija

    2015-05-15

    Polyphenols are secondary metabolites in plants, investigated intensively because of their potential positive effects on human health. Their bioavailability and mechanism of positive effects have been studied, in vitro and in vivo. Lately, a high number of studies takes into account the interactions of polyphenols with compounds present in foods, like carbohydrates, proteins or lipids, because these food constituents can have significant effects on the activity of phenolic compounds. This paper reviews the interactions between phenolic compounds and lipids, carbohydrates and proteins and their impact on polyphenol activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The effect of carbohydrates and lipids on the radiation-induced aggregation of proteins

    International Nuclear Information System (INIS)

    Delincee, H.; Jakubick, V.

    1977-01-01

    Myoglobin, ovalbumin and serum albumin have been irradiated in aqueous solution in the presence of varying amounts of carbohydrates and lipids, simulating a model food. Gel chromatography revealed the induction of protein aggregates, the formation of which depended strongly on protein concentration. The addition of carbohydrates (trehalose, starch) greatly reduced the amount of radiation-induced aggregates, whereas the addition of lipids (sunflower oil) had practically no effect on aggregate formation. However, if both carbohydrates and lipids were added, the decrease in aggregation caused by the carbohydrate addition was counteracted by the addition of the lipid; as increasing amounts of lipid were added, the effect of carbohydrate addition became smaller. (author)

  3. THE RELATIONSHIP BETWEEN ALTITUDES AND THE CONTENTS OF PROTEIN, CARBOHYDRATES, LIPIDS OF PUMPKIN (Cucurbita moschata

    Directory of Open Access Journals (Sweden)

    Suranto Tjiptowibisono

    2015-02-01

    Full Text Available Cucurbita moschata or pumpkin can be used as an alternative food mainly due to its carbohydrate content, and it is very easy to grow in many different habitats. The objective of this research was to evaluate the biochemical contents of C. moschata based on the altitudes and also to examine whether any relationship between the environmental conditions and protein, carbohydrate and lipid contents. Proximate analysis was used for statistical consideration of the results obtained. Chemical analysis was conducted by using mesocarp of pumpkin after cleaning, peeling and removing seeds from the center of fruits. Kjedahl and soxhlet methods were used to look at the content of protein and lipid respectively. Meanwhile, the method of difference was employed to measure the percentage of carbohydrates. Although there was no significant relationship between the biochemical contents and the environmental conditions, it was recorded that plants grown at higher altitudes with high soil pH and air temperature tended to have higher protein, carbohydrate and lipid contents, compared to that of higher soil moisture. This results showed that the highest biochemical contents of protein, carbohydrate and lipid of two varieties C. moschata were evident at the lowest altitude.

  4. Glycolysis and gluconeogenesis in the liver of catfish fed with different concentrations of proteins, lipids and carbohydrates

    Directory of Open Access Journals (Sweden)

    J.F.B. Melo

    Full Text Available ABSTRACT The activities of enzymes from a number of metabolic pathways have been used as a tool to evaluate the best use of nutrients on fish performance. In the present study the catfish Rhamdia quelen was fed with diets containing crude protein-lipid-carbohydrate (% as follows: treatment (T T1: 19-19-44; T2: 26-15-39; T3: 33-12-33; and T4: 40-10-24. The fish were held in tanks of re-circulated, filtered water with controlled temperature and aeration in 2000L experimental units. The feeding experiment lasted 30 days. The following enzymes of the carbohydrate metabolism were determined: Glucokinase (GK, Phosphofructokinase 1 (PFK-1, Pyruvate kinase (PK, Fructose-1,6-biphosphatase 1 (FBP-1. The activities of 6 phosphogluconate dehydrogenase (6PGDH and glucose 6 phosphate dehydrogenase (G6PDH were also assayed. The influence of nutrient levels on the enzyme activities is reported. The increase of dietary protein plus reduction of carbohydrates and lipids attenuates the glycolytic activity and induces hepatic gluconeogenesis as a strategy to provide metabolic energy from amino acids. The fish performance was affected by the concentrations of protein, lipid and carbohydrates in the diet. The greatest weight gain was obtained in fish fed diet T4 containing 40.14% of crude protein, 9.70% of lipids, and 24.37% of carbohydrate, respectively.

  5. Effect of protein, carbohydrate, lipid, and selenium levels on the performance, carcass yield, and blood changes in broilers

    Directory of Open Access Journals (Sweden)

    FH Hada

    2013-12-01

    Full Text Available The objective of this study was to evaluate the performance, carcass and parts yield, and blood changes in broilers fed different protein, carbohydrate, and lipid levels. Birds were fed a commercial diet until seven days of age. On day 8, birds were distributed according to a completely randomized experimental design in a 4 x 2 factorial arrangement (control diet, low protein diet, low carbohydrate diet or low lipid diet vs. supplementation of 0 or 0.3ppm organic selenium with four replicates of 15 birds each. Broilers fed low protein presented lower body weight, feed intake, and worse feed conversion ratio on day 42, as well as lower carcass and breast yields, higher leg and abdominal fat yields, higher triglyceride and lower uric acid blood levels. Broilers fed the low carbohydrate diets presented low glucose levels on days 14 and 42.Creatine-kinase (CK levels increased as birds aged. The livability of broilers fed the low protein diets improved and of those fed low carbohydrate diets worsened with dietary selenium addition on days 35 and 42. Selenium supplementation increased glucose levels in 42-d-old broilers. Changes in dietary protein caused more impact on broiler performance compared with carbohydrates and lipids. Changes in macronutrients caused metabolic changes in broilers. Selenium affected broiler livability as measured on days 35 and 42, and glucose blood levels.

  6. Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism.

    Science.gov (United States)

    Lairon, Denis; Play, Barbara; Jourdheuil-Rahmani, Dominique

    2007-04-01

    The balance between fats and carbohydrates in the human diet is still a matter of very active debate. Indeed, the processing of ordinary mixed meals involves complex processes within the lumen of the upper digestive tract for digestion, in the small intestine mucosa for absorption and resecretion, and in peripheral tissues and in the circulation for final handling. The purpose of this review is to focus on available knowledge on the interactions of digestible or indigestible carbohydrates with lipid and lipoprotein metabolism in the postprandial state. The observations made in humans after test meals are reported and interpreted in the light of recent findings on the cellular and molecular levels regarding possible interplays between carbohydrates and lipid moieties in some metabolic pathways. Digestible carbohydrates, especially readily digestible starches or fructose, have been shown to exacerbate and/or delay postprandial lipemia, whereas some fiber sources can lower it. While interactions between dietary fibers and the process of lipid digestion and absorption have been studied mainly in the last decades, recent studies have shown that dietary carbohydrate moieties (e.g., glucose) can stimulate the intestinal uptake of cholesterol and lipid resecretion. In addition to the well-known glucose/fructose transporters, a number of transport proteins have recently been involved in intestinal lipid processing, whose implications in such interactions are discussed. The potential importance of postprandial insulinemia in these processes is also evaluated in the light of recent findings. The interactions of carbohydrates and lipid moieties in the postprandial state may result from both acute and chronic effects, both at transcriptional and posttranscriptional levels.

  7. Effects of intraoperative administration of carbohydrates during long-duration oral and maxillofacial surgery on the metabolism of carbohydrates, proteins, and lipids.

    Science.gov (United States)

    Yamamoto, Toru; Yoshida, Mitsuhiro; Watanabe, Seiji; Kawahara, Hiroshi

    2015-12-01

    Insulin resistance in patients undergoing invasive surgery impairs glucose and lipid metabolism and increases muscle protein catabolism, which may result in delayed recovery and prolonged hospital stay. We examined whether intraoperative administration of carbohydrates during long-duration oral and maxillofacial surgery under general anesthesia affects carbohydrate, proteins, and lipid metabolism and the length of hospital stay. We studied 16 patients with normal liver, kidney, and endocrine functions, and ASA physical status I or II, but without diabetes. Patients were randomly assigned to receive 0.1 g/kg/h of (n = 8) or lactated Ringer's solution (n = 8). Blood was collected before (T0) and 4 h after (T1) the start of surgery. We analyzed the plasma levels of glucose, ketone bodies, 3-methylhistidine (3-MH), and the length of hospital stay. At T0, no statistically significant differences were observed in the levels of glucose, ketone bodies, and 3-MH between the groups. At T1, no statistically significant difference in glucose levels was found between the groups. However, ketone bodies were significantly lower, and the changes in 3-MH levels were significantly less pronounced in the glucose-treated group compared with controls. No significant differences were observed between the groups in terms of length of hospital stay. The administration of low doses of glucose during surgery was safe, did not cause hyperglycemia or hypoglycemia, and inhibited lipid metabolism and protein catabolism. Additional experiments with larger cohorts will be necessary to investigate whether intraoperative management with glucose facilitates postoperative recovery of patients with oral cancer.

  8. Unlimited energy, restricted carbohydrate diet improves lipid parameters in obese children.

    Science.gov (United States)

    Dunlap, Brian S; Bailes, James R

    2008-03-01

    Childhood obesity is a leading health concern. We have previously demonstrated the effectiveness of a restricted-carbohydrate, unlimited energy diet for weight reduction in elementary school-aged children. To our knowledge, there are no studies that have looked at the effect of this diet on lipid profiles in elementary school-aged children. Therefore, the objective of this pilot study was to examine the effect of a restricted-carbohydrate, unlimited protein, unlimited energy diet on lipid profiles in obese children 6 to 12 years of age. Overweight children (body mass index >97%) referred to our obesity clinic were treated with a restricted-carbohydrate (unlimited protein, and unlimited energy diet. Weight, height, body mass index, and fasting lipid profiles were obtained at baseline and at 10 weeks on each patient. Twenty-seven patients were enrolled in our study, with a total of 18 patients returning for our 10 week follow-up (67%). The study group included 10 males and 8 females, with an age range of 6 to 12 years. Both total serum cholesterol and triglyceride levels showed a significant reduction; 24.2 (P = 0.018) and 56.9 (P = 0.015) mg/dL, respectively. We have demonstrated a significant decrease in total cholesterol and triglycerides in elementary school-aged children after 10 weeks of a restricted-carbohydrate, unlimited protein, and unlimited energy diet. We suggest that this diet may decrease cardiovascular risk factors in obese children. Long-term studies will be needed to substantiate these data.

  9. Single Cell Synchrotron FT-IR Microspectroscopy Reveals a Link between Neutral Lipid and Storage Carbohydrate Fluxes in S. cerevisiae

    Science.gov (United States)

    Jamme, Frédéric; Vindigni, Jean-David; Méchin, Valérie; Cherifi, Tamazight; Chardot, Thierry; Froissard, Marine

    2013-01-01

    In most organisms, storage lipids are packaged into specialized structures called lipid droplets. These contain a core of neutral lipids surrounded by a monolayer of phospholipids, and various proteins which vary depending on the species. Hydrophobic structural proteins stabilize the interface between the lipid core and aqueous cellular environment (perilipin family of proteins, apolipoproteins, oleosins). We developed a genetic approach using heterologous expression in Saccharomyces cerevisiae of the Arabidopsis thaliana lipid droplet oleosin and caleosin proteins AtOle1 and AtClo1. These transformed yeasts overaccumulate lipid droplets, leading to a specific increase in storage lipids. The phenotype of these cells was explored using synchrotron FT-IR microspectroscopy to investigate the dynamics of lipid storage and cellular carbon fluxes reflected as changes in spectral fingerprints. Multivariate statistical analysis of the data showed a clear effect on storage carbohydrates and more specifically, a decrease in glycogen in our modified strains. These observations were confirmed by biochemical quantification of the storage carbohydrates glycogen and trehalose. Our results demonstrate that neutral lipid and storage carbohydrate fluxes are tightly connected and co-regulated. PMID:24040242

  10. Single cell synchrotron FT-IR microspectroscopy reveals a link between neutral lipid and storage carbohydrate fluxes in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Frédéric Jamme

    Full Text Available In most organisms, storage lipids are packaged into specialized structures called lipid droplets. These contain a core of neutral lipids surrounded by a monolayer of phospholipids, and various proteins which vary depending on the species. Hydrophobic structural proteins stabilize the interface between the lipid core and aqueous cellular environment (perilipin family of proteins, apolipoproteins, oleosins. We developed a genetic approach using heterologous expression in Saccharomyces cerevisiae of the Arabidopsis thaliana lipid droplet oleosin and caleosin proteins AtOle1 and AtClo1. These transformed yeasts overaccumulate lipid droplets, leading to a specific increase in storage lipids. The phenotype of these cells was explored using synchrotron FT-IR microspectroscopy to investigate the dynamics of lipid storage and cellular carbon fluxes reflected as changes in spectral fingerprints. Multivariate statistical analysis of the data showed a clear effect on storage carbohydrates and more specifically, a decrease in glycogen in our modified strains. These observations were confirmed by biochemical quantification of the storage carbohydrates glycogen and trehalose. Our results demonstrate that neutral lipid and storage carbohydrate fluxes are tightly connected and co-regulated.

  11. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae)

    Energy Technology Data Exchange (ETDEWEB)

    Chia, Mathias Ahii, E-mail: chia28us@yahoo.com [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Lombardi, Ana Teresa [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Graça Gama Melão, Maria da [Department of Hydrobiology, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Parrish, Christopher C. [Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland A1C 5S7 (Canada)

    2015-03-15

    Highlights: • Chlorella vulgaris was exposed to Cd under varying N concentrations. • Growth rate and cell density decreased with increasing Cd stress and N limitation. • Dry weight, chlorophyll a, total lipid, carbohydrate and protein were accumulated. • Amino acids like proline and glutamine were accumulated under N and Cd stress. • Changes in amino acid composition are sensitive biomarkers for Cd and N stress. - Abstract: Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10{sup −7} and 2.0 × 10{sup −8} mol L{sup −1} Cd) under varying nitrogen (2.9 × 10{sup −6}, 1.1 × 10{sup −5} and 1.1 × 10{sup −3} mol L{sup −1} N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production.

  12. Selective fermentation of carbohydrate and protein fractions of Scenedesmus, and biohydrogenation of its lipid fraction for enhanced recovery of saturated fatty acids.

    Science.gov (United States)

    Lai, YenJung Sean; Parameswaran, Prathap; Li, Ang; Aguinaga, Alyssa; Rittmann, Bruce E

    2016-02-01

    Biofuels derived from microalgae have promise as carbon-neutral replacements for petroleum. However, difficulty extracting microalgae-derived lipids and the co-extraction of non-lipid components add major costs that detract from the benefits of microalgae-based biofuel. Selective fermentation could alleviate these problems by managing microbial degradation so that carbohydrates and proteins are hydrolyzed and fermented, but lipids remain intact. We evaluated selective fermentation of Scenedesmus biomass in batch experiments buffered at pH 5.5, 7, or 9. Carbohydrates were fermented up to 45% within the first 6 days, protein fermentation followed after about 20 days, and lipids (measured as fatty acid methyl esters, FAME) were conserved. Fermentation of the non-lipid components generated volatile fatty acids, with acetate, butyrate, and propionate being the dominant products. Selective fermentation of Scenedesmus biomass increased the amount of extractable FAME and the ratio of FAME to crude lipids. It also led to biohydrogenation of unsaturated FAME to more desirable saturated FAME (especially to C16:0 and C18:0), and the degree of saturation was inversely related to the accumulation of hydrogen gas after fermentation. Moreover, the microbial communities after selective fermentation were enriched in bacteria from families known to perform biohydrogenation, i.e., Porphyromonadaceae and Ruminococcaceae. Thus, this study provides proof-of-concept that selective fermentation can improve the quantity and quality of lipids that can be extracted from Scenedesmus. © 2015 Wiley Periodicals, Inc.

  13. Modifying the Dietary Carbohydrate-to-Protein Ratio Alters the Postprandial Macronutrient Oxidation Pattern in Liver of AMPK-Deficient Mice.

    Science.gov (United States)

    Chalvon-Demersay, Tristan; Even, Patrick C; Chaumontet, Catherine; Piedcoq, Julien; Viollet, Benoit; Gaudichon, Claire; Tomé, Daniel; Foretz, Marc; Azzout-Marniche, Dalila

    2017-09-01

    Background: Hepatic AMP-activated kinase (AMPK) activity is sensitive to the dietary carbohydrate-to-protein ratio. However, the role of AMPK in metabolic adaptations to variations in dietary macronutrients remains poorly understood. Objective: The objective of this study was to determine the role of hepatic AMPK in the adaptation of energy metabolism in response to modulation of the dietary carbohydrate-to-protein ratio. Methods: Male 7-wk-old wild-type (WT) and liver AMPK-deficient (knockout) mice were fed either a normal-protein and normal-carbohydrate diet (NP-NC; 14% protein, 76% carbohydrate on an energy basis), a low-protein and high-carbohydrate diet (LP-HC; 5% protein, 85% carbohydrate), or a high-protein and low-carbohydrate diet (HP-LC; 55% protein, 35% carbohydrate) for 3 wk. During this period, after an overnight fast, metabolic parameters were measured and indirect calorimetry was performed in mice during the first hours after refeeding a 1-g calibrated meal of their own diet in order to investigate lipid and carbohydrate metabolism. Results: Knockout mice fed an LP-HC or HP-LC meal exhibited 24% and 8% lower amplitudes in meal-induced carbohydrate and lipid oxidation changes. By contrast, knockout mice fed an NP-NC meal displayed normal carbohydrate and lipid oxidation profiles. These mice exhibited a transient increase in hepatic triglycerides and a decrease in hepatic glycogen. These changes were associated with a 650% higher secretion of fibroblast growth factor 21 (FGF21) 2 h after refeeding. Conclusions: The consequences of hepatic AMPK deletion depend on the dietary carbohydrate-to-protein ratio. In mice fed the NP-NC diet, deletion of AMPK in the liver led to an adaptation of liver metabolism resulting in increased secretion of FGF21. These changes possibly compensated for the absence of hepatic AMPK, as these mice exhibited normal postprandial changes in carbohydrate and lipid oxidation. By contrast, in mice fed the LP-HC and HP-LC diets, the

  14. Productive performance and digestibility in the initial growth phase of tambaqui (Colossoma macropomum fed diets with different carbohydrate and lipid levels

    Directory of Open Access Journals (Sweden)

    L.C.G. Sandre

    2017-05-01

    Full Text Available The use of dietary protein can be optimized by increasing diet energy, which can be achieved by adding non-protein nutrients such as carbohydrates and lipids. If incorporated in suitable amounts, these items can promote the protein sparing effect, reducing nitrogen excretion and improving the quality of fish farming effluents. The study assessed productive performance, body composition, nutrient and energy retention efficiency and digestibility of the omnivorous fish tambaqui (Colossoma macropomum fed diets with three carbohydrate (410, 460 and 510 g kg−1 and two lipid levels (40 and 80 g kg−1 in the initial growth phase (juvenile weighing between 10 and 250 g. The experiment was completely randomized, with six treatments and four replicas arranged in a 3 × 2 factorial design. The 1080 tambaqui tested (10.88 ± 0.13 g body weight were randomly distributed into 24 tanks (500 L; 45 fish/tank and fed the test diets for 120 days. The highest carbohydrate inclusion (510 g kg−1 reduced food intake and fish growth. A protein sparing effect was observed in the growth of tambaqui fed 460 g kg−1 carbohydrates since they showed higher weight gain, protein efficiency ratio, protein productive value and crude protein participation in weight gain. The increase in lipid levels from 40 g kg−1 to 80 g kg−1 increased body fat deposition and decreased the digestibility coefficients of diet nutrients and diet energy. The results demonstrate that the ideal balanced diet to grow juvenile tambaqui is 460 g kg−1 carbohydrates and 40 g kg−1 lipids.

  15. Simultaneous effect of nitrate (NO3- concentration, carbon dioxide (CO2 supply and nitrogen limitation on biomass, lipids, carbohydrates and proteins accumulation in Nannochloropsis oculata

    Directory of Open Access Journals (Sweden)

    Aarón Millán-Oropeza

    2015-03-01

    Full Text Available Biodiesel from microalgae is a promising technology. Nutrient limitation and the addition of CO2 are two strategies to increase lipid content in microalgae. There are two different types of nitrogen limitation, progressive and abrupt limitation. In this work, the simultaneous effect of initial nitrate concentration, addition of CO2, and nitrogen limitation on biomass, lipid, protein and carbohydrates accumulation were analyzed. An experimental design was established in which initial nitrogen concentration, culture time and CO2 aeration as independent numerical variables with three levels were considered. Nitrogen limitation was taken into account as a categorical independent variable. For the experimental design, all the experiments were performed with progressive nitrogen limitation. The dependent response variables were biomass, lipid production, carbohydrates and proteins. Subsequently, comparison of both types of limitation i.e. progressive and abrupt limitation, was performed. Nitrogen limitation in a progressive mode exerted a greater effect on lipid accumulation. Culture time, nitrogen limitation and the interaction of initial nitrate concentration with nitrogen limitation had higher influences on lipids and biomass production. The highest lipid production and productivity were at 582 mgL-1 (49.7 % lipid, dry weight basis and 41.5 mgL-1d-1, respectively; under the following conditions: 250 mgL-1 of initial nitrate concentration, CO2 supply of 4% (v/v, 12 d of culturing and 2 d in state of nitrogen starvation induced by progressive limitation. This work presents a novel way to perform simultaneous analysis of the effect of the initial concentration of nitrate, nitrogen limitation, and CO2 supply on growth and lipid production of Nannochloropsis oculata, with the aim to produce potential biofuels feedstock.

  16. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae).

    Science.gov (United States)

    Chia, Mathias Ahii; Lombardi, Ana Teresa; da Graça Gama Melão, Maria; Parrish, Christopher C

    2015-03-01

    Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10(-7) and 2.0×10(-8)molL(-1) Cd) under varying nitrogen (2.9×10(-6), 1.1×10(-5) and 1.1×10(-3)molL(-1)N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Flight metabolism in Panstrongylus megistus (Hemiptera: Reduviidae): the role of carbohydrates and lipids.

    Science.gov (United States)

    Canavoso, Lilián E; Stariolo, Raúl; Rubiolo, Edilberto R

    2003-10-01

    The metabolism of lipids and carbohydrates related to flight activity in Panstrongylus megistus was investigated. Insects were subjected to different times of flight under laboratory conditions and changes in total lipids, lipophorin density and carbohydrates were followed in the hemolymph. Lipids and glycogen were also assayed in fat body and flight muscle. In resting insects, hemolymph lipids averaged 3.4 mg/ml and significantly increased after 45 min of flight (8.8 mg/ml, P < 0.001). High-density lipophorin was the sole lipoprotein observed in resting animals. A second fraction with lower density corresponding to low-density lipophorin appeared in insects subjected to flight. Particles from both fractions showed significant differences in diacylglycerol content and size. In resting insects, carbohydrate levels averaged 0.52 mg/ml. They sharply declined more than twofold after 15 min of flight, being undetectable in hemolymph of insects flown for 45 min. Lipid and glycogen from fat body and flight muscle decreased significantly after 45 min of flight. Taken together, the results indicate that P. megistus uses carbohydrates during the initiation of the flight after which, switching fuel for flight from carbohydrates to lipids.

  18. Flight metabolism in Panstrongylus megistus (Hemiptera: Reduviidae: the role of carbohydrates and lipids

    Directory of Open Access Journals (Sweden)

    Lilián E Canavoso

    2003-10-01

    Full Text Available The metabolism of lipids and carbohydrates related to flight activity in Panstrongylus megistus was investigated. Insects were subjected to different times of flight under laboratory conditions and changes in total lipids, lipophorin density and carbohydrates were followed in the hemolymph. Lipids and glycogen were also assayed in fat body and flight muscle. In resting insects, hemolymph lipids averaged 3.4 mg/ml and significantly increased after 45 min of flight (8.8 mg/ml, P < 0.001. High-density lipophorin was the sole lipoprotein observed in resting animals. A second fraction with lower density corresponding to low-density lipophorin appeared in insects subjected to flight. Particles from both fractions showed significant differences in diacylglycerol content and size. In resting insects, carbohydrate levels averaged 0.52 mg/ml. They sharply declined more than twofold after 15 min of flight, being undetectable in hemolymph of insects flown for 45 min. Lipid and glycogen from fat body and flight muscle decreased significantly after 45 min of flight. Taken together, the results indicate that P. megistus uses carbohydrates during the initiation of the flight after which, switching fuel for flight from carbohydrates to lipids.

  19. Protein aggregation in food models: effect of γ-irradiation and lipid oxidation

    International Nuclear Information System (INIS)

    Delincee, H.; Paul, P.

    1981-01-01

    Myoglobin and serum albumin have been irradiated in aqueous solution in the presence of varying amounts of carbohydrates and lipids, and the yield of protein aggregates has been determined by gel filtration. With myoglobin the formation of aggregates evolving from the reaction with oxidizing lipids was observed, which was not found for serum albumin. The production of protein-lipid complexes, in which lipid material was occluded in the high-molecular aggregates by physical forces was demonstrated. Gel filtration and gel electrophoresis, both in the presence of SDS, and thin-layer isoelectric focusing revealed distinct structural differenes between the protein aggregates induced by irradiation and the aggregates formed by interaction with oxidizing lipids

  20. Flight metabolism in Panstrongylus megistus (Hemiptera: Reduviidae): the role of carbohydrates and lipids

    OpenAIRE

    Canavoso, Lilián E; Stariolo, Raúl; Rubiolo, Edilberto R

    2003-01-01

    The metabolism of lipids and carbohydrates related to flight activity in Panstrongylus megistus was investigated. Insects were subjected to different times of flight under laboratory conditions and changes in total lipids, lipophorin density and carbohydrates were followed in the hemolymph. Lipids and glycogen were also assayed in fat body and flight muscle. In resting insects, hemolymph lipids averaged 3.4 mg/ml and significantly increased after 45 min of flight (8.8 mg/ml, P < 0.001). High-...

  1. Effects of high-protein versus high-carbohydrate diets on markers of β-cell function, oxidative stress, lipid peroxidation, proinflammatory cytokines, and adipokines in obese, premenopausal women without diabetes: a randomized controlled trial.

    Science.gov (United States)

    Kitabchi, Abbas E; McDaniel, Kristin A; Wan, Jim Y; Tylavsky, Frances A; Jacovino, Crystal A; Sands, Chris W; Nyenwe, Ebenezer A; Stentz, Frankie B

    2013-07-01

    To study the effects of high-protein versus high-carbohydrate diets on various metabolic end points (glucoregulation, oxidative stress [dichlorofluorescein], lipid peroxidation [malondialdehyde], proinflammatory cytokines [tumor necrosis factor-α and interleukin-6], adipokines, and resting energy expenditure [REE]) with high protein-low carbohydrate (HP) and high carbohydrate-low protein (HC) diets at baseline and after 6 months of dietary intervention. We recruited obese, premenopausal women aged 20-50 years with no diabetes or prediabetes who were randomized to HC (55% carbohydrates, 30% fat, and 15% protein) or HP (40% carbohydrates, 30% fat, and 30% protein) diets for 6 months. The diets were provided in prepackaged food, which provided 500 kcal restrictions per day. The above metabolic end points were measured with HP and HC diet at baseline and after 6 months of dietary intervention. After 6 months of the HP versus HC diet (12 in each group), the following changes were significantly different by Wilcoxon rank sum test for the following parameters: dichlorofluorescein (-0.8 vs. -0.3 µmol/L, P vs. -0.2 μmol/L, P = 0.0004), C-reactive protein (-2.1 vs. -0.8 mg/L, P = 0.0003), E-selectin (-8.6 vs. -3.7 ng/mL, P = 0.0007), adiponectin (1,284 vs. 504 ng/mL, P = 0.0011), tumor necrosis factor-α (-1.8 vs. -0.9 pg/mL, P vs. -0.4 pg/mL, P vs. 0.16 mmol/L, P = 0.0002), REE (259 vs. 26 kcal, P vs. 0.9, P vs. 2.1, P < 0.0001). To our knowledge, this is the first report on the significant advantages of a 6-month hypocaloric HP diet versus hypocaloric HC diet on markers of β-cell function, oxidative stress, lipid peroxidation, proinflammatory cytokines, and adipokines in normal, obese females without diabetes.

  2. Effects of silicon deficiency on lipid and carbohydrate metabolism in the diatom Cyclotella cryptica

    International Nuclear Information System (INIS)

    Roessler, P.G.

    1987-01-01

    Previous studies have shown that silicon deficiency induces lipid accumulation in certain diatom species. The nature of the lipids produced under these conditions was not investigated, however, and the biochemical mechanisms which underlie this phenomenon were not determined. Research was carried out in order to increase our knowledge concerning the aspects of lipid accumulation in diatoms. The first phase of this project indicated that the diatoms C. cryptica, Cylindrotheca fusiformis, and Thalassiosira pseudonana accumulated storage lipids when grown under silicon-limiting conditions. The ratio of saturated and monounsaturated fatty acids to polyunsaturated fatty acids in C. cryptica cells increased markedly after 24 hours of silicon deficiency. Tracer experiments with [ 14 C]bicarbonate suggested that lipid accumulation in silicon-limited C. cryptica cells was due to two distinct processes: (1) an increase in the amount of newly photoassimilated carbon partitioned into lipids, and (2) a slow conversion of non-lipid compounds (carbohydrates and presumably proteins) into lipids

  3. Effect of Glycerol and Glucose on the Enhancement of Biomass, Lipid and Soluble Carbohydrate Production by Chlorella vulgaris in Mixotrophic Culture

    Directory of Open Access Journals (Sweden)

    Hong Yang

    2013-01-01

    Full Text Available Biodiesel-derived glycerol is a promising substrate for mixotrophic cultivation of oleaginous microalgae, which can also reduce the cost of microalgal biodiesel. The objective of this study is to investigate the potential of using glycerol and glucose as a complex carbon substrate to produce microalgal biomass and biochemical components, such as photosynthetic pigments, lipids, soluble carbohydrates and proteins by Chlorella vulgaris. The results show that C. vulgaris can utilize glycerol as a sole carbon substrate, but its effect is inferior to that of the mixture of glycerol and glucose. The effect of glycerol and glucose could enhance the algal cell growth rate, biomass content and volumetric productivity, and overcome the lower biomass production on glycerol as the sole organic carbon source in mixotrophic culture medium. The utilization of complex organic carbon substrate can stimulate the biosynthesis of lipids and soluble carbohydrates as the raw materials for biodiesel and bioethanol production, and reduce the anabolism of photosynthetic pigments and proteins. This study provides a promising niche for reducing the overall cost of biodiesel and bioethanol production from microalgae as it investigates the by-products of algal biodiesel production and algal cell hydrolysis as possible raw materials (lipids and carbohydrates and organic carbon substrates (soluble carbohydrates and glycerol for mixotrophic cultivation of microalgae.

  4. Effect of low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats.

    Science.gov (United States)

    Kostogrys, Renata B; Franczyk-Żarów, Magdalena; Maślak, Edyta; Topolska, Kinga

    2015-03-01

    The objective of this study was to compare effects of Western diet (WD) with low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats. Eighteen rats were randomly assigned to three experimental groups and fed for the next 2 months. The experimental diets were: Control (7% of soybean oil, 20% protein), WD (21% of butter, 20% protein), and LCHP (21% of butter and 52.4% protein) diet. The LCHP diet significantly decreased the body weight of the rats. Diet consumption was differentiated among groups, however significant changes were observed since third week of the experiment duration. Rats fed LCHP diet ate significantly less (25.2g/animal/day) than those from Control (30.2g/animal/day) and WD (27.8 g/animal/day) groups. Additionally, food efficiency ratio (FER) tended to decrease in LCHP fed rats. Serum homocysteine concentration significantly decreased in rats fed WD and LCHP diets. Liver weights were significantly higher in rats fed WD and LCHP diets. At the end of the experiment (2 months) the triacylglycerol (TAG) was significantly decreased in animals fed LCHP compared to WD. qRT-PCR showed that SCD-1 and FAS were decreased in LCHP fed rats, but WD diet increased expression of lipid metabolism genes. Rats receiving LCHP diet had two fold higher kidney weight and 54.5% higher creatinin level compared to Control and WD diets. In conclusion, LCHP diet decreased animal's body weight and decreased TAG in rat's serum. However, kidney damage in LCHP rats was observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The effects of whey protein with or without carbohydrates on resistance training adaptations.

    Science.gov (United States)

    Hulmi, Juha J; Laakso, Mia; Mero, Antti A; Häkkinen, Keijo; Ahtiainen, Juha P; Peltonen, Heikki

    2015-01-01

    Nutrition intake in the context of a resistance training (RT) bout may affect body composition and muscle strength. However, the individual and combined effects of whey protein and carbohydrates on long-term resistance training adaptations are poorly understood. A four-week preparatory RT period was conducted in previously untrained males to standardize the training background of the subjects. Thereafter, the subjects were randomized into three groups: 30 g of whey proteins (n = 22), isocaloric carbohydrates (maltodextrin, n = 21), or protein + carbohydrates (n = 25). Within these groups, the subjects were further randomized into two whole-body 12-week RT regimens aiming either for muscle hypertrophy and maximal strength or muscle strength, hypertrophy and power. The post-exercise drink was always ingested immediately after the exercise bout, 2-3 times per week depending on the training period. Body composition (by DXA), quadriceps femoris muscle cross-sectional area (by panoramic ultrasound), maximal strength (by dynamic and isometric leg press) and serum lipids as basic markers of cardiovascular health, were analysed before and after the intervention. Twelve-week RT led to increased fat-free mass, muscle size and strength independent of post-exercise nutrient intake (P carbohydrate group independent of the type of RT (P carbohydrate group (P carbohydrates or combination of proteins and carbohydrates did not have a major effect on muscle size or strength when ingested two to three times a week. However, whey proteins may increase abdominal fat loss and relative fat-free mass adaptations in response to resistance training when compared to fast-acting carbohydrates.

  6. [Effects of progestogens on the metabolism of lipids and carbohydrates. Practical consequences (author's transl)].

    Science.gov (United States)

    Ghéron, G

    Estrogens which are one of the components of contraceptive less than pills greater than are incriminated in many cardiovascular accidents. These occur as a result of metabolic disorders (involving lipids and carbohydrates), of modifications in coagulation factors, etc. The possible influence of progestogens was ignored for a long time. The widespread use of these compounds, prescribed for contraception as well as during hormonal replacement therapy for absolute or relative luteinic insufficiency, makes careful monitoring of lipid and carbohydrate metabolism imperative. This position is strengthened by a preliminary review of the literature which leads to several conclusions concerning lipid and carbohydrate metabolism.

  7. Changes in Atherogenic Dyslipidemia Induced by Carbohydrate Restriction in Men Are Dependent on Dietary Protein Source1234

    OpenAIRE

    Mangravite, Lara M.; Chiu, Sally; Wojnoonski, Kathleen; Rawlings, Robin S.; Bergeron, Nathalie; Krauss, Ronald M.

    2011-01-01

    Previous studies have shown that multiple features of atherogenic dyslipidemia are improved by replacement of dietary carbohydrate with mixed sources of protein and that these lipid and lipoprotein changes are independent of dietary saturated fat content. Because epidemiological evidence suggests that red meat intake may adversely affect cardiovascular disease risk, we tested the effects of replacing dietary carbohydrate with beef protein in the context of high- vs. low-saturated fat intake i...

  8. A functional carbohydrate chip platform for analysis of carbohydrate-protein interaction

    International Nuclear Information System (INIS)

    Seo, Jeong Hyun; Kim, Chang Sup; Hwang, Byeong Hee; Cha, Hyung Joon

    2010-01-01

    A carbohydrate chip based on glass or other transparent surfaces has been suggested as a potential tool for high-throughput analysis of carbohydrate-protein interactions. Here we proposed a facile, efficient, and cost-effective method whereby diverse carbohydrate types are modified in a single step and directly immobilized onto a glass surface, with retention of functional orientation. We modified various types of carbohydrates by reductive amination, in which reducing sugar groups were coupled with 4-(2-aminoethyl)aniline, which has di-amine groups at both ends. The modified carbohydrates were covalently attached to an amino-reactive NHS-activated glass surface by formation of stable amide bonds. This proposed method was applied for efficient construction of a carbohydrate microarray to analyze carbohydrate-protein interactions. The carbohydrate chip prepared using our method can be successfully used in diverse biomimetic studies of carbohydrates, including carbohydrate-biomolecule interactions, and carbohydrate sensor chip or microarray development for diagnosis and screening.

  9. Opposite regulation of insulin sensitivity by dietary lipid versus carbohydrate excess

    DEFF Research Database (Denmark)

    Lundsgaard, Annemarie; Sjøberg, Kim Anker; Høeg, Louise Dalgas

    2017-01-01

    To understand the mechanisms in lipid-induced insulin resistance, a more physiologic approach is to enhance FA availability through the diet. Nine healthy men ingested two hypercaloric diets (+75 E%) for three days, enriched in unsaturated FA (78 E% fat; UNSAT) or carbohydrates (80 E% carbohydrate...

  10. Changes in atherogenic dyslipidemia induced by carbohydrate restriction in men are dependent on dietary protein source.

    Science.gov (United States)

    Mangravite, Lara M; Chiu, Sally; Wojnoonski, Kathleen; Rawlings, Robin S; Bergeron, Nathalie; Krauss, Ronald M

    2011-12-01

    Previous studies have shown that multiple features of atherogenic dyslipidemia are improved by replacement of dietary carbohydrate with mixed sources of protein and that these lipid and lipoprotein changes are independent of dietary saturated fat content. Because epidemiological evidence suggests that red meat intake may adversely affect cardiovascular disease risk, we tested the effects of replacing dietary carbohydrate with beef protein in the context of high- vs. low-saturated fat intake in 40 healthy men. After a 3-wk baseline diet [50% daily energy (E) as carbohydrate, 13% E as protein, 15% E as saturated fat], participants consumed for 3 wk each in a randomized crossover design two high-beef diets in which protein replaced carbohydrate (31% E as carbohydrate, 31% E as protein, with 10% E as beef protein). The high-beef diets differed in saturated fat content (8% E vs. 15% E with exchange of saturated for monounsaturated fat). Two-week washout periods were included following the baseline diet period and between the randomized diets periods. Plasma TG concentrations were reduced after the 2 lower carbohydrate dietary periods relative to after the baseline diet period and these reductions were independent of saturated fat intake. Plasma total, LDL, and non-HDL cholesterol as well as apoB concentrations were lower after the low-carbohydrate, low-saturated fat diet period than after the low-carbohydrate, high-saturated fat diet period. Given our previous observations with mixed protein diets, the present findings raise the possibility that dietary protein source may modify the effects of saturated fat on atherogenic lipoproteins.

  11. Tracing metabolic routes of dietary carbohydrate and protein in rainbow trout (Oncorhynchus mykiss) using stable isotopes ([¹³C]starch and [¹⁵N]protein): effects of gelatinisation of starches and sustained swimming.

    Science.gov (United States)

    Felip, Olga; Ibarz, Antoni; Fernández-Borràs, Jaume; Beltrán, Marta; Martín-Pérez, Miguel; Planas, Josep V; Blasco, Josefina

    2012-03-01

    Here we examined the use of stable isotopes, [¹³C]starch and [¹⁵N]protein, as dietary tracers to study carbohydrate assimilation and distribution and protein utilisation, respectively, by rainbow trout (Oncorhynchus mykiss). The capacity of glucose uptake and use by tissues was studied, first, by varying the digestibility of carbohydrate-rich diets (30 % carbohydrate), using raw starch and gelatinised starch (GS) and, second, by observing the effects of two regimens of activity (voluntary swimming, control; sustained swimming at 1·3 body lengths/s, exercise) on the GS diet. Isotopic ratio enrichment (¹³C and ¹⁵N) of the various tissue components (protein, lipid and glycogen) was measured in the liver, muscles, viscera and the rest of the fish at 11 and 24 h after a forced meal. A level of 30 % of digestible carbohydrates in the food exceeded the capacity of rainbow trout to use this nutrient, causing long-lasting hyperglycaemia that raises glucose uptake by tissues, and the synthesis of glycogen and lipid in liver. Total 13C recovered 24 h post-feeding in the GS group was lower than at 11 h, indicating a proportional increase in glucose oxidation, although the deposition of lipids in white muscle (WM) increased. Prolonged hyperglycaemia was prevented by exercise, since sustained swimming enhances the use of dietary carbohydrates, mainly through conversion to lipids in liver and oxidation in muscles, especially in red muscle (RM). Higher recoveries of total 15N for exercised fish at 24 h, mainly into the protein fraction of both RM and WM, provide evidence that sustained swimming improves protein deposition, resulting in an enhancement of the protein-sparing effect.

  12. Protein aggregation in aqueous casein solution. Effect of irradiation, dose level, concentration, storage and additives (carbohydrate and lipid)

    Energy Technology Data Exchange (ETDEWEB)

    Yousri, R M

    1980-06-01

    From the vast amount of research efforts dealing with various aspects of radiation effects on foods and food components, it is apparent up to now that much remains to be studied in depth, much may have to be added or corrected about radiation-induced physico-chemical changes in foods. A great many reactions that take place when foodstuffs are subjected to ionizing radiation are still not fully understood. The better understanding of some of the radiation-induced changes in pure proteins as such or in mixture with other food constituents could yield much data which could be meaningfully extrapolated to intact foods and consequently could help to improve the assessment of the wholesomeness of irradiated foods. It was the purpose of our investigations to elucidate some of the changes in the chemical structure of a pure protein (casein), irradiated as such or with added carbohydrate and/or lipid. The effect of subsequent storage of the irradiated solutions has been also examined. The formation of protein aggregates was studied by gel filtration technique. The application of thin-layer gel filtration, its speed and adaptability to very small samples facilitated the measurements of the extent of aggregation which occurred in protein molecules after irradiation.

  13. EFFECT OF DIETARY LEVELS OF LIPID AND CARBOHYDRATE ON GROWTH PERFORMANCE, CHEMICAL CONTENTS AND DIGESTIBILITY IN RAINBOW TROUT, ONCORHYNCHUS MYKISS WALBAUM, 1792

    Directory of Open Access Journals (Sweden)

    E. GÜMÜŞ AND R. İKİZ

    2009-05-01

    Full Text Available The present study was carried out to determine the effects of four rations on growth, chemical composition and digestibility of the Rainbow trout (Oncorhynchus mykiss Walbaum, 1792. Four test diets were formulated to have the same levels of protein (40% and energy (gross energy: around 4800 cal/g, however, these test diets were composed of basic diet with different carbohydrate (0, 3, 12 and 18% to lipid (0, 6, 15 and 18% ratios (Diet 1: 0/18; Diet 2: 3/15; Diet 3: 12/6 and Diet 4: 18/0. Fifty fish weighing 99.0 ± 0.65g were placed in each of the four experimental tanks and were fed with one of the experimental diets for 13 weeks consisting of two trial periods (Periods I and II. Growth parameters and chemical composition of fish flesh were monitored. Effects of the diets on apparent digestibility coefficients (ADC were also determined. At the end of the study, the fish growth was affected significantly (P0.05 changes in specific growth rate, although higher values were observed in fish fed with Diets 1 and 3. The experimental group fed with Diet 4 showed a lower (P0.05 changes in experimental groups fed with the diets. The percentage of water, protein and ash of fish flesh did not show any (P>0.05 change. However, the muscle lipid content of fish significantly (P<0.05 decreased as carbohydrate level increased. The ADC values were also affected (P<0.05 with carbohydrate and lipid levels in the diets. The ADC of lipid was lowest in the experimental group fed with Diet 1. The ADC values for dry matter, proteins and energy were lowest for fish fed on Diet 4, while for ash it was lowest for Diet 2. These results indicate that the best balance between the dietary lipid and carbohydrate levels was obtained on Diet 3, without lower growth.

  14. Development and use of an application as a tool in biochemistry teaching: carbohydrates, lipids, proteins and nucleic acids

    Directory of Open Access Journals (Sweden)

    Nayra Rodrigues de Alcântara

    2015-12-01

    Full Text Available This study aimed to produce an app with information contextualized and creative on the biomolecules: carbohydrates, lipids, proteins, and nucleic acids for can be used as a support tool to professor of biochemistry, biology and science. The research was divided into three stages: the first stage questionnaires were applied to verify the level of knowledge of participants; the second stage was the preparation of the app and, after contact of the students with the app, the same questionnaire was completed again to verify the effectiveness of the methodology; the third stage was to analyze the result.. The application has ratings of biomolecules, definitions, functions and curiosities to the peoples to use the app and can relate biochemistry with their daily lives. The BQB Tech application was efficient to be used as tools in biochemistry teaching.

  15. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.

    Science.gov (United States)

    Ansari, Faiz Ahmad; Gupta, Sanjay Kumar; Shriwastav, Amritanshu; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal

    2017-06-01

    Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.

  16. Randomized controlled trial of changes in dietary carbohydrate/fat ratio and simple vs complex carbohydrates on body weight and blood lipids: the CARMEN study. The Carbohydrate Ratio Management in European National diets.

    Science.gov (United States)

    Saris, W H; Astrup, A; Prentice, A M; Zunft, H J; Formiguera, X; Verboeket-van de Venne, W P; Raben, A; Poppitt, S D; Seppelt, B; Johnston, S; Vasilaras, T H; Keogh, G F

    2000-10-01

    To investigate the long-term effects of changes in dietary carbohydrate/fat ratio and simple vs complex carbohydrates. Randomized controlled multicentre trial (CARMEN), in which subjects were allocated for 6 months either to a seasonal control group (no intervention) or to one of three experimental groups: a control diet group (dietary intervention typical of the average national intake); a low-fat high simple carbohydrate group; or a low-fat high complex carbohydrate group. Three hundred and ninety eight moderately obese adults. The change in body weight was the primary outcome; changes in body composition and blood lipids were secondary outcomes. Body weight loss in the low-fat high simple carbohydrate and low-fat high complex carbohydrate groups was 0.9 kg (P Fat mass changed by -1.3kg (Plow-fat high simple carbohydrate, low-fat high complex carbohydrate and control diet groups, respectively. Changes in blood lipids did not differ significantly between the dietary treatment groups. Our findings suggest that reduction of fat intake results in a modest but significant reduction in body weight and body fatness. The concomitant increase in either simple or complex carbohydrates did not indicate significant differences in weight change. No adverse effects on blood lipids were observed. These findings underline the importance of this dietary change and its potential impact on the public health implications of obesity.

  17. Metabolic Syndrome in Children: Clinical Picture, Features of Lipid and Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    O.S. Bobrykovych

    2013-09-01

    Full Text Available The study included 225 children aged from 14 to 18 years with various manifestations of the metabolic syndrome in neighborhoods, different by iodine provision. The physical development (height, weight, body mass index, waist and hip circumferences has been examined. Biochemical investigations are focused on the study of lipid and carbohydrate metabolism in children. It is found that children who live in mountains have more severe obesity. In parallel with the increase of the degree of obesity, disorders of lipid and carbohydrate metabolism aggravate in children with sings of metabolic syndrome.

  18. Carbohydrate-restricted diets high in either monounsaturated fat or protein are equally effective at promoting fat loss and improving blood lipids.

    Science.gov (United States)

    Luscombe-Marsh, Natalie D; Noakes, Manny; Wittert, Gary A; Keogh, Jennifer B; Foster, Paul; Clifton, Peter M

    2005-04-01

    When substituted for carbohydrate in an energy-reduced diet, dietary protein enhances fat loss in women. It is unknown whether the effect is due to increased protein or reduced carbohydrate. We compared the effects of 2 isocaloric diets that differed in protein and fat content on weight loss, lipids, appetite regulation, and energy expenditure after test meals. This was a parallel, randomized study in which subjects received either a low-fat, high-protein (LF-HP) diet (29 +/- 1% fat, 34 +/- 0.8% protein) or a high-fat, standard-protein (HF-SP) diet (45 +/- 0.6% fat, 18 +/- 0.3% protein) during 12 wk of energy restriction (6 +/- 0.1 MJ/d) and 4 wk of energy balance (7.4 +/- 0.3 MJ/d). Fifty-seven overweight and obese [mean body mass index (in kg/m(2)): 33.8 +/- 0.9] volunteers with insulin concentrations >12 mU/L completed the study. Weight loss (LF-HP group, 9.7 +/- 1.1 kg; HF-SP group, 10.2 +/- 1.4 kg; P = 0.78) and fat loss were not significantly different between diet groups even though the subjects desired less to eat after the LF-HP meal (P = 0.02). The decrease in resting energy expenditure was not significantly different between diet groups (LF-HP, -342 +/- 185 kJ/d; HF-SP, -349 +/- 220 kJ/d). The decrease in the thermic effect of feeding with weight loss was smaller in the LF-HP group than in the HF-SP group (-0.3 +/- 1.0% compared with -3.6 +/- 0.7%; P = 0.014). Glucose and insulin responses to test meals improved after weight loss (P loss and the improvements in insulin resistance and cardiovascular disease risk factors did not differ significantly between the 2 diets, and neither diet had any detrimental effects on bone turnover or renal function.

  19. Moderate carbohydrate, moderate protein weight loss diet reduces cardiovascular disease risk compared to high carbohydrate, low protein diet in obese adults: A randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Evans Ellen M

    2008-11-01

    Full Text Available Abstract Background To evaluate the metabolic effects of two weight loss diets differing in macronutrient composition on features of dyslipidemia and post-prandial insulin (INS response to a meal challenge in overweight/obese individuals. Methods This study was a parallel-arm randomized 4 mo weight loss trial. Adults (n = 50, 47 ± 7 y matched on BMI (33.6 ± 0.6 kg/m2, P = 0.79 consumed energy restricted diets (deficit ~500 kcal/d: PRO (1.6 g.kg-1.d-1 protein and -1.d-1 protein and > 220 g/d carbohydrate for 4 mos. Meal challenges of respective diets were utilized for determination of blood lipids and post-prandial INS and glucose response at the beginning and end of the study. Results There was a trend for PRO to lose more weight (-9.1% vs. -7.3%, P = 0.07 with a significant reduction in percent fat mass compared to CHO (-8.7% vs. -5.7%; P = 0.03. PRO also favored reductions in triacylglycerol (-34% vs. -14%; P P = 0.05; however, CHO favored reduction in LDL-C (-7% vs. +2.5%; P P P Conclusion A weight loss diet with moderate carbohydrate, moderate protein results in more favorable changes in body composition, dyslipidemia, and post-prandial INS response compared to a high carbohydrate, low protein diet suggesting an additional benefit beyond weight management to include augmented risk reduction for metabolic disease.

  20. The Roles of Vitamin A in the Regulation of Carbohydrate, Lipid, and Protein Metabolism

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2014-05-01

    Full Text Available Currently, two-thirds of American adults are overweight or obese. This high prevalence of overweight/obesity negatively affects the health of the population, as obese individuals tend to develop several chronic diseases, such as type 2 diabetes and cardiovascular diseases. Due to obesity’s impact on health, medical costs, and longevity, the rise in the number of obese people has become a public health concern. Both genetic and environmental/dietary factors play a role in the development of metabolic diseases. Intuitively, it seems to be obvious to link over-nutrition to the development of obesity and other metabolic diseases. However, the underlying mechanisms are still unclear. Dietary nutrients not only provide energy derived from macronutrients, but also factors such as micronutrients with regulatory roles. How micronutrients, such as vitamin A (VA; retinol, regulate macronutrient homeostasis is still an ongoing research topic. As an essential micronutrient, VA plays a key role in the general health of an individual. This review summarizes recent research progress regarding VA’s role in carbohydrate, lipid, and protein metabolism. Due to the large amount of information regarding VA functions, this review focusses on metabolism in metabolic active organs and tissues. Additionally, some perspectives for future studies will be provided.

  1. Wood adhesives containing proteins and carbohydrates

    Science.gov (United States)

    In recent years there has been resurgent interest in using biopolymers as sustainable and environmentally friendly ingredients in wood adhesive formulations. Among them, proteins and carbohydrates are the most commonly used. In this chapter, an overview is given of protein-based and carbohydrate-...

  2. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Aimee L. Dordevic

    2015-07-01

    Full Text Available Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD; body mass index (BMI 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage groups; placebo (water, carbohydrate (maltodextrin or lipid (dairy-cream. Subcutaneous, abdominal adipose tissue biopsies and serum samples were collected prior to (0 h, as well as 2 h and 4 h after consumption of the beverage. Adipose tissue gene expression levels of monocyte chemoattractant protein-1 (MCP-1, interleukin 6 (IL-6 and tumor necrosis factor-α (TNF-α increased in all three groups, without an increase in circulating TNF-α. Serum leptin (0.6-fold, p = 0.03 and adipose tissue leptin gene expression levels (0.6-fold, p = 0.001 decreased in the hours following the placebo beverage, but not the nutrient beverages. Despite increased inflammatory cytokine gene expression in adipose tissue with all beverages, suggesting a confounding effect of the repeated biopsy method, differences in metabolic responses of adipose tissue and circulating adipokines to ingestion of lipid and carbohydrate beverages were observed.

  3. Gastrointestinal transit of extruded or pelletized diets in pacu fed distinct inclusion levels of lipid and carbohydrate

    Directory of Open Access Journals (Sweden)

    Claucia Aparecida Honorato

    2014-11-01

    Full Text Available The objective of this work was to evaluate the effect of pelletized or extruded diets, with different levels of carbohydrate and lipid, on the gastrointestinal transit time (GITT and its modulation in pacu (Piaractus mesopotamicus. One hundred and eighty pacu juveniles were fed with eight isonitrogenous diets containing two carbohydrate levels (40 and 50% and two lipid levels (4 and 8%. Four diets were pelletized and four were extruded. Carbohydrate and lipid experimental levels caused no changes to the bolus transit time. However, the bolus permanence time was related to diet processing. Fish fed pelletized diets exhibited the highest gastrointestinal transit time. Regression analysis of bolus behavior for pelletized and extruded diets with 4% lipid depicted different fits. GITT regression analysis of fish fed 8% lipid was fitted to a cubic equation and displayed adjustments of food permanence, with enhanced utilization of the diets, either with extruded or pelletized diets. GITT of fish fed extruded diets with 4% lipid was adjusted to a linear equation. The GITT of pacu depends on the diet processing and is affected by dietary levels of lipid and carbohydrate.

  4. The effect of a plant-based low-carbohydrate ("Eco-Atkins") diet on body weight and blood lipid concentrations in hyperlipidemic subjects.

    Science.gov (United States)

    Jenkins, David J A; Wong, Julia M W; Kendall, Cyril W C; Esfahani, Amin; Ng, Vivian W Y; Leong, Tracy C K; Faulkner, Dorothea A; Vidgen, Ed; Greaves, Kathryn A; Paul, Gregory; Singer, William

    2009-06-08

    Low-carbohydrate, high-animal protein diets, which are advocated for weight loss, may not promote the desired reduction in low-density lipoprotein cholesterol (LDL-C) concentration. The effect of exchanging the animal proteins and fats for those of vegetable origin has not been tested. Our objective was to determine the effect on weight loss and LDL-C concentration of a low-carbohydrate diet high in vegetable proteins from gluten, soy, nuts, fruits, vegetables, cereals, and vegetable oils compared with a high-carbohydrate diet based on low-fat dairy and whole grain products. A total of 47 overweight hyperlipidemic men and women consumed either (1) a low-carbohydrate (26% of total calories), high-vegetable protein (31% from gluten, soy, nuts, fruit, vegetables, and cereals), and vegetable oil (43%) plant-based diet or (2) a high-carbohydrate lacto-ovo vegetarian diet (58% carbohydrate, 16% protein, and 25% fat) for 4 weeks each in a parallel study design. The study food was provided at 60% of calorie requirements. Of the 47 subjects, 44 (94%) (test, n = 22 [92%]; control, n = 22 [96%]) completed the study. Weight loss was similar for both diets (approximately 4.0 kg). However, reductions in LDL-C concentration and total cholesterol-HDL-C and apolipoprotein B-apolipoprotein AI ratios were greater for the low-carbohydrate compared with the high-carbohydrate diet (-8.1% [P = .002], -8.7% [P = .004], and -9.6% [P = .001], respectively). Reductions in systolic and diastolic blood pressure were also seen (-1.9% [P = .052] and -2.4% [P = .02], respectively). A low-carbohydrate plant-based diet has lipid-lowering advantages over a high-carbohydrate, low-fat weight-loss diet in improving heart disease risk factors not seen with conventional low-fat diets with animal products.

  5. Evaluation of certain crop residues for carbohydrate and protein fractions by cornell net carbohydrate and protein system

    Directory of Open Access Journals (Sweden)

    Venkateswarulu Swarna

    2015-06-01

    Full Text Available Four locally available crop residues viz., jowar stover (JS, maize stover (MS, red gram straw (RGS and black gram straw (BGS were evaluated for carbohydrate and protein fractions using Cornell Net Carbohydrate and Protein (CNCP system. Lignin (% NDF was higher in legume straws as compared to cereal stovers while Non-structural carbohydrates (NSC (% DM followed the reverse trend. The carbohydrate fractions A and B1 were higher in BGS while B2 was higher in MS as compared to other crop residues. The unavailable cell wall fraction (C was higher in legume straws when compared to cereal stovers. Among protein fractions, B1 was higher in legume straws when compared to cereal stovers while B2 was higher in cereal stovers as compared to legume straws. Fraction B3 largely, bypass protein was highest in MS as compared to other crop residues. Acid detergent insoluble crude protein (ADICP (% CP or unavailable protein fraction C was lowest in MS and highest in BGS. It is concluded that MS is superior in nutritional value for feeding ruminants as compared to other crop residues.

  6. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates

    Directory of Open Access Journals (Sweden)

    Wiebe Marilyn G

    2012-05-01

    Full Text Available Abstract Background Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. Methods R. toruloides was grown in batch and fed-batch cultures in 0.5 L bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100 media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. Results Lipid production was most efficient with glucose (up to 25 g lipid L−1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L−1 h−1 as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass. Lipid production was low (15–19% lipid in biomass with arabinose as sole carbon source and was lower than expected (30% lipid in biomass when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L−1, with 49% lipid in the biomass and fed-batch (35 to 47 g L−1, with 50 to 75% lipid in the biomass cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. Conclusions Lipid production in R. toruloides was lower from arabinose and mixed

  7. Effect of dietary levels of lipid and carbohydrate on growth performance, body composition, nitrogen excretion and plasma glucose levels in rainbow trout reared at 8 or 18 degrees C.

    Science.gov (United States)

    Brauge, C; Corraze, G; Médale, F

    1995-01-01

    Trout reared at 8 or 18 degrees C were fed twice a day almost to satiation with 1 of 3 experimental diets. The diets were formulated to contain the same levels of protein (43%, dry matter (DM) basis) and digestible energy (around 15 kJ/g DM), but different carbohydrate/lipid ratios 30:7 to 23:14). Time-course studies of nitrogen excretion and glycaemia were also carried out. After 12 weeks of feeding, growth, protein retention and body composition were not influenced by the dietary treatment in trout reared at 8 degrees C. At 18 degrees C, the protein retention was not affected by dietary treatment, but the weight gain tended to be higher in trout fed the diet with the lowest carbohydrate/lipid ratio. This result was due to higher body lipid deposition in these trout. Nitrogen excretion was not influenced by dietary treatment, but was higher at 18 degrees C than at 8 degrees C because of a higher feed intake. Glycaemia increased with dietary level of digestible carbohydrate and the highest plasma glucose level was attained later at 8 degrees C in comparison to 18 degrees C.

  8. A one-stage cultivation process for lipid- and carbohydrate-rich biomass of Scenedesmus obtusiusculus based on artificial and natural water sources.

    Science.gov (United States)

    Schulze, Christian; Reinhardt, Jakob; Wurster, Martina; Ortiz-Tena, José Guillermo; Sieber, Volker; Mundt, Sabine

    2016-10-01

    A one-stage cultivation process of the microalgae Scenedesmus obtusiusculus with medium based on natural water sources was developed to enhance lipids and carbohydrates. A medium based on artificial sea water, Baltic Sea water and river water with optimized nutrient concentrations compared to the standard BG-11 for nitrate (-75%), phosphate and iron (-90%) was used for cultivation. Although nitrate exhaustion over cultivation resulted in nitrate limitation, growth of the microalgae was not reduced. The lipid content increased from 6.0% to 19.9%, an increase in oleic and stearic acid was observed. The unsaponifiable matter of the lipid fraction was reduced from 19.5% to 11.4%. The carbohydrate yield rose from 45% to 50% and the protein content decreased from 32.4% to 15.9%. Using natural water sources with optimized nutrient concentrations could open the opportunity to modulate biomass composition and to reduce the cultivation costs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Proteins mediating intra- and intercellular transport of lipids and lipid-modified proteins

    NARCIS (Netherlands)

    Neumann, S.

    2008-01-01

    Proteins mediating intra- and intercellular transport of lipids and lipid-modified proteins In this thesis, I studied the intra- and intercellular transport of lipidic molecules, in particular glycosphingolipids and lipid-modified proteins. The first part focuses on the intracellular transport of

  10. Role of surfactant protein A (SP-A)/lipid interactions for SP-A functions in the lung.

    Science.gov (United States)

    Casals, C

    2001-01-01

    Surfactant protein A (SP-A), an oligomeric glycoprotein, is a member of a group of proteins named collectins that contain collagen-like and Ca(2+)-dependent carbohydrate recognition domains. SP-A interacts with a broad range of amphipathic lipids (glycerophospholipids, sphingophospholipids, glycosphingolipids, lipid A, and lipoglycans) that are present in surfactant or microbial membranes. This review summarizes SP-A/lipid interaction studies regarding the lipid system used (i.e., phospholipid vesicles, phospholipid monolayers, and lipids immobilized on silica or adsorbed on a solid support). The effect of calcium, ionic strength, and pH on the binding of SP-A to lipids and the subsequent lipid aggregation process is discussed. Current evidence suggests that hydrophobic-binding forces are involved in the peripherical association of SP-A to membranes. It is also proposed that fluid and liquid-ordered phase coexistence in surfactant membranes might favor partition of SP-A into those membranes. The binding of SP-A to surfactant membranes containing hydrophobic surfactant peptides makes possible the formation of a membrane reservoir in the alveolar fluid that is protected by SP-A against inactivation and improves the rate of surfactant film formation. In addition, the interaction of SP-A with membranes might enhance the affinity of SP-A for terminal carbohydrates of glycolipids or glycoproteins on the surface of invading microorganisms.

  11. Obtaining lipids and carbohydrates from microalgae via design of selective culture media

    Directory of Open Access Journals (Sweden)

    Ana M. Ardila-Álvarez

    2017-01-01

    Full Text Available Sustainable production of microalgae biorefineries presents several technical bottlenecks in different levels, including maximization of productivity of energy blocks as carbohydrates and lipids, which can be used as feedstocks for biodiesel and bioethanol production. An alternative for increasing productivity of energy blocks is the use of alternative crops to traditional chemical media, which are based on carbon, phosphorus, nitrogen sources and microelements. This work presents the design of two mixotrophic crops were designed at different concentrations of carbon, nitrogen and phosphate sources with the aim of evaluating the carbohydrates and lipids production from Chlorella vulgaris. The culture media were designed at different concentrations of sodium nitrate, potassium phosphate and sodium acetate / ammonium carbonate as carbon source. In addition, Pareto charts and Response Surface were performed using the statistical software STATISTICA 7.0, in order to know the significant influence of study variables on metabolites production. Results showed that the concentration of nutrients in the mixotrophic cultures affect the production of metabolites, for the case of carbohydrates production, acetate, carbonate and phosphate had a positive effect on it. Regarding lipids production, when the culture media contained acetate, there was not any variable that influenced significantly, whereas for the cultivation with ammonium carbonate, nitrate and interactions carbonate-phosphate, nitratephosphate had a significant influence on production of this metabolite.

  12. Evaluation of the hemostatic state, carbohydrate and lipid metabolism in young women with abdominal obesity and hypertension

    Directory of Open Access Journals (Sweden)

    Veronika Andreevna Sumerkina

    2015-09-01

    Full Text Available Aim of this study was to determine the characteristics of the laboratory parameters of hemostasis, carbohydrate and lipid metabolism in women with metabolic syndrome, isolated abdominal obesity or with hypertension. Materials and methods. The study included 71 women aged 30 – 44 years and was conducted at laboratory study of hemostasis system, carbohydrate and lipid metabolism. Results. In women with abdominal obesity and arterial hypertension we found an increased levels of glucose, total cholesterol, LDL-C and triglycerides and a decrease in a concentration of HDL-C compared to healthy women. The study of hemostasis revealed prothrombotic changes in the form of activation of coagulation hemostasis and fibrinolysis system activity. Conclusions. The disorders of carbohydrate and lipid metabolism are very prevalent in young women with abdominal obesity and hypertension with every second woman meeting the criteria for the metabolic syndrome. The most pronounced signs of activation of blood coagulation markes was seen in women with abdominal obesity and hypertension. In women with the individual components of the metabolic syndrome there were no significant changes in carbohydrate and lipid metabolism, although we saw an early signs of activation of hemocoagulation.

  13. Synthesis of Lipidated Proteins.

    Science.gov (United States)

    Mejuch, Tom; Waldmann, Herbert

    2016-08-17

    Protein lipidation is one of the major post-translational modifications (PTM) of proteins. The attachment of the lipid moiety frequently determines the localization and the function of the lipoproteins. Lipidated proteins participate in many essential biological processes in eukaryotic cells, including vesicular trafficking, signal transduction, and regulation of the immune response. Malfunction of these cellular processes usually leads to various diseases such as cancer. Understanding the mechanism of cellular signaling and identifying the protein-protein and protein-lipid interactions in which the lipoproteins are involved is a crucial task. To achieve these goals, fully functional lipidated proteins are required. However, access to lipoproteins by means of standard expression is often rather limited. Therefore, semisynthetic methods, involving the synthesis of lipidated peptides and their subsequent chemoselective ligation to yield full-length lipoproteins, were developed. In this Review we summarize the commonly used methods for lipoprotein synthesis and the development of the corresponding chemoselective ligation techniques. Several key studies involving full-length semisynthetic lipidated Ras, Rheb, and LC3 proteins are presented.

  14. Dietary protein and carbohydrate requirement of juvenile Hawaiian limpet (Cellana sandwicensis Pease, 1861 fed practical diet

    Directory of Open Access Journals (Sweden)

    Nhan Thai Hua

    2016-10-01

    Full Text Available Abstract This study was conducted to evaluate dietary protein and carbohydrate requirement of juvenile Hawaiian limpets Cellana sandwincensis. A total of 64 juvenile limpets (3.12 ± 0.86 g were fed five different dietary protein levels ranging from 270 to 470 g kg−1 for 90 days. Carbohydrate and lipid levels were held constant at 180 and 49.7 g kg−1, respectively. Weight gain and growth rates of the animals did not differ significantly (P > 0.05 among the protein levels ranging from 270 g kg−1 (0.30 % day−1 to 470 g kg−1 (0.23 % day−1. Next, opihi were fed four diets with protein levels from 210 to 500 g kg−1 with a constant carbohydrate level at 120 g kg−1. Weight gain and specific growth rates of opihi increased with increasing dietary protein from 210 to 350 g kg−1, and significantly (P < 0.05 decreased at the 500 g kg−1 diet. Highest weight gain, growth rates, and protein efficiency ratio were achieved at 350 g kg−1. Elevated carbohydrate levels (180–370 g kg−1 produced a significant difference (P < 0.05 in growth. The fastest growth rates of animals were obtained with 270 g kg−1 (0.27 % day−1 and 320 g kg−1 (0.26 % day−1. The weight gain of animals fed 180 and 370 g kg−1 carbohydrate diets were significantly (P < 0.05 lower than those of animals fed 270 and 320 g kg−1. We conclude that about 350 g kg−1 protein and 320 g kg−1 carbohydrate levels could be used for opihi.

  15. The national cholesterol education program diet vs a diet lower in carbohydrates and higher in protein and monounsaturated fat: a randomized trial.

    Science.gov (United States)

    Aude, Y Wady; Agatston, Arthur S; Lopez-Jimenez, Francisco; Lieberman, Eric H; Marie Almon; Hansen, Melinda; Rojas, Gerardo; Lamas, Gervasio A; Hennekens, Charles H

    2004-10-25

    In the United States, obesity is a major clinical and public health problem causing diabetes, dyslipidemia, and hypertension, as well as increasing cardiovascular and total mortality. Dietary restrictions of calories and saturated fat are beneficial. However, it remains unclear whether replacement of saturated fat with carbohydrates (as in the US National Cholesterol Education Program [NCEP] diet) or protein and monounsaturated fat (as in our isocaloric modified low-carbohydrate [MLC] diet, which is lower in total carbohydrates but higher in protein, monounsaturated fat, and complex carbohydrates) is optimal. We randomized 60 participants (29 women and 31 men) to the NCEP or the MLC diet and evaluated them every 2 weeks for 12 weeks. They were aged 28 to 71 years (mean age, 44 years in the NCEP and 46 years in the MLC group). A total of 36% of participants from the NCEP group and 35% from the MLC group had a body mass index (calculated as weight in kilograms divided by the square of height in meters) greater than 27. The primary end point was weight loss, and secondary end points were blood lipid levels and waist-to-hip ratio. Weight loss was significantly greater in the MLC (13.6 lb) than in the NCEP group (7.5 lb), a difference of 6.1 lb (P = .02). There were no significant differences between the groups for total, low density, and high-density lipoprotein cholesterol, triglycerides, or the proportion of small, dense low-density lipoprotein particles. There were significantly favorable changes in all lipid levels within the MLC but not within the NCEP group. Waist-to-hip ratio was not significantly reduced between the groups (P = .27), but it significantly decreased within the MLC group (P = .009). Compared with the NCEP diet, the MLC diet, which is lower in total carbohydrates but higher in complex carbohydrates, protein, and monounsaturated fat, caused significantly greater weight loss over 12 weeks. There were no significant differences between the groups in

  16. Long term weight maintenance after advice to consume low carbohydrate, higher protein diets--a systematic review and meta analysis.

    Science.gov (United States)

    Clifton, P M; Condo, D; Keogh, J B

    2014-03-01

    Meta analysis of short term trials indicates that a higher protein, lower carbohydrate weight loss diet enhances fat mass loss and limits lean mass loss compared with a normal protein weight loss diet. Whether this benefit persists long term is not clear. We selected weight loss studies in adults with at least a 12 month follow up in which a higher percentage protein/lower carbohydrate diet was either planned or would be expected for either weight loss or weight maintenance. Studies were selected regardless of the success of the advice but difference in absolute and percentage protein intake at 12 months was used as a moderator in the analysis. Data was analysed using Comprehensive Meta analysis V2 using a random effects analysis. As many as 32 studies with 3492 individuals were analysed with data on fat and lean mass, glucose and insulin from 18 to 22 studies and lipids from 28 studies. A recommendation to consume a lower carbohydrate, higher protein diet in mostly short term intensive interventions with long term follow up was associated with better weight and fat loss but the effect size was small-standardised means of 0.14 and 0.22, p = 0.008 and p fat mass (0.9 vs. 0.3 kg). Fasting triglyceride and insulin were also lower with high protein diets with effect sizes of 0.17 and 0.22, p = 0.003 and p = 0.042 respectively. Other lipids and glucose were not different. The short term benefit of higher protein diets appears to persist to a small degree long term. Benefits are greater with better compliance to the diet. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates.

    Science.gov (United States)

    Sacks, Frank M; Bray, George A; Carey, Vincent J; Smith, Steven R; Ryan, Donna H; Anton, Stephen D; McManus, Katherine; Champagne, Catherine M; Bishop, Louise M; Laranjo, Nancy; Leboff, Meryl S; Rood, Jennifer C; de Jonge, Lilian; Greenway, Frank L; Loria, Catherine M; Obarzanek, Eva; Williamson, Donald A

    2009-02-26

    The possible advantage for weight loss of a diet that emphasizes protein, fat, or carbohydrates has not been established, and there are few studies that extend beyond 1 year. We randomly assigned 811 overweight adults to one of four diets; the targeted percentages of energy derived from fat, protein, and carbohydrates in the four diets were 20, 15, and 65%; 20, 25, and 55%; 40, 15, and 45%; and 40, 25, and 35%. The diets consisted of similar foods and met guidelines for cardiovascular health. The participants were offered group and individual instructional sessions for 2 years. The primary outcome was the change in body weight after 2 years in two-by-two factorial comparisons of low fat versus high fat and average protein versus high protein and in the comparison of highest and lowest carbohydrate content. At 6 months, participants assigned to each diet had lost an average of 6 kg, which represented 7% of their initial weight; they began to regain weight after 12 months. By 2 years, weight loss remained similar in those who were assigned to a diet with 15% protein and those assigned to a diet with 25% protein (3.0 and 3.6 kg, respectively); in those assigned to a diet with 20% fat and those assigned to a diet with 40% fat (3.3 kg for both groups); and in those assigned to a diet with 65% carbohydrates and those assigned to a diet with 35% carbohydrates (2.9 and 3.4 kg, respectively) (P>0.20 for all comparisons). Among the 80% of participants who completed the trial, the average weight loss was 4 kg; 14 to 15% of the participants had a reduction of at least 10% of their initial body weight. Satiety, hunger, satisfaction with the diet, and attendance at group sessions were similar for all diets; attendance was strongly associated with weight loss (0.2 kg per session attended). The diets improved lipid-related risk factors and fasting insulin levels. Reduced-calorie diets result in clinically meaningful weight loss regardless of which macronutrients they emphasize

  18. Comparison of Weight-Loss Diets with Different Compositions of Fat, Protein, and Carbohydrates

    Science.gov (United States)

    Sacks, Frank M.; Bray, George A.; Carey, Vincent J.; Smith, Steven R.; Ryan, Donna H.; Anton, Stephen D.; McManus, Katherine; Champagne, Catherine M.; Bishop, Louise M.; Laranjo, Nancy; Leboff, Meryl S.; Rood, Jennifer C.; de Jonge, Lilian; Greenway, Frank L.; Loria, Catherine M.; Obarzanek, Eva; Williamson, Donald A.

    2009-01-01

    BACKGROUND The possible advantage for weight loss of a diet that emphasizes protein, fat, or carbohydrates has not been established, and there are few studies that extend beyond 1 year. METHODS We randomly assigned 811 overweight adults to one of four diets; the targeted percentages of energy derived from fat, protein, and carbohydrates in the four diets were 20, 15, and 65%; 20, 25, and 55%; 40, 15, and 45%; and 40, 25, and 35%. The diets consisted of similar foods and met guidelines for cardiovascular health. The participants were offered group and individual instructional sessions for 2 years. The primary outcome was the change in body weight after 2 years in two-by-two factorial comparisons of low fat versus high fat and average protein versus high protein and in the comparison of highest and lowest carbohydrate content. RESULTS At 6 months, participants assigned to each diet had lost an average of 6 kg, which represented 7% of their initial weight; they began to regain weight after 12 months. By 2 years, weight loss remained similar in those who were assigned to a diet with 15% protein and those assigned to a diet with 25% protein (3.0 and 3.6 kg, respectively); in those assigned to a diet with 20% fat and those assigned to a diet with 40% fat (3.3 kg for both groups); and in those assigned to a diet with 65% carbohydrates and those assigned to a diet with 35% carbohydrates (2.9 and 3.4 kg, respectively) (P>0.20 for all comparisons). Among the 80% of participants who completed the trial, the average weight loss was 4 kg; 14 to 15% of the participants had a reduction of at least 10% of their initial body weight. Satiety, hunger, satisfaction with the diet, and attendance at group sessions were similar for all diets; attendance was strongly associated with weight loss (0.2 kg per session attended). The diets improved lipid-related risk factors and fasting insulin levels. CONCLUSIONS Reduced-calorie diets result in clinically meaningful weight loss regardless of

  19. Biokinetics of carbohydrate and lipid matabolism in normal laying hen; pt. 3

    International Nuclear Information System (INIS)

    Chiang, Y.H.; Riis, P.M.

    1979-01-01

    The radiochemical purity of sup(14)C(U)-glucose solution to be injected to normal laying hen was investigated for studying biokinetics of carbohydrate and lipid metabolism. The liquid scintillation counter was employed for determining the activity of carbon-14. The barium hydroxide and zinc sulfate were adopted to precipitate the protein in the solution. The glucose content in the solution was observed as 0.912 mg per ml. applying Hultman's method. The specific activity of sup(14)C(U)-glucose solution was known as 31.3 nCi/mg glucose. The glucose pentaacetate was synthesized to isolate the pure glucose from the solution. The specific activity of pure glucose was measured as 28.5 nCi/mg glucose. Therefore, it was known that the radiochemical purity of the solution was 82.7%. (Author)

  20. Effects of a plant-based high-carbohydrate/high-fiber diet versus high-monounsaturated fat/low-carbohydrate diet on postprandial lipids in type 2 diabetic patients.

    Science.gov (United States)

    De Natale, Claudia; Annuzzi, Giovanni; Bozzetto, Lutgarda; Mazzarella, Raffaella; Costabile, Giuseppina; Ciano, Ornella; Riccardi, Gabriele; Rivellese, Angela A

    2009-12-01

    To search for a better dietary approach to treat postprandial lipid abnormalities and improve glucose control in type 2 diabetic patients. According to a randomized crossover design, 18 type 2 diabetic patients (aged 59 +/- 5 years; BMI 27 +/- 3 kg/m(2)) (means +/- SD) in satisfactory blood glucose control on diet or diet plus metformin followed a diet relatively rich in carbohydrates (52% total energy), rich in fiber (28 g/1,000 kcal), and with a low glycemic index (58%) (high-carbohydrate/high-fiber diet) or a diet relatively low in carbohydrate (45%) and rich in monounsaturated fat (23%) (low-carbohydrate/high-monounsaturated fat diet) for 4 weeks. Thereafter, they shifted to the other diet for 4 more weeks. At the end of each period, plasma glucose, insulin, lipids, and lipoprotein fractions (separated by discontinuous density gradient ultracentrifugation) were determined on blood samples taken at fasting and over 6 h after a test meal having a similar composition as the corresponding diet. In addition to a significant decrease in postprandial plasma glucose, insulin responses, and glycemic variability, the high-carbohydrate/high-fiber diet also significantly improved the primary end point, since it reduced the postprandial incremental areas under the curve (IAUCs) of triglyceride-rich lipoproteins, in particular, chylomicrons (cholesterol IAUC: 0.05 +/- 0.01 vs. 0.08 +/- 0.02 mmol/l per 6 h; triglycerides IAUC: 0.71 +/- 0.35 vs. 1.03 +/- 0.58 mmol/l per 6 h, P carbohydrate and fiber, essentially based on legumes, vegetables, fruits, and whole cereals, may be particularly useful for treating diabetic patients because of its multiple effects on different cardiovascular risk factors, including postprandial lipids abnormalities.

  1. Body macronutrient composition is predicted by lipid and not protein content of the diet.

    Science.gov (United States)

    Moatt, Joshua P; Hambly, Catherine; Heap, Elizabeth; Kramer, Anna; Moon, Fiona; Speakman, John R; Walling, Craig A

    2017-12-01

    Diet is an important determinant of fitness-related traits including growth, reproduction, and survival. Recent work has suggested that variation in protein:lipid ratio and particularly the amount of protein in the diet is a key nutritional parameter. However, the traits that mediate the link between dietary macronutrient ratio and fitness-related traits are less well understood. An obvious candidate is body composition, given its well-known link to health. Here, we investigate the relationship between dietary and body macronutrient composition using a first-generation laboratory population of a freshwater fish, the three-spine stickleback ( Gasterosteus aculeatus ). Carbohydrate is relatively unimportant in the diet of predatory fish, facilitating the exploration of how dietary protein-to-lipid ratio affects their relative deposition in the body. We find a significant effect of lipid intake, rather than protein, on body protein:lipid ratio. Importantly, this was not a result of absorbing macronutrients in relation to their relative abundance in the diet, as the carcass protein:lipid ratios differed from those of the diets, with ratios usually lower in the body than in the diet. This indicates that individuals can moderate their utilization, or uptake, of ingested macronutrients to reach a target balance within the body. We found no effect of diet on swimming endurance, activity, or testes size. However, there was an effect of weight on testes size, with larger males having larger testes. Our results provide evidence for the adjustment of body protein:lipid ratio away from that of the diet. As dietary lipid intake was the key determinant of body composition, we suggest this occurs via metabolism of excess protein, which conflicts with the predictions of the protein leverage hypothesis. These results could imply that the conversion and excretion of protein is one of the causes of the survival costs associated with high-protein diets.

  2. Relation of dietary carbohydrates to lipid metabolism and the status of zinc and chromium in rabbits.

    Science.gov (United States)

    Moersen, T J; Borgman, R F

    1984-06-01

    Rabbits were fed a purified ration known to produce alterations in lipid metabolism and cholelithiasis. During a 14-week period, group 1 was fed sucrose as the sole dietary carbohydrate, whereas group 2 was fed corn starch; the rations were equicaloric and the carbohydrate provided 43% of the calories. Serum cholesterol and triglyceride concentrations increased when the purified rations were fed, and these concentrations were often greater (toward the end of the trial) in rabbits fed the sucrose than in rabbits fed corn starch. Liver weight was increased by the sucrose feeding, but there were no differences as to concentrations of lipid, cholesterol, Cr, or Zn between treatments. The aortas of the sucrose group contained more lipid, and the cholesterol concentrations tended to be greater; but dietary carbohydrate had no effect on concentrations of Cr or Zn. A reduction in hair Cr concentration was noticed over time in the rabbits fed sucrose, but changes were not noticed in the Zn concentrations. Cholelithiasis tended to be more severe in rabbits fed sucrose.

  3. Postprandial lipid responses to standard carbohydrates used to determine glycaemic index values.

    Science.gov (United States)

    Vega-López, Sonia; Ausman, Lynne M; Matthan, Nirupa R; Lichtenstein, Alice H

    2013-11-01

    Prior studies assessing the metabolic effects of different types of carbohydrates have focused on their glycaemic response. However, the response of postprandial cardiometabolic risk indicators has not been considered in these studies. The present study assessed postprandial lipid responses to two forms of carbohydrates used as reference foods for glycaemic index determinations, white bread (50 g available carbohydrate) and glucose (50 g), under controlled conditions and with intra-individual replicate determinations. A total of twenty adults (20–70 years) underwent two cycles of challenges with each pair of reference foods (four challenges/person), administered in a random order on separate days under standard conditions. Serum lipids (total cholesterol, LDL-cholesterol, HDL-cholesterol, TAG and NEFA), glucose and insulin were monitored for 5 h post-ingestion. Oral glucose resulted in greater glycaemic and insulinaemic responses than white bread for the first 90 min and a greater subsequent decline after 120 min (P =0·0001). The initial decline in serum NEFA concentrations was greater after the oral glucose than after the white bread challenge, as was the rebound after 150 min (P = 0·001). Nevertheless, the type of carbohydrate had no significant effect on postprandial total cholesterol, LDL-cholesterol and HDL-cholesterol concentrations. Following an initial modest rise in TAG concentrations in response to both challenges, the values dropped below the fasting values for oral glucose but not for the white bread challenge. These data suggest that the type of carbohydrate used to determine the glycaemic index, bread or glucose, has little or modest effects on postprandial plasma cholesterol concentrations. Differences in TAG and NEFA concentrations over the 5 h time period were modest, and their clinical relevance is unclear.

  4. Effect of Glycerol and Glucose on the Enhancement of Biomass, Lipid and Soluble Carbohydrate Production by Chlorella vulgaris in Mixotrophic Culture

    OpenAIRE

    Hong Yang; Yun-Tao Cao; Hao Song; Shao-Feng Hua; Chun-Gu Xia; Wei-Bao Kong

    2013-01-01

    Biodiesel-derived glycerol is a promising substrate for mixotrophic cultivation of oleaginous microalgae, which can also reduce the cost of microalgal biodiesel. The objective of this study is to investigate the potential of using glycerol and glucose as a complex carbon substrate to produce microalgal biomass and biochemical components, such as photosynthetic pigments, lipids, soluble carbohydrates and proteins by Chlorella vulgaris. The results show that C. vulgaris can utilize glycerol as ...

  5. Glycemic and lipid control in hospitalized type 2 diabetic patients: evaluation of 2 enteral nutrition formulas (low carbohydrate-high monounsaturated fat vs high carbohydrate).

    Science.gov (United States)

    León-Sanz, Miguel; García-Luna, Pedro P; Sanz-París, Alejandro; Gómez-Candela, Carmen; Casimiro, César; Chamorro, José; Pereira-Cunill, José L; Martin-Palmero, Angeles; Trallero, Roser; Martínez, José; Ordóñez, Francisco Javier; García-Peris, Pilar; Camarero, Emma; Gómez-Enterría, Pilar; Cabrerizo, Lucio; Perez-de-la-Cruz, Antonio; Sánchez, Carmen; García-de-Lorenzo, Abelardo; Rodríguez, Nelly; Usán, Luis

    2005-01-01

    Type 2 diabetic patients may need enteral nutrition support as part of their treatment. The objective was to compare glycemic and lipid control in hospitalized patients with type 2 diabetes requiring feeding via nasogastric tube using enteral feedings with either a highcarbohydrate or a high-monounsaturated-fat content. This trial included type 2 diabetes patients admitted to the hospital for neurologic disorders or head and neck cancer surgery who received either a low-carbohydrate-high-mono-unsaturated-fat (Glucerna) or a high-carbohydrate diet (Precitene Diabet). Glycemic and lipid control was determined weekly. Safety and gastrointestinal tolerance were also assessed. A total of 104 patients were randomized and 63 were evaluable according to preestablished protocol criteria. Median duration of therapy was 13 days in both groups. Mean glucose was significantly increased at 7 days of treatment (p = .006) in the Precitene arm, with no significant variations in the Glucerna arm. Mean weekly blood triglycerides levels in the Precitene arm were increased without reaching statistical significance, whereas patients in the Glucerna arm showed a stable trend. Patients in the Precitene arm showed a significantly higher incidence of diarrhea than patients in Glucerna arm (p = .008), whereas the incidence of nausea was smaller in the Precitene arm than in the Glucerna arm (p = .03). An enteral formula with lower carbohydrate and higher monounsaturated fat (Glucerna) has a neutral effect on glycemic control and lipid metabolism in type 2 diabetic patients compared with a high-carbohydrate and a lower-fat formula (Precitene Diabet).

  6. Perceived hunger is lower and weight loss is greater in overweight premenopausal women consuming a low-carbohydrate/high-protein vs high-carbohydrate/low-fat diet.

    Science.gov (United States)

    Nickols-Richardson, Sharon M; Coleman, Mary Dean; Volpe, Joanne J; Hosig, Kathy W

    2005-09-01

    The impact of a low-carbohydrate/high-protein diet compared with a high-carbohydrate/low-fat diet on ratings of hunger and cognitive eating restraint were examined. Overweight premenopausal women consumed a low-carbohydrate/high-protein (n=13) or high-carbohydrate/low-fat diet (n=15) for 6 weeks. Fasting body weight (BW) was measured and the Eating Inventory was completed at baseline, weeks 1 to 4, and week 6. All women experienced a reduction in BW (Plow-carbohydrate/high-protein vs high-carbohydrate/low-fat group at week 6 (Plow-carbohydrate/high-protein but not in the high-carbohydrate/low-fat group from baseline to week 6. In both groups, self-rated cognitive eating restraint increased (Plow-carbohydrate/high-protein group may have contributed to a greater percentage of BW loss.

  7. Energy requirements, protein-energy metabolism and balance, and carbohydrates in preterm infants.

    Science.gov (United States)

    Hay, William W; Brown, Laura D; Denne, Scott C

    2014-01-01

    Energy is necessary for all vital functions of the body at molecular, cellular, organ, and systemic levels. Preterm infants have minimum energy requirements for basal metabolism and growth, but also have requirements for unique physiology and metabolism that influence energy expenditure. These include body size, postnatal age, physical activity, dietary intake, environmental temperatures, energy losses in the stool and urine, and clinical conditions and diseases, as well as changes in body composition. Both energy and protein are necessary to produce normal rates of growth. Carbohydrates (primarily glucose) are principle sources of energy for the brain and heart until lipid oxidation develops over several days to weeks after birth. A higher protein/energy ratio is necessary in most preterm infants to approximate normal intrauterine growth rates. Lean tissue is predominantly produced during early gestation, which continues through to term. During later gestation, fat accretion in adipose tissue adds increasingly large caloric requirements to the lean tissue growth. Once protein intake is sufficient to promote net lean body accretion, additional energy primarily produces more body fat, which increases almost linearly at energy intakes >80-90 kcal/kg/day in normal, healthy preterm infants. Rapid gains in adiposity have the potential to produce later life obesity, an increasingly recognized risk of excessive energy intake. In addition to fundamental requirements for glucose, protein, and fat, a variety of non-glucose carbohydrates found in human milk may have important roles in promoting growth and development, as well as production of a gut microbiome that could protect against necrotizing enterocolitis. © 2014 S. Karger AG, Basel.

  8. Increasing protein intake modulates lipid metabolism in healthy young men and women consuming a high-fat hypercaloric diet.

    Science.gov (United States)

    Rietman, Annemarie; Schwarz, Jessica; Blokker, Britt A; Siebelink, Els; Kok, Frans J; Afman, Lydia A; Tomé, Daniel; Mensink, Marco

    2014-08-01

    The objective of this study was to evaluate the effect of increasing protein intake, at the expense of carbohydrates, on intrahepatic lipids (IHLs), circulating triglycerides (TGs), and body composition in healthy humans consuming a high-fat, hypercaloric diet. A crossover randomized trial with a parallel control group was performed. After a 2-wk run-in period, participants were assigned to either the control diet [n = 10; 27.8 energy percent (en%) fat, 16.9 en% protein, 55.3 en% carbohydrates] for 4 wk or a high-fat, hypercaloric diet (n = 17; >2 MJ/d) crossover trial with 2 periods of 2 wk, with either high-protein (HP) (37.7 en% fat, 25.7 en% protein, 36.6 en% carbohydrates) or normal-protein (NP) (39.4 en% fat, 15.4 en% protein, 45.2 en% carbohydrates) content. Measurements were performed after 2 wk of run-in (baseline), 2 wk of intervention (period 1), and 4 wk of intervention (period 2). A trend toward lower IHL and plasma TG concentrations during the HP condition compared with the NP condition was observed (IHL: 0.35 ± 0.04% vs. 0.51 ± 0.08%, P = 0.08; TG: 0.65 ± 0.03 vs. 0.77 ± 0.05 mmol/L, P = 0.07, for HP and NP, respectively). Fat mass was significantly lower (10.6 ± 1.72 vs. 10.9 ± 1.73 kg; P = 0.02) with the HP diet than with the NP diet, whereas fat-free mass was higher (55.7 ± 2.79 vs. 55.2 ± 2.80 kg; P = 0.003). This study indicated that an HP, high-fat, hypercaloric diet affects lipid metabolism. It tends to lower the IHL and circulating TG concentrations and significantly lowers fat mass and increases fat-free mass compared with an NP, high-fat, hypercaloric diet. This trail was registered at www.clinicaltrials.gov as NCT01354626. © 2014 American Society for Nutrition.

  9. Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    Full Text Available The effect of acetic acid on hepatic lipid metabolism in ruminants differs significantly from that in monogastric animals. Therefore, the aim of this study was to investigate the regulation mechanism of acetic acid on the hepatic lipid metabolism in dairy cows. The AMP-activated protein kinase (AMPK signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of sodium acetate (neutralized acetic acid and BML-275 (an AMPKα inhibitor. Acetic acid consumed a large amount of ATP, resulting in an increase in AMPKα phosphorylation. The increase in AMPKα phosphorylation increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α, which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation in bovine hepatocytes. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and the carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in bovine hepatocytes. In addition, activated AMPKα inhibited the activity of acetyl-CoA carboxylase. Consequently, the triglyceride content in the acetate-treated hepatocytes was significantly decreased. These results indicate that acetic acid activates the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in bovine hepatocytes, thereby reducing liver fat accumulation in dairy cows.

  10. Quantification of Protein Hydration, Glass Transitions, and Structural Relaxations of Aqueous Protein and Carbohydrate-Protein Systems.

    Science.gov (United States)

    Roos, Yrjö H; Potes, Naritchaya

    2015-06-11

    Water distribution and miscibility of carbohydrate and protein components in biological materials and their structural contributions in concentrated solids are poorly understood. In the present study, structural relaxations and a glass transition of protein hydration water and antiplasticization of the hydration water at low temperatures were measured using dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) for bovine whey protein (BWP), aqueous glucose-fructose (GF), and their mixture. Thermal transitions of α-lactalbumin and β-lactoglobulin components of BWP included water-content-dependent endothermic but reversible dehydration and denaturation, and exothermic and irreversible aggregation. An α-relaxation assigned to hydration water in BWP appeared at water-content-dependent temperatures and increased to over the range of 150-200 K at decreasing water content and in the presence of GF. Two separate glass transitions and individual fractions of unfrozen water of ternary GF-BWP-water systems contributed to uncoupled α-relaxations, suggesting different roles of protein hydration water and carbohydrate vitrification in concentrated solids during freezing and dehydration. Hydration water in the BWP fraction of GF-BWP systems was derived from equilibrium water sorption and glass transition data of the GF fraction, which gave a significant universal method to quantify (i) protein hydration water and (ii) the unfrozen water in protein-carbohydrate systems for such applications as cryopreservation, freezing, lyophilization, and dehydration of biological materials. A ternary supplemented phase diagram (state diagram) established for the GF-BWP-water system can be used for the analysis of the water distribution across carbohydrate and protein components in such applications.

  11. The simulation approach to lipid-protein interactions.

    Science.gov (United States)

    Paramo, Teresa; Garzón, Diana; Holdbrook, Daniel A; Khalid, Syma; Bond, Peter J

    2013-01-01

    The interactions between lipids and proteins are crucial for a range of biological processes, from the folding and stability of membrane proteins to signaling and metabolism facilitated by lipid-binding proteins. However, high-resolution structural details concerning functional lipid/protein interactions are scarce due to barriers in both experimental isolation of native lipid-bound complexes and subsequent biophysical characterization. The molecular dynamics (MD) simulation approach provides a means to complement available structural data, yielding dynamic, structural, and thermodynamic data for a protein embedded within a physiologically realistic, modelled lipid environment. In this chapter, we provide a guide to current methods for setting up and running simulations of membrane proteins and soluble, lipid-binding proteins, using standard atomistically detailed representations, as well as simplified, coarse-grained models. In addition, we outline recent studies that illustrate the power of the simulation approach in the context of biologically relevant lipid/protein interactions.

  12. Martini Coarse-Grained Force Field : Extension to Carbohydrates

    NARCIS (Netherlands)

    Lopez, Cesar A.; Rzepiela, Andrzej J.; de Vries, Alex H.; Dijkhuizen, Lubbert; Huenenberger, Philippe H.; Marrink, Siewert J.

    2009-01-01

    We present an extension of the Martini coarse-grained force field to carbohydrates. The parametrization follows the same philosophy as was used previously for lipids and proteins, focusing on the reproduction of partitioning free energies of small compounds between polar and nonpolar phases. The

  13. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins

    DEFF Research Database (Denmark)

    Venturoli, M.; Smit, B.; Sperotto, Maria Maddalena

    2005-01-01

    membranes. Here we present a mesoscopic model for lipid bilayers with embedded proteins, which we have studied with the help of the dissipative particle dynamics simulation technique. Because hydrophobic matching is believed to be one of the main physical mechanisms regulating lipid-protein interactions......-induced protein tilt, with the hydrophobic mismatch ( positive and negative) between the protein hydrophobic length and the pure lipid bilayer hydrophobic thickness. The protein-induced bilayer perturbation was quantified in terms of a coherence length, xi(P), of the lipid bilayer hydrophobic thickness pro. le...... for positive values of mismatch; a dependence on the protein size appears as well. In the case of large model proteins experiencing extreme mismatch conditions, in the region next to the so-called lipid annulus, there appears an undershooting ( or overshooting) region where the bilayer hydrophobic thickness...

  14. Muscle Lipid Metabolism: Role of Lipid Droplets and Perilipins

    Directory of Open Access Journals (Sweden)

    Pablo Esteban Morales

    2017-01-01

    Full Text Available Skeletal muscle is one of the main regulators of carbohydrate and lipid metabolism in our organism, and therefore, it is highly susceptible to changes in glucose and fatty acid (FA availability. Skeletal muscle is an extremely complex tissue: its metabolic capacity depends on the type of fibers it is made up of and the level of stimulation it undergoes, such as acute or chronic contraction. Obesity is often associated with increased FA levels, which leads to the accumulation of toxic lipid intermediates, oxidative stress, and autophagy in skeletal fibers. This lipotoxicity is one of the most common causes of insulin resistance (IR. In this scenario, the “isolation” of certain lipids in specific cell compartments, through the action of the specific lipid droplet, perilipin (PLIN family of proteins, is conceived as a lifeguard compensatory strategy. In this review, we summarize the cellular mechanism underlying lipid mobilization and metabolism inside skeletal muscle, focusing on the function of lipid droplets, the PLIN family of proteins, and how these entities are modified in exercise, obesity, and IR conditions.

  15. The effectiveness of a new domestic carbohydrate-protein product in the practice of training of high class

    Directory of Open Access Journals (Sweden)

    Vdovenko N.V.

    2013-08-01

    Full Text Available The effect of the use of the new course of the carbohydrate-protein product on the performance efficiency of skilled athletes (Greco-Roman. In the experiment involved 14 athletes aged 18-25 years who gave written consent to participate in the study. Developed and clinically tested a specialized carbohydrate-protein food product. The drink contains in its composition: glucose, sucrose, whey protein concentrate, creatine monohydrate, citrulline malate, mineral complex and ATP-lipid complex. The study was conducted in two micro-cycles (2 weeks. Athletes take a drink as follows: pre-workout (30-40 minutes - 250 ml of the drink, after a training session during the recovery period - 250 ml of the drink. It is established that the use of the drink has a positive effect on the performance of athletes performance during the execution of a sub-maximal anaerobic power in the area of energy supply. Argues that course application beverage reduces the severity of manifestations of lactate acidosis after exercise by improving the utilization of lactate. Found a significant decrease in the concentration of lactate in the blood of athletes in the 7th minute of recovery in relation to the original data.

  16. Nutrition to Support Recovery from Endurance Exercise: Optimal Carbohydrate and Protein Replacement.

    Science.gov (United States)

    Moore, Daniel R

    2015-01-01

    Proper nutrition is vital to optimize recovery after endurance exercise. Dietary carbohydrate and protein provide the requisite substrates to enhance glycogen resynthesis and remodel skeletal muscle proteins, respectively, both of which would be important to rapidly restore muscle function and performance. With short recovery windows (optimal ingestion of both carbohydrate and protein.

  17. Characterization of protein and carbohydrate mid-IR spectral features in crop residues

    Science.gov (United States)

    Xin, Hangshu; Zhang, Yonggen; Wang, Mingjun; Li, Zhongyu; Wang, Zhibo; Yu, Peiqiang

    2014-08-01

    To the best of our knowledge, a few studies have been conducted on inherent structure spectral traits related to biopolymers of crop residues. The objective of this study was to characterize protein and carbohydrate structure spectral features of three field crop residues (rice straw, wheat straw and millet straw) in comparison with two crop vines (peanut vine and pea vine) by using Fourier transform infrared spectroscopy (FTIR) technique with attenuated total reflectance (ATR). Also, multivariate analyses were performed on spectral data sets within the regions mainly related to protein and carbohydrate in this study. The results showed that spectral differences existed in mid-IR peak intensities that are mainly related to protein and carbohydrate among these crop residue samples. With regard to protein spectral profile, peanut vine showed the greatest mid-IR band intensities that are related to protein amide and protein secondary structures, followed by pea vine and the rest three field crop straws. The crop vines had 48-134% higher spectral band intensity than the grain straws in spectral features associated with protein. Similar trends were also found in the bands that are mainly related to structural carbohydrates (such as cellulosic compounds). However, the field crop residues had higher peak intensity in total carbohydrates region than the crop vines. Furthermore, spectral ratios varied among the residue samples, indicating that these five crop residues had different internal structural conformation. However, multivariate spectral analyses showed that structural similarities still exhibited among crop residues in the regions associated with protein biopolymers and carbohydrate. Further study is needed to find out whether there is any relationship between spectroscopic information and nutrition supply in various kinds of crop residue when fed to animals.

  18. Beneficiary effect of Commiphora mukul ethanolic extract against high fructose diet induced abnormalities in carbohydrate and lipid metabolism in wistar rats

    Directory of Open Access Journals (Sweden)

    Ramesh Bellamkonda

    2018-01-01

    Full Text Available The present study was proposed to elucidate the effect of Commiphora mukul gum resin elthanolic extract treatment on alterations in carbohydrate and lipid metabolisms in rats fed with high-fructose diet. Male Wistar rats were divided into four groups: two of these groups (group C and C+CM were fed with standard pellet diet and the other two groups (group F and F+CM were fed with high fructose (66 % diet. C. mukul suspension in 5% Tween-80 in distilled water (200 mg/kg body weight/day was administered orally to group C+CM and group F+CM. At the end of 60-day experimental period, biochemical parameters related to carbohydrate and lipid metabolisms were assayed. C. mukul treatment completely prevented the fructose-induced increased body weight, hyperglycemia, and hypertriglyceridemia. Hyperinsulinemia and insulin resistance observed in group F decreased significantly with C. mukul treatment in group F+CM. The alterations observed in the activities of enzymes of carbohydrate and lipid metabolisms and contents of hepatic tissue lipids in group F rats were significantly restored to near normal values by C. mukul treatment in group F+CM. In conclusion, our study demonstrated that C. mukul treatment is effective in preventing fructose-induced insulin resistance and hypertriglyceridemia while attenuating the fructose induced alterations in carbohydrate and lipid metabolisms by the extract which was further supported by histopathological results from liver samples which showed regeneration of the hepatocytes. This study suggests that the plant can be used as an adjuvant for the prevention and/or management of insulin resistance and disorders related to it.

  19. Novel approaches to lipid-lowering therapy

    African Journals Online (AJOL)

    lines, ezetimibe is recommended as an add-on therapy for patients on ... 2 Carbohydrate and Lipid Metabolism Research Unit and Division of Endocrinology and Metabolism ... acting at the level of protein translation via RNA interference in the.

  20. Eating carbohydrate mostly at lunch and protein mostly at dinner within a covert hypocaloric diet influences morning glucose homeostasis in overweight/obese men.

    Science.gov (United States)

    Alves, Raquel Duarte Moreira; de Oliveira, Fernanda Cristina Esteves; Hermsdorff, Helen Hermana Miranda; Abete, Itziar; Zulet, María Angeles; Martínez, José Alfredo; Bressan, Josefina

    2014-02-01

    To evaluate the effects of two dietary patterns in which carbohydrates and proteins were eaten mostly at lunch or dinner on body weight and composition, energy metabolism, and biochemical markers in overweight/obese men. Fifty-eight men (30.0 ± 7.4 years; 30.8 ± 2.4 kg/m(2)) followed a covert hypocaloric balanced diet (-10 % of daily energy requirements) during 8 weeks. Subjects were randomly assigned to three groups: control diet (CT); diurnal carbohydrate/nocturnal protein (DCNP); and nocturnal carbohydrate/diurnal protein (NCDP). Main analyzed outcomes were weight loss, body composition, diet-induced thermogenesis (DIT), and glucose/lipid profile. In all groups, a significant decrease in body weight, BMI, and fat mass (kg and %) was verified, without differences between groups. Interestingly, within group analyses showed that the fat-free mass (kg) significantly decreased in NCDP and in CT after 8-week intervention, but not in DCNP. A detrimental increase in fasting glucose, insulin, and homeostasis model assessment of insulin resistance (HOMAIR) was verified only in DCNP, while NCDP and CT groups presented a non-significant reduction. Moreover, significant differences between DCNP and the other groups were detected for fasting insulin and HOMAIR. After the adjustments, NCDP presented a significantly higher DIT and energy expenditure after lunch, compared with DCNP, but after dinner, there were no differences among groups. Eating carbohydrates mostly at dinner and protein mostly at lunch within a hypocaloric balanced diet had similar effect on body composition and biochemical markers, but higher effect on DIT compared with control diet. Moreover, eating carbohydrates mostly at lunch and protein mostly at dinner had a deleterious impact on glucose homeostasis.

  1. Chemical biology based on target-selective degradation of proteins and carbohydrates using light-activatable organic molecules.

    Science.gov (United States)

    Toshima, Kazunobu

    2013-05-01

    Proteins and carbohydrates play crucial roles in a wide range of biological processes, including serious diseases. The development of novel and innovative methods for selective control of specific proteins and carbohydrates functions has attracted much attention in the field of chemical biology. In this account article, the development of novel chemical tools, which can degrade target proteins and carbohydrates by irradiation with a specific wavelength of light under mild conditions without any additives, is introduced. This novel class of photochemical agents promise bright prospects for finding not only molecular-targeted bioprobes for understanding of the structure-activity relationships of proteins and carbohydrates but also novel therapeutic drugs targeting proteins and carbohydrates.

  2. Protein-Carbohydrate Interaction between Sperm and the Egg-Coating Envelope and Its Regulation by Dicalcin, a Xenopus laevis Zona Pellucida Protein-Associated Protein

    Directory of Open Access Journals (Sweden)

    Naofumi Miwa

    2015-05-01

    Full Text Available Protein-carbohydrate interaction regulates multiple important processes during fertilization, an essential biological event where individual gametes undergo intercellular recognition to fuse and generate a zygote. In the mammalian female reproductive tract, sperm temporarily adhere to the oviductal epithelium via the complementary interaction between carbohydrate-binding proteins on the sperm membrane and carbohydrates on the oviductal cells. After detachment from the oviductal epithelium at the appropriate time point following ovulation, sperm migrate and occasionally bind to the extracellular matrix, called the zona pellucida (ZP, which surrounds the egg, thereafter undergoing the exocytotic acrosomal reaction to penetrate the envelope and to reach the egg plasma membrane. This sperm-ZP interaction also involves the direct interaction between sperm carbohydrate-binding proteins and carbohydrates within the ZP, most of which have been conserved across divergent species from mammals to amphibians and echinoderms. This review focuses on the carbohydrate-mediated interaction of sperm with the female reproductive tract, mainly the interaction between sperm and the ZP, and introduces the fertilization-suppressive action of dicalcin, a Xenopus laevis ZP protein-associated protein. The action of dicalcin correlates significantly with a dicalcin-dependent change in the lectin-staining pattern within the ZP, suggesting a unique role of dicalcin as an inherent protein that is capable of regulating the affinity between the lectin and oligosaccharides attached on its target glycoprotein.

  3. Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review.

    Science.gov (United States)

    Karami-Mohajeri, Somayyeh; Abdollahi, Mohammad

    2011-09-01

    Pesticides, including organophosphate (OP), organochlorine (OC), and carbamate (CB) compounds, are widely used in agricultural and indoor purposes. OP and CB act as acetyl cholinesterase (AChE) inhibitors that affect lots of organs such as peripheral and central nervous systems, muscles, liver, pancreas, and brain, whereas OC are neurotoxic involved in alteration of ion channels. There are several reports about metabolic disorders, hyperglycemia, and also oxidative stress in acute and chronic exposures to pesticides that are linked with diabetes and other metabolic disorders. In this respect, there are several in vitro and in vivo but few clinical studies about mechanism underlying these effects. Bibliographic databases were searched for the years 1963-2010 and resulted in 1652 articles. After elimination of duplicates or irrelevant papers, 204 papers were included and reviewed. Results indicated that OP and CB impair the enzymatic pathways involved in metabolism of carbohydrates, fats and protein within cytoplasm, mitochondria, and proxisomes. It is believed that OP and CB show this effect through inhibition of AChE or affecting target organs directly. OC mostly affect lipid metabolism in the adipose tissues and change glucose pathway in other cells. As a shared mechanism, all OP, CB and OC induce cellular oxidative stress via affecting mitochondrial function and therefore disrupt neuronal and hormonal status of the body. Establishing proper epidemiological studies to explore exact relationships between exposure levels to these pesticides and rate of resulted metabolic disorders in human will be helpful.

  4. Dietary soya protein improves intra-myocardial lipid deposition and altered glucose metabolism in a hypertensive, dyslipidaemic, insulin-resistant rat model.

    Science.gov (United States)

    Oliva, María E; Creus, Agustina; Ferreira, María R; Chicco, Adriana; Lombardo, Yolanda B

    2018-01-01

    This study investigates the effects of replacing dietary casein by soya protein on the underlying mechanisms involved in the impaired metabolic fate of glucose and lipid metabolisms in the heart of dyslipidaemic rats chronically fed (8 months) a sucrose-rich (62·5 %) diet (SRD). To test this hypothesis, Wistar rats were fed an SRD for 4 months. From months 4 to 8, half the animals continued with the SRD and the other half were fed an SRD in which casein was substituted by soya. The control group received a diet with maize starch as the carbohydrate source. Compared with the SRD-fed group, the following results were obtained. First, soya protein significantly (Psoya protein significantly increased (Psoya protein upon the altered pathways of glucose and lipid metabolism in the heart muscle of this rat model.

  5. Shifts in dietary carbohydrate-lipid exposure regulate expression of the non-alcoholic fatty liver disease-associated gene PNPLA3/adiponutrin in mouse liver and HepG2 human liver cells.

    Science.gov (United States)

    Hao, Lei; Ito, Kyoko; Huang, Kuan-Hsun; Sae-tan, Sudathip; Lambert, Joshua D; Ross, A Catharine

    2014-10-01

    Patatin-like phospholipase domain containing 3 (PNPLA3, adiponutrin) has been identified as a modifier of lipid metabolism. To better understand the physiological role of PNPLA3/adiponutrin, we have investigated its regulation in intact mice and human hepatocytes under various nutritional/metabolic conditions. PNPLA3 gene expression was determined by real-time PCR in liver of C57BL/6 mice after dietary treatments and in HepG2 cells exposed to various nutritional/metabolic stimuli. Intracellular lipid content was determined in HepG2 cells after siRNA-mediated knockdown of PNPLA3. In vivo, mice fed a high-carbohydrate (HC) liquid diet had elevated hepatic lipid content, and PNPLA3 mRNA and protein expression, compared to chow-fed mice. Elevated expression was completely abrogated by addition of unsaturated lipid emulsion to the HC diet. By contrast, in mice with high-fat diet-induced steatosis, Pnpla3 expression did not differ compared to low-fat fed mice. In HepG2 cells, Pnpla3 expression was reversibly suppressed by glucose depletion and increased by glucose refeeding, but unchanged by addition of insulin and glucagon. Several unsaturated fatty acids each significantly decreased Pnpla3 mRNA, similar to lipid emulsion in vivo. However, Pnpla3 knockdown in HepG2 cells did not alter total lipid content in high glucose- or oleic acid-treated cells. Our results provide evidence that PNPLA3 expression is an early signal/signature of carbohydrate-induced lipogenesis, but its expression is not associated with steatosis per se. Under lipogenic conditions due to high-carbohydrate feeding, certain unsaturated fatty acids can effectively suppress both lipogenesis and PNPLA3 expression, both in vivo and in a hepatocyte cell line. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.

    Science.gov (United States)

    Zheng, Hongli; Ma, Xiaochen; Gao, Zhen; Wan, Yiqin; Min, Min; Zhou, Wenguang; Li, Yun; Liu, Yuhuan; Huang, He; Chen, Paul; Ruan, Roger

    2015-10-01

    This study investigated the feasibility of lipid production of Chlorella sp. from waste materials. Lipid-extracted microalgal biomass residues (LMBRs) and molasses were hydrolyzed, and their hydrolysates were analyzed. Five different hydrolysate mixture ratios (w/w) of LMBRs/molasses (1/0, 1/1, 1/4, 1/9, and 0/1) were used to cultivate Chlorella sp. The results showed that carbohydrate and protein were the two main compounds in the LMBRs, and carbohydrate was the main compound in the molasses. The highest biomass concentration of 5.58 g/L, Y biomass/sugars of 0.59 g/g, lipid productivity of 335 mg/L/day, and Y lipids/sugars of 0.25 g/g were obtained at the hydrolysate mixture ratio of LMBRs/molasses of 1/4. High C/N ratio promoted the conversion of sugars into lipids. The lipids extracted from Chlorella sp. shared similar lipid profile of soybean oil and is therefore a potential viable biodiesel feedstock. These results showed that Chlorella sp. can utilize mixed sugars and amino acids from LMBRs and molasses to accumulate lipids efficiently, thus reducing the cost of microalgal biodiesel production and improving its economic viability.

  7. Carbohydrates as T-cell antigens with implications in health and disease.

    Science.gov (United States)

    Sun, Lina; Middleton, Dustin R; Wantuch, Paeton L; Ozdilek, Ahmet; Avci, Fikri Y

    2016-10-01

    Glycosylation is arguably the most ubiquitous post-translational modification on proteins in microbial and mammalian cells. During the past few years, there has been intensive research demonstrating that carbohydrates, either in pure forms or in conjunction with proteins or lipids, evoke and modulate adaptive immune responses. We now know that carbohydrates can be directly recognized by T cells or participate in T-cell stimulation as components of T-cell epitopes. T-cell recognition of carbohydrate antigens takes place via their presentation by major histocompatibility complex pathways on antigen-presenting cells. In this review, we summarize studies on carbohydrates as T-cell antigens modulating adaptive immune responses. Through discussion of glycan-containing antigens, such as glycoproteins, glycolipids, zwitterionic polysaccharides and carbohydrate-based glycoconjugate vaccines, we will illustrate the key molecular and cellular interactions between carbohydrate antigens and T cells and the implications of these interactions in health and disease. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Characterisation of Atherogenic Effects of Low Carbohydrate, High Protein Diet (LCHP) in ApoE/LDLR-/- Mice.

    Science.gov (United States)

    Kostogrys, R B; Johann, C; Czyżyńska, I; Franczyk-Żarów, M; Drahun, A; Maślak, E; Jasztal, A; Gajda, M; Mateuszuk, Ł; Wrobel, T P; Baranska, M; Wybrańska, I; Jezkova, K; Nachtigal, P; Chlopicki, S

    2015-08-01

    Low Carbohydrate High Protein diet represents a popular strategy to achieve weight loss. The aim of this study was to characterize effects of low carbohydrate, high protein diet (LCHP) on atherosclerotic plaque development in brachiocephalic artery (BCA) in apoE/LDLR-/- mice and to elucidate mechanisms of proatherogenic effects of LCHP diet. Atherosclerosis plaques in brachiocephalic artery (BCA) as well as in aortic roots, lipoprotein profile, inflammation biomarkers, expression of SREBP-1 in the liver as well as mortality were analyzed in Control diet (AIN-93G) or LCHP (Low Carbohydrate High Protein) diet fed mice. Area of atherosclerotic plaques in aortic roots or BCA from LCHP diet fed mice was substantially increased as compared to mice fed control diet and was characterized by increased lipids and cholesterol contents (ORO staining, FT-IR analysis), increased macrophage infiltration (MOMA-2) and activity of MMPs (zymography). Pro-atherogenic phenotype of LCHP fed apoE/LDLR-/- mice was associated with increased plasma total cholesterol concentration, and in LDL and VLDL fractions, increased TG contents in VLDL, and a modest increase in plasma urea. LCHP diet increased SCD-1 index, activated SREBP-1 transcription factor in the liver and triggered acute phase response as evidence by an increased plasma concentration of haptoglobin, CRP or AGP. Finally, in long-term experiment survival of apoE/LDLR-/- mice fed LCHP diet was substantially reduced as compared to their counterparts fed control diet suggesting overall detrimental effects of LCHP diet on health. The pro-atherogenic effect of LCHP diet in apoE/LDLR-/- mice is associated with profound increase in LDL and VLDL cholesterol, VLDL triglicerides, liver SREBP-1 upregulation, and systemic inflammation.

  9. Protein-carbohydrate complex reveals circulating metastatic cells in a microfluidic assay

    KAUST Repository

    Simone, Giuseppina

    2013-02-11

    Advances in carbohydrate sequencing technologies reveal the tremendous complexity of the glycome and the role that glycomics might have to bring insight into the biological functions. Carbohydrate-protein interactions, in particular, are known to be crucial to most mammalian physiological processes as mediators of cell adhesion and metastasis, signal transducers, and organizers of protein interactions. An assay is developed here to mimic the multivalency of biological complexes that selectively and sensitively detect carbohydrate-protein interactions. The binding of β-galactosides and galectin-3 - a protein that is correlated to the progress of tumor and metastasis - is examined. The efficiency of the assay is related to the expression of the receptor while anchoring to the interaction\\'s strength. Comparative binding experiments reveal molecular binding preferences. This study establishes that the assay is robust to isolate metastatic cells from colon affected patients and paves the way to personalized medicine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Protein-carbohydrate complex reveals circulating metastatic cells in a microfluidic assay

    KAUST Repository

    Simone, Giuseppina; Malara, Natalia Maria; Trunzo, Valentina; Perozziello, Gerardo; Neužil, Pavel; Francardi, Marco; Roveda, Laura; Renne, Maria; Prati, Ubaldo; Mollace, Vincenzo; Manz, Andreas; Di Fabrizio, Enzo M.

    2013-01-01

    Advances in carbohydrate sequencing technologies reveal the tremendous complexity of the glycome and the role that glycomics might have to bring insight into the biological functions. Carbohydrate-protein interactions, in particular, are known to be crucial to most mammalian physiological processes as mediators of cell adhesion and metastasis, signal transducers, and organizers of protein interactions. An assay is developed here to mimic the multivalency of biological complexes that selectively and sensitively detect carbohydrate-protein interactions. The binding of β-galactosides and galectin-3 - a protein that is correlated to the progress of tumor and metastasis - is examined. The efficiency of the assay is related to the expression of the receptor while anchoring to the interaction's strength. Comparative binding experiments reveal molecular binding preferences. This study establishes that the assay is robust to isolate metastatic cells from colon affected patients and paves the way to personalized medicine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of soy protein on serum lipid profile and some lipid ...

    African Journals Online (AJOL)

    The effect of soy protein on serum lipid profile and some lipid metabolizing enzymes in rats fed with cholesterol diets was examined in this study. Rats were subjected to feeding trial over a period of six weeks on formulated diets containing: 20% soy protein with 0% cholesterol (group A), 20% soy protein with 5% cholesterol ...

  12. Low-carbohydrate diets reduce lipid accumulation and arterial inflammation in guinea pigs fed a high-cholesterol diet.

    Science.gov (United States)

    Leite, Jose O; DeOgburn, Ryan; Ratliff, Joseph; Su, Randy; Smyth, Joan A; Volek, Jeff S; McGrane, Mary M; Dardik, Alan; Fernandez, Maria Luz

    2010-04-01

    Low-carbohydrate diets (LCD) efficiently induce weight loss and favorably affect plasma lipids, however, the effect of LCD on atherosclerosis is still argued. To evaluate the effect of LCD on the prevention of atherosclerosis. Twenty guinea pigs were fed either a LCD or a low-fat diet (LFD) in combination with high-cholesterol (0.25g/100g) for 12 weeks. The percentage energy of macronutrient distribution was 10:65:25 for carbohydrate:fat:protein for the LCD, and 55:20:25 for the LFD. Plasma lipids were measured using colorimetric assays. Plasma and aortic oxidized (oxLDL) were quantified using ELISA methods. Inflammatory cytokines were measured in aortic homogenates using an immunoassay. H&E stained sections of aortic sinus and Schultz stained sections of carotid arteries were examined. LDL cholesterol was lower in the LCD compared to the LFD group (71.9+/-34.8 vs. 81.7+/-26.9mg/dL; p=0.039). Aortic cholesterol was also lower in the LCD (4.98+/-1.3mg/g) compared to the LFD group (6.68+/-2.0mg/g); p<0.05. The Schultz staining method confirmed less aortic cholesterol accumulation in the LCD group. Plasma oxLDL did not differ between groups, however, aortic oxLDL was 61% lower in the LCD compared to the LFD group (p=0.045). There was a positive correlation (r=0.63, p=0.03) between oxLDL and cholesterol concentration in the aorta of LFD group, which was not observed in LCD group (r=-0.05, p=0.96). Inflammatory markers were reduced in guinea pigs from the LCD group (p<0.05) and they were correlated with the decreases in oxLDL in aorta. These results suggest that LCD not only decreases lipid deposition, but also prevents the accumulation of oxLDL and reduces inflammatory cytokines within the arterial wall and may prevent atherosclerosis. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  13. Carbohydrates in pig nutrition - Recent advances

    DEFF Research Database (Denmark)

    Knudsen, Knud Erik Bach; Lærke, Helle Nygaard; Ingerslev, Anne Krog

    2016-01-01

    The dietary carbohydrates are a diverse group of substances with a range of chemical, physical, and physiological properties. The primary chemical classification of carbohydrates is by molecular size (degree of polymerization [DP]), the type of linkage (α or β), and composition of individual...... to their potential for digestion by endogenous enzymes. Carbohydrates are the principal substrates for energy metabolism but also exert a number of other effects throughout the gastrointestinal tract. The starch structure as well as type and levels of DF influence, to a varying degree, the rate of starch digestion...... in the small intestine. Some types of soluble NSP are found to interact with intestinal mucus and produce a layer that significantly delays the transport of lipid digestion products. Potentially, the same may be the case for proteinous compounds. The delay in the transport of the nutrients to the gut...

  14. Bacterial S-layer protein coupling to lipids

    DEFF Research Database (Denmark)

    Weygand, M.; Wetzer, B.; Pum, D.

    1999-01-01

    structure before and after protein recrystallization shows minimal reorganization of the lipid chains. By contrast, the lipid headgroups show major rearrangements. For the B. sphaericus CCM2177 protein underneath DPPE monolayers, x-ray reflectivity data suggest that amino acid side chains intercalate......The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer...... the lipid headgroups at least to the phosphate moieties, and probably further beyond. The number of electrons in the headgroup region increases by more than four per lipid. Analysis of the changes of the deduced electron density profiles in terms of a molecular interpretation shows...

  15. A higher-complex carbohydrate diet in gestational diabetes mellitus achieves glucose targets and lowers postprandial lipids: a randomized crossover study.

    Science.gov (United States)

    Hernandez, Teri L; Van Pelt, Rachael E; Anderson, Molly A; Daniels, Linda J; West, Nancy A; Donahoo, William T; Friedman, Jacob E; Barbour, Linda A

    2014-01-01

    The conventional diet approach to gestational diabetes mellitus (GDM) advocates carbohydrate restriction, resulting in higher fat (HF), also a substrate for fetal fat accretion and associated with maternal insulin resistance. Consequently, there is no consensus about the ideal GDM diet. We hypothesized that, compared with a conventional, lower-carbohydrate/HF diet (40% carbohydrate/45% fat/15% protein), consumption of a higher-complex carbohydrate (HCC)/lower-fat (LF) Choosing Healthy Options in Carbohydrate Energy (CHOICE) diet (60/25/15%) would result in 24-h glucose area under the curve (AUC) profiles within therapeutic targets and lower postprandial lipids. Using a randomized, crossover design, we provided 16 GDM women (BMI 34 ± 1 kg/m2) with two 3-day isocaloric diets at 31 ± 0.5 weeks (washout between diets) and performed continuous glucose monitoring. On day 4 of each diet, we determined postprandial (5 h) glucose, insulin, triglycerides (TGs), and free fatty acids (FFAs) following a controlled breakfast meal. There were no between-diet differences for fasting or mean nocturnal glucose, but 24-h AUC was slightly higher (∼6%) on the HCC/LF CHOICE diet (P = 0.02). The continuous glucose monitoring system (CGMS) revealed modestly higher 1- and 2-h postprandial glucose on CHOICE (1 h, 115 ± 2 vs. 107 ± 3 mg/dL, P ≤ 0.01; 2 h, 106 ± 3 vs. 97 ± 3 mg/dL, P = 0.001) but well below current targets. After breakfast, 5-h glucose and insulin AUCs were slightly higher (P diet. This highly controlled study randomizing isocaloric diets and using a CGMS is the first to show that liberalizing complex carbohydrates and reducing fat still achieved glycemia below current treatment targets and lower postprandial FFAs. This diet strategy may have important implications for preventing macrosomia.

  16. Structural basis of carbohydrate recognition by lectin II from Ulex europaeus, a protein with a promiscuous carbohydrate-binding site.

    Science.gov (United States)

    Loris, R; De Greve, H; Dao-Thi, M H; Messens, J; Imberty, A; Wyns, L

    2000-08-25

    Protein-carbohydrate interactions are the language of choice for inter- cellular communication. The legume lectins form a large family of homologous proteins that exhibit a wide variety of carbohydrate specificities. The legume lectin family is therefore highly suitable as a model system to study the structural principles of protein-carbohydrate recognition. Until now, structural data are only available for two specificity families: Man/Glc and Gal/GalNAc. No structural data are available for any of the fucose or chitobiose specific lectins. The crystal structure of Ulex europaeus (UEA-II) is the first of a legume lectin belonging to the chitobiose specificity group. The complexes with N-acetylglucosamine, galactose and fucosylgalactose show a promiscuous primary binding site capable of accommodating both N-acetylglucos amine or galactose in the primary binding site. The hydrogen bonding network in these complexes can be considered suboptimal, in agreement with the low affinities of these sugars. In the complexes with chitobiose, lactose and fucosyllactose this suboptimal hydrogen bonding network is compensated by extensive hydrophobic interactions in a Glc/GlcNAc binding subsite. UEA-II thus forms the first example of a legume lectin with a promiscuous binding site and illustrates the importance of hydrophobic interactions in protein-carbohydrate complexes. Together with other known legume lectin crystal structures, it shows how different specificities can be grafted upon a conserved structural framework. Copyright 2000 Academic Press.

  17. Protein Correlation Profiles Identify Lipid Droplet Proteins with High Confidence*

    Science.gov (United States)

    Krahmer, Natalie; Hilger, Maximiliane; Kory, Nora; Wilfling, Florian; Stoehr, Gabriele; Mann, Matthias; Farese, Robert V.; Walther, Tobias C.

    2013-01-01

    Lipid droplets (LDs) are important organelles in energy metabolism and lipid storage. Their cores are composed of neutral lipids that form a hydrophobic phase and are surrounded by a phospholipid monolayer that harbors specific proteins. Most well-established LD proteins perform important functions, particularly in cellular lipid metabolism. Morphological studies show LDs in close proximity to and interacting with membrane-bound cellular organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and endosomes. Because of these close associations, it is difficult to purify LDs to homogeneity. Consequently, the confident identification of bona fide LD proteins via proteomics has been challenging. Here, we report a methodology for LD protein identification based on mass spectrometry and protein correlation profiles. Using LD purification and quantitative, high-resolution mass spectrometry, we identified LD proteins by correlating their purification profiles to those of known LD proteins. Application of the protein correlation profile strategy to LDs isolated from Drosophila S2 cells led to the identification of 111 LD proteins in a cellular LD fraction in which 1481 proteins were detected. LD localization was confirmed in a subset of identified proteins via microscopy of the expressed proteins, thereby validating the approach. Among the identified LD proteins were both well-characterized LD proteins and proteins not previously known to be localized to LDs. Our method provides a high-confidence LD proteome of Drosophila cells and a novel approach that can be applied to identify LD proteins of other cell types and tissues. PMID:23319140

  18. Verification of protein sparing by feeding carbohydrate to common carp Cyprinus carpio

    Science.gov (United States)

    Cheng, Zhenyan; Li, Jinghui; Zhang, Baolong; Fang, Zhenzhen; Sun, Jinhui; Bai, Dongqing; Sun, Jinsheng; Qiao, Xiuting

    2017-03-01

    A 9-week feeding trial in floating freshwater cages (1.0 m×1.0 m×2.0 m) was conducted to study the effects of different dietary levels of protein and starch on growth, body composition, and gene expression of enzymes in common carp, Cyprinus carpio (mean body weight, 36.12±1.18 g) to evaluate the protein-sparing effect of dietary carbohydrate. Four diets were formulated with corn starch as the carbohydrate source to obtain corn starch levels of 6.5%, 13%, 19.5%, or 26% and protein levels of 30.5%, 28.2%, 26.4%, and 24.2%. The results showed no differences in growth performance of fish fed the diets with different protein and corn starch levels, but body composition and glucose metabolic enzyme activity of carp were significantly affected by the different diets ( P 0.05). In summary, the results indicate a protein-sparing effect by substituting carbohydrate in the diet of common carp.

  19. Phloem proteomics reveals new lipid-binding proteins with a putative role in lipid-mediated signaling

    Directory of Open Access Journals (Sweden)

    Allison Marie Barbaglia

    2016-04-01

    Full Text Available Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho- lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012. Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I a putative GDSL-motif lipase (II a PIG-P-like protein, with a possible receptor-like function; (III and PLAFP (phloem lipid-associated family protein, a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH, which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while

  20. Meal composition and plasma amino acid ratios: Effect of various proteins or carbohydrates, and of various protein concentrations

    Science.gov (United States)

    Yokogoshi, Hidehiko; Wurtman, Richard J.

    1986-01-01

    The effects of meals containing various proteins and carbohydrates, and of those containing various proportions of protein (0 percent to 20 percent of a meal, by weight) or of carbohydrate (0 percent to 75 percent), on plasma levels of certain large neutral amino acids (LNAA) in rats previously fasted for 19 hours were examined. Also the plasma tryptophan ratios (the ratio of the plasma trytophan concentration to the summed concentrations of the other large neutral amino acids) and other plasma amino acid ratios were calculated. (The plasma tryptophan ratio has been shown to determine brain tryptophan levels and, thereby, to affect the synthesis and release of the neurotransmitter serotonin). A meal containing 70 percent to 75 percent of an insulin-secreting carbohydrate (dextrose or dextrin) increased plasma insulin levels and the tryptophan ratio; those containing 0 percent or 25 percent carbohydrate failed to do so. Addition of as little as 5 percent casein to a 70 percent carbohydrate meal fully blocked the increase in the plasma tryptophan ratio without affecting the secretion of insulin - probably by contributing much larger quantities of the other LNAA than of tryptophan to the blood. Dietary proteins differed in their ability to suppress the carbohydrate-induced rise in the plasma tryptophan ratio. Addition of 10 percent casein, peanut meal, or gelatin fully blocked this increase, but lactalbumin failed to do so, and egg white did so only partially. (Consumption of the 10 percent gelatin meal also produced a major reduction in the plasma tyrosine ratio, and may thereby have affected brain tyrosine levels and catecholamine synthesis.) These observations suggest that serotonin-releasing neurons in brains of fasted rats are capable of distinguishing (by their metabolic effects) between meals poor in protein but rich in carbohydrates that elicit insulin secretion, and all other meals. The changes in brain serotonin caused by carbohydrate-rich, protein

  1. A Moderate Low-Carbohydrate Low-Calorie Diet Improves Lipid Profile, Insulin Sensitivity and Adiponectin Expression in Rats

    Directory of Open Access Journals (Sweden)

    Jie-Hua Chen

    2015-06-01

    Full Text Available Calorie restriction (CR via manipulating dietary carbohydrates has attracted increasing interest in the prevention and treatment of metabolic syndrome. There is little consensus about the extent of carbohydrate restriction to elicit optimal results in controlling metabolic parameters. Our study will identify a better carbohydrate-restricted diet using rat models. Rats were fed with one of the following diets for 12 weeks: Control diet, 80% energy (34% carbohydrate-reduced and 60% energy (68% carbohydrate-reduced of the control diet. Changes in metabolic parameters and expressions of adiponectin and peroxisome proliferator activator receptor γ (PPARγ were identified. Compared to the control diet, 68% carbohydrate-reduced diet led to a decrease in serum triglyceride and increases inlow density lipoprotein-cholesterol (LDL-C, high density lipoprotein-cholesterol (HDL-C and total cholesterol; a 34% carbohydrate-reduced diet resulted in a decrease in triglycerides and an increase in HDL-cholesterol, no changes however, were shown in LDL-cholesterol and total cholesterol; reductions in HOMA-IR were observed in both CR groups. Gene expressions of adiponectin and PPARγ in adipose tissues were found proportionally elevated with an increased degree of energy restriction. Our study for the first time ever identified that a moderate-carbohydrate restricted diet is not only effective in raising gene expressions of adiponectin and PPARγ which potentially lead to better metabolic conditions but is better at improving lipid profiles than a low-carbohydrate diet in rats.

  2. Lipid Bilayer Composition Affects Transmembrane Protein Orientation and Function

    Directory of Open Access Journals (Sweden)

    Katie D. Hickey

    2011-01-01

    Full Text Available Sperm membranes change in structure and composition upon ejaculation to undergo capacitation, a molecular transformation which enables spermatozoa to undergo the acrosome reaction and be capable of fertilization. Changes to the membrane environment including lipid composition, specifically lipid microdomains, may be responsible for enabling capacitation. To study the effect of lipid environment on proteins, liposomes were created using lipids extracted from bull sperm membranes, with or without a protein (Na+ K+-ATPase or -amylase. Protein incorporation, function, and orientation were determined. Fluorescence resonance energy transfer (FRET confirmed protein inclusion in the lipid bilayer, and protein function was confirmed using a colourometric assay of phosphate production from ATP cleavage. In the native lipid liposomes, ATPase was oriented with the subunit facing the outer leaflet, while changing the lipid composition to 50% native lipids and 50% exogenous lipids significantly altered this orientation of Na+ K+-ATPase within the membranes.

  3. Composition and metabolism of carbohydrates and lipids in Sparus aurata semen and its relation to viability expressed as sperm motility when activated.

    Science.gov (United States)

    Lahnsteiner, Franz; Mansour, Nabil; Caberlotto, Stefano

    2010-09-01

    The present study investigated aspects of lipid and carbohydrate metabolism in Sparus aurata semen and tested the effect of lipids, carbohydrates and related metabolites on sperm viability using in vitro incubation experiments. Sparus aurata semen contained enzyme systems to metabolize sugars and lipids. Also key enzymes of the tricarboxylic acid cycle and enzymes involved in ATP metabolism were detected. When spermatozoa were incubated in sperm motility inhibiting saline solution for 48 h phospholipid levels decreased constantly and triglycerides levels during the first 24 h of incubation indicating that spermatozoa utilize lipids as energy resources. After 24 h triglycerides levels started to re-increase indicating a change in sperm metabolism, in particular the onset of triglycerides synthesis by the fatty acid synthase complex. In the incubation period from 0 to 24 h glucose levels were constant, and decreased thereafter. Glycogen levels did not change at all. Semen contained also considerable amounts of sialic acid, glucuronic acid and hexosamines, components of mucopolysaccharides. To find out whether lipids, carbohydrates, and related metabolites had a positive effect on sperm functionality semen was incubated together with the described compounds in sperm motility inhibiting saline solution and motility when activated was determined. In the control 37.2+/-10.1% of the spermatozoa were locally motile and 38.3+/-13.3% motile after 24 h, 36.4+/-5.2% were locally motile and 9.6+/-4.5% were motile after 48 h. The swimming velocity was 89.0+/-13.1 microm/s after 24 h and 61.3+/-12.6% after 48 h. Different types of lipids (arachidic acid, linoleic acid, and glycerol trimyristate) and metabolites acting as fuel for the tricarboxylic acid cycle (hydroxybutyrate, ketoglutarate, and pyruvate) had a positive effect on the sperm viability. Tested carbohydrates (fucose, galactose, glucosamine, glucose, glucoheptose, glycogen, and sialic acid) had no effect. Also lactate

  4. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    Science.gov (United States)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  5. Carbohydrates digestion and metabolism in the spiny lobster (Panulirus argus): biochemical indication for limited carbohydrate utilization.

    Science.gov (United States)

    Rodríguez-Viera, Leandro; Perera, Erick; Montero-Alejo, Vivian; Perdomo-Morales, Rolando; García-Galano, Tsai; Martínez-Rodríguez, Gonzalo; Mancera, Juan M

    2017-01-01

    As other spiny lobsters, Panulirus argus is supposed to use preferentially proteins and lipids in energy metabolism, while carbohydrates are well digested but poorly utilized. The aim of this study was to evaluate the effect of dietary carbohydrate level on digestion and metabolism in the spiny lobster P. argus . We used complementary methodologies such as post-feeding flux of nutrients and metabolites, as well as measurements of α-amylase expression and activity in the digestive tract. Lobsters readily digested and absorbed carbohydrates with a time-course that is dependent on their content in diet. Lobster showed higher levels of free glucose and stored glycogen in different tissues as the inclusion of wheat flour increased. Modifications in intermediary metabolism revealed a decrease in amino acids catabolism coupled with a higher use of free glucose as carbohydrates rise up to 20%. However, this effect seems to be limited by the metabolic capacity of lobsters to use more than 20% of carbohydrates in diets. Lobsters were not able to tightly regulate α-amylase expression according to dietary carbohydrate level but exhibited a marked difference in secretion of this enzyme into the gut. Results are discussed to highlight the limitations to increasing carbohydrate utilization by lobsters. Further growout trials are needed to link the presented metabolic profiles with phenotypic outcomes.

  6. Carbohydrates digestion and metabolism in the spiny lobster (Panulirus argus: biochemical indication for limited carbohydrate utilization

    Directory of Open Access Journals (Sweden)

    Leandro Rodríguez-Viera

    2017-11-01

    Full Text Available As other spiny lobsters, Panulirus argus is supposed to use preferentially proteins and lipids in energy metabolism, while carbohydrates are well digested but poorly utilized. The aim of this study was to evaluate the effect of dietary carbohydrate level on digestion and metabolism in the spiny lobster P. argus. We used complementary methodologies such as post-feeding flux of nutrients and metabolites, as well as measurements of α-amylase expression and activity in the digestive tract. Lobsters readily digested and absorbed carbohydrates with a time-course that is dependent on their content in diet. Lobster showed higher levels of free glucose and stored glycogen in different tissues as the inclusion of wheat flour increased. Modifications in intermediary metabolism revealed a decrease in amino acids catabolism coupled with a higher use of free glucose as carbohydrates rise up to 20%. However, this effect seems to be limited by the metabolic capacity of lobsters to use more than 20% of carbohydrates in diets. Lobsters were not able to tightly regulate α-amylase expression according to dietary carbohydrate level but exhibited a marked difference in secretion of this enzyme into the gut. Results are discussed to highlight the limitations to increasing carbohydrate utilization by lobsters. Further growout trials are needed to link the presented metabolic profiles with phenotypic outcomes.

  7. Protein-lipid interactions: from membrane domains to cellular networks

    National Research Council Canada - National Science Library

    Tamm, Lukas K

    2005-01-01

    ... membranes is the lipid bilayer. Embedded in the fluid lipid bilayer are proteins of various shapes and traits. This volume illuminates from physical, chemical and biological angles the numerous - mostly quite weak - interactions between lipids, proteins, and proteins and lipids that define the delicate, highly dynamic and yet so stable fabri...

  8. The statolith compartment in Chara rhizoids contains carbohydrate and protein

    Science.gov (United States)

    Wang-Cahill, F.; Kiss, J. Z.

    1995-01-01

    In contrast to higher plants, the alga Chara has rhizoids with single membrane-bound compartments that function as statoliths in gravity perception. Previous work has demonstrated that these statoliths contain barium sulfate crystals. In this study, we show that statoliths in Chara rhizoids react with a Coomassie Brilliant Blue cytochemical stain for proteins. While statoliths did not react with silver methenamine carbohydrate cytochemistry, the monoclonal antibody CCRC-M2, which is against a carbohydrate (sycamore-maple rhamnogalacturonan I), labeled the statolith compartment. These results demonstrate that in addition to barium sulfate, statoliths in Chara rhizoids have an organic matrix that consists of protein and carbohydrate moieties. Since the statoliths were silver methenamine negative, the carbohydrate in this compartment could be a 3-linked polysaccharide. CCRC-M2 also labeled Golgi cisternae, Golgi-associated vesicles, apical vesicles, and cell walls in the rhizoids. The specificity of CCRC-M2 immunolabeling was verified by several control experiments, including the demonstration that labeling was abolished when the antibody was preabsorbed with its antigen. Since in this and a previous study (John Z. Kiss and L. Andrew Staehelin, American Journal of Botany 80: 273-282, 1993) antibodies against higher plant carbohydrates crossreacted with cell walls of Chara in a specific manner, Characean algae may be a useful model system in biochemical and molecular studies of cell walls.

  9. Intrauterine growth retarded progeny of pregnant sows fed high protein:low carbohydrate diet is related to metabolic energy deficit.

    Directory of Open Access Journals (Sweden)

    Cornelia C Metges

    Full Text Available High and low protein diets fed to pregnant adolescent sows led to intrauterine growth retardation (IUGR. To explore underlying mechanisms, sow plasma metabolite and hormone concentrations were analyzed during different pregnancy stages and correlated with litter weight (LW at birth, sow body weight and back fat thickness. Sows were fed diets with low (6.5%, LP, adequate (12.1%, AP, and high (30%, HP protein levels, made isoenergetic by adjusted carbohydrate content. At -5, 24, 66, and 108 days post coitum (dpc fasted blood was collected. At 92 dpc, diurnal metabolic profiles were determined. Fasted serum urea and plasma glucagon were higher due to the HP diet. High density lipoprotein cholesterol (HDLC, %HDLC and cortisol were reduced in HP compared with AP sows. Lowest concentrations were observed for serum urea and protein, plasma insulin-like growth factor-I, low density lipoprotein cholesterol, and progesterone in LP compared with AP and HP sows. Fasted plasma glucose, insulin and leptin concentrations were unchanged. Diurnal metabolic profiles showed lower glucose in HP sows whereas non-esterified fatty acids (NEFA concentrations were higher in HP compared with AP and LP sows. In HP and LP sows, urea concentrations were 300% and 60% of AP sows, respectively. Plasma total cholesterol was higher in LP than in AP and HP sows. In AP sows, LW correlated positively with insulin and insulin/glucose and negatively with glucagon/insulin at 66 dpc, whereas in HP sows LW associated positively with NEFA. In conclusion, IUGR in sows fed high protein:low carbohydrate diet was probably due to glucose and energy deficit whereas in sows with low protein:high carbohydrate diet it was possibly a response to a deficit of indispensable amino acids which impaired lipoprotein metabolism and favored maternal lipid disposal.

  10. Protective role of radish oil (raphson sativus) against gamma radiation on lipids and carbohydrate in male rats

    International Nuclear Information System (INIS)

    Omran, M.F.; Soliman, N.K.I.

    2005-01-01

    The present work was carried out to investigate the effects of ionizing radiation on some biochemical parameters in rats. The rats were exposed to sublethal whole body gamma irradiation dose (1Gy x 4). The protective role of radish oil (Raphanus sativus) was evaluated by oral administration to rats before gamma radiation exposure and the lipid profile, serum glucose and liver glycogen were investigated. Exposed rats to gamma radiation showed significant alterations in the assayed parameters indicating disturbances in lipid and carbohydrate metabolisms. Oral administration of radish oil (Raphanus sativus) before gamma irradiation exerted marked ameliorations in the disorders induced by gamma radiation in most of the tested parameters such as lipid profile, serum glucose and liver glycogen

  11. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties.

    Directory of Open Access Journals (Sweden)

    Xabier Osteikoetxea

    Full Text Available In recent years the study of extracellular vesicles has gathered much scientific and clinical interest. As the field is expanding, it is becoming clear that better methods for characterization and quantification of extracellular vesicles as well as better standards to compare studies are warranted. The goal of the present work was to find improved parameters to characterize extracellular vesicle preparations. Here we introduce a simple 96 well plate-based total lipid assay for determination of lipid content and protein to lipid ratios of extracellular vesicle preparations from various myeloid and lymphoid cell lines as well as blood plasma. These preparations included apoptotic bodies, microvesicles/microparticles, and exosomes isolated by size-based fractionation. We also investigated lipid bilayer order of extracellular vesicle subpopulations using Di-4-ANEPPDHQ lipid probe, and lipid composition using affinity reagents to clustered cholesterol (monoclonal anti-cholesterol antibody and ganglioside GM1 (cholera toxin subunit B. We have consistently found different protein to lipid ratios characteristic for the investigated extracellular vesicle subpopulations which were substantially altered in the case of vesicular damage or protein contamination. Spectral ratiometric imaging and flow cytometric analysis also revealed marked differences between the various vesicle populations in their lipid order and their clustered membrane cholesterol and GM1 content. Our study introduces for the first time a simple and readily available lipid assay to complement the widely used protein assays in order to better characterize extracellular vesicle preparations. Besides differentiating extracellular vesicle subpopulations, the novel parameters introduced in this work (protein to lipid ratio, lipid bilayer order, and lipid composition, may prove useful for quality control of extracellular vesicle related basic and clinical studies.

  12. Molecular simulations of lipid-mediated protein-protein interactions

    NARCIS (Netherlands)

    de Meyer, F.J.M.; Venturoli, M.; Smit, B.

    2008-01-01

    Recent experimental results revealed that lipid-mediated interactions due to hydrophobic forces may be important in determining the protein topology after insertion in the membrane, in regulating the protein activity, in protein aggregation and in signal transduction. To gain insight into the

  13. Lipid vesicle-mediated affinity chromatography using magnetic activated cell sorting (LIMACS): a novel method to analyze protein-lipid interaction.

    Science.gov (United States)

    Bieberich, Erhard

    2011-04-26

    The analysis of lipid protein interaction is difficult because lipids are embedded in cell membranes and therefore, inaccessible to most purification procedures. As an alternative, lipids can be coated on flat surfaces as used for lipid ELISA and Plasmon resonance spectroscopy. However, surface coating lipids do not form microdomain structures, which may be important for the lipid binding properties. Further, these methods do not allow for the purification of larger amounts of proteins binding to their target lipids. To overcome these limitations of testing lipid protein interaction and to purify lipid binding proteins we developed a novel method termed lipid vesicle-mediated affinity chromatography using magnetic-activated cell sorting (LIMACS). In this method, lipid vesicles are prepared with the target lipid and phosphatidylserine as the anchor lipid for Annexin V MACS. Phosphatidylserine is a ubiquitous cell membrane phospholipid that shows high affinity to the protein Annexin V. Using magnetic beads conjugated to Annexin V the phosphatidylserine-containing lipid vesicles will bind to the magnetic beads. When the lipid vesicles are incubated with a cell lysate the protein binding to the target lipid will also be bound to the beads and can be co-purified using MACS. This method can also be used to test if recombinant proteins reconstitute a protein complex binding to the target lipid. We have used this method to show the interaction of atypical PKC (aPKC) with the sphingolipid ceramide and to co-purify prostate apoptosis response 4 (PAR-4), a protein binding to ceramide-associated aPKC. We have also used this method for the reconstitution of a ceramide-associated complex of recombinant aPKC with the cell polarity-related proteins Par6 and Cdc42. Since lipid vesicles can be prepared with a variety of sphingo- or phospholipids, LIMACS offers a versatile test for lipid-protein interaction in a lipid environment that resembles closely that of the cell membrane

  14. PROCARB: A Database of Known and Modelled Carbohydrate-Binding Protein Structures with Sequence-Based Prediction Tools

    Directory of Open Access Journals (Sweden)

    Adeel Malik

    2010-01-01

    Full Text Available Understanding of the three-dimensional structures of proteins that interact with carbohydrates covalently (glycoproteins as well as noncovalently (protein-carbohydrate complexes is essential to many biological processes and plays a significant role in normal and disease-associated functions. It is important to have a central repository of knowledge available about these protein-carbohydrate complexes as well as preprocessed data of predicted structures. This can be significantly enhanced by tools de novo which can predict carbohydrate-binding sites for proteins in the absence of structure of experimentally known binding site. PROCARB is an open-access database comprising three independently working components, namely, (i Core PROCARB module, consisting of three-dimensional structures of protein-carbohydrate complexes taken from Protein Data Bank (PDB, (ii Homology Models module, consisting of manually developed three-dimensional models of N-linked and O-linked glycoproteins of unknown three-dimensional structure, and (iii CBS-Pred prediction module, consisting of web servers to predict carbohydrate-binding sites using single sequence or server-generated PSSM. Several precomputed structural and functional properties of complexes are also included in the database for quick analysis. In particular, information about function, secondary structure, solvent accessibility, hydrogen bonds and literature reference, and so forth, is included. In addition, each protein in the database is mapped to Uniprot, Pfam, PDB, and so forth.

  15. Protein-induced bilayer Perturbations: Lipid ordering and hydrophobic coupling

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Laursen, Ib; Bohr, Henrik

    2009-01-01

    The host lipid bilayer is increasingly being recognized as an important non-specific regulator of membrane protein function. Despite considerable progress the interplay between hydrophobic coupling and lipid ordering is still elusive. We use electron spin resonance (ESR) to study the interaction...... between the model protein gramicidin and lipid bilayers of varying thickness. The free energy of the interaction is up to −6 kJ/mol; thus not strongly favored over lipid–lipid interactions. Incorporation of gramicidin results in increased order parameters with increased protein concentration...... and hydrophobic mismatch. Our findings also show that at high protein:lipid ratios the lipids are motionally restricted but not completely immobilized. Both exchange on and off rate values for the lipid ↔ gramicidin interaction are lowest at optimal hydrophobic matching. Hydrophobic mismatch of few Å results...

  16. The Effects of Breakfast Consumption and Composition on Metabolic Wellness with a Focus on Carbohydrate Metabolism.

    Science.gov (United States)

    Maki, Kevin C; Phillips-Eakley, Alyssa K; Smith, Kristen N

    2016-05-01

    Findings from epidemiologic studies indicate that there are associations between breakfast consumption and a lower risk of type 2 diabetes mellitus (T2DM) and metabolic syndrome, prompting interest in the influence of breakfast on carbohydrate metabolism and indicators of T2DM risk. The objective of this review was to summarize the available evidence from randomized controlled trials assessing the impact of breakfast on variables related to carbohydrate metabolism and metabolic wellness. Consuming compared with skipping breakfast appeared to improve glucose and insulin responses throughout the day. Breakfast composition may also be important. Dietary patterns high in rapidly available carbohydrate were associated with elevated T2DM risk. Therefore, partial replacement of rapidly available carbohydrate with other dietary components, such as whole grains and cereal fibers, proteins, and unsaturated fatty acids (UFAs), at breakfast may be a useful strategy for producing favorable metabolic outcomes. Consumption of fermentable and viscous dietary fibers at breakfast lowers glycemia and insulinemia. Fermentable fibers likely act through enhancing insulin sensitivity later in the day, and viscous fibers have an acute effect to slow the rate of carbohydrate absorption. Partially substituting protein for rapidly available carbohydrate enhances satiety and diet-induced thermogenesis, and also favorably affects lipoprotein lipids and blood pressure. Partially substituting UFA for carbohydrate has been associated with improved insulin sensitivity, lipoprotein lipids, and blood pressure. Overall, the available evidence suggests that consuming breakfast foods high in whole grains and cereal fiber, while limiting rapidly available carbohydrate, is a promising strategy for metabolic health promotion. © 2016 American Society for Nutrition.

  17. Carbohydrate and lipid metabolism indices dynamic in patients with postinfarction cardiosclerosis, type 2 diabetes and obesity in 6 months and 1 year after myocardial revascularization

    Directory of Open Access Journals (Sweden)

    P. P. Kravchun

    2016-11-01

    Full Text Available Nowadays conservative therapy and reperfusion techniques, which include thrombolytic therapy and percutaneous coronary intervention considered as the main strategies for the acute coronary syndrome treatment. Aim. To assess carbohydrate and lipid metabolism in patients with postinfarction cardiosclerosis, type 2 diabetes and obesity in 6 months and 1 year after myocardial revascularization. Methods and results. 58 patients who underwent thrombolytic therapy and 32 patients who underwent percutaneous coronary intervention were examined. Glucose level was determined by glucose oxidation method, insulin – by ELISA and lipid profile – according to the standard biochemical methods. It was established that in patients with postinfarction cardiosclerosis, type 2 diabetes and obesity positive effect was defined in carbohydrate and lipid metabolism by reducing of serum glucose level, insulin, total cholesterol, low and very low-density lipoproteins, triglycerides and increasing of high density lipoproteins, cholesterol in 6 months and 1 year after reperfusion therapy. Significant differences in carbohydrate and lipid metabolism in the examined patients, depending on the type of reperfusion therapy, have not been detected in 6 months and 1 year after revascularization. Conclusion. Comparative analysis of different methods of myocardial revascularization did not show any advantages of them.

  18. Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency

    OpenAIRE

    Taipale, Sami J.; Galloway, Aaron W. E.; Aalto, Sanni L.; Kahilainen, Kimmo K.; Strandberg, Ursula; Kankaala, Paula

    2016-01-01

    Freshwater food webs can be partly supported by terrestrial primary production, often deriving from plant litter of surrounding catchment vegetation. Although consisting mainly of poorly bioavailable lignin, with low protein and lipid content, the carbohydrates from fallen tree leaves and shoreline vegetation may be utilized by aquatic consumers. Here we show that during phytoplankton deficiency, zooplankton (Daphnia magna) can benefit from terrestrial particulate organic matter by using terr...

  19. Microalgal carbohydrates. An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Markou, Giorgos; Georgakakis, Dimitris [Agricultural Univ. of Athens (Greece). Dept. of Natural Resources Management and Agricultural Engineering; Angelidaki, Irini [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Environmental Engineering

    2012-11-15

    Microalgal biomass seems to be a promising feedstock for biofuel generation. Microalgae have relative high photosynthetic efficiencies, high growth rates, and some species can thrive in brackish water or seawater and wastewater from the food- and agro-industrial sector. Today, the main interest in research is the cultivation of microalgae for lipids production to generate biodiesel. However, there are several other biological or thermochemical conversion technologies, in which microalgal biomass could be used as substrate. However, the high protein content or the low carbohydrate content of the majority of the microalgal species might be a constraint for their possible use in these technologies. Moreover, in the majority of biomass conversion technologies, carbohydrates are the main substrate for production of biofuels. Nevertheless, microalgae biomass composition could be manipulated by several cultivation techniques, such as nutrient starvation or other stressed environmental conditions, which cause the microalgae to accumulate carbohydrates. This paper attempts to give a general overview of techniques that can be used for increasing the microalgal biomass carbohydrate content. In addition, biomass conversion technologies, related to the conversion of carbohydrates into biofuels are discussed. (orig.)

  20. Carbohydrate co-ingestion with protein does not further augment post-prandial muscle protein accretion in older men

    Directory of Open Access Journals (Sweden)

    Hamer Henrike M

    2013-01-01

    Full Text Available Abstract Background A blunted muscle protein synthetic response to protein ingestion may contribute to the age related loss of muscle tissue. We hypothesized that the greater endogenous insulin release following co-ingestion of carbohydrate facilitates post-prandial muscle protein accretion after ingesting a meal-like bolus of protein in older males. Methods Twenty-four healthy older men (75±1 y were randomly assigned to ingest 20 g intrinsically L-[1-13C] phenylalanine-labeled casein protein with (PRO-CHO or without (PRO 40 g carbohydrate. Ingestion of specifically produced intrinsically L-[1-13C] phenylalanine labeled protein allowed us to assess post-prandial incorporation of dietary protein derived amino acids into muscle protein. Blood samples were collected at regular intervals, with muscle biopsies being obtained prior to and 2 and 6 h after protein ingestion. Results Plasma glucose and insulin concentrations showed a greater increase in PRO-CHO compared with PRO (P13C] phenylalanine enrichments tended to increase to a greater extent in PRO-CHO compared with PRO during the first 2 h after protein ingestion (0.0072±0.0013 vs 0.0046±0.010 MPE, respectively; P=0.13. However, 6 h after protein ingestion, differences in muscle protein-bound L-[1-13C] phenylalanine enrichments were no longer observed between experiments (0.0213±0.0024 vs 0.0185±0.0010 MPE, respectively; P=0.30. Conclusions This study shows that carbohydrate ingestion may accelerate, but does not further augment post-prandial incorporation of dietary protein derived amino acids into muscle protein in healthy elderly men.

  1. Dietary ratio of protein to carbohydrate induces plastic responses in the gastrointestinal tract of mice

    DEFF Research Database (Denmark)

    Sørensen, Allan; Mayntz, David; Simpson, Stephen James

    2010-01-01

    of the protein-rich food. In contrast, intestines, caeca and colons were heavier when diets contained more carbohydrates and less protein. This response may function to increase the digestive rate of carbohydrates when the dietary content of this macronutrient increases, but it may also indicate a compensatory...

  2. Carbohydrate- and protein-rich diets in McArdle disease: Effects on exercise capacity

    DEFF Research Database (Denmark)

    Andersen, S.T.; Vissing, J.

    2008-01-01

    metabolism during exercise, which questions the effect of protein in McArdle disease. METHODS: In a crossover, open design, we studied 7 patients with McArdle disease, who were randomised to follow either a carbohydrate- or protein-rich diet for three days before testing. Caloric intake on each diet...... was identical, and was adjusted to the subject's weight, age and sex. After each diet, exercise tolerance and maximal work capacity were tested on a bicycle ergometer, using a constant workload for 15 minutes followed by an incremental workload to exhaustion. RESULTS: During the constant workload, heart rate...... capacity and exercise tolerance to submaximal workloads by maintaining a diet high in carbohydrate instead of protein. The carbohydrate diet not only improves tolerance to every-day activities, but will likely also help to prevent exercise-induced episodes of muscle injury in McArdle disease Udgivelsesdato...

  3. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    Science.gov (United States)

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  4. Weight Loss at a Cost: Implications of High-Protein, Low- Carbohydrate Diets.

    Science.gov (United States)

    Gabel, Kathe A.; Lund, Robin J.

    2002-01-01

    Addresses three claims of high-protein, low-carbohydrate diets: weight loss is attributed to the composition of the diet; insulin promotes the storage of fat, thereby, by limiting carbohydrates, dieters will decrease levels of insulin and body fat; and weight loss is the result of fat loss. The paper examines relevant scientific reports and notes…

  5. Short-term changes in lipoprotein subclasses and C-reactive protein levels of hypertriglyceridemic adults on low-carbohydrate and low-fat diets.

    Science.gov (United States)

    Stoernell, Colene K; Tangney, Christy C; Rockway, Susie W

    2008-07-01

    Diets designed to promote weight loss and improve atherogenic lipid profiles traditionally include a reduction in total fat and, in particular, saturated fats. This study was designed to test the efficacy of a low-fat diet vs a carbohydrate (CHO)-restricted (low-CHO) diet in hypertriglyceridemic patients on lipid profile, weight loss, high-sensitivity C-reactive protein (hs-CRP), and satiety. Twenty-eight hypertriglyceridemic subjects (based on fasting triacylglycerol [TG] levels exceeding 1.69 mmol/L) were randomized to either the low-CHO or low-fat diet for 8 weeks. Fasting bloods were acquired at weeks 0 and 8 and analyzed for lipids and hs-CRP. Body weight and other anthropometric measures were also obtained. Three random 24-hour food recalls were used to assess compliance during the trial and 2 recalls before randomization to permit individualized dietary education. A significant time-by-treatment interaction was observed (P = .045), wherein the small low-density lipoprotein cholesterol concentrations were reduced by 46% in the low-CHO-assigned subjects and increased by 36% for those assigned the low-fat plan. The observed decrease in TG (18%) among low-CHO subjects, in contrast to the 4% increase for low-fat group, was not significant, nor were there significant differences in hs-CRP, overall dietary compliance, satiety, or the magnitude of body weight loss between groups (low-CHO group, -3.8% vs low-fat group, -1.6%). Favorable reductions in small low-density lipoprotein concentrations after 8 weeks suggest that a moderately restricted carbohydrate diet (20% CHO as energy) can promote a less atherogenic lipid profile when compared to the low-fat diet.

  6. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport.

    Science.gov (United States)

    Alva, Vikram; Lupas, Andrei N

    2016-08-01

    The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on

  7. [The toxic effect of methylmercuric chloride on the organism in light of research on the hematopoietic system and metabolism of carbohydrates and lipids in heart and liver].

    Science.gov (United States)

    Janik, A

    1991-01-01

    The purpose of our experiments was to demonstrate possible changes in the activities of the hematopoietic system and the metabolism of the cardiac muscle and liver in the condition of the subacute poisoning with the methylmercuric acid. The tests were performed on 310 rats. The animals were administered the methylmercuric chloride per os in three different doses during three weeks. The activity of the hematopoietic system was analysed on the basis of selected factors concerning the erythrocytic system (the number of reticulocytes and erythrocytes, hematocrit, hemoglobin concentration and the osmotic resistance of erythrocytes), the leukocytic system (number, percentage composition and the osmotic resistance of leukocytes), and the thrombocytes. The alterations in the cardiac muscle and the liver were analysed on the basis of selected elements of the carbohydrate and lipid metabolisms. The indicators of the carbohydrate metabolism were glycogen, pyruvic, lactic, and citric acids. For the lipid metabolism we determined the concentration of free fatty acids, triglycerides, cholesterol and phospholipids. A tendency to increase the minimum osmotic resistance of erythrocytes appeared under the influence of the methylmercuric chloride, probably as a result of the binding between the absorbed methylmercury with lipids and with the proteins of the erythrocyte cell membranes. As to the percentage composition of leukocytes, we observed the reduction of the number of eosinophils in the peripheral blood. The rats poisoned with the methylmercuric chloride reacted to the administered foreign toxic substance with the excitation of their reticuloendothelial systems which was demonstrated by a very clear increase of the reticular cells number. We found a reduction of the content of the basic energy substrate in the cardiac muscle, i.e. the free fatty acids, with the parallel increase of triglyceride concentration. The reductions of the glycogen and lactic acid concentrations were

  8. Determining pathogenetic connection between disorders of lipid and carbohydrate metabolism and non-malignant pathology of thyroid gland in children , born from parents, Chernobyl accident survivors

    International Nuclear Information System (INIS)

    Kopilova, O.V.; Stepanenko, O.A.; Belyingyio, T.O.

    2014-01-01

    The 92 children aged 12-17 years were examined with the purpose to study the links between carbohydrate and lipid metabolic abnormalities and non-malignant thyroid disorders in descendants of the Chernobyl accident survivors. Clinical, anthropometrical studies and hormonal assays were applied. Carbohydrate and lipid metabolic abnormalities were revealed in every third case of thyroid disease. It confirms our supposition of such a possibility being due to the fact that radiation impact even in low doses can result in pronounced metabolic disorders lading to entire endocrine disregulation. It is relevant in children of the puberty age

  9. Species Differences in the Carbohydrate Binding Preferences of Surfactant Protein D

    DEFF Research Database (Denmark)

    Crouch, Erika C.; Smith, Kelly; McDonald, Barbara

    2006-01-01

    Interactions of surfactant protein D (SP-D) with micro-organisms and organic antigens involve binding to the trimeric neck plus carbohydrate recognition domain (neck+CRD). In these studies, we compared the ligand binding of homologous human, rat, and mouse trimeric neck+CRD fusion proteins, each ...

  10. The Lipid Raft Proteome of African Trypanosomes Contains Many Flagellar Proteins.

    Science.gov (United States)

    Sharma, Aabha I; Olson, Cheryl L; Engman, David M

    2017-08-24

    Lipid rafts are liquid-ordered membrane microdomains that form by preferential association of 3-β-hydroxysterols, sphingolipids and raft-associated proteins often having acyl modifications. We isolated lipid rafts of the protozoan parasite Trypanosoma brucei and determined the protein composition of lipid rafts in the cell. This analysis revealed a striking enrichment of flagellar proteins and several putative signaling proteins in the lipid raft proteome. Calpains and intraflagellar transport proteins, in particular, were found to be abundant in the lipid raft proteome. These findings provide additional evidence supporting the notion that the eukaryotic cilium/flagellum is a lipid raft-enriched specialized structure with high concentrations of sterols, sphingolipids and palmitoylated proteins involved in environmental sensing and cell signaling.

  11. Blood Triglycerides Levels and Dietary Carbohydrate Indices in Healthy Koreans

    Directory of Open Access Journals (Sweden)

    Hye Sook Min

    2016-05-01

    Full Text Available Objectives: Previous studies have obtained conflicting findings regarding possible associations between indices measuring carbohydrate intake and dyslipidemia, which is an established risk factor of coronary heart disease. In the present study, we examined cross-sectional associations between carbohydrate indices, including the dietary glycemic index (GI, glycemic load (GL, total amount of carbohydrates, and the percentage of energy from carbohydrates, and a range of blood lipid parameters. Methods: This study included 1530 participants (554 men and 976 women from 246 families within the Healthy Twin Study. We analyzed the associations using a generalized linear mixed model to control for familial relationships. Results: Levels of the Apo B were inversely associated with dietary GI, GL, and the amount of carbohydrate intake for men, but these relationships were not significant when fat-adjusted values of the carbohydrate indices were used. Triglyceride levels were positively associated with dietary GI and GL in women, and this pattern was more notable in overweight participants (body mass index [BMI] ≥25 kg/m2. However, total, low-density lipoprotein and high-density lipoprotein cholesterol levels were not significantly related with carbohydrate intake overall. Conclusions: Of the blood lipid parameters we investigated, only triglyceride levels were positively related with dietary carbohydrate indices among women participants in the Healthy Twin Study, with an interactive role observed for BMI. However, these associations were not observed in men, suggesting that the association between blood lipid levels and carbohydrate intake depends on the type of lipid, specific carbohydrate indices, gender, and BMI.

  12. Protein-lipid interactions in concentrated infant formula

    International Nuclear Information System (INIS)

    Rowley, B.O.; Richardson, T.

    1985-01-01

    Radiolabeled milk proteins ([carbon-14] β-lactoglobulin or [carbon-14] kappa-casein) were added to raw skim milk used to prepare concentrated humanized infant formula. Ultracentrifugation of the sterilized product allowed separation of three fractions: lipids and the proteins associated with them; free casein micelles and other dense particles; and the fluid phase. Distribution of radiolabeled tracer proteins or of protein measured by chemical methods among these three phases varied significantly with differences in processing conditions (time and temperature of sterilization) or amount of certain additives (potassium hydroxide or urea). In the range of 0 to 8 meq/L of potassium hydroxide added to the formula after homogenization but before sterilization, the lipid layer content of carbon-14 from [carbon-14] kappa-casein in the sterilized product decreased by 4.7% for each 1 meq/L of added potassium hydroxide. Lipid layer content of protein decreased by 2 g/L ( of a total of 32 g/L) for each 1 meq/L potassium hydroxide

  13. Protein metabolism in obese patients during very low-calorie mixed diets containing different amounts of proteins and carbohydrates.

    Science.gov (United States)

    Pasquali, R; Casimirri, F; Melchionda, N

    1987-12-01

    To assess long-term nitrogen sparing capacity of very low-calorie mixed diets, we administered two isoenergetic (2092KJ) liquid formula regimens of different composition for 8 weeks to two matched groups of massively obese patients (group 1: proteins 60 g, carbohydrate 54 g; group 2: proteins 41 g, carbohydrates 81 g). Weight loss was similar in both groups. Daily nitrogen balance (g) during the second month resulted more a negative in group 2 with respect to group 1. However, within the groups individual nitrogen sparing capacity varied markedly; only a few in group 1 and one in group 2 were able to attain nitrogen equilibrium throughout the study. Daily urine excretion of 3-methylhistidine fell significantly in group 1 but did not change in group 2. Unlike total proteins, albumins, and transferrin, serum levels of retinol-binding protein, thyroxin-binding globulin, and complement-C3 fell significantly in both groups but per cent variations of complement-C3 were more pronounced in the first group. Prealbumin levels fell persistently in group 1 and transiently in group 2. The results indicate that even with this type of diet an adequate amount of dietary protein represents the most important factor in minimizing whole body protein catabolism during long-term semistarvation in massively obese patients. Moreover, they confirm the possible role of dietary carbohydrates in the regulation of some visceral protein metabolism.

  14. Circulating FGF21 in humans is potently induced by short term overfeeding of carbohydrates

    DEFF Research Database (Denmark)

    Lundsgaard, Annemarie; Fritzen, Andreas Mæchel; Sjøberg, Kim Anker

    2017-01-01

    OBJECTIVE: Fibroblast-growth factor 21 (FGF21) is thought to be important in metabolic regulation. Recently, low protein diets have been shown to increase circulating FGF21 levels. However, when energy contribution from dietary protein is lowered, other macronutrients, such as carbohydrates, must...... concentration increased 8-fold compared to CON (329 ± 99 vs. 39 ± 9 pg ml(-1), p FAT only a non-significant tendency (p = 0.073) to an increase in plasma FGF21 concentration was found. The increase in FGF21 concentration after CHO correlated closely (r = 0.88, p ... intake and increased plasma FGF21 concentration. CONCLUSION: Excess dietary carbohydrate, but not fat, led to markedly increased FGF21 secretion in humans, notably without protein restriction, and affected glucose and lipid homeostais....

  15. Computer Simulations of Lipid Bilayers and Proteins

    DEFF Research Database (Denmark)

    Sonne, Jacob

    2006-01-01

    The importance of computer simulations in lipid bilayer research has become more prominent for the last couple of decades and as computers get even faster, simulations will play an increasingly important part of understanding the processes that take place in and across cell membranes. This thesis...... entitled Computer simulations of lipid bilayers and proteins describes two molecular dynamics (MD) simulation studies of pure lipid bilayers as well as a study of a transmembrane protein embedded in a lipid bilayer matrix. Below follows a brief overview of the thesis. Chapter 1. This chapter is a short...... in the succeeding chapters is presented. Details on system setups, simulation parameters and other technicalities can be found in the relevant chapters. Chapter 3, DPPC lipid parameters: The quality of MD simulations is intimately dependent on the empirical potential energy function and its parameters, i...

  16. The geometric framework for nutrition reveals interactions between protein and carbohydrate during larval growth in honey bees

    Directory of Open Access Journals (Sweden)

    Bryan R. Helm

    2017-06-01

    Full Text Available In holometabolous insects, larval nutrition affects adult body size, a life history trait with a profound influence on performance and fitness. Individual nutritional components of larval diets are often complex and may interact with one another, necessitating the use of a geometric framework for elucidating nutritional effects. In the honey bee, Apis mellifera, nurse bees provision food to developing larvae, directly moderating growth rates and caste development. However, the eusocial nature of honey bees makes nutritional studies challenging, because diet components cannot be systematically manipulated in the hive. Using in vitro rearing, we investigated the roles and interactions between carbohydrate and protein content on larval survival, growth, and development in A. mellifera. We applied a geometric framework to determine how these two nutritional components interact across nine artificial diets. Honey bees successfully completed larval development under a wide range of protein and carbohydrate contents, with the medium protein (∼5% diet having the highest survival. Protein and carbohydrate both had significant and non-linear effects on growth rate, with the highest growth rates observed on a medium-protein, low-carbohydrate diet. Diet composition did not have a statistically significant effect on development time. These results confirm previous findings that protein and carbohydrate content affect the growth of A. mellifera larvae. However, this study identified an interaction between carbohydrate and protein content that indicates a low-protein, high-carb diet has a negative effect on larval growth and survival. These results imply that worker recruitment in the hive would decline under low protein conditions, even when nectar abundance or honey stores are sufficient.

  17. Single tag for total carbohydrate analysis.

    Science.gov (United States)

    Anumula, Kalyan Rao

    2014-07-15

    Anthranilic acid (2-aminobenzoic acid, 2-AA) has the remarkable property of reacting rapidly with every type of reducing carbohydrate. Reactivity of 2-AA with carbohydrates in aqueous solutions surpasses all other tags reported to date. This unique capability is attributed to the strategically located -COOH which accelerates Schiff base formation. Monosaccharides, oligosaccharides (N-, O-, and lipid linked and glycans in secretory fluids), glycosaminoglycans, and polysaccharides can be easily labeled with 2-AA. With 2-AA, labeling is simple in aqueous solutions containing proteins, peptides, buffer salts, and other ingredients (e.g., PNGase F, glycosidase, and transferase reaction mixtures). In contrast, other tags require relatively pure glycans for labeling in anhydrous dimethyl sulfoxide-acetic acid medium. Acidic conditions are known to cause desialylation, thus requiring a great deal of attention to sample preparation. Simpler labeling is achieved with 2-AA within 30-60 min in mild acetate-borate buffered solution. 2-AA provides the highest sensitivity and resolution in chromatographic methods for carbohydrate analysis in a simple manner. Additionally, 2-AA is uniquely qualified for quantitative analysis by mass spectrometry in the negative mode. Analyses of 2-AA-labeled carbohydrates by electrophoresis and other techniques have been reported. Examples cited here demonstrate that 2-AA is the universal tag for total carbohydrate analysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Effects of dietary carbohydrates on glucose and lipid metabolism in golden Syrian hamsters.

    Science.gov (United States)

    Kasim-Karakas, S E; Vriend, H; Almario, R; Chow, L C; Goodman, M N

    1996-08-01

    Frequent coexistence of insulin resistance, central obesity, and hypertriglyceridemia in the same individual suggests an underlying common pathogenesis. Insulin resistance and hypertriglyceridemia can be induced by carbohydrate feeding in rats. Golden Syrian hamsters are believed to be resistant to the metabolic effects of dietary carbohydrates. We investigated the effects of diets containing 60% fructose or sucrose on glucose and lipid metabolism in hamsters, both in the fasting state and during an intravenous glucose tolerance test. Fructose caused obesity (weight after treatment: 131 +/- 7 gm in the control group, 155 +/- 5 gm in the fructose group, 136 +/- 7 gm in sucrose group, p < 0.04). Fructose also reduced glucose disappearance rate (KG: 2.69% +/- 0.39% in the control group, 1.45% +/- 0.18% in the fructose group, p < 0.02). Sucrose caused a marginal decrease in glucose disappearance (KG: 1.93% +/- 0.21%, p = 0.08 vs the control group). Only fructose feeding increased fasting plasma nonesterified fatty acids (0.645 +/- 0.087 mEq/L in the control group, 1.035 +/- 0.083 mEq/L in the fructose group, 0.606 +/- 0.061 mEq/L in the sucrose group, p < 0.002), plasma triglycerides (84 +/- 6 mg/dl in the control group, 270 +/- 65 mg/dl in the fructose group, 94 +/- 16 mg/dl in the sucrose group, p < 0.0002), and liver triglycerides (1.88 +/- 0.38 mg/gm liver weight in the control group, 2.35 =/- 0.24 mg/gm in the fructose group, 1.41 +/- 0.13 mg/gm in the sucrose group, p < 0.04). Previous studies in the rat have suggested that dietary carbohydrates induce insulin resistance by increasing plasma nonesterified fatty acids and triglycerides, which are preferentially used by the muscles. The present report shows that sucrose also can cause some decrease in glucose disappearance in the hamster without causing hypertriglyceridemia or increasing plasma nonesterified fatty acids. Thus other mechanisms may also contribute to the insulin resistance in the hamster. These

  19. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels

    DEFF Research Database (Denmark)

    Markou, Giorgos; Angelidaki, Irini; Georgakakis, Dimitris

    2012-01-01

    in research is the cultivation of microalgae for lipids production to generate biodiesel. However, there are several other biological or thermochemical conversion technologies, in which microalgal biomass could be used as substrate. However, the high protein content or the low carbohydrate content...... of the majority of the microalgal species might be a constraint for their possible use in these technologies. Moreover, in the majority of biomass conversion technologies, carbohydrates are the main substrate for production of biofuels. Nevertheless, microalgae biomass composition could be manipulated by several......Microalgal biomass seems to be a promising feedstock for biofuel generation. Microalgae have relative high photosynthetic efficiencies, high growth rates, and some species can thrive in brackish water or seawater and wastewater from the food- and agro-industrial sector. Today, the main interest...

  20. Fish –based diet- correlations between metabolism of carbohydrates, lipidis and proteins. Study case population of the Sulina Town, Danube Delta

    Directory of Open Access Journals (Sweden)

    Georgiana ENE

    2016-06-01

    Full Text Available According to literature data, the normal values of biochemical parameters in blood vary by sex, age, geographical region, and type of diet. The aim of this study was to analyze the benefits of a fish-based diet among the population of Sulina, in the Danube Delta (3,663 individuals, by performing a comparative hepatic evaluation, lipid profile, serum glucose levels and total protein profile of these patients. Fish is an important source of protein with high biological value, containing all essential aminoacids and low lipid levels. The novelty of the research is represented by the analyzed geographical area. The Danube Delta had no medical analysis laboratory until 2010, when the RoutineMed Sulina laboratory was opened. Patients had a set of biochemical tests in the RoutineMed Sulina laboratory and declared they eat fish or fish-based products at least once a week. Tests were performed on 200 patients for the evaluation of the liver of these patients: Aspartate Amino Transferase, alanine amino transferase, de Ritis ratio, High Density Lipoprotein, Low Density Lipoprotein, total lipids, total cholesterol, triglycerides and 200 tests for the evaluation of the serum glucose levels and total protein. Both women and men were involved in the research and patients were grouped into age ranges: 20-40 years, 40-60 years, > 60 years. The values obtained were statistically analyzed using the SPSS v. 20 software and then compared to the ranges considered normal for these parameters. The results obtained showed that patients with a fish-based diet seem to be healthier than those with a diet in which fish meat is scarce, as their blood biochemical parameters values are closer to normal, which leads to the conclusion that including fish and fish products in people's regular diet is beneficial in preventing lipid, protein and carbohydrate metabolism disorders and preserving the overall health of the body.

  1. General and specific lipid-protein interactions in Na,K-ATPase.

    Science.gov (United States)

    Cornelius, F; Habeck, M; Kanai, R; Toyoshima, C; Karlish, S J D

    2015-09-01

    The molecular activity of Na,K-ATPase and other P2 ATPases like Ca(2+)-ATPase is influenced by the lipid environment via both general (physical) and specific (chemical) interactions. Whereas the general effects of bilayer structure on membrane protein function are fairly well described and understood, the importance of the specific interactions has only been realized within the last decade due particularly to the growing field of membrane protein crystallization, which has shed new light on the molecular details of specific lipid-protein interactions. It is a remarkable observation that specific lipid-protein interactions seem to be evolutionarily conserved, and conformations of specifically bound lipids at the lipid-protein surface within the membrane are similar in crystal structures determined with different techniques and sources of the protein, despite the rather weak lipid-protein interaction energy. Studies of purified detergent-soluble recombinant αβ or αβFXYD Na,K-ATPase complexes reveal three separate functional effects of phospholipids and cholesterol with characteristic structural selectivity. The observations suggest that these three effects are exerted at separate binding sites for phophatidylserine/cholesterol (stabilizing), polyunsaturated phosphatidylethanolamine (stimulatory), and saturated PC or sphingomyelin/cholesterol (inhibitory), which may be located within three lipid-binding pockets identified in recent crystal structures of Na,K-ATPase. The findings point to a central role of direct and specific interactions of different phospholipids and cholesterol in determining both stability and molecular activity of Na,K-ATPase and possible implications for physiological regulation by membrane lipid composition. This article is part of a special issue titled "Lipid-Protein Interactions." Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Comparison of Weight-Loss Diets with Different Compositions of Fat, Protein, and Carbohydrates

    OpenAIRE

    Sacks, Frank Martin; Bray, George A.; Carey, Vincent James; Smith, Steven R.; Ryan, Donna H.; Anton, Stephen D.; McManus, Katherine; Champagne, Catherine M.; Bishop, Louise M.; Laranjo, Nancy M; Leboff, Meryl Susan; Rood, Jennifer Evelyn; de Jonge, Lilian; Greenway, Frank L.; Loria, Catherine M.

    2009-01-01

    BACKGROUND: The possible advantage for weight loss of a diet that emphasizes protein, fat, or carbohydrates has not been established, and there are few studies that extend beyond 1 year. METHODS: We randomly assigned 811 overweight adults to one of four diets; the targeted percentages of energy derived from fat, protein, and carbohydrates in the four diets were 20, 15, and 65%; 20, 25, and 55%; 40, 15, and 45%; and 40, 25, and 35%. The diets consisted of similar foods and met guideli...

  3. Membrane proteins bind lipids selectively to modulate their structure and function.

    Science.gov (United States)

    Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

    2014-06-05

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane

  4. Aerobic Exercise Training Adaptations Are Increased by Postexercise Carbohydrate-Protein Supplementation

    Directory of Open Access Journals (Sweden)

    Lisa Ferguson-Stegall

    2011-01-01

    Full Text Available Carbohydrate-protein supplementation has been found to increase the rate of training adaptation when provided postresistance exercise. The present study compared the effects of a carbohydrate and protein supplement in the form of chocolate milk (CM, isocaloric carbohydrate (CHO, and placebo on training adaptations occurring over 4.5 weeks of aerobic exercise training. Thirty-two untrained subjects cycled 60 min/d, 5 d/wk for 4.5 wks at 75–80% of maximal oxygen consumption (VO2 max. Supplements were ingested immediately and 1 h after each exercise session. VO2 max and body composition were assessed before the start and end of training. VO2 max improvements were significantly greater in CM than CHO and placebo. Greater improvements in body composition, represented by a calculated lean and fat mass differential for whole body and trunk, were found in the CM group compared to CHO. We conclude supplementing with CM postexercise improves aerobic power and body composition more effectively than CHO alone.

  5. Thiol-ene immobilisation of carbohydrates onto glass slides as a simple alternative to gold-thiol monolayers, amines or lipid binding.

    Science.gov (United States)

    Biggs, Caroline I; Edmondson, Steve; Gibson, Matthew I

    2015-01-01

    Carbohydrate arrays are a vital tool in studying infection, probing the mechanisms of bacterial, viral and toxin adhesion and the development of new treatments, by mimicking the structure of the glycocalyx. Current methods rely on the formation of monolayers of carbohydrates that have been chemically modified with a linker to enable interaction with a functionalised surface. This includes amines, biotin, lipids or thiols. Thiol-addition to gold to form self-assembled monolayers is perhaps the simplest method for immobilisation as thiolated glycans are readily accessible from reducing carbohydrates in a single step, but are limited to gold surfaces. Here we have developed a quick and versatile methodology which enables the use of thiolated carbohydrates to be immobilised as monolayers directly onto acrylate-functional glass slides via a 'thiol-ene'/Michael-type reaction. By combining the ease of thiol chemistry with glass slides, which are compatible with microarray scanners this offers a cost effective, but also useful method to assemble arrays.

  6. Association of protein structure, protein and carbohydrate subfractions with bioenergy profiles and biodegradation functions in modeled forage

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The objectives of this study were to detect unique aspects and association of forage protein inherent structure, biological compounds, protein and carbohydrate subfractions, bioenergy profiles, and biodegradation features. In this study, common available alfalfa hay from two different sourced-origins (FSO vs. CSO) was used as a modeled forage for inherent structure profile, bioenergy, biodegradation and their association between their structure and bio-functions. The molecular spectral profiles were determined using non-invasive molecular spectroscopy. The parameters included: protein structure amide I group, amide II group and their ratios; protein subfractions (PA1, PA2, PB1, PB2, PC); carbohydrate fractions (CA1, CA2, CA3, CA4, CB1, CB2, CC); biodegradable and undegradable fractions of protein (RDPA2, RDPB1, RDPB2, RDP; RUPA2 RUPB1, RUPB2, RUPC, RUP); biodegradable and undegradable fractions of carbohydrate (RDCA4, RDCB1, RDCB2, RDCB3, RDCHO; RUCA4, RUCB1; RUCB2; RUCB3 RUCC, RUCHO) and bioenergy profiles (tdNDF, tdFA, tdCP, tdNFC, TDN1 ×, DE3 ×, ME3 ×, NEL3 ×; NEm, NEg). The results show differences in protein and carbohydrate (CHO) subfractions in the moderately degradable true protein fraction (PB1: 502 vs. 420 g/kg CP, P = 0.09), slowly degraded true protein fraction (PB2: 45 vs. 96 g/kg CP, P = 0.02), moderately degradable CHO fraction (CB2: 283 vs. 223 g/kg CHO, P = 0.06) and slowly degraded CHO fraction (CB3: 369 vs. 408 g/kg CHO) between the two sourced origins. As to biodegradable (RD) fractions of protein and CHO in rumen, there were differences in RD of PB1 (417 vs. 349 g/kg CP, P = 0.09), RD of PB2 (29 vs. 62 g/kg CP, P = 0.02), RD of CB2 (251 vs. 198 g/kg DM, P = 0.06), RD of CB3 (236 vs. 261 g/kg CHO, P = 0.08). As to bioenergy profile, there were differences in total digestible nutrient (TDN: 551 vs. 537 g/kg DM, P = 0.06), and metabolic bioenergy (P = 0.095). As to protein molecular structure, there were differences in protein structure 1st

  7. Status of carbohydrate and lipid metabolism in obese patients with type 2 diabetes mellitus after biliopancreatic diversion surgery

    Directory of Open Access Journals (Sweden)

    2013-10-01

    Full Text Available We examined 70 patients with obesity and diabetes mellitus type 2 before and within 5 years after BPD: these patients showed a significant improvement in the status of carbohydrate and lipid metabolism within 3 months after surgery. This improvement has remained stable along with the reduced body weight during the whole observation period of up to 5 years.

  8. Prediction of Carbohydrate-Binding Proteins from Sequences Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Seizi Someya

    2010-01-01

    Full Text Available Carbohydrate-binding proteins are proteins that can interact with sugar chains but do not modify them. They are involved in many physiological functions, and we have developed a method for predicting them from their amino acid sequences. Our method is based on support vector machines (SVMs. We first clarified the definition of carbohydrate-binding proteins and then constructed positive and negative datasets with which the SVMs were trained. By applying the leave-one-out test to these datasets, our method delivered 0.92 of the area under the receiver operating characteristic (ROC curve. We also examined two amino acid grouping methods that enable effective learning of sequence patterns and evaluated the performance of these methods. When we applied our method in combination with the homology-based prediction method to the annotated human genome database, H-invDB, we found that the true positive rate of prediction was improved.

  9. Lipid-protein interaction induced domains: Kinetics and conformational changes in multicomponent vesicles

    Science.gov (United States)

    Sreeja, K. K.; Sunil Kumar, P. B.

    2018-04-01

    The spatio-temporal organization of proteins and the associated morphological changes in membranes are of importance in cell signaling. Several mechanisms that promote the aggregation of proteins at low cell surface concentrations have been investigated in the past. We show, using Monte Carlo simulations, that the affinity of proteins for specific lipids can hasten their aggregation kinetics. The lipid membrane is modeled as a dynamically triangulated surface with the proteins defined as in-plane fields at the vertices. We show that, even at low protein concentrations, strong lipid-protein interactions can result in large protein clusters indicating a route to lipid mediated signal amplification. At high protein concentrations, the domains form buds similar to that seen in lipid-lipid interaction induced phase separation. Protein interaction induced domain budding is suppressed when proteins act as anisotropic inclusions and exhibit nematic orientational order. The kinetics of protein clustering and resulting conformational changes are shown to be significantly different for the isotropic and anisotropic curvature inducing proteins.

  10. Hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia in sucrose-fed obese rats via two pathways.

    Science.gov (United States)

    Uebanso, Takashi; Taketani, Yutaka; Fukaya, Makiko; Sato, Kazusa; Takei, Yuichiro; Sato, Tadatoshi; Sawada, Naoki; Amo, Kikuko; Harada, Nagakatsu; Arai, Hidekazu; Yamamoto, Hironori; Takeda, Eiji

    2009-07-01

    The mechanism by which replacement of some dietary carbohydrates with protein during weight loss favors lipid metabolism remains obscure. In this study, we investigated the effect of an energy-restricted, high-protein/low-carbohydrate diet on lipid metabolism in obese rats. High-sucrose-induced obese rats were assigned randomly to one of two energy-restricted dietary interventions: a carbohydrate-based control diet (CD) or a high-protein diet (HPD). Lean rats of the same age were assigned as normal control. There was significantly greater improvement in fatty liver and hypertriglyceridemia with the HPD diet relative to the CD diet. Expression of genes regulated by fibroblast growth factor-21 (FGF21) and involved in liver lipolysis and lipid utilitization, such as lipase and acyl-CoA oxidase, increased in obese rats fed the HPD. Furthermore, there was an inverse correlation between levels of FGF21 gene expression (regulated by glucagon/insulin balance) and increased triglyceride concentrations in liver from obese rats. Expression of hepatic stearoyl-CoA desaturase-1 (SCD1), regulated primarily by the dietary carbohydrate, was also markedly reduced in the HPD group (similar to plasma triglyceride levels in fasting animals) relative to the CD group. In conclusion, a hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia effectively relative to a carbohydrate diet. The two cellular pathways at work behind these benefits include stimulation of hepatic lipolysis and lipid utilization mediated by FGF21 and reduction of hepatic VLDL-TG production by SCD1 regulation.

  11. Supramolecular protein immobilization on lipid bilayers

    NARCIS (Netherlands)

    Bosmans, R.P.G.; Hendriksen, W.E.; Verheijden, Mark Lloyd; Eelkema, R.; Jonkheijm, Pascal; van Esch, J.H.; Brunsveld, Luc

    2015-01-01

    Protein immobilization on surfaces, and on lipid bilayers specifically, has great potential in biomolecular and biotechnological research. Of current special interest is the immobilization of proteins using supramolecular noncovalent interactions. This allows for a reversible immobilization and

  12. Circulating FGF21 in humans is potently induced by short term overfeeding of carbohydrates.

    Science.gov (United States)

    Lundsgaard, Anne-Marie; Fritzen, Andreas M; Sjøberg, Kim A; Myrmel, Lene S; Madsen, Lise; Wojtaszewski, Jørgen F P; Richter, Erik A; Kiens, Bente

    2017-01-01

    Fibroblast-growth factor 21 (FGF21) is thought to be important in metabolic regulation. Recently, low protein diets have been shown to increase circulating FGF21 levels. However, when energy contribution from dietary protein is lowered, other macronutrients, such as carbohydrates, must be increased to meet eucaloric balance. This raises the possibility that intake of a diet rich in carbohydrates may induce an increase in plasma FGF21 levels per se. Here we studied the role of dietary carbohydrates on the levels of circulating FGF21 and concomitant physiologic effects by feeding healthy men a carbohydrate rich diet without reducing protein intake. A diet enriched in carbohydrates (80 E% carbohydrate; CHO) and a eucaloric control diet (CON) were provided to nine healthy men for three days. The energy intake during the CHO diet was increased (+75% energy) to ensure similar dietary protein intake in CHO and CON. To control for the effect of caloric surplus, we similarly overfed (+75% energy) the same subjects for three days with a fat-rich diet (78 E% fat; FAT), consisting of primarily unsaturated fatty acids. The three diets were provided in random order. After CHO, plasma FGF21 concentration increased 8-fold compared to CON (329 ± 99 vs. 39 ± 9 pg ml -1 , p FAT only a non-significant tendency (p = 0.073) to an increase in plasma FGF21 concentration was found. The increase in FGF21 concentration after CHO correlated closely (r = 0.88, p carbohydrate, but not fat, led to markedly increased FGF21 secretion in humans, notably without protein restriction, and affected glucose and lipid homeostais.

  13. Biorefinery of the macroalgae Ulva lactuca: extraction of proteins and carbohydrates by mild disintegration.

    Science.gov (United States)

    Postma, P R; Cerezo-Chinarro, O; Akkerman, R J; Olivieri, G; Wijffels, R H; Brandenburg, W A; Eppink, M H M

    2018-01-01

    The effect of osmotic shock, enzymatic incubation, pulsed electric field, and high shear homogenization on the release of water-soluble proteins and carbohydrates from the green alga Ulva lactuca was investigated in this screening study. For osmotic shock, both temperature and incubation time had a significant influence on the release with an optimum at 30 °C for 24 h of incubation. For enzymatic incubation, pectinase demonstrated being the most promising enzyme for both protein and carbohydrate release. Pulsed electric field treatment was most optimal at an electric field strength of 7.5 kV cm -1 with 0.05 ms pulses and a specific energy input relative to the released protein as low as 6.6 kWh kg prot -1 . Regarding literature, this study reported the highest protein (~ 39%) and carbohydrate (~ 51%) yields of the four technologies using high shear homogenization. Additionally, an energy reduction up to 86% was achieved by applying a novel two-phase (macrostructure size reduction and cell disintegration) technique.

  14. Evaluation of canine adverse food reactions by patch testing with single proteins, single carbohydrates and commercial foods.

    Science.gov (United States)

    Johansen, Cornelia; Mariani, Claire; Mueller, Ralf S

    2017-10-01

    Adverse food reaction (AFR) is an important differential diagnosis for the pruritic dog. It is usually diagnosed by feeding an elimination diet with a novel protein and carbohydrate source for eight weeks followed by subsequent food provocation. A previous study demonstrated that patch testing dogs with foods had a high sensitivity and negative predictability for selection of elimination diet ingredients. The aim of this study was to investigate patch testing with proteins, carbohydrates and dry commercial dog food in dogs to determine whether there was value in patch testing to aid the diagnosis of canine adverse food reaction. Twenty five privately owned dogs, with confirmed AFR, underwent provocation trials with selected food antigens and patch testing. For proteins, carbohydrates and dry dog food the sensitivity of patch testing was 100%, 70% and 22.2%, respectively; the negative predictive values of patch testing were 100%, 79% and 72%. The positive predictive values of patch testing for proteins and carbohydrates were 75% and 74%, respectively. This study confirmed that patch testing may be useful for the selection of a suitable protein source for an elimination diet in dogs with suspected AFR, but not as a diagnostic tool for canine AFR. Results for proteins are more reliable than for carbohydrates and the majority of positive patch test reactions were observed with raw protein. Patch testing with commercial dog food does not seem to be useful. © 2017 ESVD and ACVD.

  15. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    Directory of Open Access Journals (Sweden)

    Frédéric Raymond

    Full Text Available Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF diet that has a high (H or a low (L protein-to-carbohydrate (P/C ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words.

  16. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    Science.gov (United States)

    Raymond, Frédéric; Wang, Long; Moser, Mireille; Metairon, Sylviane; Mansourian, Robert; Zwahlen, Marie-Camille; Kussmann, Martin; Fuerholz, Andreas; Macé, Katherine; Chou, Chieh Jason

    2012-01-01

    Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF) diet that has a high (H) or a low (L) protein-to-carbohydrate (P/C) ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d) followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words).

  17. Lipid recognition propensities of amino acids in membrane proteins from atomic resolution data

    Directory of Open Access Journals (Sweden)

    Morita Mizuki

    2011-12-01

    Full Text Available Abstract Background Protein-lipid interactions play essential roles in the conformational stability and biological functions of membrane proteins. However, few of the previous computational studies have taken into account the atomic details of protein-lipid interactions explicitly. Results To gain an insight into the molecular mechanisms of the recognition of lipid molecules by membrane proteins, we investigated amino acid propensities in membrane proteins for interacting with the head and tail groups of lipid molecules. We observed a common pattern of lipid tail-amino acid interactions in two different data sources, crystal structures and molecular dynamics simulations. These interactions are largely explained by general lipophilicity, whereas the preferences for lipid head groups vary among individual proteins. We also found that membrane and water-soluble proteins utilize essentially an identical set of amino acids for interacting with lipid head and tail groups. Conclusions We showed that the lipophilicity of amino acid residues determines the amino acid preferences for lipid tail groups in both membrane and water-soluble proteins, suggesting that tightly-bound lipid molecules and lipids in the annular shell interact with membrane proteins in a similar manner. In contrast, interactions between lipid head groups and amino acids showed a more variable pattern, apparently constrained by each protein's specific molecular function.

  18. Lipid recognition propensities of amino acids in membrane proteins from atomic resolution data

    International Nuclear Information System (INIS)

    Morita, Mizuki; Katta, AVSK Mohan; Ahmad, Shandar; Mori, Takaharu; Sugita, Yuji; Mizuguchi, Kenji

    2011-01-01

    Protein-lipid interactions play essential roles in the conformational stability and biological functions of membrane proteins. However, few of the previous computational studies have taken into account the atomic details of protein-lipid interactions explicitly. To gain an insight into the molecular mechanisms of the recognition of lipid molecules by membrane proteins, we investigated amino acid propensities in membrane proteins for interacting with the head and tail groups of lipid molecules. We observed a common pattern of lipid tail-amino acid interactions in two different data sources, crystal structures and molecular dynamics simulations. These interactions are largely explained by general lipophilicity, whereas the preferences for lipid head groups vary among individual proteins. We also found that membrane and water-soluble proteins utilize essentially an identical set of amino acids for interacting with lipid head and tail groups. We showed that the lipophilicity of amino acid residues determines the amino acid preferences for lipid tail groups in both membrane and water-soluble proteins, suggesting that tightly-bound lipid molecules and lipids in the annular shell interact with membrane proteins in a similar manner. In contrast, interactions between lipid head groups and amino acids showed a more variable pattern, apparently constrained by each protein's specific molecular function

  19. Influence of night-time protein and carbohydrate intake on appetite and cardiometabolic risk in sedentary overweight and obese women.

    Science.gov (United States)

    Kinsey, Amber W; Eddy, Wyatt R; Madzima, Takudzwa A; Panton, Lynn B; Arciero, Paul J; Kim, Jeong-Su; Ormsbee, Michael J

    2014-08-14

    The present study investigated whether whey (WH) protein, casein (CAS) protein or a carbohydrate placebo (PLA) consumed 30 min before sleep could acutely alter appetite or cardiometabolic risk the following morning. A total of forty-four sedentary overweight and obese women (BMI: 25·7-54·6 kg/m2) completed this stratified, randomised, double-blind, placebo-controlled study (WH: n 16, age 27·4 (sd 5·0) years; CAS: n 15, age 30·3 (sd 8·1) years; PLA: n 13, age 28·5 (sd 7·2) years). The participants came to the laboratory at baseline (visit 1) and again in the morning after night-time ingestion of either protein or PLA (visit 2). Visit 2 was conducted at least 48 h after visit 1. During visits 1 and 2, the following parameters were measured: appetite (hunger, satiety and desire to eat); resting metabolism; blood lipid and glucose levels; the levels of insulin, leptin, C-reactive protein, insulin-like growth factor-1, cortisol and adiponectin. Data were analysed using repeated-measures ANOVA. No group × time interactions were observed for the measured variables; however, a main effect of time was observed for increased satiety (P= 0·03), reduced desire to eat (P= 0·006), and increased insulin levels (P= 0·004) and homeostatic model assessment of insulin resistance values (P= 0·01) after the consumption of either protein or PLA. The results of the present study reveal that night-time consumption of protein or carbohydrate by sedentary overweight and obese women improves their appetite measures but negatively affects insulin levels. Long-term studies are needed to evaluate the effects of chronic consumption of low-energy snacks at night on body composition and cardiometabolic risk.

  20. Protein-carbohydrate supplements in the production of meat products

    Directory of Open Access Journals (Sweden)

    I. N. Tolpigina

    2013-01-01

    Full Text Available Rationality of the use of protein-carbohydrate additive in the technology of meat products was justified. The capability of the fiber to stabilizate properties of meat systems was investigated. There was established permissible limits of the use of additives in prescription solutions in the production of sausage products of a various price level according to the criterion of biological values. The trial production of sausage products was held. By the methods of mathematical statistics were optimized compositions of protein-polysaccharide additives.

  1. Radiolysis of carbohydrates and of carbohydrate-containing foodstuffs

    International Nuclear Information System (INIS)

    Diehl, J.F.; Adam, S.; Delincee, H.; Jakubick, V.

    1978-01-01

    Toxicological evaluation of irradiated foodstuffs requires knowledge of radiation-induced chemical changes. A review of the literature reveals much information on the radiation chemistry of pure substances, e.g., dilute solutions of individual carbohydrates. Much less is known about the interactions of food constituents during irradiation. In an effort to remedy this situation, radiation effects on various compounds have been studied in systems of increasing complexity. In one approach, gas chromatography was used to investigate the radiolysis of tehalose in pure solution and in the presence of amino acids or proteins. In another approach, radiation-induced aggregation of proteins and of [ 14 C]tryptophan with proteins was studied in the absence and presence of carbohydrates (trehalose, starch), emulsified sunfower oil, and a mixture of carbohydrates and emulsified sunflower oil

  2. Cd1b-Mediated T Cell Recognition of a Glycolipid Antigen Generated from Mycobacterial Lipid and Host Carbohydrate during Infection

    Science.gov (United States)

    Moody, D. Branch; Guy, Mark R.; Grant, Ethan; Cheng, Tan-Yun; Brenner, Michael B.; Besra, Gurdyal S.; Porcelli, Steven A.

    2000-01-01

    T cells recognize microbial glycolipids presented by CD1 proteins, but there is no information regarding the generation of natural glycolipid antigens within infected tissues. Therefore, we determined the molecular basis of CD1b-restricted T cell recognition of mycobacterial glycosylated mycolates, including those produced during tissue infection in vivo. Transfection of the T cell receptor (TCR) α and β chains from a glucose monomycolate (GMM)-specific T cell line reconstituted GMM recognition in TCR-deficient T lymphoblastoma cells. This TCR-mediated response was highly specific for natural mycobacterial glucose-6-O-(2R, 3R) monomycolate, including the precise structure of the glucose moiety, the stereochemistry of the mycolate lipid, and the linkage between the carbohydrate and the lipid. Mycobacterial production of antigenic GMM absolutely required a nonmycobacterial source of glucose that could be supplied by adding glucose to media at concentrations found in mammalian tissues or by infecting tissue in vivo. These results indicate that mycobacteria synthesized antigenic GMM by coupling mycobacterial mycolates to host-derived glucose. Specific T cell recognition of an epitope formed by interaction of host and pathogen biosynthetic pathways provides a mechanism for immune response to those pathogenic mycobacteria that have productively infected tissues, as distinguished from ubiquitous, but innocuous, environmental mycobacteria. PMID:11015438

  3. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    Science.gov (United States)

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  4. A randomized trial of energy-restricted high-protein versus high-carbohydrate, low-fat diet in morbid obesity.

    Science.gov (United States)

    Dalle Grave, Riccardo; Calugi, Simona; Gavasso, Ilaria; El Ghoch, Marwan; Marchesini, Giulio

    2013-09-01

    Conflicting evidence exists as to weight loss produced by diets with different carbohydrate/protein ratio. The aim was to compare the long-term effects of high-protein vs. high-carbohydrate diet (HPD, HCD), combined with cognitive behavior therapy (CBT). In a randomized trial, 88 obese participants (mean age, 46.7; mean BMI, 45.6 kg m(-2) ) were enrolled in a 3-week inpatient and 48-week outpatient treatment, with continuous CBT during the study period. All subjects consumed a restricted diet (1,200 kcal day(-1) for women, 1,500 for men; 20% energy from fat, fat). HPD derived 34% energy from proteins, 46% from carbohydrates; HCD 17% from proteins, 64% from carbohydrates. The primary outcome was 1-year percent weight loss. Secondary outcomes were attrition rates and changes in cardiovascular risk factors and psychological profile. Attrition rates were similar between groups (25.6%). In the intention-to-treat analysis, weight loss averaged 15.0% in HPD and 13.3% in HCD at 1 year, without any difference throughout the study period. Both diets produced a similar improvement in secondary outcomes. The relative carbohydrate and protein content of the diet, when combined with intensive CBT, does not significantly affect attrition rate, weight loss and psychosocial outcome in patients with severe obesity. Copyright © 2013 The Obesity Society.

  5. Impact of Dietary Carbohydrate and Protein Levels on Carbohydrate Metabolism

    Science.gov (United States)

    Lasker, Denise Ann

    2009-01-01

    The goal of this dissertation was to investigate the impact of changing dietary carbohydrate (CARB) intakes within recommended dietary guidelines on metabolic outcomes specifically associated with glycemic regulations and carbohydrate metabolism. This research utilized both human and animal studies to examine changes in metabolism across a wide…

  6. Glucagon-Like Peptide 2 Stimulates Postresection Intestinal Adaptation in Preterm Pigs by Affecting Proteins Related to Protein, Carbohydrate, and Sulphur Metabolism

    DEFF Research Database (Denmark)

    Jiang, Pingping; Vegge, Andreas; Thymann, Thomas

    2017-01-01

    cellular structural proteins, while the added GLP-2 treatment affected proteins involved in protein processing and the metabolism of protein, carbohydrate, and sulphur. CONCLUSION: In the first days following resection, proteins affected by resection plus GLP-2 treatment differed markedly from those...

  7. Lipids, CHOs, proteins: can all macronutrients put a 'brake' on eating?

    Science.gov (United States)

    Shin, H S; Ingram, J R; McGill, A-T; Poppitt, S D

    2013-08-15

    The gastrointestinal (GI) tract and specifically the most distal part of the small intestine, the ileum, has become a renewed focus of interest for mechanisms targeting appetite suppression. The 'ileal brake' is stimulated when energy-containing nutrients are delivered beyond the duodenum and jejunum and into the ileum, and is named for the feedback loop which slows or 'brakes' gastric emptying and duodeno-jejunal motility. More recently it has been hypothesized that the ileal brake also promotes secretion of satiety-enhancing GI peptides and suppresses hunger, placing a 'brake' on food intake. Postprandial delivery of macronutrients to the ileum, other than unavailable carbohydrates (CHO) which bypass absorption in the small intestine en route to fermentation in the large bowel, is an uncommon event and hence this brake mechanism is rarely activated following a meal. However the ability to place a 'brake' on food intake through delivery of protected nutrients to the ileum is both intriguing and challenging. This review summarizes the current clinical and experimental evidence for activation of the ileal brake by the three food macronutrients, with emphasis on eating behavior and satiety as well as GI function. While clinical studies have shown that exposure of the ileum to lipids, CHOs and proteins may activate GI components of the ileal brake, such as decreased gut motility, gastric emptying and secretion of GI peptides, there is less evidence as yet to support a causal relationship between activation of the GI brake by these macronutrients and the suppression of food intake. The predominance of evidence for an ileal brake on eating comes from lipid studies, where direct lipid infusion into the ileum suppresses both hunger and food intake. Outcomes from oral feeding studies are less conclusive with no evidence that 'protected' lipids have been successfully delivered into the ileum in order to trigger the brake. Whether CHO or protein may induce the ileal brake

  8. Recovery of insulin sensitivity and optimal body composition after rapid weight loss in obese dogs fed a high-protein medium-carbohydrate diet.

    Science.gov (United States)

    André, A; Leriche, I; Chaix, G; Thorin, C; Burger, M; Nguyen, P

    2017-06-01

    This study investigated the effects of an experimental high-protein medium-carbohydrate diet (protein level, 46% metabolizable energy, ME). First, postprandial plasma glucose and insulin kinetics were determined in steady-state overweight/obese Beagle dogs (28%-41% excess body weight) for an experimental high-protein medium-carbohydrate diet (protein level, 46% ME) and a commercial high-carbohydrate medium-protein diet (protein level, 24%ME) in obese dogs. Secondly, all the dogs were included in a weight loss programme. They were fed the high-protein medium-carbohydrate diet, and the energy allocation was gradually reduced until they reached their optimal body weight. Insulin sensitivity and body composition were evaluated before and after weight loss using a euglycaemic-hyperinsulinaemic clamp and the deuterium oxide dilution technique respectively. For statistical analysis, linear mixed effect models were used with a significance level of 5%. Postprandial plasma glucose and insulin concentrations were substantially lower with the high-protein medium-carbohydrate diet than the high-carbohydrate medium-protein diet. These differences can be explained mainly by the difference in carbohydrate content between the two diets. Energy restriction (35% lower energy intake than in the obese state) resulted in a 2.23 ± 0.05% loss in body weight/week, and the dogs reached their optimal body weight in 12-16 weeks. Weight loss was associated with a significant increase in insulin sensitivity. The high-protein medium-carbohydrate diet allowed fat-free mass preservation despite a relatively high rate of weekly weight loss. The increase in insulin sensitivity indicated improved control of carbohydrate metabolism, possible due to weight loss and to the nature of the diet. Thus, a high-protein medium-carbohydrate diet is a good nutritional solution for managing the weight of overweight dogs. This diet may improve glycaemic control, which could be beneficial for preventing or

  9. Monoolein lipid phases as incorporation and enrichment materials for membrane protein crystallization.

    Directory of Open Access Journals (Sweden)

    Ellen Wallace

    Full Text Available The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive

  10. Effect of Nutrient Formulations on Permeation of Proteins and Lipids ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of nutrient formulations on the permeation of proteins and lipids through porcine intestine in vitro. Method: In vitro permeation studies of proteins and lipids of two peptide-based formulations, composed of various compounds and sources of hydrolyzed protein was carried out, and compared ...

  11. Rats free to select between pure protein and a fat-carbohydrate mix ingest high-protein mixed meals during the dark period and protein meals during the light period.

    Science.gov (United States)

    Makarios-Lahham, Lina; Roseau, Suzanne M; Fromentin, Gilles; Tome, Daniel; Even, Patrick C

    2004-03-01

    Rats that are allowed to select their diets [dietary self- selection (DSS)] often ingest >30% of their daily energy in the form of protein. Such an intake may seem unhealthy, but the consistency of this choice suggests that it is motivated by physiologic drives. To gain a clearer understanding of how protein selection is structured during DSS, we adapted 12 rats to a standard diet (14% Protein) and then allowed them to choose between two diets, i.e., total milk protein (P) and a mix of carbohydrates and lipids (FC). The protein intake during DSS rose above 40%; assuming an intermeal interval of 10 min, 70% of the energy intake occurred with meals that included both P and FC, with the sequence of FC followed by P preferred to the sequence of P followed by FC (70 vs. 30%, P energy intake during the light period was reduced to only 10% of the daily energy intake [vs. 30% with the control P14 diet or a with a high-protein diet (50%)], and 90% of the intake was in the form of pure protein meals. In complementary studies, we verified that the high protein intake also occurred when rats were offered casein and whey and was not due to the high palatability of the milk protein. We conclude that a specific feeding pattern accompanies high protein intake in rats allowed DSS. The mechanisms underlying this behavior and its potential beneficial/adverse consequences over the long term still must be clarified.

  12. Effect of endogenous proteins and lipids on starch digestibility in rice flour.

    Science.gov (United States)

    Ye, Jiangping; Hu, Xiuting; Luo, Shunjing; McClements, David Julian; Liang, Lu; Liu, Chengmei

    2018-04-01

    The composition and structure of the food matrix can have a major impact on the digestion. The aim of this work was to investigate the effects of endogenous proteins and lipids on starch digestibility in rice flour, with an emphasis on establishing the underlying physicochemical mechanisms involved. Native long-grain indica rice flour and rice flour with the lipids and/or proteins removed were subjected to a simulated digestion in vitro. A significant increase in starch digestibility was observed after removal of proteins, lipids, or both. The starch digestibility of the rice flour without lipids was slightly lower than that without proteins, even though the proteins content was about 10-fold higher than the lipids content. Microstructural analysis suggested that the proteins and lipids were normally attached to the surfaces of the starch granules in the native rice flour, thus inhibiting their contact with digestive enzymes. Moreover, the proteins and lipids restricted the swelling of the starch granules, which may have decreased their digestion by reducing their surface areas. In addition, amylose-lipid complex was detected in the rice flour, which is also known to slow down starch digestion. These results have important implications for the design of foods with improved nutritional profiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Reaction of protein and carbohydrates with EDC for making unique biomaterials

    Science.gov (United States)

    Prior research from this laboratory has demonstrated the feasibility of using chemical and enzymatic treatments on protein and carbohydrate waste products for the purpose of making fillers to enhance the properties of leather. These treatments (microbial transglutaminase, genipin, and polyphenols i...

  14. Lack of effect of high-protein vs. high-carbohydrate meal intake on stress-related mood and eating behavior

    Directory of Open Access Journals (Sweden)

    Lemmens Sofie G

    2011-12-01

    Full Text Available Abstract Background Consumption of meals with different macronutrients, especially high in carbohydrates, may influence stress-related eating behavior. We aimed to investigate whether consumption of high-protein vs. high-carbohydrate meals influences stress-related mood, food reward, i.e. 'liking' and 'wanting', and post-meal energy intake. Methods Participants (n = 38, 19m/19f, age = 25 ± 9 y, BMI = 25.0 ± 3.3 kg/m2 came to the university four times, fasted, once for a stress session receiving a high-protein meal, once for a rest session receiving a high-protein meal, once for a stress session receiving a high-carbohydrate meal and once for a rest session receiving a high-carbohydrate meal (randomized cross-over design. The high-protein and high-carbohydrate test meals (energy percentage protein/carbohydrate/fat 65/5/30 vs. 6/64/30 matched for energy density (4 kJ/g and daily energy requirements (30%. Stress was induced using an ego-threatening test. Pre- and post-meal 'liking' and 'wanting' (for bread, filling, drinks, dessert, snacks, stationery (non-food alternative as control was measured by means of a computer test. Following the post-meal 'wanting' measurement, participants received and consumed their wanted food items (post-meal energy intake. Appetite profile (visual analogue scales, mood state (Profile Of Mood State and State Trait Anxiety Inventory questionnaires, and post-meal energy intake were measured. Results Participants showed increased feelings of depression and anxiety during stress (P Conclusions Consumption of a high-protein vs. high-carbohydrate meal appears to have limited impact on stress-related eating behavior. Only participants with high disinhibition showed decreased subsequent 'wanting' and energy intake during rest; this effect disappeared under stress. Acute stress overruled effects of consumption of high-protein foods. Trial registration The study was registered in the Dutch Trial Register (NTR1904. The

  15. Amino Acid Composition of Protein-Enriched Dried Pasta: Is It Suitable for a Low-Carbohydrate Diet?

    Directory of Open Access Journals (Sweden)

    Rajko Vidrih

    2015-01-01

    Full Text Available Today, obesity is one of the major health problems, a so-called epidemic of the developed world. Obesity arises through an imbalance between energy intake and energy expenditure, so it is important for products to have a balanced nutritional composition. The aim of this study is to prepare high-protein pasta with high nutritional quality, with emphasis on its amino acid composition, as ordinary durum pasta lacks lysine and threonine. Ordinary durum wheat pasta contains, on average, 77 % carbohydrate, and can have even less than 10 % protein. It is therefore oft en excluded from normal energy-restricted diets, and especially from low-carbohydrate diets. In this study pasta that can satisfy the nutritional requirements of a low-carbohydrate diet and is suitable for daily use was developed and evaluated. Protein-enhanced pasta was produced by adding high amounts of plant protein extract (40 % dry matter without (plain high-protein pasta or with 3 % dried spinach powder (high-protein spinach pasta to durum wheat semolina. According to the sensory analysis data, the addition of 40 % of plant protein extract satisfied sensory and nutritional requirements, allowing further development and evaluation for possible marketing. This analysis shows that these high-protein neutral and spinach pasta contain 36.4 and 39.6 g of protein per 100 g of dry mass, 12.07 and 14.70 g of total essential amino acids per 100 g of dry mass, and a high content of branched-chain amino acids, i.e. 5.54 and 6.65 g per 100 g of dry mass, respectively. This therefore represents a true alternative to durum wheat pasta for low-carbohydrate diets.

  16. Probing protein-lipid interactions by FRET between membrane fluorophores

    Science.gov (United States)

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Deligeorgiev, Todor; Gadjev, Nikolai

    2016-09-01

    Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.

  17. Involvement of lipid-protein complexes in plant-microorganism interactions

    Directory of Open Access Journals (Sweden)

    Blein Jean-Pierre

    2002-01-01

    Full Text Available Increasing concerns about the environmental impact of modern agricultural have prompted research for alternate practices to pesticide treatments, notably using plant defense mechanisms. Thus, isolation and characterization of plant defense elicitors have been the main step of studies in many groups. Moreover, in the global concept of interactions between organisms and their environment, a major concern is to discriminate recognition between exogenous and endogenous signals, notably during pathogenic or allergenic interactions involving small proteins, such as elicitins or lipid transfer proteins (LTPs. Elicitins and lipid transfer proteins (LTP are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defense mechanisms, the biological function of LTPs is still an enigma. They are ubiquitous plant proteins able to load and transfer hydrophobic molecules such as fatty acids or phospholipids. Among them, LTPs1 (type 1 lipid transfer proteins constitute a multigenic family of secreted plant lipid binding proteins that are constitutively expressed in specific tissues and/or induced in response to biotic and abiotic stress (for reviews [1-4]. Their biological function is still unknown, even if some data provide arguments for a role of these proteins in the assembly of extracellular hydrophobic polymers (i.e., cutin and suberin [2, 4] and/or in plant defense against fungal pathogens [1, 3]. Beside their involvement in plant defense, LTPs1 are also known to be pan-allergens of plant-derived foods [5]. Finally, the discovery of the sterol carrier-properties of elicitins has opened new perspectives dealing with the relationship between this function and the elicitor activity of these small cystein-rich proteins. Nevertheless, this elicitor activity is restrained to few plant species, and thus does not appear in accordance with a universal lipid transfer

  18. Broiler meat quality: Proteins and lipids of muscle tissue ...

    African Journals Online (AJOL)

    Proteins and lipids of muscle tissue are important meat quality parameters. They contribute substantially to the nutritional characteristics of meat. A number of studies has been conducted on the effect of different factors on the protein and lipid content of broiler meat. Given the above, the subject matter of the present paper ...

  19. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  20. Low-carbohydrate, high-protein score and mortality in a northern Swedish population-based cohort.

    Science.gov (United States)

    Nilsson, L M; Winkvist, A; Eliasson, M; Jansson, J-H; Hallmans, G; Johansson, I; Lindahl, B; Lenner, P; Van Guelpen, B

    2012-06-01

    Long-term effects of carbohydrate-restricted diets are unclear. We examined a low-carbohydrate, high-protein (LCHP) score in relation to mortality. This is a population-based cohort study on adults in the northern Swedish county of Västerbotten. In 37,639 men (1460 deaths) and 39,680 women (923 deaths) from the population-based Västerbotten Intervention Program, deciles of energy-adjusted carbohydrate (descending) and protein (ascending) intake were added to create an LCHP score (2-20 points). Sex-specific hazard ratios (HR) were calculated by Cox regression. Median intakes of carbohydrates, protein and fat in subjects with LCHP scores 2-20 ranged from 61.0% to 38.6%, 11.3% to 19.2% and 26.6% to 41.5% of total energy intake, respectively. High LCHP score (14-20 points) did not predict all-cause mortality compared with low LCHP score (2-8 points), after accounting for saturated fat intake and established risk factors (men: HR for high vs low 1.03 (95% confidence interval (CI) 0.88-1.20), P for continuous = 0.721; women: HR for high vs low 1.10 (95% CI 0.91-1.32), P for continuous = 0.229). For cancer and cardiovascular disease, no clear associations were found. Carbohydrate intake was inversely associated with all-cause mortality, though only statistically significant in women (multivariate HR per decile increase 0.95 (95% CI 0.91-0.99), P = 0.010). Our results do not support a clear, general association between LCHP score and mortality. Studies encompassing a wider range of macronutrient consumption may be necessary to detect such an association.

  1. Oral delivery of peptides and proteins using lipid-based drug delivery systems.

    Science.gov (United States)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-10-01

    In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism by which intestinal absorption of peptides and proteins is promoted. The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two most important barriers (extensive enzymatic degradation and poor transmucosal permeability). This paper also gives a clear-cut idea about advantages and drawbacks of using different lipidic colloidal carriers ((micro)emulsions, solid lipid core particles and liposomes) for oral delivery of peptides and proteins. Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve the design and development of lipid-based DDS with the desired bioavailability and therapeutic profile.

  2. Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency.

    Science.gov (United States)

    Taipale, Sami J; Galloway, Aaron W E; Aalto, Sanni L; Kahilainen, Kimmo K; Strandberg, Ursula; Kankaala, Paula

    2016-08-11

    Freshwater food webs can be partly supported by terrestrial primary production, often deriving from plant litter of surrounding catchment vegetation. Although consisting mainly of poorly bioavailable lignin, with low protein and lipid content, the carbohydrates from fallen tree leaves and shoreline vegetation may be utilized by aquatic consumers. Here we show that during phytoplankton deficiency, zooplankton (Daphnia magna) can benefit from terrestrial particulate organic matter by using terrestrial-origin carbohydrates for energy and sparing essential fatty acids and amino acids for somatic growth and reproduction. Assimilated terrestrial-origin fatty acids from shoreline reed particles exceeded available diet, indicating that Daphnia may convert a part of their dietary carbohydrates to saturated fatty acids. This conversion was not observed with birch leaf diets, which had lower carbohydrate content. Subsequent analysis of 21 boreal and subarctic lakes showed that diet of herbivorous zooplankton is mainly based on high-quality phytoplankton rich in essential polyunsaturated fatty acids. The proportion of low-quality diets (bacteria and terrestrial particulate organic matter) was <28% of the assimilated carbon. Taken collectively, the incorporation of terrestrial carbon into zooplankton was not directly related to the concentration of terrestrial organic matter in experiments or lakes, but rather to the low availability of phytoplankton.

  3. Carbohydrates – Guidelines on Parenteral Nutrition, Chapter 5

    Science.gov (United States)

    Bolder, U.; Ebener, C.; Hauner, H.; Jauch, K. W.; Kreymann, G.; Ockenga, J.; Traeger, K.

    2009-01-01

    The main role of carbohydrates in the human body is to provide energy. Carbohydrates should always be infused with PN (parenteral nutrition) in combination with amino acids and lipid emulsions to improve nitrogen balance. Glucose should be provided as a standard carbohydrate for PN, whereas the use of xylite is not generally recommended. Fructose solutions should not be used for PN. Approximately 60% of non-protein energy should be supplied as glucose with an intake of 3.0–3.5 g/kg body weight/day (2.1–2.4 mg/kg body weight/min). In patients with a high risk of hyperglycaemia (critically ill, diabetes, sepsis, or steroid therapy) an lower initial carbohydrate infusion rate of 1–2 g/kg body weight/day is recommended to achieve normoglycaemia. One should aim at reaching a blood glucose level of 80–110 mg/dL, and at least a glucose level <145 mg/dL should be achieved to reduce morbidity and mortality. Hyperglycaemia may require addition of an insulin infusion or a reduction (2.0–3.0 g/kg body weight/day) or even a temporary interruption of glucose infusion. Close monitoring of blood glucose levels is highly important. PMID:20049080

  4. Carbohydrates – Guidelines on Parenteral Nutrition, Chapter 5

    Directory of Open Access Journals (Sweden)

    Working group for developing the guidelines for parenteral nutrition of The German Association for Nutritional Medicine

    2009-11-01

    Full Text Available The main role of carbohydrates in the human body is to provide energy. Carbohydrates should always be infused with PN (parenteral nutrition in combination with amino acids and lipid emulsions to improve nitrogen balance. Glucose should be provided as a standard carbohydrate for PN, whereas the use of xylite is not generally recommended. Fructose solutions should not be used for PN. Approximately 60% of non-protein energy should be supplied as glucose with an intake of 3.0–3.5 g/kg body weight/day (2.1–2.4 mg/kg body weight/min. In patients with a high risk of hyperglycaemia (critically ill, diabetes, sepsis, or steroid therapy an lower initial carbohydrate infusion rate of 1–2 g/kg body weight/day is recommended to achieve normoglycaemia. One should aim at reaching a blood glucose level of 80–110 mg/dL, and at least a glucose level <145 mg/dL should be achieved to reduce morbidity and mortality. Hyperglycaemia may require addition of an insulin infusion or a reduction (2.0–3.0 g/kg body weight/day or even a temporary interruption of glucose infusion. Close monitoring of blood glucose levels is highly important.

  5. Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production.

    Science.gov (United States)

    Arora, Neha; Patel, Alok; Pruthi, Parul A; Pruthi, Vikas

    2016-08-01

    The study synergistically optimized nitrogen and phosphorous concentrations for attainment of maximum lipid productivity in Chlorella minutissima. Nitrogen and phosphorous limited cells (N(L)P(L)) showed maximum lipid productivity (49.1±0.41mg/L/d), 1.47 folds higher than control. Nitrogen depletion resulted in reduced cell size with large sized lipid droplets encompassing most of the intracellular space while discrete lipid bodies were observed under nitrogen sufficiency. Synergistic N/P starvations showed more prominent effect on photosynthetic pigments as to individual deprivations. Phosphorous deficiency along with N starvation exhibited 17.12% decline in carbohydrate while no change in nitrogen sufficient cells were recorded. The optimum N(L)P(L) concentration showed balance between biomass and lipid by maintaining intermediate cell size, pigments, carbohydrate and proteins. FAME profile showed C14-C18 carbon chains in N(L)P(L) cells with biodiesel properties comparable to plant oil methyl esters. Hence, synergistic N/P limitation was effective for enhancing lipid productivity with reduced consumption of nutrients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A convenient method for synthesis of glyconanoparticles for colorimetric measuring carbohydrate-protein interactions

    International Nuclear Information System (INIS)

    Chuang, Yen-Jun; Zhou, Xichun; Pan, Zhengwei; Turchi, Craig

    2009-01-01

    Carbohydrate functionalized nanoparticles, i.e., the glyconanoparticles, have wide application ranging from studies of carbohydrate-protein interactions, in vivo cell imaging, biolabeling, etc. Currently reported methods for preparation of glyconanoparticles require multi-step modifications of carbohydrates moieties to conjugate to nanoparticle surface. However, the required synthetic manipulations are difficult and time consuming. We report herewith a simple and versatile method for preparing glyconanoparticles. This method is based on the utilization of clean and convenient microwave irradiation energy for one-step, site-specific conjugation of unmodified carbohydrates onto hydrazide-functionalized Au nanoparticles. A colorimetric assay that utilizes the ensemble of gold glyconanoparticles and Concanavalin A (ConA) was also presented. This feasible assay system was developed to analyze multivalent interactions and to determine the dissociation constant (K d ) for five kind of Au glyconanoparticles with lectin. Surface plasmon changes of the Au glyconanoparticles as a function of lectin-carbohydrate interactions were measured and the dissociation constants were determined based on non-linear curve fitting. The strength of the interaction of carbohydrates with ConA was found to be as follows: maltose > mannose > glucose > lactose > MAN5.

  7. Isocaloric substitution of carbohydrates with protein: the association with weight change and mortality among patients with type 2 diabetes

    NARCIS (Netherlands)

    Campmans-Kuijpers, M.J.E.; Sluijs, van der I.; Sluik, D.

    2015-01-01

    Background: The health impact of dietary replacement of carbohydrates with protein for patients with type 2 diabetes is still debated. This study aimed to investigate the association between dietary substitution of carbohydrates with (animal and plant) protein and 5-year weight change, and all-cause

  8. Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein

    Energy Technology Data Exchange (ETDEWEB)

    Vrablik, Tracy L. [Washington State Univ., Pullman, WA (United States); Petyuk, Vladislav A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larson, Emily M. [Washington State Univ., Pullman, WA (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Watts, Jennifer [Washington State Univ., Pullman, WA (United States)

    2015-06-27

    Lipid droplets are cytoplasmic organelles that store neutral lipids for membrane synthesis and energy reserves. In this study, we characterized the lipid and protein composition of purified C. elegans lipid droplets. These lipid droplets are composed mainly of triacylglycerols, surrounded by a phospholipid monolayer composed primarily of phosphatidylcholine and phosphatidylethanolamine. The fatty acid composition of the triacylglycerols was rich in fatty acid species obtained from the dietary E. coli, including cyclopropane fatty acids and cis-vaccenic acid. Unlike other organisms, C. elegans lipid droplets contain very little cholesterol or cholesterol esters. Comparison of the lipid droplet proteomes of wild type and high-fat daf-2 mutant strains shows a relative decrease of MDT-28 abundance in lipid droplets isolated from daf-2 mutants. Functional analysis of lipid droplet proteins identified in our proteomic studies indicated an enrichment of proteins required for growth and fat homeostasis in C. elegans.

  9. Effects of Synchronicity of Carbohydrate and Protein Degradation on Rumen Fermentation Characteristics and Microbial Protein Synthesis

    Directory of Open Access Journals (Sweden)

    J. K. Seo

    2013-03-01

    Full Text Available A series of in vitro studies were carried out to determine i the effects of enzyme and formaldehyde treatment on the degradation characteristics of carbohydrate and protein sources and on the synchronicity of these processes, and ii the effects of synchronizing carbohydrate and protein supply on rumen fermentation and microbial protein synthesis (MPS in in vitro experiments. Untreated corn (C and enzyme-treated corn (EC were combined with soy bean meal with (ES and without (S enzyme treatment or formaldehyde treatment (FS. Six experimental feeds (CS, CES, CFS, ECS, ECES and ECFS with different synchrony indices were prepared. Highly synchronous diets had the greatest dry matter (DM digestibility when untreated corn was used. However, the degree of synchronicity did not influence DM digestibility when EC was mixed with various soybean meals. At time points of 12 h and 24 h of incubation, EC-containing diets showed lower ammonia-N concentrations than those of C-containing diets, irrespective of the degree of synchronicity, indicating that more efficient utilization of ammonia-N for MPS was achieved by ruminal microorganisms when EC was offered as a carbohydrate source. Within C-containing treatments, the purine base concentration increased as the diets were more synchronized. This effect was not observed when EC was offered. There were significant effects on VFA concentration of both C and S treatments and their interactions. Similar to purine concentrations, total VFA production and individual VFA concentration in the groups containing EC as an energy source was higher than those of other groups (CS, CES and CFS. The results of the present study suggested that the availability of energy or the protein source are the most limiting factors for rumen fermentation and MPS, rather than the degree of synchronicity.

  10. Energy balance and hypothalamic effects of a high-protein/low-carbohydrate diet

    OpenAIRE

    Kinzig, Kimberly P.; Hargrave, Sara L.; Hyun, Jayson; Moran, Timothy H.

    2007-01-01

    Diets high in fat or protein and extremely low in carbohydrate are frequently reported to result in weight loss in humans. We previously reported that rats maintained on a low carbohydrate-high fat diet (LC-HF) consumed similar kcals/day as chow (CH)-fed rats and did not differ in body weight after 7 weeks. LC-HF rats had a 45% decrease in POMC expression in the ARC, decreased plasma insulin, and increased plasma leptin and ghrelin. In the present study we assessed the effects of a low carboh...

  11. Protein and carbohydrate in P-POM collected from the fishing ground in Minnan-Taiwan Bank

    Science.gov (United States)

    Su, Yongquan; Zhang, Huan

    1992-06-01

    The analysis of the protein and carbohydrate in P-POM (Plankton and Particulate Organic Matter) samples collected from the fishing ground in Minnan-Taiwan Bank in five voyages (April, June, July, August and November, 1988) shows that the protein and carbohydrate contents and amounts in samples from four stations (501, 401, 301, 201) along the coast and another four stations (404, 304, 403, 204) south and southeast of the shoal were higher than those in April and November, indicating that this phenomenon is related to the upwelling in the two regions in summer.

  12. Importance of low carbohydrate diets in diabetes management

    Directory of Open Access Journals (Sweden)

    Hall RM

    2016-03-01

    Full Text Available Rosemary M Hall, Amber Parry Strong, Jeremy D KrebsCentre for Endocrine, Diabetes and Obesity Research, Capital and Coast District Health Board, Wellington, New Zealand Abstract: Dietary strategies are fundamental in the management of diabetes. Historically, strict dietary control with a low carbohydrate diet was the only treatment option. With increasingly effective medications, the importance of dietary change decreased. Recommendations focused on reducing dietary fat to prevent atherosclerotic disease, with decreasing emphasis on the amount and quality of carbohydrate. As the prevalence of obesity and diabetes escalates, attention has returned to the macronutrient composition of the diet. Very low carbohydrate diets (VLCD's have demonstrated effective initial weight loss and improvement in glycemic control, but difficult long-term acceptability and worsening lipid profile. Modifications to the very low carbohydrate (VLC have included limiting saturated fat and increasing carbohydrate (CHO and protein. Reducing saturated fat appears pivotal in reducing low-density lipoprotein (LDL cholesterol and may mitigate adverse effects of traditional VLCD's. Increased dietary protein enhances satiety, reduces energy intake, and improves glycemic homeostasis, but without sustained improvements in glycemic control or cardiovascular risk over and above the effect of weight loss. Additionally, recent studies in type 1 diabetes mellitus suggest promising benefits to diabetes control with low carbohydrate diets, without concerning effects on ketosis or hypoglycemia. Dietary patterns may highlight pertinent associations. For example, Mediterranean-style and paleolithic-type diets, low in fat and carbohydrate, are associated with reduced body weight and improved glycemic and cardiovascular outcomes in type 2 diabetes mellitus (T2DM. A feature of these dietary patterns is low refined CHO and sugar and higher fiber, and it is possible that increasing sugar

  13. Determination of proteins and carbohydrates in the effluents from wastewater treatment bioreactors using resonance light-scattering method.

    Science.gov (United States)

    Zhang, Meng-Lin; Sheng, Guo-Ping; Yu, Han-Qing

    2008-07-01

    A simple and sensitive method was developed for the determination of low-concentration proteins and carbohydrates in the effluents from biological wastewater treatment reactors using resonance light-scattering (RLS) technique. Two ionic dyes, Congo red and Neutral red were, respectively used as an RLS probes for the determination of proteins and carbohydrates. This method is based on the interactions between biomacromolecules and dyes, which cause a substantial increase in the resonance scattering signal of dyes in the wavelength range of 200-650 nm. The characteristics of RLS spectra of the macromolecule-dye complexes, influencing factors, and optimum analytical conditions for the measurement were explored. The method was satisfactorily applied to the measurement of proteins and carbohydrates in the effluents from 10 aerobic or anaerobic bioreactors, and a high sensitivity were achieved.

  14. Natural Products Garlic Oil and Vitamin E, Control Radiation Induced Disorders of Lipid and Carbohydrate Metabolism in Rats

    International Nuclear Information System (INIS)

    Ragab, E.A.; Ashry, O.M.

    2004-01-01

    Increased level of lipid peroxides in various tissues of irraiated animals, may play a crucial role in determining the pathogenesis of radiation exposure. Many of the damaging effects of ionizing radiation are mediated by reactive free radicals. The efficacy of oral treatment of rats with garlic oil (100 mg/kg body weight) for ten days and intraperitoneal administration of vitamin E (100mg/kg body wt.) two hours before whole body gamma irradiation (7Gy), was examine on certain biochemical parameters. The data obtained revealed that, radiation exposure caused increase in serum malondialdehyde level (indicating lipid peroxiation accompanied by increase in serum total lipid, trigacylglycerol, cholesterol an low density lipoprotein with significant decrease in high density lipoprotein. Radiation exposure also induced significant elevation in serum glucose level, liver glycogen and liver glucose 6-phosphatase activity level. Administration of the natural product (garlic oil) and /or vitamin E ameliorates the radiation inuced disturbances in lipid and carbohydrate metabolism. The study confirmed the beneficial role of the used antioxidative agents as recommended radioprotectors due to their ability of scavenging free radicals produced by ionizing radiation or oxidative stress

  15. Protein/lipid coaggregates are formed during α-synuclein-induced disruption of lipid bilayers

    DEFF Research Database (Denmark)

    van Maarschalkerweerd, Andreas; Vetri, Valeria; Langkilde, Annette Eva

    2014-01-01

    Amyloid formation is associated with neurodegenerative diseases such as Parkinson's disease (PD). Significant α-synuclein (αSN) deposition in lipid-rich Lewy bodies is a hallmark of PD. Nonetheless, an unraveling of the connection between neurodegeneration and amyloid fibrils, including the molec......Amyloid formation is associated with neurodegenerative diseases such as Parkinson's disease (PD). Significant α-synuclein (αSN) deposition in lipid-rich Lewy bodies is a hallmark of PD. Nonetheless, an unraveling of the connection between neurodegeneration and amyloid fibrils, including...... the molecular mechanisms behind potential amyloid-mediated toxic effects, is still missing. Interaction between amyloid aggregates and the lipid cell membrane is expected to play a key role in the disease progress. Here, we present experimental data based on hybrid analysis of two-photon-microscopy, solution...... small-angle X-ray scattering and circular dichroism data. Data show in real time changes in liposome morphology and stability upon protein addition and reveal that membrane disruption mediated by amyloidogenic αSN is associated with dehydration of anionic lipid membranes and stimulation of protein...

  16. Glycemic Response of a Carbohydrate-Protein Bar with Ewe-Goat Whey

    Directory of Open Access Journals (Sweden)

    Eirini Manthou

    2014-06-01

    Full Text Available In this study we examined the glycaemic index (GI and glycaemic load (GL of a functional food product, which contains ewe-goat whey protein and carbohydrates in a 1:1 ratio. Nine healthy volunteers, (age, 23.3 ± 3.9 years; body mass index, 24.2 ± 4.1 kg·m2; body fat %, 18.6 ± 10.0 randomly consumed either a reference food or amount of the test food both with equal carbohydrate content in two visits. In each visit, seven blood samples were collected; the first sample after an overnight fast and the remaining six at 15, 30, 45, 60, 90 and 120 min after the beginning of food consumption. Plasma glucose concentration was measured and the GI was determined by calculation of the incremental area under the curve. The GL was calculated using the equation: test food GI/100 g available carbohydrates per test food serving. The GI of the test food was found to be 5.18 ± 3.27, while the GL of one test food serving was 1.09 ± 0.68. These results indicate that the tested product can be classified as a low GI (<55 and low GL (<10 food. Given the health benefits of low glycaemic response foods and whey protein consumption, the tested food could potentially promote health beyond basic nutrition.

  17. Effect of whey protein- and carbohydrate-enriched diet on glycogen resynthesis during the first 48 h after a soccer game

    DEFF Research Database (Denmark)

    Gunnarsson, Thomas Gunnar Petursson; Bendiksen, Mads; Bischoff, R.

    2013-01-01

    The effect of a whey protein- and carbohydrate (CHO)-enriched diet on the rate of muscle glycogen resynthesis after a soccer match was examined. Sixteen elite soccer players were randomly assigned to a group ingesting a diet rich in carbohydrates and whey protein [CHO, protein, and fat content...... was 71, 21, and 8E%, respectively; high content of carbohydrates and whey protein (HCP), n¿=¿9] or a group ingesting a normal diet (55, 18, and 26E%; control [CON], n¿=¿7) during a 48-h recovery period after a soccer match. CON and three additional players carried out a 90- and 60-min simulated match...

  18. Amino Acid Composition of Protein-Enriched Dried Pasta:
Is It Suitable for a Low-Carbohydrate Diet?

    Science.gov (United States)

    Filip, Sebastjan; Vidrih, Rajko

    2015-09-01

    Today, obesity is one of the major health problems, a so-called epidemic of the developed world. Obesity arises through an imbalance between energy intake and energy expenditure, so it is important for products to have a balanced nutritional composition. The aim of this study is to prepare high-protein pasta with high nutritional quality, with emphasis on its amino acid composition, as ordinary durum pasta lacks lysine and threonine. Ordinary durum wheat pasta contains, on average, 77% carbohydrate, and can have even less than 10% protein. It is therefore often excluded from normal energy-restricted diets, and especially from low-carbohydrate diets. In this study pasta that can satisfy the nutritional requirements of a low-carbohydrate diet and is suitable for daily use was developed and evaluated. Protein-enhanced pasta was produced by adding high amounts of plant protein extract (40% dry matter) without (plain high-protein pasta) or with 3% dried spinach powder (high-protein spinach pasta) to durum wheat semolina. According to the sensory analysis data, the addition of 40% of plant protein extract satisfied sensory and nutritional requirements, allowing further development and evaluation for possible marketing. This analysis shows that these high-protein neutral and spinach pasta contain 36.4 and 39.6 g of protein per 100 g of dry mass, 12.07 and 14.70 g of total essential amino acids per 100 g of dry mass, and a high content of branched-chain amino acids, i.e. 5.54 and 6.65 g per 100 g of dry mass, respectively. This therefore represents a true alternative to durum wheat pasta for low-carbohydrate diets.

  19. Role and metabolism of free leucine in skeletal muscle in protein sparing action of dietary carbohydrate and fat

    International Nuclear Information System (INIS)

    Nakano, Kiwao; Ishikawa, Tamotsu

    1977-01-01

    Feeding rats with either a carbohydrate meal or a fat meal to the previously fasted rats caused significant decrease in urinary output of urea and total nitrogen. The content of free leucine in skeletal muscle decreased in the rats fed either a carbohydrate meal or a fat meal. Feeding of either a carbohydrate meal or a fat meal stimulated incorporation of L-leucine-1- 14 C into protein fraction of skeletal muscle and reduced its oxidation to 14 CO 2 . These results suggest that the metabolism of leucine is under nutritional regulation and that the decrease in content of free leucine in skeletal muscle might be caused by enhanced reutilization of leucine into protein by the feeding of a carbohydrate meal or a fat meal. The role of free leucine in skeletal muscle as a regulator of protein turnover in the tissue are discussed in relation to the metabolism of this branched chain amino acid. (auth.)

  20. A systematic study of chemogenomics of carbohydrates.

    Science.gov (United States)

    Gu, Jiangyong; Luo, Fang; Chen, Lirong; Yuan, Gu; Xu, Xiaojie

    2014-03-04

    Chemogenomics focuses on the interactions between biologically active molecules and protein targets for drug discovery. Carbohydrates are the most abundant compounds in natural products. Compared with other drugs, the carbohydrate drugs show weaker side effects. Searching for multi-target carbohydrate drugs can be regarded as a solution to improve therapeutic efficacy and safety. In this work, we collected 60 344 carbohydrates from the Universal Natural Products Database (UNPD) and explored the chemical space of carbohydrates by principal component analysis. We found that there is a large quantity of potential lead compounds among carbohydrates. Then we explored the potential of carbohydrates in drug discovery by using a network-based multi-target computational approach. All carbohydrates were docked to 2389 target proteins. The most potential carbohydrates for drug discovery and their indications were predicted based on a docking score-weighted prediction model. We also explored the interactions between carbohydrates and target proteins to find the pathological networks, potential drug candidates and new indications.

  1. A Neutron View of Proteins in Lipid Bilayers

    Science.gov (United States)

    White, Stephen

    2012-02-01

    Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly-charged S1-S4 voltage- sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated potassium channels. We have used neutron diffraction, solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings reveal that voltage sensors have evolved to interact with the lipid membrane while keeping the energetic and structural perturbations to a minimum, and that water penetrates into the membrane to hydrate charged residues and shape the transmembrane electric field.

  2. Quantitative partition of protein, carbohydrate and fat pools in growing pigs

    DEFF Research Database (Denmark)

    Chwalibog, André; Thorbek, G

    1995-01-01

    A model combining data from balance experiments with data from oxidation of nutrients demonstrating the pools of protein, carbohydrate and fat and their partition in the body was presented. Data from more than 200 experiments with growing pigs were used to fill up the "black boxes" in the model a...

  3. PEMANFAATAN PAKAN ISO PROTEIN DENGAN KADAR KARBOHIDRAT DAN LEMAK YANG BERBEDA UNTUK PERTUMBUHAN BENIH IKAN PATIN JAMBAL (Pangasius djambal

    Directory of Open Access Journals (Sweden)

    Ningrum Suhenda

    2016-11-01

    Full Text Available Penelitian dengan tujuan untuk mengetahui pemanfaatan pakan dengan variasi kadar karbohidrat dan lemak untuk pertumbuhan benih patin jambal telah dilakukan di Laboratorium Nutrisi Ikan, Bogor. Rancangan percobaan yang dipergunakan adalah Rancangan Acak Lengkap dengan 5 perlakuan dan 3 ulangan. Sebagai perlakuan yaitu pakan dengan variasi kadar karbohidrat dan lemak. Kadar lemak pakan berkisar antara 4% sampai 10% sedangkan kadar karbohidrat berkisar antara 20% sampai 40%. Pakan diberikan dalam bentuk remah sebanyak 12% dari bobot total ikan per hari untuk 2 minggu ke-1 dan 10% untuk 2 minggu ke-2. Wadah penelitian yang digunakan yaitu akuarium dengan volume air 50 liter yang dilengkapi dengan sistem resirkulasi dan pemanas air dengan debit 4 liter/menit. Benih ikan patin jambal dengan bobot rata-rata 0,326 g ditebar dalam akuarium dengan padat penebaran 50 ekor/akuarium. Hasil penelitian menunjukkan bahwa pakan dengan variasi kadar lemak dan karbohidrat memberikan laju pertumbuhan spesifik tubuh, bobot akhir rata-rata, konversi pakan, retensi protein, dan rasio efisiensi protein yang tidak berbeda nyata (P>0,05. Nilai retensi lemak antar perlakuan berbeda nyata (P0.05 among the treatments for the average final body weight, specific growth rate, feed conversion ratio, protein retention, and protein efficiency ratio. However, there was a significant difference (p>0.05 for lipid retention values. The lowest lipid retention (47.20% was found in treatments containing lipid level of 10% and carbohydrate level of 20%. These values did not differ significantly (p>0.05 with other diet treatments that have lipid levels of 8% and carbohydrate of 32% (the ratio between carbohydrate and lipid was 4. Diet treatments that have ratio of 4 between carbohydrate and lipid showed specific growth rate of 9.10%, feed conversion ratio of 0.85, protein retention of 42.87%, and protein efficiency ratio of 3.36. The average final body weight for the diet was 4.17 g per

  4. Oral delivery of peptides and proteins using lipid-based drug delivery systems

    DEFF Research Database (Denmark)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-01-01

    INTRODUCTION: In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism...... by which intestinal absorption of peptides and proteins is promoted. AREAS COVERED: The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two...... and proteins. EXPERT OPINION: Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve...

  5. A Global Map of Lipid-Binding Proteins and Their Ligandability in Cells.

    Science.gov (United States)

    Niphakis, Micah J; Lum, Kenneth M; Cognetta, Armand B; Correia, Bruno E; Ichu, Taka-Aki; Olucha, Jose; Brown, Steven J; Kundu, Soumajit; Piscitelli, Fabiana; Rosen, Hugh; Cravatt, Benjamin F

    2015-06-18

    Lipids play central roles in physiology and disease, where their structural, metabolic, and signaling functions often arise from interactions with proteins. Here, we describe a set of lipid-based chemical proteomic probes and their global interaction map in mammalian cells. These interactions involve hundreds of proteins from diverse functional classes and frequently occur at sites of drug action. We determine the target profiles for several drugs across the lipid-interaction proteome, revealing that its ligandable content extends far beyond traditionally defined categories of druggable proteins. In further support of this finding, we describe a selective ligand for the lipid-binding protein nucleobindin-1 (NUCB1) and show that this compound perturbs the hydrolytic and oxidative metabolism of endocannabinoids in cells. The described chemical proteomic platform thus provides an integrated path to both discover and pharmacologically characterize a wide range of proteins that participate in lipid pathways in cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Enzymatic extractability of soybean meal proteins and carbohydrates : heat and humidity effects

    NARCIS (Netherlands)

    Fischer, M.; Kofod, L.V.; Schols, H.A.; Piersma, S.R.; Gruppen, H.; Voragen, A.G.J.

    2001-01-01

    To study the incomplete enzymatic extractability of proteins and carbohydrates of thermally treated soybean meals, one unheated and three heat-treated soybean meals were produced. To obtain truly enzyme-resistant material, the meals were extracted by a repeated hydrolysis procedure using excessive

  7. Effect of DOPE and cholesterol on the protein adsorption onto lipid nanoparticles

    International Nuclear Information System (INIS)

    Caracciolo, Giulio; Pozzi, Daniela; Capriotti, Anna Laura; Cavaliere, Chiara; Laganà, Aldo

    2013-01-01

    Upon administration, nanoparticles (NPs) are exposed to biological fluids from which they adsorb proteins and other biomolecules to form a “protein corona”. NP–protein interactions are still poorly understood and quantitative studies to characterize them remain scarce. Here, we have investigated the effect of neutral dioleoylphosphatidylethanolamine (DOPE) and cholesterol on the adsorption of human plasma proteins onto the surface of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)-based cationic liposomes of 100 nm in diameter. Quantitative analysis of the protein corona revealed that replacing cationic DOTAP lipids with neutral lipids, being indifferently DOPE or cholesterol, reduces the affinity of fibrinogen, prothrombin, vitamin K, and vitronectin for the lipid surface. On the other side, DOPE specifically promotes the adsorption of apolipoproteins and serum albumin, while cholesterol induces the preferential binding of immunoglobulins and complement proteins. The results of this study will help to explain why NPs of different lipid compositions have a dramatic difference in their in vivo transfection efficiency and will be useful for design of lipid NPs with optimal circulation profiles.

  8. Effect of DOPE and cholesterol on the protein adsorption onto lipid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Caracciolo, Giulio, E-mail: giulio.caracciolo@uniroma1.it; Pozzi, Daniela [' Sapienza' University of Rome, Department of Molecular Medicine (Italy); Capriotti, Anna Laura; Cavaliere, Chiara; Lagana, Aldo [' Sapienza' University of Rome, Department of Chemistry (Italy)

    2013-03-15

    Upon administration, nanoparticles (NPs) are exposed to biological fluids from which they adsorb proteins and other biomolecules to form a 'protein corona'. NP-protein interactions are still poorly understood and quantitative studies to characterize them remain scarce. Here, we have investigated the effect of neutral dioleoylphosphatidylethanolamine (DOPE) and cholesterol on the adsorption of human plasma proteins onto the surface of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)-based cationic liposomes of 100 nm in diameter. Quantitative analysis of the protein corona revealed that replacing cationic DOTAP lipids with neutral lipids, being indifferently DOPE or cholesterol, reduces the affinity of fibrinogen, prothrombin, vitamin K, and vitronectin for the lipid surface. On the other side, DOPE specifically promotes the adsorption of apolipoproteins and serum albumin, while cholesterol induces the preferential binding of immunoglobulins and complement proteins. The results of this study will help to explain why NPs of different lipid compositions have a dramatic difference in their in vivo transfection efficiency and will be useful for design of lipid NPs with optimal circulation profiles.

  9. Associations of protein, fat, and carbohydrate intakes with insomnia symptoms among middle-aged Japanese workers.

    Science.gov (United States)

    Tanaka, Eizaburo; Yatsuya, Hiroshi; Uemura, Mayu; Murata, Chiyoe; Otsuka, Rei; Toyoshima, Hideaki; Tamakoshi, Koji; Sasaki, Satoshi; Kawaguchi, Leo; Aoyama, Atsuko

    2013-01-01

    Diet is a modifiable factor that may affect sleep, but the associations of macronutrient intakes with insomnia are inconsistent. We investigated the associations of protein, fat, and carbohydrate intakes with insomnia symptoms. In this cross-sectional analysis of 4435 non-shift workers, macronutrient intakes were assessed by the brief-type self-administered diet history questionnaire, which requires the recall of usual intakes of 58 foods during the preceding month. Presence of insomnia symptoms, including difficulty initiating sleep (DIS), difficulty maintaining sleep (DMS), and poor quality of sleep (PQS) were self-reported. Logistic regression analysis was used to estimate odds ratios (ORs) and 95% CIs adjusted for demographic, psychological, and behavioral factors, as well as medical histories. Low protein intake (vs ≥16% of total energy) was associated with DIS (OR 1.24, 95% CI 0.99-1.56) and PQS (OR 1.24, 95% CI 1.04-1.48), while high protein intake (≥19% vs Low carbohydrate intake (vs ≥50% of total energy) was associated with DMS (OR 1.19, 95% CI 0.97-1.45). Protein and carbohydrate intakes in the daily diet were associated with insomnia symptoms. The causality of these associations remains to be explained.

  10. Effects of Teucrium polium spp. capitatum flavonoids on the lipid and carbohydrate metabolism in rats

    DEFF Research Database (Denmark)

    Stefkov, Gjoshe; Kulevanova, Svetlana; Miova, Biljana

    2011-01-01

    - and streptozotocin hyperglycemic rats. Results and discussion: HPLC analyses revealed several flavonoids: luteolin, apigenin, cirsiliol, diosmetin, cirsimaritin and cirsilineol as both free aglycons and glycosides. The extract and mixture of commercial flavonoids showed a distinct insulinotropic effect on INS-1E...... parts of the plant were extracted in alcohol and freeze- or spray-dried, analyzed by high performance liquid chromatography (HPLC) and examined for insulinotropic effect in INS-1E cells in vitro. Their effect on blood glucose, lipids and carbohydrate-related enzymes was tested in normo...... glycogen and tended to normalize the activity of gluconeogenic enzymes. Conclusion: The results demonstrate that examined plant extracts contain flavonoids with insulinotropic and antihyperglycemic effects....

  11. Effects of the Dietary Protein and Carbohydrate Ratio on Gut Microbiomes in Dogs of Different Body Conditions

    Directory of Open Access Journals (Sweden)

    Qinghong Li

    2017-01-01

    Full Text Available Obesity has become a health epidemic in both humans and pets. A dysbiotic gut microbiota has been associated with obesity and other metabolic disorders. High-protein, low-carbohydrate (HPLC diets have been recommended for body weight loss, but little is known about their effects on the canine gut microbiome. Sixty-three obese and lean Labrador retrievers and Beagles (mean age, 5.72 years were fed a common baseline diet for 4 weeks in phase 1, followed by 4 weeks of a treatment diet, specifically, the HPLC diet (49.4% protein, 10.9% carbohydrate or a low-protein, high-carbohydrate (LPHC diet (25.5% protein, 38.8% carbohydrate in phase 2. 16S rRNA gene profiling revealed that dietary protein and carbohydrate ratios have significant impacts on gut microbial compositions. This effect appeared to be more evident in obese dogs than in lean dogs but was independent of breed. Consumption of either diet increased the bacterial evenness, but not the richness, of the gut compared to that after consumption of the baseline diet. Macronutrient composition affected taxon abundances, mainly within the predominant phyla, Firmicutes and Bacteroidetes. The LPHC diet appeared to favor the growth of Bacteroides uniformis and Clostridium butyricum, while the HPLC diet increased the abundances of Clostridium hiranonis, Clostridium perfringens, and Ruminococcus gnavus and enriched microbial gene networks associated with weight maintenance. In addition, we observed a decrease in the Bacteroidetes to Firmicutes ratio and an increase in the Bacteroides to Prevotella ratio in the HPLC diet-fed dogs compared to these ratios in dogs fed other diets. Finally, analysis of the effect of diet on the predicted microbial gene network was performed using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt.

  12. Low-carbohydrate, high-protein, high-fat diet alters small peripheral artery reactivity in metabolic syndrome patients.

    Science.gov (United States)

    Merino, Jordi; Kones, Richard; Ferré, Raimon; Plana, Núria; Girona, Josefa; Aragonés, Gemma; Ibarretxe, Daiana; Heras, Mercedes; Masana, Luis

    2014-01-01

    Low carbohydrate diets have become increasingly popular for weight loss. Although they may improve some metabolic markers, particularly in type 2 diabetes mellitus (T2D) or metabolic syndrome (MS), their net effect on vascular function remains unclear. Evaluate the relation between dietary macronutrient composition and the small artery reactive hyperaemia index (saRHI), a marker of small artery vascular function, in a cohort of MS patients. This cross-sectional study included 160 MS patients. Diet was evaluated by a 3-day food-intake register and reduced to a novel low-carbohydrate diet score (LCDS). Physical examination, demographic, biochemical and anthropometry parameters were recorded, and saRHI was measured in each patient. Individuals in the lowest LCDS quartile (Q1; 45% carbohydrate, 19% protein, 31% fat) had higher saRHI values than those in the top quartile (Q4; 30% carbohydrate, 25% protein, 43% fat) (1.84±0.42 vs. 1.55±0.25, P=.012). These results were similar in T2D patients (Q1=1.779±0.311 vs. Q4=1.618±0.352, P=.011) and also in all of the MS components, except for low HDLc. Multivariate analysis demonstrated that individuals in the highest LCDS quartile, that is, consuming less carbohydrates, had a significantly negative coefficient of saRHI which was independent of confounders (HR: -0.747; 95%CI: 0.201, 0.882; P=.029). These data suggest that a dietary pattern characterized by a low amount of carbohydrate, but reciprocally higher amounts of fat and protein, is associated with poorer vascular reactivity in patients with MS and T2D. Copyright © 2013 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  13. Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites.

    Science.gov (United States)

    Yu, Haijia; Liu, Yinghui; Gulbranson, Daniel R; Paine, Alex; Rathore, Shailendra S; Shen, Jingshi

    2016-04-19

    Organelles are in constant communication with each other through exchange of proteins (mediated by trafficking vesicles) and lipids [mediated by both trafficking vesicles and lipid transfer proteins (LTPs)]. It has long been known that vesicle trafficking can be tightly regulated by the second messenger Ca(2+), allowing membrane protein transport to be adjusted according to physiological demands. However, it remains unclear whether LTP-mediated lipid transport can also be regulated by Ca(2+) In this work, we show that extended synaptotagmins (E-Syts), poorly understood membrane proteins at endoplasmic reticulum-plasma membrane contact sites, are Ca(2+)-dependent LTPs. Using both recombinant and endogenous mammalian proteins, we discovered that E-Syts transfer glycerophospholipids between membrane bilayers in the presence of Ca(2+) E-Syts use their lipid-accommodating synaptotagmin-like mitochondrial lipid binding protein (SMP) domains to transfer lipids. However, the SMP domains themselves cannot transport lipids unless the two membranes are tightly tethered by Ca(2+)-bound C2 domains. Strikingly, the Ca(2+)-regulated lipid transfer activity of E-Syts was fully recapitulated when the SMP domain was fused to the cytosolic domain of synaptotagmin-1, the Ca(2+)sensor in synaptic vesicle fusion, indicating that a common mechanism of membrane tethering governs the Ca(2+)regulation of lipid transfer and vesicle fusion. Finally, we showed that microsomal vesicles isolated from mammalian cells contained robust Ca(2+)-dependent lipid transfer activities, which were mediated by E-Syts. These findings established E-Syts as a novel class of LTPs and showed that LTP-mediated lipid trafficking, like vesicular transport, can be subject to tight Ca(2+)regulation.

  14. Dietary carbohydrates impair the protective effect of protein restriction against diabetes in NZO mice used as a model of type 2 diabetes.

    Science.gov (United States)

    Laeger, Thomas; Castaño-Martinez, Teresa; Werno, Martin W; Japtok, Lukasz; Baumeier, Christian; Jonas, Wenke; Kleuser, Burkhard; Schürmann, Annette

    2018-06-01

    Low-protein diets are well known to improve glucose tolerance and increase energy expenditure. Increases in circulating fibroblast growth factor 21 (FGF21) have been implicated as a potential underlying mechanism. We aimed to test whether low-protein diets in the context of a high-carbohydrate or high-fat regimen would also protect against type 2 diabetes in New Zealand Obese (NZO) mice used as a model of polygenetic obesity and type 2 diabetes. Mice were placed on high-fat diets that provided protein at control (16 kJ%; CON) or low (4 kJ%; low-protein/high-carbohydrate [LP/HC] or low-protein/high-fat [LP/HF]) levels. Protein restriction prevented the onset of hyperglycaemia and beta cell loss despite increased food intake and fat mass. The effect was seen only under conditions of a lower carbohydrate/fat ratio (LP/HF). When the carbohydrate/fat ratio was high (LP/HC), mice developed type 2 diabetes despite the robustly elevated hepatic FGF21 secretion and increased energy expenditure. Prevention of type 2 diabetes through protein restriction, without lowering food intake and body fat mass, is compromised by high dietary carbohydrates. Increased FGF21 levels and elevated energy expenditure do not protect against hyperglycaemia and type 2 diabetes per se.

  15. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    Science.gov (United States)

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Fat and carbohydrate metabolism during submaximal exercise in children.

    Science.gov (United States)

    Aucouturier, Julien; Baker, Julien S; Duché, Pascale

    2008-01-01

    During exercise, the contribution of fat and carbohydrate to energy expenditure is largely modulated by the intensity of exercise. Age, a short- or long-term diet enriched in carbohydrate or fat substrate stores, training and gender are other factors that have also been found to affect this balance. These factors have been extensively studied in adults from the perspective of improving performance in athletes, or from a health perspective in people with diseases. During the last decade, lifestyle changes associated with high-energy diets rich in lipid and reduced physical activity have contributed to the increase in childhood obesity. This lifestyle change has emerged as a serious health problem favouring the early development of cardiovascular diseases, insulin resistance or type 2 diabetes mellitus. Increasing physical activity levels in young people is important to increase energy expenditure and promote muscle oxidative capacity. Therefore, it is surprising that the regulation of balance between carbohydrate and lipid use during exercise has received much less attention in children than in adults. In this review, we have focused on the factors that affect carbohydrate and lipid metabolism during exercise and have identified areas that may be relevant in explaining the higher contribution of lipid to energy expenditure in children when compared with adults. Low muscle glycogen content is possibly associated with a low activity of glycolytic enzymes and high oxidative capacity, while lower levels of sympathoadrenal hormones are likely to favour lipid metabolism in children. Changes in energetic metabolism occurring during adolescence are also dependent on pubertal events with an increase in testosterone in boys and estrogen and progesterone in girls. The profound effects of ovarian hormones on carbohydrate and fat metabolism along with their effects on oxidative enzymes could explain that differences in substrate metabolism have not always been observed between

  17. The establishment of a database of Italian feeds for the Cornell Net Carbohydrate and Protein System

    Directory of Open Access Journals (Sweden)

    Enzo Tartari

    2010-01-01

    Full Text Available A field application of the Cornell Net Carbohydrate and Protein System (CNCPS in Italy has been limited because thefeed bank is based on North American feedstuffs and still few laboratories are able to analyze feeds as requested by theCNCPS. Moreover, the standardization of analytical procedures is still not homogeneous among laboratories. This workwas carried out to establish a first database for feeds commonly used in Italy, providing nutritionists and producers anaccurate and current feed composition, also indicating methods and apparatus for analytical procedures potentially availablefor routine analysis. A total of 909 samples of hays, silages and raw materials (protein feeds, cereals and by-productswere analyzed through 1999 and 2002; analysis included protein solubility and degradability, protein fractions,structural carbohydrate fractions and the calculation of neutral detergent structural carbohydrates. When possible, averagedata were compared with those included in the feed bank of CNCPS ver. 3 and with those obtained by another Italianlaboratory. The main differences were observed in chemical composition of forages and silages, whose composition largelydepends on environmental conditions and physiological stage; protein feeds, cereals and by-products showed somedifferences in crude protein, soluble protein and protein fractions even in feeds of national origin.The intent to modify the feed bank values of CNCPS for establishing an Italian data base of feeds will require a collaborativestudy of many laboratories not only for forages, hays and silages samples - whose composition is greatly dependenton environmental factors and agronomic techniques - but also for protein fractions, whose values are largely influencedby even small changes in analytical techniques.

  18. A new fluorescence-based method identifies protein phosphatases regulating lipid droplet metabolism.

    Directory of Open Access Journals (Sweden)

    Bruno L Bozaquel-Morais

    Full Text Available In virtually every cell, neutral lipids are stored in cytoplasmic structures called lipid droplets (LDs and also referred to as lipid bodies or lipid particles. We developed a rapid high-throughput assay based on the recovery of quenched BODIPY-fluorescence that allows to quantify lipid droplets. The method was validated by monitoring lipid droplet turnover during growth of a yeast culture and by screening a group of strains deleted in genes known to be involved in lipid metabolism. In both tests, the fluorimetric assay showed high sensitivity and good agreement with previously reported data using microscopy. We used this method for high-throughput identification of protein phosphatases involved in lipid droplet metabolism. From 65 yeast knockout strains encoding protein phosphatases and its regulatory subunits, 13 strains revealed to have abnormal levels of lipid droplets, 10 of them having high lipid droplet content. Strains deleted for type I protein phosphatases and related regulators (ppz2, gac1, bni4, type 2A phosphatase and its related regulator (pph21 and sap185, type 2C protein phosphatases (ptc1, ptc4, ptc7 and dual phosphatases (pps1, msg5 were catalogued as high-lipid droplet content strains. Only reg1, a targeting subunit of the type 1 phosphatase Glc7p, and members of the nutrient-sensitive TOR pathway (sit4 and the regulatory subunit sap190 were catalogued as low-lipid droplet content strains, which were studied further. We show that Snf1, the homologue of the mammalian AMP-activated kinase, is constitutively phosphorylated (hyperactive in sit4 and sap190 strains leading to a reduction of acetyl-CoA carboxylase activity. In conclusion, our fast and highly sensitive method permitted us to catalogue protein phosphatases involved in the regulation of LD metabolism and present evidence indicating that the TOR pathway and the SNF1/AMPK pathway are connected through the Sit4p-Sap190p pair in the control of lipid droplet biogenesis.

  19. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    DEFF Research Database (Denmark)

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco

    2014-01-01

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary...... phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic...... and explain how cells switch neutral lipid metabolism from storage to consumption....

  20. Down-regulation of lipid raft-associated onco-proteins via cholesterol-dependent lipid raft internalization in docosahexaenoic acid-induced apoptosis.

    Science.gov (United States)

    Lee, Eun Jeong; Yun, Un-Jung; Koo, Kyung Hee; Sung, Jee Young; Shim, Jaegal; Ye, Sang-Kyu; Hong, Kyeong-Man; Kim, Yong-Nyun

    2014-01-01

    Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function. © 2013.

  1. Carbohydrate Loading.

    Science.gov (United States)

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  2. High-protein-low-carbohydrate diet: deleterious metabolic and cardiovascular effects depend on age.

    Science.gov (United States)

    Bedarida, Tatiana; Baron, Stephanie; Vessieres, Emilie; Vibert, Francoise; Ayer, Audrey; Marchiol-Fournigault, Carmen; Henrion, Daniel; Paul, Jean-Louis; Noble, Florence; Golmard, Jean-Louis; Beaudeux, Jean-Louis; Cottart, Charles-Henry; Nivet-Antoine, Valerie

    2014-09-01

    High-protein-low-carbohydrate (HP-LC) diets have become widespread. Yet their deleterious consequences, especially on glucose metabolism and arteries, have already been underlined. Our previous study (2) has already shown glucose intolerance with major arterial dysfunction in very old mice subjected to an HP-LC diet. The hypothesis of this work was that this diet had an age-dependent deleterious metabolic and cardiovascular outcome. Two groups of mice, young and adult (3 and 6 mo old), were subjected for 12 wk to a standard or to an HP-LC diet. Glucose and lipid metabolism was studied. The cardiovascular system was explored from the functional stage with Doppler-echography to the molecular stage (arterial reactivity, mRNA, immunohistochemistry). Young mice did not exhibit any significant metabolic modification, whereas adult mice presented marked glucose intolerance associated with an increase in resistin and triglyceride levels. These metabolic disturbances were responsible for cardiovascular damages only in adult mice, with decreased aortic distensibility and left ventricle dysfunction. These seemed to be the consequence of arterial dysfunctions. Mesenteric arteries were the worst affected with a major oxidative stress, whereas aorta function seemed to be maintained with an appreciable role of cyclooxygenase-2 to preserve endothelial function. This study highlights for the first time the age-dependent deleterious effects of an HP-LC diet on metabolism, with glucose intolerance and lipid disorders and vascular (especially microvessels) and cardiac functions. This work shows that HP-LC lead to equivalent cardiovascular alterations, as observed in very old age, and underlines the danger of such diet. Copyright © 2014 the American Physiological Society.

  3. Total protein and lipid contents of canned fish on the Serbian market

    OpenAIRE

    Marković Goran; Mladenović Jelena; Cvijović Milica; Miljković Jelena

    2015-01-01

    Total protein and lipid contents were analysed in 5 samples of canned fish (sardines, Atlantic mackerel fillets, tuna in olive oil, smoked Baltic sprat and herring fillets) available on the Serbian market. Standard methods for the determination of protein (Kjeldahl method) and lipid (Soxhlet method) contents were used on drained samples. The protein content was 21.31% on average, with a range of 18.59% - 24.17%. Total lipids showed considerably large variations (5.49% - 35.20%), and averaged ...

  4. Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: Challenges and outcomes.

    Science.gov (United States)

    Gaber, Mohamed; Medhat, Waseem; Hany, Mark; Saher, Nourhan; Fang, Jia-You; Elzoghby, Ahmed

    2017-05-28

    Nanoparticulate drug delivery systems have been long used to deliver a vast range of drugs and bioactives owing to their ability to demonstrate novel physical, chemical, and/or biological properties. An exponential growth has spurred in research and development of these nanocarriers which led to the evolution of a great number of diverse nanosystems including liposomes, nanoemulsions, solid lipid nanoparticles (SLNs), micelles, dendrimers, polymeric nanoparticles (NPs), metallic NPs, and carbon nanotubes. Among them, lipid-based nanocarriers have made the largest progress whether commercially or under development. Despite this progress, these lipid-based nanocarriers suffer from several limitations that led to the development of many protein-coated lipid nanocarriers. To less extent, protein-based nanocarriers suffer from limitations that led to the fabrication of some lipid bilayer enveloping protein nanocarriers. This review discusses in-depth some limitations associated with the lipid-based or protein-based nanocarriers and the fruitful outcomes brought by protein-lipid hybridization. Also discussed are the various hybridization techniques utilized to formulate these protein-lipid nanohybrids and the mechanisms involved in the drug loading process. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. One-year effectiveness of two hypocaloric diets with different protein/carbohydrate ratios in weight loss and insulin resistance.

    Science.gov (United States)

    Calleja Fernández, A; Vidal Casariego, A; Cano Rodríguez, I; Ballesteros Pomar, Ma D

    2012-01-01

    The maintenance of weight loss may be influenced by the distribution of macronutrients in the diet and insulin sensitivity. The objective of the study was to evaluate the longterm effect of two hypocaloric diets with different protein/carbohydrate ratios in overweight and obese individuals either with insulin resistance (IR) or without insulin resistance (IS). Prospective, randomized, clinical intervention study. Forty patients were classified as IR/IS after a 75 g oral glucose tolerance test and then randomized to a diet with either 40% carbohydrate/30% protein/30% fat (diet A) or 55% carbohydrate/15% protein/30% fat (diet B). After one year of follow-up there was no difference in weight loss between diets A and B in each group, but the IS group maintained weight loss better than the IR group [-5.7 (3.9) vs. -0.6 (4.1); P = 0.04]. No differences were found in either Homeostasis Model Assessment (HOMA) or other metabolic glucose parameters except lower insulin at 120 minutes with diet A [21.40 (8.30) vs. 71.40 (17.11); P = 0.02]. The hypocaloric diets with different protein/carbohydrate ratios produced similar changes in weight. Insulin resistance may play a negative role in maintaining weight loss.

  6. Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects.

    Science.gov (United States)

    Ruth, Megan R; Port, Ava M; Shah, Mitali; Bourland, Ashley C; Istfan, Nawfal W; Nelson, Kerrie P; Gokce, Noyan; Apovian, Caroline M

    2013-12-01

    High fat, low carbohydrate (HFLC) diets have become popular tools for weight management. We sought to determine the effects of a HFLC diet compared to a low fat high carbohydrate (LFHC) diet on the change in weight loss, cardiovascular risk factors and inflammation in subjects with obesity. Obese subjects (29.0-44.6 kg/m2) recruited from Boston Medical Center were randomized to a hypocaloric LFHC (n=26) or HFLC (n=29) diet for 12 weeks. The age range of subjects was 21-62 years. As a percentage of daily calories, the HFLC group consumed 33.5% protein, 56.0% fat and 9.6% carbohydrate and the LFHC group consumed 22.0% protein, 25.0% fat and 55.7% carbohydrate. The change in percent body weight, lean and fat mass, blood pressure, flow mediated dilation, hip:waist ratio, hemoglobin A1C, fasting insulin and glucose, and glucose and insulin response to a 2h oral glucose tolerance test did not differ (P>0.05) between diets after 12 weeks. The HFLC group had greater mean decreases in serum triglyceride (P=0.07), and hs-CRP (P=0.03), and greater mean increases in HDL cholesterol (P=0.004), and total adiponectin (P=0.045) relative to the LFHC. Secreted adipose tissue adiponectin or TNF-α did not differ after weight loss for either diet. Relative to the LFHC group, the HFLC group had greater improvements in blood lipids and systemic inflammation with similar changes in body weight and composition. This small-scale study suggests that HFLC diets may be more beneficial to cardiovascular health and inflammation in free-living obese adults compared to LFHC diets. © 2013.

  7. Low-carbohydrate diets for the treatment of obesity and type 2 diabetes.

    Science.gov (United States)

    Hall, Kevin D; Chung, Stephanie T

    2018-04-18

    Summarize the physiological effects of low-carbohydrate diets as they relate to weight loss, glycemic control, and metabolic health. Low-carbohydrate diets are at least as effective for weight loss as other diets, but claims about increased energy expenditure and preferential loss of body fat are unsubstantiated. Glycemic control and hyperinsulinemia are improved by low-carbohydrate diets, but insulin sensitivity and glucose-stimulated insulin secretion may be impaired, especially in the absence of weight loss. Fasting lipid parameters are generally improved, but such improvements may depend on the quality of dietary fat and the carbohydrates they replaced. Postprandial hyperlipemia is a potential concern given the high fat content typical of low-carbohydrate diets. Low-carbohydrate diets have several potential benefits for treatment of obesity and type 2 diabetes, but more research is required to better understand their long-term consequences as well as the variable effects on the endocrine control of glucose, lipids, and metabolism.

  8. SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins.

    Science.gov (United States)

    Park, Mi-Jeong; Sheng, Ren; Silkov, Antonina; Jung, Da-Jung; Wang, Zhi-Gang; Xin, Yao; Kim, Hyunjin; Thiagarajan-Rosenkranz, Pallavi; Song, Seohyeon; Yoon, Youngdae; Nam, Wonhee; Kim, Ilshin; Kim, Eui; Lee, Dong-Gyu; Chen, Yong; Singaram, Indira; Wang, Li; Jang, Myoung Ho; Hwang, Cheol-Sang; Honig, Barry; Ryu, Sungho; Lorieau, Justin; Kim, You-Me; Cho, Wonhwa

    2016-04-07

    The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that ∼90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Lipids in the Assembly of Membrane Proteins and Organization of Protein Supercomplexes: Implications for Lipid-Linked Disorders

    OpenAIRE

    Bogdanov, Mikhail; Mileykovskaya, Eugenia; Dowhan, William

    2008-01-01

    Lipids play important roles in cellular dysfunction leading to disease. Although a major role for phospholipids is in defining the membrane permeability barrier, phospholipids play a central role in a diverse range of cellular processes and therefore are important factors in cellular dysfunction and disease. This review is focused on the role of phospholipids in normal assembly and organization of the membrane proteins, multimeric protein complexes, and higher order supercomplexes. Since lipi...

  10. Neuronal sphingolipidoses: Membrane lipids and sphingolipid activator proteins regulate lysosomal sphingolipid catabolism.

    Science.gov (United States)

    Sandhoff, Konrad

    2016-11-01

    Glycosphingolipids and sphingolipids of cellular plasma membranes (PMs) reach luminal intra-lysosomal vesicles (LVs) for degradation mainly by pathways of endocytosis. After a sorting and maturation process (e.g. degradation of sphingomyelin (SM) and secretion of cholesterol), sphingolipids of the LVs are digested by soluble enzymes with the help of activator (lipid binding and transfer) proteins. Inherited defects of lipid-cleaving enzymes and lipid binding and transfer proteins cause manifold and fatal, often neurodegenerative diseases. The review summarizes recent findings on the regulation of sphingolipid catabolism and cholesterol secretion from the endosomal compartment by lipid modifiers, an essential stimulation by anionic membrane lipids and an inhibition of crucial steps by cholesterol and SM. Reconstitution experiments in the presence of all proteins needed, hydrolase and activator proteins, reveal an up to 10-fold increase of ganglioside catabolism just by the incorporation of anionic lipids into the ganglioside carrying membranes, whereas an additional incorporation of cholesterol inhibits GM2 catabolism substantially. It is suggested that lipid and other low molecular modifiers affect the genotype-phenotype relationship observed in patients with lysosomal diseases. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. Association of lipids with integral membrane surface proteins of Mycoplasma hyorhinis

    International Nuclear Information System (INIS)

    Bricker, T.M.; Boyer, M.J.; Keith, J.; Watson-McKown, R.; Wise, K.S.

    1988-01-01

    Triton X-114 (TX-114)-phase fractionation was used to identify and characterize integral membrane surface proteins of the wall-less procaryote Mycoplasma hyorhinis GDL. Phase fractionation of mycoplasmas followed by analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed selective partitioning of approximately 30 [ 35 S]methionine-labeled intrinsic membrane proteins into the TX-114 phase. Similar analysis of [ 3 H]palmitate-labeled cells showed that approximately 20 proteins of this organism were associated with lipid, all of which also efficiently partitioned as integral membrane components into the detergent phase. Immunoblotting and immunoprecipitation of TX-114-phase proteins from 125 I-surface-labeled cells with four monoclonal antibodies to distinct surface epitopes of M. hyorhinis identified surface proteins p120, p70, p42, and p23 as intrinsic membrane components. Immunoprecipitation of [ 3 H]palmitate-labeled TX-114-phase proteins further established that surface proteins p120, p70, and p23 (a molecule that mediates complement-dependent mycoplasmacidal monoclonal antibody activity) were among the lipid-associated proteins of this organism. Two of these proteins, p120 and p123, were acidic (pI less than or equal to 4.5), as shown by two-dimensional isoelectric focusing. This study established that M. hyorhinis contains an abundance of integral membrane proteins tightly associated with lipids and that many of these proteins are exposed at the external surface of the single limiting plasma membrane. Monoclonal antibodies are reported that will allow detailed analysis of the structure and processing of lipid-associated mycoplasma proteins

  12. The histone deacetylase inhibiting drug Entinostat induces lipid accumulation in differentiated HepaRG cells

    Science.gov (United States)

    Nunn, Abigail D. G.; Scopigno, Tullio; Pediconi, Natalia; Levrero, Massimo; Hagman, Henning; Kiskis, Juris; Enejder, Annika

    2016-06-01

    Dietary overload of toxic, free metabolic intermediates leads to disrupted insulin signalling and fatty liver disease. However, it was recently reported that this pathway might not be universal: depletion of histone deacetylase (HDAC) enhances insulin sensitivity alongside hepatic lipid accumulation in mice, but the mechanistic role of microscopic lipid structure in this effect remains unclear. Here we study the effect of Entinostat, a synthetic HDAC inhibitor undergoing clinical trials, on hepatic lipid metabolism in the paradigmatic HepaRG liver cell line. Specifically, we statistically quantify lipid droplet morphology at single cell level utilizing label-free microscopy, coherent anti-Stokes Raman scattering, supported by gene expression. We observe Entinostat efficiently rerouting carbohydrates and free-fatty acids into lipid droplets, upregulating lipid coat protein gene Plin4, and relocating droplets nearer to the nucleus. Our results demonstrate the power of Entinostat to promote lipid synthesis and storage, allowing reduced systemic sugar levels and sequestration of toxic metabolites within protected protein-coated droplets, suggesting a potential therapeutic strategy for diseases such as diabetes and metabolic syndrome.

  13. Bumble bees regulate their intake of essential protein and lipid pollen macronutrients.

    Science.gov (United States)

    Vaudo, A D; Stabler, D; Patch, H M; Tooker, J F; Grozinger, C M; Wright, G A

    2016-12-15

    Bee population declines are linked to the reduction of nutritional resources due to land-use intensification, yet we know little about the specific nutritional needs of many bee species. Pollen provides bees with their primary source of protein and lipids, but nutritional quality varies widely among host-plant species. Therefore, bees might have adapted to assess resource quality and adjust their foraging behavior to balance nutrition from multiple food sources. We tested the ability of two bumble bee species, Bombus terrestris and Bombus impatiens, to regulate protein and lipid intake. We restricted B. terrestris adults to single synthetic diets varying in protein:lipid ratios (P:L). The bees over-ate protein on low-fat diets and over-ate lipid on high-fat diets to reach their targets of lipid and protein, respectively. The bees survived best on a 10:1 P:L diet; the risk of dying increased as a function of dietary lipid when bees ate diets with lipid contents greater than 5:1 P:L. Hypothesizing that the P:L intake target of adult worker bumble bees was between 25:1 and 5:1, we presented workers from both species with unbalanced but complementary paired diets to determine whether they self-select their diet to reach a specific intake target. Bees consumed similar amounts of proteins and lipids in each treatment and averaged a 14:1 P:L for B. terrestris and 12:1 P:L for B. impatiens These results demonstrate that adult worker bumble bees likely select foods that provide them with a specific ratio of P:L. These P:L intake targets could affect pollen foraging in the field and help explain patterns of host-plant species choice by bumble bees. © 2016. Published by The Company of Biologists Ltd.

  14. Protein-Lipid Interactions New Approaches and Emerging Concepts

    CERN Document Server

    Mateo, C. Reyes; Villalaín, José; González-Ros, José M

    2006-01-01

    Biological membranes have long been identified as key elements in a wide variety of cellular processes including cell defense communication, photosynthesis, signal transduction, and motility; thus they emerge as primary targets in both basic and applied research. This book brings together in a single volume the most recent views of experts in the area of protein–lipid interactions, providing an overview of the advances that have been achieved in the field in recent years, from very basic aspects to specialized technological applications. Topics include the application of X-ray and neutron diffraction, infrared and fluorescence spectroscopy, and high-resolution NMR to the understanding of the specific interactions between lipids and proteins within biological membranes, their structural relationships, and the implications for the biological functions that they mediate. Also covered in this volume are the insertion of proteins and peptides into the membrane and the concomitant formation of definite lipid doma...

  15. Marker-trait association study for protein content in chickpea (Cicer ...

    Indian Academy of Sciences (India)

    2015-06-08

    Jun 8, 2015 ... tains important nutrients such as carbohydrates, minerals, vitamins, fats, fibers, lipids, oils, etc. ... evant for those breeding programmes where either or both of ... of the samples with lower and higher crude protein content.

  16. Carbohydrates in Supramolecular Chemistry.

    Science.gov (United States)

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  17. Evaluation of heat shock protein (HSP-60) induction on accumulation of carbohydrate in Isochrysis galbana

    International Nuclear Information System (INIS)

    Olsen, H.; Wolfe, M.; Tell, J.; Tjeerdema, R.

    1995-01-01

    Primary levels of the marine food chain may play an important role in the fate of petroleum hydrocarbons in both chemically dispersed and un-dispersed oil spills. HSP-60 proteins, members of the chaperonin family of stress proteins, are induced in response to a wide variety of environmental agents, including UV light, heavy metals, and xenobiotics. Increased production and storage of carbohydrate in I. galbana has been associated with aging and stress. Thus, HSP-60 and carbohydrate storage were selected as sublethal endpoints of exposure to the primary producer, I. galbana, a golden brown, unicellular algae, and a significant component of the marine phytoplankton community. The authors have found that I. galbana cultures exposed to water-accommodated fractions (WAF) of Prudhoe Bay Crude Oil (PBCO), and PBCO/dispersant preparations efficiently induce HSP-60. Studies indicated that WAF produced a dose-related response in I. galbana, which increased as a function of time. Dispersant alone showed the greatest induction, while combined WAF-dispersant showed less induction, suggesting a possible competition between crude oil and algae for dispersant interaction. In addition, they have demonstrated that I. galbana accumulates carbohydrates in response to exposure to WAF and PBCO/dispersant preparations and therefore represents another index of stress in this organism. They were interested in determining if induction of stress proteins and HSP60 in particular represented an adaptive-mechanism, allowing this algae to better cope with exposure to petroleum hydrocarbons released in the marine environment during an oil spill. In an effort to determine if stress protein induction serves as a protective adaptive response to exposure to petroleum hydrocarbons they examined the effect of heat shock induction on the accumulation of carbohydrates by these organisms in response to exposure to WAF and dispersed oil preparations

  18. The effect of protein and carbohydrate supplementation on strength training outcome of rehabilitation in ACL patients

    DEFF Research Database (Denmark)

    Holm, Lars; Esmarck, Birgitte; Mizuno, Masao

    2006-01-01

    supplementation groups: Protein+Carbohydrate (PC), Isocaloric-Carbohydrate (IC), or Placebo (PL), ingesting the supplementation immediately after each of 36 training sessions. Determined from images of thigh cross-sections (magnetic resonance imaging) the hypertrophy of the quadriceps muscle differed....... The results from this study demonstrate that restoration of the distal vasti muscle mass and knee extension muscle strength with resistance training is promoted further by protein-containing nutrient supplementation immediately after single exercise sessions. Thus, exercise-related protein supplementation may...... was therefore to investigate if nutrient supplementation during 12 weeks of conservative rehabilitation strength training could enhance hypertrophy and strength of the quadriceps muscle in ACL-injured patients. Twenty-six ACL-injured men and women were included and randomly distributed into three...

  19. Imaging the lipidome: omega-alkynyl fatty acids for detection and cellular visualization of lipid-modified proteins.

    Science.gov (United States)

    Hannoush, Rami N; Arenas-Ramirez, Natalia

    2009-07-17

    Fatty acylation or lipid modification of proteins controls their cellular activation and diverse roles in physiology. It mediates protein-protein and protein-membrane interactions and plays an important role in regulating cellular signaling pathways. Currently, there is need for visualizing lipid modifications of proteins in cells. Herein we report novel chemical probes based on omega-alkynyl fatty acids for biochemical detection and cellular imaging of lipid-modified proteins. Our study shows that omega-alkynyl fatty acids of varying chain length are metabolically incorporated onto cellular proteins. Using fluorescence imaging, we describe the subcellular distribution of lipid-modified proteins across a panel of different mammalian cell lines and during cell division. Our results demonstrate that this methodology is a useful diagnostic tool for analyzing the lipid content of cellular proteins and for studying the dynamic behavior of lipid-modified proteins in various disease or physiological states.

  20. Carbohydrate clearance receptors in transfusion medicine

    DEFF Research Database (Denmark)

    Sørensen, Anne Louise Tølbøll; Clausen, Henrik; Wandall, Hans H

    2012-01-01

    Complex carbohydrates play important functions for circulation of proteins and cells. They provide protective shields and refraction from non-specific interactions with negative charges from sialic acids to enhance circulatory half-life. For recombinant protein therapeutics carbohydrates are espe...

  1. Probiotic Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp lactis Bl-04 interactions with prebiotic carbohydrates using differential proteomics and protein characterization

    DEFF Research Database (Denmark)

    Hansen, Morten Ejby

    of probiotics, primarily non-digestible carbohydrates, are termed prebiotics. The knowledge of prebiotic utilization and in particular the specificities of carbohydrate transport and metabolism are limited, hampering robust understanding for the basis of selective utilization of known prebiotics...... and the discovery and documentation of novel ones. In this project we set out to investigate the metabolism of carbohydrates that are prebiotic or potential prebiotic compounds utilized by the probiotic organisms Lactobacillus acidophilus NCFM (NCFM) and Bifidobacterium animalis subsp. lactis BL-04 (Bl-04). The aim...... of this Ph.D. thesis was the study of probiotic NCFM and Bl-04 interaction with prebiotic carbohydrates using differential proteomics and protein characterization. Proteomics is a potential omics tool to investigate probiotic bacteria and its response to prebiotic carbohydrates at the protein level...

  2. Influence on bone metabolism of dietary trace elements, protein, fat, carbohydrates, and vitamins.

    Science.gov (United States)

    Sarazin, M; Alexandre, C; Thomas, T

    2000-01-01

    Osteoporosis is a multifactorial disease driven primarily by the genetic factors that control bone metabolism. Among environmental factors, diet may play a key role, affording a target for low-cost intervention. Calcium and vitamin D are well known to affect bone metabolism. Other nutrients may influence bone mass changes; for instance, a number of trace elements and vitamins other than vitamin D are essential to many of the steps of bone metabolism. A wide variety of foods provide these nutrients, and in industrialized countries deficiencies are more often due to idiosyncratic eating habits than to cultural influences. Both culture and vogue influence the amount of carbohydrate, fat, and protein in the typical diet. In children, the current trend is to reduce protein and to increase carbohydrate and fat. Data from epidemiological and animal studies suggest that this may adversely affect bone mass and the fracture risk.

  3. Effect of dietary carbohydrate sources on apparent nutrient digestibility of olive flounder (Paralichthys olivaceus feed

    Directory of Open Access Journals (Sweden)

    Md Mostafizur Rahman

    2016-06-01

    Full Text Available Abstract Apparent digestibility coefficients (ADCs of dry matter, crude protein, crude lipid, nitrogen-free extract, and energy in selected carbohydrate sources including wheat flour (WF, α-potato starch (PS, α-corn starch (CS, Na alginate (AL, dextrin (DEX, and carboxymethyl cellulose (CMC were determined for olive flounder. The olive flounder averaging 150 ± 8.0 g were held in 300-L tanks at a density of 30 fish per tank. Chromic oxide was used as the inert marker. Feces were collected from the flounder by a fecal collector attached to a fish rearing tank. Apparent dry matter and energy digestibilities of flounder fed WF, PS, CS, and DEX diets were significantly higher than those of fish fed AL and CMC diets. Apparent crude protein digestibility coefficients of flounder fed PS and CS diets were significantly higher than those of fish fed AL, DEX, and CMC diets. Apparent crude lipid and nitrogen-free extract digestibility coefficients of flounder fed PS and DEX diets were significantly higher than those of fish fed WF, CS, AL, and CMC diets. The present findings indicate that PS and DEX could be effectively used as dietary carbohydrate energy compared to WF, CS, AL, and CMC for olive flounder.

  4. Metabolism and Whole-Body Fat Oxidation Following Post-Exercise Carbohydrate or Protein Intake

    DEFF Research Database (Denmark)

    Hall, Ulrika Andersson; Pettersson, Stefan; Edin, Fredrik

    2018-01-01

    : Protein supplementation immediately post-exercise did not affect the doubling in whole body fat oxidation seen during a subsequent exercise trial 2 hours later. Neither did it affect resting fat oxidation during the post-exercise period despite increased insulin levels and attenuated ketosis. Carbohydrate...

  5. Circulating FGF21 in humans is potently induced by short term overfeeding of carbohydrates

    Directory of Open Access Journals (Sweden)

    Anne-Marie Lundsgaard

    2017-01-01

    plasma marker of hepatic de novo lipogenesis C16:1 n−7 FA (p < 0.01 was observed together with 101% increased plasma TG concentration (p < 0.001 in association with CHO intake and increased plasma FGF21 concentration. Conclusion: Excess dietary carbohydrate, but not fat, led to markedly increased FGF21 secretion in humans, notably without protein restriction, and affected glucose and lipid homeostais. Keywords: FGF21, Diet, Carbohydrates, Lipolysis, Liver

  6. A randomised trial comparing low-fat diets differing in carbohydrate and protein ratio, combined with regular moderate intensity exercise, on glycaemic control, cardiometabolic risk factors, food cravings, cognitive function and psychological wellbeing in adults with type 2 diabetes: Study protocol.

    Science.gov (United States)

    Watson, Nerylee Ann; Dyer, Kathryn Ann; Buckley, Jonathan David; Brinkworth, Grant David; Coates, Alison Mary; Parfitt, Gaynor; Howe, Peter Ranald Charles; Noakes, Manny; Dye, Louise; Chadwick, Helen; Murphy, Karen Joy

    2015-11-01

    Hypocaloric low-fat diets, high in protein with moderate carbohydrate (HP) can enhance weight loss, improve glycaemic control and improve cardiometabolic health risk factors in type 2 diabetes mellitus (T2DM). However, it is unclear whether the metabolic benefits observed during weight loss are sustained during energy-balance and weight maintenance. Furthermore, there is a lack of evidence regarding the effect of HP diets on food cravings, cognitive function and psychological wellbeing in T2DM, despite carbohydrate food cravings, cognitive impairment and depression being associated with hyperglycaemia. Overweight/obese adults with T2DM were randomised to consume either a HP diet (n=32, ~32% protein, 33% carbohydrate, 30% fat) or a higher-carbohydrate diet (HC, n=29, ~22% protein, 51% carbohydrate, 22% fat) for 24 weeks with 30 min of moderate intensity exercise five days/week for the study duration. There were 2 phases: a 12 week weight loss phase followed by a 12 week weight maintenance phase. Primary outcome was glycaemic control (glycosylated haemoglobin; HbA1c). Secondary outcomes were cardiometabolic risk factors (body composition, fasting blood pressure, blood lipids, glucose, insulin and C-reactive protein), food cravings, cognitive function (memory; psychomotor and executive function and psychological well-being. Outcomes were measured at baseline and the end of each 12-week intervention phase. Data will be analysed as intention-to-treat using linear mixed effects models. This study will examine the effects of two dietary interventions on health outcomes in T2DM during weight loss and notably following weight maintenance where there is a paucity of evidence. Copyright © 2015. Published by Elsevier Inc.

  7. Comparative time-courses of copper-ion-mediated protein and lipid oxidation in low-density lipoprotein

    DEFF Research Database (Denmark)

    Knott, Heather M; Baoutina, Anna; Davies, Michael Jonathan

    2002-01-01

    Free radicals damage both lipids and proteins and evidence has accumulated for the presence of both oxidised lipids and proteins in aged tissue samples as well as those from a variety of pathologies including atherosclerosis, diabetes, and Parkinson's disease. Oxidation of the protein and lipid...

  8. Maximally asymmetric transbilayer distribution of anionic lipids alters the structure and interaction with lipids of an amyloidogenic protein dimer bound to the membrane surface.

    Science.gov (United States)

    Cheng, Sara Y; Chou, George; Buie, Creighton; Vaughn, Mark W; Compton, Campbell; Cheng, Kwan H

    2016-03-01

    We used molecular dynamics simulations to explore the effects of asymmetric transbilayer distribution of anionic phosphatidylserine (PS) lipids on the structure of a protein on the membrane surface and subsequent protein-lipid interactions. Our simulation systems consisted of an amyloidogenic, beta-sheet rich dimeric protein (D42) absorbed to the phosphatidylcholine (PC) leaflet, or protein-contact PC leaflet, of two membrane systems: a single-component PC bilayer and double PC/PS bilayers. The latter comprised of a stable but asymmetric transbilayer distribution of PS in the presence of counterions, with a 1-component PC leaflet coupled to a 1-component PS leaflet in each bilayer. The maximally asymmetric PC/PS bilayer had a non-zero transmembrane potential (TMP) difference and higher lipid order packing, whereas the symmetric PC bilayer had a zero TMP difference and lower lipid order packing under physiologically relevant conditions. Analysis of the adsorbed protein structures revealed weaker protein binding, more folding in the N-terminal domain, more aggregation of the N- and C-terminal domains and larger tilt angle of D42 on the PC leaflet surface of the PC/PS bilayer versus the PC bilayer. Also, analysis of protein-induced membrane structural disruption revealed more localized bilayer thinning in the PC/PS versus PC bilayer. Although the electric field profile in the non-protein-contact PS leaflet of the PC/PS bilayer differed significantly from that in the non-protein-contact PC leaflet of the PC bilayer, no significant difference in the electric field profile in the protein-contact PC leaflet of either bilayer was evident. We speculate that lipid packing has a larger effect on the surface adsorbed protein structure than the electric field for a maximally asymmetric PC/PS bilayer. Our results support the mechanism that the higher lipid packing in a lipid leaflet promotes stronger protein-protein but weaker protein-lipid interactions for a dimeric protein on

  9. [Development of lipids and carbohydrates metabolism disorders caused by drinkable water with high content of chlorine organic compounds].

    Science.gov (United States)

    Luzhetsky, K P; Ustinova, O Yu; Shur, P Z; Kiryanov, D A; Dolgikh, O V; Chigvintsev, v M; Perevalov, A Ya

    2015-01-01

    Evaluation of effects caused by environmental peroral exposure to chlorine organic compounds revealed that individuals with AG variation of HTR2A gene are a community with increased sensitivity to chloroform and a risk group for lipid and carbohydrates metabolism disorders. Individual risk of endocrine disorders (ICD: E67.8 excessive nutrition and E66.0 obesity) in these individuals is higher than in general population exposed to chloroform at residence (HQ1.72). Serum serotonin level, that is functionally connected with HTR2A gene, is 1.3 times lower vs. the reference group value.

  10. Identification of a new class of lipid droplet-associated proteins in plants

    Science.gov (United States)

    Lipid droplets in plants (also known as oil bodies, lipid bodies or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets ...

  11. A carbohydrate-reduced high-protein diet acutely decreases postprandial and diurnal glucose excursions in type 2 diabetes patients

    DEFF Research Database (Denmark)

    Samkani, Amirsalar; Skytte, Mads J; Kandel, Daniel

    2018-01-01

    with T2DM treated with metformin only, fourteen male, with a median age of 65 (43-70) years, HbA1c of 6·5 % (47 mmol/l) (5·5-8·3 % (37-67 mmol/l)) and a BMI of 30 (sd 4·4) kg/m2 participated in the randomised, cross-over study. A carbohydrate-reduced high-protein (CRHP) diet was compared with an iso......The aim of the study was to assess whether a simple substitution of carbohydrate in the conventionally recommended diet with protein and fat would result in a clinically meaningful reduction in postprandial hyperglycaemia in subjects with type 2 diabetes mellitus (T2DM). In all, sixteen subjects......-energetic conventional diabetes (CD) diet. Macronutrient contents of the CRHP/CD diets consisted of 31/54 % energy from carbohydrate, 29/16 % energy from protein and 40/30 % energy from fat, respectively. Each diet was consumed on 2 consecutive days in a randomised order. Postprandial glycaemia, pancreatic and gut...

  12. Effect of Nutrient Formulations on Permeation of Proteins and Lipids ...

    African Journals Online (AJOL)

    Due to the specific uptake system of the GI tract, small peptides ... with phosphate buffer saline (pH 7.4) and maintained at 37 oC using a .... Protein digestion and amino acid and ... and carbohydrate absorption in the perfused human jejunum.

  13. Screening for carbohydrate-binding proteins in extracts of Uruguayan plants

    Directory of Open Access Journals (Sweden)

    Plá A.

    2003-01-01

    Full Text Available The presence of carbohydrate-binding proteins, namely lectins, ß-galactosidases and amylases, was determined in aqueous extracts of plants collected in Uruguay. Twenty-six extracts were prepared from 15 Uruguayan plants belonging to 12 Phanerogam families. Among them, 18 extracts caused hemagglutination (HAG that was inhibited by mono- and disaccharides in 13 cases, indicating the presence of lectins. The other 8 extracts did not cause any HAG with the four systems used to detect HAG activity (rabbit and mouse red cells, trypsin-treated rabbit and mouse red cells. For the extracts prepared from Solanum commersonii, HAG activity and HAG inhibition were similar for those prepared from tubers, leaves and fruits, with the chitocompounds being responsible for all the inhibitions. Purification of the S. commersonii tuber lectin was carried out by affinity chromatography on asialofetuin-Sepharose, and SDS-PAGE under reducing conditions gave a single band of Mr of approximately 80 kDa. The monomer N-acetylglucosamine did not inhibit HAG induced by the purified lectin, but chitobiose inhibited HAG at 24 mM and chitotriose inhibited it at 1 mM. ß-Galactosidase activity was detected in leaves and stems of Cayaponia martiana, and in seeds from Datura ferox. Only traces of amylase activity were detected in some of the extracts analyzed. The present screening increases knowledge about the occurrence of carbohydrate-binding proteins present in regional plants.

  14. Data supporting beta-amyloid dimer structural transitions and protein–lipid interactions on asymmetric lipid bilayer surfaces using MD simulations on experimentally derived NMR protein structures

    Directory of Open Access Journals (Sweden)

    Sara Y. Cheng

    2016-06-01

    Full Text Available This data article supports the research article entitled “Maximally Asymmetric Transbilayer Distribution of Anionic Lipids Alters the Structure and interaction with Lipids of an Amyloidogenic Protein Dimer Bound to the Membrane Surface” [1]. We describe supporting data on the binding kinetics, time evolution of secondary structure, and residue-contact maps of a surface-absorbed beta-amyloid dimer protein on different membrane surfaces. We further demonstrate the sorting of annular and non-annular regions of the protein/lipid bilayer simulation systems, and the correlation of lipid-number mismatch and surface area per lipid mismatch of asymmetric lipid membranes.

  15. Associations of Leu72Met Polymorphism of Preproghrelin with Ratios of Plasma Lipids Are Diversified by a High-Carbohydrate Diet in Healthy Chinese Adolescents.

    Science.gov (United States)

    Su, Mi; Qiu, Li; Wang, Qian; Jiang, Zhen; Liu, Xiao Juan; Lin, Jia; Fang, Ding Zhi

    2015-01-01

    The association of preproghrelin Leu72Met polymorphism with plasma lipids profile was inconsistently reported and needs more studies to be confirmed. Our study was to investigate the changes of plasma lipids ratios after a high-carbohydrate (high-CHO) diet in healthy Chinese adolescents with different genotypes of this polymorphism. Fifty-three healthy university students were given a washout diet of 54.1% carbohydrate for 7 days, followed by a high-CHO diet of 70.1% carbohydrate for 6 days. The anthropometric and biological parameters were analyzed at baseline and before and after the high-CHO diet. When compared with those before the high-CHO diet, body mass index (BMI) decreased in the male and female Met72 allele carriers. Decreased low-/high-density lipoprotein cholesterol (LDL-C/HDL-C) was observed in all participants except the female subjects with the Leu72Leu genotype. TG/HDL-C and log (TG/HDL-C) were increased only in the female subjects with the Leu72Leu genotype. These results suggest that the Met72 allele of preproghrelin Leu72Met polymorphism may be associated with decreased BMI induced by the high-CHO diet in male and female adolescents, while the Leu72 allele with increased TG/HDL-C and log (TG/HDL-C) in the female adolescents only. Furthermore, the decreasing effect of the high-CHO diet on LDL/HDL-C may be eliminated in the female Leu72Leu homozygotes. © 2015 S. Karger AG, Basel.

  16. Stacking interactions between carbohydrate and protein quantified by combination of theoretical and experimental methods.

    Directory of Open Access Journals (Sweden)

    Michaela Wimmerová

    Full Text Available Carbohydrate-receptor interactions are an integral part of biological events. They play an important role in many cellular processes, such as cell-cell adhesion, cell differentiation and in-cell signaling. Carbohydrates can interact with a receptor by using several types of intermolecular interactions. One of the most important is the interaction of a carbohydrate's apolar part with aromatic amino acid residues, known as dispersion interaction or CH/π interaction. In the study presented here, we attempted for the first time to quantify how the CH/π interaction contributes to a more general carbohydrate-protein interaction. We used a combined experimental approach, creating single and double point mutants with high level computational methods, and applied both to Ralstonia solanacearum (RSL lectin complexes with α-L-Me-fucoside. Experimentally measured binding affinities were compared with computed carbohydrate-aromatic amino acid residue interaction energies. Experimental binding affinities for the RSL wild type, phenylalanine and alanine mutants were -8.5, -7.1 and -4.1 kcal x mol(-1, respectively. These affinities agree with the computed dispersion interaction energy between carbohydrate and aromatic amino acid residues for RSL wild type and phenylalanine, with values -8.8, -7.9 kcal x mol(-1, excluding the alanine mutant where the interaction energy was -0.9 kcal x mol(-1. Molecular dynamics simulations show that discrepancy can be caused by creation of a new hydrogen bond between the α-L-Me-fucoside and RSL. Observed results suggest that in this and similar cases the carbohydrate-receptor interaction can be driven mainly by a dispersion interaction.

  17. Effects of the Dietary Protein and Carbohydrate Ratio on Gut Microbiomes in Dogs of Different Body Conditions.

    Science.gov (United States)

    Li, Qinghong; Lauber, Christian L; Czarnecki-Maulden, Gail; Pan, Yuanlong; Hannah, Steven S

    2017-01-24

    Obesity has become a health epidemic in both humans and pets. A dysbiotic gut microbiota has been associated with obesity and other metabolic disorders. High-protein, low-carbohydrate (HPLC) diets have been recommended for body weight loss, but little is known about their effects on the canine gut microbiome. Sixty-three obese and lean Labrador retrievers and Beagles (mean age, 5.72 years) were fed a common baseline diet for 4 weeks in phase 1, followed by 4 weeks of a treatment diet, specifically, the HPLC diet (49.4% protein, 10.9% carbohydrate) or a low-protein, high-carbohydrate (LPHC) diet (25.5% protein, 38.8% carbohydrate) in phase 2. 16S rRNA gene profiling revealed that dietary protein and carbohydrate ratios have significant impacts on gut microbial compositions. This effect appeared to be more evident in obese dogs than in lean dogs but was independent of breed. Consumption of either diet increased the bacterial evenness, but not the richness, of the gut compared to that after consumption of the baseline diet. Macronutrient composition affected taxon abundances, mainly within the predominant phyla, Firmicutes and Bacteroidetes The LPHC diet appeared to favor the growth of Bacteroides uniformis and Clostridium butyricum, while the HPLC diet increased the abundances of Clostridium hiranonis, Clostridium perfringens, and Ruminococcus gnavus and enriched microbial gene networks associated with weight maintenance. In addition, we observed a decrease in the Bacteroidetes to Firmicutes ratio and an increase in the Bacteroides to Prevotella ratio in the HPLC diet-fed dogs compared to these ratios in dogs fed other diets. Finally, analysis of the effect of diet on the predicted microbial gene network was performed using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt). More than 50% of dogs are either overweight or obese in the United States. A dysbiotic gut microbiota is associated with obesity and other

  18. A de novo designed monomeric, compact three helix bundle protein on a carbohydrate template

    DEFF Research Database (Denmark)

    Malik, Leila; Nygård, Jesper; Christensen, Niels Johan

    2015-01-01

    De novo design and chemical synthesis of proteins and of other artificial structures, which mimic them, is a central strategy for understanding protein folding and for accessing proteins with novel functions. We have previously described carbohydrates as templates for the assembly of artificial...... the template could facilitate protein folding. Here we report the design and synthesis of 3-helix bundle carboproteins on deoxy-hexopyranosides. The carboproteins were analyzed by CD, AUC, SAXS, and NMR, which revealed the formation of the first compact, and folded monomeric carboprotein distinctly different...

  19. Effect of dietary protein, lipid and carbohydrate contents on the ...

    African Journals Online (AJOL)

    lenovo

    2012-04-24

    Apr 24, 2012 ... during 90 days. Feeds were formulated using ground nut oil cake, mustard oil cake, rice bran, wheat ... Lim, 2002). However, protein is essential for normal tissue ... the diet, pre-treatment and degree of gelatinization. The ability of ... A pelleting machine (Hobart, model, A 200) was used to pellet the feeds.

  20. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    Science.gov (United States)

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Individual whey protein components influence lipid oxidation dependent on pH

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    In emulsions, lipid oxidation is expected to be initiated at the oil-water interface. The properties of the emulsifier used and the composition at the interface is therefore expected to be of great importance for the resulting oxidation. Previous studies have shown that individual whey protein...... by affecting the preferential adsorption of whey protein components at the interface. The aim of the study was to compare lipid oxidation in 10% fish oil-in-water emulsions prepared with 1% whey protein having either a high concentration of α-lactalbumin, a high concentration of β-lactoglobulin or equal...... amounts of the two. Emulsions were prepared at pH4 and pH7. Emulsions were characterized by their droplet sizes, viscosities, and contents of proteins in the water phase. Lipid oxidation was assessed by PV and secondary volatile oxidation products. Results showed that pH greatly influenced the oxidative...

  2. Trade-Off between Growth and Carbohydrate Accumulation in Nutrient-Limited Arthrospira sp. PCC 8005 Studied by Integrating Transcriptomic and Proteomic Approaches.

    Directory of Open Access Journals (Sweden)

    Orily Depraetere

    Full Text Available Cyanobacteria have a strong potential for biofuel production due to their ability to accumulate large amounts of carbohydrates. Nitrogen (N stress can be used to increase the content of carbohydrates in the biomass, but it is expected to reduce biomass productivity. To study this trade-off between carbohydrate accumulation and biomass productivity, we characterized the biomass productivity, biomass composition as well as the transcriptome and proteome of the cyanobacterium Arthrospira sp. PCC 8005 cultured under N-limiting and N-replete conditions. N limitation resulted in a large increase in the carbohydrate content of the biomass (from 14 to 74% and a decrease in the protein content (from 37 to 10%. Analyses of fatty acids indicated that no lipids were accumulated under N-limited conditions. Nevertheless, it did not affect the biomass productivity of the culture up to five days after N was depleted from the culture medium. Transcriptomic and proteomic analysis indicated that de novo protein synthesis was down-regulated in the N-limited culture. Proteins were degraded and partly converted into carbohydrates through gluconeogenesis. Cellular N derived from protein degradation was recycled through the TCA and GS-GOGAT cycles. In addition, photosynthetic energy production and carbon fixation were both down-regulated, while glycogen synthesis was up-regulated. Our results suggested that N limitation resulted in a redirection of photosynthetic energy from protein synthesis to glycogen synthesis. The fact that glycogen synthesis has a lower energy demand than protein synthesis might explain why Arthrospira is able to achieve a similar biomass productivity under N-limited as under N-replete conditions despite the fact that photosynthetic energy production was impaired by N limitation.

  3. Characterization of the carbohydrate components of Taenia solium oncosphere proteins and their role in the antigenicity.

    Science.gov (United States)

    Arana, Yanina; Verastegui, Manuela; Tuero, Iskra; Grandjean, Louis; Garcia, Hector H; Gilman, Robert H

    2013-10-01

    This study examines the carbohydrate composition of Taenia solium whole oncosphere antigens (WOAs), in order to improve the understanding of the antigenicity of the T. solium. Better knowledge of oncosphere antigens is crucial to accurately diagnose previous exposure to T. solium eggs and thus predict the development of neurocysticercosis. A set of seven lectins conjugates with wide carbohydrate specificity were used on parasite fixations and somatic extracts. Lectin fluorescence revealed that D-mannose, D-glucose, D-galactose and N-acetyl-D-galactosamine residues were the most abundant constituents of carbohydrate chains on the surface of T. solium oncosphere. Lectin blotting showed that posttranslational modification with N-glycosylation was abundant while little evidence of O-linked carbohydrates was observed. Chemical oxidation and enzymatic deglycosylation in situ were performed to investigate the immunoreactivity of the carbohydrate moieties. Linearizing or removing the carbohydrate moieties from the protein backbones did not diminish the immunoreactivity of these antigens, suggesting that a substantial part of the host immune response against T. solium oncosphere is directed against the peptide epitopes on the parasite antigens. Finally, using carbohydrate probes, we demonstrated for the first time that the presence of several lectins on the surface of the oncosphere was specific to carbohydrates found in intestinal mucus, suggesting a possible role in initial attachment of the parasite to host cells.

  4. Analysis and validation of carbohydrate three-dimensional structures

    International Nuclear Information System (INIS)

    Lütteke, Thomas

    2009-01-01

    The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures

  5. Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism.

    Science.gov (United States)

    Rigamonti, Elena; Parolini, Cinzia; Marchesi, Marta; Diani, Erika; Brambilla, Stefano; Sirtori, Cesare R; Chiesa, Giulia

    2010-05-01

    Controversial data on the lipid-lowering effect of dietary pea proteins have been provided and the mechanisms behind this effect are not completely understood. The aim of the study was to evaluate a possible hypolipidemic activity of a pea protein isolate and to determine whether pea proteins could affect the hepatic lipid metabolism through regulation of genes involved in cholesterol and fatty acid homeostasis. Rats were fed Nath's hypercholesterolemic diets for 28 days, the protein sources being casein or a pea protein isolate from Pisum sativum. After 14 and 28 days of dietary treatment, rats fed pea proteins had markedly lower plasma cholesterol and triglyceride levels than rats fed casein (pPea protein-fed rats displayed higher hepatic mRNA levels of LDL receptor versus those fed casein (ppea protein-fed rats than in rats fed casein (ppea proteins in rats. Moreover, pea proteins appear to affect cellular lipid homeostasis by upregulating genes involved in hepatic cholesterol uptake and by downregulating fatty acid synthesis genes.

  6. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism

    Directory of Open Access Journals (Sweden)

    Katsumi Iizuka

    2017-02-01

    Full Text Available Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important for the treatment of metabolic syndrome and fructose malabsorption. Carbohydrate response element binding protein (ChREBP is a glucose-activated transcription factor that controls approximately 50% of de novo lipogenesis in the liver. ChREBP target genes are involved in glycolysis (Glut2, liver pyruvate kinase, fructolysis (Glut5, ketohexokinase, and lipogenesis (acetyl CoA carboxylase, fatty acid synthase. ChREBP gene deletion protects against high sucrose diet-induced and leptin-deficient obesity, because Chrebp−/− mice cannot consume fructose or sucrose. Moreover, ChREBP contributes to some of the physiological effects of fructose on sweet taste preference and glucose production through regulation of ChREBP target genes, such as fibroblast growth factor-21 and glucose-6-phosphatase catalytic subunits. Thus, ChREBP might play roles in fructose metabolism. Restriction of excess fructose intake will be beneficial for preventing not only metabolic syndrome but also irritable bowl syndrome.

  7. Phosphatase Activity of Microbial Populations in Different Milk Samples in Relation to Protein and Carbohydrate Content

    Directory of Open Access Journals (Sweden)

    Sosanka Protim SANDILYA

    2014-12-01

    Full Text Available Cattle milk is a rich source of protein, carbohydrate, vitamins, minerals and all other major and micro nutrients. At a moderate pH, milk is an excellent media for the growth of microbes and thus, intake of raw milk is precarious. In this study, attempt was made for a qualitative study of eight raw milk samples of different varieties of cow and goat milk, collected from Jorhat district of Assam, India, on the basis of nutritional value and microbial population. The highest microbial population was found in the milk collected from cross hybrid variety of cow, whereas microbial contamination was the least in Jersey cow milk. Samples of C1 (Jersey cow variety showed presence of the highest amount of protein and carbohydrate content as compared to the others. Almost all the milk samples showed positive acid and alkaline phosphatase activity. Maximum acid phosphatase activity was observed in cross hybrid cow milk, whereas local cow milk exhibited the highest alkaline phosphatase activity. Phosphatase activity did not show any co-relationship with microbial population of the milk samples. Similarly, the protein and carbohydrate content of the samples did not have any significant impact on both acid and alkaline phosphatase activity.

  8. Effect of dietary protein, lipid and carbohydrate contents on the ...

    African Journals Online (AJOL)

    lenovo

    This study aimed to determine a feed formulation with the best protein to energy ratio that would result in a better viscera composition and organ indices (OI) of Cyprinus carpio communis. Fingerlings having average weight of 1.64 ± 0.13 g and length of 5.26 ± 0.10 cm were fed on four different formulated feeds and a control ...

  9. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    Science.gov (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2014-03-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Lipid droplet-associated proteins in alcoholic liver disease: a potential linkage with hepatocellular damage

    OpenAIRE

    Ikura, Yoshihiro; Caldwell, Stephen H

    2015-01-01

    Steatosis is a characteristic morphological change of alcoholic liver disease, but its pathologic significance is still obscure. Regardless of cell types, intracellular lipid droplets are coated with a phospholipid monolayer, on which many kinds of lipid droplet-associated proteins are present. These proteins, such as the perilipin family of proteins and the cell death inducing DNA fragmentation factor (DFF) 45-like effectors, are recognized to play important roles in lipid metabolism in the ...

  11. Adding Fish Oil to Whey Protein, Leucine, and Carbohydrate Over a Six-Week Supplementation Period Attenuates Muscle Soreness Following Eccentric Exercise in Competitive Soccer Players.

    Science.gov (United States)

    Philpott, Jordan D; Donnelly, Chris; Walshe, Ian H; MacKinley, Elizabeth E; Dick, James; Galloway, Stuart D R; Tipton, Kevin D; Witard, Oliver C

    2018-01-01

    Soccer players often experience eccentric exercise-induced muscle damage given the physical demands of soccer match-play. Since long chain n-3 polyunsaturated fatty acids (n-3PUFA) enhance muscle sensitivity to protein supplementation, dietary supplementation with a combination of fish oil-derived n-3PUFA, protein, and carbohydrate may promote exercise recovery. This study examined the influence of adding n-3PUFA to a whey protein, leucine, and carbohydrate containing beverage over a six-week supplementation period on physiological markers of recovery measured over three days following eccentric exercise. Competitive soccer players were assigned to one of three conditions (2 × 200 mL): a fish oil supplement beverage (FO; n = 10) that contained n-3PUFA (1100 mg DHA/EPA-approximately 550 mg DHA, 550 mg EPA), whey protein (15 g), leucine (1.8 g), and carbohydrate (20 g); a protein supplement beverage (PRO; n = 10) that contained whey protein (15 g), leucine (1.8 g), and carbohydrate (20 g); and a carbohydrate supplement beverage (CHO; n = 10) that contained carbohydrate (24 g). Eccentric exercise consisted of unilateral knee extension/flexion contractions on both legs separately. Maximal force production was impaired by 22% during the 72-hour recovery period following eccentric exercise (p recovery, was less in FO (1948 ± 1091 mm × 72 h) than PRO (4640 ± 2654 mm × 72 h, p soccer performance, or blood c-reactive protein concentrations were observed between groups. In conclusion, the addition of n-3PUFA to a beverage containing whey protein, leucine, and carbohydrate ameliorates the increase in muscle soreness and blood concentrations of creatine kinase following eccentric exercise in competitive soccer players.

  12. Histo-blood group carbohydrates as facilitators for infection by Helicobacter pylori.

    Science.gov (United States)

    Brandão de Mattos, Cinara Cássia; de Mattos, Luiz Carlos

    2017-09-01

    Helicobacter pylori infect millions of people around the world. It occupies a niche in the human gastrointestinal tract characterized by high expression of a repertoire of carbohydrates. ABO and Lewis histo-blood group systems are controlled by genes coding for functional glycosyltransferases which synthesize great diversity of related fucosylated carbohydrate in different tissues, including gastrointestinal mucosa, and exocrine secretions. The structural diversity of histo-blood group carbohydrates is highly complex and depends on epistatic interactions among gene-encoding glycosyltransferases. The histo-blood group glycosyltransferases act in the glycosylation of proteins and lipids in the human gastrointestinal tract allowing the expression of a variety of potential receptors in which H. pylori can adhere. These oligosaccharide molecules are part of the gastrointestinal repertoire of carbohydrates which act as potential receptors for microorganisms, including H. pylori. This Gram-negative bacillus is one of the main causes of the gastrointestinal diseases such as chronic active gastritis, peptic ulcer, and cancer of stomach. Previous reports showed that some H. pylori strains use carbohydrates as receptors to adhere to the gastric and duodenal mucosa. Since some histo-blood group carbohydrates are highly expressed in one but not in others histo-blood group phenotypes it has pointed out that quantitative differences among them influence the susceptibility to diseases caused by H. pylori. Additionally, some experiments using animal model are helping us to understand how this bacillus explore histo-blood group carbohydrates as potential receptors, offering possibility to explore new strategies of management of infection, disease treatment, and prevention. This text highlights the importance of structural diversity of ABO and Lewis histo-blood group carbohydrates as facilitators for H. pylori infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Can protein-fortified pasta serve as a meat substitute?

    Science.gov (United States)

    Bingham, C J; Tsay, R; Babayan, V K; Blackburn, G L

    1982-01-01

    A seventeen-day metabolic balance study was conducted with 13 healthy adult subjects to test the protein utilization of a meat-based diet and a protein-fortified pasta diet in an isonitrogenous, isocaloric inpatient study (averaging 112 gm of protein, and 2,500 cal). Intakes of calories, protein, fat, and carbohydrates, as well as ratios of meat protein or protein-fortified pasta protein (PEP), were controlled throughout the diets. The study was comprised of three experimental periods: a seven-day meat-protein control period, representing the typical american diet (TAD), averaging 18% protein, 40% fat, and 42% carbohydrate, a seven-day protein-enriched pasta control period (PEP), averaging 18% protein, 29% fat, and 53% carbohydrates, and a three-day PEP period composed of varied recipes, averaging 18% protein, 29% fat, and 53% carbohydrates. The subjects who consumed both the TAD and PEP diets achieved nitrogen balance (2.5 gN +/- 0.7 on the TAD, 2 gN +/- 0 on PEP with the PEP diet resulting in a decrease in plasma cholesterol (32 mg/dl, P less than .005), and a decrease in systolic (5.25 mm/Hg P less than .025) and diastolic blood pressure (5 mm/Hg, P less than .05), which was associated with an increase in urinary sodium excretion (19 +/- 17 mEq/day, P less than .025). In this study, it was determined that protein-fortified pasta may serve as a meat alternative. The PEP diet, which includes a beneficial change in fat/carbohydrate ratio, can alter lipid profiles, blood pressure, and sodium excretion, thus leading to improved health status and a decrease in cardiac risk factors.

  14. Quantitative determination of proteins, lipids and ascorbic acid in ...

    African Journals Online (AJOL)

    The protein content of the legumes and fruits ranged from 4.10 to 9.60 % with the highest value in snot apple, followed by governor's plum, ground nuts and cow peas. Ground nuts were found to be the richest source of lipids (mean = 45.97%) while lipids were low in all the other legume and fruit samples (0.83 to 1.63 %).

  15. Oxidative changes in lipids, proteins, and antioxidants in yogurt during the shelf life.

    Science.gov (United States)

    Citta, Anna; Folda, Alessandra; Scalcon, Valeria; Scutari, Guido; Bindoli, Alberto; Bellamio, Marco; Feller, Emiliano; Rigobello, Maria Pia

    2017-11-01

    Oxidation processes in milk and yogurt during the shelf life can result in an alteration of protein and lipid constituents. Therefore, the antioxidant properties of yogurt in standard conditions of preservation were evaluated. Total phenols, free radical scavenger activity, degree of lipid peroxidation, and protein oxidation were determined in plain and skim yogurts with or without fruit puree. After production, plain, skim, plain berries, and skim berries yogurts were compared during the shelf life up to 9 weeks. All types of yogurts revealed a basal antioxidant activity that was higher when a fruit puree was present but gradually decreased during the shelf life. However, after 5-8 weeks, antioxidant activity increased again. Both in plain and berries yogurts lipid peroxidation increased until the seventh week of shelf life and after decreased, whereas protein oxidation of all yogurts was similar either in the absence or presence of berries and increased during shelf life. During the shelf life, a different behavior between lipid and protein oxidation takes place and the presence of berries determines a protection only against lipid peroxidation.

  16. Dual Role of Ancient Ubiquitous Protein 1 (AUP1) in Lipid Droplet Accumulation and Endoplasmic Reticulum (ER) Protein Quality Control

    Science.gov (United States)

    Klemm, Elizabeth J.; Spooner, Eric; Ploegh, Hidde L.

    2011-01-01

    Quality control of endoplasmic reticulum proteins involves the identification and engagement of misfolded proteins, dislocation of the misfolded protein across the endoplasmic reticulum (ER) membrane, and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1 (AUP1) physically associates with the mammalian HRD1-SEL1L complex, and AUP1 depletion impairs degradation of misfolded ER proteins. One of the functions of AUP1 in ER quality control is to recruit the soluble E2 ubiquitin-conjugating enzyme UBE2G2. We further show that the CUE domain of AUP1 regulates polyubiquitylation and facilitates the interaction of AUP1 with the HRD1 complex and with dislocation substrates. AUP1 localizes both to the ER and to lipid droplets. The AUP1 expression level affects the abundance of cellular lipid droplets and as such represents the first protein with lipid droplet regulatory activity to be linked to ER quality control. These findings indicate a possible connection between ER protein quality control and lipid droplets. PMID:21857022

  17. Effects of Dietary Protein and Lipid Levels on Growth and Body Composition of Juvenile Far Eastern Catfish

    Directory of Open Access Journals (Sweden)

    Kyoung-Duck Kim

    2012-03-01

    Full Text Available A 3×2 factorial experiment was conducted to determine the effects of dietary protein and lipid levels on the growth and body composition of juvenile far eastern catfish. Six diets were formulated to contain three levels of protein (20%, 30% and 40% and two levels of lipid (9% and 17%. Triplicate groups of fish (initial body weight of 7.6 g were hand-fed to apparent satiation for 66 days. Final mean weight was improved with increasing dietary protein and lipid levels, and the highest final mean weight was observed in fish fed the 40/17 (% protein/% lipid diet. No significant difference was observed in final mean weight for fish fed between 30/17 diet and 40/9 diet. Feed efficiency of fish fed the diets containing over 30% protein levels with 9% and 17% lipid levels were significantly higher than those of fish fed the 20% protein levels. Feed efficiency of fish fed the 30/17 diet was not significantly different from that of fish fed the 40/9 diet or 40/17 diet. Feed efficiency and protein efficiency ratio of fish fed the 20% protein diets with 17% lipid level were significantly higher than those of fish fed 9% lipid diet. Daily feed intake of fish tended to decrease with increasing dietary protein and lipid levels. Moisture content of whole body in fish fed the 9% lipid diets was significantly higher than that of fish fed the 17% lipid diets at the same protein level, but the opposite trends were found for crude lipid content. Significant effects of dietary lipid were observed for most fatty acids, according to their relative values in the diets. The results of this study suggest that the protein requirement for maximum growth of juvenile far eastern catfish may be higher than 40%, and an increase of dietary lipid level from 9% to 17% can improve growth and feed utilization.

  18. R7-binding protein targets the G protein β5/R7-regulator of G protein signaling complex to lipid rafts in neuronal cells and brain

    Directory of Open Access Journals (Sweden)

    Zhang Jian-Hua

    2007-09-01

    Full Text Available Abstract Background Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins, composed of Gα, Gβ, and Gγ subunits, are positioned at the inner face of the plasma membrane and relay signals from activated G protein-coupled cell surface receptors to various signaling pathways. Gβ5 is the most structurally divergent Gβ isoform and forms tight heterodimers with regulator of G protein signalling (RGS proteins of the R7 subfamily (R7-RGS. The subcellular localization of Gβ 5/R7-RGS protein complexes is regulated by the palmitoylation status of the associated R7-binding protein (R7BP, a recently discovered SNARE-like protein. We investigate here whether R7BP controls the targeting of Gβ5/R7-RGS complexes to lipid rafts, cholesterol-rich membrane microdomains where conventional heterotrimeric G proteins and some effector proteins are concentrated in neurons and brain. Results We show that endogenous Gβ5/R7-RGS/R7BP protein complexes are present in native neuron-like PC12 cells and that a fraction is targeted to low-density, detergent-resistant membrane lipid rafts. The buoyant density of endogenous raft-associated Gβ5/R7-RGS protein complexes in PC12 cells was similar to that of lipid rafts containing the palmitoylated marker proteins PSD-95 and LAT, but distinct from that of the membrane microdomain where flotillin was localized. Overexpression of wild-type R7BP, but not its palmitoylation-deficient mutant, greatly enriched the fraction of endogenous Gβ5/R7-RGS protein complexes in the lipid rafts. In HEK-293 cells the palmitoylation status of R7BP also regulated the lipid raft targeting of co-expressed Gβ5/R7-RGS/R7BP proteins. A fraction of endogenous Gβ5/R7-RGS/R7BP complexes was also present in lipid rafts in mouse brain. Conclusion A fraction of Gβ5/R7-RGS/R7BP protein complexes is targeted to low-density, detergent-resistant membrane lipid rafts in PC12 cells and brain. In cultured cells, the palmitoylation status of

  19. Differences in postprandial hemodynamic response on a high protein versus a high carbohydrate diet

    NARCIS (Netherlands)

    Dopheide, J.; Geleijnse, J.M.; Bakker, S.J.L.; Brink, E.J.; Baak, van M.A.

    2011-01-01

    Objective: Several intervention trials have shown that diet composition affects blood pressure (BP). In this study we focused on postprandial hemodynamic changes on a high carbohydrate versus a high protein diet. Design and Method: In this randomized double-blind parallel group study, 53 adult

  20. Identification of carbohydrate-binding domains in the attachment proteins of type 1 and type 3 reoviruses.

    Science.gov (United States)

    Chappell, J D; Duong, J L; Wright, B W; Dermody, T S

    2000-09-01

    The reovirus attachment protein, sigma1, is responsible for strain-specific patterns of viral tropism in the murine central nervous system and receptor binding on cultured cells. The sigma1 protein consists of a fibrous tail domain proximal to the virion surface and a virion-distal globular head domain. To better understand mechanisms of reovirus attachment to cells, we conducted studies to identify the region of sigma1 that binds cell surface carbohydrate. Chimeric and truncated sigma1 proteins derived from prototype reovirus strains type 1 Lang (T1L) and type 3 Dearing (T3D) were expressed in insect cells by using a baculovirus vector. Assessment of expressed protein susceptibility to proteolytic cleavage, binding to anti-sigma1 antibodies, and oligomerization indicates that the chimeric and truncated sigma1 proteins are properly folded. To assess carbohydrate binding, recombinant sigma1 proteins were tested for the capacity to agglutinate mammalian erythrocytes and to bind sialic acid presented on glycophorin, the cell surface molecule bound by type 3 reovirus on human erythrocytes. Using a panel of two wild-type and ten chimeric and truncated sigma1 proteins, the sialic acid-binding domain of type 3 sigma1 was mapped to a region of sequence proposed to form the more amino terminal of two predicted beta-sheet structures in the tail. This unit corresponds to morphologic region T(iii) observed in computer-processed electron micrographs of sigma1 protein purified from virions. In contrast, the homologous region of T1L sigma1 sequence was not implicated in carbohydrate binding; rather, sequences in the distal portion of the tail known as the neck were required. Results of these studies demonstrate that a functional receptor-binding domain, which uses sialic acid as its ligand, is contained within morphologic region T(iii) of the type 3 sigma1 tail. Furthermore, our findings indicate that T1L and T3D sigma1 proteins contain different arrangements of receptor

  1. Carbohydrate vs protein supplementation for recovery of neuromuscular function following prolonged load carriage

    Directory of Open Access Journals (Sweden)

    Fallowfield Joanne L

    2010-01-01

    Full Text Available Abstract Background This study examined the effect of carbohydrate and whey protein supplements on recovery of neuromuscular function after prolonged load carriage. Methods Ten male participants (body mass: 81.5 ± 10.5 kg, age: 28 ± 9 years, O2max: 55.0 ± 5.5 ml·kg-1·min-1 completed three treadmill walking tests (2 hr, 6.5 km·h-1, carrying a 25 kg backpack consuming 500 ml of either: (1 Placebo (flavoured water [PLA], (2 6.4% Carbohydrate Solution [CHO] or (3 7.0% Whey Protein Solution [PRO]. For three days after load carriage, participants consumed two 500 ml supplement boluses. Muscle performance was measured before and at 0, 24, 48 and 72 h after load carriage, during voluntary and electrically stimulated contractions. Results Isometric knee extension force decreased immediately after load carriage with no difference between conditions. During recovery, isometric force returned to pre-exercise values at 48 h for CHO and PRO but at 72 h for PLA. Voluntary activation decreased immediately after load carriage and returned to pre-exercise values at 24 h in all conditions (P = 0.086. During recovery, there were no differences between conditions for the change in isokinetic peak torque. Following reductions immediately after load carriage, knee extensor and flexor peak torque (60°·s-1 recovered to pre-exercise values at 72 h. Trunk extensor and flexor peak torque (15°·s-1 recovered to pre-exercise values at 24 h (P = 0.091 and 48 h (P = 0.177, respectively. Conclusion Recovery of neuromuscular function after prolonged load carriage is improved with either carbohydrate or whey protein supplementation for isometric contractions but not for isokinetic contractions.

  2. The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network.

    Science.gov (United States)

    Thibault, Guillaume; Shui, Guanghou; Kim, Woong; McAlister, Graeme C; Ismail, Nurzian; Gygi, Steven P; Wenk, Markus R; Ng, Davis T W

    2012-10-12

    Lipid composition can differ widely among organelles and even between leaflets of a membrane. Lipid homeostasis is critical because disequilibrium can have disease outcomes. Despite their importance, mechanisms maintaining lipid homeostasis remain poorly understood. Here, we establish a model system to study the global effects of lipid imbalance. Quantitative lipid profiling was integral to monitor changes to lipid composition and for system validation. Applying global transcriptional and proteomic analyses, a dramatically altered biochemical landscape was revealed from adaptive cells. The resulting composite regulation we term the "membrane stress response" (MSR) confers compensation, not through restoration of lipid composition, but by remodeling the protein homeostasis network. To validate its physiological significance, we analyzed the unfolded protein response (UPR), one facet of the MSR and a key regulator of protein homeostasis. We demonstrate that the UPR maintains protein biogenesis, quality control, and membrane integrity-functions otherwise lethally compromised in lipid dysregulated cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. How cholesterol interacts with proteins and lipids during its intracellular transport

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Solanko, Katarzyna

    2015-01-01

    as well as by non-vesicular sterol exchange between organelles. In this article, we will review recent progress in elucidating sterol-lipid and sterol-protein interactions contributing to proper sterol transport in living cells. We outline recent biophysical models of cholesterol distribution and dynamics...... for characterization of sterol-protein interactions and for monitoring intracellular sterol transport. Finally, we review recent work on the molecular mechanisms underlying lipoprotein-mediated cholesterol import into mammalian cells and describe the process of cellular cholesterol efflux. Overall, we emphasize how......Sterols, as cholesterol in mammalian cells and ergosterol in fungi, are indispensable molecules for proper functioning and nanoscale organization of the plasma membrane. Synthesis, uptake and efflux of cholesterol are regulated by a variety of protein-lipid and protein-protein interactions...

  4. Common Prairie feeds with different soluble and insoluble fractions used for CPM diet formulation in dairy cattle: Impact of carbohydrate-protein matrix structure on protein and other primary nutrient digestion

    Science.gov (United States)

    Peng, Quanhui; Wang, Zhisheng; Zhang, Xuewei; Yu, Peiqiang

    2014-03-01

    An experiment was conducted to investigate the relationship of carbohydrates molecular spectral characteristics to rumen degradability of primary nutrients in Prairie feeds in dairy cattle. In total, 12 different types of feeds were selected, each type of feed was from three different source with total 37 samples. Six types of them were energy-sourced feeds and the others were protein-sourced feeds. The carbohydrates molecular spectral intensity of various functional groups were collected using Fourier transform infrared attenuated total reflectance (ATR-FT/IR) spectroscopy. In the in situ study, the results showed that the rumen digestibility and digestible fractions of primary nutrients (DM, OM, NCP, and CP) were significantly different (P digestibility and digestible fractions of DM, OM and NCP. Spectral intensities of H_1150, H_1015, A_1, and A_3 were weakly negatively associated with in situ rumen degradation of CP. Spectral intensities of A_1240 and H_1240, mainly associated with cellulosic compounds, were correlated with rumen CP degradation. The multiple regression analysis demonstrated that the spectral intensities of A_3 and H_1415 played the most important role and could be used as a potential tool to predict rumen protein degradation of feeds in dairy cattle. In conclusion, this study showed that the carbohydrates as a whole have an effect on protein rumen degradation, rather than cellulose alone, indicating carbohydrate-protein matrix structure impact protein utilization in dairy cattle. The non-invasive molecular spectral technique (ATR-FT/IR) could be used as a rapid potential tool to predict rumen protein degradation of feedstuffs by using molecular spectral bands intensities in carbohydrate fingerprint region.

  5. Effects of inadequate maternal dietary protein:carbohydrate ratios during pregnancy on offspring immunity in pigs

    Directory of Open Access Journals (Sweden)

    Tuchscherer Margret

    2012-11-01

    Full Text Available Abstract Background Inadequate nutrition in utero may retard foetal growth and alter physiological development of offspring. This study investigated the effects of low and high protein diets fed to primiparous German Landrace sows throughout pregnancy on the immune function of their offspring at different ages. Sows were fed diets with adequate (AP, 12.1%; n = 13, low (LP, 6.5%; n = 15, or high (HP, 30%; n = 14 protein content, made isoenergetic by varying carbohydrate levels. Cortisol, total protein and immunoglobulin (IgG, IgM, IgA concentrations were measured in the blood of sows over the course of pregnancy. Cortisol, total protein, immunoglobulins, lymphocyte proliferation, immune cell counts, and cytokines were assessed in the blood of offspring at baseline and under challenging conditions (weaning; lipopolysaccharide (LPS administration. Results In sows, the LP diet increased cortisol (P P P P + cell percentage and the CD4+/CD8+ ratio increased after weaning (P P = 0.09 and HP (P P  Conclusions Our results indicate that both low and high protein:carbohydrate ratios in the diet of pregnant sows can induce short-term as well as long-lasting effects on immune competence in piglets that may have serious consequences for host defence against bacterial pathogens.

  6. Effect of a 6-month vegan low-carbohydrate ('Eco-Atkins') diet on cardiovascular risk factors and body weight in hyperlipidaemic adults: a randomised controlled trial.

    Science.gov (United States)

    Jenkins, David J A; Wong, Julia M W; Kendall, Cyril W C; Esfahani, Amin; Ng, Vivian W Y; Leong, Tracy C K; Faulkner, Dorothea A; Vidgen, Ed; Paul, Gregory; Mukherjea, Ratna; Krul, Elaine S; Singer, William

    2014-02-05

    Low-carbohydrate diets may be useful for weight loss. Diets high in vegetable proteins and oils may reduce the risk of coronary heart disease. The main objective was to determine the longer term effect of a diet that was both low-carbohydrate and plant-based on weight loss and low-density lipoprotein cholesterol (LDL-C). A parallel design study of 39 overweight hyperlipidaemic men and postmenopausal women conducted at a Canadian university-affiliated hospital nutrition research centre from April 2005 to November 2006. Participants were advised to consume either a low-carbohydrate vegan diet or a high-carbohydrate lacto-ovo vegetarian diet for 6 months after completing 1-month metabolic (all foods provided) versions of these diets. The prescribed macronutrient intakes for the low-carbohydrate and high-carbohydrate diets were: 26% and 58% of energy from carbohydrate, 31% and 16% from protein and 43% and 25% from fat, respectively. Change in body weight. 23 participants (50% test, 68% control) completed the 6-month ad libitum study. The approximate 4 kg weight loss on the metabolic study was increased to -6.9 kg on low-carbohydrate and -5.8 kg on high-carbohydrate 6-month ad libitum treatments (treatment difference (95% CI) -1.1 kg (-2.1 to 0.0), p=0.047). The relative LDL-C and triglyceride reductions were also greater on the low-carbohydrate treatment (treatment difference (95% CI) -0.49 mmol/L (-0.70 to -0.28), pvegan diet, containing increased protein and fat from gluten and soy products, nuts and vegetable oils, had lipid lowering advantages over a high-carbohydrate, low-fat weight loss diet, thus improving heart disease risk factors. clinicaltrials.gov (http://www.clinicaltrials.gov/), #NCT00256516.

  7. Effect of dietary patterns differing in carbohydrate and fat content on blood lipid and glucose profiles based on weight-loss success of breast-cancer survivors.

    Science.gov (United States)

    Thompson, Henry J; Sedlacek, Scot M; Paul, Devchand; Wolfe, Pamela; McGinley, John N; Playdon, Mary C; Daeninck, Elizabeth A; Bartels, Sara N; Wisthoff, Mark R

    2012-01-06

    Healthy body weight is an important factor for prevention of breast cancer recurrence. Yet, weight loss and weight gain are not currently included in clinical-practice guidelines for posttreatment of breast cancer. The work reported addresses one of the questions that must be considered in recommending weight loss to patients: does it matter what diet plan is used, a question of particular importance because breast cancer treatment can increase risk for cardiovascular disease. Women who completed treatment for breast cancer were enrolled in a nonrandomized, controlled study investigating effects of weight loss achieved by using two dietary patterns at the extremes of macronutrient composition, although both diet arms were equivalent in protein: high fat, low carbohydrate versus low fat, high carbohydrate. A nonintervention group served as the control arm; women were assigned to intervention arms based on dietary preferences. During the 6-month weight-loss program, which was menu and recipe defined, participants had monthly clinical visits at which anthropometric data were collected and fasting blood was obtained for safety monitoring for plasma lipid profiles and fasting glucose. Results from 142 participants are reported. Adverse effects on fasting blood lipids or glucose were not observed in either dietary arm. A decrease in fasting glucose was observed with progressive weight loss and was greater in participants who lost more weight, but the effect was not statistically significant, even though it was observed across both diet groups (P = 0.21). Beneficial effects of weight loss on cholesterol (4.7%; P = 0.001), triglycerides (21.8%; P = 0.01), and low-density lipoprotein (LDL) cholesterol (5.8%; P = 0.06) were observed in both groups. For cholesterol (P = 0.07) and LDL cholesterol (P = 0.13), greater reduction trends were seen on the low-fat diet pattern; whereas, for triglycerides (P = 0.01) and high-density lipoprotein (HDL) cholesterol (P = 0.08), a decrease

  8. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.

    Science.gov (United States)

    Bogdanov, Ivan V; Shenkarev, Zakhar O; Finkina, Ekaterina I; Melnikova, Daria N; Rumynskiy, Eugene I; Arseniev, Alexander S; Ovchinnikova, Tatiana V

    2016-04-30

    Plant lipid transfer proteins (LTPs) assemble a family of small (7-9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties. Three novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly (13)C,(15)N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å(3)). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity. For the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps

  9. Enhanced lipid accumulation and biodiesel production by oleaginous Chlorella protothecoides under a structured heterotrophic-iron (II) induction strategy.

    Science.gov (United States)

    Li, Yuqin; Mu, Jinxiu; Chen, Di; Xu, Hua; Han, Fangxin

    2015-05-01

    A structured heterotrophic-iron (II) induction (HII) strategy was proposed to enhance lipid accumulation in oleaginous Chlorella protothecoides. C. protothecoides subjected to heterotrophic-iron (II) induction achieved a favorable lipid accumulation up to 62 % and a maximum lipid productivity of 820.17 mg/day, representing 2.78-fold and 3.64-fold increase respectively over heterotrophic cultivation alone. HII-induced cells produced significantly elevated levels of 16:0, 18:1(Δ9), and 18:2(Δ9,12) fatty acids (over 90 %). The lipid contents and plant lipid-like fatty acid compositions exhibit the potential of HII-induced C. protothecoides as biodiesel feedstock. Furthermore, 31 altered proteins in HII-induced algal cells were successfully identified. These differentially expressed proteins were assigned into nine molecular function categories, including carbohydrate metabolism, lipid biosynthesis, Calvin cycle, cellular respiration, photosynthesis, energy and transport, protein biosynthesis, regulate and defense, and unclassified. Analysis using the Kyoto encyclopedia of genes and genomes and gene ontology annotation showed that malic enzyme, acyltransferase, and ACP were key metabolic checkpoints found to modulate lipid accumulation in C. protothecoides. The results provided possible applications of HII cultivation strategy in other microalgal species and new possibilities in developing genetic and metabolic engineering microalgae for desirable lipid productivity.

  10. Selective upregulation of lipid metabolism in skeletal muscle of foraging juvenile king penguins: an integrative study.

    Science.gov (United States)

    Teulier, Loic; Dégletagne, Cyril; Rey, Benjamin; Tornos, Jérémy; Keime, Céline; de Dinechin, Marc; Raccurt, Mireille; Rouanet, Jean-Louis; Roussel, Damien; Duchamp, Claude

    2012-06-22

    The passage from shore to marine life of juvenile penguins represents a major energetic challenge to fuel intense and prolonged demands for thermoregulation and locomotion. Some functional changes developed at this crucial step were investigated by comparing pre-fledging king penguins with sea-acclimatized (SA) juveniles (Aptenodytes patagonicus). Transcriptomic analysis of pectoralis muscle biopsies revealed that most genes encoding proteins involved in lipid transport or catabolism were upregulated, while genes involved in carbohydrate metabolism were mostly downregulated in SA birds. Determination of muscle enzymatic activities showed no changes in enzymes involved in the glycolytic pathway, but increased 3-hydroxyacyl-CoA dehydrogenase, an enzyme of the β-oxidation pathway. The respiratory rates of isolated muscle mitochondria were much higher with a substrate arising from lipid metabolism (palmitoyl-L-carnitine) in SA juveniles than in terrestrial controls, while no difference emerged with a substrate arising from carbohydrate metabolism (pyruvate). In vivo, perfusion of a lipid emulsion induced a fourfold larger thermogenic effect in SA than in control juveniles. The present integrative study shows that fuel selection towards lipid oxidation characterizes penguin acclimatization to marine life. Such acclimatization may involve thyroid hormones through their nuclear beta receptor and nuclear coactivators.

  11. Oxidation of lipid and protein in horse mackerel (Trachurus trachurus) mince and washed minces during processing and storage

    DEFF Research Database (Denmark)

    Eymard, Sylvie; Baron, Caroline; Jacobsen, Charlotte

    2009-01-01

    : M1, M2 and M3, with one, two and three washing steps, respectively. The different products were characterised (i.e. lipid content, protein, water, iron, fatty acid profile and tocopherol content) and analysed for protein and lipid oxidation in order to investigate the impact of the washing steps...... was followed by determination of protein solubility, protein thiol groups and protein carbonyl groups using colorimetric methods as well as western blotting for protein carbonyl groups. Lipid and protein oxidation markers indicated that both lipid and protein oxidation took place during processing...

  12. Regulation of membrane protein function by lipid bilayer elasticity-a single molecule technology to measure the bilayer properties experienced by an embedded protein

    International Nuclear Information System (INIS)

    Lundbaek, Jens August

    2006-01-01

    Membrane protein function is generally regulated by the molecular composition of the host lipid bilayer. The underlying mechanisms have long remained enigmatic. Some cases involve specific molecular interactions, but very often lipids and other amphiphiles, which are adsorbed to lipid bilayers, regulate a number of structurally unrelated proteins in an apparently non-specific manner. It is well known that changes in the physical properties of a lipid bilayer (e.g., thickness or monolayer spontaneous curvature) can affect the function of an embedded protein. However, the role of such changes, in the general regulation of membrane protein function, is unclear. This is to a large extent due to lack of a generally accepted framework in which to understand the many observations. The present review summarizes studies which have demonstrated that the hydrophobic interactions between a membrane protein and the host lipid bilayer provide an energetic coupling, whereby protein function can be regulated by the bilayer elasticity. The feasibility of this 'hydrophobic coupling mechanism' has been demonstrated using the gramicidin channel, a model membrane protein, in planar lipid bilayers. Using voltage-dependent sodium channels, N-type calcium channels and GABA A receptors, it has been shown that membrane protein function in living cells can be regulated by amphiphile induced changes in bilayer elasticity. Using the gramicidin channel as a molecular force transducer, a nanotechnology to measure the elastic properties experienced by an embedded protein has been developed. A theoretical and technological framework, to study the regulation of membrane protein function by lipid bilayer elasticity, has been established

  13. Dairy cows affected by ketosis show alterations in innate immunity and lipid and carbohydrate metabolism during the dry off period and postpartum.

    Science.gov (United States)

    Zhang, Guanshi; Hailemariam, Dagnachew; Dervishi, Elda; Goldansaz, Seyed Ali; Deng, Qilan; Dunn, Suzanna M; Ametaj, Burim N

    2016-08-01

    The objective of this investigation was to search for alterations in blood variables related to innate immunity and carbohydrate and lipid metabolism during the transition period in cows affected by ketosis. One hundred multiparous Holstein dairy cows were involved in the study. Blood samples were collected at -8, -4, week of disease diagnosis (+1 to +3weeks), and +4weeks relative to parturition from 6 healthy cows (CON) and 6 cows with ketosis and were analyzed for serum variables. Results showed that cows with ketosis had greater concentrations of serum β-hydroxybutyric acid (BHBA), interleukin (IL)-6, tumor necrosis factor (TNF), serum amyloid A (SAA), and lactate in comparison with the CON animals. Serum concentrations of BHBA, IL-6, TNF, and lactate were greater starting at -8 and -4weeks prior to parturition in cows with ketosis vs those of CON group. Cows with ketosis also had lower DMI and milk production vs CON cows. Milk fat also was lower in ketotic cows at diagnosis of disease. Cows affected by ketosis showed an activated innate immunity and altered carbohydrate and lipid metabolism several weeks prior to diagnosis of disease. Serum IL-6 and lactate were the strongest discriminators between ketosis cows and CON ones before the occurrence of ketosis, which might be useful as predictive biomarkers of the disease state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Lipid and protein composition as driving force for multiple sclerosis

    Science.gov (United States)

    Beck, Roy; Shaharabani, Rona

    Physical models and experiments often reduce the number of components aiming to address the fundamental mechanisms. Nevertheless, the inherent heterogeneity is an essential ingredient in the biological context. We present our recent efforts to model and understand the development of multiple sclerosis (MS) from a biophysical perspective. Myelin sheath is a multilamellar complex of various lipids and proteins that surround axons and acts as an insulating layer for proper nerve conduction. In MS the myelin structure is disrupted impairing its function. Previous studies showed that MS is correlated with small lipid composition variation and reduction in the adhesive myelin basic protein. We found that such alterations result in pathological phase transition from a lamellar to inverted hexagonal that involve enhanced local curvature. Similar curvatures are also found in vivo in diseased myelin sheaths. Since the etiology and recovery pathways of MS are currently unclear, these findings delineate novel functional roles to dominant constituents in cytoplasmic myelin sheaths, shed new light on mechanisms disrupting lipid-protein complexes, and suggest new courses for diagnosis and treatment for MS.

  15. The adaptor protein alpha-syntrophin regulates adipocyte lipid droplet growth

    Energy Technology Data Exchange (ETDEWEB)

    Eisinger, Kristina; Rein-Fischboeck, Lisa; Pohl, Rebekka; Meier, Elisabeth M.; Krautbauer, Sabrina; Buechler, Christa, E-mail: christa.buechler@klinik.uni-regensburg.de

    2016-07-01

    The scaffold protein alpha-syntrophin (SNTA) regulates lipolysis indicating a role in lipid homeostasis. Adipocytes are the main lipid storage cells in the body, and here, the function of SNTA has been analyzed in 3T3-L1 cells. SNTA is expressed in preadipocytes and is induced early during adipogenesis. Knock-down of SNTA in preadipocytes increases their proliferation. Proteins which are induced during adipogenesis like adiponectin and caveolin-1, and the inflammatory cytokine IL-6 are at normal levels in the mature cells differentiated from preadipocytes with low SNTA. This suggests that SNTA does neither affect differentiation nor inflammation. Expression of proteins with a role in cholesterol and triglyceride homeostasis is unchanged. Consequently, basal and epinephrine induced lipolysis as well as insulin stimulated phosphorylation of Akt and ERK1/2 are normal. Importantly, adipocytes with low SNTA form smaller lipid droplets and store less triglycerides. Stearoyl-CoA reductase and MnSOD are reduced upon SNTA knock-down but do not contribute to lower lipid levels. Oleate uptake is even increased in cells with SNTA knock-down. In summary, current data show that SNTA is involved in the expansion of lipid droplets independent of adipogenesis. Enhanced preadipocyte proliferation and capacity to store surplus fatty acids may protect adipocytes with low SNTA from lipotoxicity in obesity. - Highlights: • Alpha-syntrophin (SNTA) is expressed in 3T3-L1adipocytes. • SNTA knock-down in preadipocytes has no effect on adipogenesis. • Mature 3T3-L1 differentiated from cells with low SNTA form small lipid droplets. • SCD1 and MnSOD are reduced in adipocytes with low SNTA. • SCD1 knock-down does not alter triglyceride levels.

  16. Expression, purification, crystallization and structure of human adipocyte lipid-binding protein (aP2)

    International Nuclear Information System (INIS)

    Marr, Eric; Tardie, Mark; Carty, Maynard; Brown Phillips, Tracy; Wang, Ing-Kae; Soeller, Walt; Qiu, Xiayang; Karam, George

    2006-01-01

    The crystal structure of human adipocyte lipid-binding protein (aP2) with a bound palmitate is reported at 1.5 Å resolution. Human adipocyte lipid-binding protein (aP2) belongs to a family of intracellular lipid-binding proteins involved in the transport and storage of lipids. Here, the crystal structure of human aP2 with a bound palmitate is described at 1.5 Å resolution. Unlike the known crystal structure of murine aP2 in complex with palmitate, this structure shows that the fatty acid is in a folded conformation and that the loop containing Phe57 acts as a lid to regulate ligand binding by excluding solvent exposure to the central binding cavity

  17. Effect of low-carbohydrate diets high in either fat or protein on thyroid function, plasma insulin, glucose, and triglycerides in healthy young adults.

    Science.gov (United States)

    Ullrich, I H; Peters, P J; Albrink, M J

    1985-01-01

    A low-carbohydrate diet, frequently used for treatment of reactive hypoglycemia, hypertriglyceridemia, and obesity may affect thyroid function. We studied the effects of replacing the deleted carbohydrate with either fat or protein in seven healthy young adults. Subjects were randomly assigned to receive seven days of each of two isocaloric liquid-formula, low-carbohydrate diets consecutively. One diet was high in polyunsaturated fat (HF), with 10%, 55%, and 35% of total calories derived from protein, fat, and carbohydrate, respectively. The other was high in protein (HP) with 35%, 30%, and 35% of total calories derived from protein, fat, and carbohydrate. Fasting blood samples were obtained at baseline and on day 8 of each diet. A meal tolerance test representative of each diet was given on day 7. The triiodothyronine (T3) declined more (P less than .05) following the HF diet than the HP diet (baseline 198 micrograms/dl, HP 138, HF 113). Thyroxine (T4) and reverse T3 (rT3) did not change significantly. Thyroid-stimulating hormone (TSH) declined equally after both diets. The insulin level was significantly higher 30 minutes after the HP meal (148 microU/ml) than after the HF meal (90 microU/ml). The two-hour glucose level for the HP meal was less, 85 mg/dl, than after the HF meal (103 mg/dl). Serum triglycerides decreased more after the HF diet (HF 52 mg/dl, HP 67 mg/dl). Apparent benefits of replacing carbohydrate with polyunsaturated fat rather than protein are less insulin response and less postpeak decrease in blood glucose and lower triglycerides. The significance of the lower T3 level is unknown.

  18. Anisotropic biodegradable lipid coated particles for spatially dynamic protein presentation.

    Science.gov (United States)

    Meyer, Randall A; Mathew, Mohit P; Ben-Akiva, Elana; Sunshine, Joel C; Shmueli, Ron B; Ren, Qiuyin; Yarema, Kevin J; Green, Jordan J

    2018-05-01

    There has been growing interest in the use of particles coated with lipids for applications ranging from drug delivery, gene delivery, and diagnostic imaging to immunoengineering. To date, almost all particles with lipid coatings have been spherical despite emerging evidence that non-spherical shapes can provide important advantages including reduced non-specific elimination and increased target-specific binding. We combine control of core particle geometry with control of particle surface functionality by developing anisotropic, biodegradable ellipsoidal particles with lipid coatings. We demonstrate that these lipid coated ellipsoidal particles maintain advantageous properties of lipid polymer hybrid particles, such as the ability for modular protein conjugation to the particle surface using versatile bioorthogonal ligation reactions. In addition, they exhibit biomimetic membrane fluidity and demonstrate lateral diffusive properties characteristic of natural membrane proteins. These ellipsoidal particles simultaneously provide benefits of non-spherical particles in terms of stability and resistance to non-specific phagocytosis by macrophages as well as enhanced targeted binding. These biomaterials provide a novel and flexible platform for numerous biomedical applications. The research reported here documents the ability of non-spherical polymeric particles to be coated with lipids to form anisotropic biomimetic particles. In addition, we demonstrate that these lipid-coated biodegradable polymeric particles can be conjugated to a wide variety of biological molecules in a "click-like" fashion. This is of interest due to the multiple types of cellular mimicry enabled by this biomaterial based technology. These features include mimicry of the highly anisotropic shape exhibited by cells, surface presentation of membrane bound protein mimetics, and lateral diffusivity of membrane bound substrates comparable to that of a plasma membrane. This platform is demonstrated to

  19. Effect of a 6-month vegan low-carbohydrate (‘Eco-Atkins’) diet on cardiovascular risk factors and body weight in hyperlipidaemic adults: a randomised controlled trial

    Science.gov (United States)

    Jenkins, David J A; Wong, Julia M W; Kendall, Cyril W C; Esfahani, Amin; Ng, Vivian W Y; Leong, Tracy C K; Faulkner, Dorothea A; Vidgen, Ed; Paul, Gregory; Mukherjea, Ratna; Krul, Elaine S; Singer, William

    2014-01-01

    Objective Low-carbohydrate diets may be useful for weight loss. Diets high in vegetable proteins and oils may reduce the risk of coronary heart disease. The main objective was to determine the longer term effect of a diet that was both low-carbohydrate and plant-based on weight loss and low-density lipoprotein cholesterol (LDL-C). Design, setting, participants A parallel design study of 39 overweight hyperlipidaemic men and postmenopausal women conducted at a Canadian university-affiliated hospital nutrition research centre from April 2005 to November 2006. Intervention Participants were advised to consume either a low-carbohydrate vegan diet or a high-carbohydrate lacto-ovo vegetarian diet for 6 months after completing 1-month metabolic (all foods provided) versions of these diets. The prescribed macronutrient intakes for the low-carbohydrate and high-carbohydrate diets were: 26% and 58% of energy from carbohydrate, 31% and 16% from protein and 43% and 25% from fat, respectively. Primary outcome Change in body weight. Results 23 participants (50% test, 68% control) completed the 6-month ad libitum study. The approximate 4 kg weight loss on the metabolic study was increased to −6.9 kg on low-carbohydrate and −5.8 kg on high-carbohydrate 6-month ad libitum treatments (treatment difference (95% CI) −1.1 kg (−2.1 to 0.0), p=0.047). The relative LDL-C and triglyceride reductions were also greater on the low-carbohydrate treatment (treatment difference (95% CI) −0.49 mmol/L (−0.70 to −0.28), pvegan diet, containing increased protein and fat from gluten and soy products, nuts and vegetable oils, had lipid lowering advantages over a high-carbohydrate, low-fat weight loss diet, thus improving heart disease risk factors. Trial Registration clinicaltrials.gov (http://www.clinicaltrials.gov/), #NCT00256516. PMID:24500611

  20. A novel carbohydrate-binding surface layer protein from the hyperthermophilic archaeon Pyrococcus horikoshii.

    Science.gov (United States)

    Goda, Shuichiro; Koga, Tomoyuki; Yamashita, Kenichiro; Kuriura, Ryo; Ueda, Toshifumi

    2018-04-08

    In Archaea and Bacteria, surface layer (S-layer) proteins form the cell envelope and are involved in cell protection. In the present study, a putative S-layer protein was purified from the crude extract of Pyrococcus horikoshii using affinity chromatography. The S-layer gene was cloned and expressed in Escherichia coli. Isothermal titration calorimetry analyses showed that the S-layer protein bound N-acetylglucosamine and induced agglutination of the gram-positive bacterium Micrococcus lysodeikticus. The protein comprised a 21-mer structure, with a molecular mass of 1,340 kDa, as determined using small-angle X-ray scattering. This protein showed high thermal stability, with a midpoint of thermal denaturation of 79 °C in dynamic light scattering experiments. This is the first description of the carbohydrate-binding archaeal S-layer protein and its characteristics.

  1. The metabolism of carbohydrates and lipid peroxidation in lead-exposed workers.

    Science.gov (United States)

    Kasperczyk, Aleksandra; Dobrakowski, Michal; Ostałowska, Alina; Zalejska-Fiolka, Jolanta; Birkner, Ewa

    2015-12-01

    The present study was undertaken to estimate the effect of occupational exposure to lead on the blood concentration of glucose and several enzymes involved in glycolysis, the citric acid cycle, and the pentose phosphate pathway. To estimate the degree of lipid peroxidation, the concentrations of conjugated dienes were determined. The examined group included 145 healthy male employees of lead-zinc works. Taking into account the mean blood lead levels, the examined group was divided into two subgroups. The control group was composed of 36 healthy male administrative workers. The markers of lead exposure were significantly elevated in both subgroups when compared with the controls. There were no significant changes in fasting glucose concentration and fructose-1,6-bisphosphate aldolase activity in the study population. The concentration of conjugated dienes was significantly higher in both subgroups, whereas the activity of malate dehydrogenase was significantly higher only in the group with higher exposure. The activities of lactate dehydrogenase and sorbitol dehydrogenase were significantly decreased in the examined subgroups. The activity of glucose-6-phosphate dehydrogenase decreased significantly in the group with higher exposure and could be the cause of the elevated concentrations of conjugated dienes. It is possible to conclude that lead interferes with carbohydrate metabolism, but compensatory mechanisms seem to be efficient, as glucose homeostasis in lead-exposed workers was not disturbed. © The Author(s) 2013.

  2. Influence of acute exercise with and without carbohydrate replacement on postprandial lipid metabolism.

    Science.gov (United States)

    Harrison, Michael; O'Gorman, Donal J; McCaffrey, Noel; Hamilton, Marc T; Zderic, Theodore W; Carson, Brian P; Moyna, Niall M

    2009-03-01

    Acute exercise, undertaken on the day before an oral fat tolerance test (OFTT), typically reduces postprandial triglycerides (TG) and increases high-density lipoprotein-cholesterol (HDL-C). However, the benefits of acute exercise may be overstated when studies do not account for compensatory changes in dietary intake. The objective of this study was to determine the influence of acute exercise, with and without carbohydrate (CHO) replacement, on postprandial lipid metabolism. Eight recreationally active young men underwent an OFTT on the morning after three experimental conditions: no exercise [control (Con)], prolonged exercise without CHO replacement (Ex-Def) and prolonged exercise with CHO replacement to restore CHO and energy balance (Ex-Bal). The exercise session in Ex-Def and Ex-Bal consisted of 90 min cycle ergometry at 70% peak oxygen uptake (Vo(2peak)) followed by 10 maximal 1-min sprints. CHO replacement was achieved using glucose solutions consumed at 0, 2, and 4 h postexercise. Muscle glycogen was 40 +/- 4% (P Con values on the morning of the Ex-Def and Ex-Bal OFTT, respectively. Postprandial TG were 40 +/- 14% lower and postprandial HDL-C, free fatty acids, and 3-hydroxybutyrate were higher in Ex-Def compared with Con (P < 0.05). Most importantly, these exercise effects were not evident in Ex-Bal. Postprandial insulin and glucose and the homeostatic model assessment of insulin resistance (HOMA(IR)) were not significantly different across trials. There was no relation between the changes in postprandial TG and muscle glycogen across trials. In conclusion, the influence of acute exhaustive exercise on postprandial lipid metabolism is largely dependent on the associated CHO and energy deficit.

  3. Membrane Compartmentalization Reducing the Mobility of Lipids and Proteins within a Model Plasma Membrane.

    Science.gov (United States)

    Koldsø, Heidi; Reddy, Tyler; Fowler, Philip W; Duncan, Anna L; Sansom, Mark S P

    2016-09-01

    The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.

  4. Biochemical studies of effects of alcohol consumption on fat and carbohydrate metabolism in rats fed different levels of proteins

    International Nuclear Information System (INIS)

    Shalan, M.G.M.

    1996-01-01

    Alcohol, ethanol and ethyl alcohol are synonymously used during the present dissertation. Alcohol probably was among the first psychoactive substances to be used by man (Winger et al., 1992). Ethanol is mainly oxidized to acetaldehyde in the liver (Ugarte and Peresa, 1978) by alcohol dehydrogenase (ADH). Alcohol is associated with many metabolic disorders inside the body (Thayer and Rubin, 1979; Forsander and Poso, 1988; Poso and Hirsimaki, 1991; Bernal, et al., 1992). The nutritional factors which received little attention have an important role in alcoholic metabolizing alterations. Morphologically and biochemically, an increase in hepatic lipid was demonstrated when ethanol was given either as a supplement or as an iso caloric substitute for carbohydrate together with an otherwise nutritionally adequate diet. Low-protein diets have been shown to diminish hepatic alcohol dehydrogenase (ADH) levels in rats and to slow down the metabolism of ethanol considerably (Wilson et al., 1986). Hepatic steatosis was produced, even with a high-protein, vitamin-supplemented diet and was accompanied by major ultrastructural liver changes and by elevations of hepatic transaminases in blood (Lieber et al., 1963 and 1965 and Lane and Lieber, 1966). If dietary fat was reduced from 35 to 25% of total calories, hepatic triglyceride accumulation greatly decreased (Lieber and DeCarli, 970)

  5. Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets.

    Science.gov (United States)

    Pieper, Robert; Boudry, Christelle; Bindelle, Jérôme; Vahjen, Wilfried; Zentek, Jürgen

    2014-01-01

    Although fermentable carbohydrates (CHO) can reduce metabolites derived from dietary protein fermentation in the intestine of pigs, the interaction between site of fermentation and substrate availability along the gut is still unclear. The current study aimed at determining the impact of two different sources of carbohydrates in diets with low or very high protein content on microbial metabolite profiles along the gastrointestinal tract of piglets. Thirty-six piglets (n = 6 per group) were fed diets high (26%, HP) or low (18%, LP) in dietary protein and with or without two different sources of carbohydrates (12% sugar beet pulp, SBP, or 8% lignocellulose, LNC) in a 2 × 3 factorial design. After 3 weeks, contents from stomach, jejunum, ileum, caecum, proximal and distal colon were taken and analysed for major bacterial metabolites (D-lactate, L-lactate, short chain fatty acids, ammonia, amines, phenols and indols). Results indicate considerable fermentation of CHO and protein already in the stomach. HP diets increased the formation of ammonia, amines, phenolic and indolic compounds throughout the different parts of the intestine with most pronounced effects in the distal colon. Dietary SBP inclusion in LP diets favoured the formation of cadaverine in the proximal parts of the intestine. SBP mainly increased CHO-derived metabolites such as SCFA and lactate and decreased protein-derived metabolites in the large intestine. Based on metabolite profiles, LNC was partly fermented in the distal large intestine and reduced mainly phenols, indols and cadaverine, but not ammonia. Multivariate analysis confirmed more diet-specific metabolite patterns in the stomach, whereas the CHO addition was the main determinant in the caecum and proximal colon. The protein level mainly influenced the metabolite patterns in the distal colon. The results confirm the importance of CHO source to influence the formation of metabolites derived from protein fermentation along the intestinal

  6. Comparative transcriptome analysis reveals carbohydrate and lipid metabolism blocks in Brassica napus L. male sterility induced by the chemical hybridization agent monosulfuron ester sodium.

    Science.gov (United States)

    Li, Zhanjie; Cheng, Yufeng; Cui, Jianmin; Zhang, Peipei; Zhao, Huixian; Hu, Shengwu

    2015-03-17

    Chemical hybridization agents (CHAs) are often used to induce male sterility for the production of hybrid seeds. We previously discovered that monosulfuron ester sodium (MES), an acetolactate synthase (ALS) inhibitor of the herbicide sulfonylurea family, can induce rapeseed (Brassica napus L.) male sterility at approximately 1% concentration required for its herbicidal activity. To find some clues to the mechanism of MES inducing male sterility, the ultrastructural cytology observations, comparative transcriptome analysis, and physiological analysis on carbohydrate content were carried out in leaves and anthers at different developmental stages between the MES-treated and mock-treated rapeseed plants. Cytological analysis revealed that the plastid ultrastructure was abnormal in pollen mother cells and tapetal cells in male sterility anthers induced by MES treatment, with less material accumulation in it. However, starch granules were observed in chloroplastids of the epidermis cells in male sterility anthers. Comparative transcriptome analysis identified 1501 differentially expressed transcripts (DETs) in leaves and anthers at different developmental stages, most of these DETs being localized in plastid and mitochondrion. Transcripts involved in metabolism, especially in carbohydrate and lipid metabolism, and cellular transport were differentially expressed. Pathway visualization showed that the tightly regulated gene network for metabolism was reprogrammed to respond to MES treatment. The results of cytological observation and transcriptome analysis in the MES-treated rapeseed plants were mirrored by carbohydrate content analysis. MES treatment led to decrease in soluble sugars content in leaves and early stage buds, but increase in soluble sugars content and decrease in starch content in middle stage buds. Our integrative results suggested that carbohydrate and lipid metabolism were influenced by CHA-MES treatment during rapeseed anther development, which might

  7. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER.

    Science.gov (United States)

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco; Hannibal-Bach, Hans K; Ejsing, Christer S; Rapoport, Tom A

    2014-01-16

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    Directory of Open Access Journals (Sweden)

    Daniel F. Markgraf

    2014-01-01

    Full Text Available Eukaryotic cells store neutral lipids such as triacylglycerol (TAG in lipid droplets (LDs. Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER. We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG. During LD breakdown in early exponential phase, an ER membrane protein (Ice2p facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.

  9. Dynamics of biochemical components, lipid classes and energy values on gonadal development of R. philippinarum associated with the temperature and ingestion rate.

    Science.gov (United States)

    Fernández-Reiriz, M J; Pérez-Camacho, A; Delgado, M; Labarta, U

    2007-08-01

    This study evaluates the effect of temperature, coupled with ingestion rate, on the dynamics of biochemical components and lipid classes in R. philippinarum. The data are discussed with regard to sexual development and energy balance. Experimental protocol developed in the present study used two groups of the clam R. philippinarum: L (temperatures of 14 degrees C and 18 degrees C) and H (temperatures of 18 degrees C and 22 degrees C). The intra-group ingestion level was similar, although the ingestion level of the clams in the group H was 2.4 times higher than group L. We observed that R. philippinarum conditioned at 18 degrees C (18L) shows higher protein content, furthermore an important loss of organic weight was observed after 48 days. In such a situation, the clams use their own reserves (carbohydrates and glycogen) for sexual development while in situations without food stress (positive energy balance) and low temperature (14 degrees C) an accumulation of reserves is produced. Strikingly dissimilar behaviour in biochemical composition was observed for the 18H and 22H treatments, both with a positive energy balance. Despite similar protein content, the highest levels of carbohydrates were observed at the lower temperature (18 degrees C). Glycogen was also higher for the 18 degrees C treatment, although the differences were significant only in the males. Although the total lipids in R. philippinarum showed no significant differences in any treatment, they became apparent and related to sex when considering the individual lipid classes. There was no variation in lipid classes in the males between the 14L and 22H treatments despite the large disparity in the degree of sexual development. However, in the females significant differences in lipid classes (phospholipids, triglycerides) were observed. The results of this study show that a positive energy balance permits R. philippinarum gonadal development and accumulation of reserves both in low and high temperature

  10. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles

    Science.gov (United States)

    A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or an...

  11. Physiological Roles for mafr-1 in Reproduction and Lipid Homeostasis

    Directory of Open Access Journals (Sweden)

    Akshat Khanna

    2014-12-01

    Full Text Available Maf1 is a conserved repressor of RNA polymerase (Pol III transcription; however, its physiological role in the context of a multicellular organism is not well understood. Here, we show that C. elegans MAFR-1 is functionally orthologous to human Maf1, represses the expression of both RNA Pol III and Pol II transcripts, and mediates organismal fecundity and lipid homeostasis. MAFR-1 impacts lipid transport by modulating intestinal expression of the vitellogenin family of proteins, resulting in cell-nonautonomous defects in the developing reproductive system. MAFR-1 levels inversely correlate with stored intestinal lipids, in part by influencing the expression of the lipogenesis enzymes fasn-1/FASN and pod-2/ACC1. Animals fed a high carbohydrate diet exhibit reduced mafr-1 expression and mutations in the insulin signaling pathway genes daf-18/PTEN and daf-16/FoxO abrogate the lipid storage defects associated with deregulated mafr-1 expression. Our results reveal physiological roles for mafr-1 in regulating organismal lipid homeostasis, which ensure reproductive success.

  12. Screening method of carbohydrate-binding proteins in biological sources by capillary affinity electrophoresis and its application to determination of Tulipa gesneriana agglutinin in tulip bulbs.

    Science.gov (United States)

    Nakajima, Kazuki; Kinoshita, Mitsuhiro; Oda, Yasuo; Masuko, Takashi; Kaku, Hanae; Shibuya, Naoto; Kakehi, Kazuaki

    2004-09-01

    We developed capillary affinity electrophoresis (CAE) to analyze the molecular interaction between carbohydrate chains and proteins in solution state. A mixture of oligosaccharides derived from a glycoprotein was labeled with 8-aminopyrene-1,3,6-trisulfonate (APTS), and used as glycan library without isolation. Interaction of a carbohydrate-binding protein with each oligosaccharide in the mixture could be simultaneously observed, and relative affinities of oligosaccharides toward the protein were accurately determined. In this study, we applied CAE to detect the presence of lectins in some plants (Japanese elderberry bark and tulip bulb). In the crude extract of the elderberry bark, binding activity toward sialo-carbohydrate chains could be easily detected. We also examined the presence of lectins in the crude extract of tulip bulbs and determined the detailed carbohydrate-binding specificity of Tulipa gesneriana agglutinin (TGA), one of the lectins from tulip bulbs. Kinetic studies demonstrated that TGA showed novel carbohydrate-binding specificity and preferentially recognized triantennary oligosaccharides with Gal residues at nonreducing termini and a Fuc residue linked through alpha(1-6) linkage at chitobiose portion of the reducing termini but not tetraantennary carbohydrates. The results described here indicate that CAE will be a valuable method for both screening of lectins in natural sources and determination of their detailed carbohydrate-binding specificities.

  13. Yuanhuapine-induced intestinal and hepatotoxicity were correlated with disturbance of amino acids, lipids, carbohydrate metabolism and gut microflora function: A rat urine metabonomic study.

    Science.gov (United States)

    Chen, Yanyan; Duan, Jin-Ao; Guo, Jianming; Shang, Erxin; Tang, Yuping; Qian, Yefei; Tao, Weiwei; Liu, Pei

    2016-07-15

    This research was designed to study metabonomic characteristics of the toxicity induced by yuanhuapine, a major bioactive diterpenoid in a well-known traditional Chinese medicine-Genkwa Flos. General observation, blood biochemistry and histopathological examination were used to reflect yuanhuapine-induced toxicity. Urine samples from rats in control and yuanhuapine treated rats were analyzed by ultra-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Pattern recognition methods including principal components analysis (PCA), partial least-squared discriminant analysis (PLS-DA), orthogonal partial least-squared discriminant analysis (OPLS-DA) and computational system analysis were integrated to obtain comprehensive metabonomic profiling and pathways of the biological data sets. The results suggested that yuanhuapine could induce intestinal and liver damage. And 14 endogenous metabolites as biomarkers related to the amino acids metabolism, lipids metabolism, carbohydrate metabolism and gut microflora were significantly changed in the urine of yuanhuapine treated rats, which were firstly constructed the metabolomic feature profiling and metabolite interaction network of yuanhuapine-induced injury using pattern recognition methods and Ingenuity Pathway Analysis (IPA) approach. The present study showed that yuanhuapine-induced intestinal and hepatic toxicity were correlated with disturbance of amino acids metabolism, lipids metabolism, carbohydrate metabolism and gut microflora. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Arabinogalactan proteins: focus on carbohydrate active enzymes

    Directory of Open Access Journals (Sweden)

    Eva eKnoch

    2014-06-01

    Full Text Available Arabinogalactan proteins (AGPs are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/ involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.

  15. Raman and infrared spectroscopy of carbohydrates: A review

    Science.gov (United States)

    Wiercigroch, Ewelina; Szafraniec, Ewelina; Czamara, Krzysztof; Pacia, Marta Z.; Majzner, Katarzyna; Kochan, Kamila; Kaczor, Agnieszka; Baranska, Malgorzata; Malek, Kamilla

    2017-10-01

    Carbohydrates are widespread and naturally occurring compounds, and essential constituents for living organisms. They are quite often reported when biological systems are studied and their role is discussed. However surprisingly, up till now there is no database collecting vibrational spectra of carbohydrates and their assignment, as has been done already for other biomolecules. So, this paper serves as a comprehensive review, where for selected 14 carbohydrates in the solid state both FT-Raman and ATR FT-IR spectra were collected and assigned. Carbohydrates can be divided into four chemical groups and in the same way is organized this review. First, the smallest molecules are discussed, i.e. monosaccharides (D-(-)-ribose, 2-deoxy-D-ribose, L-(-)-arabinose, D-(+)-xylose, D-(+)-glucose, D-(+)-galactose and D-(-)-fructose) and disaccharides (D-(+)-sucrose, D-(+)-maltose and D-(+)-lactose), and then more complex ones, i.e. trisaccharides (D-(+)-raffinose) and polysaccharides (amylopectin, amylose, glycogen). Both Raman and IR spectra were collected in the whole spectral range and discussed looking at the specific regions, i.e. region V (3600-3050 cm- 1), IV (3050-2800 cm- 1) and II (1200-800 cm- 1) assigned to the stretching vibrations of the OH, CH/CH2 and C-O/C-C groups, respectively, and region III (1500-1200 cm- 1) and I (800-100 cm- 1) dominated by deformational modes of the CH/CH2 and CCO groups, respectively. In spite of the fact that vibrational spectra of saccharides are significantly less specific than spectra of other biomolecules (e.g. lipids or proteins), marker bands of the studied molecules can be identified and correlated with their structure.

  16. Low carbohydrate, high fat diet increases C-reactive protein during weight loss.

    Science.gov (United States)

    Rankin, Janet W; Turpyn, Abigail D

    2007-04-01

    Chronic inflammation is associated with elevated risk of heart disease and may be linked to oxidative stress in obesity. Our objective was to evaluate the effect of weight loss diet composition (low carbohydrate, high fat, LC or high carbohydrate, low fat, HC) on inflammation and to determine whether this was related to oxidative stress. Twenty nine overweight women, BMI 32.1 +/- 5.4 kg/m(2), were randomly assigned to a self-selected LC or HC diet for 4 wks. Weekly group sessions and diet record collections helped enhance compliance. Body weight, markers of inflammation (serum interleukin-6, IL-6; C-reactive protein, CRP) oxidative stress (urinary 8-epi-prostaglandin F2alpha, 8-epi) and fasting blood glucose and free fatty acids were measured weekly. The diets were similar in caloric intake (1357 kcal/d LC vs. 1361 HC, p=0.94), but differed in macronutrients (58, 12, 30 and 24, 59, 18 for percent of energy as fat, carbohydrate, and protein for LC and HC, respectively). Although LC lost more weight (3.8 +/- 1.2 kg LC vs. 2.6 +/- 1.7 HC, p=0.04), CRP increased 25%; this factor was reduced 43% in HC (p=0.02). For both groups, glucose decreased with weight loss (85.4 vs. 82.1 mg/dl for baseline and wk 4, p<0.01), while IL-6 increased (1.39 to 1.62 pg/mL, p=0.04). Urinary 8-epi varied differently over time between groups (p<0.05) with no consistent pattern. Diet composition of the weight loss diet influenced a key marker of inflammation in that LC increased while HC reduced serum CRP but evidence did not support that this was related to oxidative stress.

  17. Isolation and quantification of Quillaja saponaria Molina saponins and lipids in iscom-matrix and iscoms.

    Science.gov (United States)

    Behboudi, S; Morein, B; Rönnberg, B

    1995-12-01

    In the iscom, multiple copies of antigen are attached by hydrophobic interaction to a matrix which is built up by Quillaja triterpenoid saponins and lipids. Thus, the iscom presents antigen in multimeric form in a small particle with a built-in adjuvant resulting in a highly immunogenic antigen formulation. We have designed a chloroform-methanol-water extraction procedure to isolate the triterpenoid saponins and lipids incorporated into iscom-matrix and iscoms. The triterpenoids in the triterpenoid phase were quantitated using orcinol sulfuric acid detecting their carbohydrate chains and by HPLC. The cholesterol and phosphatidylcholine in the lipid phase were quantitated by HPLC and a commercial colorimetric method for the cholesterol. The quantitative methods showed an almost total separation and recovery of triterpenoids and lipids in their respective phases, while protein was detected in all phases after extraction. The protein content was determined by the method of Lowry and by amino acid analysis. Amino acid analysis was shown to be the reliable method of the two to quantitate proteins in iscoms. In conclusion, simple, reproducible and efficient procedures have been designed to isolate and quantitate the triterpenoids and lipids added for preparation of iscom-matrix and iscoms. The procedures described should also be useful to adequately define constituents in prospective vaccines.

  18. Antimicrobial activity of Brassica nectar lipid transfer protein

    Science.gov (United States)

    Antimicrobial peptides (AMPs) provide an ancient, innate immunity conserved in all multicellular organisms. In plants, there are several large families of AMPs defined by sequence similarity. The nonspecific lipid transfer protein (LTP) family is defined by a conserved signature of eight cysteines a...

  19. Optimised purification and characterisation of lipid transfer protein 1 (LTP1) and its lipid-bound isoform LTP1b from barley malt.

    Science.gov (United States)

    Nieuwoudt, Melanie; Lombard, Nicolaas; Rautenbach, Marina

    2014-08-15

    In beer brewing, brewers worldwide strive to obtain product consistency in terms of flavour, colour and foam. Important proteins contributing to beer foam are lipid transfer proteins (LTPs), in particular LTP1 and its lipid-bound isoform LTP1b, which are known to transport lipids in vivo and prevent lipids from destabilising the beer foam. LTP1 and LTP1b were successfully purified using only five purification steps with a high purified protein yield (160 mg LTP1 and LTP1b from 200 g barley). Circular dichroism of LTP1 and LTP1b confirmed that both proteins are highly tolerant to high temperatures (>90 °C) and are pH stable, particularly at a neutral to a more basic pH. Only LTP1 exhibited antiyeast and thermo-stable lytic activity, while LTP1b was inactive, indicating that the fatty acid moiety compromised the antimicrobial activity of LTP1. This lack in antiyeast activity and the positive foam properties of LTP1b would benefit beer fermentation and quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris

    Energy Technology Data Exchange (ETDEWEB)

    Gizatullina, Albina K. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Finkina, Ekaterina I.; Mineev, Konstantin S.; Melnikova, Daria N.; Bogdanov, Ivan V. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Telezhinskaya, Irina N.; Balandin, Sergey V. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Shenkarev, Zakhar O. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Arseniev, Alexander S. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Ovchinnikova, Tatiana V., E-mail: ovch@ibch.ru [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700, Dolgoprudny, Moscow Region (Russian Federation)

    2013-10-04

    Highlights: •Lipid transfer protein from lentil seeds (Lc-LTP2) was overexpressed in E. coli. •Antimicrobial activity and spatial structure of the recombinant Lc-LTP2 were examined. •Internal tunnel-like lipid-binding cavity occupies ∼7% of the total Lc-LTP2 volume. •Binding of DMPG lipid induces moderate rearrangements in the Lc-LTP2 structure. •Lc-LTP2/DMPG complex has limited lifetime and dissociates within tens of hours. -- Abstract: Lipid transfer protein, designated as Lc-LTP2, was isolated from seeds of the lentil Lens culinaris. The protein has molecular mass 9282.7 Da, consists of 93 amino acid residues including 8 cysteines forming 4 disulfide bonds. Lc-LTP2 and its stable isotope labeled analogues were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant protein was examined, and its spatial structure was studied by NMR spectroscopy. The polypeptide chain of Lc-LTP2 forms four α-helices (Cys4-Leu18, Pro26-Ala37, Thr42-Ala56, Thr64-Lys73) and a long C-terminal tail without regular secondary structure. Side chains of the hydrophobic residues form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ∼600 Å{sup 3}). The side-chains of Arg45, Pro79, and Tyr80 are located near an assumed mouth of the cavity. Titration with dimyristoyl phosphatidylglycerol (DMPG) revealed formation of the Lc-LTP2/lipid non-covalent complex accompanied by rearrangements in the protein spatial structure and expansion of the internal cavity. The resultant Lc-LTP2/DMPG complex demonstrates limited lifetime and dissociates within tens of hours.

  1. Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris

    International Nuclear Information System (INIS)

    Gizatullina, Albina K.; Finkina, Ekaterina I.; Mineev, Konstantin S.; Melnikova, Daria N.; Bogdanov, Ivan V.; Telezhinskaya, Irina N.; Balandin, Sergey V.; Shenkarev, Zakhar O.; Arseniev, Alexander S.; Ovchinnikova, Tatiana V.

    2013-01-01

    Highlights: •Lipid transfer protein from lentil seeds (Lc-LTP2) was overexpressed in E. coli. •Antimicrobial activity and spatial structure of the recombinant Lc-LTP2 were examined. •Internal tunnel-like lipid-binding cavity occupies ∼7% of the total Lc-LTP2 volume. •Binding of DMPG lipid induces moderate rearrangements in the Lc-LTP2 structure. •Lc-LTP2/DMPG complex has limited lifetime and dissociates within tens of hours. -- Abstract: Lipid transfer protein, designated as Lc-LTP2, was isolated from seeds of the lentil Lens culinaris. The protein has molecular mass 9282.7 Da, consists of 93 amino acid residues including 8 cysteines forming 4 disulfide bonds. Lc-LTP2 and its stable isotope labeled analogues were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant protein was examined, and its spatial structure was studied by NMR spectroscopy. The polypeptide chain of Lc-LTP2 forms four α-helices (Cys4-Leu18, Pro26-Ala37, Thr42-Ala56, Thr64-Lys73) and a long C-terminal tail without regular secondary structure. Side chains of the hydrophobic residues form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ∼600 Å 3 ). The side-chains of Arg45, Pro79, and Tyr80 are located near an assumed mouth of the cavity. Titration with dimyristoyl phosphatidylglycerol (DMPG) revealed formation of the Lc-LTP2/lipid non-covalent complex accompanied by rearrangements in the protein spatial structure and expansion of the internal cavity. The resultant Lc-LTP2/DMPG complex demonstrates limited lifetime and dissociates within tens of hours

  2. Effect of high-protein or normal-protein diet on weight loss, body composition, hormone, and metabolic profile in southern Brazilian women with polycystic ovary syndrome: a randomized study.

    Science.gov (United States)

    Toscani, Mariana K; Mario, Fernanda M; Radavelli-Bagatini, Simone; Wiltgen, Denusa; Matos, Maria Cristina; Spritzer, Poli Maria

    2011-11-01

    The aim of the present study was to assess the effects of a high protein (HP) and a normal protein (NP) diet on patients with polycystic ovary syndrome (PCOS) and body mass index-matched controls in a sample of southern Brazilian women. This 8-week randomized trial was carried out at a university gynecological endocrinology clinic and included 18 patients with PCOS and 22 controls. Changes in weight, body composition, hormone, and metabolic profile were analyzed in women randomized to receive HP (30% protein, 40% carbohydrate, and 30% lipid) or NP (15% protein, 55% carbohydrate, and 30% lipid). The energy content was estimated for each participant at 20-25 kcal/kg current weight/day. Physical activity, blood pressure, homeostasis model assessment (HOMA) index, and fasting and 2-h glucose and insulin remained stable during the intervention in PCOS and controls, even in the presence of weight loss. There were no changes in lipid profile in either group. In contrast, body weight, body mass index (BMI), waist circumference, percent of body fat, and sum of trunk skinfolds decreased significantly after both diets in both groups. Total testosterone also decreased in PCOS and controls regardless of diet. In conclusion, calorie reduction, rather than protein content, seemed to affect body composition and hormonal profile in this short-term study. These findings emphasize the role of non-pharmacological interventions to reduce weight and ameliorate the anthropometric and clinical phenotype in PCOS.

  3. Insulin suppresses the AMPK signaling pathway to regulate lipid metabolism in primary cultured hepatocytes of dairy cows.

    Science.gov (United States)

    Li, Xinwei; Li, Yu; Ding, Hongyan; Dong, Jihong; Zhang, Renhe; Huang, Dan; Lei, Lin; Wang, Zhe; Liu, Guowen; Li, Xiaobing

    2018-05-01

    Dairy cows with type II ketosis display hepatic fat accumulation and hyperinsulinemia, but the underlying mechanism is not completely clear. This study aimed to clarify the regulation of lipid metabolism by insulin in cow hepatocytes. In vitro, cow hepatocytes were treated with 0, 1, 10, or 100 nm insulin in the presence or absence of AICAR (an AMP-activated protein kinase alpha (AMPKα) activator). The results showed that insulin decreased AMPKα phosphorylation. This inactivation of AMPKα increased the gene and protein expression levels of carbohydrate responsive element-binding protein (ChREBP) and sterol regulatory element-binding protein-1c (SREBP-1c), which downregulated the expression of lipogenic genes, thereby decreasing lipid biosynthesis. Furthermore, AMPKα inactivation decreased the gene and protein expression levels of peroxisome proliferator-activated receptor-α (PPARα), which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation. In addition, insulin decreased the very low density lipoprotein (VLDL) assembly. Consequently, triglyceride content was significantly increased in insulin treated hepatocytes. Activation of AMPKα induced by AICAR could reverse the effect of insulin on PPARα, SREBP-1c, and ChREBP, thereby decreasing triglyceride content. These results indicate that insulin inhibits the AMPKα signaling pathway to increase lipid synthesis and decrease lipid oxidation and VLDL assembly in cow hepatocytes, thereby inducing TG accumulation. This mechanism could partly explain the causal relationship between hepatic fat accumulation and hyperinsulinemia in dairy cows with type II ketosis.

  4. Bioavailability of Isothiocyanates From Broccoli Sprouts in Protein, Lipid, and Fiber Gels

    OpenAIRE

    Oliviero, Teresa; Lamers, Simone; Capuano, Edoardo; Dekker, Matthijs; Verkerk, Ruud

    2018-01-01

    Scope: Optimization of bioavailability of dietary bioactive health-beneficial compounds is as important as increasing their concentration in foods. The aim of this study is to explore the change in bioavailability of isothiocyanates (ITCs) in broccoli sprouts incorporated in protein, fiber, and lipid gels. Methods and results: Five participants took part in a cross-over study and collected timed urine samples up to 24 h after consumption of proteins, dietary fibers, and lipid gels containing ...

  5. Methods for the preparation of protein-oligonucleotide-lipid constructs.

    Science.gov (United States)

    Takasaki, Jennifer; Raney, Sameersingh G; Chikh, Ghania; Sekirov, Laura; Brodsky, Irina; Tam, Ying; Ansell, Steven M

    2006-01-01

    A mixture of ionizable cationic lipids, steric barrier lipids, and colipids is used to encapsulate oligonucleotide DNA in lipidic particles called SALP. This material is under development as an adjuvant for vaccines. Previously we have shown that coupling the antigen directly to the surface of SALP can lead to enhanced immunological responses in vivo. Two different methods for preparing ovalbumin-SALP were assessed in this work. Originally the conjugates were prepared by treating SALP containing a maleimide-derivatized lipid with thiolated ovalbumin, a method we refer to as active coupling. This reaction was found to be difficult to control and generally resulted in low coupling efficiencies. The issues relating to this approach were characterized. We have recently developed alternative techniques based on first coupling ovalbumin to a micelle and then incubating the resultant product with SALP, methods we refer to as passive coupling. We have shown that this method allows accurate control of the levels of protein associated SALP and does not suffer from surface saturation effects seen with the active coupling method that places maximum limits on the amount of protein that can be coupled to the SALP surface. The products from the passive coupling protocol are shown to have activity comparable to those derived from the active coupling protocol in investigations of in vivo immune responses.

  6. Adiponectin activates the AMPK signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Science.gov (United States)

    Chen, Hui; Zhang, Liang; Li, Xinwei; Li, Xiaobing; Sun, Guoquan; Yuan, Xue; Lei, Liancheng; Liu, Juxiong; Yin, Liheng; Deng, Qinghua; Wang, Jianguo; Liu, Zhaoxi; Yang, Wentao; Wang, Zhe; Zhang, Hui; Liu, Guowen

    2013-11-01

    Adiponectin (Ad) plays a crucial role in hepatic lipid metabolism. However, the regulating mechanism of hepatic lipid metabolism by Ad in dairy cows is unclear. Hepatocytes from a newborn female calf were cultured in vitro and treated with different concentrations of Ad and BML-275 (an AMPKα inhibitor). The results showed that Ad significantly increased the expression of two Ad receptors. Furthermore, the phosphorylation and activity of AMPKα, as well as the expression levels and transcriptional activity of peroxisome proliferator activated receptor-α (PPARα) and its target genes involved in lipid oxidation, showed a corresponding trend of upregulation. However, the expression levels and transcriptional activity of sterol regulatory element binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP) decreased in a similar manner. When BML-275 was added, the p-AMPKα level as well as the expression and activity of PPARα and its target genes were significantly decreased. However, the expression levels of SREBP-1c, ChREBP and their target genes showed a trend of upregulation. Furthermore, the triglyceride (TG) content was significantly decreased in the Ad-treated groups. These results indicate that Ad activates the AMPK signaling pathway and mediates lipid metabolism in bovine hepatocytes cultured in vitro by promoting lipid oxidation, suppressing lipid synthesis and reducing hepatic lipid accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Effect of high contents of dietary animal-derived protein or carbohydrates on canine fecal microbiota

    NARCIS (Netherlands)

    Hang, I.; Rinttila, T.; Zentek, J.; Kettunen, A.; Alaja, S.; Apajalahti, J.A.; Harmoinen, J.; Vos, de W.M.; Spillmann, T.

    2012-01-01

    BACKGROUND: Considerable evidence suggests that food impacts both the gastro-intestinal (GI) function and the microbial ecology of the canine GI tract. The aim of this study was to evaluate the influence of high-carbohydrate (HC), high-protein (HP) and dry commercial (DC) diets on the canine colonic

  8. Modelling small-angle scattering data from complex protein-lipid systems

    DEFF Research Database (Denmark)

    Kynde, Søren Andreas Røssell

    This thesis consists of two parts. The rst part is divided into five chapters. Chapter 1 gives a general introduction to the bio-molecular systems that have been studied. These are membrane proteins and their lipid environments in the form of phospholipid nanodiscs. Membrane proteins...... the techniques very well suited for the study of the nanodisc system. Chapter 3 explains two different modelling approaches that can be used in the analysis of small-angle scattering data from lipid-protein complexes. These are the continuous approach where the system of interest is modelled as a few regular...... combine the bene ts of each of the methods and give unique structural information about relevant bio-molecular complexes in solution. Chapter 4 describes the work behind a proposal of a small-angle neutron scattering instrument for the European Spallation Source under construction in Lund. The instrument...

  9. Lipid-mediated protein functionalization of electrospun polycaprolactone fibers

    Directory of Open Access Journals (Sweden)

    C. Cohn

    2016-05-01

    Full Text Available In this study, electrospun polycaprolactone (PCL fibers are plasma-treated and chemically conjugated with cholesteryl succinyl silane (CSS. In addition to Raman spectroscopy, an immobilization study of DiO as a fluorescent probe of lipid membranes provides evidence supporting the CSS coating of plasma-treated PCL fibers. Further, anti-CD20 antibodies are used as a model protein to evaluate the potential of lipid-mediated protein immobilization as a mechanism to functionalize the CSS-PCL fiber scaffolds. Upon anti-CD20 functionalization, the CSS-PCL fiber scaffolds capture Granta-22 cells 2.4 times more than the PCL control does, although the two fiber scaffolds immobilize a comparable amount of anti-CD20. Taken together, results from the present study demonstrate that the CSS coating and CSS-mediated antibody immobilization offers an appealing strategy to functionalize electrospun synthetic polymer fibers and confer cell-specific functions on the fiber scaffolds, which can be mechanically robust but often lack biological functions.

  10. Chronic Nosema ceranae infection inflicts comprehensive and persistent immunosuppression and accelerated lipid loss in host Apis mellifera honey bees.

    Science.gov (United States)

    Li, Wenfeng; Chen, Yanping; Cook, Steven C

    2018-05-01

    Nosema ceranae is an intracellular microsporidian parasite of the Asian honey bee Apis cerana and the European honey bee Apis mellifera. Until relatively recently, A. mellifera honey bees were naïve to N. ceranae infection. Symptoms of nosemosis, or Nosema disease, in the infected hosts include immunosuppression, damage to gut epithelium, nutrient and energetic stress, precocious foraging and reduced longevity of infected bees. Links remain unclear between immunosuppression, the symptoms of nutrient and energetic stress, and precocious foraging behavior of hosts. To clarify physiological connections, we inoculated newly emerged A. mellifera adult workers with N. ceranae spores, and over 21 days post inoculation (21 days pi), gauged infection intensity and quantified expression of genes representing two innate immune pathways, Toll and Imd. Additionally, we measured each host's whole-body protein, lipids, carbohydrates and quantified respirometric and activity levels. Results show sustained suppression of genes of both humorally regulated immune response pathways after 6 days pi. At 7 days pi, elevated protein levels of infected bees may reflect synthesis of antimicrobial peptides from an initial immune response, but the lack of protein gain compared with uninfected bees at 14 days pi may represent low de novo protein synthesis. Carbohydrate data do not indicate that hosts experience severe metabolic stress related to this nutrient. At 14 days pi infected honey bees show high respirometric and activity levels, and corresponding lipid loss, suggesting lipids may be used as fuel for increased metabolic demands resulting from infection. Accelerated lipid loss during nurse honey bee behavioral development can have cascading effects on downstream physiology that may lead to precocious foraging, which is a major factor driving colony collapse. Published by Elsevier Ltd.

  11. Common Prairie feeds with different soluble and insoluble fractions used for CPM diet formulation in dairy cattle: impact of carbohydrate-protein matrix structure on protein and other primary nutrient digestion.

    Science.gov (United States)

    Peng, Quanhui; Wang, Zhisheng; Zhang, Xuewei; Yu, Peiqiang

    2014-01-01

    An experiment was conducted to investigate the relationship of carbohydrates molecular spectral characteristics to rumen degradability of primary nutrients in Prairie feeds in dairy cattle. In total, 12 different types of feeds were selected, each type of feed was from three different source with total 37 samples. Six types of them were energy-sourced feeds and the others were protein-sourced feeds. The carbohydrates molecular spectral intensity of various functional groups were collected using Fourier transform infrared attenuated total reflectance (ATR-FT/IR) spectroscopy. In the in situ study, the results showed that the rumen digestibility and digestible fractions of primary nutrients (DM, OM, NCP, and CP) were significantly different (P<0.05) among the feeds. The spectral bands features were significantly different (P<0.05) among the feeds. Spectral intensities of A_Cell, H_1415 and H_1370 were weakly positively correlated with in situ rumen digestibility and digestible fractions of DM, OM and NCP. Spectral intensities of H_1150, H_1015, A_1, and A_3 were weakly negatively associated with in situ rumen degradation of CP. Spectral intensities of A_1240 and H_1240, mainly associated with cellulosic compounds, were correlated with rumen CP degradation. The multiple regression analysis demonstrated that the spectral intensities of A_3 and H_1415 played the most important role and could be used as a potential tool to predict rumen protein degradation of feeds in dairy cattle. In conclusion, this study showed that the carbohydrates as a whole have an effect on protein rumen degradation, rather than cellulose alone, indicating carbohydrate-protein matrix structure impact protein utilization in dairy cattle. The non-invasive molecular spectral technique (ATR-FT/IR) could be used as a rapid potential tool to predict rumen protein degradation of feedstuffs by using molecular spectral bands intensities in carbohydrate fingerprint region. Copyright © 2013 Elsevier B

  12. A Model of Oxidative Stress Management: Moderation of Carbohydrate Metabolizing Enzymes in SOD1-Null Drosophila melanogaster

    Science.gov (United States)

    Bernard, Kristine E.; Parkes, Tony L.; Merritt, Thomas J. S.

    2011-01-01

    The response to oxidative stress involves numerous genes and mutations in these genes often manifest in pleiotropic ways that presumably reflect perturbations in ROS-mediated physiology. The Drosophila melanogaster SOD1-null allele (cSODn108) is proposed to result in oxidative stress by preventing superoxide breakdown. In SOD1-null flies, oxidative stress management is thought to be reliant on the glutathione-dependent antioxidants that utilize NADPH to cycle between reduced and oxidized form. Previous studies suggest that SOD1-null Drosophila rely on lipid catabolism for energy rather than carbohydrate metabolism. We tested these connections by comparing the activity of carbohydrate metabolizing enzymes, lipid and triglyceride concentration, and steady state NADPH:NADP+ in SOD1-null and control transgenic rescue flies. We find a negative shift in the activity of carbohydrate metabolizing enzymes in SOD1-nulls and the NADP+-reducing enzymes were found to have significantly lower activity than the other enzymes assayed. Little evidence for the catabolism of lipids as preferential energy source was found, as the concentration of lipids and triglycerides were not significantly lower in SOD1-nulls compared with controls. Using a starvation assay to impact lipids and triglycerides, we found that lipids were indeed depleted in both genotypes when under starvation stress, suggesting that oxidative damage was not preventing the catabolism of lipids in SOD1-null flies. Remarkably, SOD1-nulls were also found to be relatively resistant to starvation. Age profiles of enzyme activity, triglyceride and lipid concentration indicates that the trends observed are consistent over the average lifespan of the SOD1-nulls. Based on our results, we propose a model of physiological response in which organisms under oxidative stress limit the production of ROS through the down-regulation of carbohydrate metabolism in order to moderate the products exiting the electron transport chain. PMID

  13. Effects of a high-protein/low carbohydrate versus a standard hypocaloric diet on adipocytokine levels and insulin resistance in obese patients along 9 months.

    Science.gov (United States)

    de Luis, Daniel Antonio; Izaola, Olatz; Aller, Rocio; de la Fuente, Beatriz; Bachiller, Rosario; Romero, Enrique

    2015-01-01

    Recent dietary trials and observational studies have focused on the effects of diet on health outcomes such as improvement in levels of surrogate biomarkers. The aim of our study was to examine the changes in weight, adipocytokines levels and insulin resistance after a high-protein/low carbohydrate hypocaloric diet vs. a standard hypocaloric diet during an intervention of 9 months. 331 obese subjects were randomly allocated to one of two diets for a period of 9 months. Diet HP (n=168) (high-protein hypocaloric diet) consisted in a diet of 1050 cal/day, 33% of carbohydrates, 33% of fats and 34% of proteins. Diet S (n=163) (standard protein hypocaloric diet) consisted in a diet of 1093 cal/day, 53% carbohydrates, 27%fats, and 20% proteins. With the diets HP and S, BMI, weight, fat mass, waist circumference, waist-to-hip ratio, systolic blood pressure, total cholesterol, LDL-cholesterol, insulin and HOMA decreased. The decrease at 9 months of (BMI: -2.6±1.3kg/m(2) vs. -2.1±1.2kg/m(2):pdiet HP than Diet S. With both diets, leptin levels decreased. A high-protein/low carbohydrate hypocaloric diet shows a higher weight loss, insulin and HOMA-R decreased after 9 months than a standard hypocaloric diet. The improvement in adipokine levels was similar with both diets. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Protein and lipid oxidation affect the viscoelasticity of whey protein layers at the oil-water interface

    NARCIS (Netherlands)

    Berton-Carabin, Claire C.; Schroder, Anja; Rovalino-Cordova, Ana; Schroën, Karin; Sagis, Leonard

    2016-01-01

    Protein and lipid oxidation are prevailing issues that negatively affect the nutritional and sensory quality of food emulsions. It is probable that such oxidative modifications affect the functional properties of proteins, and in particular their ability to form densely packed, interconnected

  15. The effects of whey protein with or without carbohydrates on resistance training adaptations

    OpenAIRE

    Hulmi, Juha; Laakso, Mia; Mero, Antti; Häkkinen, Keijo; Ahtiainen, Juha; Peltonen, Heikki

    2015-01-01

    Background: Nutrition intake in the context of a resistance training (RT) bout may affect body composition and muscle strength. However, the individual and combined effects of whey protein and carbohydrates on long-term resistance training adaptations are poorly understood. Methods: A four-week preparatory RT period was conducted in previously untrained males to standardize the training background of the subjects. Thereafter, the subjects were randomized into three groups: 30 g of...

  16. A Mathematical Model of Neutral Lipid Content in terms of Initial Nitrogen Concentration and Validation in Coelastrum sp. HA-1 and Application in Chlorella sorokiniana

    Directory of Open Access Journals (Sweden)

    Zhenhua Yang

    2017-01-01

    Full Text Available Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana.

  17. A Mathematical Model of Neutral Lipid Content in terms of Initial Nitrogen Concentration and Validation in Coelastrum sp. HA-1 and Application in Chlorella sorokiniana

    Science.gov (United States)

    Zhao, Yue; Liu, Zhiyong; Liu, Chenfeng; Hu, Zhipeng

    2017-01-01

    Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana. PMID:28194424

  18. Systemic Glucose Level Changes with a Carbohydrate-Restricted and Higher Protein Diet Combined with Exercise

    Science.gov (United States)

    Bowden, Rodney G.; Lanning, Beth A.; Doyle, Eva I.; Slonaker, Becky; Johnston, Holly M.; Scanes, Georgene

    2007-01-01

    Objective: The authors' purpose in this study was to compare the effects of macronutrient intake on systemic glucose levels in previously sedentary participants who followed 1 of 4 diets that were either higher protein or high carbohydrate, while initiating an exercise program. Participants and Methods: The authors randomly assigned 94 sedentary…

  19. Monoclonal antibody-assisted structure-function analysis of the carbohydrate recognition domain of surfactant protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L; White, Mitchell R; Rynkiewicz, Michael

    2010-01-01

    Surfactant protein D (SP-D) plays important roles in host defense against a variety of pathogens including influenza A virus (IAV). Ligand binding by SP-D is mediated by the trimeric neck and carbohydrate recognition domain (NCRD). We used monoclonal antibodies (mAbs) against human SP-D and a panel...

  20. Oxidation of DNA, proteins and lipids by DOPA, protein-bound DOPA, and related catechol(amine)s

    DEFF Research Database (Denmark)

    Pattison, David I; Dean, Roger T; Davies, Michael Jonathan

    2002-01-01

    Incubation of free 3,4-dihydroxyphenylalanine (DOPA), protein-bound DOPA (PB-DOPA) and related catechols with DNA, proteins and lipids has been shown to result in oxidative damage to the target molecule. This article reviews these reactions with particular emphasis on those that occur in the pres......Incubation of free 3,4-dihydroxyphenylalanine (DOPA), protein-bound DOPA (PB-DOPA) and related catechols with DNA, proteins and lipids has been shown to result in oxidative damage to the target molecule. This article reviews these reactions with particular emphasis on those that occur...... in the presence of molecular O(2) and redox-active metal ions (e.g. Fe(3+), Cu(2+), Cr(6+)), which are known to increase the rate of DOPA oxidation. The majority of oxidative damage appears to be mediated by reactive oxygen species (ROS) such as superoxide and HO(.) radicals, though other DOPA oxidation products...

  1. Carbohydrates Alone or Mixing With Beef or Whey Protein Promote Similar Training Outcomes in Resistance Training Males: A Double-Blind, Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Naclerio, Fernando; Seijo-Bujia, Marco; Larumbe-Zabala, Eneko; Earnest, Conrad P

    2017-10-01

    Beef powder is a new high-quality protein source scarcely researched relative to exercise performance. The present study examined the impact of ingesting hydrolyzed beef protein, whey protein, and carbohydrate on strength performance (1RM), body composition (via plethysmography), limb circumferences and muscular thickness (via ultrasonography), following an 8-week resistance-training program. After being randomly assigned to one of the following groups: Beef, Whey, or Carbohydrate, twenty four recreationally physically active males (n = 8 per treatment) ingested 20 g of supplement, mixed with orange juice, once a day (immediately after workout or before breakfast). Post intervention changes were examined as percent change and 95% CIs. Beef (2.0%, CI, 0.2-2.38%) and Whey (1.4%, CI, 0.2-2.6%) but not Carbohydrate (0.0%, CI, -1.2-1.2%) increased fat-free mass. All groups increased vastus medialis thickness: Beef (11.1%, CI, 6.3-15.9%), Whey (12.1%, CI, 4.0, -20.2%), Carbohydrate (6.3%, CI, 1.9-10.6%). Beef (11.2%, CI, 5.9-16.5%) and Carbohydrate (4.5%, CI, 1.6-7.4%), but not Whey (1.1%, CI, -1.7-4.0%), increased biceps brachialis thickness, while only Beef increased arm (4.8%, CI, 2.3-7.3%) and thigh (11.2%, 95%CI 0.4-5.9%) circumferences. Although the three groups significantly improved 1RM Squat (Beef 21.6%, CI 5.5-37.7%; Whey 14.6%, CI, 5.9-23.3%; Carbohydrate 19.6%, CI, 2.2-37.1%), for the 1RM bench press the improvements were significant for Beef (15.8% CI 7.0-24.7%) and Whey (5.8%, CI, 1.7-9.8%) but not for carbohydrate (11.4%, CI, -0.9-23.6%). Protein-carbohydrate supplementation supports fat-free mass accretion and lower body hypertrophy. Hydrolyzed beef promotes upper body hypertrophy along with similar performance outcomes as observed when supplementing with whey isolate or maltodextrin.

  2. Lipid transfer proteins do their thing anchored at membrane contact sites… but what is their thing?

    Science.gov (United States)

    Wong, Louise H; Levine, Tim P

    2016-04-15

    Membrane contact sites are structures where two organelles come close together to regulate flow of material and information between them. One type of inter-organelle communication is lipid exchange, which must occur for membrane maintenance and in response to environmental and cellular stimuli. Soluble lipid transfer proteins have been extensively studied, but additional families of transfer proteins have been identified that are anchored into membranes by transmembrane helices so that they cannot diffuse through the cytosol to deliver lipids. If such proteins target membrane contact sites they may be major players in lipid metabolism. The eukaryotic family of so-called Lipid transfer proteins Anchored at Membrane contact sites (LAMs) all contain both a sterol-specific lipid transfer domain in the StARkin superfamily (related to StART/Bet_v1), and one or more transmembrane helices anchoring them in the endoplasmic reticulum (ER), making them interesting subjects for study in relation to sterol metabolism. They target a variety of membrane contact sites, including newly described contacts between organelles that were already known to make contact by other means. Lam1-4p target punctate ER-plasma membrane contacts. Lam5p and Lam6p target multiple contacts including a new category: vacuolar non-NVJ cytoplasmic ER (VancE) contacts. These developments confirm previous observations on tubular lipid-binding proteins (TULIPs) that established the importance of membrane anchored proteins for lipid traffic. However, the question remaining to be solved is the most difficult of all: are LAMs transporters, or alternately are they regulators that affect traffic more indirectly? © 2016 Authors; published by Portland Press Limited.

  3. A High-Fat Diet Differentially Affects the Gut Metabolism and Blood Lipids of Rats Depending on the Type of Dietary Fat and Carbohydrate

    OpenAIRE

    Jurgoński, Adam; Juśkiewicz, Jerzy; Zduńczyk, Zenon

    2014-01-01

    The aim of this model study was to investigate how selected gut functions and serum lipid profile in rats on high-fat diets differed according to the type of fat (saturated vs. unsaturated) and carbohydrate (simple vs. complex). The experiment was conducted using 32 male Wistar rats distributed into 4 groups of 8 animals each. For 4 weeks, the animals were fed group-specific diets that were either rich in lard or soybean oil (16% of the diet) as the source of saturated or unsaturated fatty ac...

  4. Lipids and bariatric procedures Part 2 of 2: scientific statement from the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and Obesity Medicine Association (OMA).

    Science.gov (United States)

    Bays, Harold; Kothari, Shanu N; Azagury, Dan E; Morton, John M; Nguyen, Ninh T; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures generally improve dyslipidemia, sometimes substantially so. Bariatric procedures also improve other major cardiovascular risk factors. This 2-part Scientific Statement examines the lipid effects of bariatric procedures and reflects contributions from authors representing the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and the Obesity Medicine Association (OMA). Part 1 was published in the Journal of Clinical Lipidology, and reviewed the impact of bariatric procedures upon adipose tissue endocrine and immune factors, adipose tissue lipid metabolism, as well as the lipid effects of bariatric procedures relative to bile acids and intestinal microbiota. This Part 2 reviews: (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease (CVD) risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on CVD; and finally, (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies, that may occur after bariatric procedures. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  5. Effects of protein in combination with carbohydrate supplements on acute or repeat endurance exercise performance: a systematic review.

    Science.gov (United States)

    McLellan, Tom M; Pasiakos, Stefan M; Lieberman, Harris R

    2014-04-01

    Protein supplements are consumed frequently by athletes and recreationally active adults for various reasons, including improved exercise performance and recovery after exercise. Yet, far too often, the decision to purchase and consume protein supplements is based on marketing claims rather than available evidence-based research. The purpose of this review was to provide a systematic and comprehensive analysis of the literature that tested the hypothesis that protein supplements, when combined with carbohydrate, directly enhance endurance performance by sparing muscle glycogen during exercise and increasing the rate of glycogen restoration during recovery. The analysis was used to create evidence statements based on an accepted strength of recommendation taxonomy. English language articles were searched with PubMed and Google Scholar using protein and supplements together with performance, exercise, competition, and muscle, alone or in combination as keywords. Additional articles were retrieved from reference lists found in these papers. Inclusion criteria specified recruiting healthy active adults less than 50 years of age and evaluating the effects of protein supplements in combination with carbohydrate on endurance performance metrics such as time-to-exhaustion, time-trial, or total power output during sprint intervals. The literature search identified 28 articles, of which 26 incorporated test metrics that permitted exclusive categorization into one of the following sections: ingestion during an acute bout of exercise (n = 11) and ingestion during and after exercise to affect subsequent endurance performance (n = 15). The remaining two articles contained performance metrics that spanned both categories. All papers were read in detail and searched for experimental design confounders such as energy content of the supplements, dietary control, use of trained or untrained participants, number of subjects recruited, direct measures of muscle glycogen utilization and

  6. Molecular Simulations of Sequence-Specific Association of Transmembrane Proteins in Lipid Bilayers

    Science.gov (United States)

    Doxastakis, Manolis; Prakash, Anupam; Janosi, Lorant

    2011-03-01

    Association of membrane proteins is central in material and information flow across the cellular membranes. Amino-acid sequence and the membrane environment are two critical factors controlling association, however, quantitative knowledge on such contributions is limited. In this work, we study the dimerization of helices in lipid bilayers using extensive parallel Monte Carlo simulations with recently developed algorithms. The dimerization of Glycophorin A is examined employing a coarse-grain model that retains a level of amino-acid specificity, in three different phospholipid bilayers. Association is driven by a balance of protein-protein and lipid-induced interactions with the latter playing a major role at short separations. Following a different approach, the effect of amino-acid sequence is studied using the four transmembrane domains of the epidermal growth factor receptor family in identical lipid environments. Detailed characterization of dimer formation and estimates of the free energy of association reveal that these helices present significant affinity to self-associate with certain dimers forming non-specific interfaces.

  7. Dietary carbohydrate deprivation increases 24-hour nitrogen excretion without affecting postabsorptive hepatic or whole body protein metabolism in healthy men

    NARCIS (Netherlands)

    Bisschop, PH; de Sain-van der Velden, MGM; Stellaard, F; Kuipers, F; Meijer, AJ; Sauerwein, HP; Romijn, JA

    Because insulin is an important regulator of protein metabolism, we hypothesized that physiological modulation of insulin secretion, by means of extreme variations in dietary carbohydrate content, affects postabsorptive protein metabolism. Therefore, we studied the effects of three isocaloric diets

  8. Dietary carbohydrate deprivation increases 24-hour nitrogen excretion without affecting postabsorptive hepatic or whole body protein metabolism in healthy men

    NARCIS (Netherlands)

    Bisschop, P. H.; de Sain-van der Velden, M. G. M.; Stellaard, F.; Kuipers, F.; Meijer, A. J.; Sauerwein, H. P.; Romijn, J. A.

    2003-01-01

    Because insulin is an important regulator of protein metabolism, we hypothesized that physiological modulation of insulin secretion, by means of extreme variations in dietary carbohydrate content, affects postabsorptive protein metabolism. Therefore, we studied the effects of three isocaloric diets

  9. Low-protein diet induces, whereas high-protein diet reduces hepatic FGF21 production in mice, but glucose and not amino acids up-regulate FGF21 in cultured hepatocytes.

    Science.gov (United States)

    Chalvon-Demersay, Tristan; Even, Patrick C; Tomé, Daniel; Chaumontet, Catherine; Piedcoq, Julien; Gaudichon, Claire; Azzout-Marniche, Dalila

    2016-10-01

    Fibroblast growth factor 21 (FGF21) is a polypeptide secreted by the liver and involved in several metabolic processes such as thermogenesis and lipid oxidation. The nutritional mechanisms controlling FGF21 production are poorly understood. This study aimed to investigate how dietary carbohydrates and proteins impact FGF21 production and how in turn, FGF21 is involved in the metabolic adaptation to changes in the carbohydrate and protein contents of the diet. For that purpose, we fed 25 male C57BL/6 mice diets composed of different protein and carbohydrate contents (normal-protein and carbohydrate diet (N=9, NPNC), low-protein high-carbohydrate diet (N=8, LPHC), high-protein low-carbohydrate diet (N=8, HPLC) for 3 weeks. We measured liver Fgf21 gene expression, synthesis and secretion as well as different parameters related to energy and glucose metabolism. We also investigated the direct role of amino acids and glucose in the control of Fgf21 gene expression in hepatocyte primary cultures (n=6). In vivo, FGF21 responds acutely to LPHC intake whereas under an HPLC diet, plasma FGF21 circulating levels are low in the fasted and refed states. In hepatocytes, Fgf21 expression was controlled by glucose but not amino acids. Both diets increased the thermic effect of feeding (TEF) and ketogenesis was increased in fasted HPLC mice. The results presented suggest that dietary glucose, rather than amino acids, directly controls FGF21 secretion, and that FGF21 may be involved in the increased TEF response to LPHC. The effects of the HPLC diet on ketogenesis and TEF are probably controlled by other metabolic pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. [Cloning, mutagenesis and symbiotic phenotype of three lipid transfer protein encoding genes from Mesorhizobium huakuii 7653R].

    Science.gov (United States)

    Li, Yanan; Zeng, Xiaobo; Zhou, Xuejuan; Li, Youguo

    2016-12-04

    Lipid transfer protein superfamily is involved in lipid transport and metabolism. This study aimed to construct mutants of three lipid transfer protein encoding genes in Mesorhizobium huakuii 7653R, and to study the phenotypes and function of mutations during symbiosis with Astragalus sinicus. We used bioinformatics to predict structure characteristics and biological functions of lipid transfer proteins, and conducted semi-quantitative and fluorescent quantitative real-time PCR to analyze the expression levels of target genes in free-living and symbiotic conditions. Using pK19mob insertion mutagenesis to construct mutants, we carried out pot plant experiments to observe symbiotic phenotypes. MCHK-5577, MCHK-2172 and MCHK-2779 genes encoding proteins belonged to START/RHO alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) superfamily, involved in lipid transport or metabolism, and were identical to M. loti at 95% level. Gene relative transcription level of the three genes all increased compared to free-living condition. We obtained three mutants. Compared with wild-type 7653R, above-ground biomass of plants and nodulenitrogenase activity induced by the three mutants significantly decreased. Results indicated that lipid transfer protein encoding genes of Mesorhizobium huakuii 7653R may play important roles in symbiotic nitrogen fixation, and the mutations significantly affected the symbiotic phenotypes. The present work provided a basis to study further symbiotic function mechanism associated with lipid transfer proteins from rhizobia.

  11. Apparent carbohydrate and lipid digestibility of feeds for whiteleg shrimp, Litopenaeus vannamei (Decapoda: Penaeidae, cultivated at different salinities

    Directory of Open Access Journals (Sweden)

    Milena Gucic

    2013-09-01

    Full Text Available Whiteleg shrimp, Litopenaeus vannamei is one of the most commercially farmed species worldwide because of its fast growth, good survival rate at high farming densities, and osmoregulatory capacity, which makes it an excellent candidate for cultures at different salinities. The knowledge of shrimp nutritional requirements is critical in the formulation of diets to allow optimal growth at different environmental conditions and development stages. The effect of salinity on apparent digestibility of shrimp feed is not well known, and this information is required in shrimp diet formulation. For this purpose, the apparent digestibility coefficients of carbohydrates (ACD and lipids (ALD were determined for juvenile whiteleg shrimps under controlled culture conditions. We evaluated the apparent digestibility of six commercial (D1:37CP, D2:38CP, D3:39CP, D4:34CP, D5:35CP, and D6:37CP and two experimental (E1:33CP and E2:33CP diets for juvenile whiteleg shrimp cultivated at three salinities (5, 35 and 50psu in 60L aquariums. ACD and ALD were determined in vivo using chromic oxide as an inert marker. Our results showed that ALD in most cases was over 80%, independent of salinity, except the E1:33CPdiet which had 74.0% at 50psu. Diet D3:39CP showed the highest ALD coefficient (90.1 and 90.6% at 5 and 35psu, respectively. For ACD, differences were detected between commercial and experimental diets at every salinity level, although salinity effect on ACD was not significant. Diet D4:34CP had the highest coefficient (92.4% at 5psu, and E2:33CP at 35 and 50psu (97.3 and 94.7%. This study demonstrated that there is no significant effect of saline variations on carbohydrate and lipid digestibility by juvenile whiteleg shrimp, under the experimental conditions. Rev. Biol. Trop. 61 (3: 1201-1213. Epub 2013 September 01.

  12. A Low-Protein, High-Carbohydrate Diet Stimulates Thermogenesis in the Brown Adipose Tissue of Rats via ATF-2.

    Science.gov (United States)

    de França, Suélem A; dos Santos, Maísa P; Przygodda, Franciele; Garófalo, Maria Antonieta R; Kettelhut, Isis C; Magalhães, Diego A; Bezerra, Kalinne S; Colodel, Edson M; Flouris, Andreas D; Andrade, Cláudia M B; Kawashita, Nair H

    2016-03-01

    The aim of this study was to evaluate thermogenesis in the interscapular brown adipose tissue (IBAT) of rats submitted to low-protein, high-carbohydrate (LPHC) diet and the involvement of adrenergic stimulation in this process. Male rats (~100 g) were submitted to LPHC (6%-protein; 74%-carbohydrate) or control (C; 17%-protein; 63%-carbohydrate) isocaloric diets for 15 days. The IBAT temperature was evaluated in the rats before and after the administration of noradrenaline (NA) (20 µg 100 g b w(-1) min(-1)). The expression levels of uncoupling protein 1 (UCP1) and other proteins involved in the regulation of UCP1 expression were determined by Western blot (Student's t test, P ≤ 0.05). The LPHC diet promoted a 1.1 °C increase in the basal temperature of IBAT when compared with the basal temperature in the IBAT of the C group. NA administration promoted a 0.3 °C increase in basal temperature in the IBAT of the C rats and a 0.5 °C increase in the IBAT of the LPHC group. The level of UCP1 increased 60% in the IBAT of LPHC-fed rats, and among the proteins involved in its expression, such as β3-AR and α1-AR, there was a 40% increase in the levels of p38-MAPK and a 30% decrease in CREB when compared to the C rats. The higher sympathetic flux to IBAT, which is a consequence of the administration of the LPHC diet to rats, activates thermogenesis and increases the expression of UCP1 in the tissue. Our results suggest that the increase in UCP1 content may occur via p38 MAPK and ATF2.

  13. A low-protein, high-carbohydrate diet increases browning in perirenal adipose tissue but not in inguinal adipose tissue.

    Science.gov (United States)

    Pereira, Mayara P; Ferreira, Laís A A; da Silva, Flávia H S; Christoffolete, Marcelo A; Metsios, George S; Chaves, Valéria E; de França, Suélem A; Damazo, Amílcar S; Flouris, Andreas D; Kawashita, Nair H

    2017-10-01

    The aim of this study was to evaluate the browning and origin of fatty acids (FAs) in the maintenance of triacylglycerol (TG) storage and/or as fuel for thermogenesis in perirenal adipose tissue (periWAT) and inguinal adipose tissue (ingWAT) of rats fed a low-protein, high-carbohydrate (LPHC) diet. LPHC (6% protein, 74% carbohydrate) or control (C; 17% protein, 63% carbohydrate) diets were administered to rats for 15 d. The tissues were stained with hematoxylin and eosin for histologic analysis. The content of uncoupling protein 1 (UCP1) was determined by immunofluorescence. Levels of T-box transcription factor (TBX1), PR domain containing 16 (PRDM16), adipose triacylglycerol lipase (ATGL), hormone-sensitive lipase, lipoprotein lipase (LPL), glycerokinase, phosphoenolpyruvate carboxykinase (PEPCK), glucose transporter 4, β 3 -adrenergic receptor (AR), β 1 -AR, protein kinase A (PKA), adenosine-monophosphate-activated protein kinase (AMPK), and phospho-AMPK were determined by immunoblotting. Serum fibroblast growth factor 21 (FGF21) was measured using a commercial kit (Student's t tests, P diet increased FGF21 levels by 150-fold. The presence of multilocular adipocytes, combined with the increased contents of UCP1, TBX1, and PRDM16 in periWAT of LPHC-fed rats, suggested the occurrence of browning. The contents of β 1 -AR and LPL were increased in the periWAT. The ingWAT showed higher ATGL and PEPCK levels, phospho-AMPK/AMPK ratio, and reduced β 3 -AR and PKA levels. These findings suggest that browning occurred only in the periWAT and that higher utilization of FAs from blood lipoproteins acted as fuel for thermogenesis. Increased glycerol 3-phosphate generation by glyceroneogenesis increased FAs reesterification from lipolysis, explaining the increased TG storage in the ingWAT. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress

    Directory of Open Access Journals (Sweden)

    Eva Griesser

    2017-04-01

    Full Text Available Reactive oxygen and nitrogen species (ROS/RNS play an important role in the regulation of cardiac function. Increase in ROS/RNS concentration results in lipid and protein oxidation and is often associated with onset and/or progression of many cardiovascular disorders. However, interplay between lipid and protein modifications has not been simultaneously studied in detail so far. Biomolecule carbonylation is one of the most common biomarkers of oxidative stress. Using a dynamic model of nitroxidative stress we demonstrated rapid changes in biomolecule carbonylation in rat cardiomyocytes. Levels of carbonylated species increased as early as 15 min upon treatment with the peroxynitrite donor, 3-morpholinosydnonimine (SIN-1, and decreased to values close to control after 16 h. Total (lipids+proteins vs. protein-specific carbonylation showed different dynamics, with a significant increase in protein-bound carbonyls at later time points. Treatment with SIN-1 in combination with inhibitors of proteasomal and autophagy/lysosomal degradation pathways allowed confirmation of a significant role of the proteasome in the degradation of carbonylated proteins, whereas lipid carbonylation increased in the presence of autophagy/lysosomal inhibitors. Electrophilic aldehydes and ketones formed by lipid peroxidation were identified and relatively quantified using LC-MS/MS. Molecular identity of reactive species was used for data-driven analysis of their protein targets. Combination of different enrichment strategies with LC-MS/MS analysis allowed identification of more than 167 unique proteins with 332 sites modified by electrophilic lipid peroxidation products. Gene ontology analysis of modified proteins demonstrated enrichment of several functional categories including proteins involved in cytoskeleton, extracellular matrix, ion channels and their regulation. Using calcium mobilization assays, the effect of nitroxidative stress on the activity of several ion

  15. Investigation of protein distribution in solid lipid particles and its impact on protein release using coherent anti-Stokes Raman scattering microscopy

    DEFF Research Database (Denmark)

    Christophersen, Philip C.; Birch, Ditlev; Saarinen, Jukka

    2015-01-01

    The aim of this study was to gain new insights into protein distribution in solid lipid microparticles (SLMs) and subsequent release mechanisms using a novel label-free chemical imaging method, coherent anti-Stokes Raman scattering (CARS) microscopy. Lysozyme-loaded SLMs were prepared using...... in the solid lipid matrix, which required full lipolysis of the entire matrix to release lysozyme completely. Therefore, SLMs with lysozyme incorporated in an aqueous solution released lysozyme much faster than with lysozyme incorporated as a solid. In conclusion, CARS microscopy was an efficient and non......-destructive method for elucidating the distribution of lysozyme in SLMs. The interpretation of protein distribution and release during lipolysis enabled elucidation of protein release mechanisms. In future, CARS microscopy analysis could facilitate development of a wide range of protein-lipid matrices with tailor...

  16. A high-fat diet differentially affects the gut metabolism and blood lipids of rats depending on the type of dietary fat and carbohydrate.

    Science.gov (United States)

    Jurgoński, Adam; Juśkiewicz, Jerzy; Zduńczyk, Zenon

    2014-02-03

    The aim of this model study was to investigate how selected gut functions and serum lipid profile in rats on high-fat diets differed according to the type of fat (saturated vs. unsaturated) and carbohydrate (simple vs. complex). The experiment was conducted using 32 male Wistar rats distributed into 4 groups of 8 animals each. For 4 weeks, the animals were fed group-specific diets that were either rich in lard or soybean oil (16% of the diet) as the source of saturated or unsaturated fatty acids, respectively; further, each lard- and soybean oil-rich diet contained either fructose or corn starch (45.3% of the diet) as the source of simple or complex carbohydrates, respectively. Both dietary factors contributed to changes in the caecal short-chain fatty acid concentrations, especially to the butyrate concentration, which was higher in rats fed lard- and corn starch-rich diets compared to soybean oil- and fructose-rich diets, respectively. The lowest butyrate concentration was observed in rats fed the soybean oil- and fructose-rich diet. On the other hand, the lard- and fructose-rich diet vs. the other dietary combinations significantly increased serum total cholesterol concentration, to more than two times serum triglyceride concentration and to more than five times the atherogenic index. In conclusion, a high-fat diet rich in fructose can unfavorably affect gut metabolism when unsaturated fats are predominant in the diet or the blood lipids when a diet is rich in saturated fats.

  17. A High-Fat Diet Differentially Affects the Gut Metabolism and Blood Lipids of Rats Depending on the Type of Dietary Fat and Carbohydrate

    Directory of Open Access Journals (Sweden)

    Adam Jurgoński

    2014-02-01

    Full Text Available The aim of this model study was to investigate how selected gut functions and serum lipid profile in rats on high-fat diets differed according to the type of fat (saturated vs. unsaturated and carbohydrate (simple vs. complex. The experiment was conducted using 32 male Wistar rats distributed into 4 groups of 8 animals each. For 4 weeks, the animals were fed group-specific diets that were either rich in lard or soybean oil (16% of the diet as the source of saturated or unsaturated fatty acids, respectively; further, each lard- and soybean oil-rich diet contained either fructose or corn starch (45.3% of the diet as the source of simple or complex carbohydrates, respectively. Both dietary factors contributed to changes in the caecal short-chain fatty acid concentrations, especially to the butyrate concentration, which was higher in rats fed lard- and corn starch-rich diets compared to soybean oil- and fructose-rich diets, respectively. The lowest butyrate concentration was observed in rats fed the soybean oil- and fructose-rich diet. On the other hand, the lard- and fructose-rich diet vs. the other dietary combinations significantly increased serum total cholesterol concentration, to more than two times serum triglyceride concentration and to more than five times the atherogenic index. In conclusion, a high-fat diet rich in fructose can unfavorably affect gut metabolism when unsaturated fats are predominant in the diet or the blood lipids when a diet is rich in saturated fats.

  18. Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling.

    Science.gov (United States)

    Zhao, Jian

    2015-04-01

    Phospholipase Ds (PLDs) and PLD-derived phosphatidic acids (PAs) play vital roles in plant hormonal and environmental responses and various cellular dynamics. Recent studies have further expanded the functions of PLDs and PAs into plant-microbe interaction. The molecular diversities and redundant functions make PLD-PA an important signalling complex regulating lipid metabolism, cytoskeleton dynamics, vesicle trafficking, and hormonal signalling in plant defence through protein-protein and protein-lipid interactions or hormone signalling. Different PLD-PA signalling complexes and their targets have emerged as fast-growing research topics for understanding their numerous but not yet established roles in modifying pathogen perception, signal transduction, and downstream defence responses. Meanwhile, advanced lipidomics tools have allowed researchers to reveal further the mechanisms of PLD-PA signalling complexes in regulating lipid metabolism and signalling, and their impacts on jasmonic acid/oxylipins, salicylic acid, and other hormone signalling pathways that essentially mediate plant defence responses. This review attempts to summarize the progress made in spatial and temporal PLD/PA signalling as well as PLD/PA-mediated modification of plant defence. It presents an in-depth discussion on the functions and potential mechanisms of PLD-PA complexes in regulating actin filament/microtubule cytoskeleton, vesicle trafficking, and hormonal signalling, and in influencing lipid metabolism-derived metabolites as critical signalling components in plant defence responses. The discussion puts PLD-PA in a broader context in order to guide future research. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. The potential of a high protein-low carbohydrate diet to preserve intrahepatic triglyceride content in healthy humans.

    Science.gov (United States)

    Martens, Eveline A; Gatta-Cherifi, Blandine; Gonnissen, Hanne K; Westerterp-Plantenga, Margriet S

    2014-01-01

    Protein supplementation has been shown to reduce the increases in intrahepatic triglyceride (IHTG) content induced by acute hypercaloric high-fat and high-fructose diets in humans. To assess the effect of a 12-wk iso-energetic high protein-low carbohydrate (HPLC) diet compared with an iso-energetic high carbohydrate-low protein (HCLP) diet on IHTG content in healthy non-obese subjects, at a constant body weight. Seven men and nine women [mean ± SD age: 24 ± 5 y; BMI: 22.9 ± 2.1 kg/m2] were randomly allocated to a HPLC [30/35/35% of energy (En%) from protein/carbohydrate/fat] or a HCLP (5/60/35 En%) diet by stratification on sex, age and BMI. Dietary guidelines were prescribed based on individual daily energy requirements. IHTG content was measured by 1H-magnetic resonance spectroscopy before and after the dietary intervention. IHTG content changed in different directions with the HPLC (CH2H2O: 0.23 ± 0.17 to 0.20 ± 0.10; IHTG%: 0.25 ± 0.20% to 0.22 ± 0.11%) compared with the HCLP diet (CH2H2O: 0.34 ± 0.20 vs. 0.38 ± 0.21; IHTG%: 0.38 ± 0.22% vs. 0.43 ± 0.24%), which resulted in a lower IHTG content in the HPLC compared with the HCLP diet group after 12 weeks, which almost reached statistical significance (P = 0.055). A HPLC vs. a HCLP diet has the potential to preserve vs. enlarge IHTG content in healthy non-obese subjects at a constant body weight. Clinicaltrials.gov NCT01551238.

  20. The potential of a high protein-low carbohydrate diet to preserve intrahepatic triglyceride content in healthy humans.

    Directory of Open Access Journals (Sweden)

    Eveline A Martens

    Full Text Available Protein supplementation has been shown to reduce the increases in intrahepatic triglyceride (IHTG content induced by acute hypercaloric high-fat and high-fructose diets in humans.To assess the effect of a 12-wk iso-energetic high protein-low carbohydrate (HPLC diet compared with an iso-energetic high carbohydrate-low protein (HCLP diet on IHTG content in healthy non-obese subjects, at a constant body weight.Seven men and nine women [mean ± SD age: 24 ± 5 y; BMI: 22.9 ± 2.1 kg/m2] were randomly allocated to a HPLC [30/35/35% of energy (En% from protein/carbohydrate/fat] or a HCLP (5/60/35 En% diet by stratification on sex, age and BMI. Dietary guidelines were prescribed based on individual daily energy requirements. IHTG content was measured by 1H-magnetic resonance spectroscopy before and after the dietary intervention.IHTG content changed in different directions with the HPLC (CH2H2O: 0.23 ± 0.17 to 0.20 ± 0.10; IHTG%: 0.25 ± 0.20% to 0.22 ± 0.11% compared with the HCLP diet (CH2H2O: 0.34 ± 0.20 vs. 0.38 ± 0.21; IHTG%: 0.38 ± 0.22% vs. 0.43 ± 0.24%, which resulted in a lower IHTG content in the HPLC compared with the HCLP diet group after 12 weeks, which almost reached statistical significance (P = 0.055.A HPLC vs. a HCLP diet has the potential to preserve vs. enlarge IHTG content in healthy non-obese subjects at a constant body weight.Clinicaltrials.gov NCT01551238.

  1. Methodological issues in protein and lipidic expressions in brain tissue exposed to Co60 based on DESI/MALDI-MS

    International Nuclear Information System (INIS)

    Soares, Matheus F.; Campos, Tarcísio P.R.; Augusti, Rodinei; Eberlin, Marcos N.; Vendramini, Pedro H.

    2017-01-01

    The present paper attempts to present some issues in the methodology of identifying lipid and protein changes in brain tissue induced by radiation. The goal was to address the analysis of the methodology and to investigate the feasibility of the generation of lipid/protein profiles of irradiated brain tissue, in order to identify radioinduced changes. Lipids and proteins are biomolecules with diverse structures and functionalities that participate in important intracellular processes. Changes in the lipid and the tissue protein profiles may indicate a cellular response to an external stimulus as well as the emergence of neoplasms or neurodegenerative diseases such as Alzheimer's. DESI-MS is a convenient method for identifying lipids and their spatial distribution in tissue beyond analytical quantification. DESI-MS allows the creation of an image of several low lipid m/z classes. MALDI-MS has already been a method used in the study of macromolecules as structural, membrane, hormone, neuromediator and immunological peptides. Through a full-scan matrix scan, with a m/z spectrum between 500-1000 for lipids and with a mass spectrum of 1000-15000 Da for proteins, the molecular profile can be analyzed. Generated pixel shape 2D chemical image. The produced image allows to associate the tissue distribution of the lipids and proteins with their chemical profile identified, allowing the verification of the changes radioinduced. Radiation triggers intense oxidative stress by increasing reactive oxygen species (ROS) and free radicals, causing DNA damage with consequent alterations in proteomics and cellular lipid explaining such changes in the lipid and protein expressions. The cellular morphophysiological changes are responsible for both the clonogenic inhibition and the induction of the apoptotic process. The images's production was directly dependent on the rigorous execution of the methodological procedures. Innumerable interferences could impair the image

  2. Protein-membrane interaction: effect of myelin basic protein on the dynamics of oriented lipids

    Energy Technology Data Exchange (ETDEWEB)

    Natali, F.; Relini, A.; Gliozzi, A.; Rolandi, R.; Cavatorta, P.; Deriu, A.; Fasano, A.; Riccio, P

    2003-08-01

    We have studied the effect of physiological amounts of myelin basic protein (MBP) on pure dimyristoyl L-{alpha}-phosphatidic acid (DMPA) oriented membranes. The investigation has been carried out using several complementary experimental methods to provide a detailed characterization of the proteo-lipid complexes. In particular, taking advantage of the power of the quasi-elastic neutron scattering (QENS) technique as optimal probe in biology, a significant effect is suggested to be induced by MBP on the anisotropy of lipid dynamics across the liquid-gel phase transition. Thus, the enhancement of the spatially restricted, vertical translation motion of DMPA is suggested to be the main responsible for the increased contribution of the out of plane lipid dynamics observed at 340 K.

  3. Energy efficient bead milling of microalgae: Effect of bead size on disintegration and release of proteins and carbohydrates.

    Science.gov (United States)

    Postma, P R; Suarez-Garcia, E; Safi, C; Yonathan, K; Olivieri, G; Barbosa, M J; Wijffels, R H; Eppink, M H M

    2017-01-01

    The disintegration of three industry relevant algae (Chlorella vulgaris, Neochloris oleoabundans and Tetraselmis suecica) was studied in a lab scale bead mill at different bead sizes (0.3-1mm). Cell disintegration, proteins and carbohydrates released into the water phase followed a first order kinetics. The process is selective towards proteins over carbohydrates during early stages of milling. In general, smaller beads led to higher kinetic rates, with a minimum specific energy consumption of ⩽0.47kWhkg DW -1 for 0.3mm beads. After analysis of the stress parameters (stress number and stress intensity), it appears that optimal disintegration and energy usage for all strains occurs in the 0.3-0.4mm range. During the course of bead milling, the native structure of the marker protein Rubisco was retained, confirming the mildness of the disruption process. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. [Performance enhancement by carbohydrate intake during sport: effects of carbohydrates during and after high-intensity exercise].

    Science.gov (United States)

    Beelen, Milou; Cermak, Naomi M; van Loon, Luc J C

    2015-01-01

    Endogenous carbohydrate availability does not provide sufficient energy for prolonged moderate to high-intensity exercise. Carbohydrate ingestion during high-intensity exercise can therefore enhance performance.- For exercise lasting 1 to 2.5 hours, athletes are advised to ingest 30-60 g of carbohydrates per hour.- Well-trained endurance athletes competing for longer than 2.5 hours at high intensity can metabolise up to 90 g of carbohydrates per hour, provided that a mixture of glucose and fructose is ingested.- Athletes participating in intermittent or team sports are advised to follow the same strategies but the timing of carbohydrate intake depends on the type of sport.- If top performance is required again within 24 hours after strenuous exercise, the advice is to supplement endogenous carbohydrate supplies quickly within the first few hours post-exercise by ingesting large amounts of carbohydrate (1.2 g/kg/h) or a lower amount of carbohydrate (0.8 g/kg/h) with a small amount of protein (0.2-0.4 g/kg/h).

  5. Lipids and Protein Peroxidation in Children and Teenager Patients with Pulmonary Tuberculosis

    Directory of Open Access Journals (Sweden)

    Yu.V. Poliakova

    2015-09-01

    Full Text Available A review of literature about the study of lipid and protein peroxidation in children and teenagers with pulmonary tuberculosis nowadays was carried out. It was established that there is a great number works dedicated to the lipid peroxidation and antioxidant protective system in various pathological conditions of the respiratory system, including pulmonary tuberculosis in children and teenagers today. Oxidative modification proteins products are the earliest markers of oxidative stress in patients. There is no information on the oxidative modification of proteins in children and teenagers suffering from pulmonary tuberculosis in the literature. The study of oxidative modification of proteins will facilitate the development of more efficient new diagnosis methods and pathogenetic treatment of children and teenagers with pulmonary tuberculosis, that will increase the treatment effectiveness.

  6. Biochemical composition and caloric potential of zooplankton from Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sreepada, R.A.; Rivonker, C.U.; Parulekar, A.H.

    Proximate composition and variations in protein, lipid, carbohydrate, ash and organic carbon in zooplankton from 42 stations in the Bay of Bengal are reported. Average percentages of moisture, protein, lipid, carbohydrate, ash and carbon were 85...

  7. Chemical characterization of Centaurium erythrea L. and its effects on carbohydrate and lipid metabolism in experimental diabetes.

    Science.gov (United States)

    Stefkov, Gjoshe; Miova, Biljana; Dinevska-Kjovkarovska, Suzana; Stanoeva, Jasmina Petreska; Stefova, Marina; Petrusevska, Gordana; Kulevanova, Svetlana

    2014-02-27

    Centaurium erythrea L. fam. Gentianaceae (CE) has been traditionally used for centuries in folk medicine of Balkans as a bitter medicinal herb for digestive complications and for treating febrile conditions and diabetes. The aim of this study was to gain insight into the chemical composition and underlying biochemical mechanism of action of the antihyperglycemic and antilipidemic activities of the dry extract of Centaurium erythrea L., wildly growing and traditionally used medicinal plant in the Republic of Macedonia. An ultrasonic methanol maceration of the aerial parts of the dried plant was performed and the extract was freeze-dried. HPLC-DAD-ESI-MS(n) was carried out on 150 mm × 4.6mm, 5 μm RP-18 Eclipse XDB column, at 40 °C. Mobile phase: water with 1% formic acid (A) and methanol (B) with linear gradient starting with 10% B was used to reach 15% at 5 min, 40% B at 25 min, 55% of B at 50 min and 100% at 60 min, with flow rate of 0.4 mL min(-1). Normal and streptozotocin (STZ) hyperglycemic Wistar rats were used for assessment of the antihyperglycemic and antilipidemic activity by measurement of the key carbohydrate-related enzymes and substrates, as well as lipid state of the organism. HPLC-DAD-ESI-MS(n) analyses revealed presence of four different secoiridoids, seven flavonoid glycosides and seven xanthones in the freeze-dried extract of CE representing 53%, 25% and 22% of all compounds, respectively. The short-term (12 days) treatment of the STZ-diabetic rats with CE-extracts resulted in a 74% reduction of the produced hyperglycemia, which is only 6% less than the reduction caused by glibeclamide (GLB, positive control). The CE-extract had a significant impact on the hepatic carbohydrate metabolism enhancing the direct synthesis of glycogen, normalizing phosphorylase a activity and reducing the activity of glucose-6-phosphatase, which further causes reduction in production of blood glucose level. The long-term (45 days) treatment showed that the HbA1c in

  8. Insulin sensitivity is independent of lipid binding protein trafficking at the plasma membrane in human skeletal muscle

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Serup, Annette Karen; Karstoft, Kristian

    2014-01-01

    The aim of the present study was to investigate lipid-induced regulation of lipid binding proteins in human skeletal muscle and the impact hereof on insulin sensitivity. Eleven healthy male subjects underwent a 3-day hyper-caloric and high-fat diet regime. Muscle biopsies were taken before......-regulated by increased fatty acid availability. This suggests a time dependency in the up-regulation of FAT/CD36 and FABPpm protein during high availability of plasma fatty acids. Furthermore, we did not detect FATP1 and FATP4 protein in giant sarcolemmal vesicles obtained from human skeletal muscle. In conclusion......, this study shows that a short-term lipid-load increases mRNA content of key lipid handling proteins in human muscle. However, decreased insulin sensitivity after high-fat diet is not accompanied with relocation of FAT/CD36 or FABPpm protein to the sarcolemma. Finally, FATP1 and FATP4 protein could...

  9. Clofazimine modulates the expression of lipid metabolism proteins in Mycobacterium leprae-infected macrophages.

    Science.gov (United States)

    Degang, Yang; Akama, Takeshi; Hara, Takeshi; Tanigawa, Kazunari; Ishido, Yuko; Gidoh, Masaichi; Makino, Masahiko; Ishii, Norihisa; Suzuki, Koichi

    2012-01-01

    Mycobacterium leprae (M. leprae) lives and replicates within macrophages in a foamy, lipid-laden phagosome. The lipids provide essential nutrition for the mycobacteria, and M. leprae infection modulates expression of important host proteins related to lipid metabolism. Thus, M. leprae infection increases the expression of adipophilin/adipose differentiation-related protein (ADRP) and decreases hormone-sensitive lipase (HSL), facilitating the accumulation and maintenance of lipid-rich environments suitable for the intracellular survival of M. leprae. HSL levels are not detectable in skin smear specimens taken from leprosy patients, but re-appear shortly after multidrug therapy (MDT). This study examined the effect of MDT components on host lipid metabolism in vitro, and the outcome of rifampicin, dapsone and clofazimine treatment on ADRP and HSL expression in THP-1 cells. Clofazimine attenuated the mRNA and protein levels of ADRP in M. leprae-infected cells, while those of HSL were increased. Rifampicin and dapsone did not show any significant effects on ADRP and HSL expression levels. A transient increase of interferon (IFN)-β and IFN-γ mRNA was also observed in cells infected with M. leprae and treated with clofazimine. Lipid droplets accumulated by M. leprae-infection were significantly decreased 48 h after clofazimine treatment. Such effects were not evident in cells without M. leprae infection. In clinical samples, ADRP expression was decreased and HSL expression was increased after treatment. These results suggest that clofazimine modulates lipid metabolism in M. leprae-infected macrophages by modulating the expression of ADRP and HSL. It also induces IFN production in M. leprae-infected cells. The resultant decrease in lipid accumulation, increase in lipolysis, and activation of innate immunity may be some of the key actions of clofazimine.

  10. Effect of weight loss on the postprandial response to high-fat and high-carbohydrate meals in obese women.

    Science.gov (United States)

    Dallongeville, J; Gruson, E; Dallinga-Thie, G; Pigeyre, M; Gomila, S; Romon, M

    2007-06-01

    To assess the effect of weight loss on the plasma lipid and remnant-like lipoprotein cholesterol (RLPc) response to a high-fat or a high-carbohydrate meal in a population of obese women. Nutritional intervention study. Sixteen obese women (mean body mass index (BMI): 37.6+/-5 kg/m(2)). Subjects were asked to follow an energy-restricted diet (800 kcal/day) for 7 weeks, followed by a 1-week maintenance diet. Before and after weight loss, each participant was given (in random order) two iso-energetic meals containing either 80% fat and 20% protein (the high-fat meal) or 80% carbohydrate and 20% protein (the high-carbohydrate meal). Blood samples were collected over the following 10-h period. A two-way analysis of variance with repeated measures was used to assess the effect of the meal and postprandial time on biological variables and postprandial responses (notably RLPc levels). Weight loss was associated with a significant decrease in fasting triglyceride (P=0.0102), cholesterol (Pfat meal was less intense after weight reduction than before (interaction Pcarbohydrate meal was biphasic (i.e. with two peaks, 1 and 6 h after carbohydrate intake). After adjustment on baseline values, weight reduction was associated with a trend towards a reduction in the magnitude of the second triglyceride peak (interaction Ploss, again after adjustment on baseline levels. Our data suggest that weight loss preferentially affects postprandial triglyceride metabolism.

  11. A portable lipid bilayer system for environmental sensing with a transmembrane protein.

    Directory of Open Access Journals (Sweden)

    Ryuji Kawano

    Full Text Available This paper describes a portable measurement system for current signals of an ion channel that is composed of a planar lipid bilayer. A stable and reproducible lipid bilayer is formed in outdoor environments by using a droplet contact method with a micropipette. Using this system, we demonstrated that the single-channel recording of a transmembrane protein (alpha-hemolysin was achieved in the field at a high-altitude (∼3623 m. This system would be broadly applicable for obtaining environmental measurements using membrane proteins as a highly sensitive sensor.

  12. Breakfast high in whey protein or carbohydrates improves coping with workload in healthy subjects.

    Science.gov (United States)

    Sihvola, Nora; Korpela, Riitta; Henelius, Andreas; Holm, Anu; Huotilainen, Minna; Müller, Kiti; Poussa, Tuija; Pettersson, Kati; Turpeinen, Anu; Peuhkuri, Katri

    2013-11-14

    Dietary components may affect brain function and influence behaviour by inducing the synthesis of neurotransmitters. The aim of the present study was to examine the influence of consumption of a whey protein-containing breakfast drink v. a carbohydrate drink v. control on subjective and physiological responses to mental workload in simulated work. In a randomised cross-over design, ten healthy subjects (seven women, median age 26 years, median BMI 23 kg/m(2)) participated in a single-blinded, placebo-controlled study. The subjects performed demanding work-like tasks after having a breakfast drink high in protein (HP) or high in carbohydrate (HC) or a control drink on separate sessions. Subjective states were assessed using the NASA Task Load Index (NASA-TLX), the Karolinska sleepiness scale (KSS) and the modified Profile of Mood States. Heart rate was recorded during task performance. The ratio of plasma tryptophan (Trp) to the sum of the other large neutral amino acids (LNAA) and salivary cortisol were also analysed. The plasma Trp:LNAA ratio was 30 % higher after the test drinks HP (median 0·13 (μmol/l)/(μmol/l)) and HC (median 0·13 (μmol/l)/(μmol/l)) than after the control drink (median 0·10 (μmol/l)/(μmol/l)). The increase in heart rate was smaller after the HP (median 2·7 beats/min) and HC (median 1·9 beats/min) drinks when compared with the control drink (median 7·2 beats/min) during task performance. Subjective sleepiness was reduced more after the HC drink (median KSS - 1·5) than after the control drink (median KSS - 0·5). There were no significant differences between the breakfast types in the NASA-TLX index, cortisol levels or task performance. We conclude that a breakfast drink high in whey protein or carbohydrates may improve coping with mental tasks in healthy subjects.

  13. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    International Nuclear Information System (INIS)

    Javee, Anand; Sulochana, Sujitha Balakrishnan; Pallissery, Steffi James; Arumugam, Muthu

    2016-01-01

    Abiotic stress in oleaginous microalgae enhances lipid accumulation, which is stored in a specialized organelle called lipid droplets (LDs). Both the LDs or lipid body are enriched with major lipid droplet protein (MLDP). It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of Scenedesmus quadricauda under the salt stress of 10mM concentration is about 0.174 μ and in control, the SGR is 0.241 μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17). The dry biomass content also decreased drastically at 50mM salt-treated cells (129 mg/L) compared to control (236 mg/L) on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  14. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    Energy Technology Data Exchange (ETDEWEB)

    Javee, Anand [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Sulochana, Sujitha Balakrishnan [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India); Pallissery, Steffi James [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Arumugam, Muthu, E-mail: arumugam@niist.res.in [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India)

    2016-11-23

    Abiotic stress in oleaginous microalgae enhances lipid accumulation, which is stored in a specialized organelle called lipid droplets (LDs). Both the LDs or lipid body are enriched with major lipid droplet protein (MLDP). It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of Scenedesmus quadricauda under the salt stress of 10mM concentration is about 0.174 μ and in control, the SGR is 0.241 μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17). The dry biomass content also decreased drastically at 50mM salt-treated cells (129 mg/L) compared to control (236 mg/L) on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  15. [Dietetic assessment of patients with gastroenterologic diseases at the out-patient service of the Institute National of Sciences Medicine and Nutrition Salvador Zubiran].

    Science.gov (United States)

    de la Cruz Góngora, Vanesa Vianey; Pando Aguilar, Nancy Esther; Milke García, Pilar; Vargas-Voráková, Florencia

    2003-01-01

    Assessment of dietetic management is necessary for detection/correction of faults and best care of patients. Our aim was to evaluate dietetic management and nutritional status of gastroenterologic patients. Anthropometric, clinical-nutritional, biochemical, and dietetic parameters were assessed in 110 patients (150 with liver cirrhosis [LC], 30 with inflammatory bowel disease [IBD], and 30 with chronic and skin. In CP, prescribed energy, g and % carbohydrates and lipids were less than ideal and proteins were greater; in cirrhotics, less proteins and a great % of carbohydrates were prescribed; in IBD fewer lipids and more proteins than ideal were prescribed. Cirrhotics usually consumed less fat (g) and more proteins than prescribed, and patients with CP and IBD a greater amount of carbohydrates than prescribed. Cirrhotics consumed more % carbohydrates and < % lipids than ideal; CP patients lipid intake was less and protein intake above ideal and in IBD, carbohydrate intake was greater and lipid intake lower than ideal. Anthropometric and biochemical parameters were not useful for assessment of these patients. Prescribed diet was too restricted regarding proteins in LC and was inadequate in energy/nutrients in patients with CP. Fewer lipids and more proteins were prescribed in IBD. The inadequacy of prescripted diet, lack of information regarding the person who prescribed it, and lack of constant supervision may cause non-adherence to diet and thus may affect nutritional status.

  16. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions

    Science.gov (United States)

    Kovacs, Erika; Harmat, Veronika; Tóth, Judit; Vértessy, Beáta G.; Módos, Károly; Kardos, József; Liliom, Károly

    2010-01-01

    Lipid-protein interactions are rarely characterized at a structural molecular level due to technical difficulties; however, the biological significance of understanding the mechanism of these interactions is outstanding. In this report, we provide mechanistic insight into the inhibitory complex formation of the lipid mediator sphingosylphosphorylcholine with calmodulin, the most central and ubiquitous regulator protein in calcium signaling. We applied crystallographic, thermodynamic, kinetic, and spectroscopic approaches using purified bovine calmodulin and bovine cerebral microsomal fraction to arrive at our conclusions. Here we present 1) a 1.6-Å resolution crystal structure of their complex, in which the sphingolipid occupies the conventional hydrophobic binding site on calmodulin; 2) a peculiar stoichiometry-dependent binding process: at low or high protein-to-lipid ratio calmodulin binds lipid micelles or a few lipid molecules in a compact globular conformation, respectively, and 3) evidence that the sphingolipid displaces calmodulin from its targets on cerebral microsomes. We have ascertained the specificity of the interaction using structurally related lipids as controls. Our observations reveal the structural basis of selective calmodulin inhibition by the sphingolipid. On the basis of the crystallographic and biophysical characterization of the calmodulin–sphingosylphosphorylcholine interaction, we propose a novel lipid-protein binding model, which might be applicable to other interactions as well.—Kovacs, E., Harmat, V., Tóth, J., Vértessy, B. G., Módos, K., Kardos, J., Liliom, K. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions. PMID:20522785

  17. Alkylation damage by lipid electrophiles targets functional protein systems.

    Science.gov (United States)

    Codreanu, Simona G; Ullery, Jody C; Zhu, Jing; Tallman, Keri A; Beavers, William N; Porter, Ned A; Marnett, Lawrence J; Zhang, Bing; Liebler, Daniel C

    2014-03-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions.

  18. Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems*

    Science.gov (United States)

    Codreanu, Simona G.; Ullery, Jody C.; Zhu, Jing; Tallman, Keri A.; Beavers, William N.; Porter, Ned A.; Marnett, Lawrence J.; Zhang, Bing; Liebler, Daniel C.

    2014-01-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions. PMID:24429493

  19. Recovery from a cycling time trial is enhanced with carbohydrate-protein supplementation vs. isoenergetic carbohydrate supplementation

    Directory of Open Access Journals (Sweden)

    Lemon Peter WR

    2008-12-01

    Full Text Available Abstract Background In this study we assessed whether a liquid carbohydrate-protein (C+P supplement (0.8 g/kg C; 0.4 g/kg P ingested early during recovery from a cycling time trial could enhance a subsequent 60 min effort on the same day vs. an isoenergetic liquid carbohydrate (CHO supplement (1.2 g/kg. Methods Two hours after a standardized breakfast, 15 trained male cyclists completed a time trial in which they cycled as far as they could in 60 min (AMex using a Computrainer indoor trainer. Following AMex, subjects ingested either C+P, or CHO at 10, 60 and 120 min, followed by a standardized meal at 4 h post exercise. At 6 h post AMex subjects repeated the time trial (PMex. Results There was a significant reduction in performance for both groups in PMex versus AMex. However, performance and power decreases between PMex and AMex were significantly greater (p ≤ 0.05 with CHO (-1.05 ± 0.44 km and -16.50 ± 6.74 W vs C+P (-0.30 ± 0.50 km and -3.86 ± 6.47 W. Fat oxidation estimated from RER values was significantly greater (p ≤ 0.05 in the C+P vs CHO during the PMex, despite a higher average workload in the C+P group. Conclusion Under these experimental conditions, liquid C+P ingestion immediately after exercise increases fat oxidation, increases recovery, and improves subsequent same day, 60 min efforts relative to isoenergetic CHO ingestion.

  20. Nutrient digestibility and evaluation of protein and carbohydrate fractionation of citrus by-products

    DEFF Research Database (Denmark)

    Lashkari, Saman; Taghizadeh, Akbar

    2013-01-01

    The protein and carbohydrate fractionation and nutrient digestibility of citrus by‐products were determined. Ruminal, intestinal and total tract CP disappearance values were measured by a modified three‐step (MTSP) method and in vitro CP disappearance method (IVCP). Test feeds were orange pulp (OP...... to the results, it could be concluded that citrus by‐products have high nutritive value and also, the in vitro techniques can be easily used to determine of the nutritive value of citrus by‐products....

  1. Altered oxidative stress and carbohydrate metabolism in canine mammary tumors

    Directory of Open Access Journals (Sweden)

    K. Jayasri

    2016-12-01

    Full Text Available Aim: Mammary tumors are the most prevalent type of neoplasms in canines. Even though cancer induced metabolic alterations are well established, the clinical data describing the metabolic profiles of animal tumors is not available. Hence, our present investigation was carried out with the aim of studying changes in carbohydrate metabolism along with the level of oxidative stress in canine mammary tumors. Materials and Methods: Fresh mammary tumor tissues along with the adjacent healthy tissues were collected from the college surgical ward. The levels of thiobarbituric acid reactive substances (TBARS, glutathione, protein, hexose, hexokinase, glucose-6-phosphatase, fructose-1, 6-bisphosphatase, and glucose-6-phosphate dehydrogenase (G6PD were analyzed in all the tissues. The results were analyzed statistically. Results: More than two-fold increase in TBARS and three-fold increase in glutathione levels were observed in neoplastic tissues. Hexokinase activity and hexose concentration (175% was found to be increased, whereas glucose-6-phosphatase (33%, fructose-1, 6-bisphosphatase (42%, and G6PD (5 fold activities were reduced in tumor mass compared to control. Conclusion: Finally, it was revealed that lipid peroxidation was increased with differentially altered carbohydrate metabolism in canine mammary tumors.

  2. Effects of different protein and carbohydrate contents on growth and survival of juveniles of southern Chilean freshwater crayfish, Samastacus spinifrons

    Directory of Open Access Journals (Sweden)

    Italo Salgado-Leu

    2015-11-01

    Full Text Available In cultivated aquatic organisms nutritional requirements are critical, not only for their impact on production techniques, but also, for their high incidence on production costs. There is limited knowledge on some species such as the southern Chilean freshwater crayfish, Samastacus spinifrons. In order to generate practical knowledge, a study was carried out to determine protein and carbohydrate content requirements. These factors were evaluated upon their effects on growth and survival of juveniles. For this purpose, individual weight, biomass gain, survival, and feed conversion parameters were measured. The assay was carried out in 42 days, it was conducted in a flow through system, using 21 plastic tanks of 10.6 L capacity. Each tank was seeded with 20 juveniles weighing 50 mg average each. A 3×2 factorial design was proposed with three protein contents (20, 30, 40% and two carbohydrate contents (low: from 16.3 to 23.5% and high: from 34.6 to 35.8%. Six treatments and three replicates were performed. Individuals were fed on apparent satiation once a day. The diets formulated with 30% of protein and the two carbohydrate contents resulted in higher biomass increases, food conversion efficiencies over 26%, and specific growth rate of 0.78%, all displaying significant differences. Survival showed highly significant differences; in all diets were superior to 60%, however the diets with 30% of protein surpassed 90%.

  3. Omic studies reveal the pathogenic lipid droplet proteins in non-alcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Xuelin Zhang

    2016-10-01

    Full Text Available Abstract Non-alcoholic fatty liver disease (NAFLD is an epidemic metabolic condition driven by an underlying lipid homeostasis disorder. The lipid droplet (LD, the main organelle involved in neutral lipid storage and hydrolysis, is a potential target for NAFLD therapeutic treatment. In this review, we summarize recent progress elucidating the connections between LD-associated proteins and NAFLD found by genome-wide association studies (GWAS, genomic and proteomic studies. Finally, we discuss a possible mechanism by which the protein 17β-hydroxysteroid dehydrogenase 13 (17β-HSD13 may promote the development of NAFLD.

  4. Prepregnancy low-carbohydrate dietary pattern and risk of gestational diabetes mellitus: a prospective cohort study

    DEFF Research Database (Denmark)

    Bao, Wei; Bowers, Katherine; Tobias, Deirdre K

    2014-01-01

    ; an animal LCD score on the basis of intakes of carbohydrate, animal protein, and animal fat; and a vegetable LCD score on the basis of intakes of carbohydrate, vegetable protein, and vegetable fat. A higher score reflected a higher intake of fat and protein and a lower intake of carbohydrate...... protein and fat from vegetable food sources is not associated with the risk. Women of reproductive age who follow a low-carbohydrate dietary pattern may consider consuming vegetable rather than animal sources of protein and fat to minimize their risk of GDM.......-carbohydrate dietary patterns with risk of GDM. DESIGN: We included 21,411 singleton pregnancies in the Nurses' Health Study II. Prepregnancy LCD scores were calculated from validated food-frequency questionnaires, including an overall LCD score on the basis of intakes of carbohydrate, total protein, and total fat...

  5. Compatible topologies and parameters for NMR structure determination of carbohydrates by simulated annealing.

    Science.gov (United States)

    Feng, Yingang

    2017-01-01

    The use of NMR methods to determine the three-dimensional structures of carbohydrates and glycoproteins is still challenging, in part because of the lack of standard protocols. In order to increase the convenience of structure determination, the topology and parameter files for carbohydrates in the program Crystallography & NMR System (CNS) were investigated and new files were developed to be compatible with the standard simulated annealing protocols for proteins and nucleic acids. Recalculating the published structures of protein-carbohydrate complexes and glycosylated proteins demonstrates that the results are comparable to the published structures which employed more complex procedures for structure calculation. Integrating the new carbohydrate parameters into the standard structure calculation protocol will facilitate three-dimensional structural study of carbohydrates and glycosylated proteins by NMR spectroscopy.

  6. Whey or Casein Hydrolysate with Carbohydrate for Metabolism and Performance in Cycling.

    Science.gov (United States)

    Oosthuyse, T; Carstens, M; Millen, A M E

    2015-07-01

    The protein type most suitable for ingestion during endurance exercise is undefined. This study compared co-ingestion of either 15 g/h whey or casein hydrolysate with 63 g/h fructose: maltodextrin (0.8:1) on exogenous carbohydrate oxidation, exercise metabolism and performance. 2 h postprandial, 8 male cyclists ingested either: carbohydrate-only, carbohydrate-whey hydrolysate, carbohydrate-casein hydrolysate or placebo-water in a crossover, double-blind design during 2 h of exercise at 60%W max followed by a 16-km time trial. Data were evaluated by magnitude-based inferential statistics. Exogenous carbohydrate oxidation, measured from (13)CO2 breath enrichment, was not substantially influenced by co-ingestion of either protein hydrolysate. However, only co-ingestion of carbohydrate-casein hydrolysate substantially decreased (98% very likely decrease) total carbohydrate oxidation (mean±SD, 242±44; 258±47; 277±33 g for carbohydrate-casein, carbohydrate-whey and carbohydrate-only, respectively) and substantially increased (93% likely increase) total fat oxidation (92±14; 83±27; 73±19 g) compared with carbohydrate-only. Furthermore, only carbohydrate-casein hydrolysate ingestion resulted in a faster time trial (-3.6%; 90% CI: ±3.2%) compared with placebo-water (95% likely benefit). However, neither protein hydrolysate enhanced time trial performance when compared with carbohydrate-only. Under the conditions of this study, ingesting carbohydrate-casein, but not carbohydrate-whey hydrolysate, favourably alters metabolism during prolonged moderate-strenuous cycling without substantially altering cycling performance compared with carbohydrate-only. © Georg Thieme Verlag KG Stuttgart · New York.

  7. [Influence of bean yellow mosaic virus on metabolism of photosynthetic pigments, proteins and carbohydrates in Glycine soja L].

    Science.gov (United States)

    Kyrychenko, A M

    2014-01-01

    This paper presents data on BYMV effects on some physiological processes of Glycine soja L. cultivated in the right-bank forest-steppe regions. Pigment content (chlorophyll a, b and carotenoids), soluble proteins and water soluble carbohydrates were estimated and, as has been shown, are subjected to significant changes as compared with control plants, namely: a decrease in the content of chlorophyll a, b and carotenoids was 64%, 53% and 36% compared with the control plants. The significant increase in carbohydrates (56% compared to the control) was observed at the end of the test period.

  8. Discovery and design of carbohydrate-based therapeutics.

    Science.gov (United States)

    Cipolla, Laura; Araújo, Ana C; Bini, Davide; Gabrielli, Luca; Russo, Laura; Shaikh, Nasrin

    2010-08-01

    Till now, the importance of carbohydrates has been underscored, if compared with the two other major classes of biopolymers such as oligonucleotides and proteins. Recent advances in glycobiology and glycochemistry have imparted a strong interest in the study of this enormous family of biomolecules. Carbohydrates have been shown to be implicated in recognition processes, such as cell-cell adhesion, cell-extracellular matrix adhesion and cell-intruder recognition phenomena. In addition, carbohydrates are recognized as differentiation markers and as antigenic determinants. Due to their relevant biological role, carbohydrates are promising candidates for drug design and disease treatment. However, the growing number of human disorders known as congenital disorders of glycosylation that are being identified as resulting from abnormalities in glycan structures and protein glycosylation strongly indicates that a fast development of glycobiology, glycochemistry and glycomedicine is highly desirable. The topics give an overview of different approaches that have been used to date for the design of carbohydrate-based therapeutics; this includes the use of native synthetic carbohydrates, the use of carbohydrate mimics designed on the basis of their native counterpart, the use of carbohydrates as scaffolds and finally the design of glyco-fused therapeutics, one of the most recent approaches. The review covers mainly literature that has appeared since 2000, except for a few papers cited for historical reasons. The reader will gain an overview of the current strategies applied to the design of carbohydrate-based therapeutics; in particular, the advantages/disadvantages of different approaches are highlighted. The topic is presented in a general, basic manner and will hopefully be a useful resource for all readers who are not familiar with it. In addition, in order to stress the potentialities of carbohydrates, several examples of carbohydrate-based marketed therapeutics are given

  9. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet.

    Science.gov (United States)

    Shai, Iris; Schwarzfuchs, Dan; Henkin, Yaakov; Shahar, Danit R; Witkow, Shula; Greenberg, Ilana; Golan, Rachel; Fraser, Drora; Bolotin, Arkady; Vardi, Hilel; Tangi-Rozental, Osnat; Zuk-Ramot, Rachel; Sarusi, Benjamin; Brickner, Dov; Schwartz, Ziva; Sheiner, Einat; Marko, Rachel; Katorza, Esther; Thiery, Joachim; Fiedler, Georg Martin; Blüher, Matthias; Stumvoll, Michael; Stampfer, Meir J

    2008-07-17

    Trials comparing the effectiveness and safety of weight-loss diets are frequently limited by short follow-up times and high dropout rates. In this 2-year trial, we randomly assigned 322 moderately obese subjects (mean age, 52 years; mean body-mass index [the weight in kilograms divided by the square of the height in meters], 31; male sex, 86%) to one of three diets: low-fat, restricted-calorie; Mediterranean, restricted-calorie; or low-carbohydrate, non-restricted-calorie. The rate of adherence to a study diet was 95.4% at 1 year and 84.6% at 2 years. The Mediterranean-diet group consumed the largest amounts of dietary fiber and had the highest ratio of monounsaturated to saturated fat (Pcarbohydrate group consumed the smallest amount of carbohydrates and the largest amounts of fat, protein, and cholesterol and had the highest percentage of participants with detectable urinary ketones (Ploss was 2.9 kg for the low-fat group, 4.4 kg for the Mediterranean-diet group, and 4.7 kg for the low-carbohydrate group (Plosses were 3.3 kg, 4.6 kg, and 5.5 kg, respectively. The relative reduction in the ratio of total cholesterol to high-density lipoprotein cholesterol was 20% in the low-carbohydrate group and 12% in the low-fat group (P=0.01). Among the 36 subjects with diabetes, changes in fasting plasma glucose and insulin levels were more favorable among those assigned to the Mediterranean diet than among those assigned to the low-fat diet (Pcarbohydrate diets may be effective alternatives to low-fat diets. The more favorable effects on lipids (with the low-carbohydrate diet) and on glycemic control (with the Mediterranean diet) suggest that personal preferences and metabolic considerations might inform individualized tailoring of dietary interventions. (ClinicalTrials.gov number, NCT00160108.) 2008 Massachusetts Medical Society

  10. The impact of particle preparation methods and polymorphic stability of lipid excipients on protein distribution in microparticles

    DEFF Research Database (Denmark)

    Liu, Jingying; Christophersen, Philip C; Yang, Mingshi

    2017-01-01

    OBJECTIVE: The present study aimed at elucidating the influence of polymorphic stability of lipid excipients on the physicochemical characters of different solid lipid microparticles (SLM), with the focus on the alteration of protein distribution in SLM. METHODS: Labeled lysozyme was incorporated...... provides updated knowledge for rational development of lipid-based formulations for oral delivery of peptide or protein drugs.......OBJECTIVE: The present study aimed at elucidating the influence of polymorphic stability of lipid excipients on the physicochemical characters of different solid lipid microparticles (SLM), with the focus on the alteration of protein distribution in SLM. METHODS: Labeled lysozyme was incorporated...... into SLM prepared with different excipients, i.e. trimyristin (TG14), glyceryl distearate (GDS), and glyceryl monostearate (GMS), by water-oil-water (w/o/w) or solid-oil-water (s/o/w) method. The distribution of lysozyme in SLM and the release of the protein from SLM were evaluated by confocal laser...

  11. Randomly organized lipids and marginally stable proteins: a coupling of weak interactions to optimize membrane signaling.

    Science.gov (United States)

    Rice, Anne M; Mahling, Ryan; Fealey, Michael E; Rannikko, Anika; Dunleavy, Katie; Hendrickson, Troy; Lohese, K Jean; Kruggel, Spencer; Heiling, Hillary; Harren, Daniel; Sutton, R Bryan; Pastor, John; Hinderliter, Anne

    2014-09-01

    Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Coupling of anaerobic waste treatment to produce protein- and lipid-rich bacterial biomass

    Science.gov (United States)

    Steinberg, Lisa M.; Kronyak, Rachel E.; House, Christopher H.

    2017-11-01

    Future long-term manned space missions will require effective recycling of water and nutrients as part of a life support system. Biological waste treatment is less energy intensive than physicochemical treatment methods, yet anaerobic methanogenic waste treatment has been largely avoided due to slow treatment rates and safety issues concerning methane production. However, methane is generated during atmosphere regeneration on the ISS. Here we propose waste treatment via anaerobic digestion followed by methanotrophic growth of Methylococcus capsulatus to produce a protein- and lipid-rich biomass that can be directly consumed, or used to produce other high-protein food sources such as fish. To achieve more rapid methanogenic waste treatment, we built and tested a fixed-film, flow-through, anaerobic reactor to treat an ersatz wastewater. During steady-state operation, the reactor achieved a 97% chemical oxygen demand (COD) removal rate with an organic loading rate of 1740 g d-1 m-3 and a hydraulic retention time of 12.25 d. The reactor was also tested on three occasions by feeding ca. 500 g COD in less than 12 h, representing 50x the daily feeding rate, with COD removal rates ranging from 56-70%, demonstrating the ability of the reactor to respond to overfeeding events. While investigating the storage of treated reactor effluent at a pH of 12, we isolated a strain of Halomonas desiderata capable of acetate degradation under high pH conditions. We then tested the nutritional content of the alkaliphilic Halomonas desiderata strain, as well as the thermophile Thermus aquaticus, as supplemental protein and lipid sources that grow in conditions that should preclude pathogens. The M. capsulatus biomass consisted of 52% protein and 36% lipids, the H. desiderata biomass consisted of 15% protein and 7% lipids, and the Thermus aquaticus biomass consisted of 61% protein and 16% lipids. This work demonstrates the feasibility of rapid waste treatment in a compact reactor design

  13. Measurement of lipid transfer protein in 88 apple cultivars

    NARCIS (Netherlands)

    Sancho, Ana I.; van Ree, Ronald; van Leeuwen, Astrid; Meulenbroek, Bert J.; van de Weg, Eric W.; Gilissen, Luud J. W. J.; Puehringer, Helene; Laimer, Margit; Martinelli, Alessio; Zaccharini, Marzio; Vazquez-Cortes, Sonia; Fernandez-Rivas, Montserrat; Hoffmann-Sommergruber, Karin; Mills, E. N. Clare; Zuidmeer, Laurian

    2008-01-01

    Background: Fruits are a major cause of food allergy in adults. Lipid transfer proteins (LTP) are implicated in severe allergic reactions to fruits, but little is known about LTP content in different cultivars. Objective: Determination of the levels of LTP in a wide range of apple cultivars.

  14. Formation of Poultry Meat Flavor by Heating Process and Lipid Oxidation

    Directory of Open Access Journals (Sweden)

    Maijon Purba

    2014-09-01

    Full Text Available Flavor is an important factor in the acceptance of food. Flavor of poultry meat is naturally formed through a specific process of heating, where various chemical reactions complex occurred among nonvolatile precursors in fatty tissue or in lean tissue. The main flavor in the form of volatile and nonvolatile components play a major influence on the acceptance of various processed meat, especially the taste. Removal of sulfur components decreases meat flavor (meaty, while removal of carbonyl compounds decrease the specific flavor and increases common flavor of the meat. Poultry meat has a fairly high fat content that easily generates lipid oxidation. Lipid oxidation in poultry meat is a sign that the meat was damaged and caused off odor. Addition of antioxidants in the diet can inhibit lipid oxidation in the meat. Lipids interaction with proteins and carbohydrates is unavoidable during the thermal processing of food, causing the appearance of volatile components. The main reaction in meat flavor formation mechanism is Maillard reaction followed by Stecker reaction and degradation of lipids and thiamine. They involve in the reaction between carbonyl and amine components to form flavor compounds, which enhance the flavor of poultry meat.

  15. A 3-day high-fat/low-carbohydrate diet does not alter exercise-induced growth hormone response in healthy males.

    Science.gov (United States)

    Sasaki, Hiroto; Ishibashi, Aya; Tsuchiya, Yoshihumi; Shimura, Nobuhiro; Kurihara, Toshiyuki; Ebi, Kumiko; Goto, Kazushige

    2015-12-01

    The purpose of the present study was to examine the effects of 3 days isoenergetic high-fat/low-carbohydrate diet (HF-LC) relative to low-fat/high-carbohydrate diet (LF-HC) on the exercise-induced growth hormone (GH) response in healthy male subjects. Ten healthy young males participated in this study. Each subject consumed the HF-LC (18±1% protein, 61±2% fat, 21±1% carbohydrate, 2720 kcal per day) for 3 consecutive days after consuming the LF-HC (18±1% protein, 20±1% fat, 62±1% carbohydrate, 2755 kcal per day) for 3 consecutive days. After each dietary intervention period, the hormonal and metabolic responses to an acute exercise (30 min of continuous pedaling at 60% of V˙O2max) were compared. The intramyocellular lipid (IMCL) contents in the vastus lateralis, soleus, and tibialis anterior were evaluated by proton magnetic resonance spectroscopy. Serum GH concentrations increased significantly during the exercise after both the HF-LC and LF-HC periods (Pexercise-induced GH response was not significantly different between the two periods. Fat utilization and lipolytic responses during the exercise were enhanced significantly after the HF-LC period compared with the LF-HC period. IMCL content did not differ significantly in any portion of muscle after the dietary interventions. We could not show that short-term HF-LC consumption changed significantly exercise-induced GH response or IMCL content in healthy young males. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Methodological issues in protein and lipidic expressions in brain tissue exposed to Co{sup 60} based on DESI/MALDI-MS

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Matheus F.; Campos, Tarcísio P.R.; Augusti, Rodinei, E-mail: matheus.soares@gmail.com, E-mail: tprcampos@pq.cnpq.br, E-mail: augusti.rodinei@gmail.com, E-mail: augusti@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil); Eberlin, Marcos N.; Vendramini, Pedro H., E-mail: eberlin@iqm.unicamp.br, E-mail: ph_vendramini@yahoo.com.br [Universidade de Campinas (UNICAMP), SP (Brazil). Thompson Mass Spectroscopy Laboratory

    2017-07-01

    The present paper attempts to present some issues in the methodology of identifying lipid and protein changes in brain tissue induced by radiation. The goal was to address the analysis of the methodology and to investigate the feasibility of the generation of lipid/protein profiles of irradiated brain tissue, in order to identify radioinduced changes. Lipids and proteins are biomolecules with diverse structures and functionalities that participate in important intracellular processes. Changes in the lipid and the tissue protein profiles may indicate a cellular response to an external stimulus as well as the emergence of neoplasms or neurodegenerative diseases such as Alzheimer's. DESI-MS is a convenient method for identifying lipids and their spatial distribution in tissue beyond analytical quantification. DESI-MS allows the creation of an image of several low lipid m/z classes. MALDI-MS has already been a method used in the study of macromolecules as structural, membrane, hormone, neuromediator and immunological peptides. Through a full-scan matrix scan, with a m/z spectrum between 500-1000 for lipids and with a mass spectrum of 1000-15000 Da for proteins, the molecular profile can be analyzed. Generated pixel shape 2D chemical image. The produced image allows to associate the tissue distribution of the lipids and proteins with their chemical profile identified, allowing the verification of the changes radioinduced. Radiation triggers intense oxidative stress by increasing reactive oxygen species (ROS) and free radicals, causing DNA damage with consequent alterations in proteomics and cellular lipid explaining such changes in the lipid and protein expressions. The cellular morphophysiological changes are responsible for both the clonogenic inhibition and the induction of the apoptotic process. The images's production was directly dependent on the rigorous execution of the methodological procedures. Innumerable interferences could impair the image

  17. Liver X Receptors Balance Lipid Stores in Hepatic Stellate Cells via Rab18, a Retinoid Responsive Lipid Droplet Protein

    Science.gov (United States)

    O’Mahony, Fiona; Wroblewski, Kevin; O’Byrne, Sheila M.; Jiang, Hongfeng; Clerkin, Kara; Benhammou, Jihane; Blaner, William S.; Beaven, Simon W.

    2014-01-01

    Liver X receptors (LXRs) are determinants of hepatic stellate cell (HSC) activation and liver fibrosis. Freshly isolated HSCs from Lxrαβ−/− mice have increased lipid droplet (LD) size but the functional consequences of this are unknown. Our aim was to determine whether LXRs link cholesterol to retinoid storage in HSCs and how this impacts activation. Primary HSCs from Lxrαβ−/− and wild-type (WT) mice were profiled by gene array during in vitro activation. Lipid content was quantified by HPLC and mass spectroscopy. Primary HSCs were treated with nuclear receptor ligands, transfected with siRNA and plasmid constructs, and analyzed by immunocytochemistry. Lxrαβ−/− HSCs have increased cholesterol and retinyl esters (CEs & REs). The retinoid increase drives intrinsic retinoic acid receptor (RAR) signaling and activation occurs more rapidly in Lxrαβ−/− HSCs. We identify Rab18 as a novel retinoic acid responsive, lipid droplet associated protein that helps mediate stellate cell activation. Rab18 mRNA, protein, and membrane insertion increase during activation. Both Rab18 GTPase activity and isoprenylation are required for stellate cell lipid droplet loss and induction of activation markers. These phenomena are accelerated in the Lxrαβ−/− HSCs, where there is greater retinoic acid flux. Conversely, Rab18 knockdown retards lipid droplet loss in culture and blocks activation, just like the functional mutants. Rab18 is also induced with acute liver injury in vivo. Conclusion Retinoid and cholesterol metabolism are linked in stellate cells by the LD associated protein, Rab18. Retinoid overload helps explain the pro-fibrotic phenotype of Lxrαβ−/− mice and we establish a pivotal role for Rab18 GTPase activity and membrane insertion in wild-type stellate cell activation. Interference with Rab18 may have significant therapeutic benefit in ameliorating liver fibrosis. PMID:25482505

  18. Prion protein accumulation in lipid rafts of mouse aging brain.

    Directory of Open Access Journals (Sweden)

    Federica Agostini

    Full Text Available The cellular form of the prion protein (PrP(C is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrP(C. In old mice, this change favors PrP(C accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrP(C translocation into detergent-resistant membranes (DRMs, we looked at PrP(C compartmentalization in hippocampi from acid sphingomyelinase (ASM knockout (KO mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrP(C in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases.

  19. Balanced intake of protein and carbohydrate maximizes lifetime reproductive success in the mealworm beetle, Tenebrio molitor (Coleoptera: Tenebrionidae).

    Science.gov (United States)

    Rho, Myung Suk; Lee, Kwang Pum

    2016-01-01

    Recent developments in insect gerontological and nutritional research have suggested that the dietary protein:carbohydrate (P:C) balance is a critical determinant of lifespan and reproduction in many insects. However, most studies investigating this important role of dietary P:C balance have been conducted using dipteran and orthopteran species. In this study, we used the mealworm beetles, Tenebrio molitor L. (Coleoptera: Tenebrionidae), to test the effects of dietary P:C balance on lifespan and reproduction. Regardless of their reproductive status, both male and female beetles had the shortest lifespan at the protein-biased ratio of P:C 5:1. Mean lifespan was the longest at P:C 1:1 for males and at both P:C 1:1 and 1:5 for females. Mating significantly curtailed the lifespan of both males and females, indicating the survival cost of mating. Age-specific egg laying was significantly higher at P:C 1:1 than at the two imbalanced P:C ratios (1:5 or 5:1) at any given age throughout their lives, resulting in the highest lifetime reproductive success at P:C 1:1. When given a choice, beetles actively regulated their intake of protein and carbohydrate to a slightly carbohydrate-biased ratio (P:C 1:1.54-1:1.64 for males and P:C 1:1.3-1:1.36 for females). The self-selected P:C ratio was significantly higher for females than males, reflecting a higher protein requirement for egg production. Collectively, our results add to a growing body of evidence suggesting the key role played by dietary macronutrient balance in shaping lifespan and reproduction in insects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Role of serylamino as a protector against gamma rays hazards on ovarian functions, carbohydrate and lipid metabolism during meta-estrous stage in rats

    International Nuclear Information System (INIS)

    Abou-Safi, KM.

    2005-01-01

    In this study, functional investigations were performed to assess the ability of silymarin to overcome the gamma rays-induced alterations on three related pivots: 1- Ovarian functions through the pituitary-gonadal hormones [follicle stimulating hormone (FSH), estradiol (E2) and progesterone. 2- Carbohydrate metabolism through pancreatic insulin associated with blood glucose and liver glycogen content. 3- Lipid profile including triglycerides, total cholesterol, high density lipoprotein (HDL-cholesterol) and low density lipoprotein (LDL-cholesterol). Fifty female rats were divided into 4 groups: 1- Control. 2- Whole body y-irradiated (I Gy). 3- Rats orally treated with silymarin (10 mg/100 g body weight) twice daily for one week. 4- Rats received silymarin as group (3) then irradiated 2 hours after the last dose of silymarin. Samples were taken 2 hours, 2 days and 2 weeks after silyrnarin gavage (group 3) or irradiation (groups 2 and 4). The results obtained showed lowered levels of FSH, E2 and P 4 as a result of ovarian dysfunction early after 2 hours and maximized after 2 weeks in irradiated rats. Plasma insulin and glucose levels were elevated with a decrease in glycogen content in liver. Also, plasma triglycerides, total cholesterol, LDL-cholesterol were elevated concomitant with decreased HDL-cholesterol level. Silymarin succeeded to ameliorate the disorders induced by irradiation and restored the majority of disturbed levels to control range. The present study designates that silymarin has a positive prophylactic effect against radiation-induced hazard on the ovarian function and speculates that silymarin could imitate a physiologic regulator for carbohydrate and lipid metabolism through several mentioned mechanisms

  1. The effects of space flight on some rat liver enzymes regulating carbohydrate and lipid metabolism

    Science.gov (United States)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    We have examined, in the livers of rats carried aboard the Cosmos 936 biosatellite, the activities of about 30 enzymes concerned with carbohydrate and lipid metabolism. In addition to the enzyme studies, the levels of glycogen and of the individual fatty acids in hepatic lipids were determined. Livers from flight and ground control rats at recovery (R0) and 25 days after recovery (R25) were used for these analyses. For all parameters measured, the most meaningful comparisons are those made between flight stationary (FS) and flight centrifuged (FC) animals at R0. When these two groups of flight rats were compared at R0, statistically significant decreases in the activity levels of glycogen phosphorylase, α-glycerol phosphate acyl transferase, diglyceride acyl transferase, aconitase and 6-phosphogluconate dehydrogenase and an increase in the palmitoyl CoA desaturase were noted in the weightless group (FS). The significance of these findings was strengthened by the fact that all enzyme activities showing alterations at R0 returned to normal 25 days postflight. When liver glycogen and total fatty acids of the two sets of flight animals were determined, significant differences that could be attributed to reduced gravity were observed. The weightless group (FS) at R0 contained, on the average, more than twice the amount of glycogen than did the centrifuged controls (FC) and a remarkable shift in the ratio of palmitate to palmitoleate was noted. These metabolic alterations, both in enzyme levels and in hepatic constituents, appear to be characteristic of the weightless condition. Our data seem to justify the conclusion that centrifugation during flight is equivalent to terrestrial gravity.

  2. Effects of medium-chain fatty acids and oleic acid on blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities

    DEFF Research Database (Denmark)

    Tholstrup, T.; Ehnholm, C.; Jauhiainen, M.

    2004-01-01

    Background: Dietary medium-chain fatty acids (MCFAs) are of nutritional interest because they are more easily absorbed from dietary medium-chain triacylglycerols (MCTs) than are long-chain fatty acids from, for example, vegetable oils. It has generally been claimed that MCFAs do not increase plasma...... cholesterol, although this claim is poorly documented. Objective: We compared the effects of a diet rich in either MCFAs or oleic acid on fasting blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities in healthy men. Design: In a study with a double-blind, randomized, crossover...... plasma total triacylglycerol (P = 0.0361), and higher plasma glucose (P = 0.033). Plasma HDL-cholesterol and insulin concentrations and activities of cholesterol ester transfer protein and phospholipid transfer protein did not differ significantly between the diets. Conclusions: Compared with fat high...

  3. Renal function following long-term weight loss in individuals with abdominal obesity on a very-low-carbohydrate diet vs high-carbohydrate diet.

    Science.gov (United States)

    Brinkworth, Grant D; Buckley, Jonathan D; Noakes, Manny; Clifton, Peter M

    2010-04-01

    A frequently cited concern of very-low-carbohydrate diets is the potential for increased risk of renal disease associated with a higher protein intake. However, to date, no well-controlled randomized studies have evaluated the long-term effects of very-low-carbohydrate diets on renal function. To study this issue, renal function was assessed in 68 men and women with abdominal obesity (age 51.5+/-7.7 years, body mass index [calculated as kg/m(2)] 33.6+/-4.0) without preexisting renal dysfunction who were randomized to consume either an energy-restricted ( approximately 1,433 to 1,672 kcal/day), planned isocaloric very-low-carbohydrate (4% total energy as carbohydrate [14 g], 35% protein [124 g], 61% fat [99 g]), or high-carbohydrate diet (46% total energy as carbohydrate [162 g], 24% protein [85 g], 30% fat [49 g]) for 1 year. Body weight, serum creatinine, estimated glomerular filtration rate and urinary albumin excretion were assessed before and after 1 year (April 2006-July 2007). Repeated measures analysis of variance was conducted. Weight loss was similar in both groups (very-low-carbohydrate: -14.5+/-9.7 kg, high-carbohydrate: -11.6+/-7.3 kg; P=0.16). By 1 year, there were no changes in either group in serum creatinine levels (very-low-carbohydrate: 72.4+/-15.1 to 71.3+/-13.8 mumol/L, high-carbohydrate: 78.0+/-16.0 to 77.2+/-13.2 mumol/L; P=0.93 time x diet effect) or estimated glomerular filtration rate (very-low-carbohydrate: 90.0+/-17.0 to 91.2+/-17.8 mL/min/1.73 m(2), high-carbohydrate: 83.8+/-13.8 to 83.6+/-11.8 mL/min/1.73 m(2); P=0.53 time x diet effect). All but one participant was classified as having normoalbuminuria at baseline, and for these participants, urinary albumin excretion values remained in the normoalbuminuria range at 1 year. One participant in high-carbohydrate had microalbuminuria (41.8 microg/min) at baseline, which decreased to a value of 3.1 microg/min (classified as normoalbuminuria) at 1 year. This study provides preliminary

  4. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    Directory of Open Access Journals (Sweden)

    Arumugam Muthu

    2016-11-01

    Full Text Available Abiotic stress in oleaginous microalgae enhances lipid accumulation and is stored in a specialised organelle called lipid droplets (LDs. Both the LDs and body are enriched with major lipid droplet protein (MLDP. It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of S. quadricauda under the salt stress of 10mM concentration is about 0.174μ and in control, the SGR is 0.241μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17. The dry biomass content also decreased drastically at 50mM salt-treated cells (129mg/L compared to control (236mg/L on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  5. Presence or absence of carbohydrates and the proportion of fat in a high-protein diet affect appetite suppression but not energy expenditure in normal-weight human subjects fed in energy balance.

    Science.gov (United States)

    Veldhorst, Margriet A B; Westerterp, Klaas R; van Vught, Anneke J A H; Westerterp-Plantenga, Margriet S

    2010-11-01

    Two types of relatively high-protein diets, with a normal or low proportion of carbohydrates, have been shown effective for weight loss. The objective was to assess the significance of the presence or absence of carbohydrates and the proportion of fat in high-protein diets for affecting appetite suppression, energy expenditure, and fat oxidation in normal-weight subjects in energy balance. Subjects (aged 23 (sd 3) years and BMI 22·0 (sd 1·9) kg/m2) were stratified in two groups. Each was offered two diets in a randomised cross-over design: group 1 (n 22) - normal protein (NP; 10, 60 and 30 % energy (En%) from protein, carbohydrate and fat), high protein (HP; 30, 40 and 30 En%); group 2 (n 23) - normal protein (NP-g; 10, 60 and 30 En%), high protein, carbohydrate-free (HP-0C; 30, 0 and 70 En%) for 2 d; NP-g and HP-0C were preceded by glycogen-lowering exercise (day 1). Appetite was measured throughout day 2 using visual analogue scales (VAS). Energy expenditure (EE) and substrate oxidation (respiratory quotient; RQ) were measured in a respiration chamber (08.00 hours on day 2 until 07.30 hours on day 3). Fasting plasma β-hydroxybutyrate (BHB) concentration was measured (day 3). NP-g and NP did not differ in hunger, EE, RQ and BHB. HP-0C and HP v. NP-g and NP, respectively, were lower in hunger (P fat oxidation were higher on a high-protein diet without than with carbohydrates exchanged for fat. Energy expenditure was not affected by the carbohydrate content of a high-protein diet.

  6. Effects of 4:1 carbohydrate/protein solution versus a carbohydrate-alone solution on IL-6, TNF-α, and cortisol during prolonged cycling in hot environmental conditions

    Directory of Open Access Journals (Sweden)

    Cosio-Lima LM

    2012-03-01

    Full Text Available Ludmila M Cosio-Lima, Bhargav Desai, John W Stelzer, Petra B SchulerDepartment of Health, Leisure, and Exercise Science, University of West Florida, Pensacola, FL, USAPurpose: Intense or prolonged exercise and/or heat stress might affect the immune system creating a response similar to trauma or inflammation, resulting in an increase in the susceptibility to viral infections. For example, during prolonged exercise, inflammatory cytokines, such as tumor necrosis factor (TNF-α, interleukin (IL-6, and the stress hormone cortisol are produced and released. Although there have been several studies examining the effects of nutritional supplementation on cytokine release in elite athletes, few studies have investigated the effects of different energy drinks during exercise in adverse environmental conditions. Therefore, the purpose of this study was to compare plasma levels of inflammatory cytokines TNF-α and IL-6, and the stress hormone cortisol, during prolonged cycling under hot environmental conditions while ingesting fluid that contains a ratio of 4:1 carbohydrates and protein (4:1 CHO/PRO versus a carbohydrate-only drink (CHO.Methods: Six male cyclists (aged 27 ± 8 years; weight 75.5 ± 3.4 kg; VO2max = 66 ± 2.7 mL/kg/min, mean ± standard error rode on a stationary ergometer on two separate sessions for 2.5 hours at 75% VO2max in an environmental chamber set at 35°C and 60% relative humidity. During the first session the cyclists were given 4 mL/kg body weight of a 6% carbohydrate solution every 15 minutes. During the second session they were given 4 mL/kg body weight of a 4:1 carbohydrate/protein drink every 15 minutes. Subjects were not aware of which drink they were given in each trial. Blood samples were taken pre-, immediately post-, and 12 hours post-exercise. SPSS (IBM Corp, Armonk, NY was utilized to analyze data through repeated measures analysis of variance.Results: No significant main effect was observed between treatments in

  7. Lipid and protein maps defining arterial layers in atherosclerotic aorta

    Directory of Open Access Journals (Sweden)

    Marta Martin-Lorenzo

    2015-09-01

    Full Text Available Subclinical atherosclerosis cannot be predicted and novel therapeutic targets are needed. The molecular anatomy of healthy and atherosclerotic tissue is pursued to identify ongoing molecular changes in atherosclerosis development. Mass Spectrometry Imaging (MSI accounts with the unique advantage of analyzing proteins and metabolites (lipids while preserving their original localization; thus two dimensional maps can be obtained. Main molecular alterations were investigated in a rabbit model in response to early development of atherosclerosis. Aortic arterial layers (intima and media and calcified regions were investigated in detail by MALDI-MSI and proteins and lipids specifically defining those areas of interest were identified. These data further complement main findings previously published in J Proteomics (M. Martin-Lorenzo et al., J. Proteomics. (In press; M. Martin-Lorenzo et al., J. Proteomics 108 (2014 465–468. [1,2].

  8. Molecular simulations of beta-amyloid protein near hydrated lipids (PECASE).

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan Patrick; Han, Kunwoo (Texas A& M University, College Station, TX); Ford, David M. (Texas A& M University, College Station, TX)

    2005-12-01

    We performed molecular dynamics simulations of beta-amyloid (A{beta}) protein and A{beta} fragment(31-42) in bulk water and near hydrated lipids to study the mechanism of neurotoxicity associated with the aggregation of the protein. We constructed full atomistic models using Cerius2 and ran simulations using LAMMPS. MD simulations with different conformations and positions of the protein fragment were performed. Thermodynamic properties were compared with previous literature and the results were analyzed. Longer simulations and data analyses based on the free energy profiles along the distance between the protein and the interface are ongoing.

  9. Effects of different fractions of whey protein on postprandial lipid and hormone responses in type 2 diabetes

    DEFF Research Database (Denmark)

    Mortensen, L.S.; Holmer-Jensen, Jens; Hartvigsen, Merete

    2012-01-01

    Background/Objectives:Exacerbated postprandial lipid responses are associated with an increased cardiovascular risk. Dietary proteins influence postprandial lipemia differently, and whey protein has a preferential lipid-lowering effect. We compared the effects of different whey protein fractions .......European Journal of Clinical Nutrition advance online publication, 16 May 2012; doi:10.1038/ejcn.2012.48....

  10. Lipid transfer proteins from fruit: cloning, expression and quantification

    NARCIS (Netherlands)

    Zuidmeer, Laurian; van Leeuwen, W. Astrid; Budde, Ilona Kleine; Cornelissen, Jessica; Bulder, Ingrid; Rafalska, Ilona; Besolí, Noèlia Telléz; Akkerdaas, Jaap H.; Asero, Riccardo; Fernandez Rivas, Montserrat; Rivas, Montserrat Fernandez; Gonzalez Mancebo, Eloina; Mancebo, Eloina Gonzalez; van Ree, Ronald

    2005-01-01

    BACKGROUND: Lipid transfer proteins (LTP) are stable, potentially life-threatening allergens in fruits and many other vegetable foods. The aim of this study was to clone and express recombinant apple LTP (Mal d 3), as has previously been done for peach LTP (Pru p 3) and set up quantitative tests for

  11. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Sandra C. [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States); Chau, Mary D.L.; Yang, Qing [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Gauthier, Marie-Soleil [Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02140 (United States); Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Dole, William P., E-mail: bill.dole@novartis.com [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2011-07-08

    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and

  12. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    International Nuclear Information System (INIS)

    Souza, Sandra C.; Chau, Mary D.L.; Yang, Qing; Gauthier, Marie-Soleil; Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper; Dole, William P.

    2011-01-01

    Highlights: → Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). → ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. → ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. → Exposure of human adipocytes to fatty acids and (TNFα) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and peroxisome proliferator

  13. Soybean hull induced production of carbohydrases and protease among Aspergillus and their effectiveness in soy flour carbohydrate and protein separation.

    Science.gov (United States)

    Li, Qian; Loman, Abdullah Al; Coffman, Anthony M; Ju, Lu-Kwang

    2017-04-20

    Soybean hull consists mainly of three major plant carbohydrates, i.e., cellulose, hemicellulose and pectin. It is inexpensive and a good potential substrate for carbohydrase production because it is capable of inducing a complete spectrum of activities to hydrolyze complex biomass. Aspergillus is known for carbohydrase production but no studies have evaluated and compared, among Aspergillus species and strains, the soybean hull induced production of various carbohydrases. In this study, A. aculeatus, A. cinnamomeus, A. foetidus, A. phoenicis and 11 A. niger strains were examined together with T. reesei Rut C30, another known carbohydrase producer. The carbohydrases evaluated included pectinase, polygalacturonase, xylanase, cellulase, α-galactosidase and sucrase. Growth morphology and pH profiles were also followed. Among Aspergillus strains, morphology was found to correlate with both carbohydrase production and pH decrease profile. Filamentous strains gave higher carbohydrase production while causing slower pH decrease. The enzyme broths produced were also tested for separation of soy flour carbohydrate and protein. Defatted soy flour contains about 53% protein and 32% carbohydrate. The enzymatic treatment can increase protein content and remove indigestible oligo-/poly-saccharides, and improve use of soy flour in feed and food. Protease production by different strains was therefore also compared for minimizing protein degradation. A. niger NRRL 322 and A. foetidus NRRL 341 were found to be the most potent strains that produced maximal carbohydrases and minimal protease under soybean hull induction. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Influence of a lipid interface on protein dynamics in a fungal lipase

    DEFF Research Database (Denmark)

    Peters, Günther H.j.; Bywater, R. P.

    2001-01-01

    performed molecular dynamics simulations. The simulations were performed over 1 to 2 ns using explicit SPC water. The interaction energies between protein and lipid are mainly due to van der Waals contributions reflecting the hydrophobic nature of the lipid molecules. Estimations of the protonation state...... of titratable residues indicated that the negative charge on the fatty acid is stabilized by interactions with the titratable residues Tyr-28, His-143, and His-257. In the presence of a lipid patch, the active site lid opens wider than observed in the corresponding simulations in an aqueous environment...

  15. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: EXECUTIVE SUMMARY.

    Science.gov (United States)

    Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures often improve lipid levels in patients with obesity. This 2-part scientific statement examines the potential lipid benefits of bariatric procedures and represents contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on data published through June 2015. Part 1 of this 2-part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of: (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on cardiovascular disease; and finally (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the executive summary of part 1. Copyright © 2016 National Lipid Association. All rights reserved.

  16. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: FULL REPORT.

    Science.gov (United States)

    Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures often improve lipid levels in patients with obesity. This 2 part scientific statement examines the potential lipid benefits of bariatric procedures and represents the contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on published data through June 2015. Part 1 of this 2 part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease (CVD) risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on CVD; and finally, (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the full report of part 1. Copyright © 2016 National Lipid Association. All rights reserved.

  17. The Impact of Diet Protein and Carbohydrate on Select Life-History Traits of The Black Soldier Fly Hermetia illucens (L.) (Diptera: Stratiomyidae).

    Science.gov (United States)

    Cammack, Jonathan A; Tomberlin, Jeffery K

    2017-05-31

    This study examined the impact of diet protein and carbohydrate percentages as well as moisture on the immature development, survivorship, and resulting adult longevity and egg production of the black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae). Moisture impacted development and corresponding life-history traits more than protein:carbohydrate content; larvae were unable to develop on diets at 40% moisture. Larvae fed diets at 70% moisture developed faster, grew larger, and required less food than those reared on diets at 55% moisture. Larvae reared on the balanced diet (21% protein:21% carbohydrate) at 70% moisture developed the fastest on the least amount of food and had the greatest survivorship to the prepupal stage. Adult emergence and longevity were similar across treatments, indicating immature life-history traits were impacted the most. The control (Gainesville house fly) diet was superior to the artificial diets for all parameters tested. These differences could indicate that other constituents (e.g., associated microbes) serve a role in black soldier fly development. These data are valuable for industrialization of this insect as a "green" technology for recycling organic waste, which can be highly variable, to produce protein for use as feed in the livestock, poultry, and aquaculture industries, as well as for bioenergy production.

  18. Protein Sparing Effects of Lipids in The Practical Diets of ...

    African Journals Online (AJOL)

    ABSTRACT: A feeding trial was conducted to establish the protein sparing effects of various lipid sources in ... reported to utilize vegetable oil that is high in omega 6 .... origin up to 15 % without any negative effects on ..... Committee on Animal.

  19. The growth of juvenile jaguar guapote (Cichlasoma managuense fed diets with different carbohydrate levels (ESP

    Directory of Open Access Journals (Sweden)

    Juan B Ulloa R.

    2016-03-01

    Full Text Available The experiment was conducted in a 16 45 L aquaria recirculation system. The objective was to evaluate the growth of jaguar guapote (Cichlasoma managuense when fed isocaloric diets with increasing carbohydrate levels from 11 to 36 percent. Relative metabolic growth rate and feed conversion were similar with diets containing 11.5%, 18.8% and 26.5% carbohydrate (P > 0.05 . The highest protein efficiency ratio (PER and apparent net protein utilization (NPUa values were found with the 18.8% carbohydrate diet. Growth performance, feed utilization parameters and the survival were the lowest with fish fed the highest carbohydrate level (35.6%. Fish body protein increased and body fat decreased with increasing dietary carbohydrate levels. The body ash showed a trend similar to the body protein. It is concluded that juvenile C. managuense can grow well when fed 40% protein diets containing up to 26.5% carbohydrate.

  20. The use of fast atom bombardment and laser desorption mass spectrometry in the analysis of complex carbohydrates

    International Nuclear Information System (INIS)

    Egge, H.; Peter-Katalinic, J.; Karas, M.; Stahl, B.

    1991-01-01

    Oligosaccharides occurring free in secretions or bound to lipid or protein, are known to modulate the biological response in many living systems. The structural characterization of these highly diverse oligosaccharides, that may be further complicated by the occurrence of non-carbohydrate substituents such as alkyl, acyl, sulfate, or phosphate groups, for example, represents the first step towards a rational approach that is able to relate structure to function. The structural delineation of carbohydrate residues at defined sites of attachment is especially important in recombinant glycoproteins because the type and extent of glycosylation affect their biological properties. In recent years the development of soft ionization procedures and the increase in mass range above 10,000 mass units at full acceleration, together with the development of highly sensitive detectors, has allowed the analysis of glycans containing more than 30 sugar units in the nano-and subnanomolar range. (author)

  1. ATGL and CGI-58 are lipid droplet proteins of the hepatic stellate cell line HSC-T6.

    Science.gov (United States)

    Eichmann, Thomas O; Grumet, Lukas; Taschler, Ulrike; Hartler, Jürgen; Heier, Christoph; Woblistin, Aaron; Pajed, Laura; Kollroser, Manfred; Rechberger, Gerald; Thallinger, Gerhard G; Zechner, Rudolf; Haemmerle, Günter; Zimmermann, Robert; Lass, Achim

    2015-10-01

    Lipid droplets (LDs) of hepatic stellate cells (HSCs) contain large amounts of vitamin A [in the form of retinyl esters (REs)] as well as other neutral lipids such as TGs. During times of insufficient vitamin A availability, RE stores are mobilized to ensure a constant supply to the body. To date, little is known about the enzymes responsible for the hydrolysis of neutral lipid esters, in particular of REs, in HSCs. In this study, we aimed to identify LD-associated neutral lipid hydrolases by a proteomic approach using the rat stellate cell line HSC-T6. First, we loaded cells with retinol and FAs to promote lipid synthesis and deposition within LDs. Then, LDs were isolated and lipid composition and the LD proteome were analyzed. Among other proteins, we found perilipin 2, adipose TG lipase (ATGL), and comparative gene identification-58 (CGI-58), known and established LD proteins. Bioinformatic search of the LD proteome for α/β-hydrolase fold-containing proteins revealed no yet uncharacterized neutral lipid hydrolases. In in vitro activity assays, we show that rat (r)ATGL, coactivated by rat (r)CGI-58, efficiently hydrolyzes TGs and REs. These findings suggest that rATGL and rCGI-58 are LD-resident proteins in HSCs and participate in the mobilization of both REs and TGs. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  2. Differential effects of high-carbohydrate and high-fat diets on hepatic lipogenesis in rats.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Damiano, Fabrizio; Siculella, Luisa; Zara, Vincenzo

    2014-06-01

    Hepatic fatty acid synthesis is influenced by several nutritional and hormonal factors. In this study, we have investigated the effects of distinct experimental diets enriched in carbohydrate or in fat on hepatic lipogenesis. Male Wistar rats were divided into four groups and fed distinct experimental diets enriched in carbohydrates (70% w/w) or in fat (20 and 35% w/w). Activity and expression of the mitochondrial citrate carrier and of the cytosolic enzymes acetyl-CoA carboxylase and fatty acid synthetase were analyzed through the study with assessments at 0, 1, 2, 4, and 6 weeks. Liver lipids and plasma levels of lipids, glucose, and insulin were assayed in parallel. Whereas the high-carbohydrate diet moderately stimulated hepatic lipogenesis, a strong inhibition of this anabolic pathway was found in animals fed high-fat diets. This inhibition was time-dependent and concentration-dependent. Moreover, whereas the high-carbohydrate diet induced an increase in plasma triglycerides, the high-fat diets determined an accumulation of triglycerides in liver. An increase in the plasmatic levels of glucose and insulin was observed in all cases. The excess of sucrose in the diet is converted into fat that is distributed by bloodstream in the organism in the form of circulating triglycerides. On the other hand, a high amount of dietary fat caused a strong inhibition of lipogenesis and a concomitant increase in the level of hepatic lipids, thereby highlighting, in these conditions, the role of liver as a reservoir of exogenous fat.

  3. Formation of Giant Protein Vesicles by a Lipid Cosolvent Method

    DEFF Research Database (Denmark)

    Hansen, Jesper S.; Vararattanavech, Ardcharaporn; Vissing, Thomas

    2011-01-01

    This paper describes a method to create giant protein vesicles (GPVs) of ≥10 μm by solvent‐driven fusion of large vesicles (0.1–0.2 μm) with reconstituted membrane proteins. We found that formation of GPVs proceeded from rotational mixing of protein‐reconstituted large unilamellar vesicles (LUVs)...... of spinach SoPIP2;1 and E. coli AqpZ aquaporins. Our findings show that hydrophobic interactions within the bilayer of formed GPVs are influenced not only by the solvent partitioning propensity, but also by lipid composition and membrane protein isoform....

  4. Human surfactant protein D: SP-D contains a C-type lectin carbohydrate recognition domain.

    Science.gov (United States)

    Rust, K; Grosso, L; Zhang, V; Chang, D; Persson, A; Longmore, W; Cai, G Z; Crouch, E

    1991-10-01

    Lung surfactant protein D (SP-D) shows calcium-dependent binding to specific saccharides, and is similar in domain structure to certain members of the calcium-dependent (C-type) lectin family. Using a degenerate oligomeric probe corresponding to a conserved peptide sequence derived from the amino-terminus of the putative carbohydrate binding domain of rat and bovine SP-D, we screened a human lung cDNA library and isolated a 1.4-kb cDNA for the human protein. The relationship of the cDNA to SP-D was established by several techniques including amino-terminal microsequencing of SP-D-derived peptides, and immunoprecipitation of translation products of transcribed mRNA with monospecific antibodies to SP-D. In addition, antibodies to a synthetic peptide derived from a predicted unique epitope within the carbohydrate recognition domain of SP-D specifically reacted with SP-D. DNA sequencing demonstrated a noncollagenous carboxy-terminal domain that is highly homologous with the carboxy-terminal globular domain of previously described C-type lectins. This domain contains all of the so-called "invariant residues," including four conserved cysteine residues, and shows high homology with the mannose-binding subfamily of C-type lectins. Sequencing also demonstrated an amino-terminal collagenous domain that contains an uninterrupted sequence of 59 Gly-X-Y triplets and that also contains the only identified consensus for asparagine-linked oligosaccharides. The studies demonstrate that SP-D is a member of the C-type lectin family, and confirm predicted structural similarities to conglutinin, SP-D, and the serum mannose binding proteins.

  5. Effects of starvation, refeeding, and insulin on energy-linked metabolic processes in catfish (Rhamdia hilarii) adapted to a carbohydrate-rich diet

    International Nuclear Information System (INIS)

    Machado, C.R.; Garofalo, M.A.; Roselino, J.E.; Kettelhut, I.C.; Migliorini, R.H.

    1988-01-01

    The effects of starvation and of a short period of refeeding on energy-linked metabolic processes, as well as the effects of insulin administration, were investigated in an omnivorous fish (catfish, Rhamdia hilarii) previously adapted to a carbohydrate-rich diet. Following food deprivation blood sugar levels declined progressively to about 50% of fed values after 30 days. During the same period plasma free fatty acid (FFA) concentration increased twofold. Starvation resulted in reduced concentrations of lipid and glycogen in the liver and of glycogen, lipid, and protein in white muscle. However, taking into account the initial and final concentrations of tissue constituents, the liver weight, and the large fractions of body weight represented by muscle, it could be estimated that most of the energy utilized during starvation derived from the catabolism of muscle lipid and protein. Refeeding starved fishes for 48 hr induced several-fold increases in the rates of in vivo and in vitro incorporation of [14C]glucose into liver and muscle lipid and of [14C]glycine into liver and muscle protein. Incorporation of [14C]glucose into liver glycogen was also increased. However; refeeding did not affect the incorporation of labeled glucose into muscle glycogen, neither in vivo nor in vitro. Administration of pharmacological doses of insulin to normally fed catfishes resulted in marked increases in the in vivo incorporation of 14C from glucose into lipid and protein in both liver and muscle. In contrast, labeled glucose incorporation into muscle glycogen was not affected by insulin and label incorporation into liver glycogen was actually lower than that in noninjected controls

  6. Nanodisc-Targeted STD NMR Spectroscopy Reveals Atomic Details of Ligand Binding to Lipid Environments.

    Science.gov (United States)

    Muñoz-García, Juan C; Inacio Dos Reis, Rosana; Taylor, Richard J; Henry, Alistair J; Watts, Anthony

    2018-05-18

    Saturation transfer difference (STD) NMR spectroscopy is one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. This is due to its robustness and the fact that it is focused on the signals of the ligand, without any need for NMR information on the macromolecular target. This technique is most commonly applied to systems involving different types of ligands (e.g., small organic molecules, carbohydrates or lipids) and a protein as the target, in which the latter is selectively saturated. However, only a few examples have been reported where membrane mimetics are the macromolecular binding partners. Here, we have employed STD NMR spectroscopy to investigate the interactions of the neurotransmitter dopamine with mimetics of lipid bilayers, such as nanodiscs, by saturation of the latter. In particular, the interactions between dopamine and model lipid nanodiscs formed either from charged or zwitterionic lipids have been resolved at the atomic level. The results, in agreement with previous isothermal titration calorimetry studies, show that dopamine preferentially binds to negatively charged model membranes, but also provide detailed atomic insights into the mode of interaction of dopamine with membrane mimetics. Our findings provide relevant structural information for the design of lipid-based drug carriers of dopamine and its structural analogues and are of general applicability to other systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect of high carbohydrate or high protein diets on the uptake of [57Co] cyanocobalamin in the rat organs

    International Nuclear Information System (INIS)

    Inamdar-Deshmukh, A.B.; Jathar, V.S.

    1978-01-01

    The mean total body radiocyanocobalamin uptake in rats fed high casein or high carbohydrate diet did not show any significant difference, though there was marked variation in their body-weights. It seems that the body possesses the mechanism to maintain its B 12 store constant though the protein status altered at an early stage of under or over protein nutrition. (author)

  8. Effects of surface proteins and lipids on molecular structure, thermal properties, and enzymatic hydrolysis of rice starch

    Directory of Open Access Journals (Sweden)

    Pan HU

    Full Text Available Abstract Rice starches with different amylose contents were treated with sodium dodecyl sulfate (SDS to deplete surface proteins and lipids, and the changes in molecular structure, thermal properties, and enzymatic hydrolysis were evaluated. SDS treatment did not significantly change the molecular weight distribution, crystalline structure, short-range ordered degree, and gelatinization properties of starch, but significantly altered the pasting properties and increased the swelling power of starch. The removal of surface proteins and lipids increased the enzymatic hydrolysis and in vitro digestion of starch. The influences of removing surface proteins and lipids from starch on swelling power, pasting properties, and enzymatic hydrolysis were different among the various starches because of the differences in molecular structures of different starch styles. The aforementioned results indicated that removing the surface proteins and lipids from starch did not change the molecular structure but had significant effects on some functional properties.

  9. Cell surface carbohydrates as prognostic markers in human carcinomas

    DEFF Research Database (Denmark)

    Dabelsteen, Erik

    1996-01-01

    Tumour development is usually associated with changes in cell surface carbohydrates. These are often divided into changes related to terminal carbohydrate structures, which include incomplete synthesis and modification of normally existing carbohydrates, and changes in the carbohydrate core...... structure. The latter includes chain elongation of both glycolipids and proteins, increased branching of carbohydrates in N-linked glycoproteins, and blocked synthesis of carbohydrates in O-linked mucin-like glycoproteins. In mature organisms, expression of distinct carbohydrates is restricted to specific...... cell types; within a given tissue, variation in expression may be related to cell maturation. Tumour-associated carbohydrate structures often reflect a certain stage of cellular development; most of these moieties are structures normally found in other adult or embryonic tissues. There is no unique...

  10. Characterization of carbohydrate fractions and fermentation quality ...

    African Journals Online (AJOL)

    This experiment was carried out to evaluate the effects of adding fast-sile (FS), previous fermented juice (PFJ), sucrose (S) or fast-sile + sucrose (FS + S) on the fermentation characteristics and carbohydrates fractions of alfalfa silages by the Cornell net carbohydrates and proteins systems (CNCPS). Silages quality were well ...

  11. Protein-Lipid Interactions in Different Meat Systems in the Presence of Natural Antioxidants – a Review

    Directory of Open Access Journals (Sweden)

    Hęś Marzanna

    2017-03-01

    Full Text Available This study presents several aspects of the mutual interaction between lipids and proteins. Nutritional and technological implications of the reaction of oxidized lipids with proteins are discussed. Changes are highlighted in the content of amino acids and protein digestibility, formation of cross-links, flavor compounds, as well as the formation of colored non-enzymatic browning products. Attention is paid to the agents which may determine the reaction of amino acids with the products of lipid oxidation, i.e. the presence of catalysts or inhibitors in the environment, the presence of water, pH of the environment, temperature or reaction time. It was also noted that the conformation of the protein structure, the surface charge, the affinity, and the accessibility of reactive groups affect the intensity of these interactions.

  12. Apoptosis induced by a low-carbohydrate and high-protein diet in rat livers.

    Science.gov (United States)

    Monteiro, Maria Emília L; Xavier, Analucia R; Oliveira, Felipe L; Filho, Porphirio Js; Azeredo, Vilma B

    2016-06-14

    To determine whether high-protein, high-fat, and low-carbohydrate diets can cause lesions in rat livers. We randomly divided 20 female Wistar rats into a control diet group and an experimental diet group. Animals in the control group received an AIN-93M diet, and animals in the experimental group received an Atkins-based diet (59.46% protein, 31.77% fat, and 8.77% carbohydrate). After 8 wk, the rats were anesthetized and exsanguinated for transaminases analysis, and their livers were removed for flow cytometry, immunohistochemistry, and light microscopy studies. We expressed the data as mean ± standard deviation (SD) assuming unpaired and parametric data; we analyzed differences using the Student's t-test. Statistical significance was set at P diet group and 3.73% ± 0.50% for early apoptosis, 5.67% ± 0.72% for late apoptosis, and 3.82% ± 0.28% for non-apoptotic death in the control diet group. The mean percentage of early apoptosis was higher in the experimental diet group than in the control diet group. Immunohistochemistry for autophagy was negative in both groups. Sinusoidal dilation around the central vein and small hepatocytes was only observed in the experimental diet group, and fibrosis was not identified by hematoxylin-eosin or Trichrome Masson staining in either group. Eight weeks of an experimental diet resulted in cellular and histopathological lesions in rat livers. Apoptosis was our principal finding; elevated plasma transaminases demonstrate hepatic lesions.

  13. Carbohydrate particles as protein carriers and scaffolds: physico-chemical characterization and collagen stability

    Energy Technology Data Exchange (ETDEWEB)

    Peres, Ivone; Rocha, Sandra; Loureiro, Joana A.; Carmo Pereira, Maria do [University of Porto, LEPAE, Chemical Engineering Department, Faculty of Engineering (Portugal); Ivanova, Galya [Universidade do Porto, REQUIMTE, Departamento de Quimica, Faculdade de Ciencias (Portugal); Coelho, Manuel, E-mail: mcoelho@fe.up.pt [University of Porto, LEPAE, Chemical Engineering Department, Faculty of Engineering (Portugal)

    2012-09-15

    The preservation of protein properties after entrapping into polymeric matrices and the effects of drying the emulsions still remains uncertain and controversial. Carbohydrate particles were designed and prepared by homogenization of gum arabic and maltodextrin mixture, with collagen hydrolysate (CH) followed by spray-drying. The encapsulation of CH in the carbohydrate matrix was achieved with an efficiency of 85 {+-} 2 %. The morphology and the size of the particles, before (40-400 nm) and after spray-drying (<20 {mu}m), were characterized by scanning electron microscopy and dynamic light scattering. Measurements of the nuclear relaxation times and application of diffusion ordered spectroscopy, obtained through pulsed field gradient NMR experiments, have been performed to determine the structure of the CH-polysaccharide conjugates and to clarify the mechanism of CH immobilization in the polysaccharide matrix. In vitro release profiles in ultrapure water and in cellular medium reveal that the diffusion rate of CH from the polymeric matrix to the dialysis solution decreases in average 30-50 % over time, compared to free CH molecules. In cellular medium at 37 Degree-Sign C, the complete release of CH from the particles is achieved only after 24 h, demonstrating a significant decrease in the CH mass transfer process when compared with free CH. The findings of this study outline the ability of gum arabic/maltodextrin matrices to entrap and preserve CH original properties after the spray-drying process and support the potential of the polymeric scaffold for protein delivery and tissue engineering.

  14. 17β-Hydroxysteroid dehydrogenase type 13 is a liver-specific lipid droplet-associated protein

    International Nuclear Information System (INIS)

    Horiguchi, Yuka; Araki, Makoto; Motojima, Kiyoto

    2008-01-01

    17β-Hydroxysteroid dehydrogenase (17βHSD) type 13 is identified as a new lipid droplet-associated protein. 17βHSD type 13 has an N-terminal sequence similar to that of 17βHSD type 11, and both sequences function as an endoplasmic reticulum and lipid droplet-targeting signal. Localization of native 17βHSD type 13 on the lipid droplets was confirmed by subcellular fractionation and Western blotting. In contrast to 17βHSD type 11, however, expression of 17βHSD type 13 is largely restricted to the liver and is not enhanced by peroxisome proliferator-activated receptor α and its ligand. Instead the expression level of 17βHSD type 13 in the receptor-null mice was increased several-fold. 17βHSD type 13 may have a distinct physiological role as a lipid droplet-associated protein in the liver

  15. The use of low-carbohydrate diet in type 2 diabetes – benefits and risks

    Directory of Open Access Journals (Sweden)

    Łucja Czyżewska-Majchrzak

    2014-06-01

    Full Text Available The pharmacological treatment of type 2 diabetes is increasingly being supported by the recommendation of an appropriate diet. The purpose of this study is to identify the potential benefits and risks arising from the use of one of the modern models of low-carbohydrate diet in patients with type 2 diabetes. Research shows that diet can favourably affect the health of diabetic patients. It has been shown that diet affects positively the concentration of blood glucose, glycosylated haemoglobin, and also contributes to the reduction of insulin taken in the course of drug therapy. At the same time, short-term studies have demonstrated a positive relationship of nutrition with reduction in body weight, as well as favourable changes in lipid profile of HDL cholesterol and levels of triglyceride. Attention is also drawn to the negative health effects of a low-carbohydrate diet; these include an increased risk of mineral deficiency, hypovitaminosis and reduced intake of dietary fibres. This diet may be associated with very high levels of protein which, in turn, raises the risk of renal dysfunction and the appearance of irregularities in the water and electrolyte balance. The impact of changes in the skeletal system and the development of osteopenia and osteoporosis is also observed. Besides the positive impact of this model of diet on the lipid profile parameters, its use significantly increases the risk of adverse changes in other markers predisposing to atherosclerosis occurring in individuals with type 2 diabetes. In composing a nutrition model for diabetes patients, both the benefits and potential risks of a low-carbohydrate diet should therefore take into account. At the same time, it is important to individualize the diet used, based on the current state of health, used pharmacological treatments, as well as taking into account the individual characteristics of the patient.

  16. 5-Lipoxygenase-Activating Protein as a Modulator of Olanzapine-Induced Lipid Accumulation in Adipocyte

    Directory of Open Access Journals (Sweden)

    Svetlana Dzitoyeva

    2013-01-01

    Full Text Available Experiments were performed in 3T3-L1 preadipocytes differentiated in vitro into adipocytes. Cells were treated with olanzapine and a 5-lipoxygenase (5-LOX activating protein (FLAP inhibitor MK-886. Lipid content was measured using an Oil Red O assay; 5-LOX and FLAP mRNA content was measured using quantitative real-time PCR; the corresponding protein contents were measured using quantitative Western blot assay. Olanzapine did not affect the cell content of 5-LOX mRNA and protein; it decreased FLAP mRNA and protein content at day five but not 24 hours after olanzapine addition. In the absence of MK-886, low concentrations of olanzapine increased lipid content only slightly, whereas a 56% increase was induced by 50 μM olanzapine. A 5-day cotreatment with 10 μM MK-886 potentiated the lipid increasing action of low concentrations of olanzapine. In contrast, in the presence of 50 μM olanzapine nanomolar and low micromolar concentrations of MK-886 reduced lipid content. These data suggest that FLAP system in adipocytes is affected by olanzapine and that it may modify how these cells respond to the second-generation antipsychotic drugs (SGADs. Clinical studies could evaluate whether the FLAP/5-LOX system could play a role in setting a variable individual susceptibility to the metabolic side effects of SGADs.

  17. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR

    International Nuclear Information System (INIS)

    Eddy, Matthew T.; Su, Yongchao; Silvers, Robert; Andreas, Loren; Clark, Lindsay; Wagner, Gerhard; Pintacuda, Guido; Emsley, Lyndon; Griffin, Robert G.

    2015-01-01

    The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5–0.3 ppm for 13 C line widths and <0.5 ppm 15 N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the reported

  18. A high protein moderate carbohydrate diet fed at discrete meals reduces early progression of N-methyl-N-nitrosourea-induced breast tumorigenesis in rats

    Directory of Open Access Journals (Sweden)

    Singletary Keith W

    2010-01-01

    Full Text Available Abstract Breast cancer is the most prevalent cancer in American women. Dietary factors are thought to have a strong influence on breast cancer incidence. This study utilized a meal-feeding protocol with female Sprague-Dawley rats to evaluate effects of two ratios of carbohydrate:protein on promotion and early progression of breast tissue carcinomas. Mammary tumors were induced by N-methyl-N-nitrosourea (MNU at 52 d of age. Post-induction, animals were assigned to consume either a low protein high carbohydrate diet (LPHC; 15% and 60% of energy, respectively or a high protein moderate carbohydrate diet (HPMC; 35% and 40% of energy, respectively for 10 wk. Animals were fed 3 meals/day to mimic human absorption and metabolism patterns. The rate of palpable tumor incidence was reduced in HPMC relative to LPHC (12.9 ± 1.4%/wk vs. 18.2 ± 1.3%/wk. At 3 wk, post-prandial serum insulin was larger in the LPHC relative to HPMC (+136.4 ± 33.1 pmol/L vs. +38.1 ± 23.4 pmol/L, while at 10 wk there was a trend for post-prandial IGF-I to be increased in HPMC (P = 0.055. There were no differences in tumor latency, tumor surface area, or cumulative tumor mass between diet groups. The present study provides evidence that reducing the dietary carbohydrate:protein ratio attenuates the development of mammary tumors. These findings are consistent with reduced post-prandial insulin release potentially diminishing the proliferative environment required for breast cancer tumors to progress.

  19. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions.

    Science.gov (United States)

    Meng, Yingying; Yao, Changhong; Xue, Song; Yang, Haibo

    2014-01-01

    Fourier transform infrared spectroscopy (FT-IR) was applied in algal strain screening and monitoring cell composition dynamics in a marine microalga Isochrysis zhangjiangensis during algal cultivation. The content of lipid, carbohydrate and protein of samples determined by traditional methods had validated the accuracy of FT-IR method. For algal screening, the band absorption ratios of lipid/amide I and carbo/amide I from FT-IR measurements allowed for the selection of Isochrysis sp. and Tetraselmis subcordiformis as the most potential lipid and carbohydrate producers, respectively. The cell composition dynamics of I. zhangjiangensis measured by FT-IR revealed the diversion of carbon allocation from protein to carbohydrate and neutral lipid when nitrogen-replete cells were subjected to nitrogen limitation. The carbo/amide I band absorption ratio had also been demonstrated to depict physiological status under nutrient stress in T. subcordiformis. FT-IR serves as a tool for the simultaneous measurement of lipid, carbohydrate, and protein content in cell. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch-whey protein blend edible films.

    Science.gov (United States)

    Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric

    2017-02-01

    Starch and whey protein isolate and their mixtures were used for making edible films. Moisture sorption isotherms, water vapour permeability, sorption of aroma compounds, microstructure, water contact angle and surface properties were investigated. With increasing protein content, the microstructure changes became more homogeneous. The water vapour permeability increases with both the humidity gradient and the starch content. For all films, the hygroscopicity increases with starch content. Surface properties change according to the starch/whey protein ratio and are mainly related to the polar component of the surface tension. Films composed of 80% starch and 20% whey proteins have more hydrophobic surfaces than the other films due to specific interactions. The effect of carbohydrate/protein ratio significantly influences the microstructure, the surface wettability and the barrier properties of wheat starch-whey protein blend films. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. SUBSTRATE UTILIZATION IS INFLUENCED BY ACUTE DIETARY CARBOHYDRATE INTAKE IN ACTIVE, HEALTHY FEMALES

    Directory of Open Access Journals (Sweden)

    Sara Gregory

    2011-03-01

    Full Text Available The present study compared the metabolic responses between a single low-carbohydrate (LC and low-fat (LF meal followed by an aerobic exercise bout in females. Subjects included 8 active, premenopausal females. Subjects completed a LC and LF testing session. Respiratory gas exchange (RER measurements were taken for 20 min fasted, for 55 min postprandial (PP, and during 30 min of exercise. Blood was collected for assessment of glucose (G, insulin (IN, triglycerides (TG, and free fatty acids (FFA during the final 10 min of each time period. The LF meal provided 396 kcal (78% carbohydrate, 7% fat, and 15% protein. The LC meal provided 392 kcal (15% carbohydrate, 68% fat, and 18% protein. No significant differences existed between test meals for fasting blood measurements. PP IN (µU·mL-1 levels were significantly lower following LC compared to LF [10.7 (6.1 vs. 26.0 (21.0]. Postexercise (PE FFA (mEq·L-1 levels were significantly greater following LC [1.1 (0.3 vs. 0.5 (0.3]. PE TG (mg·dL-1 levels were significantly greater following LC [152.0 (53.1 vs. 114.4 (40.9]. RER was significantly lower at all time points following LC compared to LF. In moderately active adult females, ingestion of a single LC meal resulted in greater lipid oxidation at rest and during exercise as compared to a single LF meal. Although macronutrient distribution appears to have dictated substrate utilization in the present study, more research is needed regarding the long-term effects of macronutrient redistribution with and without exercise on substrate utilization.

  2. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects.

    Science.gov (United States)

    Haufe, Sven; Engeli, Stefan; Kast, Petra; Böhnke, Jana; Utz, Wolfgang; Haas, Verena; Hermsdorf, Mario; Mähler, Anja; Wiesner, Susanne; Birkenfeld, Andreas L; Sell, Henrike; Otto, Christoph; Mehling, Heidrun; Luft, Friedrich C; Eckel, Juergen; Schulz-Menger, Jeanette; Boschmann, Michael; Jordan, Jens

    2011-05-01

    Obesity-related hepatic steatosis is a major risk factor for metabolic and cardiovascular disease. Fat reduced hypocaloric diets are able to relieve the liver from ectopically stored lipids. We hypothesized that the widely used low carbohydrate hypocaloric diets are similarly effective in this regard. A total of 170 overweight and obese, otherwise healthy subjects were randomized to either reduced carbohydrate (n = 84) or reduced fat (n = 86), total energy restricted diet (-30% of energy intake before diet) for 6 months. Body composition was estimated by bioimpedance analyses and abdominal fat distribution by magnetic resonance tomography. Subjects were also submitted to fat spectroscopy of liver and oral glucose tolerance testing. In all, 102 subjects completed the diet intervention with measurements of intrahepatic lipid content. Both hypocaloric diets decreased body weight, total body fat, visceral fat, and intrahepatic lipid content. Subjects with high baseline intrahepatic lipids (>5.56%) lost ≈7-fold more intrahepatic lipids compared with those with low baseline values (diet composition. In contrast, changes in visceral fat mass and insulin sensitivity were similar between subgroups, with low and high baseline intrahepatic lipids. A prolonged hypocaloric diet low in carbohydrates and high in fat has the same beneficial effects on intrahepatic lipid accumulation as the traditional low-fat hypocaloric diet. The decrease in intrahepatic lipids appears to be independent of visceral fat loss and is not tightly coupled with changes in whole body insulin sensitivity during 6 months of an energy restricted diet. Copyright © 2011 American Association for the Study of Liver Diseases.

  3. Lipid Content in Arctic Calanus: a Matter of Season and Size

    Science.gov (United States)

    Daase, M.; Søreide, J.; Freese, D.; Hatlebakk, M. K.; Jørgen, B.; Renaud, P.; Gabrielsen, T. M.; Vogedes, D.

    2016-02-01

    Copepods of the genus Calanus are considered key elements of the marine food chain of the Arctic and North Atlantic. They convert low-energy carbohydrates and proteins of their algae diet into high-energy wax ester lipids. These lipids are accumulated over the productive season and stored in a lipid sac which sustains the organism over long periods without algal food supply, and which makes Calanus spp. an important prey item. Here we investigated what determines the variability in lipid content of overwintering stages and adults of Arctic and North Atlantic Calanus species. Using image analysis of lipid sac area, we have estimated individual lipid content of Calanus species in the waters and fjords of Svalbard (78-81oN). Data were collected all year round, at surface and deep waters and in locations under the influence of either Atlantic or Arctic hydrographic conditions. Lipid content showed stage specific seasonal variability which can be related to life history strategies and the phenology of algae blooms. Depth specific differences in lipid content were only observed at the start of the overwintering period. Our data also demonstrate that species specific differences in lipid content were not as fundamentally different as previously assumed. Rather, based on molecular identification of the species, we show that the lipid content of the Arctic C. glacialis and the Atlantic C. finmarchicus is dependent on size alone, challenging the classical understanding of these two species yielding two distinctly different ecosystem services based upon a difference in lipid content.

  4. Association of adiponectin/leptin ratio with carbohydrate and lipid metabolism parameters in HIV-infected patients during antiretroviral therapy.

    Science.gov (United States)

    Tiliscan, Catalin; Arama, Victoria; Mihailescu, Raluca; Munteanu, Daniela; Iacob, Diana Gabriela; Popescu, Cristina; Catana, Remulus; Negru, Anca; Lobodan, Alina; Arama, Stefan Sorin

    2018-02-16

    Adiponectin and leptin are adipose tissue hormones that regulate important lipid and glucose metabolic pathways. Our objective was to evaluate the interplay of these hormones described by the adiponectin/leptin ratio (ALR) in correlation to lipid and carbohydrate metabolism parameters in nondiabetic HIV-infected patients during antiretroviral therapy (ART). We enrolled consecutive nondiabetic patients with confirmed HIV infection, undergoing stable ART regimens for at least six months. Blood samples were collected and tested for immunological and virological parameters, adiponectin and leptin, fasting insulin, fasting plasma glucose, fasting triglycerides, total cholesterol, LDL cholesterol, and HDL cholesterol. ALR was computed for each patient. Resistance to insulin was assessed by calculating the Quantitative Insulin Sensitivity Check Index (QUICKI). We enrolled 87 HIV-infected persons, with a mean age of 31.7 years (range: 18-65), including 47 men (mean age = 32.8 years) and 40 women (mean age = 30.5 years). The median value of ALR was 6.8 (interquartile range - IQR = 17.1). In male patients, ALR was inversely associated with the serum level of triglycerides (R = 0.285, p = 0.05), total cholesterol (R = 0.326, p = 0.02), and LDL cholesterol (R = 0.298, p = 0.04). Also for the male cohort, an increase in ALR seemed to improve insulin sensitivity (R = 0.323, p = 0.02) and serum HDL cholesterol (R = 0.597, p = 0.01). None of these correlations were observed in HIV-infected women. Adiponectin and leptin seem to play important but different gender-specific roles in the pathogenesis of lipid and glucose metabolism of HIV-infected patients undergoing antiretroviral therapy. ALR, adiponectin/leptin ratio; BMI, body mass index; LDL, low-density lipoprotein; HDL, high-density lipoprotein; QUICKI, Quantitative Insulin Sensitivity Check Index.

  5. Fractionation of carbohydrate and protein content of some forage feeds of ruminants for nutritive evaluation.

    Science.gov (United States)

    Das, Lalatendu Keshary; Kundu, S S; Kumar, Dinesh; Datt, Chander

    2015-02-01

    To evaluate some forage feeds of ruminants in terms of their carbohydrate (CHO) and protein fractions using Cornell Net Carbohydrate and Protein System (CNCPS). Eleven ruminant feeds (six green fodders - maize, oat, sorghum, bajra, cowpea, berseem and five range herbages - para grass, guinea grass, hedge lucerne, setaria grass and hybrid napier) were selected for this study. Each feed was chemically analyzed for proximate principles (dry matter, crude protein [CP], ether extract, organic matter and ash), fiber fractions (neutral detergent fiber, acid detergent fiber, acid detergent lignin, cellulose and hemicellulose), primary CHO fractions (CHO, non-structural CHO, structural CHO and starch) and primary protein fractions (neutral detergent insoluble CP, acid detergent insoluble CP, non-protein nitrogen and soluble protein). The results were fitted to the equations of CNCPS to arrive at various CHO (CA - fast degrading, CB1 - intermediate degrading, CB2 - slow degrading and CC - non-degrading or unavailable) and protein (PA - instantaneously degrading, PB1 - fast degrading, PB2 - intermediate degrading, PB3 - slow degrading and PC - non-degrading or unavailable) fractions of test feeds. Among green fodders, cowpea and berseem had higher CA content while except hedge lucerne all range herbages had lower CA values. CB1 content of all feeds was low but similar. All feeds except cowpea, berseem, and hedge lucerne contained higher CB2 values. Oat among green fodders and hybrid napier among range herbages had lower CC fraction. Feeds such as bajra, cowpea, berseem and the setaria grass contained lower PA fraction. All green fodders had higher PB1 content except maize and cowpea while all range herbages had lower PB1 values except hedge lucerne. Para grass and hybrid napier contained exceptionally low PB2 fraction among all feeds. Low PC contents were reported in oat and berseem fodders. Based on our findings, it was concluded that feeds with similar CP and CHO content

  6. Fractionation of carbohydrate and protein content of some forage feeds of ruminants for nutritive evaluation

    Directory of Open Access Journals (Sweden)

    Lalatendu Keshary Das

    2015-02-01

    Full Text Available Aim: To evaluate some forage feeds of ruminants in terms of their carbohydrate (CHO and protein fractions using Cornell Net Carbohydrate and Protein System (CNCPS. Materials and Methods: Eleven ruminant feeds (six green fodders - maize, oat, sorghum, bajra, cowpea, berseem and five range herbages - para grass, guinea grass, hedge lucerne, setaria grass and hybrid napier were selected for this study. Each feed was chemically analyzed for proximate principles (dry matter, crude protein [CP], ether extract, organic matter and ash, fiber fractions (neutral detergent fiber, acid detergent fiber, acid detergent lignin, cellulose and hemicellulose, primary CHO fractions (CHO, non-structural CHO, structural CHO and starch and primary protein fractions (neutral detergent insoluble CP, acid detergent insoluble CP, non-protein nitrogen and soluble protein. The results were fitted to the equations of CNCPS to arrive at various CHO (CA - fast degrading, CB1 - intermediate degrading, CB2 - slow degrading and CC - nondegrading or unavailable and protein (PA - instantaneously degrading, PB1 - fast degrading, PB2 - intermediate degrading, PB3 - slow degrading and PC - non-degrading or unavailable fractions of test feeds. Results: Among green fodders, cowpea and berseem had higher CA content while except hedge lucerne all range herbages had lower CA values. CB1 content of all feeds was low but similar. All feeds except cowpea, berseem, and hedge lucerne contained higher CB2 values. Oat among green fodders and hybrid napier among range herbages had lower CC fraction. Feeds such as bajra, cowpea, berseem and the setaria grass contained lower PA fraction. All green fodders had higher PB1 content except maize and cowpea while all range herbages had lower PB1 values except hedge lucerne. Para grass and hybrid napier contained exceptionally low PB2 fraction among all feeds. Low PC contents were reported in oat and berseem fodders. Conclusion: Based on our findings, it

  7. Application of radioisotopes in biochemistry of proteins, hydrocarbons and lipids of viruses

    International Nuclear Information System (INIS)

    Budarkov, V.A.; Bakulov, I.A.; Makarov, V.V.; Chumak, R.M.

    1990-01-01

    The article desribes the methods of radioisotope application in biochemistry of proteins, hydrocarbons and lipids of viruses: - radionuclide analysis of immunocompetent cell surface components; - technique of radionuclide introduction into viruse and cell proteins; - method of investigating of viruse glycoproteins; - method of measuring viruse ferment activity. 383 refs.; 2 figs.; 4 tabs

  8. Major membrane surface proteins of Mycoplasma hyopneumoniae selectively modified by covalently bound lipid

    International Nuclear Information System (INIS)

    Wise, K.S.; Kim, M.F.

    1987-01-01

    Surface protein antigens of Mycoplasma hyopneumoniae were identified by direct antibody-surface binding or by radioimmunoprecipitation of surface 125 I-labeled proteins with a series of monoclonal antibodies (MAbs). Radioimmunoprecipitation of TX-114-phase proteins from cells labeled with [ 35 S] methionine, 14 C-amino acids, or [ 3 H] palmitic acid showed that proteins p65, p50, and p44 were abundant and (with one other hydrophobic protein, p60) were selectively labeled with lipid. Alkaline hydroxylamine treatment of labeled proteins indicated linkage of lipids by amide or stable O-linked ester bonds. Proteins p65, p50, and p44 were highly immunogenic in the natural host as measured by immunoblots of TX-114-phase proteins with antisera from swine inoculated with whole organisms. These proteins were antigenically and structurally unrelated, since hyperimmune mouse antibodies to individual gel-purified proteins were monospecific and gave distinct proteolytic epitope maps. Intraspecies size variants of one surface antigen of M. hyopneumoniae were revealed by a MAb to p70 (defined in strain J, ATCC 25934), which recognized a large p73 component on strain VPP11 (ATCC 25617). In addition, MAb to internal, aqueous-phase protein p82 of strain J failed to bind an analogous antigen in strain VPP11

  9. Major membrane surface proteins of Mycoplasma hyopneumoniae selectively modified by covalently bound lipid

    Energy Technology Data Exchange (ETDEWEB)

    Wise K.S.; Kim, M.F.

    1987-12-01

    Surface protein antigens of Mycoplasma hyopneumoniae were identified by direct antibody-surface binding or by radioimmunoprecipitation of surface /sup 125/I-labeled proteins with a series of monoclonal antibodies (MAbs). Radioimmunoprecipitation of TX-114-phase proteins from cells labeled with (/sup 35/S) methionine, /sup 14/C-amino acids, or (/sup 3/H) palmitic acid showed that proteins p65, p50, and p44 were abundant and (with one other hydrophobic protein, p60) were selectively labeled with lipid. Alkaline hydroxylamine treatment of labeled proteins indicated linkage of lipids by amide or stable O-linked ester bonds. Proteins p65, p50, and p44 were highly immunogenic in the natural host as measured by immunoblots of TX-114-phase proteins with antisera from swine inoculated with whole organisms. These proteins were antigenically and structurally unrelated, since hyperimmune mouse antibodies to individual gel-purified proteins were monospecific and gave distinct proteolytic epitope maps. Intraspecies size variants of one surface antigen of M. hyopneumoniae were revealed by a MAb to p70 (defined in strain J, ATCC 25934), which recognized a large p73 component on strain VPP11 (ATCC 25617). In addition, MAb to internal, aqueous-phase protein p82 of strain J failed to bind an analogous antigen in strain VPP11.

  10. Protein and lipid deposition rates in growing pigs following a period ...

    African Journals Online (AJOL)

    Animal and Poultry Science

    Experimental evidence indicates that animals which are fatter than their desired level, show a reduction in .... composition and respective protein and lipid growth rates, an individual pig was the experimental unit. The ..... Cubana Ciencia Agric.

  11. Physical and Nutritional Characteristics of Pequi Fruit and Comparison of Different Methods for Extraction of their Lipids

    Directory of Open Access Journals (Sweden)

    MPR Torres

    2012-11-01

    Full Text Available ABSTRACT: This study aimed to analyze the nutritional composition of the pequi fruit (Caryocar brasiliensis and compare the performance of two extraction processes of lipids. The fruits were collected in two localities in Sinop - MT, in the maturation stage, before falling of the tree. Then were weighed whole, then fragmented to be dried and crushed. Then, we obtained the almond and a flour from the inner mesocarp with the thorny endocarp, which were analyzed for moisture, ash, fat, protein and total carbohydrates and hot and cold extraction of the lipids. Whole fruits and pyrenes had higher weight than site 1. The pequi presented a rich nutrition profile, especially for the high concentration of lipids (Almond: 45.42% in site to 01, 43.32% in site 02; flour: 34.73% in site 01, 38, 88% in site 02, a considerable quantity of protein (almond: 20.64% in site 01, 20.3% in site 02; flour: 3.67% in site, 4.03% in site 02. The almond proved richer in lipids, protein and minerals in comparison with the flour. The chemical composition of site 01 and site 02 differed in moisture and protein flour, and the moisture content of the almond. The hot method showed a yield higher than the cold method. The hot method extracted from sites 1 and 2, respectively, 73.4% and 73.5% more lipids from almond and 30.3% and 78.9% more from the flour.Keywords: Extraction, nutritional value, oil, pequi.

  12. Quantification of Protein-Induced Membrane Remodeling Kinetics In Vitro with Lipid Multilayer Gratings

    Science.gov (United States)

    Lowry, Troy W.; Hariri, Hanaa; Prommapan, Plengchart; Kusi-Appiah, Aubrey; Vafai, Nicholas; Bienkiewicz, Ewa A.; Van Winkle, David H.; Stagg, Scott M.

    2016-01-01

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at micro- and nanoscopic scales. Consequently, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Here, a new nanotechnology-based method for quantitative measurements of lipid–protein interactions is presented and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1 is demonstrated. Lipid multilayer gratings are printed onto surfaces using nanointaglio and exposed to Sar1, resulting in the inflation of lipid multilayers into unilamellar structures, which can be observed in a label-free manner by monitoring the diffracted light. Local variations in lipid multilayer volume on the surface is used to vary substrate availability in a microarray format. A quantitative model is developed that allows quantification of binding affinity (KD) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1-induced inflation of single bilayers from surface supported multilayers, the semicylindrical grating lines are observed to remodel into semispherical buds when a critical radius of curvature is reached. PMID:26649649

  13. Energy efficiency of digestible protein, fat and carbohydrate utilisation for growth in rainbow trout and Nile tilapia.

    Science.gov (United States)

    Schrama, Johan W; Haidar, Mahmoud N; Geurden, Inge; Heinsbroek, Leon T N; Kaushik, Sachi J

    2018-04-01

    Currently, energy evaluation of fish feeds is performed on a digestible energy basis. In contrast to net energy (NE) evaluation systems, digestible energy evaluation systems do not differentiate between the different types of digested nutrients regarding their potential for growth. The aim was to develop an NE evaluation for fish by estimating the energy efficiency of digestible nutrients (protein, fat and carbohydrates) and to assess whether these efficiencies differed between Nile tilapia and rainbow trout. Two data sets were constructed. The tilapia and rainbow data set contained, respectively, eight and nine experiments in which the digestibility of protein, fat and energy and the complete energy balances for twenty-three and forty-five diets was measured. The digestible protein (dCP), digestible fat (dFat) and digestible carbohydrate intakes (dCarb) were calculated. By multiple regression analysis, retained energy (RE) was related to dCP, dFat and dCarb. In tilapia, all digestible nutrients were linearly related to RE (Pefficiency of dCP, dFat and dCarb was 49, 91 and 66 %, respectively, showing large similarity with pigs. Tilapia and trout had similar energy efficiencies of dCP (49 v. 57 %) and dFat (91 v. 84 %), but differed regarding dCarb.

  14. Plant-derived phenolics inhibit the accrual of structurally characterised protein and lipid oxidative modifications.

    Directory of Open Access Journals (Sweden)

    Arantza Soler-Cantero

    Full Text Available Epidemiological data suggest that plant-derived phenolics beneficial effects include an inhibition of LDL oxidation. After applying a screening method based on 2,4-dinitrophenyl hydrazine-protein carbonyl reaction to 21 different plant-derived phenolic acids, we selected the most antioxidant ones. Their effect was assessed in 5 different oxidation systems, as well as in other model proteins. Mass-spectrometry was then used, evidencing a heterogeneous effect on the accumulation of the structurally characterized protein carbonyl glutamic and aminoadipic semialdehydes as well as for malondialdehyde-lysine in LDL apoprotein. After TOF based lipidomics, we identified the most abundant differential lipids in Cu(++-incubated LDL as 1-palmitoyllysophosphatidylcholine and 1-stearoyl-sn-glycero-3-phosphocholine. Most of selected phenolic compounds prevented the accumulation of those phospholipids and the cellular impairment induced by oxidized LDL. Finally, to validate these effects in vivo, we evaluated the effect of the intake of a phenolic-enriched extract in plasma protein and lipid modifications in a well-established model of atherosclerosis (diet-induced hypercholesterolemia in hamsters. This showed that a dietary supplement with a phenolic-enriched extract diminished plasma protein oxidative and lipid damage. Globally, these data show structural basis of antioxidant properties of plant-derived phenolic acids in protein oxidation that may be relevant for the health-promoting effects of its dietary intake.

  15. Effects of Low Carbohydrate High Protein (LCHP) diet on atherosclerotic plaque phenotype in ApoE/LDLR-/- mice: FT-IR and Raman imaging.

    Science.gov (United States)

    Wrobel, T P; Marzec, K M; Chlopicki, S; Maślak, E; Jasztal, A; Franczyk-Żarów, M; Czyżyńska-Cichoń, I; Moszkowski, T; Kostogrys, R B; Baranska, M

    2015-09-22

    Low Carbohydrate High Protein (LCHP) diet displays pro-atherogenic effects, however, the exact mechanisms involved are still unclear. Here, with the use of vibrational imaging, such as Fourier transform infrared (FT-IR) and Raman (RS) spectroscopies, we characterize biochemical content of plaques in Brachiocephalic Arteries (BCA) from ApoE/LDLR(-/-) mice fed LCHP diet as compared to control, recomended by American Institute of Nutrition, AIN diet. FT-IR images were taken from 6-10 sections of BCA from each mice and were complemented with RS measurements with higher spatial resolution of chosen areas of plaque sections. In aortic plaques from LCHP fed ApoE/LDLR(-/-) mice, the content of cholesterol and cholesterol esters was increased, while that of proteins was decreased as evidenced by global FT-IR analysis. High resolution imaging by RS identified necrotic core/foam cells, lipids (including cholesterol crystals), calcium mineralization and fibrous cap. The decreased relative thickness of the outer fibrous cap and the presence of buried caps were prominent features of the plaques in ApoE/LDLR(-/-) mice fed LCHP diet. In conclusion, FT-IR and Raman-based imaging provided a complementary insight into the biochemical composition of the plaque suggesting that LCHP diet increased plaque cholesterol and cholesterol esters contents of atherosclerotic plaque, supporting the cholesterol-driven pathogenesis of LCHP-induced atherogenesis.

  16. Lipid droplet meets a mitochondrial protein to regulate adipocyte lipolysis

    Science.gov (United States)

    In response to adrenergic stimulation, adipocytes undergo protein kinase A (PKA)-stimulated lipolysis. A key PKA target in this context is perilipin 1, a major regulator of lipolysis on lipid droplets (LDs). A study published in this issue of The EMBO Journal (Pidoux et al, 2011) identifies optic at...

  17. Substrate Utilization is Influenced by Acute Dietary Carbohydrate Intake in Active, Healthy Females.

    Science.gov (United States)

    Gregory, Sara; Wood, Richard; Matthews, Tracey; Vanlangen, Deborah; Sawyer, Jason; Headley, Samuel

    2011-01-01

    The present study compared the metabolic responses between a single low-carbohydrate (LC) and low-fat (LF) meal followed by an aerobic exercise bout in females. Subjects included 8 active, premenopausal females. Subjects completed a LC and LF testing session. Respiratory gas exchange (RER) measurements were taken for 20 min fasted, for 55 min postprandial (PP), and during 30 min of exercise. Blood was collected for assessment of glucose (G), insulin (IN), triglycerides (TG), and free fatty acids (FFA) during the final 10 min of each time period. The LF meal provided 396 kcal (78% carbohydrate, 7% fat, and 15% protein). The LC meal provided 392 kcal (15% carbohydrate, 68% fat, and 18% protein). No significant differences existed between test meals for fasting blood measurements. PP IN (μU·mL(-1)) levels were significantly lower following LC compared to LF [10.7 (6.1) vs. 26.0 (21.0)]. Postexercise (PE) FFA (mEq·L(-1)) levels were significantly greater following LC [1.1 (0.3) vs. 0.5 (0.3)]. PE TG (mg·dL(-1)) levels were significantly greater following LC [152.0 (53.1) vs. 114.4 (40.9)]. RER was significantly lower at all time points following LC compared to LF. In moderately active adult females, ingestion of a single LC meal resulted in greater lipid oxidation at rest and during exercise as compared to a single LF meal. Although macronutrient distribution appears to have dictated substrate utilization in the present study, more research is needed regarding the long-term effects of macronutrient redistribution with and without exercise on substrate utilization. Key pointsThe relative carbohydrate content of a single meal has a significant impact on postprandial metabolism and substrate utilization in healthy, active females.A single bout of aerobic exercise performed within an hour of meal ingestion has the potential to modify the postprandial response.Interventions aimed at improving body composition and preventing chronic disease should focus on dietary

  18. Effect of pomegranate peel extract on lipid and protein oxidation in beef meatballs during refrigerated storage.

    Science.gov (United States)

    Turgut, Sebahattin Serhat; Soyer, Ayla; Işıkçı, Fatma

    2016-06-01

    Antioxidant effect of pomegranate peel extract (PE) to retard lipid and protein oxidation was investigated in meatballs during refrigerated storage at 4±1°C. Concentrated lyophilised water extract of pomegranate peel was incorporated into freshly minced beef meat at 0.5% and 1% concentrations and compared with 0.01% butylated hydroxytoluene (BHT) as a reference and control (without any antioxidant). PE showed high phenolic content and antioxidant activity. In PE added samples, thiobarbituric acid reactive substances (TBARS) value, peroxide formation, loss of sulfhydryl groups and formation of protein carbonyls were lower than control (Pmeatballs prolonged the refrigerated storage up to 8 days. Addition of both 0.5 and 1% PE in meatballs reduced lipid and protein oxidation and improved sensory scores. These results indicated that PE was effective on retarding lipid and protein oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Lipid composition of cAMP-dependent protein kinase mutants of Aspergillus niger.

    Science.gov (United States)

    Jernejc, Katarina; Bencina, Mojca

    2003-08-29

    Lipid composition of cAMP-dependent protein kinase (PKA) Aspergillus niger mutants with overexpressed or deleted genes for either regulatory and/or the catalytic subunit of PKA was analyzed. Disruption of the gene encoding the PKA regulatory subunit resulted in 20% less total lipids, 30% less neutral lipids, four times more glycolipids and two-fold higher triacylglycerol lipase activity compared to the control strain. Concomitantly a five-fold decrease in phosphatidylcholine, accompanied with 1.5-, 1.8- and 2.8-fold increases in phosphatidylethanolamine, lysophosphatidylethanolamine and phosphatidylinositol, was determined, respectively. The lack of PKA activity, due to the disruption of a gene encoding the PKA catalytic subunit, resulted in a 1.6-times increase in total lipids with two times more neutral lipids associated with lower triacylglycerol lipase activity and a decrease in phospholipids. The mutants with unrestricted PKA activity synthesized twice as much citric acid as the control strain and three times more than strains lacking PKA activity. The results indicate the involvement of cAMP-mediated PKA activity in regulation of lipid biosynthesis as well as citric acid synthesis.

  20. Serum progranulin concentrations are not responsive during oral lipid tolerance test and oral glucose tolerance test.

    Science.gov (United States)

    Schmid, A; Leszczak, S; Ober, I; Schäffler, A; Karrasch, T

    2015-07-01

    The postprandial regulation of progranulin by oral uptake of lipids and carbohydrates in healthy individuals has not yet been investigated. The regulation of progranulin in 2 large cohorts of healthy volunteers during oral lipid tolerance test (OLTT; n=100) and oral glucose tolerance test (OGTT; n=100) was analyzed. One hundred healthy volunteers underwent OLTT and OGTT in an outpatient setting. Venous blood was drawn at 0 hours (h) (fasting) and at 2, 4, and 6 h in OLTT or 1 and 2 h in OGTT. A novel OLTT solution completely free of carbohydrates and protein was applied. Subjects were characterized by anthropometric and laboratory parameters. Serum concentrations of progranulin were measured by enzyme-linked immunosorbent assay (ELISA). Circulating progranulin levels remained unchanged during OLTT and OGTT. Fasting progranulin levels ranged between 31.3±8.7 and 40.6±7.7 ng/ml and were not different in subgroups addressing BMI, gender, family history, smoking habits, and hormonal contraception. There was a reciprocal correlation of progranulin with HDL (negative) and LDL cholesterol levels (positive). In healthy adults, fasting and postprandial circulating progranulin levels are not different in BMI subgroups. Oral uptake of carbohydrates and lipids does not influence circulating progranulin levels in a short-term manner. A postprandial and short-term regulation of this adipokine is absent, at least in healthy subjects. There is a negative correlation of progranulin with HDL cholesterol, but a positive correlation with LDL cholesterol. This reciprocal association might be of physiological importance for an individual's atherosclerotic risk. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Carbohydrate particles as protein carriers and scaffolds: physico-chemical characterization and collagen stability

    International Nuclear Information System (INIS)

    Peres, Ivone; Rocha, Sandra; Loureiro, Joana A.; Carmo Pereira, Maria do; Ivanova, Galya; Coelho, Manuel

    2012-01-01

    The preservation of protein properties after entrapping into polymeric matrices and the effects of drying the emulsions still remains uncertain and controversial. Carbohydrate particles were designed and prepared by homogenization of gum arabic and maltodextrin mixture, with collagen hydrolysate (CH) followed by spray-drying. The encapsulation of CH in the carbohydrate matrix was achieved with an efficiency of 85 ± 2 %. The morphology and the size of the particles, before (40–400 nm) and after spray-drying (<20 μm), were characterized by scanning electron microscopy and dynamic light scattering. Measurements of the nuclear relaxation times and application of diffusion ordered spectroscopy, obtained through pulsed field gradient NMR experiments, have been performed to determine the structure of the CH–polysaccharide conjugates and to clarify the mechanism of CH immobilization in the polysaccharide matrix. In vitro release profiles in ultrapure water and in cellular medium reveal that the diffusion rate of CH from the polymeric matrix to the dialysis solution decreases in average 30–50 % over time, compared to free CH molecules. In cellular medium at 37 °C, the complete release of CH from the particles is achieved only after 24 h, demonstrating a significant decrease in the CH mass transfer process when compared with free CH. The findings of this study outline the ability of gum arabic/maltodextrin matrices to entrap and preserve CH original properties after the spray-drying process and support the potential of the polymeric scaffold for protein delivery and tissue engineering.

  2. The effect of protein and lipid source in organic feed for (organic) rainbow trout on sensory quality

    DEFF Research Database (Denmark)

    Hyldig, Grethe; Green-Petersen, Ditte; Jacobsen, Charlotte

    2011-01-01

    of vegetable protein. While the lipid sources were fish, linseed, sunflower, rapeseed and grape seed oil. After slaughtering all fish were frozen (-40°C) until the sensory experiment was performed, for which the trout were thawed and stored for 3, 5, 7 and 14 days in ice respectively. The sensory experiment......-life is increased by feeding the fish with vegetable protein compared to fish meal. The conclusion of the experiment therefore was that both dietary vegetable protein and lipid sources can influence on sensory characteristics of trout stored in ice.......The aim of this work was to study which effects protein and lipid source in feed for organic rainbow trout (Oncohynchus mykiss) may have on the sensory quality of the final product after up to 14 days of storage in ice. The protein sources used in the experiment were fishmeal and a mixture...

  3. Sphingosine-1-Phosphate Lyase Deficient Cells as a Tool to Study Protein Lipid Interactions.

    Directory of Open Access Journals (Sweden)

    Mathias J Gerl

    Full Text Available Cell membranes contain hundreds to thousands of individual lipid species that are of structural importance but also specifically interact with proteins. Due to their highly controlled synthesis and role in signaling events sphingolipids are an intensely studied class of lipids. In order to investigate their metabolism and to study proteins interacting with sphingolipids, metabolic labeling based on photoactivatable sphingoid bases is the most straightforward approach. In order to monitor protein-lipid-crosslink products, sphingosine derivatives containing a reporter moiety, such as a radiolabel or a clickable group, are used. In normal cells, degradation of sphingoid bases via action of the checkpoint enzyme sphingosine-1-phosphate lyase occurs at position C2-C3 of the sphingoid base and channels the resulting hexadecenal into the glycerolipid biosynthesis pathway. In case the functionalized sphingosine looses the reporter moiety during its degradation, specificity towards sphingolipid labeling is maintained. In case degradation of a sphingosine derivative does not remove either the photoactivatable or reporter group from the resulting hexadecenal, specificity towards sphingolipid labeling can be achieved by blocking sphingosine-1-phosphate lyase activity and thus preventing sphingosine derivatives to be channeled into the sphingolipid-to-glycerolipid metabolic pathway. Here we report an approach using clustered, regularly interspaced, short palindromic repeats (CRISPR-associated nuclease Cas9 to create a sphingosine-1-phosphate lyase (SGPL1 HeLa knockout cell line to disrupt the sphingolipid-to-glycerolipid metabolic pathway. We found that the lipid and protein compositions as well as sphingolipid metabolism of SGPL1 knock-out HeLa cells only show little adaptations, which validates these cells as model systems to study transient protein-sphingolipid interactions.

  4. Homo-FRET imaging as a tool to quantify protein and lipid clustering.

    Science.gov (United States)

    Bader, Arjen N; Hoetzl, Sandra; Hofman, Erik G; Voortman, Jarno; van Bergen en Henegouwen, Paul M P; van Meer, Gerrit; Gerritsen, Hans C

    2011-02-25

    Homo-FRET, Förster resonance energy transfer between identical fluorophores, can be conveniently measured by observing its effect on the fluorescence anisotropy. This review aims to summarize the possibilities of fluorescence anisotropy imaging techniques to investigate clustering of identical proteins and lipids. Homo-FRET imaging has the ability to determine distances between fluorophores. In addition it can be employed to quantify cluster sizes as well as cluster size distributions. The interpretation of homo-FRET signals is complicated by the fact that both the mutual orientations of the fluorophores and the number of fluorophores per cluster affect the fluorescence anisotropy in a similar way. The properties of the fluorescence probes are very important. Taking these properties into account is critical for the correct interpretation of homo-FRET signals in protein- and lipid-clustering studies. This is be exemplified by studies on the clustering of the lipid raft markers GPI and K-ras, as well as for EGF receptor clustering in the plasma membrane. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nutrient intake, serum lipids and iron status of colligiate rugby players.

    Science.gov (United States)

    Imamura, Hiroyuki; Iide, Kazuhide; Yoshimura, Yoshitaka; Kumagai, Kenya; Oshikata, Reika; Miyahara, Keiko; Oda, Kazuto; Miyamoto, Noriko; Nakazawa, Anthony

    2013-02-13

    There are two main playing positions in rugby (backs and forwards), which demonstrate different exercise patterns, roles, and physical characteristics. The purpose of this study was: 1) to collect baseline data on nutrient intake in order to advise the athletes about nutrition practices that might enhance performance, and 2) to compare serum lipids, lipoproteins, apolipoproteins (apo), lecithin:cholesterol acyltransferase (LCAT) activity, and iron status of forwards and backs. The sporting group was divided into 18 forwards and 16 backs and were compared with 26 sedentary controls. Dietary information was obtained with a food frequency questionnaire. There were significant differences among the three groups. The forwards had the highest body weight, body mass index, percentage of body fat (calculated by sum of four skinfold thicknesses), as well as the highest lean body mass, followed by the backs and the control group. The mean carbohydrate intake was marginal and protein intake was lower than the respective recommended targets in all three groups. The mean intakes of calcium, magnesium, and vitamins A, B1, B2, and C were lower than the respective Japanese recommended dietary allowances or adequate dietary intakes for the rugby players. The forwards had significantly lower high-density lipoprotein cholesterol (HDL-C) and HDL2-C than the backs and had significantly higher apo B and LCAT activity than the controls. The backs showed significantly higher HDL-C, HDL3-C, low-density lipoprotein cholesterol, and apo A-I, and LCAT activity than the controls. Four forwards (22%), five backs (31%), and three controls (12%) had hemolysis. None of the rugby players had anemia or iron depletion. The findings of our study indicate that as the athletes increased their carbohydrate and protein intake, their performance and lean body mass increased. Further, to increase mineral and vitamin intakes, we recommended athletes increase their consumption of green and other vegetables

  6. Improved feed protein fractionation schemes for formulating rations with the cornell net carbohydrate and protein system.

    Science.gov (United States)

    Lanzas, C; Broderick, G A; Fox, D G

    2008-12-01

    Adequate predictions of rumen-degradable protein (RDP) and rumen-undegradable protein (RUP) supplies are necessary to optimize performance while minimizing losses of excess nitrogen (N). The objectives of this study were to evaluate the original Cornell Net Carbohydrate Protein System (CNCPS) protein fractionation scheme and to develop and evaluate alternatives designed to improve its adequacy in predicting RDP and RUP. The CNCPS version 5 fractionates CP into 5 fractions based on solubility in protein precipitant agents, buffers, and detergent solutions: A represents the soluble nonprotein N, B1 is the soluble true protein, B2 represents protein with intermediate rates of degradation, B3 is the CP insoluble in neutral detergent solution but soluble in acid detergent solution, and C is the unavailable N. Model predictions were evaluated with studies that measured N flow data at the omasum. The N fractionation scheme in version 5 of the CNCPS explained 78% of the variation in RDP with a root mean square prediction error (RMSPE) of 275 g/d, and 51% of the RUP variation with RMSPE of 248 g/d. Neutral detergent insoluble CP flows were overpredicted with a mean bias of 128 g/d (40% of the observed mean). The greatest improvements in the accuracy of RDP and RUP predictions were obtained with the following 2 alternative schemes. Alternative 1 used the inhibitory in vitro system to measure the fractional rate of degradation for the insoluble protein fraction in which A = nonprotein N, B1 = true soluble protein, B2 = insoluble protein, C = unavailable protein (RDP: R(2) = 0.84 and RMSPE = 167 g/d; RUP: R(2) = 0.61 and RMSPE = 209 g/d), whereas alternative 2 redefined A and B1 fractions as the non-amino-N and amino-N in the soluble fraction respectively (RDP: R(2) = 0.79 with RMSPE = 195 g/d and RUP: R(2) = 0.54 with RMSPE = 225 g/d). We concluded that implementing alternative 1 or 2 will improve the accuracy of predicting RDP and RUP within the CNCPS framework.

  7. Expression of Lipid Metabolism-Related Proteins Differs between Invasive Lobular Carcinoma and Invasive Ductal Carcinoma.

    Science.gov (United States)

    Cha, Yoon Jin; Kim, Hye Min; Koo, Ja Seung

    2017-01-23

    We comparatively investigated the expression and clinical implications of lipid metabolism-related proteins in invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) of the breast. A total of 584 breast cancers (108 ILC and 476 IDC) were subjected to tissue microarray and immunohistochemical analysis for lipid metabolism-related proteins including hormone-sensitive lipase (HSL), perilipin A, fatty acid binding protein (FABP)4, carnitine palmitoyltransferase (CPT)-1, acyl-CoA oxidase 1, and fatty acid synthetase (FASN). HSL, perilipin A, and FABP4 expression (all p invasive cancers, HSL and FABP4 were highly expressed in luminal A-type ILC ( p cancers, HSL and FABP4 were more highly expressed in ILC ( p < 0.001). Univariate analysis found associations of shorter disease-free survival with CPT-1 positivity ( p = 0.004) and acyl-CoA oxidase 1 positivity ( p = 0.032) and of shorter overall survival with acyl-CoA oxidase 1 positivity ( p = 0.027). In conclusion, ILC and IDC exhibited different immunohistochemical lipid metabolism-related protein expression profiles. Notably, ILC exhibited high HSL and FABP4 and low perilipin A expression.

  8. Long-term weight maintenance and cardiovascular risk factors are not different following weight loss on carbohydrate-restricted diets high in either monounsaturated fat or protein in obese hyperinsulinaemic men and women.

    Science.gov (United States)

    Keogh, Jennifer B; Luscombe-Marsh, Natalie D; Noakes, Manny; Wittert, Gary A; Clifton, Peter M

    2007-02-01

    The aim of this study was to determine after 52 weeks whether advice to follow a lower carbohydrate diet, either high in monounsaturated fat or low fat, high in protein had differential effects in a free-living community setting. Following weight loss on either a high monounsaturated fat, standard protein (HMF; 50 % fat, 20 % protein (67 g/d), 30 % carbohydrate) or a high protein, moderate fat (HP) (40 % protein (136 g/d), 30 % fat, 30 % carbohydrate) energy-restricted diet (6000 kJ/d) subjects were asked to maintain the same dietary pattern without intensive dietary counselling for the following 36 weeks. Overall weight loss was 6.2 (SD 7.3) kg (P loss at the end of the study were sex, age and reported percentage energy from protein (R2 0.22, P loss and improvement in cardiovascular risk factors with no adverse effects of a high monounsaturated fat diet.

  9. SLDP: a novel protein related to caleosin is associated with the endosymbiotic Symbiodinium lipid droplets from Euphyllia glabrescens.

    Science.gov (United States)

    Pasaribu, Buntora; Lin, I-Ping; Tzen, Jason T C; Jauh, Guang-Yuh; Fan, Tung-Yung; Ju, Yu-Min; Cheng, Jing-O; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2014-10-01

    Intracellular lipid droplets (LDs) have been proposed to play a key role in the mutualistic endosymbiosis between reef-building corals and the dinoflagellate endosymbiont Symbiodinium spp. This study investigates and identifies LD proteins in Symbiodinium from Euphyllia glabrescens. Discontinuous Percoll gradient centrifugation was used to separate Symbiodinium cells from E. glabrescens tentacles. Furthermore, staining with a fluorescent probe, Nile red, indicated that lipids accumulated in that freshly isolated Symbiodinium cells and lipid analyses further showed polyunsaturated fatty acids (PUFA) was abundant. The stable LDs were purified from endosymbiotic Symbiodinium cells. The structural integrity of the Symbiodinium LDs was maintained via electronegative repulsion and steric hindrance possibly provided by their surface proteins. Protein extracts from the purified LDs revealed a major protein band with a molecular weight of 20 kDa, which was termed Symbiodinium lipid droplet protein (SLDP). Interestingly, immunological cross-recognition analysis revealed that SLDP was detected strongly by the anti-sesame and anti-cycad caleosin antibodies. It was suggested that the stable Symbiodinium LDs were sheltered by this unique structural protein and was suggested that SLDP might be homologous to caleosin to a certain extent.

  10. Ingestion of carbohydrate or carbohydrate plus protein does not enhance performance during endurance exercise: a randomized cross-over placebo-controlled clinical trial.

    Science.gov (United States)

    Finger, Débora; Lanferdini, Fábio Juner; Farinha, Juliano Boufleur; Brusco, Clarissa Müller; Helal, Lucas; Boeno, Francesco Pinto; Cadore, Eduardo Lusa; Pinto, Ronei Silveira

    2018-03-15

    Protein (PRO) combined with a carbohydrate (CHO) beverage may have an ergogenic effect on endurance performance. However, evidence regarding its efficacy on similar conditions to athletes' race day is still lacking. To compare the effect of three different nutritional supplementation strategies on performance and muscle recovery in a duathlon protocol. , 13 male athletes (29.7 ± 7.7 years) participated in three simulated Olympic-distance duathlons under three different, randomly assigned, supplementation regimens: carbohydrate drink (CHO, 75 g); isocaloric CHO plus protein drink (CHO+PRO, 60.5 g CHO + 14.5 g PRO); and, placebo drink (PLA), offered during the cycling bout. Blood samples were collected before, immediately after and 24 h after each test for creatine kinase (CK) analysis. Isometric peak torque (PT) was measured before and 24 h after each condition. The primary outcome was the time to complete the last 5km running section (t5km) in a self-selected pace. Statistical differences were considered when p<0.05. There was no difference in t5km between CHO (1270.3 ± 130.5 s) vs. CHO+PRO (1267.2 ± 138.9 s) vs. PLA (1275.4 ± 120 s); p = 0.87; ES ≤ 0.1. Pre-post changes for PT and CK values did not show differences in any of three conditions (p = 0.24, ES ≤ 0.4, p = 0.32, 0.3-1.04). For endurance sports lasting up to 2 h, with a pre-meal containing 1.5 g/kg of CHO, CHO or CHO+PRO supplementation does not offer additional benefits when compared to a PLA in performance and muscle recovery.

  11. [Characteristics of the proteins of unicellular organisms as potential components of ecological life-support systems].

    Science.gov (United States)

    Barashkov, V A; Trubachev, I N; Gitel'zon, I I

    1979-01-01

    A comparative characterization of the biological value of proteins from green and blue-green algae, bacteria, and microbial coenosis of straw mineralizing active sludge is given with respect to the fractional composition of total protein, its amino acid composition, and affinity for proteolytic enzymes in vitro. The above microorganisms have an adequate amino acid composition, a high content of essential amino acids, and differ in their content of readily soluble proteins. The presence of protein complexes with other cellular components, for instance lipids and carbohydrates, seems to be responsible for a poor digestibility of these proteins.

  12. Adipocyte differentiation-related protein promotes lipid accumulation in goat mammary epithelial cells.

    Science.gov (United States)

    Shi, H B; Yu, K; Luo, J; Li, J; Tian, H B; Zhu, J J; Sun, Y T; Yao, D W; Xu, H F; Shi, H P; Loor, J J

    2015-10-01

    Milk fat originates from the secretion of cytosolic lipid droplets (CLD) synthesized within mammary epithelial cells. Adipocyte differentiation-related protein (ADRP; gene symbol PLIN2) is a CLD-binding protein that is crucial for synthesis of mature CLD. Our hypothesis was that ADRP regulates CLD production and metabolism in goat mammary epithelial cells (GMEC) and thus plays a role in determining milk fat content. To understand the role of ADRP in ruminant milk fat metabolism, ADRP (PLIN2) was overexpressed or knocked down in GMEC using an adenovirus system. Immunocytochemical staining revealed that ADRP localized to the surface of CLD. Supplementation with oleic acid (OA) enhanced its colocalization with CLD surface and enhanced lipid accumulation. Overexpression of ADRP increased lipid accumulation and the concentration of triacylglycerol in GMEC. In contrast, morphological examination revealed that knockdown of ADRP decreased lipid accumulation even when OA was supplemented. This response was confirmed by the reduction in mass of cellular TG when ADRP was knocked down. The fact that knockdown of ADRP did not completely eliminate lipid accumulation at a morphological level in GMEC without OA suggests that some other compensatory factors may also aid in the process of CLD formation. The ADRP reversed the decrease of CLD accumulation induced by adipose triglyceride lipase. This is highly suggestive of ADRP promoting triacylglycerol stability within CLD by preventing access to adipose triglyceride lipase. Collectively, these data provide direct in vitro evidence that ADRP plays a key role in CLD formation and stability in GMEC. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Combined effects of resistance training and carbohydrate-restrictive or conventional diets on weight loss, blood variables and endothelium function

    Directory of Open Access Journals (Sweden)

    Claudia Mello MEIRELLES

    Full Text Available ABSTRACT Objective: To compare the effects of either a carbohydrate-restrictive diets or a conventional hypoenergetic diet combined with resistance training. Methods: Twenty-one overweight and obese adults participated in an eight-week program consisting of progressive resistance training combined with carbohydrate-restrictive diets (initially set at <30 g carbohydrate; n=12 or conventional hypoenergetic diet (30% energetic restriction; carbohydrate/protein/lipid: 51/18/31% of total energy consumption; n=9. It was hypothesized that the carbohydrate-restrictive diets would induce greater weight loss but that both diets would elicit similar effects on selected health markers. Body mass, and body composition, blood variables and flow-mediated brachial artery dilation (flow-mediated brachial artery dilation; by ultrasound were used to assess changes due to the interventions. Results: Significant within-group reductions in body mass (-5.4±3.5%; p=0.001 versus -3.7±3.0%; p=0.015 and body fat (body fat; -10.2±7.0%; p=0.005 versus -9.6±8.8%; p=0.017 were identified for carbohydrate-restrictive diets and conventional hypoenergetic diet, respectively, but there were no significant differences between groups as the result of the interventions. Fat free mass, blood variables and flow-mediated brachial artery dilation did not significantly change, except for the total cholesterol/high-density lipoprotein ratio, which was reduced 10.4±16.9% in carbohydrate-restrictive diets (p=0.037 and 0.5±11.3% in conventional hypoenergetic diet (p=0.398. Conclusion: Carbohydrate-restrictive diets associated with resistance training was as effective as conventional hypoenergetic diet in decreasing body mass and body fat, as well as maintaining fat free mass, blood variables and flow-mediated brachial artery dilation, however it was more effective at lowering the total cholesterol/low density lipoprotein ratio.

  14. Influence of various carbohydrates on the utilization of low protein diet by the adult rat

    International Nuclear Information System (INIS)

    Khan, M. Akmal.

    1975-01-01

    The effect of different dietary carbohydrates on food intake, body weight and nitrogen balance of adult rats fed 5 per cent protein diet ad-libitum for 14, 24, and 45 days or restricted to 70 per cent of their normal food intake for 10 and 31 days was studied. No significant difference in food intake and body weight on either of treatments was observed. Nitrogen balance studies indicated that rats fed ad-libitum or restricted diet having starch as a source of dietary carbohydrate utilized nitrogen more efficiently than sucrose fed animals. Possible explanations have been discussed. Regression equations were calculated and it was found from the regression lines that minimum calories and nitrogen intake to maintain nitrogen equilibrium under experimental conditions were 123 kcal and 270 mg N per kg 3/4/day on starch based diet compared with 136 kcal and 295 mg N per kg 3/4/day on sucrose diet respectively

  15. Lipids and proteins in membranes: From in silico to in vivo

    Czech Academy of Sciences Publication Activity Database

    Cebecauer, Marek

    2012-01-01

    Roč. 29, č. 5 (2012), s. 115-117 ISSN 0968-7688 R&D Projects: GA ČR GAP305/11/0459 Institutional support: RVO:61388955 Keywords : lipids * proteins * membranes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.130, year: 2012

  16. Effect of gamma irradiation on the protein, amino acids and carbohydrate contents of soya-gari diet

    International Nuclear Information System (INIS)

    Ogbadu, G.H.

    1979-01-01

    Soya-gari diet, prepared by enrichment of gari (Manihot esculanta Cranz) with soya flour, methionine, lysine and salt mixture was irradiated with doses of 62.5, 125, 250 and 500 Krad from a Co 60 γ irradiator. Gamma irradiation of the soya-gari diet with doses as high as 500 Krad had no significant effect on the amino acids, total proteins, soluble carbohydrates, hemicelluloses, cellulose and lignin contents. (author)

  17. The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets

    NARCIS (Netherlands)

    Bikker, P.; Dirkzwager, A.; Fledderus, J.; Trevisi, P.; Huërou-Luron, Le I.; Lallès, J.P.; Awati, A.

    2006-01-01

    Reducing the CP content and increasing the fermentable carbohydrates (FC) content of the diet may counteract the negative effects of protein fermentation in newly weaned piglets fed high-CP diets. To study the synergistic effects of CP and FC on gut health and its consequences for growth

  18. Dietary protein content affects evolution for body size, body fat and viability in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Kristensen, Torsten N; Overgaard, Johannes; Loeschcke, Volker

    2011-01-01

    The ability to use different food sources is likely to be under strong selection if organisms are faced with natural variation in macro-nutrient (protein, carbohydrate and lipid) availabilities. Here, we use experimental evolution to study how variable dietary protein content affects adult body...... composition and developmental success in Drosophila melanogaster. We reared flies on either a standard diet or a protein-enriched diet for 17 generations before testing them on both diet types. Flies from lines selected on protein-rich diet produced phenotypes with higher total body mass and relative lipid...... content when compared with those selected on a standard diet, irrespective of which of the two diets they were tested on. However, selection on protein-rich diet incurred a cost as flies reared on this diet had markedly lower developmental success in terms of egg-to-adult viability on both medium types...

  19. Effect of Daily Exposure to an Isolated Soy Protein Supplement on Body Composition, Energy and Macronutrient Intake, Bone Formation Markers, and Lipid Profile in Children in Colombia.

    Science.gov (United States)

    Mejía, Wilson; Córdoba, Diana; Durán, Paola; Chacón, Yersson; Rosselli, Diego

    2018-01-16

    A soy protein-based supplement may optimize bone health, support physical growth, and stimulate bone formation. This study aimed to assess the effect of a daily soy protein supplement (SPS) on nutritional status, bone formation markers, lipid profile, and daily energy and macronutrient intake in children. One hundred seven participants (62 girls), ages 2 to 9, started the study and were randomly assigned to lunch fruit juice with (n = 57, intervention group) or without (n = 50, control group) addition of 45 g (230 Kcal) of a commercial SPS during 12 months; 84 children (51 girls, 33 boys) completed the study (45 and 39 intervention and control, respectively). Nutritional assessment included anthropometry and nutrient intakes; initial and final blood samples were taken; insulin-like growth factor-I (IGF-I), osteocalcin, bone specific alkaline phosphatase (BAP), insulin-like growth factor binding protein-3 (IGFBP-3), cholesterol, triglycerides, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were analyzed. Statistically significant changes (p < .05) in body mass index and weight for age Z scores were observed between groups while changes in body composition were not. Changes in energy, total protein, and carbohydrate intakes were significantly higher in the intervention group (p < .01). Calorie intake changes were statistically significant between groups (p < .001), and BAP decreased in both groups, with values within normal ranges. Osteocalcin, IGFBP-3, and lipid profile were not different between groups. IGF-I levels and IGF/IGFBP-3 ratio increased significantly in both groups. In conclusion, changes in macronutrient and energy intake and nutritional status in the intervention group compared to control group may ensure harmonious and adequate bone health and development.

  20. Regulation of membrane protein function by lipid bilayer elasticity—a single molecule technology to measure the bilayer properties experienced by an embedded protein

    DEFF Research Database (Denmark)

    Lundbæk, Jens August

    2008-01-01

    , regulate a number of structurally unrelated proteins in an apparently non-specific manner. It is well known that changes in the physical properties of a lipid bilayer (e.g., thickness or monolayer spontaneous curvature) can affect the function of an embedded protein. However, the role of such changes......-dependent sodium channels, N-type calcium channels and GABAA receptors, it has been shown that membrane protein function in living cells can be regulated by amphiphile induced changes in bilayer elasticity. Using the gramicidin channel as a molecular force transducer, a nanotechnology to measure the elastic...... properties experienced by an embedded protein has been developed. A theoretical and technological framework, to study the regulation of membrane protein function by lipid bilayer elasticity, has been established....

  1. Combined enteral infusion of glutamine, carbohydrates, and antioxidants modulates gut protein metabolism in humans.

    Science.gov (United States)

    Coëffier, Moïse; Claeyssens, Sophie; Lecleire, Stéphane; Leblond, Jonathan; Coquard, Aude; Bôle-Feysot, Christine; Lavoinne, Alain; Ducrotté, Philippe; Déchelotte, Pierre

    2008-11-01

    Available data suggest that nutrients can affect intestinal protein metabolism, which contributes to the regulation of gut barrier function. We aimed to assess whether an oral nutritional supplement (ONS) containing glutamine (as the dipeptide Ala-Gln), carbohydrates, and antioxidants would modulate duodenal protein metabolism in healthy humans. Thirty healthy control subjects were included and, over a period of 5 h, received by nasogastric tube either saline or ONS providing 11.7 kcal/kg as 0.877 g Ala-Gln/kg, 3.9 g carbohydrates/kg, and antioxidants (29.25 mg vitamin C/kg, 9.75 mg vitamin E/kg, 195 microg beta-carotene/kg, 5.85 mg Se/kg, and 390 microg Zn/kg) or glutamine (0.585 g/kg, 2.34 kcal/kg). Simultaneously, a continuous intravenous infusion of l-[1-(13)C]-leucine was done until endoscopy. Leucine enrichment was assessed by using gas chromatography-mass spectrometric analysis, and mucosal fractional synthesis rate was calculated by using intracellular amino acid enrichment as precursor. Mucosal proteolytic pathways were also evaluated. ONS infusion resulted in a doubling increase (P < 0.01) of duodenal fractional synthesis rate and a significant (P < 0.05) decrease in cathepsin D-mediated proteolysis compared with saline, whereas proteasome and Ca(2+)-dependent activities were unaffected. ONS infusion significantly (P < 0.01) decreased duodenal glutathione but not glutathione disulfide concentrations or the ratio of glutathione to glutathione disulfide. Insulinemia increased after ONS infusion, whereas plasma essential amino acids decreased. Infusion of glutamine alone did not reproduce ONS effects. ONS infusion improves duodenal protein balance in healthy humans. Further investigations are needed to study the origin of these effects and to evaluate ONS supply in stressed persons.

  2. [The effect of copper on the metabolism of iodine, carbohydrates and proteins in rats].

    Science.gov (United States)

    Esipenko, B E; Marsakova, N V

    1990-01-01

    Experiments on 156 rats maintained at ration with copper deficiency have demonstrated a decrease in the values of iodine metabolism in organs and tissues excluding the liver where a sharp increase in the concentration and content of inorganic iodine was observed. A disturbance in indices of carbohydrate and proteins metabolism in the organism of animals is marked. A direct relationship with a correlation coefficient equaling 0.87-1.00 is determined between changes in the concentration of protein-bound iodine in blood and concentration of glycogen in the liver, skeletal muscles, albumins, alpha 1-, alpha 2-globulins, urea concentration; an inverse relationship with glucose, activity of blood lipo-dehydrogenase and liver mitochondria, aldolase, concentration of pyruvic and lactic acids is established as well. It is concluded that copper deficiency can exert both a direct effect on metabolic processes (as data from literature testify) and an indirect one disturbing iodine metabolism, i. e. sharply decreasing protein-bound iodine production by the thyroid gland.

  3. The interaction of M13 coat protein with lipid bilayers : a spectroscopic study

    NARCIS (Netherlands)

    Sanders, J.C.

    1992-01-01

    In this thesis a small part of the reproductive cycle of the M13 bacteriophage is studied in more detail, namely the interaction of the major coat protein (MW 5240) with lipid bilayers. During the infection process is the major coat protein of M13 bacteriophage stored in the cytoplasm

  4. Low-protein, high-carbohydrate diet increases glucose uptake and fatty acid synthesis in brown adipose tissue of rats.

    Science.gov (United States)

    Aparecida de França, Suélem; Pavani Dos Santos, Maísa; Nunes Queiroz da Costa, Roger Vinícius; Froelich, Mendalli; Buzelle, Samyra Lopes; Chaves, Valéria Ernestânia; Giordani, Morenna Alana; Pereira, Mayara Peron; Colodel, Edson Moleta; Marlise Balbinotti Andrade, Cláudia; Kawashita, Nair Honda

    2014-04-01

    The aim of this study was to evaluate glucose uptake and the contribution of glucose to fatty acid (FA) synthesis and the glycerol-3-phosphate (G3P) of triacylglycerol synthesis by interscapular brown adipose tissue (IBAT) of low-protein, high-carbohydrate (LPHC) diet-fed rats. LPHC (6% protein; 74% carbohydrate) or control (17% protein; 63% carbohydrate) diets were administered to rats (∼ 100 g) for 15 d. Total FA and G3P synthesis and the synthesis of FA and G3P from glucose were evaluated in vivo by (3)H2O and (14)C-glucose. Sympathetic neural contribution for FA synthesis was evaluated by comparing the synthesis in denervated (7 d before) IBAT with that of the contralateral innervated side. The insulin signaling and β3 adrenergic receptor (β3-AR) contents, as well as others, were determined by Western blot (Student's t test or analysis of variance; P ≤ 0.05). Total FA synthesis in IBAT was 133% higher in the LPHC group and was reduced 85% and 70% by denervation for the LPHC and control groups, respectively. Glucose uptake was 3.5-fold higher in the IBAT of LPHC rats than in that of the control rats, and the contribution of glucose to the total FA synthesis increased by 12% in control rats compared with 18% in LPHC rats. The LPHC diet increased the G3P generation from glucose by 270% and the insulin receptor content and the p-AKT insulin stimulation in IBAT by 120% and reduced the β3-AR content by 50%. The LPHC diet stimulated glucose uptake, both the total rates and the rates derived from glucose-dependent FA and G3P synthesis, by increasing the insulin sensitivity and the sympathetic flux, despite a reduction in the β3-AR content. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Carbohydrates and the human gut microbiota.

    Science.gov (United States)

    Chassard, Christophe; Lacroix, Christophe

    2013-07-01

    Due to its scale and its important role in maintaining health, the gut microbiota can be considered as a 'new organ' inside the human body. Many complex carbohydrates are degraded and fermented by the human gut microbiota in the large intestine to both yield basic energy salvage and impact gut health through produced metabolites. This review will focus on the gut microbes and microbial mechanisms responsible for polysaccharides degradation and fermentation in the large intestine. Gut microbes and bacterial metabolites impact the host at many levels, including modulation of inflammation, and glucose and lipid metabolisms. A complex relationship occurs in the intestine between the human gut microbiota, diet and the host. Research on carbohydrates and gut microbiota composition and functionality is fast developing and will open opportunities for prevention and treatment of obesity, diabetes and other related metabolic disorders through manipulation of the gut ecosystem.

  6. A randomized trial of a low-carbohydrate diet for obesity.

    Science.gov (United States)

    Foster, Gary D; Wyatt, Holly R; Hill, James O; McGuckin, Brian G; Brill, Carrie; Mohammed, B Selma; Szapary, Philippe O; Rader, Daniel J; Edman, Joel S; Klein, Samuel

    2003-05-22

    Despite the popularity of the low-carbohydrate, high-protein, high-fat (Atkins) diet, no randomized, controlled trials have evaluated its efficacy. We conducted a one-year, multicenter, controlled trial involving 63 obese men and women who were randomly assigned to either a low-carbohydrate, high-protein, high-fat diet or a low-calorie, high-carbohydrate, low-fat (conventional) diet. Professional contact was minimal to replicate the approach used by most dieters. Subjects on the low-carbohydrate diet had lost more weight than subjects on the conventional diet at 3 months (mean [+/-SD], -6.8+/-5.0 vs. -2.7+/-3.7 percent of body weight; P=0.001) and 6 months (-7.0+/-6.5 vs. -3.2+/-5.6 percent of body weight, P=0.02), but the difference at 12 months was not significant (-4.4+/-6.7 vs. -2.5+/-6.3 percent of body weight, P=0.26). After three months, no significant differences were found between the groups in total or low-density lipoprotein cholesterol concentrations. The increase in high-density lipoprotein cholesterol concentrations and the decrease in triglyceride concentrations were greater among subjects on the low-carbohydrate diet than among those on the conventional diet throughout most of the study. Both diets significantly decreased diastolic blood pressure and the insulin response to an oral glucose load. The low-carbohydrate diet produced a greater weight loss (absolute difference, approximately 4 percent) than did the conventional diet for the first six months, but the differences were not significant at one year. The low-carbohydrate diet was associated with a greater improvement in some risk factors for coronary heart disease. Adherence was poor and attrition was high in both groups. Longer and larger studies are required to determine the long-term safety and efficacy of low-carbohydrate, high-protein, high-fat diets. Copyright 2003 Massachusetts Medical Society

  7. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles.

    Directory of Open Access Journals (Sweden)

    Christian A Ruge

    Full Text Available The peripheral lungs are a potential entrance portal for nanoparticles into the human body due to their large surface area. The fact that nanoparticles can be deposited in the alveolar region of the lungs is of interest for pulmonary drug delivery strategies and is of equal importance for toxicological considerations. Therefore, a detailed understanding of nanoparticle interaction with the structures of this largest and most sensitive part of the lungs is important for both nanomedicine and nanotoxicology. Astonishingly, there is still little known about the bio-nano interactions that occur after nanoparticle deposition in the alveoli. In this study, we compared the effects of surfactant-associated protein A (SP-A and D (SP-D on the clearance of magnetite nanoparticles (mNP with either more hydrophilic (starch or hydrophobic (phosphatidylcholine surface modification by an alveolar macrophage (AM cell line (MH-S using flow cytometry and confocal microscopy. Both proteins enhanced the AM uptake of mNP compared with pristine nanoparticles; for the hydrophilic ST-mNP, this effect was strongest with SP-D, whereas for the hydrophobic PL-mNP it was most pronounced with SP-A. Using gel electrophoretic and dynamic light scattering methods, we were able to demonstrate that the observed cellular effects were related to protein adsorption and to protein-mediated interference with the colloidal stability. Next, we investigated the influence of various surfactant lipids on nanoparticle uptake by AM because lipids are the major surfactant component. Synthetic surfactant lipid and isolated native surfactant preparations significantly modulated the effects exerted by SP-A and SP-D, respectively, resulting in comparable levels of macrophage interaction for both hydrophilic and hydrophobic nanoparticles. Our findings suggest that because of the interplay of both surfactant lipids and proteins, the AM clearance of nanoparticles is essentially the same, regardless

  8. Activity of a lipid synthesis inhibitor (spiromesifen in Culiseta longiareolata (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Hayette Bouabida

    2017-12-01

    Full Text Available Objective: To evaluate the activity of spiromesifen against the most abundant and investigated mosquito species, Culiseta longiareolata Aitken, 1954 (Diptera, Culicidae. Methods: Culiseta longiareolata larvae were collected from untreated areas located at Tébessa (Northeast Algeria. A commercial formulation of spiromesifen (Oberon® 240 SC was tested at different concentrations ranging between 238 and 1428 μg/L on newly molted fourth-instar larvae under standard laboratory conditions according to Word Health Organization recommendations. The effects were examined on the mortality, the morphometric measurements, two biomarkers (catalase and malondialdehyde, and the biochemical composition of larvae, respectively. Results: The compound exhibited insecticidal activity. Moreover, it disturbed growth and several morphological aberrations were observed. It also affected body volume, biomarkers and contents of carbohydrates, lipids and proteins. A marked effect on lipids and malondialdehyde was noted, confirming its primary mode of action on lipid synthesis. Conclusions: Spiromesifen appears less potent than other insecticides tested such as the insect growth disruptors. Keywords: Culiseta longiareolata, Spiromesifen, Toxicity, Biochemical composition, Biomarkers

  9. Mitochondrial cardiolipin/phospholipid trafficking: the role of membrane contact site complexes and lipid transfer proteins.

    Science.gov (United States)

    Schlattner, Uwe; Tokarska-Schlattner, Malgorzata; Rousseau, Denis; Boissan, Mathieu; Mannella, Carmen; Epand, Richard; Lacombe, Marie-Lise

    2014-04-01

    Historically, cellular trafficking of lipids has received much less attention than protein trafficking, mostly because its biological importance was underestimated, involved sorting and translocation mechanisms were not known, and analytical tools were limiting. This has changed during the last decade, and we discuss here some progress made in respect to mitochondria and the trafficking of phospholipids, in particular cardiolipin. Different membrane contact site or junction complexes and putative lipid transfer proteins for intra- and intermembrane lipid translocation have been described, involving mitochondrial inner and outer membrane, and the adjacent membranes of the endoplasmic reticulum. An image emerges how cardiolipin precursors, remodeling intermediates, mature cardiolipin and its oxidation products could migrate between membranes, and how this trafficking is involved in cardiolipin biosynthesis and cell signaling events. Particular emphasis in this review is given to mitochondrial nucleoside diphosphate kinase D and mitochondrial creatine kinases, which emerge to have roles in both, membrane junction formation and lipid transfer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Influence of dietary lipid and protein sources on the sensory quality of organic rainbow trout (Oncorhynchus mykiss) after ice storage

    DEFF Research Database (Denmark)

    Green-Petersen, Ditte; Hyldig, Grethe; Jacobsen, Charlotte

    2014-01-01

    The influence of dietary protein and lipid sources on the quality of organic rainbow trout (Oncorhynchus mykiss) was studied. The protein and oil sources were fishmeal, fish oil, and organic vegetable protein and oils. Sensory profiling was performed during 3 to 14 days of ice storage along...... with lipid analyses of the fillet. Overall, the results showed that the sensory characteristics of the trout were affected in different ways during ice storage. The source of lipid seemed to affect the sensory quality at the beginning of the storage period, while the protein source seemed to have a more...

  11. Progressive sensorineural hearing loss, subjective tinnitus and vertigo caused by elevated blood lipids.

    Science.gov (United States)

    Pulec, J L; Pulec, M B; Mendoza, I

    1997-10-01

    The otologist frequently sees patients with progressive sensorineural hearing loss, subjective aural tinnitus and vertigo with no apparent cause. Elevated blood lipids may be a cause of inner ear malfunction on a biochemical basis. To establish the true incidence of this condition, all new patients (4,251) seen during an eight-year period were evaluated; of these, 2,332 patients had complaints of inner ear disease. All had a complete neurotologic examination, appropriate audiometric and vestibular studies and imaging, and blood tests including lipid phenotype studies. Hyperlipoproteinemia was found in 120 patients (5.1%). Most patients were found to be overweight and had additional coexisting conditions such as diabetes mellitus. Treatment with vasodilators and a 500-calorie, high-protein, low-carbohydrate diet yielded improvement of symptoms in 83% of patients within five months of initiation of treatment.

  12. Effect of different temperature-time combinations on lipid and protein oxidation of sous-vide cooked lamb loins.

    Science.gov (United States)

    Roldan, Mar; Antequera, Teresa; Armenteros, Monica; Ruiz, Jorge

    2014-04-15

    Forty-five lamb loins were subjected to sous-vide cooking at different combinations of temperature (60, 70 and 80 °C) and time (6, 12 and 24 h) to assess the effect on the oxidative stability of lipids and proteins. Heating induced both lipid and protein oxidation in lamb loins. Higher cooking temperature-time combinations increased conjugated dienes and decreased thiobarbituric reactive substances (TBARS) values and hexanal. Total protein carbonyls increased throughout time at all cooking temperatures considered, while α-aminoadipic (AAS) and γ-glutamic semialdehydes (GGS) increased when cooking at 60 °C but not at 80 °C. Links between the decrease in secondary compounds from lipid oxidation due to cooking at higher temperatures and for longer times with the increased levels of 3-methylbutanal and greater differences between total protein carbonyls and AAS plus GGS were hypothesised. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Structure of Bacteroides thetaiotaomicron BT2081 at 2.05 Å resolution: the first structural representative of a new protein family that may play a role in carbohydrate metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Andrew P. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Abdubek, Polat [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (United States); Astakhova, Tamara [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (United States); Axelrod, Herbert L. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Bakolitsa, Constantina [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (United States); Cai, Xiaohui [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (United States); Carlton, Dennis [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (United States); Chen, Connie [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (United States); Chiu, Hsiu-Ju [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Chiu, Michelle [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (United States); Clayton, Thomas [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (United States); Das, Debanu [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Deller, Marc C. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (United States); Duan, Lian; Ellrott, Kyle [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (United States); Farr, Carol L. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (United States); Feuerhelm, Julie; Grant, Joanna C. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (United States); Grzechnik, Anna; Han, Gye Won [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (United States); Jaroszewski, Lukasz [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (United States); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (United States); Jin, Kevin K. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Klock, Heath E.; Knuth, Mark W. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (United States); Kozbial, Piotr [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (United States); Krishna, S. Sri [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (United States); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (United States); Kumar, Abhinav; Lam, Winnie W. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Marciano, David [Joint Center for Structural Genomics, http://www.jcsg.org (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US); McMullan, Daniel [Joint Center for Structural Genomics, http://www.jcsg.org (US); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (US); Miller, Mitchell D. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Morse, Andrew T. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (US); Nigoghossian, Edward [Joint Center for Structural Genomics, http://www.jcsg.org (US); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (US); Nopakun, Amanda [Joint Center for Structural Genomics, http://www.jcsg.org (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US); Okach, Linda; Puckett, Christina [Joint Center for Structural Genomics, http://www.jcsg.org (US); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (US); Reyes, Ron [Joint Center for Structural Genomics, http://www.jcsg.org (US); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Tien, Henry J. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US); Trame, Christine B.; Bedem, Henry van den [Joint Center for Structural Genomics, http://www.jcsg.org (US); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Weekes, Dana [Joint Center for Structural Genomics, http://www.jcsg.org (US); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (US); Wooten, Tiffany [Joint Center for Structural Genomics, http://www.jcsg.org (US); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (US); Xu, Qingping [Joint Center for Structural Genomics, http://www.jcsg.org (US); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Hodgson, Keith O. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Wooley, John [Joint Center for Structural Genomics, http://www.jcsg.org (US); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (US); Elsliger, Marc-André [Joint Center for Structural Genomics, http://www.jcsg.org (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US); Deacon, Ashley M. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Godzik, Adam [Joint Center for Structural Genomics, http://www.jcsg.org (US); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (US); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (US); Lesley, Scott A. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US); Wilson, Ian A., E-mail: wilson@scripps.edu [Joint Center for Structural Genomics, http://www.jcsg.org (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US)

    2010-10-01

    The crystal structure of BT2081 from B. thetaiotaomicron reveals a two-domain protein with a putative carbohydrate-binding site in the C-terminal domain. BT2081 from Bacteroides thetaiotaomicron (GenBank accession code NP-810994.1) is a member of a novel protein family consisting of over 160 members, most of which are found in the different classes of Bacteroidetes. Genome-context analysis lends support to the involvement of this family in carbohydrate metabolism, which plays a key role in B. thetaiotaomicron as a predominant bacterial symbiont in the human distal gut microbiome. The crystal structure of BT2081 at 2.05 Å resolution represents the first structure from this new protein family. BT2081 consists of an N-terminal domain, which adopts a β-sandwich immunoglobulin-like fold, and a larger C-terminal domain with a β-sandwich jelly-roll fold. Structural analyses reveal that both domains are similar to those found in various carbohydrate-active enzymes. The C-terminal β-jelly-roll domain contains a potential carbohydrate-binding site that is highly conserved among BT2081 homologs and is situated in the same location as the carbohydrate-binding sites that are found in structurally similar glycoside hydrolases (GHs). However, in BT2081 this site is partially occluded by surrounding loops, which results in a deep solvent-accessible pocket rather than a shallower solvent-exposed cleft.

  14. Structure of Bacteroides thetaiotaomicron BT2081 at 2.05 Å resolution: the first structural representative of a new protein family that may play a role in carbohydrate metabolism

    International Nuclear Information System (INIS)

    Yeh, Andrew P.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Cai, Xiaohui; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chiu, Michelle; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Lam, Winnie W.; Marciano, David; McMullan, Daniel; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of BT2081 from B. thetaiotaomicron reveals a two-domain protein with a putative carbohydrate-binding site in the C-terminal domain. BT2081 from Bacteroides thetaiotaomicron (GenBank accession code NP-810994.1) is a member of a novel protein family consisting of over 160 members, most of which are found in the different classes of Bacteroidetes. Genome-context analysis lends support to the involvement of this family in carbohydrate metabolism, which plays a key role in B. thetaiotaomicron as a predominant bacterial symbiont in the human distal gut microbiome. The crystal structure of BT2081 at 2.05 Å resolution represents the first structure from this new protein family. BT2081 consists of an N-terminal domain, which adopts a β-sandwich immunoglobulin-like fold, and a larger C-terminal domain with a β-sandwich jelly-roll fold. Structural analyses reveal that both domains are similar to those found in various carbohydrate-active enzymes. The C-terminal β-jelly-roll domain contains a potential carbohydrate-binding site that is highly conserved among BT2081 homologs and is situated in the same location as the carbohydrate-binding sites that are found in structurally similar glycoside hydrolases (GHs). However, in BT2081 this site is partially occluded by surrounding loops, which results in a deep solvent-accessible pocket rather than a shallower solvent-exposed cleft

  15. Effect of mono-unsaturated fatty acids versus complex carbohydrates on high-density lipoproteins in healthy men and women.

    NARCIS (Netherlands)

    Mensink, R.P.; Katan, M.B.

    1987-01-01

    The effects of two strictly controlled diets, one rich in complex carbohydrates, the other rich in olive oil, on serum lipids were studied in healthy men and women. Serum cholesterol levels fell on average by 0?44 mmol/l in the carbohydrate group and 0?46 mmol/l in the olive oil group. HDL

  16. THE EFFECTS OF A CARBOHYDRATE-PROTEIN GEL SUPPLEMENT ON ALPINE SLALOM SKI PERFORMANCE

    Directory of Open Access Journals (Sweden)

    John G. Seifert

    2012-09-01

    Full Text Available Alpine slalom ski racing is a high intensity, complex sport in which racers execute turns every second. Acute fatigue can make the difference in not finishing a run (DNF or finishing out of contention. The quantity and quality of training often dictates racing success. It is not known if nutritional supplementation can improve performance in this high intensity, short duration activity. The objective of this study was to determine if ingesting a carbohydrate-protein energy gel (GEL improves finishing success and number of gates completed during 2 hr slalom sessions on two consecutive days of training. Twenty-four racers were matched; one group ingested the GEL, the second group received a liquid placebo (PLA. Total carbohy-drate, protein, and water ingested by the GEL group were 60g, 15g, and 450 mL, while the PLA group ingested 450 mL of PLA. The GEL group had significantly fewer DNF's (7/48 vs. 18/48; p = 0.02 on both days, completed a greater number of training gates on Day 2 (260.3 ± 20.1 vs. 246.3 ± 17.5 gates; p = 0.03, and had a lower RPE (3.9 ± 1.2 vs. 5.3 ± 1.2 on Day 2 (p = 0.004 vs. PLA. The statistical analysis of combined finishing times was not possible due to the high number of DNF's in the PLA group. High intensity slalom performance can be im-proved by the ingestion of an energy gel. The GEL allowed the athletes to improve training quantity and quality and their per-ception of effort was less than skiers who ingested a placebo

  17. Effects of CO₂ on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates.

    Science.gov (United States)

    Silva, M; Ribeiro, H; Abreu, I; Cruz, A; Esteves da Silva, J C G

    2015-05-01

    Atmospheric gaseous pollutants can induce qualitative and quantitative changes in airborne pollen characteristics. In this work, it was investigated the effects of carbon dioxide (CO2) on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates. Pollen was collected directly from the anthers and in vitro exposed to three CO2 levels (500, 1000, and 3000 ppm) for 6 and 24 h in an environmental chamber. Pollen fertility was determined using viability and germination assays, total soluble protein was determined with Coomassie Protein Assay Reagent, and the antigenic and allergenic properties were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunological techniques using patients' sera. Also, pollen fructose, sucrose, and glucose values were determined. Carbon dioxide exposure affected negatively pollen fertility, total soluble protein content, and fructose content. The patient sera revealed increased IgE reactivity to proteins of A. negundo pollen exposed to increasing levels of the pollutant. No changes were detected in the SDS-PAGE protein profiles and in sucrose and glucose levels. Our results indicate that increase in atmospheric CO2 concentrations can have a negative influence of some features of A. negundo airborne pollen that can influence the reproductive processes as well as respiratory pollen allergies in the future.

  18. Metabolism and fatty acid profile in fat and lean rainbow trout lines fed with vegetable oil: effect of carbohydrates.

    Directory of Open Access Journals (Sweden)

    Biju Sam Kamalam

    Full Text Available The present study investigated the effect of dietary carbohydrates on metabolism, with special focus on fatty acid bioconversion and flesh lipid composition in two rainbow trout lines divergently selected for muscle lipid content and fed with vegetable oils. These lines were chosen based on previously demonstrated potential differences in LC-PUFA synthesis and carbohydrate utilization. Applying a factorial study design, juvenile trout from the lean (L and the fat (F line were fed vegetable oil based diets with or without gelatinised starch (17.1% for 12 weeks. Blood, liver, muscle, intestine and adipose tissue were sampled after the last meal. Feed intake and growth was higher in the L line than the F line, irrespective of the diet. Moderate postprandial hyperglycemia, strong induction of hepatic glucokinase and repressed glucose-6-phosphatase transcripts confirmed the metabolic response of both lines to carbohydrate intake. Further at the transcriptional level, dietary carbohydrate in the presence of n-3 LC-PUFA deficient vegetable oils enhanced intestinal chylomicron assembly, disturbed hepatic lipid metabolism and importantly elicited a higher response of key desaturase and elongase enzymes in the liver and intestine that endorsed our hypothesis. PPARγ was identified as the factor mediating this dietary regulation of fatty acid bioconversion enzymes in the liver. However, these molecular changes were not sufficient to modify the fatty acid composition of muscle or liver. Concerning the genotype effect, there was no evidence of substantial genotypic difference in lipid metabolism, LC-PUFA synthesis and flesh fatty acid profile when fed with vegetable oils. The minor reduction in plasma glucose and triglyceride levels in the F line was linked to potentially higher glucose and lipid uptake in the muscle. Overall, these data emphasize the importance of dietary macro-nutrient interface in evolving fish nutrition strategies.

  19. Metabolism and fatty acid profile in fat and lean rainbow trout lines fed with vegetable oil: effect of carbohydrates.

    Science.gov (United States)

    Kamalam, Biju Sam; Médale, Françoise; Larroquet, Laurence; Corraze, Geneviève; Panserat, Stephane

    2013-01-01

    The present study investigated the effect of dietary carbohydrates on metabolism, with special focus on fatty acid bioconversion and flesh lipid composition in two rainbow trout lines divergently selected for muscle lipid content and fed with vegetable oils. These lines were chosen based on previously demonstrated potential differences in LC-PUFA synthesis and carbohydrate utilization. Applying a factorial study design, juvenile trout from the lean (L) and the fat (F) line were fed vegetable oil based diets with or without gelatinised starch (17.1%) for 12 weeks. Blood, liver, muscle, intestine and adipose tissue were sampled after the last meal. Feed intake and growth was higher in the L line than the F line, irrespective of the diet. Moderate postprandial hyperglycemia, strong induction of hepatic glucokinase and repressed glucose-6-phosphatase transcripts confirmed the metabolic response of both lines to carbohydrate intake. Further at the transcriptional level, dietary carbohydrate in the presence of n-3 LC-PUFA deficient vegetable oils enhanced intestinal chylomicron assembly, disturbed hepatic lipid metabolism and importantly elicited a higher response of key desaturase and elongase enzymes in the liver and intestine that endorsed our hypothesis. PPARγ was identified as the factor mediating this dietary regulation of fatty acid bioconversion enzymes in the liver. However, these molecular changes were not sufficient to modify the fatty acid composition of muscle or liver. Concerning the genotype effect, there was no evidence of substantial genotypic difference in lipid metabolism, LC-PUFA synthesis and flesh fatty acid profile when fed with vegetable oils. The minor reduction in plasma glucose and triglyceride levels in the F line was linked to potentially higher glucose and lipid uptake in the muscle. Overall, these data emphasize the importance of dietary macro-nutrient interface in evolving fish nutrition strategies.

  20. THE EFFECTS OF DIFFERENT LEVELS OF DIETARY PROTEIN AND LIPID ON THE GROWTH OF RED SNAPPER, Lutjanus sebae

    Directory of Open Access Journals (Sweden)

    Nyoman Adiasmara Giri

    2009-06-01

    Full Text Available Red snapper, Lutjanus sebae is favored in mariculture activities because it has a relatively good market and price. Technology for big scale seed production of this species has been developed and is now adequate to supply seed for grow-out activities. However, the availability of artifical diets for L. sebae is still a major constraint for grow-out production. Data on optimum dietary protein and lipid requirements for this fish as a basic information in feed development is not available yet. The objective of the present study was to find out dietary protein and lipid requirements for juvenile of L. sebae. A 70-day feeding experiment was conducted in 24 fiberglass tanks, 200 L volume. Each tank was equipped with a flow-through water system. Twenty five hatchery-produced juveniles of L. sebae (43.1 g BW were randomly selected and stocked in each tank. The fish were fed with the experimental diets twice everyday at a level of 3% of biomass for the first 4 weeks, and then 2% of biomass afterward. Twelve experimental diets were prepared in form of dry pellet containing casein and fish meal as the main protein sources. Experimental diet had 4 levels of crude protein (32%, 37%, 42%, and 47% and each protein level consisted of 3 levels of lipid (7%, 12%, and 17%. The experiment employed factorial method with completely random design using 12 combination treatments and 2 replications for each treatment. Result of the experiment showed that there was no significant effect of dietary protein and lipid on growth, feed consumption, and feed efficiency of tested fish. Growth and feed efficiency of fish fed on diet containing 42% and 47% crude protein were significantly higher than that of fish fed on diet containing 32% and 37% crude protein. High lipid content in the diet (17% resulted in poor growth and poor feed efficiency. This data indicates that Lutjanus sebae has limited ability to utilize dietary lipid as an energy