WorldWideScience

Sample records for proteins depends critically

  1. Activity dependent protein degradation is critical for the formation and stability of fear memory in the amygdala.

    Directory of Open Access Journals (Sweden)

    Timothy J Jarome

    Full Text Available Protein degradation through the ubiquitin-proteasome system [UPS] plays a critical role in some forms of synaptic plasticity. However, its role in memory formation in the amygdala, a site critical for the formation of fear memories, currently remains unknown. Here we provide the first evidence that protein degradation through the UPS is critically engaged at amygdala synapses during memory formation and retrieval. Fear conditioning results in NMDA-dependent increases in degradation-specific polyubiquitination in the amygdala, targeting proteins involved in translational control and synaptic structure and blocking the degradation of these proteins significantly impairs long-term memory. Furthermore, retrieval of fear memory results in a second wave of NMDA-dependent polyubiquitination that targets proteins involved in translational silencing and synaptic structure and is critical for memory updating following recall. These results indicate that UPS-mediated protein degradation is a major regulator of synaptic plasticity necessary for the formation and stability of long-term memories at amygdala synapses.

  2. Plasmodium falciparum Calcium-Dependent Protein Kinase 2 Is Critical for Male Gametocyte Exflagellation but Not Essential for Asexual Proliferation

    Directory of Open Access Journals (Sweden)

    Abhisheka Bansal

    2017-10-01

    Full Text Available Drug development efforts have focused mostly on the asexual blood stages of the malaria parasite Plasmodium falciparum. Except for primaquine, which has its own limitations, there are no available drugs that target the transmission of the parasite to mosquitoes. Therefore, there is a need to validate new parasite proteins that can be targeted for blocking transmission. P. falciparum calcium-dependent protein kinases (PfCDPKs play critical roles at various stages of the parasite life cycle and, importantly, are absent in the human host. These features mark them as attractive drug targets. In this study, using CRISPR/Cas9 we successfully knocked out PfCDPK2 from blood-stage parasites, which was previously thought to be an indispensable protein. The growth rate of the PfCDPK2 knockout (KO parasites was similar to that of wild-type parasites, confirming that PfCDPK2 function is not essential for the asexual proliferation of the parasite in vitro. The mature male and female gametocytes of PfCDPK2 KO parasites become round after induction. However, they fail to infect female Anopheles stephensi mosquitoes due to a defect(s in male gametocyte exflagellation and possibly in female gametes.

  3. Dependency in Critically Ill Patients

    Directory of Open Access Journals (Sweden)

    Rumei Yang

    2016-03-01

    Full Text Available By necessity, critically ill patients admitted to intensive care units (ICUs have a high level of dependency, which is linked to a variety of negative feelings, such as powerlessness. However, the term dependency is not well defined in the critically ill patients. The concept of “dependency” in critically ill patients was analyzed using a meta-synthesis approach. An inductive process described by Deborah Finfgeld-Connett was used to analyze the data. Overarching themes emerged that reflected critically ill patients’ experience and meaning of being in dependency were (a antecedents: dependency in critically ill patients was a powerless and vulnerable state, triggered by a life-threatening crisis; (b attributes: the characteristic of losing “self” was featured by dehumanization and disembodiment, which can be alleviated by a “self”-restoring process; and (c outcomes: living with dependency and coping with dependency. The conceptual model explicated here may provide a framework for understanding dependency in critically ill patients.

  4. Inflammation Intensity-dependent Expression of Osteoinductive Wnt Proteins is Critical for Ectopic New Bone Formation in Ankylosing Spondylitis.

    Science.gov (United States)

    Li, Xiang; Wang, Jianru; Zhan, Zhongping; Li, Sibei; Zheng, Zhaomin; Wang, Taiping; Zhang, Kuibo; Pan, Hehai; Li, Zemin; Zhang, Nu; Liu, Hui

    2018-02-26

    To investigate the molecular mechanism underlying the inflammation- related ectopic new bone formation in ankylosing spondylitis (AS). Spinal tissues and sera were collected from patients or normal volunteers to detect the expression of Wnt proteins. An in vitro cell culture system mimicking the local inflammatory microenvironment of bone-forming sites was established to study the relationship between inflammation and Wnt expression, the regulatory mechanism of inflammation-induced Wnt expression and the role of Wnt signaling in new bone formation. A modified collagen-induced arthritis (mCIA) and a proteoglycan -induced spondylitis (PGIS) animal model were used to confirm the key findings in vivo. The levels of osteoinductive Wnt proteins were obviously increased in the sera and spinal ligament tissues of patients with AS. Only constitutive low-intensity TNF-α stimulation, but not short-term or high-intensity TNF-α stimulation, induced persistent expression of osteoinductive Wnt proteins and subsequent bone formation through NF-κB (p65) and JNK/AP-1 (c-Jun) signaling pathways. Furthermore, inhibition of either Wnt/β-catenin or Wnt/PKCδ pathway significantly suppressed new bone formation. The increased expression of Wnt proteins was confirmed in both mCIA and PGIS models. A kyphotic and ankylosing phenotype of the spine was observed during long-term observation in mCIA model. Inhibition of either Wnt/β-catenin or Wnt/PKCδ signaling pathway significantly reduced the incidence and severity of this phenotype. Inflammation intensity-dependent expression of osteoinductive Wnt proteins is a key link between inflammation and ectopic new bone formation in AS. Activation of both canonical Wnt/β-catenin and noncanonical Wnt/PKCδ pathways is required for inflammation-induced new bone formation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Selective protein adduct formation of diclofenac glucuronide is critically dependent on the rat canalicular conjugate export pump (Mrp2)

    NARCIS (Netherlands)

    Seitz, S.; Kretz-Rommel, A.; Oude Elferink, R. P.; Boelsterli, U. A.

    1998-01-01

    Previous work demonstrates that the reactive acyl glucuronide of the nonsteroidal antiinflammatory drug diclofenac forms selective protein adducts in the liver, which may play a causal role in the pathogenesis of diclofenac-associated liver toxicity. Because glucuronide conjugates can be exported

  6. Critical infrastructure dependencies 1-0-1

    NARCIS (Netherlands)

    Luiijf, H.A.M.; Nieuwenhuijs, A.H.; Klaver, M.H.A.

    2008-01-01

    Most of our critical infrastructures consist of complex systems-of-systems that provide services or products. The coupling mechanism between the chained systems in such complex systems of systems is dependencies. Dependencies may propagate cascading failures. Most studies on dependencies in

  7. Signaling through cGMP-dependent protein kinase I in the amygdala is critical for auditory-cued fear memory and long-term potentiation.

    Science.gov (United States)

    Paul, Cindy; Schöberl, Florian; Weinmeister, Pascal; Micale, Vincenzo; Wotjak, Carsten T; Hofmann, Franz; Kleppisch, Thomas

    2008-12-24

    Long-term potentiation (LTP) of inputs relaying sensory information from cortical and thalamic neurons to principal neurons in the lateral amygdala (LA) is thought to serve as a cellular mechanism for associative fear learning. Nitric oxide (NO), a messenger molecule widely implicated in synaptic plasticity and behavior, has been shown to enhance LTP in the LA as well as consolidation of associative fear memory. Additional evidence suggests that NO-induced enhancement of LTP and amygdala-dependent learning requires signaling through soluble guanylyl cyclase (sGC) and cGMP-dependent protein kinase (cGK). Mammals possess two genes for cGK: the prkg1 gene gives rise to the cGK type I isoforms, cGKIalpha and cGKIbeta, and the prkg2 gene encodes the cGK type II. Reportedly, both cGKI and cGKII are expressed in the amygdala, and cGKII is involved in controlling anxiety-like behavior. Because selective pharmacological tools for individual cGK isoforms are lacking, we used different knock-out mouse models to examine the function of cGKI and cGKII for LTP in the LA and pavlovian fear conditioning. We found robust expression of the cGKI specifically in the LA with cGKIbeta as the prevailing isoform. We further show a marked reduction of LTP at both thalamic and cortical inputs to the LA and a selective impairment of auditory-cued fear memory in cGKI-deficient mutants. In contrast, cGKII null mutants lack these phenotypes. Our data suggest a function of cGKI, likely the beta isoform, in the LA, supporting synaptic plasticity and consolidation of fear memory.

  8. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells.

    Science.gov (United States)

    Gordillo, Gayle M; Biswas, Ayan; Khanna, Savita; Spieldenner, James M; Pan, Xueliang; Sen, Chandan K

    2016-05-06

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells*

    Science.gov (United States)

    Gordillo, Gayle M.; Biswas, Ayan; Khanna, Savita; Spieldenner, James M.; Pan, Xueliang; Sen, Chandan K.

    2016-01-01

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics. PMID:26961872

  10. A tryptophan-rich motif in the human parainfluenza virus type 2 V protein is critical for the blockade of toll-like receptor 7 (TLR7)- and TLR9-dependent signaling.

    Science.gov (United States)

    Kitagawa, Yoshinori; Yamaguchi, Mayu; Zhou, Min; Komatsu, Takayuki; Nishio, Machiko; Sugiyama, Tsuyoshi; Takeuchi, Kenji; Itoh, Masae; Gotoh, Bin

    2011-05-01

    Plasmacytoid dendritic cells (pDCs) do not produce alpha interferon (IFN-α) unless viruses cause a systemic infection or overcome the first-line defense provided by conventional DCs and macrophages. We show here that even paramyxoviruses, whose infections are restricted to the respiratory tract, have a V protein able to prevent Toll-like receptor 7 (TLR7)- and TLR9-dependent IFN-α induction specific to pDCs. Mutational analysis of human parainfluenza virus type 2 demonstrates that the second Trp residue of the Trp-rich motif (Trp-X(3)-Trp-X(9)-Trp) in the C-terminal domain unique to V, a determinant for IRF7 binding, is critical for the blockade of TLR7/9-dependent signaling.

  11. Perturbative Critical Behavior from Spacetime Dependent Couplings

    International Nuclear Information System (INIS)

    Torroba, Gonzalo

    2012-01-01

    We find novel perturbative fixed points by introducing mildly spacetime-dependent couplings into otherwise marginal terms. In four-dimensional QFT, these are physical analogues of the small-ε Wilson-Fisher fixed point. Rather than considering 4-ε dimensions, we stay in four dimensions but introduce couplings whose leading spacetime dependence is of the form λx κ μ κ , with a small parameter κ playing a role analogous to ε. We show, in φ 4 theory and in QED and QCD with massless flavors, that this leads to a critical theory under perturbative control over an exponentially wide window of spacetime positions x. The exact fixed point coupling λ * (x) in our theory is identical to the running coupling of the translationally invariant theory, with the scale replaced by 1/x. Similar statements hold for three-dimensional φ 6 theories and two-dimensional sigma models with curved target spaces. We also describe strongly coupled examples using conformal perturbation theory.

  12. Analysis of Critical Infrastructure Dependencies and Interdependencies

    Energy Technology Data Exchange (ETDEWEB)

    Petit, Frederic [Argonne National Lab. (ANL), Argonne, IL (United States); Verner, Duane [Argonne National Lab. (ANL), Argonne, IL (United States); Brannegan, David [Argonne National Lab. (ANL), Argonne, IL (United States); Buehring, William [Argonne National Lab. (ANL), Argonne, IL (United States); Dickinson, David [Argonne National Lab. (ANL), Argonne, IL (United States); Guziel, Karen [Argonne National Lab. (ANL), Argonne, IL (United States); Haffenden, Rebecca [Argonne National Lab. (ANL), Argonne, IL (United States); Phillips, Julia [Argonne National Lab. (ANL), Argonne, IL (United States); Peerenboom, James [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-06-01

    The report begins by defining dependencies and interdependencies and exploring basic concepts of dependencies in order to facilitate a common understanding and consistent analytical approaches. Key concepts covered include; Characteristics of dependencies: upstream dependencies, internal dependencies, and downstream dependencies; Classes of dependencies: physical, cyber, geographic, and logical; and Dimensions of dependencies: operating environment, coupling and response behavior, type of failure, infrastructure characteristics, and state of operations From there, the report proposes a multi-phase roadmap to support dependency and interdependency assessment activities nationwide, identifying a range of data inputs, analysis activities, and potential products for each phase, as well as key steps needed to progress from one phase to the next. The report concludes by outlining a comprehensive, iterative, and scalable framework for analyzing dependencies and interdependencies that stakeholders can integrate into existing risk and resilience assessment efforts.

  13. Critical Age-Dependent Branching Markov Processes and their ...

    Indian Academy of Sciences (India)

    This paper studies: (i) the long-time behaviour of the empirical distribution of age and normalized position of an age-dependent critical branching Markov process conditioned on non-extinction; and (ii) the super-process limit of a sequence of age-dependent critical branching Brownian motions.

  14. Nitrogen Balance and Protein Requirements for Critically Ill Older Patients

    Directory of Open Access Journals (Sweden)

    Roland N. Dickerson

    2016-04-01

    Full Text Available Critically ill older patients with sarcopenia experience greater morbidity and mortality than younger patients. It is anticipated that unabated protein catabolism would be detrimental for the critically ill older patient. Healthy older subjects experience a diminished response to protein supplementation when compared to their younger counterparts, but this anabolic resistance can be overcome by increasing protein intake. Preliminary evidence suggests that older patients may respond differently to protein intake than younger patients during critical illness as well. If sufficient protein intake is given, older patients can achieve a similar nitrogen accretion response as younger patients even during critical illness. However, there is concern among some clinicians that increasing protein intake in older patients during critical illness may lead to azotemia due to decreased renal functional reserve which may augment the propensity towards worsened renal function and worsened clinical outcomes. Current evidence regarding protein requirements, nitrogen balance, ureagenesis, and clinical outcomes during nutritional therapy for critically ill older patients is reviewed.

  15. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients

    DEFF Research Database (Denmark)

    Jespersen, Jakob G; Nedergaard, Anders; Reitelseder, Søren

    2011-01-01

    Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors invol...... involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls....

  16. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients

    DEFF Research Database (Denmark)

    Jespersen, Jakob G; Nedergaard, Anders; Reitelseder, Søren

    2011-01-01

    Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3ß (GSK3ß) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors invol...... involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls....

  17. Dependency and self-criticism in treatments for depression.

    Science.gov (United States)

    Chui, Harold; Zilcha-Mano, Sigal; Dinger, Ulrike; Barrett, Marna S; Barber, Jacques P

    2016-07-01

    Dependency and self-criticism are vulnerability factors for depression. How these personality factors change with treatment for depression and how they relate to symptom change across different types of treatment require further research. In addition, cultural differences that interact with the dependency/self-criticism-depression relation remain underinvestigated. We randomly assigned 149 adults with major depression to receive active medication (MED; n = 50), supportive-expressive therapy (SET; n = 49), or placebo pill (PBO; n = 50). Participants completed the Depressive Experiences Questionnaire (DEQ; Blatt, D'Afflitti, & Quinlan, 1976) before and after treatment and completed the Hamilton Rating Scale for Depression (Hamilton, 1967) throughout the course of treatment. Self-criticism as measured on the DEQ decreased with treatment similarly across conditions. DEQ Dependency decreased in MED but remained unchanged in SET and PBO. Higher initial dependency, but not higher initial self-criticism, predicted poor treatment response across conditions. Greater reduction in self-criticism was associated with greater reduction in depressive symptoms, but the effect was weaker for racial minorities (vs. White). Increase in connectedness, an adaptive form of dependency, was associated with symptom improvement in SET but not MED. Hence, different pathways of change seem to be implicated in the treatment of depression depending on culture and type of intervention. Implications for future research are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients.

    Directory of Open Access Journals (Sweden)

    Jakob G Jespersen

    Full Text Available BACKGROUND: Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR, glycogen synthase kinase 3β (GSK3β and forkhead box O (FoxO pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU patients compared with healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: ICU patients were systemically inflamed, moderately hyperglycemic, received insulin therapy, and showed a tendency to lower plasma branched chain amino acids compared with controls. Using Western blotting we measured Akt, GSK3β, mTOR, ribosomal protein S6 kinase (S6k, eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1, and muscle ring finger protein 1 (MuRF1; and by RT-PCR we determined mRNA expression of, among others, insulin-like growth factor 1 (IGF-1, FoxO 1, 3 and 4, atrogin1, MuRF1, interleukin-6 (IL-6, tumor necrosis factor α (TNF-α and myostatin. Unexpectedly, in critically ill ICU patients Akt-mTOR-S6k signaling was substantially higher compared with controls. FoxO1 mRNA was higher in patients, whereas FoxO3, atrogin1 and myostatin mRNAs and MuRF1 protein were lower compared with controls. A moderate correlation (r2=0.36, p<0.05 between insulin infusion dose and phosphorylated Akt was demonstrated. CONCLUSIONS/SIGNIFICANCE: We present for the first time muscle protein turnover signaling in critically ill ICU patients, and we show signaling pathway activity towards a stimulation of muscle protein synthesis and a somewhat inhibited proteolysis.

  19. Protein nutrition and exercise survival kit for critically ill

    NARCIS (Netherlands)

    Weijs, Peter J.M.

    2017-01-01

    PURPOSE OF REVIEW: Protein delivery as well as exercise of critically ill in clinical practice is still a highly debated issue. Here we discuss only the most recent updates in the literature concerning protein nutrition and exercise of the critically ill. RECENT FINDINGS: By lack of randomized

  20. A Tryptophan-Rich Motif in the Human Parainfluenza Virus Type 2 V Protein Is Critical for the Blockade of Toll-Like Receptor 7 (TLR7)- and TLR9-Dependent Signaling▿

    OpenAIRE

    Kitagawa, Yoshinori; Yamaguchi, Mayu; Zhou, Min; Komatsu, Takayuki; Nishio, Machiko; Sugiyama, Tsuyoshi; Takeuchi, Kenji; Itoh, Masae; Gotoh, Bin

    2011-01-01

    Plasmacytoid dendritic cells (pDCs) do not produce alpha interferon (IFN-α) unless viruses cause a systemic infection or overcome the first-line defense provided by conventional DCs and macrophages. We show here that even paramyxoviruses, whose infections are restricted to the respiratory tract, have a V protein able to prevent Toll-like receptor 7 (TLR7)- and TLR9-dependent IFN-α induction specific to pDCs. Mutational analysis of human parainfluenza virus type 2 demonstrates that the second ...

  1. Temperature dependence of critical resolved shear stress for cubic metals

    International Nuclear Information System (INIS)

    Rashid, H.; Fazal-e-Aleem; Ali, M.

    1996-01-01

    The experimental measurements for critical resolved shear stress of various BCC and FCC metals have been explained by using Radiation Model. The temperature dependence of CRSS for different cubic metals is found to the first approximation, to upon the type of the crystal. A good agreement between experimental observations and predictions of the Radiation Model is found. (author)

  2. Energy dependence of critical state of single-component systems

    International Nuclear Information System (INIS)

    Volchenkova, R.A.

    1985-01-01

    Equations of critical states of the single-component systems: Psub(cr)(/Psub(o)=(Tsub(cr)/Tsub(o))x0.73, Tsub(cr)=K(Tsub(boil))sup(1.116) and Hsub(cr)(/Hsub(B)=Tsub(sr)/Tsub(B))sup(1.48) where Tsub(B)=1K, Hsub(B)-2 kcal/g-at, K-dimension factor are presented. It is shown that the revealed dependence Hsub(cr)=H(Tsub(cr)) is an energy boundary of a liquid-vapour phase state of the single-component systems beyond limits of which difference between liquid and vapour phases vanishes in increasing the system energy content. The given equations of state are true for all the single-component systems and permit to consider physicomechanical properties of substances in dynamic state depending on external conditions. Critical temperatures and dependences for elements from the most fusible He to infusible W and Re have been calculated

  3. Identification of Redox and Glucose-Dependent Txnip Protein Interactions

    Directory of Open Access Journals (Sweden)

    Benjamin J. Forred

    2016-01-01

    Full Text Available Thioredoxin-interacting protein (Txnip acts as a negative regulator of thioredoxin function and is a critical modulator of several diseases including, but not limited to, diabetes, ischemia-reperfusion cardiac injury, and carcinogenesis. Therefore, Txnip has become an attractive therapeutic target to alleviate disease pathologies. Although Txnip has been implicated with numerous cellular processes such as proliferation, fatty acid and glucose metabolism, inflammation, and apoptosis, the molecular mechanisms underlying these processes are largely unknown. The objective of these studies was to identify Txnip interacting proteins using the proximity-based labeling method, BioID, to understand differential regulation of pleiotropic Txnip cellular functions. The BioID transgene fused to Txnip expressed in HEK293 identified 31 interacting proteins. Many protein interactions were redox-dependent and were disrupted through mutation of a previously described reactive cysteine (C247S. Furthermore, we demonstrate that this model can be used to identify dynamic Txnip interactions due to known physiological regulators such as hyperglycemia. These data identify novel Txnip protein interactions and demonstrate dynamic interactions dependent on redox and glucose perturbations, providing clarification to the pleiotropic cellular functions of Txnip.

  4. Spherically symmetric random walks. II. Dimensionally dependent critical behavior

    International Nuclear Information System (INIS)

    Bender, C.M.; Boettcher, S.; Meisinger, P.N.

    1996-01-01

    A recently developed model of random walks on a D-dimensional hyperspherical lattice, where D is not restricted to integer values, is extended to include the possibility of creating and annihilating random walkers. Steady-state distributions of random walkers are obtained for all dimensions D approx-gt 0 by solving a discrete eigenvalue problem. These distributions exhibit dimensionally dependent critical behavior as a function of the birth rate. This remarkably simple model exhibits a second-order phase transition with a universal, nontrivial critical exponent for all dimensions D approx-gt 0. copyright 1996 The American Physical Society

  5. Efficient identification of critical residues based only on protein structure by network analysis.

    Directory of Open Access Journals (Sweden)

    Michael P Cusack

    2007-05-01

    Full Text Available Despite the increasing number of published protein structures, and the fact that each protein's function relies on its three-dimensional structure, there is limited access to automatic programs used for the identification of critical residues from the protein structure, compared with those based on protein sequence. Here we present a new algorithm based on network analysis applied exclusively on protein structures to identify critical residues. Our results show that this method identifies critical residues for protein function with high reliability and improves automatic sequence-based approaches and previous network-based approaches. The reliability of the method depends on the conformational diversity screened for the protein of interest. We have designed a web site to give access to this software at http://bis.ifc.unam.mx/jamming/. In summary, a new method is presented that relates critical residues for protein function with the most traversed residues in networks derived from protein structures. A unique feature of the method is the inclusion of the conformational diversity of proteins in the prediction, thus reproducing a basic feature of the structure/function relationship of proteins.

  6. Self-organized critical model for protein folding

    Science.gov (United States)

    Moret, M. A.

    2011-09-01

    The major factor that drives a protein toward collapse and folding is the hydrophobic effect. At the folding process a hydrophobic core is shielded by the solvent-accessible surface area of the protein. We study the fractal behavior of 5526 protein structures present in the Brookhaven Protein Data Bank. Power laws of protein mass, volume and solvent-accessible surface area are measured independently. The present findings indicate that self-organized criticality is an alternative explanation for the protein folding. Also we note that the protein packing is an independent and constant value because the self-similar behavior of the volumes and protein masses have the same fractal dimension. This power law guarantees that a protein is a complex system. From the analyzed data, q-Gaussian distributions seem to fit well this class of systems.

  7. dependent/calmodulin- stimulated protein kinase from moss

    Indian Academy of Sciences (India)

    Unknown

    stimulated protein kinase; CDPK, calmodulin domain-like protein kinase; KM14, 14 amino acid synthetic peptide; .... used were obtained from Sigma Chemical Company, USA, ..... Plant chimeric Ca2+/Calmodulin-dependent protein kinase.

  8. Criticality problems in energy dependent neutron transport theory

    International Nuclear Information System (INIS)

    Victory, H.D. Jr.

    1979-01-01

    The criticality problem is considered for energy dependent neutron transport in an isotropically scattering, homogeneous slab. Under a positivity assumption on the scattering kernel, an expression can be found relating the thickness of the slab to a parameter characterizing production by fission. This is accomplished by exploiting the Perron-Frobenius-Jentsch characterization of positive operators (i.e. those leaving invariant a normal, reproducing cone in a Banach space). It is pointed out that those techniques work for classes of multigroup problems were the Case singular eigenfunction approach is not as feasible as in the one-group theory, which is also analyzed

  9. Time dependent non-extinction probability for prompt critical systems

    International Nuclear Information System (INIS)

    Gregson, M. W.; Prinja, A. K.

    2009-01-01

    The time dependent non-extinction probability equation is presented for slab geometry. Numerical solutions are provided for a nested inner/outer iteration routine where the fission terms (both linear and non-linear) are updated and then held fixed over the inner scattering iteration. Time dependent results are presented highlighting the importance of the injection position and angle. The iteration behavior is also described as the steady state probability of initiation is approached for both small and large time steps. Theoretical analysis of the nested iteration scheme is shown and highlights poor numerical convergence for marginally prompt critical systems. An acceleration scheme for the outer iterations is presented to improve convergence of such systems. Theoretical analysis of the acceleration scheme is also provided and the associated decrease in computational run time addressed. (authors)

  10. Protein Loop Dynamics Are Complex and Depend on the Motions of the Whole Protein

    Directory of Open Access Journals (Sweden)

    Michael T. Zimmermann

    2012-04-01

    Full Text Available We investigate the relationship between the motions of the same peptide loop segment incorporated within a protein structure and motions of free or end-constrained peptides. As a reference point we also compare against alanine chains having the same length as the loop. Both the analysis of atomic molecular dynamics trajectories and structure-based elastic network models, reveal no general dependence on loop length or on the number of solvent exposed residues. Rather, the whole structure affects the motions in complex ways that depend strongly and specifically on the tertiary structure of the whole protein. Both the Elastic Network Models and Molecular Dynamics confirm the differences in loop dynamics between the free and structured contexts; there is strong agreement between the behaviors observed from molecular dynamics and the elastic network models. There is no apparent simple relationship between loop mobility and its size, exposure, or position within a loop. Free peptides do not behave the same as the loops in the proteins. Surface loops do not behave as if they were random coils, and the tertiary structure has a critical influence upon the apparent motions. This strongly implies that entropy evaluation of protein loops requires knowledge of the motions of the entire protein structure.

  11. Genomic analysis of murine DNA-dependent protein kinase

    International Nuclear Information System (INIS)

    Fujimori, A.; Abe, M.

    2003-01-01

    Full text: The gene of catalytic subunit of DNA dependent protein kinase is responsible gene for SCID mice. The molecules play a critical role in non-homologous end joining including the V(D)J recombination. Contribution of the molecules to the difference of radiosensitivity and the susceptibility to cancer has been suggested. Here we show the entire nucleotide sequence of approximately 193 kbp and 84 kbp genomic regions encoding the entire DNA-PKcs gene in the mouse and chicken respectively. Retroposon was found in the intron 51 of mouse genomic DNA-PKcs gene but in human and chicken. Comparative analysis of these two species strongly suggested that only two genes, DNA-PKcs and MCM4, exist in the region of both species. Several conserved sequences and cis elements, however, were predicted. Recently, the orthologous region for the human DNA-PKcs locus was completed. The results of further comparative study will be discussed

  12. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function.

    Science.gov (United States)

    Dalton, George D; Dewey, William L

    2006-02-01

    Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous

  13. Assessing dependability and resilience in critical infrastructures: challenges and opportunities

    NARCIS (Netherlands)

    Avritzer, Alberto; Di Giandomenico, Felicita; Remke, Anne Katharina Ingrid; Riedl, Martin; Wolter, Katinka; Avritzer, Alberto; Vieira, Marco; van Moorsel, Aad

    2012-01-01

    Critical infrastructures (CI) are very complex and highly interdependent systems, networks and assets that provide essential services in our daily life. Most CI are either built upon or monitored and controlled by vulnerable information and communication technology (ICT) systems. Critical

  14. Experience-Dependent Equilibration of AMPAR-Mediated Synaptic Transmission during the Critical Period

    Directory of Open Access Journals (Sweden)

    Kyung-Seok Han

    2017-01-01

    Full Text Available Experience-dependent synapse refinement is essential for functional optimization of neural circuits. However, how sensory experience sculpts excitatory synaptic transmission is poorly understood. Here, we show that despite substantial remodeling of synaptic connectivity, AMPAR-mediated synaptic transmission remains at equilibrium during the critical period in the mouse primary visual cortex. The maintenance of this equilibrium requires neurogranin (Ng, a postsynaptic calmodulin-binding protein important for synaptic plasticity. With normal visual experience, loss of Ng decreased AMPAR-positive synapse numbers, prevented AMPAR-silent synapse maturation, and increased spine elimination. Importantly, visual deprivation halted synapse loss caused by loss of Ng, revealing that Ng coordinates experience-dependent AMPAR-silent synapse conversion to AMPAR-active synapses and synapse elimination. Loss of Ng also led to sensitized long-term synaptic depression (LTD and impaired visually guided behavior. Our synaptic interrogation reveals that experience-dependent coordination of AMPAR-silent synapse conversion and synapse elimination hinges upon Ng-dependent mechanisms for constructive synaptic refinement during the critical period.

  15. Methods of measuring Protein Disulfide Isomerase activity: a critical overview

    Science.gov (United States)

    Watanabe, Monica; Laurindo, Francisco; Fernandes, Denise

    2014-09-01

    Protein disulfide isomerase is an essential redox chaperone from the endoplasmic reticulum (ER) and is responsible for correct disulfide bond formation in nascent proteins. PDI is also found in other cellular locations in the cell, particularly the cell surface. Overall, PDI contributes to ER and global cell redox homeostasis and signaling. The knowledge about PDI structure and function progressed substantially based on in vitro studies using recombinant PDI and chimeric proteins. In these experimental scenarios, PDI reductase and chaperone activities are readily approachable. In contrast, assays to measure PDI isomerase activity, the hallmark of PDI family, are more complex. Assessment of PDI roles in cells and tissues mainly relies on gain- or loss-of-function studies. However, there is limited information regarding correlation of experimental readouts with the distinct types of PDI activities. In this mini-review, we evaluate the main methods described for measuring the different kinds of PDI activity: thiol reductase, thiol oxidase, thiol isomerase and chaperone. We emphasize the need to use appropriate controls and the role of critical interferents (e.g., detergent, presence of reducing agents). We also discuss the translation of results from in vitro studies with purified recombinant PDI to cellular and tissue samples, with critical comments on the interpretation of results.

  16. PROTEIN NEEDS OF CRITICALLY ILL PATIENTS RECEIVING PARENTERAL NUTRITION.

    Science.gov (United States)

    Germano Borges de Oliveira Nascimento Freitas, Renata; Negrão Nogueira, Roberto José; Hessel, Gabriel

    2015-07-01

    assess whether the current protein intake recommendations may improve the biochemical parameters of critical patients receiving parenteral nutrition. longitudinal study with three evaluations made (during the first 72 hours, on the 7th and the 14th days of PN). The following tests were applied: albumin, C-reactive protein, prealbumin, total cholesterol, HDL, triglycerides, lymphocytes, and glutathione peroxidase. The severity was determined by SOFA. The statistical analysis included the Spearman and Mann-Whitney tests, as well as ANOVA (analysis of variance). among the 53 patients evaluated, 20 (37.74%) died. The mean calorie was 24.68 ± 9.78 kcal/kg (beginning of PN), 26.49 ± 8.89 kcal/kg (3rd to 7th days of PN), and 30.9 ± 12.19 kcal/kg (7th to 14th days of PN). The mean protein was 1.19 ± 0.44 g/kcal/kg (first 72 hours of PN), 1.29 ± 0.44 g/kcal/kg (3rd to 7th days of PN) and 1.49 ± 0.69 g/kcal/kg (7th to 14th days of PN). Prealbumin, albumin, total cholesterol and HDL were below the reference values, while the CRP levels were high. Throughout the three evaluation times, there was no a significant improvement on the levels of laboratory examinations. A strong and negative correlation was found between SOFA and prealbumin (r = -0.64, p = 0.05). the protein offer, according to the traditional recommendations, was not enough to improve the biochemical parameters of critical patients undergoing parenteral nutrition. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  17. Strain dependence of the critical current and critical field in multifilamentary Nb3Sn composites

    International Nuclear Information System (INIS)

    Ekin, J.W.

    1979-01-01

    High-J/sub c/ multifilamentary Nb 3 Sn superconductors with widely varying amounts of prestrain and critical field values can be characterized fairly accurately by a single normalized critical field-strain relationship. Such a relationship permits first order prediction of critical-current degradation at arbitrary magnetic field magnitudes with knowledge of only two parameters for any conductor, the prestrain and the maximum critical field. Some of the conductor-fabrication factors affecting the parameters are considered

  18. A protein-dependent side-chain rotamer library.

    KAUST Repository

    Bhuyan, M.S.

    2011-12-14

    Protein side-chain packing problem has remained one of the key open problems in bioinformatics. The three main components of protein side-chain prediction methods are a rotamer library, an energy function and a search algorithm. Rotamer libraries summarize the existing knowledge of the experimentally determined structures quantitatively. Depending on how much contextual information is encoded, there are backbone-independent rotamer libraries and backbone-dependent rotamer libraries. Backbone-independent libraries only encode sequential information, whereas backbone-dependent libraries encode both sequential and locally structural information. However, side-chain conformations are determined by spatially local information, rather than sequentially local information. Since in the side-chain prediction problem, the backbone structure is given, spatially local information should ideally be encoded into the rotamer libraries. In this paper, we propose a new type of backbone-dependent rotamer library, which encodes structural information of all the spatially neighboring residues. We call it protein-dependent rotamer libraries. Given any rotamer library and a protein backbone structure, we first model the protein structure as a Markov random field. Then the marginal distributions are estimated by the inference algorithms, without doing global optimization or search. The rotamers from the given library are then re-ranked and associated with the updated probabilities. Experimental results demonstrate that the proposed protein-dependent libraries significantly outperform the widely used backbone-dependent libraries in terms of the side-chain prediction accuracy and the rotamer ranking ability. Furthermore, without global optimization/search, the side-chain prediction power of the protein-dependent library is still comparable to the global-search-based side-chain prediction methods.

  19. A protein-dependent side-chain rotamer library.

    KAUST Repository

    Bhuyan, M.S.; Gao, Xin

    2011-01-01

    Protein side-chain packing problem has remained one of the key open problems in bioinformatics. The three main components of protein side-chain prediction methods are a rotamer library, an energy function and a search algorithm. Rotamer libraries summarize the existing knowledge of the experimentally determined structures quantitatively. Depending on how much contextual information is encoded, there are backbone-independent rotamer libraries and backbone-dependent rotamer libraries. Backbone-independent libraries only encode sequential information, whereas backbone-dependent libraries encode both sequential and locally structural information. However, side-chain conformations are determined by spatially local information, rather than sequentially local information. Since in the side-chain prediction problem, the backbone structure is given, spatially local information should ideally be encoded into the rotamer libraries. In this paper, we propose a new type of backbone-dependent rotamer library, which encodes structural information of all the spatially neighboring residues. We call it protein-dependent rotamer libraries. Given any rotamer library and a protein backbone structure, we first model the protein structure as a Markov random field. Then the marginal distributions are estimated by the inference algorithms, without doing global optimization or search. The rotamers from the given library are then re-ranked and associated with the updated probabilities. Experimental results demonstrate that the proposed protein-dependent libraries significantly outperform the widely used backbone-dependent libraries in terms of the side-chain prediction accuracy and the rotamer ranking ability. Furthermore, without global optimization/search, the side-chain prediction power of the protein-dependent library is still comparable to the global-search-based side-chain prediction methods.

  20. Presenilin dependence of phospholipase C and protein kinase C signaling

    DEFF Research Database (Denmark)

    Dehvari, Nodi; Cedazo-Minguez, Angel; Isacsson, Ola

    2007-01-01

    -stimulated phospholipase C (PLC) activity which was gamma-secretase dependent. To further evaluate the dependence of PLC on PSs we measured PLC activity and the activation of variant protein kinase C (PKC) isoforms in mouse embryonic fibroblasts (MEFs) lacking either PS1, PS2, or both. PLC activity and PKCalpha...

  1. The external field dependence of the BCS critical temperature

    DEFF Research Database (Denmark)

    Frank, Rupert L.; Hainzl, Christian; Seiringer, Robert

    2016-01-01

    We consider the Bardeen-Cooper-Schrieffer free energy functional for particles interacting via a two-body potential on a microscopic scale and in the presence of weak external fields varying on a macroscopic scale. We study the influence of the external fields on the critical temperature. We show...

  2. Structural study of surfactant-dependent interaction with protein

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, Joachim [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  3. Dependence of Subduction Zone seismicity on Strain-Rate-Dependent Critical Homologous Temperature

    Science.gov (United States)

    Davis, P. M.

    2016-12-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity with large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc=T/TM above which earthquakes are rarely observed. We find that THc for ocean plates is ˜0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ˜50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2D polynomial fits to a relocated catalog, are ˜50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022 to $1023 Pa s, i.e., where creep strain-rates become comparable to tectonic rates. The cutoff for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH>0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are 2 to 3 orders of magnitude higher than those associated with earthquakes located where TH ≤0.55. We conclude that the

  4. Dependence of the brittle ductile transition on strain-rate-dependent critical homologous temperature

    Science.gov (United States)

    Davis, Paul M.

    2017-05-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, \\dot{e}_t, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity including large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc = T/TM above which earthquakes are rarely observed (where T, TM are temperature and average melting temperature of constituent minerals). We find that THc for ocean plates is ∼0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ∼50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2-D polynomial fits to a relocated catalogue, are ∼50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022-1023 Pa s, that is, where creep strain-rates become comparable to tectonic rates. The cut-off for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH > 0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are two to

  5. Critical Features of Fragment Libraries for Protein Structure Prediction.

    Science.gov (United States)

    Trevizani, Raphael; Custódio, Fábio Lima; Dos Santos, Karina Baptista; Dardenne, Laurent Emmanuel

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction.

  6. Non-Markovian State-Dependent Networks in Critical Loading

    Science.gov (United States)

    2015-02-04

    Under suitable moment and mixing conditions which imply the invariance principle (cf. Herrndorf[8], Peligrad[17], Jacod and Shiryaev[9]), Corollary 4.1...volume 288 of Grundlehren der Mathema- tischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag: Berlin, second...arrival rate control policy on throughput and work-in-process in production systems with workload dependent processing rates. Int. J. Prod. Econ . 2003, 85

  7. DEPENDENCE RELATIONSHIP BETWEEN THE CRITICAL QUALITY FACTORS AND SOCIAL IMPACT

    Directory of Open Access Journals (Sweden)

    José Álvarez García

    2014-10-01

    Full Text Available This paper shows the results of the empirical study conducted in 186 tourist accommodation businesses in Spain certified under the “Q for Tourist Quality”, own System Quality Management. It was raised with the purpose of analyzing the structure of the relationship between critical quality factors and results-social impact, how they operate and the level of their influence on obtaining these results within the company. Starting from a deep theoretical revision we propose a theoretical model together with the hypotheses to be tested, and we proceed to validation using the technique of Structural Equation Models. The results obtained show that companies wishing to improve their social impact should take into account that leadership is the most important factor to achieve it. Leadership indirectly affects the social impact through its influence on alliances and resources, quality policy/planning, personnel management and learning.

  8. On the spectral dependence of the critical temperature of superconductors

    International Nuclear Information System (INIS)

    Combescot, R.

    1989-01-01

    The authors have solved analytically the linearized Eliashberg equations for T c in the weak coupling limit. The corrections to their result go to zero in this limit. Their calculation is valid for any spectral shape. They find a smooth dependence of T c on the spectral shape. Only the gross features of the spectrum are relevant. The authors propose for T c an interpolation formula valid for any coupling strength and any spectral shape. This formula is in good agreement with known numerical results. It agrees with all the qualitative behavior obtained from computer work

  9. Enhanced expression of a calcium-dependent protein kinase

    Indian Academy of Sciences (India)

    Among the downstream targets of calcium in plants, calcium-dependent protein kinases (CDPKs) form an interesting class of kinases which are activated by calcium binding. They have been implicated in a diverse array of responses to hormonal and environmental stimuli. In order to dissect the role of CDPKs in the moss ...

  10. Helicobacter pylori colonization critically depends on postprandial gastric conditions

    Science.gov (United States)

    Bücker, Roland; Azevedo-Vethacke, Marina; Groll, Claudia; Garten, Désirée; Josenhans, Christine; Suerbaum, Sebastian; Schreiber, Sören

    2012-01-01

    The risk of Helicobacter pylori infection is highest in childhood, but the colonization process of the stomach mucosa is poorly understood. We used anesthetized Mongolian gerbils to study the initial stages of H. pylori colonization. Prandial and postprandial gastric conditions characteristic of humans of different ages were simulated. The fraction of bacteria that reached the deep mucus layer varied strongly with the modelled postprandial conditions. Colonization success was weak with fast gastric reacidification typical of adults. The efficiency of deep mucus entry was also low with a slow pH decrease as seen in pH profiles simulating the situation in babies. Initial colonization was most efficient under conditions simulating the postprandial reacidification and pepsin activation profiles in young children. In conclusion, initial H. pylori colonization depends on age-related gastric physiology, providing evidence from an in vivo infection model that suggests an explanation why the bacterium is predominantly acquired in early childhood. PMID:23251780

  11. Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress

    Science.gov (United States)

    Grønli, Janne; Soulé, Jonathan; Bramham, Clive R.

    2014-01-01

    Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function. PMID:24478645

  12. Curcumin Attenuates Opioid Tolerance and Dependence by Inhibiting Ca2+/Calmodulin-Dependent Protein Kinase II α Activity

    Science.gov (United States)

    Hu, Xiaoyu; Huang, Fang; Szymusiak, Magdalena

    2015-01-01

    Chronic use of opioid analgesics has been hindered by the development of opioid addiction and tolerance. We have reported that curcumin, a natural flavonoid from the rhizome of Curcuma longa, attenuated opioid tolerance, although the underlying mechanism remains unclear. In this study, we tested the hypothesis that curcumin may inhibit Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα), a protein kinase that has been previously proposed to be critical for opioid tolerance and dependence. In this study, we used state-of-the-art polymeric formulation technology to produce poly(lactic-co-glycolic acid) (PLGA)-curcumin nanoparticles (nanocurcumin) to overcome the drug’s poor solubility and bioavailability, which has made it extremely difficult for studying in vivo pharmacological actions of curcumin. We found that PLGA-curcumin nanoparticles reduced the dose requirement by 11- to 33-fold. Pretreatment with PLGA-curcumin (by mouth) prevented the development of opioid tolerance and dependence in a dose-dependent manner, with ED50 values of 3.9 and 3.2 mg/kg, respectively. PLGA-curcumin dose-dependently attenuated already-established opioid tolerance (ED50 = 12.6 mg/kg p.o.) and dependence (ED50 = 3.1 mg/kg p.o.). Curcumin or PLGA-curcumin did not produce antinociception by itself or affect morphine (1–10 mg/kg) antinociception. Moreover, we found that the behavioral effects of curcumin on opioid tolerance and dependence correlated with its inhibition of morphine-induced CaMKIIα activation in the brain. These results suggest that curcumin may attenuate opioid tolerance and dependence by suppressing CaMKIIα activity. PMID:25515789

  13. Magnetic field and temperature dependence of the critical vortex velocity in type-II superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, G; Leo, A; Cirillo, C; Attanasio, C; Nigro, A; Pace, S [CNR-INFM Laboratorio Regionale SuperMat, Via Salvador Allende, I-84081 Baronissi (Italy)], E-mail: grimaldi@sa.infn.it

    2009-06-24

    We study the vortex dynamics in the instability regime induced by high dissipative states well above the critical current in Nb superconducting strips. The magnetic field and temperature behavior of the critical vortex velocity corresponding to the observed dynamic instability is ascribed to intrinsic non-equilibrium phenomena. The Larkin-Ovchinnikov (LO) theory of electronic instability in high velocity vortex motion has been applied to interpret the temperature dependence of the critical vortex velocity. The magnetic field dependence of the vortex critical velocity shows new features in the low-field regime not predicted by LO.

  14. Thioredoxin h regulates calcium dependent protein kinases in plasma membranes.

    Science.gov (United States)

    Ueoka-Nakanishi, Hanayo; Sazuka, Takashi; Nakanishi, Yoichi; Maeshima, Masayoshi; Mori, Hitoshi; Hisabori, Toru

    2013-07-01

    Thioredoxin (Trx) is a key player in redox homeostasis in various cells, modulating the functions of target proteins by catalyzing a thiol-disulfide exchange reaction. Target proteins of cytosolic Trx-h of higher plants were studied, particularly in the plasma membrane, because plant plasma membranes include various functionally important protein molecules such as transporters and signal receptors. Plasma membrane proteins from Arabidopsis thaliana cell cultures were screened using a resin Trx-h1 mutant-immobilized, and a total of 48 candidate proteins obtained. These included two calcium-sensing proteins: a phosphoinositide-specific phospholipase 2 (AtPLC2) and a calcium-dependent protein kinase 21 (AtCPK21). A redox-dependent change in AtCPK21 kinase activity was demonstrated in vitro. Oxidation of AtCPK21 resulted in a decrease in kinase activity to 19% of that of untreated AtCPK21, but Trx-h1 effectively restored the activity to 90%. An intramolecular disulfide bond (Cys97-Cys108) that is responsible for this redox modulation was then identified. In addition, endogenous AtCPK21 was shown to be oxidized in vivo when the culture cells were treated with H2 O2 . These results suggest that redox regulation of AtCPK21 by Trx-h in response to external stimuli is important for appropriate cellular responses. The relationship between the redox regulation system and Ca(2+) signaling pathways is discussed. © 2013 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

  15. Characterization of tetratricopeptide repeat-containing proteins critical for cilia formation and function.

    Directory of Open Access Journals (Sweden)

    Yanan Xu

    Full Text Available Cilia formation and function require a special set of trafficking machinery termed intraflagellar transport (IFT, consisting mainly of protein complexes IFT-A, IFT-B, BBSome, and microtubule-dependent molecular motors. Tetratricopeptide repeat-containing (TTC proteins are widely involved in protein complex formation. Nine of them are known to serve as components of the IFT or BBSome complexes. How many TTC proteins are cilia-related and how they function, however, remain unclear. Here we show that twenty TTC genes were upregulated by at least 2-fold during the differentiation of cultured mouse tracheal epithelial cells (MTECs into multiciliated cells. Our systematic screen in zebrafish identified four novel TTC genes, ttc4, -9c, -36, and -39c, that are critical for cilia formation and motility. Accordingly, their zebrafish morphants displayed typical ciliopathy-related phenotypes, including curved body, abnormal otolith, hydrocephalus, and defective left-right patterning. The morphants of ttc4 and ttc25, a known cilia-related gene, additionally showed pronephric cyst formation. Immunoprecipitation indicated associations of TTC4, -9c, -25, -36, and -39c with components or entire complexes of IFT-A, IFT-B, or BBSome, implying their participations in IFT or IFT-related activities. Our results provide a global view for the relationship between TTC proteins and cilia.

  16. Runx-dependent expression of PKC is critical for cell survival in the sea urchin embryo

    Directory of Open Access Journals (Sweden)

    McCarthy John J

    2005-08-01

    Full Text Available Abstract Background Runx transcription factors play critical roles in the developmental control of cell fate and contribute variously as oncoproteins and tumor suppressors to leukemia and other cancers. To discover fundamental Runx functions in the cell biology of animal development, we have employed morpholino antisense-mediated knockdown of the sea urchin Runx protein SpRunt-1. Previously we showed that embryos depleted of SpRunt-1 arrest development at early gastrula stage and underexpress the conventional protein kinase C SpPKC1. Results We report here that SpRunt-1 deficiency leads to ectopic cell proliferation and extensive apoptosis. Suppression of the apoptosis by pharmacological inhibition of caspase-3 prevents the ectopic proliferation and rescues gastrulation, indicating that many of the overt defects obtained by knockdown of SpRunt-1 are secondary to the apoptosis. Inhibition or knockdown of SpPKC1 also causes apoptosis, while cell survival is rescued in SpRunt-1 morphant embryos coinjected with SpPKC1 mRNA, suggesting that the apoptosis associated with SpRunt-1 deficiency is caused by the deficit in SpPKC1 expression. Chromatin immunoprecipitation indicates that SpRunt-1 interacts physically with SpPKC1 in vivo, and cis-regulatory analysis shows that this interaction activates SpPKC1 transcription. Conclusions Our results show that Runx-dependent activation of SpPKC1 is essential for maintaining protein kinase C activity at levels conducive to cell survival during embryogenesis.

  17. A critical role for protein degradation in the nucleus accumbens core in cocaine reward memory.

    Science.gov (United States)

    Ren, Zhen-Yu; Liu, Meng-Meng; Xue, Yan-Xue; Ding, Zeng-Bo; Xue, Li-Fen; Zhai, Suo-Di; Lu, Lin

    2013-04-01

    The intense associative memories that develop between cocaine-paired contexts and rewarding stimuli contribute to cocaine seeking and relapse. Previous studies have shown impairment in cocaine reward memories by manipulating a labile state induced by memory retrieval, but the mechanisms that underlie the destabilization of cocaine reward memory are unknown. In this study, using a Pavlovian cocaine-induced conditioned place preference (CPP) procedure in rats, we tested the contribution of ubiquitin-proteasome system-dependent protein degradation in destabilization of cocaine reward memory. First, we found that polyubiquitinated protein expression levels and polyubiquitinated N-ethylmaleimide-sensitive fusion (NSF) markedly increased 15 min after retrieval while NSF protein levels decreased 1 h after retrieval in the synaptosomal membrane fraction in the nucleus accumbens (NAc) core. We then found that infusion of the proteasome inhibitor lactacystin into the NAc core prevented the impairment of memory reconsolidation induced by the protein synthesis inhibitor anisomycin and reversed the effects of anisomycin on NSF and glutamate receptor 2 (GluR2) protein levels in the synaptosomal membrane fraction in the NAc core. We also found that lactacystin infusion into the NAc core but not into the shell immediately after extinction training sessions inhibited CPP extinction and reversed the extinction training-induced decrease in NSF and GluR2 in the synaptosomal membrane fraction in the NAc core. Finally, infusions of lactacystin by itself into the NAc core immediately after each training session or before the CPP retrieval test had no effect on the consolidation and retrieval of cocaine reward memory. These findings suggest that ubiquitin-proteasome system-dependent protein degradation is critical for retrieval-induced memory destabilization.

  18. Non-monotonic field dependence of critical current in composite superconductors

    International Nuclear Information System (INIS)

    Andrianov, V.V.; Baev, V.P.; Ivanov, S.S.

    1982-01-01

    The nonmonotonic field dependence of critical current Im(B/sub a/ in composite superconductors is investigated experimentally for current and field varying simultaneously with final rates I and B/sub a/

  19. Self esteem, dependency, self-efficacy and self-criticism in social anxiety disorder.

    Science.gov (United States)

    Iancu, Iulian; Bodner, Ehud; Ben-Zion, Itzhak Z

    2015-04-01

    Social anxiety disorder (SAD) is characterized by fear and avoidance in social situations where one perceives being in danger of scrutiny by others. Low self-esteem, low self-efficacy, high self-criticism and high dependency are additional potential features of SAD, and thus their examination is warranted, as is the elucidation of their inter-relationship. Thirty-two SAD subjects diagnosed with the Mini-International Neuropsychiatric Interview and 30 healthy controls, were administered the Liebowitz Social Anxiety Scale (LSAS), the Rosenberg Self Esteem Scale, the Depressive Experiences Questionnaire (DEQ) that assesses self-criticism, dependency and self-efficacy, and a socio-demographic questionnaire. We hypothesized that the SAD group would present higher scores of dependency and self-criticism and lower self-esteem and self-efficacy. We also hypothesized that low self-esteem, low self-efficacy, high self-criticism and high dependency will predict the severity of SAD. In line with the hypotheses, SAD patients had higher scores of self-criticism and dependency and lower scores of self-esteem. The social anxiety score correlated negatively with self-esteem and self-efficacy, and positively with dependency and self-criticism. Self-criticism, but not the other measures, predicted the total LSAS score. Self-esteem, self-criticism, dependency and self-efficacy are related to SAD and their relations should be examined in future studies that will employ larger samples. It is suggested to search for ways to affect these factors through cognitive-behavioral interventions and additional psychotherapeutic treatments. Research should also focus on the specific role of self-criticism in SAD. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Thickness dependence of effective critical exponents in three-dimensional Ising plates

    International Nuclear Information System (INIS)

    Marques, M.I.; Gonzalo, J.A.

    2000-01-01

    Phase transitions in ising plates of equal area and different thickness have been studied by the Monte Carlo approach. The evolution of the critical temperature and of the effective critical exponents with the thickness of the lattice has been numerically determined. The thickness dependence of the maximum value of the effective critical exponents is well described by an exponential decay towards the respective three-dimensional value. (author)

  1. Magnetic field dependence of the critical current density in YBa2Cu3Ox ceramics

    International Nuclear Information System (INIS)

    Zhukov, A.A.; Moshchalkov, V.V.; Komarkov, D.A.; Shabatin, V.P.; Gordeev, S.N.; Shelomov, D.V.

    1989-01-01

    Three magnetic field ranges corresponding to different critical current density j c behavior have been found out. They correlate with grain magnetization changes. The inverse critical current density is shown to depend linearly on the sample cross-section due to the magnetic field induced by the flowing current

  2. The calcium-dependent protein kinase CPK7 acts on root hydraulic conductivity.

    Science.gov (United States)

    Li, Guowei; Boudsocq, Marie; Hem, Sonia; Vialaret, Jérôme; Rossignol, Michel; Maurel, Christophe; Santoni, Véronique

    2015-07-01

    The hydraulic conductivity of plant roots (Lp(r)) is determined in large part by the activity of aquaporins. Mechanisms occurring at the post-translational level, in particular phosphorylation of aquaporins of the plasma membrane intrinsic protein 2 (PIP2) subfamily, are thought to be of critical importance for regulating root water transport. However, knowledge of protein kinases and phosphatases acting on aquaporin function is still scarce. In the present work, we investigated the Lp(r) of knockout Arabidopsis plants for four Ca(2+)-dependent protein kinases. cpk7 plants showed a 30% increase in Lp(r) because of a higher aquaporin activity. A quantitative proteomic analysis of wild-type and cpk7 plants revealed that PIP gene expression and PIP protein quantity were not correlated and that CPK7 has no effect on PIP2 phosphorylation. In contrast, CPK7 exerts a negative control on the cellular abundance of PIP1s, which likely accounts for the higher Lp(r) of cpk7. In addition, this study revealed that the cellular amount of a few additional proteins including membrane transporters is controlled by CPK7. The overall work provides evidence for CPK7-dependent stability of specific membrane proteins. © 2014 John Wiley & Sons Ltd.

  3. Magnetic field dependence of the critical superconducting current induced by the proximity effect in silicon

    International Nuclear Information System (INIS)

    Nishino, T.; Kawabe, U.; Yamada, E.

    1986-01-01

    The magnetic field dependence of the critical superconducting current induced by the proximity effect in heavily-boron-doped Si is studied experimentally. It is found that the critical current flowing through the p-type-Si-coupled junction decreases with increasing applied magnetic field. The critical current can be expressed as the product of three factors: the current induced by de Gennes's proximity effect, the exponential decrease due to pair breaking by the magnetic field, and the usual diffraction-pattern-like dependence on the magnetic field due to the Josephson effect. The second factor depends on the carrier concentration in the semiconductor. The local critical current shows a rapid decrease at the edge of the electrodes

  4. Dependence of critical current on sample length analyzed by the variation of local critical current bent of BSCCO superconducting composite tape

    International Nuclear Information System (INIS)

    Matsubayashi, H.; Mukai, Y.; Shin, J.K.; Ochiai, S.; Okuda, H.; Osamura, K.; Otto, A.; Malozemoff, A.

    2008-01-01

    Using the high critical current type BSCCO composite tape fabricated at American Superconductor Corporation, the relation of overall critical current to the distribution of local critical current and the dependence of overall critical current on sample length of the bent samples were studied experimentally and analytically. The measured overall critical current was described well from the distribution of local critical current and n-value of the constituting short elements, by regarding the overall sample to be composed of local series circuits and applying the voltage summation model. Also the dependence of overall critical current on sample length could be reproduced in computer satisfactorily by the proposed simulation method

  5. Sleep deprivation impairs memory by attenuating mTORC1-dependent protein synthesis.

    Science.gov (United States)

    Tudor, Jennifer C; Davis, Emily J; Peixoto, Lucia; Wimmer, Mathieu E; van Tilborg, Erik; Park, Alan J; Poplawski, Shane G; Chung, Caroline W; Havekes, Robbert; Huang, Jiayan; Gatti, Evelina; Pierre, Philippe; Abel, Ted

    2016-04-26

    Sleep deprivation is a public health epidemic that causes wide-ranging deleterious consequences, including impaired memory and cognition. Protein synthesis in hippocampal neurons promotes memory and cognition. The kinase complex mammalian target of rapamycin complex 1 (mTORC1) stimulates protein synthesis by phosphorylating and inhibiting the eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2). We investigated the involvement of the mTORC1-4EBP2 axis in the molecular mechanisms mediating the cognitive deficits caused by sleep deprivation in mice. Using an in vivo protein translation assay, we found that loss of sleep impaired protein synthesis in the hippocampus. Five hours of sleep loss attenuated both mTORC1-mediated phosphorylation of 4EBP2 and the interaction between eukaryotic initiation factor 4E (eIF4E) and eIF4G in the hippocampi of sleep-deprived mice. Increasing the abundance of 4EBP2 in hippocampal excitatory neurons before sleep deprivation increased the abundance of phosphorylated 4EBP2, restored the amount of eIF4E-eIF4G interaction and hippocampal protein synthesis to that seen in mice that were not sleep-deprived, and prevented the hippocampus-dependent memory deficits associated with sleep loss. These findings collectively demonstrate that 4EBP2-regulated protein synthesis is a critical mediator of the memory deficits caused by sleep deprivation. Copyright © 2016, American Association for the Advancement of Science.

  6. Conformational dependence of a protein kinase phosphate transfer reaction

    Science.gov (United States)

    Labute, Montiago; Henkelman, Graeme; Tung, Chang-Shung; Fenimore, Paul; McMahon, Ben

    2007-03-01

    Atomic motions and energetics for a phosphate transfer reaction catalyzed by the cAMP-dependent protein kinase have been calculated using plane-wave density functional theory, starting from structures of proteins crystallized in both the reactant conformation (RC) and the transition-state conformation (TC). In TC, we calculate that the reactants and products are nearly isoenergetic with a 20-kJ/mol barrier, whereas phosphate transfer is unfavorable by 120 kJ/mol in the RC, with an even higher barrier. Our results demonstrate that the phosphate transfer reaction occurs rapidly and reversibly in a particular conformation of the protein, and that the reaction can be gated by changes of a few tenths of an angstrom in the catalytic site [1]. [1] G.H. Henkelman, M.X. LaBute, C.-S. Tung, P.W. Fenimore, B.H. McMahon, Proc. Natl. Acad. Sci. USA vol. 102, no. 43:15347-15351 (2005).

  7. Arterial response to shear stress critically depends on endothelial TRPV4 expression.

    Directory of Open Access Journals (Sweden)

    Veronika Hartmannsgruber

    Full Text Available BACKGROUND: In blood vessels, the endothelium is a crucial signal transduction interface in control of vascular tone and blood pressure to ensure energy and oxygen supply according to the organs' needs. In response to vasoactive factors and to shear stress elicited by blood flow, the endothelium secretes vasodilating or vasocontracting autacoids, which adjust the contractile state of the smooth muscle. In endothelial sensing of shear stress, the osmo- and mechanosensitive Ca(2+-permeable TRPV4 channel has been proposed to be candidate mechanosensor. Using TRPV4(-/- mice, we now investigated whether the absence of endothelial TRPV4 alters shear-stress-induced arterial vasodilation. METHODOLOGY/PRINCIPAL FINDINGS: In TRPV4(-/- mice, loss of the TRPV4 protein was confirmed by Western blot, immunohistochemistry and by in situ-patch-clamp techniques in carotid artery endothelial cells (CAEC. Endothelium-dependent vasodilation was determined by pressure myography in carotid arteries (CA from TRPV4(-/- mice and wild-type littermates (WT. In WT CAEC, TRPV4 currents could be elicited by TRPV4 activators 4alpha-phorbol-12,13-didecanoate (4alphaPDD, arachidonic acid (AA, and by hypotonic cell swelling (HTS. In striking contrast, in TRPV4(-/- mice, 4alphaPDD did not produce currents and currents elicited by AA and HTS were significantly reduced. 4alphaPDD caused a robust and endothelium-dependent vasodilation in WT mice, again conspicuously absent in TRPV4(-/- mice. Shear stress-induced vasodilation could readily be evoked in WT, but was completely eliminated in TRPV4(-/- mice. In addition, flow/reperfusion-induced vasodilation was significantly reduced in TRPV4(-/- vs. WT mice. Vasodilation in response to acetylcholine, vasoconstriction in response to phenylephrine, and passive mechanical compliance did not differ between genotypes, greatly underscoring the specificity of the above trpv4-dependent phenotype for physiologically relevant shear stress

  8. Arterial Response to Shear Stress Critically Depends on Endothelial TRPV4 Expression

    Science.gov (United States)

    Kacik, Michael; Kaistha, Anuradha; Grgic, Ivica; Harteneck, Christian; Liedtke, Wolfgang; Hoyer, Joachim; Köhler, Ralf

    2007-01-01

    Background In blood vessels, the endothelium is a crucial signal transduction interface in control of vascular tone and blood pressure to ensure energy and oxygen supply according to the organs' needs. In response to vasoactive factors and to shear stress elicited by blood flow, the endothelium secretes vasodilating or vasocontracting autacoids, which adjust the contractile state of the smooth muscle. In endothelial sensing of shear stress, the osmo- and mechanosensitive Ca2+-permeable TRPV4 channel has been proposed to be candidate mechanosensor. Using TRPV4−/− mice, we now investigated whether the absence of endothelial TRPV4 alters shear-stress-induced arterial vasodilation. Methodology/Principal Findings In TRPV4−/− mice, loss of the TRPV4 protein was confirmed by Western blot, immunohistochemistry and by in situ-patch–clamp techniques in carotid artery endothelial cells (CAEC). Endothelium-dependent vasodilation was determined by pressure myography in carotid arteries (CA) from TRPV4−/− mice and wild-type littermates (WT). In WT CAEC, TRPV4 currents could be elicited by TRPV4 activators 4α-phorbol-12,13-didecanoate (4αPDD), arachidonic acid (AA), and by hypotonic cell swelling (HTS). In striking contrast, in TRPV4−/− mice, 4αPDD did not produce currents and currents elicited by AA and HTS were significantly reduced. 4αPDD caused a robust and endothelium-dependent vasodilation in WT mice, again conspicuously absent in TRPV4−/− mice. Shear stress-induced vasodilation could readily be evoked in WT, but was completely eliminated in TRPV4−/− mice. In addition, flow/reperfusion-induced vasodilation was significantly reduced in TRPV4−/− vs. WT mice. Vasodilation in response to acetylcholine, vasoconstriction in response to phenylephrine, and passive mechanical compliance did not differ between genotypes, greatly underscoring the specificity of the above trpv4-dependent phenotype for physiologically relevant shear stress. Conclusions

  9. Tensile Strain Dependence of Critical Current for RHQ-Nb3Al Wires

    OpenAIRE

    Jin, Xinzhe; Oguro, Hidetoshi; Nakamoto, Tatsushi; Awaji, Satoshi; Ogitsu, Toru; Tsuchiya, Kiyosumi; Yamamoto, Akira; Kikuchi, Akihiro; Takeuchi, Takao

    2011-01-01

    KEK and NIMS have been jointly developing Nb3Al superconducting wire with a rapid heating and quenching (RHQ) method towards high field accelerator magnets in the Large Hadron Collider (LHC) luminosity upgrade. A15-type superconductors such as Nb3Al and Nb3Sn exhibit strain dependence with respect to their critical currents. Therefore, a thorough understanding of strain behavior is necessary for high field accelerator magnet development, which will be critical for the luminosity upgrade of th...

  10. Aggregation propensity of critical regions of the protein Tau

    Science.gov (United States)

    Muthee, Micaiah; Ahmed, Azka; Larini, Luca

    The Alzheimer's disease is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills, which eventually leads to the ability to not able to carry out the simplest tasks. The Alzheimer's disease is characterized by the formation of protein aggregates both within and outside of the brain's cells, the neurons. Within the neurons, the aggregation of the protein tau leads to the destruction of the microtubules in the axon of the neuron. Tau belongs to a group of proteins referred to as Microtubule-Associated Proteins. It is extremely flexible and is classified as an intrinsically unstructured protein due to its low propensity to form secondary structure. Tau promotes tubulin assembly into microtubules thereby stabilizing the cytoskeleton of the axon of the neurons. The microtubule binding region of tau consists of 4 pseudo-repeats. In this study, we will focus on the aggregation propensity of two fragments. In this study we will focus on the PHF43 fragment that contains the third pseudo-repeat and has been shown experimentally to aggregate readily. Another fragment that contains the second pseudo-repeat will be considered as well. Mutations in this region are associated with various form of dementia and for this reason we will consider the mutant P301L.

  11. PERSONALITY PREDISPOSITIONS IN CHINESE ADOLESCENTS: THE RELATION BETWEEN SELF-CRITICISM, DEPENDENCY, AND PROSPECTIVE INTERNALIZING SYMPTOMS

    Science.gov (United States)

    Cohen, Joseph R.; Young, Jami F.; Hankin, Benjamin L.; Yao, Shuqiao; Zhu, Xiong Zhao; Abela, John R.Z.

    2015-01-01

    The present study examined the prospective relation between two personality predispositions, self-criticism and dependency, and internalizing symptoms. Specifically, it was examined whether self-criticism and dependency predicted symptoms of depression and social anxiety, and if a moderation (e.g. diathesis-stress) or mediation model best explained the relation between the personality predispositions and emotional distress in Chinese adolescents. Participants included 1,150 adolescents (597 females and 553 males) from mainland China. Participants completed self-report measures of self-criticism, dependency, and neuroticism at baseline, and self-report measures of negative events, depressive symptoms, and social anxiety symptoms once a month for six months. Findings showed that self-criticism predicted depressive symptoms, while dependency predicted social anxiety symptoms. In addition, support was found for a mediation model, as opposed to a moderation model, with achievement stressors mediating the relation between self-criticism and depressive symptoms. Overall, these findings highlight new developmental pathways for the development of depression and social anxiety symptoms in mainland Chinese adolescents. Implications for cross-cultural developmental psychopathology research are discussed. PMID:25798026

  12. Probes of the Mitochondrial cAMP-dependent Protein Kinase

    Science.gov (United States)

    Shell, Jennifer R.; Lawrence, David S.

    2013-01-01

    The development of a fluorescent assay to detect activity of the mitochondrial cAMP-dependent protein kinase (PKA) is described. A peptide-based sensor was utilized to quantify the relative amount of PKA activity present in each compartment of the mitochondria (the outer membrane, the intermembrane space, and the matrix). In the process of validating this assay, we discovered that PKA activity is regulated by the protease calpain. Upon exposure of bovine heart mitochondria to digitonin, Ca2+, and a variety of electron transport chain inhibitors, the regulatory subunits of the PKA holoenzyme (R2C2) are digested, releasing active catalytic subunits. This proteolysis is attenuated by calpain inhibitor I (ALLN). PMID:23410952

  13. Quinolinone and pyridopyrimidinone inhibitors of DNA-dependent protein kinase.

    Science.gov (United States)

    Barbeau, Olivier R; Cano-Soumillac, Celine; Griffin, Roger J; Hardcastle, Ian R; Smith, Graeme C M; Richardson, Caroline; Clegg, William; Harrington, Ross W; Golding, Bernard T

    2007-08-21

    8-Substituted 2-morpholin-4-yl-quinolin-4-ones and 9-substituted 2-morpholin-4-yl-pyrido[1,2-a]pyrimidin-4-ones with selected aryl and heteroaryl groups as the substituent have been synthesised as potential inhibitors of DNA-dependent protein kinase. A multiple-parallel approach, employing Suzuki cross-coupling methodology, was utilised in the preparation of 8-substituted 2-morpholin-4-yl-quinolin-4-ones. For this purpose 8-bromo-2-morpholin-4-yl-quinolin-4-one was required as an intermediate. This compound was obtained by adapting a literature route in which thermal cyclocondensation of (2-bromoanilino)-morpholin-4-yl-5-methylene-2,2-dimethyl[1,3]dioxane-4,6-dione afforded 8-bromo-2-morpholin-4-yl-quinolin-4-one. A multiple-parallel approach, employing Suzuki cross-coupling methodology, was also utilised to prepare 9-substituted 2-morpholin-4-yl-pyrido[1,2-a]pyrimidin-4-ones using 9-hydroxy-2-morpholin-4-yl-pyrido[1,2-a]pyrimidin-4-one O-trifluoromethanesulfonate as an intermediate. 8-Substituted 2-morpholin-4-yl-quinolin-4-ones and 9-substituted 2-morpholin-4-yl-pyrido[1,2-a]pyrimidin-4-ones were both inhibitors of DNA-dependent protein kinase. When the substituent was dibenzothiophen-4-yl, dibenzofuran-4-yl or biphen-3-yl, IC50 values in the low nanomolar range were observed. Interestingly, the pyridopyrimidinones and quinolinones were essentially equipotent with the corresponding 8-substituted 2-morpholin-4-yl-chromen-4-ones previously reported (I. R. Hardcastle, X. Cockcroft, N. J. Curtin, M. Desage El-Murr, J. J. J. Leahy, M. Stockley, B. T. Golding, L. Rigoreau, C. Richardson, G. C. M. Smith and R. J. Griffin, J. Med. Chem., 2005, 48, 7829-7846).

  14. Strain-dependent profile of misfolded prion protein aggregates.

    Science.gov (United States)

    Morales, Rodrigo; Hu, Ping Ping; Duran-Aniotz, Claudia; Moda, Fabio; Diaz-Espinoza, Rodrigo; Chen, Baian; Bravo-Alegria, Javiera; Makarava, Natallia; Baskakov, Ilia V; Soto, Claudio

    2016-02-15

    Prions are composed of the misfolded prion protein (PrP(Sc)) organized in a variety of aggregates. An important question in the prion field has been to determine the identity of functional PrP(Sc) aggregates. In this study, we used equilibrium sedimentation in sucrose density gradients to separate PrP(Sc) aggregates from three hamster prion strains (Hyper, Drowsy, SSLOW) subjected to minimal manipulations. We show that PrP(Sc) aggregates distribute in a wide range of arrangements and the relative proportion of each species depends on the prion strain. We observed a direct correlation between the density of the predominant PrP(Sc) aggregates and the incubation periods for the strains studied. The relative presence of PrP(Sc) in fractions of different sucrose densities was indicative of the protein deposits present in the brain as analyzed by histology. Interestingly, no association was found between sensitivity to proteolytic degradation and aggregation profiles. Therefore, the organization of PrP molecules in terms of the density of aggregates generated may determine some of the particular strain properties, whereas others are independent from it. Our findings may contribute to understand the mechanisms of strain variation and the role of PrP(Sc) aggregates in prion-induced neurodegeneration.

  15. Critical current characteristics and history dependence in superconducting SmFeAsOF bulk

    International Nuclear Information System (INIS)

    Ni, B; Ge, J; Kiuchi, M; Otabe, E S; Gao, Z; Wang, L; Qi, Y; Zhang, X; Ma, Y

    2010-01-01

    The superconducting SmFeAsO 1-x F x (x=0.2) polycrystalline bulks were prepared by the powder-in-tube (PIT) method. The magnetic field and temperature dependences of critical current densities in the samples were investigated by resistive and ac inductive (Campbell's) methods. It was found that a fairly large shielding current density over 10 9 A/m 2 , which is considered to correspond to the local critical current density, flows locally with the perimeter size similar to the average grain size of the bulk samples, while an extremely low transport current density of about 10 5 A/m 2 corresponding to the global critical current density flows through the whole sample. Furthermore, a unique history dependence of global critical current density was observed, i.e., it shows a smaller value in the increasing-field process than that in the decreasing-field process. The history dependence of global critical current characteristic in our case can be ascribed to the existence of the weak-link property between the grains in SmFeAsO 1-x F x bulk.

  16. Critical Determinants of Substrate Recognition by Cyclin-Dependent Kinase-like 5 (CDKL5).

    Science.gov (United States)

    Katayama, Syouichi; Sueyoshi, Noriyuki; Kameshita, Isamu

    2015-05-19

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase known to be associated with X-linked neurodevelopmental disorders. In a previous study, we identified amphiphysin 1 (Amph1) as a potential substrate for CDKL5 and identified a single phosphorylation site at Ser-293. In this study, we investigated the molecular mechanisms of substrate recognition by CDKL5 using Amph1 as a model substrate. Amph1 served as an efficient CDKL5 substrate, whereas Amph2, a structurally related homologue of Amph1, was not phosphorylated by CDKL5. The sequence around the Amph1 phosphorylation site is RPR(293)SPSQ, while the corresponding sequence in Amph2 is IPK(332)SPSQ. To define the amino acid sequence specificity of the substrate, various point mutants of Amph1 and Amph2 were prepared and phosphorylated by CDKL5. Both Amph2(I329R) and Amph1 served as efficient CDKL5 substrates, but Amph1(R290I) did not, indicating that the arginyl residue at the P -3 position is critical for substrate recognition. With regard to prolyl residues around the phosphorylation site of Amph1, Pro-291 at the P -2 position, but not Pro-294 at the P +1 position, is indispensable for phosphorylation by CDKL5. Phosphorylation experiments using various deletion mutants of Amph1 revealed that the proline-rich domain (PRD) (amino acids 247-315) alone was not phosphorylated by CDKL5. In contrast, Amph1(247-385), which comprised the PRD and CLAP domains, served as an efficient CDKL5 substrate. These results, taken together, suggest that both the phosphorylation site sequence (RPXSX) and the CLAP domain structure in Amph1 play crucial roles in recognition and phosphorylation by CDKL5.

  17. Toscana virus NSs protein promotes degradation of double-stranded RNA-dependent protein kinase.

    Science.gov (United States)

    Kalveram, Birte; Ikegami, Tetsuro

    2013-04-01

    Toscana virus (TOSV), which is transmitted by Phlebotomus spp. sandflies, is a major etiologic agent of aseptic meningitis and encephalitis in the Mediterranean. Like other members of the genus Phlebovirus of the family Bunyaviridae, TOSV encodes a nonstructural protein (NSs) in its small RNA segment. Although the NSs of Rift Valley fever virus (RVFV) has been identified as an important virulence factor, which suppresses host general transcription, inhibits transcription from the beta interferon promoter, and promotes the proteasomal degradation of double-stranded RNA-dependent protein kinase (PKR), little is known about the functions of NSs proteins encoded by less-pathogenic members of this genus. In this study we report that TOSV is able to downregulate PKR with similar efficiency as RVFV, while infection with the other phleboviruses-i.e., Punta Toro virus, sandfly fever Sicilian virus, or Frijoles virus-has no effect on cellular PKR levels. In contrast to RVFV, however, cellular transcription remains unaffected during TOSV infection. TOSV NSs protein promotes the proteasome-dependent downregulation of PKR and is able to interact with kinase-inactive PKR in infected cells.

  18. Dependency and self-criticism in post-partum depression and anxiety: a case control study.

    Science.gov (United States)

    Vliegen, Nicole; Luyten, Patrick

    2009-01-01

    This study investigates the role of self-criticism and dependency in inpatient post-partum depressed women (n = 55) and non-depressed controls (n = 37) as well as the relationship between both personality dimensions and severity of depression and anxiety. As expected, mothers with post-partum depression showed not only increased levels of depression but also anxiety compared with non-depressed mothers. Furthermore, they had significantly higher levels of self-criticism, but not of dependency. In the post-partum depressed mothers, both personality dimensions were positively associated with severity of depression. However, in non-depressed mothers, self-criticism was positively associated with depression, while there was an inverse relationship between dependency and severity of depression. In both samples, self-criticism, but not dependency, was related to state anxiety. The cross-sectional nature of this study limits the ability to draw causal conclusions. The study was based on self-report and conducted in relatively small samples.

  19. Grain size dependence of the critical current density in YBa2Cu3Ox superconductors

    International Nuclear Information System (INIS)

    Kuwabara, M.; Shimooka, H.

    1989-01-01

    The grain size dependence of the critical current density in bulk single-phase YBa 2 Cu 3 O x ceramics was investigated. The grain size of the materials was changed to range approximately from 1.0 to 25 μm by changing the conditions of power processing and sintering, associated with an increase in the sintered density of the materials with increasing grain size. The critical current density has been found to exhibit a significant grain size dependence, changing from 880 A/cm 2 to a value of 100 A/cm 2 with a small increase in the average grain size from 1.2 to 2.0 μm. This seems to provide information about the nature of the weak link between superconducting grains which might govern the critical current density of the materials

  20. Human HOX Proteins Use Diverse and Context-Dependent Motifs to Interact with TALE Class Cofactors.

    Science.gov (United States)

    Dard, Amélie; Reboulet, Jonathan; Jia, Yunlong; Bleicher, Françoise; Duffraisse, Marilyne; Vanaker, Jean-Marc; Forcet, Christelle; Merabet, Samir

    2018-03-13

    HOX proteins achieve numerous functions by interacting with the TALE class PBX and MEIS cofactors. In contrast to this established partnership in development and disease, how HOX proteins could interact with PBX and MEIS remains unclear. Here, we present a systematic analysis of HOX/PBX/MEIS interaction properties, scanning all paralog groups with human and mouse HOX proteins in vitro and in live cells. We demonstrate that a previously characterized HOX protein motif known to be critical for HOX-PBX interactions becomes dispensable in the presence of MEIS in all except the two most anterior paralog groups. We further identify paralog-specific TALE-binding sites that are used in a highly context-dependent manner. One of these binding sites is involved in the proliferative activity of HOXA7 in breast cancer cells. Together these findings reveal an extraordinary level of interaction flexibility between HOX proteins and their major class of developmental cofactors. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Critical protein GAPDH and its regulatory mechanisms in cancer cells

    International Nuclear Information System (INIS)

    Zhang, Jin-Ying; Zhang, Fan; Hong, Chao-Qun; Giuliano, Armando E.; Cui, Xiao-Jiang; Zhou, Guang-Ji; Zhang, Guo-Jun; Cui, Yu-Kun

    2015-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), initially identified as a glycolytic enzyme and considered as a housekeeping gene, is widely used as an internal control in experiments on proteins, mRNA, and DNA. However, emerging evidence indicates that GAPDH is implicated in diverse functions independent of its role in energy metabolism; the expression status of GAPDH is also deregulated in various cancer cells. One of the most common effects of GAPDH is its inconsistent role in the determination of cancer cell fate. Furthermore, studies have described GAPDH as a regulator of cell death; other studies have suggested that GAPDH participates in tumor progression and serves as a new therapeutic target. However, related regulatory mechanisms of its numerous cellular functions and deregulated expression levels remain unclear. GAPDH is tightly regulated at transcriptional and posttranscriptional levels, which are involved in the regulation of diverse GAPDH functions. Several cancer-related factors, such as insulin, hypoxia inducible factor-1 (HIF-1), p53, nitric oxide (NO), and acetylated histone, not only modulate GAPDH gene expression but also affect protein functions via common pathways. Moreover, posttranslational modifications (PTMs) occurring in GAPDH in cancer cells result in new activities unrelated to the original glycolytic function of GAPDH. In this review, recent findings related to GAPDH transcriptional regulation and PTMs are summarized. Mechanisms and pathways involved in GAPDH regulation and its different roles in cancer cells are also described

  2. Temperature dependence of the upper critical field of type II superconductors with fluctuation effects

    International Nuclear Information System (INIS)

    Mikitik, G.P.

    1992-01-01

    Fluctuations of the order parameter are taken into consideration in an analysis of the temperature dependence of the upper critical field of a type II superconductor with a three-dimensional superconductivity. This temperature dependence is of universal applicability, to all type II superconductors, if the magnetic fields and temperatures are expressed in appropriate units. This dependence is derived explicitly for the regions of strong and weak magnetic fields. The results are applied to high T c superconductors, for which fluctuation effects are important. For these superconductors, the H c2 (T) dependence is quite different from the linear dependence characteristic of the mean-field theory, over a broad range of magnetic fields

  3. Position-dependent Effects of Polylysine on Sec Protein Transport*

    Science.gov (United States)

    Liang, Fu-Cheng; Bageshwar, Umesh K.; Musser, Siegfried M.

    2012-01-01

    The bacterial Sec protein translocation system catalyzes the transport of unfolded precursor proteins across the cytoplasmic membrane. Using a recently developed real time fluorescence-based transport assay, the effects of the number and distribution of positive charges on the transport time and transport efficiency of proOmpA were examined. As expected, an increase in the number of lysine residues generally increased transport time and decreased transport efficiency. However, the observed effects were highly dependent on the polylysine position in the mature domain. In addition, a string of consecutive positive charges generally had a more significant effect on transport time and efficiency than separating the charges into two or more charged segments. Thirty positive charges distributed throughout the mature domain resulted in effects similar to 10 consecutive charges near the N terminus of the mature domain. These data support a model in which the local effects of positive charge on the translocation kinetics dominate over total thermodynamic constraints. The rapid translocation kinetics of some highly charged proOmpA mutants suggest that the charge is partially shielded from the electric field gradient during transport, possibly by the co-migration of counter ions. The transport times of precursors with multiple positively charged sequences, or “pause sites,” were fairly well predicted by a local effect model. However, the kinetic profile predicted by this local effect model was not observed. Instead, the transport kinetics observed for precursors with multiple polylysine segments support a model in which translocation through the SecYEG pore is not the rate-limiting step of transport. PMID:22367204

  4. Position-dependent effects of polylysine on Sec protein transport.

    Science.gov (United States)

    Liang, Fu-Cheng; Bageshwar, Umesh K; Musser, Siegfried M

    2012-04-13

    The bacterial Sec protein translocation system catalyzes the transport of unfolded precursor proteins across the cytoplasmic membrane. Using a recently developed real time fluorescence-based transport assay, the effects of the number and distribution of positive charges on the transport time and transport efficiency of proOmpA were examined. As expected, an increase in the number of lysine residues generally increased transport time and decreased transport efficiency. However, the observed effects were highly dependent on the polylysine position in the mature domain. In addition, a string of consecutive positive charges generally had a more significant effect on transport time and efficiency than separating the charges into two or more charged segments. Thirty positive charges distributed throughout the mature domain resulted in effects similar to 10 consecutive charges near the N terminus of the mature domain. These data support a model in which the local effects of positive charge on the translocation kinetics dominate over total thermodynamic constraints. The rapid translocation kinetics of some highly charged proOmpA mutants suggest that the charge is partially shielded from the electric field gradient during transport, possibly by the co-migration of counter ions. The transport times of precursors with multiple positively charged sequences, or "pause sites," were fairly well predicted by a local effect model. However, the kinetic profile predicted by this local effect model was not observed. Instead, the transport kinetics observed for precursors with multiple polylysine segments support a model in which translocation through the SecYEG pore is not the rate-limiting step of transport.

  5. Temperature dependence of the interband critical points of bulk Ge and strained Ge on Si

    Science.gov (United States)

    Fernando, Nalin S.; Nunley, T. Nathan; Ghosh, Ayana; Nelson, Cayla M.; Cooke, Jacqueline A.; Medina, Amber A.; Zollner, Stefan; Xu, Chi; Menendez, Jose; Kouvetakis, John

    2017-11-01

    Epitaxial Ge layers on a Si substrate experience a tensile biaxial stress due to the difference between the thermal expansion coefficients of the Ge epilayer and the Si substrate, which can be measured using asymmetric X-ray diffraction reciprocal space maps. This stress depends on temperature and affects the band structure, interband critical points, and optical spectra. This manuscripts reports careful measurements of the temperature dependence of the dielectric function and the interband critical point parameters of bulk Ge and Ge epilayers on Si using spectroscopic ellipsometry from 80 to 780 K and from 0.8 to 6.5 eV. The authors find a temperature-dependent redshift of the E1 and E1 + Δ1 critical points in Ge on Si (relative to bulk Ge). This redshift can be described well with a model based on thermal expansion coefficients, continuum elasticity theory, and the deformation potential theory for interband transitions. The interband transitions leading to E0‧ and E2 critical points have lower symmetry and therefore are not affected by the stress.

  6. Nanoparticle separation based on size-dependent aggregation of nanoparticles due to the critical Casimir effect.

    Science.gov (United States)

    Guo, Hongyu; Stan, Gheorghe; Liu, Yun

    2018-02-21

    Nanoparticles typically have an inherent wide size distribution that may affect the performance and reliability of many nanomaterials. Because the synthesis and purification of nanoparticles with desirable sizes are crucial to the applications of nanoparticles in various fields including medicine, biology, health care, and energy, there is a great need to search for more efficient and generic methods for size-selective nanoparticle purification/separation. Here we propose and conclusively demonstrate the effectiveness of a size-selective particle purification/separation method based on the critical Casimir force. The critical Casimir force is a generic interaction between colloidal particles near the solvent critical point and has been extensively studied in the past several decades due to its importance in reversibly controlling the aggregation and stability of colloidal particles. Combining multiple experimental techniques, we found that the critical Casimir force-induced aggregation depends on relative particle sizes in a system with larger ones aggregating first and the smaller ones remaining in solution. Based on this observation, a new size-dependent nanoparticle purification/separation method is proposed and demonstrated to be very efficient in purifying commercial silica nanoparticles in the lutidine/water binary solvent. Due to the ubiquity of the critical Casimir force for many colloidal particles in binary solvents, this method might be applicable to many types of colloidal particles.

  7. Criticality problems for slabs and spheres in energy dependent neutron transport theory

    International Nuclear Information System (INIS)

    Victory, H.D. Jr.

    1980-01-01

    The steady-state equation for energy-dependent neutron transport in isotropically scattering slabs and spheres is formulated as an integral equation. The Perron-Frobenius-Jentzsch theory of positive operators is used to analyze criticality problems for transport in slab and spherical media consisting of core and reflector. In addition, with an adroit selection of diffusion-like solutions, this theory is used to obtain an expression relating the critical radius of a homogeneous sphere to a parameter characterizing fission production. 21 refs

  8. Exponential temperature dependence of the critical transport current in Y-Ba-Cu-O thin films

    International Nuclear Information System (INIS)

    Yom, S.S.; Hahn, T.S.; Kim, Y.H.; Chu, H.; Choi, S.S.

    1989-01-01

    We have measured the critical currents in rf-sputtered YBa 2 Cu 3 O/sub 7-x/ thin films deposited on polycrystalline yttria-stabilized zirconia substrates as a function of temperature down to 10 K. The dependence of the granular films at low temperature indicated exponential behavior which is similar to the superconductor-normal metal-superconductor (S-N-S) type tunneling junctions. For the films with a grain size of approximately 1 μm, we observed two exponential decay constants, which suggest that Josephson junctions limiting the transport critical current are possible both at the grain boundaries and at twin boundaries

  9. Protein Kinase C alpha (PKCα) dependent signaling mediates endometrial cancer cell growth and tumorigenesis

    Science.gov (United States)

    Haughian, James M.; Reno, Elaine M.; Thorne, Alicia M.; Bradford, Andrew P.

    2009-01-01

    Endometrial cancer is the most common invasive gynecologic malignancy, yet molecular mechanisms and signaling pathways underlying its etiology and pathophysiology remain poorly characterized. We sought to define a functional role for the protein kinase C (PKC) isoform, PKCα, in an established cell model of endometrial adenocarcinoma. Ishikawa cells depleted of PKCα protein grew slower, formed fewer colonies in anchorage-independent growth assays and exhibited impaired xenograft tumor formation in nude mice. Consistent with impaired growth, PKCα knockdown increased levels of the cyclin dependent kinase (CDK) inhibitors p21Cip1/WAF1 (p21) and p27Kip1 (p27). Despite the absence of functional phosphatase and tensin homologue (PTEN) protein in Ishikawa cells, PKCα knockdown reduced Akt phosphorylation at serine 473 and concomitantly inhibited phosphorylation of the Akt target, glycogen synthase kinase-3β (GSK-3β). PKCα knockdown also resulted in decreased basal ERK phosphorylation and attenuated ERK activation following EGF stimulation. p21 and p27 expression was not increased by treatment of Ishikawa cells with ERK and Akt inhibitors, suggesting PKCα regulates CDK expression independently of Akt and ERK. Immunohistochemical analysis of grade 1 endometrioid adenocarcinoma revealed aberrant PKCα expression, with foci of elevated PKCα staining, not observed in normal endometrium. These studies demonstrate a critical role for PKCα signaling in endometrial tumorigenesis by regulating expression of CDK inhibitors p21 and p27 and activation of Akt and ERK dependent proliferative pathways. Thus, targeting PKCα may provide novel therapeutic options in endometrial tumors. PMID:19672862

  10. Acetylation-Dependent Chromatin Reorganization by BRDT, a Testis-Specific Bromodomain-Containing Protein

    Science.gov (United States)

    Pivot-Pajot, Christophe; Caron, Cécile; Govin, Jérôme; Vion, Alexandre; Rousseaux, Sophie; Khochbin, Saadi

    2003-01-01

    The association between histone acetylation and replacement observed during spermatogenesis prompted us to consider the testis as a source for potential factors capable of remodelling acetylated chromatin. A systematic search of data banks for open reading frames encoding testis-specific bromodomain-containing proteins focused our attention on BRDT, a testis-specific protein of unknown function containing two bromodomains. BRDT specifically binds hyperacetylated histone H4 tail depending on the integrity of both bromodomains. Moreover, in somatic cells, the ectopic expression of BRDT triggered a dramatic reorganization of the chromatin only after induction of histone hyperacetylation by trichostatin A (TSA). We then defined critical domains of BRDT involved in its activity. Both bromodomains of BRDT, as well as flanking regions, were found indispensable for its histone acetylation-dependent remodelling activity. Interestingly, we also observed that recombinant BRDT was capable of inducing reorganization of the chromatin of isolated nuclei in vitro only when the nuclei were from TSA-treated cells. This assay also allowed us to show that the action of BRDT was ATP independent, suggesting a structural role for the protein in the remodelling of acetylated chromatin. This is the first demonstration of a large-scale reorganization of acetylated chromatin induced by a specific factor. PMID:12861021

  11. Temperature-dependent binding of cyclosporine to an erythrocyte protein

    International Nuclear Information System (INIS)

    Agarwal, R.P.; Threatte, G.A.; McPherson, R.A.

    1987-01-01

    In this competitive binding assay to measure endogenous binding capacity for cyclosporine (CsA) in erythrocyte lysates, a fixed amount of [ 3 H]CsA plus various concentrations of unlabeled CsA is incubated with aliquots of a test hemolysate. Free CsA is then adsorbed onto charcoal and removed by centrifugation; CsA complexed with a cyclosporine-binding protein (CsBP) remains in the supernate. We confirmed the validity of this charcoal-separation mode of binding analysis by comparison with equilibrium dialysis. Scatchard plot analysis of the results at 4 degrees C yielded a straight line with slope corresponding to a binding constant of 1.9 X 10(7) L/mol and a saturation capacity of approximately 4 mumol per liter of packed erythrocytes. Similar analysis of binding data at 24 degrees C and 37 degrees C showed that the binding constant decreased with increasing temperature, but the saturation capacity did not change. CsBP was not membrane bound but appeared to be freely distributed within erythrocytes. 125 I-labeled CsA did not complex with the erythrocyte CsBP. Several antibiotics and other drugs did not inhibit binding between CsA and CsBP. These findings may explain the temperature-dependent uptake of CsA by erythrocytes in whole blood and suggest that measurement of CsBP in erythrocytes or lymphocytes may help predict therapeutic response or toxicity after administration of CsA

  12. Calcium-Dependent Protein Kinases in Phytohormone Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Wuwu Xu

    2017-11-01

    Full Text Available Calcium-dependent protein kinases (CPKs/CDPKs are Ca2+-sensors that decode Ca2+ signals into specific physiological responses. Research has reported that CDPKs constitute a large multigene family in various plant species, and play diverse roles in plant growth, development, and stress responses. Although numerous CDPKs have been exhaustively studied, and many of them have been found to be involved in plant hormone biosynthesis and response mechanisms, a comprehensive overview of the manner in which CDPKs participate in phytohormone signaling pathways, regulating nearly all aspects of plant growth, has not yet been undertaken. In this article, we reviewed the structure of CDPKs and the mechanism of their subcellular localization. Some CDPKs were elucidated to influence the intracellular localization of their substrates. Since little work has been done on the interaction between CDPKs and cytokinin signaling pathways, or on newly defined phytohormones such as brassinosteroids, strigolactones and salicylic acid, this paper mainly focused on discussing the integral associations between CDPKs and five plant hormones: auxins, gibberellins, ethylene, jasmonates, and abscisic acid. A perspective on future work is provided at the end.

  13. Flow rate dependency of critical wall shear stress in a radial-flow cell

    DEFF Research Database (Denmark)

    Detry, J.G.; Jensen, Bo Boye Busk; Sindic, M.

    2009-01-01

    In the present work, a radial-flow cell was used to study the removal of starch particle aggregates from several solid substrates (glass, stainless steel, polystyrene and PTFE) in order to determine the critical wall shear stress value for each case. The particle aggregates were formed by aspersion...... of a water or ethanol suspension of starch granules on the surfaces. Depending on the substrate and on the suspending liquid, the aggregates differed in size and shape. Aggregate removal was studied at two flow rates. At the lower flow rate (Re-inlet = 955), the values of critical wall shear stress...... for the different surfaces suggested that capillary forces were, for all of them, playing an important role in aggregate adhesion since aqueous based aggregates were always more difficult to remove. At the higher flow rate (Re-inlet = 2016) the critical wall shear stress increased as a result of the change...

  14. Dependence of critical current density on crystalline direction in thin YBCO films

    DEFF Research Database (Denmark)

    Paturi, P.; Peurla, M.; Raittila, J.

    2005-01-01

    The dependence of critical current density (J(c)) on the angle between the current direction and the (100) direction in the ab-plane of thin YBCO films deposited on (001)-SrTiO3 from natiocrystalline and microcrystalline targets is studied using magneto-optical microscopy. In the films made from...... the nanocrystalline target it is found that J(c) does not depend on the angle whereas J(c) decreases with increasing angle in the films made from the microcrystalline target. The films were characterized by detailed X-ray diffraction measurements. The findings are explained in terms of a network of planar defects...

  15. msiDBN: A Method of Identifying Critical Proteins in Dynamic PPI Networks

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2014-01-01

    Full Text Available Dynamics of protein-protein interactions (PPIs reveals the recondite principles of biological processes inside a cell. Shown in a wealth of study, just a small group of proteins, rather than the majority, play more essential roles at crucial points of biological processes. This present work focuses on identifying these critical proteins exhibiting dramatic structural changes in dynamic PPI networks. First, a comprehensive way of modeling the dynamic PPIs is presented which simultaneously analyzes the activity of proteins and assembles the dynamic coregulation correlation between proteins at each time point. Second, a novel method is proposed, named msiDBN, which models a common representation of multiple PPI networks using a deep belief network framework and analyzes the reconstruction errors and the variabilities across the time courses in the biological process. Experiments were implemented on data of yeast cell cycles. We evaluated our network construction method by comparing the functional representations of the derived networks with two other traditional construction methods. The ranking results of critical proteins in msiDBN were compared with the results from the baseline methods. The results of comparison showed that msiDBN had better reconstruction rate and identified more proteins of critical value to yeast cell cycle process.

  16. An exponential scaling law for the strain dependence of the Nb3Sn critical current density

    International Nuclear Information System (INIS)

    Bordini, B; Alknes, P; Bottura, L; Rossi, L; Valentinis, D

    2013-01-01

    The critical current density of the Nb 3 Sn superconductor is strongly dependent on the strain applied to the material. In order to investigate this dependence, it is a common practice to measure the critical current of Nb 3 Sn strands for different values of applied axial strain. In the literature, several models have been proposed to describe these experimental data in the reversible strain region. All these models are capable of fitting the measurement results in the strain region where data are collected, but tend to predict unphysical trends outside the range of data, and especially for large strain values. In this paper we present a model of a new strain function, together with the results obtained by applying the new scaling law on relevant datasets. The data analyzed consisted of the critical current measurements at 4.2 K that were carried out under applied axial strain at Durham University and the University of Geneva on different strand types. With respect to the previous models proposed, the new scaling function does not present problems at large strain values, has a lower number of fitting parameters (only two instead of three or four), and is very stable, so that, starting from few experimental points, it can estimate quite accurately the strand behavior in a strain region where there are no data. A relationship is shown between the proposed strain function and the elastic strain energy, and an analogy is drawn with the exponential form of the McMillan equation for the critical temperature. (paper)

  17. Interpersonal problems, dependency, and self-criticism in major depressive disorder.

    Science.gov (United States)

    Dinger, Ulrike; Barrett, Marna S; Zimmermann, Johannes; Schauenburg, Henning; Wright, Aidan G C; Renner, Fritz; Zilcha-Mano, Sigal; Barber, Jacques P

    2015-01-01

    The goal of the present research was the examination of overlap between 2 research traditions on interpersonal personality traits in major depression. We hypothesized that Blatt's (2004) dimensions of depressive experiences around the dimensions of relatedness (i.e., dependency) and self-definition (i.e., self-criticism) are associated with specific interpersonal problems according to the interpersonal circumplex model (Leary, 1957). In addition, we examined correlations of interpersonal characteristics with depression severity. Analyses were conducted on 283 patients with major depressive disorder combined from 2 samples. Of the patients, 151 participated in a randomized controlled trial in the United States, and 132 patients were recruited in an inpatient unit in Germany. Patients completed measures of symptomatic distress, interpersonal problems, and depressive experiences. Dependency was associated with more interpersonal problems related to low dominance and high affiliation, while self-criticism was associated with more interpersonal problems related to low affiliation. These associations were independent of depression severity. Self-criticism showed high overlap with cognitive symptoms of depression. The findings support the interpersonal nature of Blatt's dimensions of depressive experiences. Self-criticism is associated with being too distant or cold toward others as well as greater depression severity, but is not related to the dimension of dominance. © 2014 Wiley Periodicals, Inc.

  18. DECK: Distance and environment-dependent, coarse-grained, knowledge-based potentials for protein-protein docking

    Directory of Open Access Journals (Sweden)

    Vakser Ilya A

    2011-07-01

    Full Text Available Abstract Background Computational approaches to protein-protein docking typically include scoring aimed at improving the rank of the near-native structure relative to the false-positive matches. Knowledge-based potentials improve modeling of protein complexes by taking advantage of the rapidly increasing amount of experimentally derived information on protein-protein association. An essential element of knowledge-based potentials is defining the reference state for an optimal description of the residue-residue (or atom-atom pairs in the non-interaction state. Results The study presents a new Distance- and Environment-dependent, Coarse-grained, Knowledge-based (DECK potential for scoring of protein-protein docking predictions. Training sets of protein-protein matches were generated based on bound and unbound forms of proteins taken from the DOCKGROUND resource. Each residue was represented by a pseudo-atom in the geometric center of the side chain. To capture the long-range and the multi-body interactions, residues in different secondary structure elements at protein-protein interfaces were considered as different residue types. Five reference states for the potentials were defined and tested. The optimal reference state was selected and the cutoff effect on the distance-dependent potentials investigated. The potentials were validated on the docking decoys sets, showing better performance than the existing potentials used in scoring of protein-protein docking results. Conclusions A novel residue-based statistical potential for protein-protein docking was developed and validated on docking decoy sets. The results show that the scoring function DECK can successfully identify near-native protein-protein matches and thus is useful in protein docking. In addition to the practical application of the potentials, the study provides insights into the relative utility of the reference states, the scope of the distance dependence, and the coarse-graining of

  19. The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Dominic Docter

    2014-08-01

    Full Text Available Besides the lung and skin, the gastrointestinal (GI tract is one of the main targets for accidental exposure or biomedical applications of nanoparticles (NP. Biological responses to NP, including nanotoxicology, are caused by the interaction of the NP with cellular membranes and/or cellular entry. Here, the physico-chemical characteristics of NP are widely discussed as critical determinants, albeit the exact mechanisms remain to be resolved. Moreover, proteins associate with NP in physiological fluids, forming the protein corona potentially transforming the biological identity of the particle and thus, adding an additional level of complexity for the bio–nano responses.Here, we employed amorphous silica nanoparticles (ASP and epithelial GI tract Caco-2 cells as a model to study the biological impact of particle size as well as of the protein corona. Caco-2 or mucus-producing HT-29 cells were exposed to thoroughly characterized, negatively charged ASP of different size in the absence or presence of proteins. Comprehensive experimental approaches, such as quantifying cellular metabolic activity, microscopic observation of cell morphology, and high-throughput cell analysis revealed a dose- and time-dependent toxicity primarily upon exposure with ASP30 (Ø = 30 nm. Albeit smaller (ASP20, Ø = 20 nm or larger particles (ASP100; Ø = 100 nm showed a similar zeta potential, they both displayed only low toxicity. Importantly, the adverse effects triggered by ASP30/ASP30L were significantly ameliorated upon formation of the protein corona, which we found was efficiently established on all ASP studied. As a potential explanation, corona formation reduced ASP30 cellular uptake, which was however not significantly affected by ASP surface charge in our model. Collectively, our study uncovers an impact of ASP size as well as of the protein corona on cellular toxicity, which might be relevant for processes at the nano–bio interface in general.

  20. Angular and magnetic field dependences of critical current in irradiated YBaCuO single crystals

    International Nuclear Information System (INIS)

    Petrusenko, Yu.

    2010-01-01

    The investigation of mechanisms responsible for the current-carrying capability of irradiated high-temperature superconductors (HTSC) was realized. For the purpose, experiments were made to investigate the effect of point defects generated by high-energy electron irradiation on the critical temperature and the critical current in high-Tc superconducting single crystals YBa 2 Cu 3 O 7-x . The transport current density measured in HTSC single crystals YBa 2 Cu 3 O 7-x by the dc-method was found to exceed 80000 A/cm 2 . The experiments have demonstrated a more than 30-fold increase in the critical current density in single crystals irradiated with 2.5 MeV electrons to a dose of 3·10 18 el/cm 2 . Detailed studies were made into the anisotropy of critical current and the dependence of critical current on the external magnetic field strength in irradiated single crystals. A high efficiency of point defects as centers of magnetic vortex pinning in HTSC single crystals was first demonstrated.

  1. Phagocytosis by macrophages mediated by receptors for denatured proteins - dependence on tyrosine protein kinases

    Directory of Open Access Journals (Sweden)

    M.R. Hespanhol

    2002-03-01

    Full Text Available Previous studies have demonstrated that some components of the leukocyte cell membrane, CR3 (Mac-1, CD11b/CD18 and p150/95, are able to bind to denatured proteins. Thus, it is of interest to know which effector functions of these cells can be triggered by these receptors when they interact with particles or surfaces covered with denatured proteins. In the present study we analyzed their possible role as mediators of phagocytosis of red cells covered with denatured bovine serum albumin (BSA by mouse peritoneal macrophages. We observed that a macrophages are able to recognize (bind to these red cells, b this interaction can be inhibited by denatured BSA in the fluid phase, c there is no phagocytosis of these particles by normal macrophages, d phagocytosis mediated by denatured BSA can be, however, effectively triggered in inflammatory macrophages induced by glycogen or in macrophages activated in vivo with LPS, and e this phagocytic capacity is strongly dependent on the activity of tyrosine protein kinases in its signal transduction pathway, as demonstrated by using three kinds of enzyme inhibitors (genistein, quercetin and herbimycin A.

  2. Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation.

    Directory of Open Access Journals (Sweden)

    Misty L Kuhn

    Full Text Available The emerging view of Nε-lysine acetylation in eukaryotes is of a relatively abundant post-translational modification (PTM that has a major impact on the function, structure, stability and/or location of thousands of proteins involved in diverse cellular processes. This PTM is typically considered to arise by the donation of the acetyl group from acetyl-coenzyme A (acCoA to the ε-amino group of a lysine residue that is reversibly catalyzed by lysine acetyltransferases and deacetylases. Here, we provide genetic, mass spectrometric, biochemical and structural evidence that Nε-lysine acetylation is an equally abundant and important PTM in bacteria. Applying a recently developed, label-free and global mass spectrometric approach to an isogenic set of mutants, we detected acetylation of thousands of lysine residues on hundreds of Escherichia coli proteins that participate in diverse and often essential cellular processes, including translation, transcription and central metabolism. Many of these acetylations were regulated in an acetyl phosphate (acP-dependent manner, providing compelling evidence for a recently reported mechanism of bacterial Nε-lysine acetylation. These mass spectrometric data, coupled with observations made by crystallography, biochemistry, and additional mass spectrometry showed that this acP-dependent acetylation is both non-enzymatic and specific, with specificity determined by the accessibility, reactivity and three-dimensional microenvironment of the target lysine. Crystallographic evidence shows acP can bind to proteins in active sites and cofactor binding sites, but also potentially anywhere molecules with a phosphate moiety could bind. Finally, we provide evidence that acP-dependent acetylation can impact the function of critical enzymes, including glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, and RNA polymerase.

  3. Protein Engineering: Development of a Metal Ion Dependent Switch

    Science.gov (United States)

    2017-05-22

    Society of Chemistry Royal Society of Chemistry Biochemistry PNAS Escherichia coli Journal of Biotechnology Biochemistry Nature Protocols Journal of...Molecular Biology Biochemistry Royal Society of Chemistry Proteins: Structure, Function, and Bioinformatics Journal of Molecular Biology Biophysical...Biophysical Journal Protein Science Journal of Computational Chemistry Current Opinion in Chemical Biology Royal Society of Chemistry

  4. Cell cycle-dependent SUMO-1 conjugation to nuclear mitotic apparatus protein (NuMA)

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Sung; Kim, Ha Na; Kim, Sun-Jick; Bang, Jiyoung; Kim, Eun-A; Sung, Ki Sa [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yoon, Hyun-Joo [TissueGene Inc. 9605 Medical Center Dr., Rockville, MD 20850 (United States); Yoo, Hae Yong [Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of); Choi, Cheol Yong, E-mail: choicy@skku.ac.kr [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-01-03

    Highlights: •NuMA is modified by SUMO-1 in a cell cycle-dependent manner. •NuMA lysine 1766 is the primary target site for SUMOylation. •SUMOylation-deficient NuMA induces multiple spindle poles during mitosis. •SUMOylated NuMA induces microtubule bundling. -- Abstract: Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugation to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis.

  5. Dependability analysis of a safety critical system the LHC beam dumping system at CERN

    CERN Document Server

    Filippini, R

    2006-01-01

    This thesis presents the dependability study of the Beam Dumping System of the Large Hadron Collider (LHC), the high energy particle accelerator to be commissioned at CERN in summer 2007. There are two identical, independent LHC Beam Dumping Systems (LBDS), one per LHC beam, each consisting of a series of magnets that extract the particle beam from the LHC ring into the extraction line leading to the absorbing block. The consequences of a failure within the LBDS can be very severe. This risk is reduced by applying redundancy to the design of the most critical components and on-line surveillance that, in case of a detected failure, issues a safe operation abort, called false beam dump. The system has been studied applying Failure Modes Effects and Criticality Analysis (FMECA) and reliability prediction. The system failure processes have been represented with a state transition diagram, governed by a Markov regenerative stochastic process, and analysed for different operational scenarios for one year of operati...

  6. Manipulation of BDNF signaling modifies the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex.

    Science.gov (United States)

    Anomal, Renata; de Villers-Sidani, Etienne; Merzenich, Michael M; Panizzutti, Rogerio

    2013-01-01

    Sensory experience powerfully shapes cortical sensory representations during an early developmental "critical period" of plasticity. In the rat primary auditory cortex (A1), the experience-dependent plasticity is exemplified by significant, long-lasting distortions in frequency representation after mere exposure to repetitive frequencies during the second week of life. In the visual system, the normal unfolding of critical period plasticity is strongly dependent on the elaboration of brain-derived neurotrophic factor (BDNF), which promotes the establishment of inhibition. Here, we tested the hypothesis that BDNF signaling plays a role in the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex. Elvax resin implants filled with either a blocking antibody against BDNF or the BDNF protein were placed on the A1 of rat pups throughout the critical period window. These pups were then exposed to 7 kHz pure tone for 7 consecutive days and their frequency representations were mapped. BDNF blockade completely prevented the shaping of cortical tuning by experience and resulted in poor overall frequency tuning in A1. By contrast, BDNF infusion on the developing A1 amplified the effect of 7 kHz tone exposure compared to control. These results indicate that BDNF signaling participates in the experience-dependent plasticity induced by pure tone exposure during the critical period in A1.

  7. Manipulation of BDNF signaling modifies the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex.

    Directory of Open Access Journals (Sweden)

    Renata Anomal

    Full Text Available Sensory experience powerfully shapes cortical sensory representations during an early developmental "critical period" of plasticity. In the rat primary auditory cortex (A1, the experience-dependent plasticity is exemplified by significant, long-lasting distortions in frequency representation after mere exposure to repetitive frequencies during the second week of life. In the visual system, the normal unfolding of critical period plasticity is strongly dependent on the elaboration of brain-derived neurotrophic factor (BDNF, which promotes the establishment of inhibition. Here, we tested the hypothesis that BDNF signaling plays a role in the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex. Elvax resin implants filled with either a blocking antibody against BDNF or the BDNF protein were placed on the A1 of rat pups throughout the critical period window. These pups were then exposed to 7 kHz pure tone for 7 consecutive days and their frequency representations were mapped. BDNF blockade completely prevented the shaping of cortical tuning by experience and resulted in poor overall frequency tuning in A1. By contrast, BDNF infusion on the developing A1 amplified the effect of 7 kHz tone exposure compared to control. These results indicate that BDNF signaling participates in the experience-dependent plasticity induced by pure tone exposure during the critical period in A1.

  8. Critical role of SAP in progression and reactivation but not maintenance of T cell-dependent humoral immunity.

    Science.gov (United States)

    Zhong, Ming-Chao; Veillette, André

    2013-03-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a small adaptor molecule mutated in X-linked lymphoproliferative disease, a human immunodeficiency. SAP plays a critical role in the initiation of T cell-dependent B cell responses leading to germinal center reaction, the production of high-affinity antibodies, and B cell memory. However, whether SAP has a role in these responses beyond their initiation is not known. It is important to address this matter not only for mechanistic reasons but also because blockade of the SAP pathway is being contemplated as a means to treat autoimmune diseases in humans. Using an inducibly SAP deficient mouse, we found that SAP was required not only for the initiation but also for the progression of primary T cell-driven B cell responses to haptens. It was also necessary for the reactivation of T cell-dependent B cell immunity during secondary immune responses. These activities consistently correlated with the requirement of SAP for full expression of the lineage commitment factor Bcl-6 in follicular T helper (T(FH)) cells. However, once memory B cells and long-lived antibody-secreting cells were established, SAP became dispensable for maintaining T cell-dependent B cell responses. Thus, SAP is pivotal for nearly all phases, but not for maintenance, of T cell-driven B cell humoral immunity. These findings may have implications for the treatment of immune disorders by targeting the SAP pathway.

  9. Identification and quantitation of signal molecule-dependent protein phosphorylation

    KAUST Repository

    Groen, Arnoud J.

    2013-09-03

    Phosphoproteomics is a fast-growing field that aims at characterizing phosphorylated proteins in a cell or a tissue at a given time. Phosphorylation of proteins is an important regulatory mechanism in many cellular processes. Gel-free phosphoproteome technique involving enrichment of phosphopeptide coupled with mass spectrometry has proven to be invaluable to detect and characterize phosphorylated proteins. In this chapter, a gel-free quantitative approach involving 15N metabolic labelling in combination with phosphopeptide enrichment by titanium dioxide (TiO2) and their identification by MS is described. This workflow can be used to gain insights into the role of signalling molecules such as cyclic nucleotides on regulatory networks through the identification and quantification of responsive phospho(proteins). © Springer Science+Business Media New York 2013.

  10. Fragile X Mental Retardation Protein Regulates Activity-Dependent Membrane Trafficking and Trans-Synaptic Signaling Mediating Synaptic Remodeling

    Science.gov (United States)

    Sears, James C.; Broadie, Kendal

    2018-01-01

    Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. The disease arises through loss of fragile X mental retardation protein (FMRP), which normally exhibits peak expression levels in early-use critical periods, and is required for activity-dependent synaptic remodeling during this transient developmental window. FMRP canonically binds mRNA to repress protein translation, with targets that regulate cytoskeleton dynamics, membrane trafficking, and trans-synaptic signaling. We focus here on recent advances emerging in these three areas from the Drosophila disease model. In the well-characterized central brain mushroom body (MB) olfactory learning/memory circuit, FMRP is required for activity-dependent synaptic remodeling of projection neurons innervating the MB calyx, with function tightly restricted to an early-use critical period. FMRP loss is phenocopied by conditional removal of FMRP only during this critical period, and rescued by FMRP conditional expression only during this critical period. Consistent with FXS hyperexcitation, FMRP loss defects are phenocopied by heightened sensory experience and targeted optogenetic hyperexcitation during this critical period. FMRP binds mRNA encoding Drosophila ESCRTIII core component Shrub (human CHMP4 homolog) to restrict Shrub translation in an activity-dependent mechanism only during this same critical period. Shrub mediates endosomal membrane trafficking, and perturbing Shrub expression is known to interfere with neuronal process pruning. Consistently, FMRP loss and Shrub overexpression targeted to projection neurons similarly causes endosomal membrane trafficking defects within synaptic boutons, and genetic reduction of Shrub strikingly rescues Drosophila FXS model defects. In parallel work on the well-characterized giant fiber (GF) circuit, FMRP limits iontophoretic dye loading into central interneurons, demonstrating an FMRP role controlling core neuronal properties through the

  11. A Critical Appraisal of Quantitative Studies of Protein Degradation in the Framework of Cellular Proteostasis

    Directory of Open Access Journals (Sweden)

    Beatriz Alvarez-Castelao

    2012-01-01

    Full Text Available Protein homeostasis, proteostasis, is essential to understand cell function. Protein degradation is a crucial component of the proteostatic mechanisms of the cell. Experiments on protein degradation are nowadays present in many investigations in the field of molecular and cell biology. In the present paper, we focus on the different experimental approaches to study protein degradation and present a critical appraisal of the results derived from steady-state and kinetic experiments using detection of unlabelled and labelled protein methodologies with a proteostatic perspective. This perspective allows pinpointing the limitations in interpretation of results and the need of further experiments and/or controls to establish “definitive evidence” for the role of protein degradation in the proteostasis of a given protein or the entire proteome. We also provide a spreadsheet for simple calculations of mRNA and protein decays for mimicking different experimental conditions and a checklist for the analysis of experiments dealing with protein degradation studies that may be useful for researchers interested in the area of protein turnover.

  12. C-reactive (CRP) protein in transfusion dependent thalassaemic patients

    International Nuclear Information System (INIS)

    Jokhio, R.; Mughal, Z.U.N.

    2009-01-01

    In thalassaemic patients iron overload, secondary to blood transfusion, results toxic effects by producing reactive radicals. Iron overload can be studied using serum ferritin level which has a direct correlation with the body's iron status. While oxidative damage can be studied using biomarker of inflammation like hsC-reactive proteins. Blood samples of 55 thalassaemic patients (39 males, 16 females) were collected from Fatmid Foundation (Hyderabad). The samples were analyzed for CBC, serum ferritin level and hsC-reactive proteins. High mean serum ferritin levels was found in all the patients regardless of the frequency of blood transfusion (4774.2135+-3143.3040 mu g/L), indicating the iron overload. High mean hsC-reactive protein was found (2.5151+-1.3712) with a positive correlation with ferritin (r= 0.8371198, p= 0.0000) and platelets (r= 0.43293443, p=0.000962175). C-reactive proteins serve as biomarker of various inflammatory conditions, progression of cardiovascular diseases and as indicator of morbidity and mortality. High C-reactive proteins in these patients indicate ongoing iron overload toxicity related damage in these patients. The estimation of hsC-reactive proteins and other biomarkers of inflammation and oxidation may help in better management of these patients. (author)

  13. Fluctuation limit theorems for age-dependent critical binary branching systems

    Directory of Open Access Journals (Sweden)

    Murillo-Salas Antonio

    2011-03-01

    Full Text Available We consider an age-dependent branching particle system in ℝd, where the particles are subject to α-stable migration (0 < α ≤ 2, critical binary branching, and general (non-arithmetic lifetimes distribution. The population starts off from a Poisson random field in ℝd with Lebesgue intensity. We prove functional central limit theorems and strong laws of large numbers under two rescalings: high particle density, and a space-time rescaling that preserves the migration distribution. Properties of the limit processes such as Markov property, almost sure continuity of paths and generalized Langevin equation, are also investigated.

  14. Study of critical dependence of stable phases in Nitinol on heat treatment using electrical resistivity probe

    International Nuclear Information System (INIS)

    Uchil, J.; Mohanchandra, K.P.; Kumara, K.G.; Mahesh, K.K.

    1998-01-01

    Phase transformations in 40% cold-worked Nitinol as a function of heat treatment have been studied using electrical resistivity variation with temperature. The stabilisation of austenitic, rhombohedral and martensitic phases is shown to critically depend on the temperatures of heat treatment by the analysis of temperature dependence of electrical resistivity in heating and cooling parts of the cycle. Characteristic values of electrical resistivity of the stable phases are determined. The R-phase has been found to form continuously with increasing heat-treatment temperature starting from room temperature and to suddenly disappear beyond heat-treatment at 683 K. The observed presence or absence of R-phase is confirmed by heat capacity measurements as a function of temperature. (orig.)

  15. Protein expression of MEF2C during the critical period for visual development in vervet monkeys

    OpenAIRE

    Bernad, Daniel M; Lachance, Pascal E; Chaudhuri, Avijit

    2008-01-01

    During the early development of the visual cortex, there is a critical period when neuronal connections are highly sensitive to changes in visual input. Deprivation of visual stimuli during the critical period elicits robust anatomical and physiological rearrangements in the monkey visual cortex and serves as an excellent model for activity-dependent neuroplasticity. DNA microarray experiments were previously performed in our lab to analyze gene expression patterns in area V1 of vervet monkey...

  16. Comparison of phosphorylation of ribosomal proteins from HeLa and Krebs II ascites-tumour cells by cyclic AMP-dependent and cyclic GMP-dependent protein kinases

    DEFF Research Database (Denmark)

    Issinger, O G; Beier, H; Speichermann, N

    1980-01-01

    Phosphorylation of eukaryotic ribosomal proteins in vitro by essentially homogeneous preparations of cyclic AMP-dependent protein kinase catalytic subunit and cyclic GMP-dependent protein kinase was compared. Each protein kinase was added at a concentration of 30nM. Ribosomal proteins were...... by the cyclic AMP-dependent enzyme. Between 0.1 and 0.2 mol of phosphate was incorporated/mol of these phosphorylated proteins. With the exception of protein S7, the same proteins were also major substrates for the cyclic GMP-dependent protein kinase. Time courses of the phosphorylation of individual proteins...... from the small and large ribosomal subunits in the presence of either protein kinase suggested four types of phosphorylation reactions: (1) proteins S2, S10 and L5 were preferably phosphorylated by the cyclic GMP-dependent protein kinase; (2) proteins S3 and L6 were phosphorylated at very similar rates...

  17. Critical differences between two low protein diet protocols in the programming of hypertension in the rat.

    Science.gov (United States)

    Langley-Evans, S C

    2000-01-01

    Maternal nutrition has been identified as a factor determining fetal growth and risk of adult disease. In rats, the feeding of a low protein diet during pregnancy retards fetal growth and induces hypertension in the resulting offspring. Rat models of low protein feeding have been extensively used to study the mechanisms that may link maternal nutrition with impaired fetal growth and later cardiovascular disease and diabetes. Low protein diets of differing composition used in different laboratories have yielded inconsistent data on the relationship between maternal protein intake and offsprings' blood pressure. Two separate low protein diet protocols were compared in terms of their ability to programme hypertension during fetal life. Pregnant rats were assigned to receive one of four diets. Two diets were obtained from a commercial supplier and provided casein at 22 or 9% by weight (H22, control; H9, low protein). The other two diets, manufactured in our own facility, provided 18% casein (S18, control) or 9% casein (S9, low protein) by weight. The diets differed principally in their overall fat content, fatty acid composition, methionine content and the source of carbohydrate. Feeding of the experimental diets commenced on the first day of pregnancy and continued until the rats delivered their litters. Following weaning all the offspring had blood pressure determined on a single occasion. Both low protein diets reduced maternal weight gain relative to their corresponding control diets. Despite this litter sizes were unaffected by the dietary protocols. Both low protein diets reduced birthweights of the pups. Systolic blood pressure was significantly elevated in the offspring of rats fed a low protein S9 diet relative to all other groups (P work that differing low protein diet manipulations in rat pregnancy elicit different programming effects upon the developing cardiovasculature. The balance of protein and other nutrients may be a critical determinant of the long

  18. Spatiotemporal and functional characterisation of the Plasmodium falciparum cGMP-dependent protein kinase.

    Directory of Open Access Journals (Sweden)

    Christine S Hopp

    Full Text Available Signalling by 3'-5'-cyclic guanosine monophosphate (cGMP exists in virtually all eukaryotes. In the apicomplexan parasite Plasmodium, the cGMP-dependent protein kinase (PKG has previously been reported to play a critical role in four key stages of the life cycle. The Plasmodium falciparum isoform (PfPKG is essential for the initiation of gametogenesis and for blood stage schizont rupture and work on the orthologue from the rodent malaria parasite P. berghei (PbPKG has shown additional roles in ookinete differentiation and motility as well as liver stage schizont development. In the present study, PfPKG expression and subcellular location in asexual blood stages was investigated using transgenic epitope-tagged PfPKG-expressing P. falciparum parasites. In Western blotting experiments and immunofluorescence analysis (IFA, maximal PfPKG expression was detected at the late schizont stage. While IFA suggested a cytosolic location, a degree of overlap with markers of the endoplasmic reticulum (ER was found and subcellular fractionation showed some association with the peripheral membrane fraction. This broad localisation is consistent with the notion that PfPKG, as with the mammalian orthologue, has numerous cellular substrates. This idea is further supported by the global protein phosphorylation pattern of schizonts which was substantially changed following PfPKG inhibition, suggesting a complex role for PfPKG during schizogony.

  19. To Be Specific or Not: The Critical Relationship Between Hox And TALE Proteins.

    Science.gov (United States)

    Merabet, Samir; Mann, Richard S

    2016-06-01

    Hox proteins are key regulatory transcription factors that act in different tissues of the embryo to provide specific spatial and temporal coordinates to each cell. These patterning functions often depend on the presence of the TALE-homeodomain class cofactors, which form cooperative DNA-binding complexes with all Hox proteins. How this family of cofactors contributes to the highly diverse and specific functions of Hox proteins in vivo remains an important unsolved question. We review here the most recent advances in understanding the molecular mechanisms underlying Hox-TALE function. In particular, we discuss the role of DNA shape, DNA-binding affinity, and protein-protein interaction flexibility in dictating Hox-TALE specificity. We propose several models to explain how these mechanisms are integrated with each other in the context of the many distinct functions that Hox and TALE factors carry out in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Pressure dependence of critical temperature of bulk FeSe from spin fluctuation theory

    Science.gov (United States)

    Hirschfeld, Peter; Kreisel, Andreas; Wang, Yan; Tomic, Milan; Jeschke, Harald; Jacko, Anthony; Valenti, Roser; Maier, Thomas; Scalapino, Douglas

    2013-03-01

    The critical temperature of the 8K superconductor FeSe is extremely sensitive to pressure, rising to a maximum of 40K at about 10GPa. We test the ability of the current generation of fluctuation exchange pairing theories to account for this effect, by downfolding the density functional theory electronic structure for each pressure to a tight binding model. The Fermi surface found in such a procedure is then used with fixed Hubbard parameters to determine the pairing strength using the random phase approximation for the spin singlet pairing vertex. We find that the evolution of the Fermi surface captured by such an approach is alone not sufficient to explain the observed pressure dependence, and discuss alternative approaches. PJH, YW, AK were supported by DOE DE-FG02-05ER46236, the financial support of MT, HJ, and RV from the DFG Schwerpunktprogramm 1458 is kindly acknowledged.

  1. Finite-element modelling of superconductors in over-critical regime with temperature dependent resistivity

    International Nuclear Information System (INIS)

    Duron, J; Grilli, F; Antognazza, L; Decroux, M; Stavrev, S; Dutoit, B; Fischer, Oe

    2006-01-01

    In this paper, we present a new numerical model, in which both the thermal and the electromagnetic aspects of the over-critical current regime of HTS materials are taken into account. The electromagnetic and thermal equations have been implemented in finite-element method (FEM) software in order to obtain a novel, closer to reality model for investigating the behaviour of the superconductor when the current exceeds I c . This model has been applied for studying the behaviour of strip lines of an YBCO/Au FCL with a sapphire substrate. Simulations with currents largely exceeding I c have been performed, showing that the total current limitation occurs only when the temperature dependence of the electrical parameters is taken into consideration. Such modelling can replace experiments with currents far exceeding I c which may damage or destroy the studied sample or HTS device

  2. Regions of existence of two forms of the critical void fraction dependence on heat flux density at burnout

    International Nuclear Information System (INIS)

    Smolin, V.N.

    1981-01-01

    On the basis of the available experimental data considered is the burnout during the movement of steam-water flow in vertical heated tubes with internal diameter from 8 to 40 mm. Critical steam content Xsub(cr) dependences on the critical heat flux qsub(cr) in different tubes and under different pressure are analyzed. Two main regions of the weak and strong dependences Xsub(cr)=f(qsub(cr)) at burnout are found out [ru

  3. Ck2-Dependent Phosphorylation Is Required to Maintain Pax7 Protein Levels in Proliferating Muscle Progenitors.

    Directory of Open Access Journals (Sweden)

    Natalia González

    Full Text Available Skeletal muscle regeneration and long term maintenance is directly link to the balance between self-renewal and differentiation of resident adult stem cells known as satellite cells. In turn, satellite cell fate is influenced by a functional interaction between the transcription factor Pax7 and members of the MyoD family of muscle regulatory factors. Thus, changes in the Pax7-to-MyoD protein ratio may act as a molecular rheostat fine-tuning acquisition of lineage identity while preventing precocious terminal differentiation. Pax7 is expressed in quiescent and proliferating satellite cells, while its levels decrease sharply in differentiating progenitors Pax7 is maintained in cells (reacquiring quiescence. While the mechanisms regulating Pax7 levels based on differentiation status are not well understood, we have recently described that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4, thus promoting proteasome-dependent Pax7 degradation in differentiating satellite cells. Here we show that Pax7 levels are maintained in proliferating muscle progenitors by a mechanism involving casein kinase 2-dependent Pax7 phosphorylation at S201. Point mutations preventing S201 phosphorylation or casein kinase 2 inhibition result in decreased Pax7 protein in proliferating muscle progenitors. Accordingly, this correlates directly with increased Pax7 ubiquitination. Finally, Pax7 down regulation induced by casein kinase 2 inhibition results in precocious myogenic induction, indicating early commitment to terminal differentiation. These observations highlight the critical role of post translational regulation of Pax7 as a molecular switch controlling muscle progenitor fate.

  4. Understanding thermostability and pH dependent properties of proteins

    DEFF Research Database (Denmark)

    Galberg, Pernille

    The work performed in this thesis is part of a larger project (“Computational design of stable enzymes”) involving several research teams, which aimed to improve PROPKA (http://propka.ki.ku.dk) and to provide the scientific community with a computational protocol and associated PROPKA program......, which could be used for predicting mutations with expectation of increased thermostability at a certain pH value or a shifted pH activity optimum. The ability of a Bacillus circulans xylanase (BCX) mutant (N35D/A115E) to induce a decrease in pH activity optimum was evaluated by a pH dependent xylanase...

  5. Defining groundwater-dependent ecosystems and assessing critical water needs for their foundational plant communities

    Science.gov (United States)

    Stella, J. C.

    2017-12-01

    In many water-limited regions, human water use in conjunction with increased climate variability threaten the sustainability of groundwater-dependent plant communities and the ecosystems that depend on them (GDEs). Identifying and delineating vulnerable GDEs and determining critical functional thresholds for their foundational species has proved challenging, but recent research across several disciplines shows great promise for reducing scientific uncertainty and increasing applicability to ecosystem and groundwater management. Combining interdisciplinary approaches provides insights into indicators that may serve as early indicators of ecosystem decline, or alternatively demonstrate lags in responses depending on scale or sensitivity, or that even may decouple over time (Fig. 1). At the plant scale, miniaturization of plant sap flow sensors and tensiometers allow for non-destructive, continual measurements of plant water status in response to environmental stressors. Novel applications of proven tree-ring and stable isotope methods provide multi-decadal chronologies of radial growth, physiological function (using d13C ratios) and source water use (using d18O ratios) in response to annual variation in climate and subsurface water availability to plant roots. At a landscape scale, integration of disparate geospatial data such as hyperspectral imagery and LiDAR, as well as novel spectral mixing analysis promote the development of novel water stress indices such as vegetation greenness and non-photosynthetic (i.e., dead) vegetation (Fig. 2), as well as change detection using time series (Fig. 3). Furthermore, increases in data resolution across numerous data types can increasingly differentiate individual plant species, including sensitive taxa that serve as early warning indicators of ecosystem impairment. Combining and cross-calibrating these approaches provide insight into the full range of GDE response to environmental change, including increased climate drought

  6. Critical lysine residues of Klf4 required for protein stabilization and degradation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Key-Hwan; Kim, So-Ra; Ramakrishna, Suresh; Baek, Kwang-Hyun, E-mail: baek@cha.ac.kr

    2014-01-24

    Highlights: • Klf4 undergoes the 26S proteasomal degradation by ubiquitination on its multiple lysine residues. • Essential Klf4 ubiquitination sites are accumulated between 190–263 amino acids. • A mutation of lysine at 232 on Klf4 elongates protein turnover. • Klf4 mutants dramatically suppress p53 expression both under normal and UV irradiated conditions. - Abstract: The transcription factor, Krüppel-like factor 4 (Klf4) plays a crucial role in generating induced pluripotent stem cells (iPSCs). As the ubiquitination and degradation of the Klf4 protein have been suggested to play an important role in its function, the identification of specific lysine sites that are responsible for protein degradation is of prime interest to improve protein stability and function. However, the molecular mechanism regulating proteasomal degradation of the Klf4 is poorly understood. In this study, both the analysis of Klf4 ubiquitination sites using several Klf4 deletion fragments and bioinformatics predictions showed that the lysine sites which are signaling for Klf4 protein degradation lie in its N-terminal domain (aa 1–296). The results also showed that Lys32, 52, 232, and 252 of Klf4 are responsible for the proteolysis of the Klf4 protein. These results suggest that Klf4 undergoes proteasomal degradation and that these lysine residues are critical for Klf4 ubiquitination.

  7. Botrytis cinerea protein O-mannosyltransferases play critical roles in morphogenesis, growth, and virulence.

    Directory of Open Access Journals (Sweden)

    Mario González

    Full Text Available Protein O-glycosylation is crucial in determining the structure and function of numerous secreted and membrane-bound proteins. In fungi, this process begins with the addition of a mannose residue by protein O-mannosyltransferases (PMTs in the lumen side of the ER membrane. We have generated mutants of the three Botrytis cinerea pmt genes to study their role in the virulence of this wide-range plant pathogen. B. cinerea PMTs, especially PMT2, are critical for the stability of the cell wall and are necessary for sporulation and for the generation of the extracellular matrix. PMTs are also individually required for full virulence in a variety of hosts, with a special role in the penetration of intact plant leaves. The most significant case is that of grapevine leaves, whose penetration requires the three functional PMTs. Furthermore, PMT2 also contributes significantly to fungal adherence on grapevine and tobacco leaves. Analysis of extracellular and membrane proteins showed significant changes in the pattern of protein secretion and glycosylation by the pmt mutants, and allowed the identification of new protein substrates putatively glycosylated by specific PMTs. Since plants do no possess these enzymes, PMTs constitute a promising target in the development of novel control strategies against B. cinerea.

  8. Critical assessment of methods of protein structure prediction (CASP)-round IX

    KAUST Repository

    Moult, John; Fidelis, Krzysztof; Kryshtafovych, Andriy; Tramontano, Anna

    2011-01-01

    This article is an introduction to the special issue of the journal PROTEINS, dedicated to the ninth Critical Assessment of Structure Prediction (CASP) experiment to assess the state of the art in protein structure modeling. The article describes the conduct of the experiment, the categories of prediction included, and outlines the evaluation and assessment procedures. Methods for modeling protein structure continue to advance, although at a more modest pace than in the early CASP experiments. CASP developments of note are indications of improvement in model accuracy for some classes of target, an improved ability to choose the most accurate of a set of generated models, and evidence of improvement in accuracy for short "new fold" models. In addition, a new analysis of regions of models not derivable from the most obvious template structure has revealed better performance than expected.

  9. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean; Rayapuram, Naganand; Pflieger, Delphine; Hirt, Heribert

    2014-01-01

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  10. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  11. Sample-length dependence of the critical current of slightly and significantly bent-damaged Bi2223 superconducting composite tape

    International Nuclear Information System (INIS)

    Ochiai, S; Fujimoto, M; Okuda, H; Oh, S S; Ha, D W

    2007-01-01

    The local critical current along a sample length is different from position to position in a long sample, especially when the sample is damaged by externally applied strain. In the present work, we attempted to reveal the relation of the distribution of the local critical current to overall critical current and the sample-length dependence of critical current for slightly and significantly damaged Bi2223 composite tape samples. In the experiment, 48 cm long Bi2223 composite tape samples, composed of 48 local elements with a length of 1 cm and 8 parts with a length 6 cm, were bent by 0.37 and 1.0% to cause slight and significant damage, respectively. The V-I curve, critical current (1 μV cm -1 criterion) and n value were measured for the overall sample as well as for the local elements and parts. It was found that the critical current distributions of the 1 cm elements at 0.37 and 1.0% bending strains are described by the three-parameter- and bimodal Weibull distribution functions, respectively. The critical current of a long sample at both bending strains could be described well by substituting the distributed critical current and n value of the short elements into the series circuit model for voltage generation. Also the measured relation of average critical current to sample length could be reproduced well in the computer by a Monte Carlo simulation method. It was shown that the critical current and n value decrease with increasing sample length at both bending strains. The extent of the decrease in critical current with sample length is dependent on the criterion of the critical current; the critical current decreases only slightly under the 1 μV cm -1 criterion which is not damage-sensitive, while it decreases greatly with increasing sample length under damage-sensitive criteria such as the 1 μV one

  12. Vitamin K dependent protein activity and incident ischemic cardiovascular disease: The multi ethnic study of atherosclerosis

    Science.gov (United States)

    OBJECTIVE: Vitamin K-dependent proteins (VKDPs), which require post-translational modification to achieve biological activity, seem to contribute to thrombus formation, vascular calcification, and vessel stiffness. Whether VKDP activity is prospectively associated with incident cardiovascular diseas...

  13. Deficient plasticity in the primary visual cortex of alpha-calcium/calmodulin-dependent protein kinase II mutant mice.

    Science.gov (United States)

    Gordon, J A; Cioffi, D; Silva, A J; Stryker, M P

    1996-09-01

    The recent characterization of plasticity in the mouse visual cortex permits the use of mutant mice to investigate the cellular mechanisms underlying activity-dependent development. As calcium-dependent signaling pathways have been implicated in neuronal plasticity, we examined visual cortical plasticity in mice lacking the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha CaMKII). In wild-type mice, brief occlusion of vision in one eye during a critical period reduces responses in the visual cortex. In half of the alpha CaMKII-deficient mice, visual cortical responses developed normally, but visual cortical plasticity was greatly diminished. After intensive training, spatial learning in the Morris water maze was severely impaired in a similar fraction of mutant animals. These data indicate that loss of alpha CaMKII results in a severe but variable defect in neuronal plasticity.

  14. Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers.

    Science.gov (United States)

    Banerjee, Swastika; Pati, Swapan K

    2016-06-28

    Phosphorene is a promising candidate for modern electronics because of the anisotropy associated with high electron-hole mobility. Additionally, superior mechanical flexibility allows the strain-engineering of various properties including the transport of charge carriers in phosphorene. In this work, we have shown the criticality of the number of layers to dictate the transport properties of black phosphorus. Trilayer black phosphorus (TBP) has been proposed as an excellent anisotropic material, based on the transport parameters using Boltzmann transport formalisms coupled with density functional theory. The mobilities of both the electron and the hole are found to be higher along the zigzag direction (∼10(4) cm(2) V(-1) s(-1) at 300 K) compared to the armchair direction (∼10(2) cm(2) V(-1) s(-1)), resulting in the intrinsic directional anisotropy. Application of strain leads to additional electron-hole anisotropy with 10(3) fold higher mobility for the electron compared to the hole. Critical strain for maximum anisotropic response has also been determined. Whether the transport anisotropy is due to the spatial or charge-carrier has been determined through analyses of the scattering process of electrons and holes, and their recombination as well as relaxation dynamics. In this context, we have derived two descriptors (S and F(k)), which are general enough for any 2D or quasi-2D systems. Information on the scattering involving purely the carrier states also helps to understand the layer-dependent photoluminescence and electron (hole) relaxation in black phosphorus. Finally, we justify trilayer black phosphorus (TBP) as the material of interest with excellent transport properties.

  15. The role of DNA dependent protein kinase in synapsis of DNA ends

    NARCIS (Netherlands)

    E.P.W.C. Weterings (Eric); N.S. Verkaik (Nicole); H.T. Brüggenwirth (Hennie); D.C. van Gent (Dik); J.H.J. Hoeijmakers (Jan)

    2003-01-01

    textabstractDNA dependent protein kinase (DNA-PK) plays a central role in the non-homologous end-joining pathway of DNA double strand break repair. Its catalytic subunit (DNA-PK(CS)) functions as a serine/threonine protein kinase. We show that DNA-PK forms a stable complex at DNA termini that blocks

  16. Partial purification and characterization of a Ca(2+)-dependent protein kinase from pea nuclei

    Science.gov (United States)

    Li, H.; Dauwalder, M.; Roux, S. J.

    1991-01-01

    Almost all the Ca(2+)-dependent protein kinase activity in nuclei purified from etiolated pea (Pisum sativum, L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.3 molar NaCl. This protein kinase can be further purified 80,000-fold by salt fractionation and high performance liquid chromatography, after which it has a high specific activity of about 100 picomoles per minute per microgram in the presence of Ca2+ and reaches half-maximal activation at about 3 x 10(-7) molar free Ca2+, without calmodulin. It is a monomer with a molecular weight near 90,000. It can efficiently use histone III-S, ribosomal S6 protein, and casein as artificial substrates, but it phosphorylates phosvitin only weakly. Its Ca(2+)-dependent kinase activity is half-maximally inhibited by 0.1 millimolar chlorpromazine, by 35 nanomolar K-252a and by 7 nanomolar staurosporine. It is insensitive to sphingosine, an inhibitor of protein kinase C, and to basic polypeptides that block other Ca(2+)-dependent protein kinases. It is not stimulated by exogenous phospholipids or fatty acids. In intact isolated pea nuclei it preferentially phosphorylates several chromatin-associated proteins, with the most phosphorylated protein band being near the same molecular weight (43,000) as a nuclear protein substrate whose phosphorylation has been reported to be stimulated by phytochrome in a calcium-dependent fashion.

  17. Calcium-dependent but calmodulin-independent protein kinase from soybean

    International Nuclear Information System (INIS)

    Harmon, A.C.; Putnam-Evans, C.; Cormier, M.J.

    1987-01-01

    A calcium-dependent protein kinase activity from suspension-cultured soybean cells (Glycine max L. Wayne) was shown to be dependent on calcium but not calmodulin. The concentrations of free calcium required for half-maximal histone H1 phosphorylation and autophosphorylation were similar (≥ 2 micromolar). The protein kinase activity was stimulated 100-fold by ≥ 10 micromolar-free calcium. When exogenous soybean or bovine brain calmodulin was added in high concentration (1 micromolar) to the purified kinase, calcium-dependent and -independent activities were weakly stimulated (≤ 2-fold). Bovine serum albumin had a similar effect on both activities. The kinase was separated from a small amount of contaminating calmodulin by sodium dodecyl sulfate polyacrylamide gel electrophoresis. After renaturation the protein kinase autophosphorylated and phosphorylated histone H1 in a calcium-dependent manner. Following electroblotting onto nitrocellulose, the kinase bound 45 Ca 2+ in the presence of KCl and MgCl 2 , which indicated that the kinase itself is a high-affinity calcium-binding protein. Also, the mobility of one of two kinase bands in SDS gels was dependent on the presence of calcium. Autophosphorylation of the calmodulin-free kinase was inhibited by the calmodulin-binding compound N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), showing that the inhibition of activity by W-7 is independent of calmodulin. These results show that soybean calcium-dependent protein kinase represents a new class of protein kinase which requires calcium but not calmodulin for activity

  18. Protein (multi-)location prediction: using location inter-dependencies in a probabilistic framework

    Science.gov (United States)

    2014-01-01

    Motivation Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins. Most such methods are based on the over-simplifying assumption that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems attempt to predict multiple locations of proteins, their performance leaves much room for improvement. Moreover, they typically treat locations as independent and do not attempt to utilize possible inter-dependencies among locations. Our hypothesis is that directly incorporating inter-dependencies among locations into both the classifier-learning and the prediction process can improve location prediction performance. Results We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the location-prediction process of multiply-localized proteins. Our method is based on a collection of Bayesian network classifiers, where each classifier is used to predict a single location. Learning the structure of each Bayesian network classifier takes into account inter-dependencies among locations, and the prediction process uses estimates involving multiple locations. We evaluate our system on a dataset of single- and multi-localized proteins (the most comprehensive protein multi-localization dataset currently available, derived from the DBMLoc dataset). Our results, obtained by incorporating inter-dependencies, are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without being restricted only to location-combinations present in the training set. PMID:24646119

  19. Protein (multi-)location prediction: using location inter-dependencies in a probabilistic framework.

    Science.gov (United States)

    Simha, Ramanuja; Shatkay, Hagit

    2014-03-19

    Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins. Most such methods are based on the over-simplifying assumption that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems attempt to predict multiple locations of proteins, their performance leaves much room for improvement. Moreover, they typically treat locations as independent and do not attempt to utilize possible inter-dependencies among locations. Our hypothesis is that directly incorporating inter-dependencies among locations into both the classifier-learning and the prediction process can improve location prediction performance. We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the location-prediction process of multiply-localized proteins. Our method is based on a collection of Bayesian network classifiers, where each classifier is used to predict a single location. Learning the structure of each Bayesian network classifier takes into account inter-dependencies among locations, and the prediction process uses estimates involving multiple locations. We evaluate our system on a dataset of single- and multi-localized proteins (the most comprehensive protein multi-localization dataset currently available, derived from the DBMLoc dataset). Our results, obtained by incorporating inter-dependencies, are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without being restricted only to location-combinations present in the training set.

  20. Ultracompact and broadband polarization beam splitter based on polarization-dependent critical guiding condition.

    Science.gov (United States)

    Ying, Zhoufeng; Wang, Guanghui; Zhang, Xuping; Ho, Ho-pui; Huang, Ying

    2015-05-01

    An ultracompact and broadband polarization beam splitter (PBS) based on the polarization-dependent critical guiding condition of an asymmetrical directional coupler is proposed. The device consists of a pair of silicon waveguides with different height and width. Due to the different cutoff conditions for the TE and TM polarization modes, it is possible to have the TM mode guided in one waveguide while the TE mode is supported in both. Therefore, only the phase-matching condition for the cross-coupling of the TE mode needs to be considered. This approach not only simplifies the design procedures but also significantly improves device performance with smaller total length and larger bandwidth. Finally, regardless of the contribution of S-bend waveguides, our proposed PBS has a coupling region as short as 0.2 μm, which is the shortest reported until now. The simulation result shows that the extinction ratios for the TE and TM polarization are 13.5 and 16.6 dB at their respective output ports, and their insertion losses are 0.29 and 0.13 dB, respectively. Numerical simulations also show that the device offers a very large bandwidth (∼140  nm) with large extinction ratio (>10  dB) and low insertion loss (<1  dB).

  1. Molecular chaperones in targeting misfolded proteins for ubiquitin-dependent degradation

    DEFF Research Database (Denmark)

    Kriegenburg, Franziska; Ellgaard, Lars; Hartmann-Petersen, Rasmus

    2012-01-01

    The accumulation of misfolded proteins presents a considerable threat to the health of individual cells and has been linked to severe diseases, including neurodegenerative disorders. Considering that, in nature, cells often are exposed to stress conditions that may lead to aberrant protein...... conformational changes, it becomes clear that they must have an efficient quality control apparatus to refold or destroy misfolded proteins. In general, cells rely on molecular chaperones to seize and refold misfolded proteins. If the native state is unattainable, misfolded proteins are targeted for degradation...... via the ubiquitin-proteasome system. The specificity of this proteolysis is generally provided by E3 ubiquitin-protein ligases, hundreds of which are encoded in the human genome. However, rather than binding the misfolded proteins directly, most E3s depend on molecular chaperones to recognize...

  2. Dissecting the critical factors for thermodynamic stability of modular proteins using molecular modeling approach.

    Directory of Open Access Journals (Sweden)

    Yuno Lee

    Full Text Available Repeat proteins have recently attracted much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural and biophysical features. In particular, repeat proteins show high stability against temperature and chaotic agents. Despite many studies, structural features for the stability of repeat proteins remain poorly understood. Here we present an interesting result from in silico analyses pursuing the factors which affect the stability of repeat proteins. Previously developed repebody structure based on variable lymphocytes receptors (VLRs which consists of leucine-rich repeat (LRR modules was used as initial structure for the present study. We constructed extra six repebody structures with varying numbers of repeat modules and those structures were used for molecular dynamics simulations. For the structures, the intramolecular interactions including backbone H-bonds, van der Waals energy, and hydrophobicity were investigated and then the radius of gyration, solvent-accessible surface area, ratio of secondary structure, and hydration free energy were also calculated to find out the relationship between the number of LRR modules and stability of the protein. Our results show that the intramolecular interactions lead to more compact structure and smaller surface area of the repebodies, which are critical for the stability of repeat proteins. The other features were also well compatible with the experimental results. Based on our observations, the repebody-5 was proposed as the best structure from the all repebodies in structure optimization process. The present study successfully demonstrated that our computer-based molecular modeling approach can significantly contribute to the experiment-based protein engineering challenge.

  3. Suppression of matrix protein synthesis in endothelial cells by herpes simplex virus is not dependent on viral protein synthesis

    International Nuclear Information System (INIS)

    Kefalides, N.A.

    1986-01-01

    The synthesis of matrix proteins by human endothelial cells (EC) in vitro was studied before and at various times after infection with Herpes Simplex virus Type 1 (HSV-1) or 2 (HSV-2). Monolayers of EC were either mock-infected or infected with virus for 1 hr at a multiplicity infection (MOI) of 5 to 20 at 37 0 C. Control and infected cultures were pulse-labeled for 1 or 2 hrs with either [ 14 C]proline or [ 35 S]methionine. Synthesis of labeled matrix proteins was determined by SDS-gel electrophoresis. Suppression of synthesis of fibronectin, Type IV collagen and thrombospondin began as early as 2 hrs and became almost complete by 10 hrs post-infection. The degree of suppression varied with the protein and the virus dose. Suppression of Type IV collagen occurred first followed by that of fibronectin and then thrombospondin. Infection of EC with UV irradiated HSV-1 or HSV-2 resulted in suppression of host-cell protein synthesis as well as viral protein synthesis. Infection with intact virus in the presence of actinomycin-D resulted in suppression of both host-cell and viral protein synthesis. The data indicate that infection of EC with HSV leads to suppression of matrix protein synthesis which does not depend on viral protein synthesis

  4. Activity of cAMP-dependent protein kinases and cAMP-binding proteins of rat kidney cytosol during dehydration

    International Nuclear Information System (INIS)

    Zelenina, M.N.; Solenov, E.I.; Ivanova, L.N.

    1985-01-01

    The activity of cAMP-dependent protein kinases, the binding of cAMP, and the spectrum of cAMP-binding proteins in the cytosol of the renal papilla was studied in intact rats and in rats after 24 h on a water-deprived diet. It was found that the activation of protein kinases by 10 -6 M cAMP is significantly higher in the experimental animals than in the intact animals. In chromatography on DEAE-cellulose, the positions of the peaks of specific reception of cAMP corresponded to the peaks of the regulatory subunits of cAMP-dependent protein kinases of types I and II. In this case, in intact animals more than 80% of the binding activity was detected in peaks II, whereas in rats subjected to water deprivation, more than 60% of the binding was observed in peak I. The general regulatory activity of the cytosol was unchanged in the experimental animals in comparison with intact animals. It is suggested that during dehydration there is an induction of the synthesis of the regulatory subunit of type I cAMP-dependent protein kinase in the renal papilla

  5. Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry.

    Science.gov (United States)

    Doll, Caleb A; Broadie, Kendal

    2016-05-01

    Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early

  6. SAS-1 Is a C2 Domain Protein Critical for Centriole Integrity in C. elegans

    Science.gov (United States)

    Delattre, Marie; Balestra, Fernando R.; Blanchoud, Simon; Finger, Susanne; Knott, Graham; Müller-Reichert, Thomas; Gönczy, Pierre

    2014-01-01

    Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD) syndrome. PMID:25412110

  7. SAS-1 is a C2 domain protein critical for centriole integrity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Lukas von Tobel

    2014-11-01

    Full Text Available Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD syndrome.

  8. Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning.

    Science.gov (United States)

    Condro, Michael C; White, Stephanie A

    2014-01-01

    Variants of the contactin associated protein-like 2 (Cntnap2) gene are risk factors for language-related disorders including autism spectrum disorder, specific language impairment, and stuttering. Songbirds are useful models for study of human speech disorders due to their shared capacity for vocal learning, which relies on similar cortico-basal ganglia circuitry and genetic factors. Here we investigate Cntnap2 protein expression in the brain of the zebra finch, a songbird species in which males, but not females, learn their courtship songs. We hypothesize that Cntnap2 has overlapping functions in vocal learning species, and expect to find protein expression in song-related areas of the zebra finch brain. We further expect that the distribution of this membrane-bound protein may not completely mirror its mRNA distribution due to the distinct subcellular localization of the two molecular species. We find that Cntnap2 protein is enriched in several song control regions relative to surrounding tissues, particularly within the adult male, but not female, robust nucleus of the arcopallium (RA), a cortical song control region analogous to human layer 5 primary motor cortex. The onset of this sexually dimorphic expression coincides with the onset of sensorimotor learning in developing males. Enrichment in male RA appears due to expression in projection neurons within the nucleus, as well as to additional expression in nerve terminals of cortical projections to RA from the lateral magnocellular nucleus of the nidopallium. Cntnap2 protein expression in zebra finch brain supports the hypothesis that this molecule affects neural connectivity critical for vocal learning across taxonomic classes. Copyright © 2013 Wiley Periodicals, Inc.

  9. Angular dependence of the upper critical field in Bi2Sr2CuO6+δ

    International Nuclear Information System (INIS)

    Vedeneev, S.I.; Ovchinnikov, Yu.N.

    2002-01-01

    The angular dependence of the upper critical field has been investigated in a wide range of temperatures in very high-quality Bi 2 Sr 2 CuO 6+δ single crystals with critical temperature ≅ 9 K in magnetic fields up to 28 T. Although the typical value of the normal state resistivity ratio ≅ 10 4 , the anisotropy ratio of the upper critical fields is much smaller. A model is proposed based on a strong anisotropy and a small transparency between superconducting layers [ru

  10. Critical Importance of Protein 4.1 in Centrosome and Mitotic Spindle Aberrations in Breast Cancer Pathogenesis

    National Research Council Canada - National Science Library

    Krauss, Sharon W

    2006-01-01

    We proposed to test the novel hypothesis that protein 4.1 is of critical importance to centrosome and mitotic spindle aberrations that directly impact aspects of breast cancer pathogenesis. We characterized...

  11. Intermittent Hypoxia-Induced Carotid Body Chemosensory Potentiation and Hypertension Are Critically Dependent on Peroxynitrite Formation

    Directory of Open Access Journals (Sweden)

    Esteban A. Moya

    2016-01-01

    Full Text Available Oxidative stress is involved in the development of carotid body (CB chemosensory potentiation and systemic hypertension induced by chronic intermittent hypoxia (CIH, the main feature of obstructive sleep apnea. We tested whether peroxynitrite (ONOO−, a highly reactive nitrogen species, is involved in the enhanced CB oxygen chemosensitivity and the hypertension during CIH. Accordingly, we studied effects of Ebselen, an ONOO− scavenger, on 3-nitrotyrosine immunoreactivity (3-NT-ir in the CB, the CB chemosensory discharge, and arterial blood pressure (BP in rats exposed to CIH. Male Sprague-Dawley rats were exposed to CIH (5% O2, 12 times/h, 8 h/day for 7 days. Ebselen (10 mg/kg/day was administrated using osmotic minipumps and BP measured with radiotelemetry. Compared to the sham animals, CIH-treated rats showed increased 3-NT-ir within the CB, enhanced CB chemosensory responses to hypoxia, increased BP response to acute hypoxia, and hypertension. Rats treated with Ebselen and exposed to CIH displayed a significant reduction in 3-NT-ir levels (60.8 ± 14.9 versus 22.9 ± 4.2 a.u., reduced CB chemosensory response to 5% O2 (266.5 ± 13.4 versus 168.6 ± 16.8 Hz, and decreased mean BP (116.9 ± 13.2 versus 82.1 ± 5.1 mmHg. Our results suggest that CIH-induced CB chemosensory potentiation and hypertension are critically dependent on ONOO− formation.

  12. [Incidence of dependence-related lesions in a population of critical patients].

    Science.gov (United States)

    Roca-Biosca, Alba; Rubio-Rico, Lourdes; de Molina-Fernández, María Inmaculada; Tuset-Garijo, Gemma; Colodrero-Díaz, Encarnación; García-Fernández, Francisco Pedro

    2016-01-01

    To determine the incidence of various types of dependence-related lesions (DRL) on a population of critically ill patients. Descriptive, longitudinal and prospective study in an Intensive Care Unit from January 2014 to January 2015. Adult patients who did not present DRL at the moment of admission were included. Those with brain death and/or stay at the unit for more than two days were excluded. Patients were studied till they developed DRL, were exitus, discharged or stayed for more than 14 days. Each patient was evaluated daily till DRL did develop or was excluded from the study. If DRL did develop it was photographed and related data were recorded. The comparison between quantitative variables of normal distribution was done with the t de Student. The Mann-Whitney U was used to compare the other variables. Qualitative variables were compared through Pearson's chi square. In both cases p≤.05 was considered significant. 295 patients were included, 27.45% of them developed DRL. The density of incidence was 41 DRL/1,000 days at risk. 50.62% of DRL were categorized as PU. 17.28% were moisture injuries, 13.58% were due to friction and the rest were combined injuries. The risk according to EMINA and Braden scale was significantly different in the group of patients with lesions compared to the group without them. Not all injuries were caused by pressure. Specific prevention strategies based on different causal mechanisms are required. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  13. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    OpenAIRE

    Jette, Nicholas; Lees-Miller, Susan P.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemi...

  14. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release

    International Nuclear Information System (INIS)

    López, Claudia S.; Sloan, Rachel; Cylinder, Isabel; Kozak, Susan L.; Kabat, David; Barklis, Eric

    2014-01-01

    The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export. - Highlights: • At the protein level, full-length HIV-1 Env alters Gag protein expression. • HIV-1 Env RNA expression reduces Gag levels and virus release. • Env RNA effects on Gag are dependent on the RRE. • RRE-containing Env RNAs compete with vRNAs for nuclear export

  15. Temperature dependence of critical magnetic fields for the Abelian Higgs model

    International Nuclear Information System (INIS)

    Magpantay, J.; Mukku, C.; Sayed, W.A.

    1981-05-01

    One loop temperature and external electromagnetic field effects on the Abelian Higgs model are studied using the momentum space heat kernel. We obtain expressions for the critical fields necessary for symmetry restoration at some finite temperature and display the critical B vs. T curve separating the broken and restored phases in the B-T plane. (author)

  16. Chain length dependence of the critical density of organic homologous series

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios M.; Fredenslund, Aage; Tassios, Dimitrios P.

    1995-01-01

    Whether the critical density of organic compounds belonging to a certain homologous series increases or decreases with (increasing) molecular weight has been a challenging question over the years. Two sets of experimental data have recently appeared in the literature for the critical density of n......-alkanes: Steele's data (up to n-decane) suggest that critical density increases with carbon number and reaches a limiting value. On the other hand, the data of Teja et al., 1990 which cover a broader range of n-alkanes (up to n-octadecane), reveal a decreasing trend of the critical density after a maximum at n......-heptane. Teja et al. have also presented critical density measurements for 1-alkenes (up to 1-decene) and 1-alkanols (up to 1-undecanol). These data follow the same decreasing trend with the molecular weight as n-alkanes. This trend is not in agreement with the predictions of most group-contribution methods...

  17. Ca(2+)-calmodulin-dependent phosphorylation of islet secretory granule proteins

    International Nuclear Information System (INIS)

    Watkins, D.T.

    1991-01-01

    The effect of Ca2+ and calmodulin on phosphorylation of islet secretory granule proteins was studied. Secretory granules were incubated in a phosphorylation reaction mixture containing [32P]ATP and test reagents. The 32P-labeled proteins were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the 32P content was visualized by autoradiography, and the relative intensities of specific bands were quantitated. When the reaction mixture contained EGTA and no added Ca2+, 32P was incorporated into two proteins with molecular weights of 45,000 and 13,000. When 10(-4) M Ca2+ was added without EGTA, two additional proteins (58,000 and 48,000 Mr) were phosphorylated, and the 13,000-Mr protein was absent. The addition of 2.4 microM calmodulin markedly enhanced the phosphorylation of the 58,000- and 48,000-Mr proteins and resulted in the phosphorylation of a major protein whose molecular weight (64,000 Mr) is identical to that of one of the calmodulin binding proteins located on the granule surface. Calmodulin had no effect on phosphorylation in the absence of Ca2+ but was effective in the presence of calcium between 10 nM and 50 microM. Trifluoperazine and calmidazolium, calmodulin antagonists, produced a dose-dependent inhibition of the calmodulin effect. 12-O-tetradecanoylphorbol 13-acetate, a phorbol ester that activates protein kinase C, produced no increase in phosphorylation, and 1-(5-isoquinoline sulfonyl)-2-methyl piperazine dihydrochloride, an inhibitor of protein kinase C, had no effect. These results indicate that Ca(2+)-calmodulin-dependent protein kinases and endogenous substrates are present in islet secretory granules

  18. A critical switch in the enzymatic properties of the Cid1 protein deciphered from its product-bound crystal structure.

    Science.gov (United States)

    Munoz-Tello, Paola; Gabus, Caroline; Thore, Stéphane

    2014-03-01

    The addition of uridine nucleotide by the poly(U) polymerase (PUP) enzymes has a demonstrated impact on various classes of RNAs such as microRNAs (miRNAs), histone-encoding RNAs and messenger RNAs. Cid1 protein is a member of the PUP family. We solved the crystal structure of Cid1 in complex with non-hydrolyzable UMPNPP and a short dinucleotide compound ApU. These structures revealed new residues involved in substrate/product stabilization. In particular, one of the three catalytic aspartate residues explains the RNA dependence of its PUP activity. Moreover, other residues such as residue N165 or the β-trapdoor are shown to be critical for Cid1 activity. We finally suggest that the length and sequence of Cid1 substrate RNA influence the balance between Cid1's processive and distributive activities. We propose that particular processes regulated by PUPs require the enzymes to switch between the two types of activity as shown for the miRNA biogenesis where PUPs can either promote DICER cleavage via short U-tail or trigger miRNA degradation by adding longer poly(U) tail. The enzymatic properties of these enzymes may be critical for determining their particular function in vivo.

  19. The mediating role of self-criticism and dependency in the association between perceptions of maternal caring and depressive symptoms.

    Science.gov (United States)

    Campos, Rui C; Besser, Avi; Blatt, Sidney J

    2010-12-01

    This study examined a theoretically based mediation model including participants' perceptions of early relationships with their mother, self-criticism, dependency, and current depressive symptoms. We expect that (a) early relationships characterized by low levels of care and high levels of overprotection will be positively associated with both current depressive state and self-criticism and dependency; (b) high levels of self-criticism and dependency will be positively associated with depressive symptoms; and (c) self-criticism and dependency will play a mediating role in the association between participants' perceptions of early relationships characterized by low levels of care and high levels of overprotection and their current depressive symptoms. A nonclinical community sample of 200 Portuguese adults participated in the study. Perceptions of early relationships were measured using the mother scales of the Parental Bonding Instrument (Parker et al. [1979: Br J Med Psychol 52:1-10]), levels of self-criticism and dependency were measured using the Depressive Experiences Questionnaire (Blatt et al. [1976: J Abn Psy 6:383-389]), and depressive symptoms were measured using the Center for the Epidemiological Studies of Depression Scale (Radloff [1977: Appl Psychol Meas 1:385-401]. Structural equation modeling showed that the link between participants' perceptions of early caretaking relationships with their mothers and their current depressive symptoms is mediated by high levels of self-criticism--a personality trait associated with vulnerability to depression--but not Dependency. However, an ancillary analysis indicated that the link between participants' perceptions of early maternal overprotective relationships and their current depressive symptoms is mediated by high levels of Neediness. Findings underscore the role of perceived early relationships in psychological vulnerability to depression among highly self-critical and among highly needy individuals and

  20. Impact of hydrodynamic interactions on protein folding rates depends on temperature

    Science.gov (United States)

    Zegarra, Fabio C.; Homouz, Dirar; Eliaz, Yossi; Gasic, Andrei G.; Cheung, Margaret S.

    2018-03-01

    We investigated the impact of hydrodynamic interactions (HI) on protein folding using a coarse-grained model. The extent of the impact of hydrodynamic interactions, whether it accelerates, retards, or has no effect on protein folding, has been controversial. Together with a theoretical framework of the energy landscape theory (ELT) for protein folding that describes the dynamics of the collective motion with a single reaction coordinate across a folding barrier, we compared the kinetic effects of HI on the folding rates of two protein models that use a chain of single beads with distinctive topologies: a 64-residue α /β chymotrypsin inhibitor 2 (CI2) protein, and a 57-residue β -barrel α -spectrin Src-homology 3 domain (SH3) protein. When comparing the protein folding kinetics simulated with Brownian dynamics in the presence of HI to that in the absence of HI, we find that the effect of HI on protein folding appears to have a "crossover" behavior about the folding temperature. This means that at a temperature greater than the folding temperature, the enhanced friction from the hydrodynamic solvents between the beads in an unfolded configuration results in lowered folding rate; conversely, at a temperature lower than the folding temperature, HI accelerates folding by the backflow of solvent toward the folded configuration of a protein. Additionally, the extent of acceleration depends on the topology of a protein: for a protein like CI2, where its folding nucleus is rather diffuse in a transition state, HI channels the formation of contacts by favoring a major folding pathway in a complex free energy landscape, thus accelerating folding. For a protein like SH3, where its folding nucleus is already specific and less diffuse, HI matters less at a temperature lower than the folding temperature. Our findings provide further theoretical insight to protein folding kinetic experiments and simulations.

  1. Critical assessment of methods of protein structure prediction (CASP) - round x

    KAUST Repository

    Moult, John; Fidelis, Krzysztof; Kryshtafovych, Andriy; Schwede, Torsten; Tramontano, Anna

    2013-01-01

    This article is an introduction to the special issue of the journal PROTEINS, dedicated to the tenth Critical Assessment of Structure Prediction (CASP) experiment to assess the state of the art in protein structure modeling. The article describes the conduct of the experiment, the categories of prediction included, and outlines the evaluation and assessment procedures. The 10 CASP experiments span almost 20 years of progress in the field of protein structure modeling, and there have been enormous advances in methods and model accuracy in that period. Notable in this round is the first sustained improvement of models with refinement methods, using molecular dynamics. For the first time, we tested the ability of modeling methods to make use of sparse experimental three-dimensional contact information, such as may be obtained from new experimental techniques, with encouraging results. On the other hand, new contact prediction methods, though holding considerable promise, have yet to make an impact in CASP testing. The nature of CASP targets has been changing in recent CASPs, reflecting shifts in experimental structural biology, with more irregular structures, more multi-domain and multi-subunit structures, and less standard versions of known folds. When allowance is made for these factors, we continue to see steady progress in the overall accuracy of models, particularly resulting from improvement of non-template regions.

  2. Critical assessment of methods of protein structure prediction (CASP) - round x

    KAUST Repository

    Moult, John

    2013-12-17

    This article is an introduction to the special issue of the journal PROTEINS, dedicated to the tenth Critical Assessment of Structure Prediction (CASP) experiment to assess the state of the art in protein structure modeling. The article describes the conduct of the experiment, the categories of prediction included, and outlines the evaluation and assessment procedures. The 10 CASP experiments span almost 20 years of progress in the field of protein structure modeling, and there have been enormous advances in methods and model accuracy in that period. Notable in this round is the first sustained improvement of models with refinement methods, using molecular dynamics. For the first time, we tested the ability of modeling methods to make use of sparse experimental three-dimensional contact information, such as may be obtained from new experimental techniques, with encouraging results. On the other hand, new contact prediction methods, though holding considerable promise, have yet to make an impact in CASP testing. The nature of CASP targets has been changing in recent CASPs, reflecting shifts in experimental structural biology, with more irregular structures, more multi-domain and multi-subunit structures, and less standard versions of known folds. When allowance is made for these factors, we continue to see steady progress in the overall accuracy of models, particularly resulting from improvement of non-template regions.

  3. The Efficacy of a Restart Break for Recycling with Optimal Performance Depends Critically on Circadian Timing

    Science.gov (United States)

    Van Dongen, Hans P.A.; Belenky, Gregory; Vila, Bryan J.

    2011-01-01

    deficits. Conclusions: The 34-hour restart break was adequate for maintaining performance in the case of optimal circadian placement of sleep and duty periods (control condition) but was inadequate (and perhaps even detrimental) for maintaining performance in a simulated nighttime duty schedule (experimental condition). Current US transportation hours-of-service regulations mandate time off duty but do not consider the circadian aspects of shift scheduling. Reinforcing a recent trend of applying sleep science to inform policymaking for duty and rest times, our findings indicate that restart provisions in hours-of-service regulations could be improved by taking the circadian timing of the duty schedules into account. Citation: Van Dongen HPA; Belenky G; Vila BJ. The efficacy of a restart break for recycling with optimal performance depends critically on circadian timing. SLEEP 2011;34(7):917-929. PMID:21731142

  4. Tyrosine 129 of the murine gammaherpesvirus M2 protein is critical for M2 function in vivo.

    Science.gov (United States)

    Rangaswamy, Udaya S; O'Flaherty, Brigid M; Speck, Samuel H

    2014-01-01

    A common strategy shared by all known gammaherpesviruses is their ability to establish a latent infection in lymphocytes--predominantly in B cells. In immunocompromised patients, such as transplant recipients or AIDS patients, gammaherpesvirus infections can lead to the development of lymphoproliferative disease and lymphoid malignancies. The human gamma-herpesviruses, EBV and KSHV, encode proteins that are capable of modulating the host immune signaling machinery, thereby subverting host immune responses. Murine gamma-herpesvirus 68 (MHV68) infection of laboratory strains of mice has proven to be useful small-animal model that shares important pathogenic strategies with the human gamma-herpesviruses. The MHV68 M2 protein is known to manipulate B cell signaling and, dependent on route and dose of virus inoculation, plays a role in both the establishment of latency and virus reactivation. M2 contains two tyrosines that are targets for phosphorylation, and have been shown to interact with the B cell signaling machinery. Here we describe in vitro and in vivo studies of M2 mutants which reveals that while both tyrosines Y120 and Y129 are required for M2 induction of IL-10 expression from primary murine B cells in vitro, only Y129 is critical for reactivation from latency and plasma cell differentiation in vivo.

  5. Tyrosine 129 of the murine gammaherpesvirus M2 protein is critical for M2 function in vivo.

    Directory of Open Access Journals (Sweden)

    Udaya S Rangaswamy

    Full Text Available A common strategy shared by all known gammaherpesviruses is their ability to establish a latent infection in lymphocytes--predominantly in B cells. In immunocompromised patients, such as transplant recipients or AIDS patients, gammaherpesvirus infections can lead to the development of lymphoproliferative disease and lymphoid malignancies. The human gamma-herpesviruses, EBV and KSHV, encode proteins that are capable of modulating the host immune signaling machinery, thereby subverting host immune responses. Murine gamma-herpesvirus 68 (MHV68 infection of laboratory strains of mice has proven to be useful small-animal model that shares important pathogenic strategies with the human gamma-herpesviruses. The MHV68 M2 protein is known to manipulate B cell signaling and, dependent on route and dose of virus inoculation, plays a role in both the establishment of latency and virus reactivation. M2 contains two tyrosines that are targets for phosphorylation, and have been shown to interact with the B cell signaling machinery. Here we describe in vitro and in vivo studies of M2 mutants which reveals that while both tyrosines Y120 and Y129 are required for M2 induction of IL-10 expression from primary murine B cells in vitro, only Y129 is critical for reactivation from latency and plasma cell differentiation in vivo.

  6. Modeling curvature-dependent subcellular localization of a small sporulation protein in Bacillus subtilis

    Science.gov (United States)

    Wasnik, Vaibhav; Wingreen, Ned; Mukhopadhyay, Ranjan

    2012-02-01

    Recent experiments suggest that in the bacterium, B. subtilis, the cue for the localization of small sporulation protein, SpoVM, that plays a central role in spore coat formation, is curvature of the bacterial plasma membrane. This curvature-dependent localization is puzzling given the orders of magnitude difference in lengthscale of an individual protein and radius of curvature of the membrane. Here we develop a minimal model to study the relationship between curvature-dependent membrane absorption of SpoVM and clustering of membrane-associated SpoVM and compare our results with experiments.

  7. COPII-Dependent ER Export: A Critical Component of Insulin Biogenesis and β-Cell ER Homeostasis.

    Science.gov (United States)

    Fang, Jingye; Liu, Ming; Zhang, Xuebao; Sakamoto, Takeshi; Taatjes, Douglas J; Jena, Bhanu P; Sun, Fei; Woods, James; Bryson, Tim; Kowluru, Anjaneyulu; Zhang, Kezhong; Chen, Xuequn

    2015-08-01

    Pancreatic β-cells possess a highly active protein synthetic and export machinery in the endoplasmic reticulum (ER) to accommodate the massive production of proinsulin. ER homeostasis is vital for β-cell functions and is maintained by the delicate balance between protein synthesis, folding, export, and degradation. Disruption of ER homeostasis by diabetes-causing factors leads to β-cell death. Among the 4 components to maintain ER homeostasis in β-cells, the role of ER export in insulin biogenesis is the least understood. To address this knowledge gap, the present study investigated the molecular mechanism of proinsulin ER export in MIN6 cells and primary islets. Two inhibitory mutants of the secretion-associated RAS-related protein (Sar)1 small GTPase, known to specifically block coat protein complex II (COPII)-dependent ER export, were overexpressed in β-cells using recombinant adenoviruses. Results from this approach, as well as small interfering RNA-mediated Sar1 knockdown, demonstrated that defective Sar1 function blocked proinsulin ER export and abolished its conversion to mature insulin in MIN6 cells, isolated mouse, and human islets. It is further revealed, using an in vitro vesicle formation assay, that proinsulin was packaged into COPII vesicles in a GTP- and Sar1-dependent manner. Blockage of COPII-dependent ER exit by Sar1 mutants strongly induced ER morphology change, ER stress response, and β-cell apoptosis. These responses were mediated by the PKR (double-stranded RNA-dependent kinase)-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (p-eIF2α) and inositol-requiring protein 1 (IRE1)/x-box binding protein 1 (Xbp1) pathways but not via activating transcription factor 6 (ATF6). Collectively, results from the study demonstrate that COPII-dependent ER export plays a vital role in insulin biogenesis, ER homeostasis, and β-cell survival.

  8. Localization of aggregating proteins in bacteria depends on the rate of addition

    Directory of Open Access Journals (Sweden)

    Karl eScheu

    2014-08-01

    Full Text Available Many proteins are observed to localize to specific subcellular regions within bacteria. Recent experiments have shown that proteins that have self-interactions that lead them to aggregate tend to localize to the poles. Theoretical modeling of the localization of aggregating protein within bacterial cell geometries shows that aggregates can spontaneously localize to the pole due to nucleoid occlusion. The resulting polar localization, whether it be to a single pole or to both was shown to depend on the rate of protein addition. Motivated by these predictions we selected a set of genes from E. coli, whose protein products have been reported to localize when tagged with GFP, and explored the dynamics of their localization. We induced protein expression from each gene at different rates and found that in all cases unipolar patterning is favored at low rates of expression whereas bipolar is favored at higher rates of expression. Our findings are consistent with the predictions of the model, suggesting that localization may be due to aggregation plus nucleoid occlusion. When we expressed GFP by itself under the same conditions, no localization was observed. These experiments highlight the potential importance of protein aggregation, nucleoid occlusion and rate of protein expression in driving polar localization of functional proteins in bacteria.

  9. Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation

    Science.gov (United States)

    Lakkaraju, Asvin K. K.; Thankappan, Ratheeshkumar; Mary, Camille; Garrison, Jennifer L.; Taunton, Jack; Strub, Katharina

    2012-01-01

    Mammalian cells secrete a large number of small proteins, but their mode of translocation into the endoplasmic reticulum is not fully understood. Cotranslational translocation was expected to be inefficient due to the small time window for signal sequence recognition by the signal recognition particle (SRP). Impairing the SRP pathway and reducing cellular levels of the translocon component Sec62 by RNA interference, we found an alternate, Sec62-dependent translocation path in mammalian cells required for the efficient translocation of small proteins with N-terminal signal sequences. The Sec62-dependent translocation occurs posttranslationally via the Sec61 translocon and requires ATP. We classified preproteins into three groups: 1) those that comprise ≤100 amino acids are strongly dependent on Sec62 for efficient translocation; 2) those in the size range of 120–160 amino acids use the SRP pathway, albeit inefficiently, and therefore rely on Sec62 for efficient translocation; and 3) those larger than 160 amino acids depend on the SRP pathway to preserve a transient translocation competence independent of Sec62. Thus, unlike in yeast, the Sec62-dependent translocation pathway in mammalian cells serves mainly as a fail-safe mechanism to ensure efficient secretion of small proteins and provides cells with an opportunity to regulate secretion of small proteins independent of the SRP pathway. PMID:22648169

  10. Long lasting protein synthesis- and activity-dependent spine shrinkage and elimination after synaptic depression.

    Directory of Open Access Journals (Sweden)

    Yazmín Ramiro-Cortés

    Full Text Available Neuronal circuits modify their response to synaptic inputs in an experience-dependent fashion. Increases in synaptic weights are accompanied by structural modifications, and activity dependent, long lasting growth of dendritic spines requires new protein synthesis. When multiple spines are potentiated within a dendritic domain, they show dynamic structural plasticity changes, indicating that spines can undergo bidirectional physical modifications. However, it is unclear whether protein synthesis dependent synaptic depression leads to long lasting structural changes. Here, we investigate the structural correlates of protein synthesis dependent long-term depression (LTD mediated by metabotropic glutamate receptors (mGluRs through two-photon imaging of dendritic spines on hippocampal pyramidal neurons. We find that induction of mGluR-LTD leads to robust and long lasting spine shrinkage and elimination that lasts for up to 24 hours. These effects depend on signaling through group I mGluRs, require protein synthesis, and activity. These data reveal a mechanism for long lasting remodeling of synaptic inputs, and offer potential insights into mental retardation.

  11. Heterogeneous nuclear ribonucleoprotein B1 protein impairs DNA repair mediated through the inhibition of DNA-dependent protein kinase activity

    International Nuclear Information System (INIS)

    Iwanaga, Kentaro; Sueoka, Naoko; Sato, Akemi; Hayashi, Shinichiro; Sueoka, Eisaburo

    2005-01-01

    Heterogeneous nuclear ribonucleoprotein B1, an RNA binding protein, is overexpressed from the early stage of lung cancers; it is evident even in bronchial dysplasia, a premalignant lesion. We evaluated the proteins bound with hnRNP B1 and found that hnRNP B1 interacted with DNA-dependent protein kinase (DNA-PK) complex, and recombinant hnRNP B1 protein dose-dependently inhibited DNA-PK activity in vitro. To test the effect of hnRNP B1 on DNA repair, we performed comet assay after irradiation, using normal human bronchial epithelial (HBE) cells treated with siRNA for hnRNP A2/B1: reduction of hnRNP B1 treated with siRNA for hnRNP A2/B1 induced faster DNA repair in normal HBE cells. Considering these results, we assume that overexpression of hnRNP B1 occurring in the early stage of carcinogenesis inhibits DNA-PK activity, resulting in subsequent accumulation of erroneous rejoining of DNA double-strand breaks, causing tumor progression

  12. Contactless estimation of critical current density and its temperature dependence using magnetic measurements

    Czech Academy of Sciences Publication Activity Database

    Youssef, A.; Baničová, L.; Švindrych, Zdeněk; Janů, Zdeněk

    2010-01-01

    Roč. 118, č. 5 (2010), s. 1036-1037 ISSN 0587-4246. [Czech and Slovak Conference on Magnetism /14./. Košice, 06.07.2010-09.07.2010] R&D Projects: GA MŠk(CZ) ME10069 Institutional research plan: CEZ:AV0Z10100520 Keywords : superconductivity * critical state * Bean model * critical current density Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.467, year: 2010

  13. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Ann-Sofie, E-mail: ann-sofie.gustafsson@bms.uu.se; Abramenkovs, Andris; Stenerlöw, Bo

    2014-11-15

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  14. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    International Nuclear Information System (INIS)

    Gustafsson, Ann-Sofie; Abramenkovs, Andris; Stenerlöw, Bo

    2014-01-01

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  15. Graphical analysis of pH-dependent properties of proteins predicted using PROPKA.

    Science.gov (United States)

    Rostkowski, Michał; Olsson, Mats H M; Søndergaard, Chresten R; Jensen, Jan H

    2011-01-26

    Charge states of ionizable residues in proteins determine their pH-dependent properties through their pKa values. Thus, various theoretical methods to determine ionization constants of residues in biological systems have been developed. One of the more widely used approaches for predicting pKa values in proteins is the PROPKA program, which provides convenient structural rationalization of the predicted pKa values without any additional calculations. The PROPKA Graphical User Interface (GUI) is a new tool for studying the pH-dependent properties of proteins such as charge and stabilization energy. It facilitates a quantitative analysis of pKa values of ionizable residues together with their structural determinants by providing a direct link between the pKa data, predicted by the PROPKA calculations, and the structure via the Visual Molecular Dynamics (VMD) program. The GUI also calculates contributions to the pH-dependent unfolding free energy at a given pH for each ionizable group in the protein. Moreover, the PROPKA-computed pKa values or energy contributions of the ionizable residues in question can be displayed interactively. The PROPKA GUI can also be used for comparing pH-dependent properties of more than one structure at the same time. The GUI considerably extends the analysis and validation possibilities of the PROPKA approach. The PROPKA GUI can conveniently be used to investigate ionizable groups, and their interactions, of residues with significantly perturbed pKa values or residues that contribute to the stabilization energy the most. Charge-dependent properties can be studied either for a single protein or simultaneously with other homologous structures, which makes it a helpful tool, for instance, in protein design studies or structure-based function predictions. The GUI is implemented as a Tcl/Tk plug-in for VMD, and can be obtained online at http://propka.ki.ku.dk/~luca/wiki/index.php/GUI_Web.

  16. 4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression

    Directory of Open Access Journals (Sweden)

    Katherine D. Shives

    2016-10-01

    Full Text Available West Nile virus (WNV is a (+ sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7GpppNm 5′ cap with 2′-O-methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1 for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K and eukaryotic translation initiation factor 4E-binding protein (4EBP pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E interaction and eukaryotic initiation factor 4F (eIF4F complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6 and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.

  17. Late protein synthesis-dependent phases in CTA long-term memory: BDNF requirement

    Directory of Open Access Journals (Sweden)

    Araceli eMartínez-Moreno

    2011-09-01

    Full Text Available It has been proposed that long-term memory persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related long-term memory when protein synthesis was inhibited. Our previous studies on the insular cortex (IC, a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA, have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis dependent in different time-windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 hours after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes.

  18. Late Protein Synthesis-Dependent Phases in CTA Long-Term Memory: BDNF Requirement.

    Science.gov (United States)

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L

    2011-01-01

    It has been proposed that long-term memory (LTM) persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related LTM when protein synthesis was inhibited. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis-dependent in different time windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 h after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side) in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes.

  19. 4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression.

    Science.gov (United States)

    Shives, Katherine D; Massey, Aaron R; May, Nicholas A; Morrison, Thomas E; Beckham, J David

    2016-10-18

    West Nile virus (WNV) is a (+) sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7 GpppN m 5' cap with 2'- O -methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1) for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein (4EBP) pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E) interaction and eukaryotic initiation factor 4F (eIF4F) complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6) and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.

  20. Late Protein Synthesis-Dependent Phases in CTA Long-Term Memory: BDNF Requirement

    Science.gov (United States)

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F.; Escobar, Martha L.

    2011-01-01

    It has been proposed that long-term memory (LTM) persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related LTM when protein synthesis was inhibited. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis-dependent in different time windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 h after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side) in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes. PMID:21960964

  1. Isothermal chemical denaturation of large proteins: Path-dependence and irreversibility.

    Science.gov (United States)

    Wafer, Lucas; Kloczewiak, Marek; Polleck, Sharon M; Luo, Yin

    2017-12-15

    State functions (e.g., ΔG) are path independent and quantitatively describe the equilibrium states of a thermodynamic system. Isothermal chemical denaturation (ICD) is often used to extrapolate state function parameters for protein unfolding in native buffer conditions. The approach is prudent when the unfolding/refolding processes are path independent and reversible, but may lead to erroneous results if the processes are not reversible. The reversibility was demonstrated in several early studies for smaller proteins, but was assumed in some reports for large proteins with complex structures. In this work, the unfolding/refolding of several proteins were systematically studied using an automated ICD instrument. It is shown that: (i) the apparent unfolding mechanism and conformational stability of large proteins can be denaturant-dependent, (ii) equilibration times for large proteins are non-trivial and may introduce significant error into calculations of ΔG, (iii) fluorescence emission spectroscopy may not correspond to other methods, such as circular dichroism, when used to measure protein unfolding, and (iv) irreversible unfolding and hysteresis can occur in the absence of aggregation. These results suggest that thorough confirmation of the state functions by, for example, performing refolding experiments or using additional denaturants, is needed when quantitatively studying the thermodynamics of protein unfolding using ICD. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis.

    Science.gov (United States)

    Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent

    2016-05-17

    Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Kiens, Bente; Richter, Erik

    2006-01-01

    Ca2+ signalling is proposed to play an important role in skeletal muscle function during exercise. Here, we examined the expression of multifunctional Ca2+-calmodulin-dependent protein kinases (CaMK) in human skeletal muscle and show that CaMKII and CaMKK, but not CaMKI or CaMKIV, are expressed...

  4. Selective inhibition of Sarcocystis neurona calcium-dependent protein kinase 1 for equine protozoal myeloencephalitis therapy

    Science.gov (United States)

    Sarcocystis neurona is the most frequent cause of Equine Protozoal Myeloencephalitis (EPM), a debilitating neurologic disease of horses that can be difficult to treat. We identified SnCDPK1, the S. neurona homologue of calcium dependent protein kinase 1 (CDPK1), a validated drug target in Toxoplasma...

  5. Structural and functional characteristics of cGMP-dependent methionine oxidation in Arabidopsis thaliana proteins

    KAUST Repository

    Marondedze, Claudius; Turek, Ilona; Parrott, Brian Jonathan; Thomas, Ludivine; Jankovic, Boris R.; Lilley, Kathryn S; Gehring, Christoph A

    2013-01-01

    molecule, the cell-permeant second messenger analogue, 8-bromo-3,5-cyclic guanosine monophosphate (8-Br-cGMP), results in a time-dependent increase in the content of oxidised methionine residues. Interestingly, the group of proteins affected by c

  6. Turnover-dependent inactivation of the nitrogenase MoFe-protein at high pH.

    Science.gov (United States)

    Yang, Kun-Yun; Haynes, Chad A; Spatzal, Thomas; Rees, Douglas C; Howard, James B

    2014-01-21

    Proton uptake accompanies the reduction of all known substrates by nitrogenase. As a consequence, a higher pH should limit the availability of protons as a substrate essential for turnover, thereby increasing the proportion of more highly reduced forms of the enzyme for further study. The utility of the high-pH approach would appear to be problematic in view of the observation reported by Pham and Burgess [(1993) Biochemistry 32, 13725-13731] that the MoFe-protein undergoes irreversible protein denaturation above pH 8.65. In contrast, we found by both enzyme activity and crystallographic analyses that the MoFe-protein is stable when incubated at pH 9.5. We did observe, however, that at higher pHs and under turnover conditions, the MoFe-protein is slowly inactivated. While a normal, albeit low, level of substrate reduction occurs under these conditions, the MoFe-protein undergoes a complex transformation; initially, the enzyme is reversibly inhibited for substrate reduction at pH 9.5, yet in a second, slower process, the MoFe-protein becomes irreversibly inactivated as measured by substrate reduction activity at the optimal pH of 7.8. The final inactivated MoFe-protein has an increased hydrodynamic radius compared to that of the native MoFe-protein, yet it has a full complement of iron and molybdenum. Significantly, the modified MoFe-protein retains the ability to specifically interact with its nitrogenase partner, the Fe-protein, as judged by the support of ATP hydrolysis and by formation of a tight complex with the Fe-protein in the presence of ATP and aluminum fluoride. The turnover-dependent inactivation coupled to conformational change suggests a mechanism-based transformation that may provide a new probe of nitrogenase catalysis.

  7. Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context

    DEFF Research Database (Denmark)

    Chown, Steven L.; Jumbam, Keafon R.; Sørensen, Jesper Givskov

    2009-01-01

    used during assessments of critical thermal limits to activity. To date, the focus of work has almost exclusively been on the effects of rate variation on mean values of the critical limits. 2.  If the rate of temperature change used in an experimental trial affects not only the trait mean but also its...... this is the case for critical thermal limits using a population of the model species Drosophila melanogaster and the invasive ant species Linepithema humile. 4.  We found that effects of the different rates of temperature change are variable among traits and species. However, in general, different rates...... of temperature change resulted in different phenotypic variances and different estimates of heritability, presuming that genetic variance remains constant. We also found that different rates resulted in different conclusions regarding the responses of the species to acclimation, especially in the case of L...

  8. Magnetic Field Dependence of the Critical Current in S-N Bilayer Thin Films

    Science.gov (United States)

    Sadleir, John E.; Lee, Sang-Jun; Smith, Stephen James; Bandler, Simon; Chervenak, James; Kilbourne, Caroline A.; Finkbeiner, Fred M.; Porter, Frederick S.; Kelley, Richard L.; Adams, Joseph S.; hide

    2013-01-01

    Here we investigate the effects a non-uniform applied magnetic field has on superconducting transition-edge sensors (TESs) critical current. This has implications on TES optimization. It has been shown that TESs resistive transition can be altered by magnetic fields. We have observed critical current rectification effects and explained these effects in terms of a magnetic self-field arising from asymmetric current injection into the sensor. Our TES physical model shows that this magnetic self-field can result in significantly degraded or improved TES performance. In order for this magnetically tuned TES strategy to reach its full potential we are investigating the effect a non-uniform applied magnetic field has on the critical current.

  9. Searching for the QCD Critical Point with the Energy Dependence of pt Fluctuations

    Science.gov (United States)

    Novak, John; STAR Collaboration

    2013-10-01

    If systems produced in relativistic heavy-ion collisions pass near the QCD critical point while cooling, the correlation length of the system may diverge due to the phenomena of critical opalescence. The transverse momentum distribution, being related to the state variable temperature, might be sensitive to this change in correlation length. Non-monotonic behavior with changing incident energy or centrality of any transverse momentum observable that is sensitive to the correlation length could thus be indicative of the QCD critical point. Accordingly, we report measurements related to transverse momentum fluctuations such as as a function of event centrality and incident energy for Au+Au collisions at √{sNN} = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV using the STAR detector at RHIC. The results are compared to UrQMD model predictions and previous experimental measurements.

  10. Critical mutation rate has an exponential dependence on population size in haploid and diploid populations.

    Directory of Open Access Journals (Sweden)

    Elizabeth Aston

    Full Text Available Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the

  11. Blocking an N-terminal acetylation–dependent protein interaction inhibits an E3 ligase

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Daniel C.; Hammill, Jared T.; Min, Jaeki; Rhee, David Y.; Connelly, Michele; Sviderskiy, Vladislav O.; Bhasin, Deepak; Chen, Yizhe; Ong, Su-Sien; Chai, Sergio C.; Goktug, Asli N.; Huang, Guochang; Monda, Julie K.; Low, Jonathan; Kim, Ho Shin; Paulo, Joao A.; Cannon, Joe R.; Shelat, Anang A.; Chen, Taosheng; Kelsall, Ian R.; Alpi, Arno F.; Pagala, Vishwajeeth; Wang, Xusheng; Peng, Junmin; Singh , Bhuvanesh; Harper, J. Wade; Schulman, Brenda A.; Guy, R. Kip (MSKCC); (Dundee); (SJCH); (Harvard-Med); (MXPL)

    2017-06-05

    N-terminal acetylation is an abundant modification influencing protein functions. Because ~80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation–dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors are highly selective with respect to other protein acetyl-amide–binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress anchorage-independent growth of a cell line with DCN1 amplification. Overall, our data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets and provide insights into targeting multiprotein E2–E3 ligases.

  12. Critical angular momentum dependence of the fission barriers and the stability of superheavy nuclei

    International Nuclear Information System (INIS)

    Magda, M.T.; Sandulescu, A.

    1978-10-01

    Measured complete fusion and evaporation cross section data are used to determine the critical angular momenta for which the fission barriers are vanishing in the region of nuclei with Z = 102 - 116. It is shown that, in order to fit these data, larger values of the critical angular momenta are obtained for superheavy nuclei (Z = 110 - 112) than for heavy ones (Z = 102 - 107), which indicates a relatively higher stability against fission for superheavy nuclei, in agreement with the theoretically predicted island of stability. (author)

  13. The N-terminal, polybasic region is critical for prion protein neuroprotective activity.

    Directory of Open Access Journals (Sweden)

    Jessie A Turnbaugh

    Full Text Available Several lines of evidence suggest that the normal form of the prion protein, PrP(C, exerts a neuroprotective activity against cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrP(C to suppress the spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (Δ32-134, called F35. To define domains of PrP involved in its neuroprotective activity, we have analyzed the ability of several deletion mutants of PrP (Δ23-31, Δ23-111, and Δ23-134 to rescue the phenotype of Tg(F35 mice. Surprisingly, all of these mutants displayed greatly diminished rescue activity, although Δ23-31 PrP partially suppressed neuronal loss when expressed at very high levels. Our results pinpoint the N-terminal, polybasic domain as a critical determinant of PrP(C neuroprotective activity, and suggest that identification of molecules interacting with this region will provide important clues regarding the normal function of the protein. Small molecule ligands targeting this region may also represent useful therapeutic agents for treatment of prion diseases.

  14. Masseter muscle myofibrillar protein synthesis and degradation in an experimental critical illness myopathy model.

    Directory of Open Access Journals (Sweden)

    Hazem Akkad

    Full Text Available Critical illness myopathy (CIM is a debilitating common consequence of modern intensive care, characterized by severe muscle wasting, weakness and a decreased myosin/actin (M/A ratio. Limb/trunk muscles are primarily affected by this myopathy while cranial nerve innervated muscles are spared or less affected, but the mechanisms underlying these muscle-specific differences remain unknown. In this time-resolved study, the cranial nerve innervated masseter muscle was studied in a unique experimental rat intensive care unit (ICU model, where animals were exposed to sedation, neuromuscular blockade (NMB, mechanical ventilation, and immobilization for durations varying between 6 h and 14d. Gel electrophoresis, immunoblotting, RT-PCR and morphological staining techniques were used to analyze M/A ratios, myofiber size, synthesis and degradation of myofibrillar proteins, and levels of heat shock proteins (HSPs. Results obtained in the masseter muscle were compared with previous observations in experimental and clinical studies of limb muscles. Significant muscle-specific differences were observed, i.e., in the masseter, the decline in M/A ratio and muscle fiber size was small and delayed. Furthermore, transcriptional regulation of myosin and actin synthesis was maintained, and Akt phosphorylation was only briefly reduced. In studied degradation pathways, only mRNA, but not protein levels of MuRF1, atrogin-1 and the autophagy marker LC3b were activated by the ICU condition. The matrix metalloproteinase MMP-2 was inhibited and protective HSPs were up-regulated early. These results confirm that the cranial nerve innervated masticatory muscles is less affected by the ICU-stress response than limb muscles, in accordance with clinical observation in ICU patients with CIM, supporting the model' credibility as a valid CIM model.

  15. Protein thermostability prediction within homologous families using temperature-dependent statistical potentials.

    Directory of Open Access Journals (Sweden)

    Fabrizio Pucci

    Full Text Available The ability to rationally modify targeted physical and biological features of a protein of interest holds promise in numerous academic and industrial applications and paves the way towards de novo protein design. In particular, bioprocesses that utilize the remarkable properties of enzymes would often benefit from mutants that remain active at temperatures that are either higher or lower than the physiological temperature, while maintaining the biological activity. Many in silico methods have been developed in recent years for predicting the thermodynamic stability of mutant proteins, but very few have focused on thermostability. To bridge this gap, we developed an algorithm for predicting the best descriptor of thermostability, namely the melting temperature Tm, from the protein's sequence and structure. Our method is applicable when the Tm of proteins homologous to the target protein are known. It is based on the design of several temperature-dependent statistical potentials, derived from datasets consisting of either mesostable or thermostable proteins. Linear combinations of these potentials have been shown to yield an estimation of the protein folding free energies at low and high temperatures, and the difference of these energies, a prediction of the melting temperature. This particular construction, that distinguishes between the interactions that contribute more than others to the stability at high temperatures and those that are more stabilizing at low T, gives better performances compared to the standard approach based on T-independent potentials which predict the thermal resistance from the thermodynamic stability. Our method has been tested on 45 proteins of known Tm that belong to 11 homologous families. The standard deviation between experimental and predicted Tm's is equal to 13.6°C in cross validation, and decreases to 8.3°C if the 6 worst predicted proteins are excluded. Possible extensions of our approach are discussed.

  16. Ribosome-dependent ATPase interacts with conserved membrane protein in Escherichia coli to modulate protein synthesis and oxidative phosphorylation.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    Full Text Available Elongation factor RbbA is required for ATP-dependent deacyl-tRNA release presumably after each peptide bond formation; however, there is no information about the cellular role. Proteomic analysis in Escherichia coli revealed that RbbA reciprocally co-purified with a conserved inner membrane protein of unknown function, YhjD. Both proteins are also physically associated with the 30S ribosome and with members of the lipopolysaccharide transport machinery. Genome-wide genetic screens of rbbA and yhjD deletion mutants revealed aggravating genetic interactions with mutants deficient in the electron transport chain. Cells lacking both rbbA and yhjD exhibited reduced cell division, respiration and global protein synthesis as well as increased sensitivity to antibiotics targeting the ETC and the accuracy of protein synthesis. Our results suggest that RbbA appears to function together with YhjD as part of a regulatory network that impacts bacterial oxidative phosphorylation and translation efficiency.

  17. Urine protein electrophoresis study in dogs with pituitary dependent hyperadrenocorticism during therapy with trilostane

    Directory of Open Access Journals (Sweden)

    Douglas S. Caragelasco

    Full Text Available ABSTRACT: Hyperadrenocorticism is one of the most common endocrine disorders in dogs. Regarding to the kidneys, chronic hypercortisolemia can cause damage to the glomerulus, and evolve into chronic kidney disease. This study evaluated nine normotensive dogs with pituitary dependent hyperadrenocorticism, before and after therapy with trilostane, during the follow-up period of six months, in order to investigate the development of pathological proteinuria by quantitative (urinary protein-to-creatinine ratio and qualitative (urinary protein electrophoresis methods, and also to monitor its intensity over the course of the disease and therapy. The main renal lesion detected in dogs with hyperadrenocorticism was in the tubular segment, evidenced by the prevalence of urinary protein bands of lower molecular weight, indicating the lack absorption of these proteins in the proximal segment of the nephron. Low molecular weight proteins persisted throughout the follow-up. Regarding the future of routine veterinary medical clinic in the care of patients with hyperadrenocorticism, the assessments of proteinuria determinations by the urinary protein-to-creatinin ratio and urinary protein electrophoresis, according to the results obtained in this study, can add more information about the renal damage in these animals, and contribute to the prognosis.

  18. Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis.

    Science.gov (United States)

    Douglas, Pauline; Ye, Ruiqiong; Trinkle-Mulcahy, Laura; Neal, Jessica A; De Wever, Veerle; Morrice, Nick A; Meek, Katheryn; Lees-Miller, Susan P

    2014-06-25

    The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs' role in mitosis may be mechanistically distinct from its well-established role in NHEJ.

  19. Angular dependence of critical current density and magnetoresistance of sputtered high-T{sub c}-films

    Energy Technology Data Exchange (ETDEWEB)

    Geerkens, A.; Frenck, H.J.; Ewert, S. [Technical Univ. of Cottbus (Germany)] [and others

    1994-12-31

    The angular dependence of the critical current density and the magnetoresistance of high-T{sub c}-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle {Theta} between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the {Theta}-rotation plane is discussed.

  20. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    Science.gov (United States)

    Jette, Nicholas; Lees-Miller, Susan P.

    2015-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes. PMID:25550082

  1. Effect of colored noise on the critical dynamics of the Time-Dependent Landau-Ginzburg Model A

    International Nuclear Information System (INIS)

    Korutcheva, E.; Rubia, J. de la

    1999-08-01

    By using the dynamical renormalization-group method, we show that the introduction of an additive colored noise with weak long-range correlations in the Time-Dependent Landau-Ginzburg Model A, does not give perturbative corrections for the dynamical critical exponent at least up to order O(ε 2 ). This result differs for a system with random quenched impurities, where a similar type of impurity correlation leads to corrections even of order O(ε). (author)

  2. Analysing context-dependent deviations in interacting with safety-critical systems

    International Nuclear Information System (INIS)

    Paterno, Fabio; Santoro, Carmen

    2006-01-01

    Mobile technology is penetrating many areas of human life. This implies that the context of use can vary in many respects. We present a method that aims to support designers in managing the complex design space when considering applications with varying contexts and help them to identify solutions that support users in performing their activities while preserving usability and safety. The method is a novel combination of an analysis of both potential deviations in task performance and most suitable information representations based on distributed cognition. The originality of the contribution is in providing a conceptual tool for better understanding the impact of context of use on user interaction in safety-critical domains. In order to present our approach we provide an example in which the implications of introducing new support through mobile devices in a safety-critical system are identified and analysed in terms of potential hazards

  3. Calcium-Dependent Protein Kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates

    Directory of Open Access Journals (Sweden)

    Amy eCurran

    2011-08-01

    Full Text Available The identification of substrates represents a critical challenge for understanding any protein kinase-based signal transduction pathway. In Arabidopsis, there are more than 1000 different protein kinases, 34 of which belong to a family of Ca2+-dependent protein kinases (CPKs. While CPKs are implicated in regulating diverse aspects of plant biology, from ion transport to transcription, relatively little is known about isoform-specific differences in substrate specificity, or the number of phosphorylation targets. Here, in vitro kinase assays were used to compare phosphorylation targets of four CPKs from Arabidopsis (CPK1, 10, 16 and 34. Significant differences in substrate specificity for each kinase were revealed by assays using 103 different substrates. For example CPK16 phosphorylated Serine 109 in a peptide from the stress-regulated protein, Di19-2 with KM ~70 µM, but this site was not phosphorylated significantly by CPKs 1, 10, or 34. In contrast, CPKs 1, 10, and 34 phosphorylated 93 other peptide substrates not recognized by CPK16. Examples of substrate specificity differences among all four CPKs were verified by kinetic analyses. To test the correlation between in vivo phosphorylation events and in vitro kinase activities, assays were performed with 274 synthetic peptides that contained phosphorylation sites previously mapped in proteins isolated from plants (in vivo-mapped sites. Of these, 74 (27% were found to be phosphorylated by at least one of the four CPKs tested. This 27% success rate validates a robust strategy for linking the activities of specific kinases, such as CPKs, to the thousands of in planta phosphorylation sites that are being uncovered by emerging technologies.

  4. Vitamin K-dependent carboxylation of pulmonary surfactant-associated proteins

    International Nuclear Information System (INIS)

    Rannels, S.R.; Gallaher, K.J.; Wallin, R.; Rannels, D.E.

    1987-01-01

    Rat type II pneumocytes expressed vitamin K-dependent carboxylase activity that incorporated 14 CO 2 into microsomal protein precursors of molecular weights similar to those of surfactant-associated proteins (SAP). Compared to carboxylated precursor proteins present in the liver, these molecules appeared to be unique to the lung. Antibodies raised against purified rat surfactant reacted with SAP resolved by NaDodSO 4 /PAGE and with surfactant-containing lamellar bodies in type II pneumocyte cytoplasm. NaDodSO 4 /PAGE of microsomal proteins, after carboxylase-catalyzed incorporation of 14 CO 2 , demonstrated radiolabeled, immunoreactive products identical to SAP. The presence of γ-carboxyglutamic acid in these proteins was confirmed by HPLC analysis of SAP hydrolysates. Furthermore, lung carboxylase activity and SAP matured over similar time courses during fetal lung development. These results show that SAP are carboxylated by type II cells via a vitamin K-dependent pathway analogous to that for hepatic carboxylation of clotting factors. Further analogy to the clotting system suggest that γ-carboxyglutamic acid residues in SAP polypeptides play a role in Ca 2+ binding and thus in the known requirements for both cation and SAP in the physiological function of pulmonary surfactant

  5. Glucose Deprivation Triggers Protein Kinase C-dependent β-Catenin Proteasomal Degradation*

    Science.gov (United States)

    Choi, Seung-Won; Song, Jun-Kyu; Yim, Ye-Seal; Yun, Ho-Geun; Chun, Kyung-Hee

    2015-01-01

    Autophagy is a conserved process that contributes to cell homeostasis. It is well known that induction mainly occurs in response to nutrient starvation, such as starvation of amino acids and insulin, and its mechanisms have been extensively characterized. However, the mechanisms behind cellular glucose deprivation-induced autophagy are as of now poorly understood. In the present study, we determined a mechanism by which glucose deprivation induced the PKC-dependent proteasomal degradation of β-catenin, leading to autophagy. Glucose deprivation was shown to cause a sub-G1 transition and enhancement of the LC3-II protein levels, whereas β-catenin protein underwent degradation in a proteasome-dependent manner. Moreover, the inhibition of GSK3β was unable to abolish the glucose deprivation-mediated β-catenin degradation or up-regulation of LC3-II protein levels, which suggested GSK3β-independent protein degradation. Intriguingly, the inhibition of PKCα using a pharmacological inhibitor and transfection of siRNA for PKCα was observed to effectively block glucose deprivation-induced β-catenin degradation as well as the increase in LC3-II levels and the accumulation of a sub-G1 population. Together, our results demonstrated a molecular mechanism by which glucose deprivation can induce the GSK3β-independent protein degradation of β-catenin, leading to autophagy. PMID:25691573

  6. Understanding heterogeneity in social anxiety disorder: dependency and self-criticism moderate fear responses to interpersonal cues.

    Science.gov (United States)

    Kopala-Sibley, Daniel C; Zuroff, David C; Russell, Jennifer J; Moskowitz, D S

    2014-06-01

    This study examined how the personality traits of self-criticism and dependency moderated the effects of situational interpersonal cues on fear during interpersonal interactions among individuals with social anxiety disorder (SAD). We hypothesized that self-criticism would moderate the fear-inducing effects of situational self-consciousness and that dependency would moderate the fear-inducing effects of situational emotional insecurity. Forty SAD patients (Mage = 29.23) and matched community controls (Mage = 28.93) completed event-contingent record forms after each significant social interaction of over 5 min for a 20-day period. There were 20 female patients and 20 male patients in each group. Event-level self-consciousness was more strongly associated with elevations in fear among socially anxious patients who reported higher levels of self-criticism, while event-level emotional security was more strongly associated with decreases in fear among SAD patients who reported higher levels of dependency. These interactions were not found in the community sample. Findings support the application of personality-vulnerability models to understanding fear during social interactions in patients with SAD. Results also have implications for psychotherapeutic treatments of SAD. © 2013 The British Psychological Society.

  7. Field mapping measurements to determine spatial and field dependence of critical current density in YBCO tapes

    International Nuclear Information System (INIS)

    Leclerc, J.; Berger, K.; Douine, B.; Lévêque, J.

    2013-01-01

    Highlights: • A method for characterizing superconducting tapes from field mapping is presented. • A new and efficient field mapping apparatus has been setup. • This method allows the spatial characterization of superconducting tapes. • The critical current density is obtained as a function of the flux density. • This method has been experimentally tested on an YBCO tape. -- Abstract: In this paper a measurement method that allows the determination of the critical current density of superconducting tape from field mapping measurements is presented. This contact-free method allows obtaining characteristics of the superconductor as a function of the position and of the applied flux density. With some modifications, this technique can be used for reel-to-reel measurements. The determination of the critical current density is based on an inverse calculation. This involves calculating the current distribution in the tape from magnetic measurements. An YBaCuO tape has been characterized at 77 K. A defect in this superconductor has been identified. Various tests were carried out to check the efficiency of the method. The inverse calculation was tested theoretically and experimentally. Comparison with a transport current measurement was also performed

  8. A charge-dependent mechanism is responsible for the dynamic accumulation of proteins inside nucleoli.

    Science.gov (United States)

    Musinova, Yana R; Kananykhina, Eugenia Y; Potashnikova, Daria M; Lisitsyna, Olga M; Sheval, Eugene V

    2015-01-01

    The majority of known nucleolar proteins are freely exchanged between the nucleolus and the surrounding nucleoplasm. One way proteins are retained in the nucleoli is by the presence of specific amino acid sequences, namely nucleolar localization signals (NoLSs). The mechanism by which NoLSs retain proteins inside the nucleoli is still unclear. Here, we present data showing that the charge-dependent (electrostatic) interactions of NoLSs with nucleolar components lead to nucleolar accumulation as follows: (i) known NoLSs are enriched in positively charged amino acids, but the NoLS structure is highly heterogeneous, and it is not possible to identify a consensus sequence for this type of signal; (ii) in two analyzed proteins (NF-κB-inducing kinase and HIV-1 Tat), the NoLS corresponds to a region that is enriched for positively charged amino acid residues; substituting charged amino acids with non-charged ones reduced the nucleolar accumulation in proportion to the charge reduction, and nucleolar accumulation efficiency was strongly correlated with the predicted charge of the tested sequences; and (iii) sequences containing only lysine or arginine residues (which were referred to as imitative NoLSs, or iNoLSs) are accumulated in the nucleoli in a charge-dependent manner. The results of experiments with iNoLSs suggested that charge-dependent accumulation inside the nucleoli was dependent on interactions with nucleolar RNAs. The results of this work are consistent with the hypothesis that nucleolar protein accumulation by NoLSs can be determined by the electrostatic interaction of positively charged regions with nucleolar RNAs rather than by any sequence-specific mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Novel adenosine 3',5'-cyclic monophosphate dependent protein kinases in a marine diatom

    International Nuclear Information System (INIS)

    Lin, P.P.C.; Volcani, B.E.

    1989-01-01

    Two novel adenosine 3',5'-cyclic monophosphate (cAMP) dependent protein kinases have been isolated from the diatom Cylindrotheca fusiformis. The kinases, designated I and II, are eluted from DEAE-Sephacel at 0.10 and 0.15 M NaCl. They have a high affinity for cAMP and are activated by micromolar cAMP. They exhibit maximal activity at 5 mM Mg 2+ and pH 8 with the preferred phosphate donor ATP and phosphate acceptor histone H1. They phosphorylate sea urchin sperm histone H1 on a single serine site in the sequence Arg-Lys-Gly-Ser( 32 P)-Ser-Asn-Ala-Arg and have an apparent M r of 75,000 as determined by gel filtration and sucrose density sedimentation. In the kinase I preparation a single protein band with an apparent M r of about 78,000 is photolabeled with 8-azido[ 32 P]cAMP and is also phosphorylated with [γ- 32 P]ATP in a cAMP-dependent manner, after autoradiography following sodium dodecyl sulfate gel electrophoresis. The rate of phosphorylation of the 78,000-dalton band is independent of the enzyme concentration. The results indicate that (i) these diatom cAMP-dependent protein kinases are monomeric proteins, possessing both the cAMP-binding regulatory and catalytic domains on the same polypeptide chain, (ii) the enzymes do not dissociate into smaller species upon activation by binding cAMP, and (iii) self-phosphorylation of the enzymes by an intrapeptide reaction is cAMP dependent. The two diatom cAMP kinases are refractory to the heat-stable protein kinase modulator from rabbit muscle, but they respond differently to proteolytic degradation and to inhibition by arachidonic acid and several microbial alkaloids

  10. The concept of dependence as developed by Birtchnell: a critical evaluation.

    Science.gov (United States)

    Cadbury, S

    1991-09-01

    Birtchnell (1988) appeals for an accurate definition of dependence. Such accuracy would help with measurement, prevention and treatment of depression. He describes dependence as a developmental deficiency. In so doing, he presupposes a psychodynamic trait-based, and gender-related development model, but does not acknowledge its influence on his thinking. Birtchnell's analysis has three types of problem. The reasoning may be questioned because of faulty inferential leaps, undue reliance on the concept of 'maturity', the use of a tautology, ('The dependent person is...dependent'), internal contradictions, and a questionable analogy between children's and adults' behaviour. Secondly, he appears to suggest that there is empirical evidence to support his theoretical approach, but he does not provide explicit evidence. He draws conclusions about causal links and neglects alternative interpretations, especially the transactional interpersonal element in social relationships. Finally, the analysis is potentially weakened by what may be described as an androcentric bias and relies upon a 'medical model' of psychological disorder, which fails to consider the impact of social influences on the expression of emotion. The author argues that it is at present premature and inappropriate to define dependence, but appeals for methods of research which would be more helpful in understanding it.

  11. Late Protein Synthesis-Dependent Phases in CTA Long-Term Memory: BDNF Requirement

    OpenAIRE

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F.; Escobar, Martha L.

    2011-01-01

    It has been proposed that long-term memory persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related long-term memo...

  12. Orientation-dependent backbone-only residue pair scoring functions for fixed backbone protein design

    Directory of Open Access Journals (Sweden)

    Bordner Andrew J

    2010-04-01

    Full Text Available Abstract Background Empirical scoring functions have proven useful in protein structure modeling. Most such scoring functions depend on protein side chain conformations. However, backbone-only scoring functions do not require computationally intensive structure optimization and so are well suited to protein design, which requires fast score evaluation. Furthermore, scoring functions that account for the distinctive relative position and orientation preferences of residue pairs are expected to be more accurate than those that depend only on the separation distance. Results Residue pair scoring functions for fixed backbone protein design were derived using only backbone geometry. Unlike previous studies that used spherical harmonics to fit 2D angular distributions, Gaussian Mixture Models were used to fit the full 3D (position only and 6D (position and orientation distributions of residue pairs. The performance of the 1D (residue separation only, 3D, and 6D scoring functions were compared by their ability to identify correct threading solutions for a non-redundant benchmark set of protein backbone structures. The threading accuracy was found to steadily increase with increasing dimension, with the 6D scoring function achieving the highest accuracy. Furthermore, the 3D and 6D scoring functions were shown to outperform side chain-dependent empirical potentials from three other studies. Next, two computational methods that take advantage of the speed and pairwise form of these new backbone-only scoring functions were investigated. The first is a procedure that exploits available sequence data by averaging scores over threading solutions for homologs. This was evaluated by applying it to the challenging problem of identifying interacting transmembrane alpha-helices and found to further improve prediction accuracy. The second is a protein design method for determining the optimal sequence for a backbone structure by applying Belief Propagation

  13. Methamphetamine increases Prion Protein and induces dopamine-dependent expression of protease resistant PrPsc.

    Science.gov (United States)

    Ferrucci, M; Ryskalin, L; Biagioni, F; Gambardella, S; Busceti, C L; Falleni, A; Lazzeri, G; Fornai, F

    2017-07-01

    The cellular prion protein (PrPc) is physiologically expressed within selective brain areas of mammals. Alterations in the secondary structure of this protein lead to scrapie-like prion protein (PrPsc), which precipitates in the cell. PrPsc has been detected in infectious, inherited or sporadic neurodegenerative disorders. Prion protein metabolism is dependent on autophagy and ubiquitin proteasome. Despite not being fully elucidated, the physiological role of prion protein relates to chaperones which rescue cells under stressful conditions.Methamphetamine (METH) is a widely abused drug which produces oxidative stress in various brain areas causing mitochondrial alterations and protein misfolding. These effects produce a compensatory increase of chaperones while clogging cell clearing pathways. In the present study, we explored whether METH administration modifies the amount of PrPc. Since high levels of PrPc when the clearing systems are clogged may lead to its misfolding into PrPsc, we further tested whether METH exposure triggers the appearance of PrPsc. We analysed the effects of METH and dopamine administration in PC12 and striatal cells by using SDS-PAGE Coomassie blue, immune- histochemistry and immune-gold electron microscopy. To analyze whether METH administration produces PrPsc aggregates we used antibodies directed against PrP following exposure to proteinase K or sarkosyl which digest folded PrPc but misfolded PrPsc. We fond that METH triggers PrPsc aggregates in DA-containing cells while METH is not effective in primary striatal neurons which do not produce DA. In the latter cells exogenous DA is needed to trigger PrPsc accumulation similarly to what happens in DA containing cells under the effects of METH. The present findings, while fostering novel molecular mechanisms involving prion proteins, indicate that, cell pathology similar to prion disorders can be mimicked via a DA-dependent mechanism by a drug of abuse.

  14. Treatment of Methamphetamine Dependence with Electroconvulsive Therapy (ECT in Iran: A Critical Note.

    Directory of Open Access Journals (Sweden)

    Babak Roshanaei-Moghaddam

    2014-09-01

    Full Text Available This comment article reviews the literature to explore whether the use of ECT for the treatment of methamphetamine dependence can be justified by scientific rationale and/or evidence.This article reviews the literature on the use of ECT in addictive disorders. It describes a patient with methamphetamine dependence treated with ECT. It then offers a historical review of the moral and ethical difficulties encountered in the treatment of addictive disorders. It proposes a dynamic understanding as to why clinicians might deploy such brutal actions in the face of hopeless and emotionally intense encounters.We found no scientific evidence or justification for ECT as a treatment of methamphetamine dependence or as the first line treatment for methamphetamine-induced psychiatric comorbidities.the current available evidence does not support using ECT for the treatment of addictive disorders, and hence is unethical, unacceptable and inhumane and warrants immediate social and political attention.

  15. Dependence of the critical current density on the history of magnetic field and temperature

    International Nuclear Information System (INIS)

    Kuepfer, H.

    1976-08-01

    The dependence of the volume pinning force on different paths taken to arrive at a state (H,T) is investigated. The local magnetic induction is measured by means of an ac technique on samples with different Hsub(c), kappa, pinning centres and densities. Line pinning and a distorted flux line lattice are properties of those samples which show the above mentioned history dependence. Using the model of E.J. Kramer it is deduced the reason of the history effect is the dependence of the shear modulus on the defect structure of the flux line lattice. The differences occur in the lower field region and are also observed in materials with kappa approximately = 40 and large volume pinning forces. (orig.) [de

  16. Immunodominant fragments of myelin basic protein initiate T cell-dependent pain

    Directory of Open Access Journals (Sweden)

    Liu Huaqing

    2012-06-01

    day post-injury is critical to the generation of tactile allodynia, neuroinflammation, and the immunodominant MBP digest peptides in nerve. These MBP peptides initiate mechanical allodynia in both a T cell-dependent and -independent manner. In the course of Wallerian degeneration, the repeated exposure of the cryptic MBP epitopes, which are normally sheltered from immunosurveillance, may induce the MBP-specific T cell clones and a self-sustaining immune reaction, which may together contribute to the transition of acute pain into a chronic neuropathic pain state.

  17. Immunodominant fragments of myelin basic protein initiate T cell-dependent pain.

    Science.gov (United States)

    Liu, Huaqing; Shiryaev, Sergey A; Chernov, Andrei V; Kim, Youngsoon; Shubayev, Igor; Remacle, Albert G; Baranovskaya, Svetlana; Golubkov, Vladislav S; Strongin, Alex Y; Shubayev, Veronica I

    2012-06-07

    The myelin sheath provides electrical insulation of mechanosensory Aβ-afferent fibers. Myelin-degrading matrix metalloproteinases (MMPs) damage the myelin sheath. The resulting electrical instability of Aβ-fibers is believed to activate the nociceptive circuitry in Aβ-fibers and initiate pain from innocuous tactile stimulation (mechanical allodynia). The precise molecular mechanisms, responsible for the development of this neuropathic pain state after nerve injury (for example, chronic constriction injury, CCI), are not well understood. Using mass spectrometry of the whole sciatic nerve proteome followed by bioinformatics analyses, we determined that the pathways, which are classified as the Infectious Disease and T-helper cell signaling, are readily activated in the nerves post-CCI. Inhibition of MMP-9/MMP-2 suppressed CCI-induced mechanical allodynia and concomitant TNF-α and IL-17A expression in nerves. MMP-9 proteolysis of myelin basic protein (MBP) generated the MBP84-104 and MBP68-86 digest peptides, which are prominent immunogenic epitopes. In agreement, the endogenous MBP69-86 epitope co-localized with MHCII and MMP-9 in Schwann cells and along the nodes of Ranvier. Administration of either the MBP84-104 or MBP68-86 peptides into the naïve nerve rapidly produced robust mechanical allodynia with a concomitant increase in T cells and MHCII-reactive cell populations at the injection site. As shown by the genome-wide expression profiling, a single intraneural MBP84-104 injection stimulated the inflammatory, immune cell trafficking, and antigen presentation pathways in the injected naïve nerves and the associated spinal cords. Both MBP84-104-induced mechanical allodynia and characteristic pathway activation were remarkably less prominent in the T cell-deficient athymic nude rats. These data implicate MBP as a novel mediator of pain. Furthermore, the action of MMPs expressed within 1 day post-injury is critical to the generation of tactile allodynia

  18. Gauge dependence of the critical dynamics at the superconducting phase transition

    Directory of Open Access Journals (Sweden)

    M.Dudka

    2007-01-01

    Full Text Available The critical dynamics of superconductors in the charged regime is reconsidered within field-theory. For the dynamics, the Ginzburg-Landau model with complex order parameter coupled to the gauge field suggested earlier [Lannert et al. Phys. Rev. Lett. 92, 097004 (2004] is used. Assuming relaxational dynamics for both quantities, the renormalization group functions within one loop approximation are recalculated for different choices of the gauge. A gauge independent result for the divergence of the melectric conductivity is obtained only at the weak scaling fixed point unstable in one loop order where the timescales of the order parameter and the gauge field are different.

  19. PDB2Graph: A toolbox for identifying critical amino acids map in proteins based on graph theory.

    Science.gov (United States)

    Niknam, Niloofar; Khakzad, Hamed; Arab, Seyed Shahriar; Naderi-Manesh, Hossein

    2016-05-01

    The integrative and cooperative nature of protein structure involves the assessment of topological and global features of constituent parts. Network concept takes complete advantage of both of these properties in the analysis concomitantly. High compatibility to structural concepts or physicochemical properties in addition to exploiting a remarkable simplification in the system has made network an ideal tool to explore biological systems. There are numerous examples in which different protein structural and functional characteristics have been clarified by the network approach. Here, we present an interactive and user-friendly Matlab-based toolbox, PDB2Graph, devoted to protein structure network construction, visualization, and analysis. Moreover, PDB2Graph is an appropriate tool for identifying critical nodes involved in protein structural robustness and function based on centrality indices. It maps critical amino acids in protein networks and can greatly aid structural biologists in selecting proper amino acid candidates for manipulating protein structures in a more reasonable and rational manner. To introduce the capability and efficiency of PDB2Graph in detail, the structural modification of Calmodulin through allosteric binding of Ca(2+) is considered. In addition, a mutational analysis for three well-identified model proteins including Phage T4 lysozyme, Barnase and Ribonuclease HI, was performed to inspect the influence of mutating important central residues on protein activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Country-dependent characterisation factors for acidification in Europe - A critical evaluation

    NARCIS (Netherlands)

    Hettelingh, JP; Posch, M; Potting, J

    2005-01-01

    Goal, Scope and Background. Country-dependent characterisation factors for acidification have been derived for use in life cycle assessments to describe the effect on ecosystem protection of a change in national emissions. They have recently also been used in support of European air pollution

  1. Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain.

    Science.gov (United States)

    Koch, Miriam; Willi, Jessica; Pradère, Ugo; Hall, Jonathan; Polacek, Norbert

    2017-06-20

    The nascent peptide exit tunnel has recently been identified as a functional region of ribosomes contributing to translation regulation and co-translational protein folding. Inducible expression of the erm resistance genes depends on ribosome stalling at specific codons of an upstream open reading frame in the presence of an exit tunnel-bound macrolide antibiotic. The molecular basis for this translation arrest is still not fully understood. Here, we used a nucleotide analog interference approach to unravel important functional groups on 23S rRNA residues in the ribosomal exit tunnel for ribosome stalling on the ErmC leader peptide. By replacing single nucleobase functional groups or even single atoms we were able to demonstrate the importance of A2062, A2503 and U2586 for drug-dependent ribosome stalling. Our data show that the universally conserved A2062 and A2503 are capable of forming a non-Watson-Crick base pair that is critical for sensing and transmitting the stalling signal from the exit tunnel back to the peptidyl transferase center of the ribosome. The nucleobases of A2062, A2503 as well as U2586 do not contribute significantly to the overall mechanism of protein biosynthesis, yet their elaborate role for co-translational monitoring of nascent peptide chains inside the exit tunnel can explain their evolutionary conservation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Treatment of Tobacco Dependence, a Critical Gap in Czech Clinical Practice Guidelines.

    Science.gov (United States)

    Zvolská, Kamila; Fraser, Keely; Zvolský, Miroslav; Králíková, Eva

    2017-06-01

    Tobacco related comorbidities and treatment of dependence are relevant to clinicians of all disciplines. Clinicians should provide a brief intervention about tobacco use with smokers at each clinical contact (success rate of 5-10 %). Intensive treatment (success rate >30%) should be available to those who need it. Brief intervention is not yet standard clinical practice. Our aim was to assess clinical practice guidelines (CPG) of selected medical professional societies to determine whether or not tobacco dependence treatment recommendations were included. Between October and December 2013, we conducted a keyword search of CPG for 20 medical professional societies in the Czech Republic. We searched for the keywords "smoking", "tobacco" and "nicotine addiction" in 91 CPG documents, which were freely available on the websites of selected professional societies. We focused specifically on CPG relating to cardiovascular and respiratory diseases as well as cancer. We excluded any CPG focused on acute conditions, diagnostics only, laboratory methods, or administration. There was no mention of smoking in 27.7% (26/94) of CPG documents. Only 16% (15/94) of CPG documents listed smoking as a risk factor. 42.5% (40/94) mentioned smoking related phrases (e.g. "smoking ban"). Only 13.8% (13/94) of CPG included a section on tobacco dependence, referenced tobacco dependence treatment guidelines or mentioned specialized treatment centres where smokers can be referred. Nearly one third of CPG related to cardiovascular and respiratory diseases as well as cancer made no mention of smoking. Despite the clinical significance of smoking, the majority of CPG did not adequately address tobacco dependence and its treatment. Copyright© by the National Institute of Public Health, Prague 2017

  3. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  4. Hepatitis C virus NS2 protein activates cellular cyclic AMP-dependent pathways

    International Nuclear Information System (INIS)

    Kim, Kyoung Mi; Kwon, Shi-Nae; Kang, Ju-Il; Lee, Song Hee; Jang, Sung Key; Ahn, Byung-Yoon; Kim, Yoon Ki

    2007-01-01

    Chronic infection of the hepatitis C virus (HCV) leads to liver cirrhosis and cancer. The mechanism leading to viral persistence and hepatocellular carcinoma, however, has not been fully understood. In this study, we show that the HCV infection activates cellular cAMP-dependent pathways. Expression of a luciferase reporter gene controlled by a basic promoter with the cAMP response element (CRE) was significantly elevated in human hepatoma Huh-7 cells infected with the HCV JFH1. Analysis with viral subgenomic replicons indicated that the HCV NS2 protein is responsible for the effect. Furthermore, the level of cellular transcripts whose stability is known to be regulated by cAMP was specifically reduced in cells harboring NS2-expressing replicons. These results allude to the HCV NS2 protein having a novel function of regulating cellular gene expression and proliferation through the cAMP-dependent pathway

  5. CCM proteins control endothelial β1 integrin dependent response to shear stress

    Directory of Open Access Journals (Sweden)

    Zuzana Macek Jilkova

    2014-11-01

    Full Text Available Hemodynamic shear stress from blood flow on the endothelium critically regulates vascular function in many physiological and pathological situations. Endothelial cells adapt to shear stress by remodeling their cytoskeletal components and subsequently by changing their shape and orientation. We demonstrate that β1 integrin activation is critically controlled during the mechanoresponse of endothelial cells to shear stress. Indeed, we show that overexpression of the CCM complex, an inhibitor of β1 integrin activation, blocks endothelial actin rearrangement and cell reorientation in response to shear stress similarly to β1 integrin silencing. Conversely, depletion of CCM2 protein leads to an elongated “shear-stress-like” phenotype even in the absence of flow. Taken together, our findings reveal the existence of a balance between positive extracellular and negative intracellular signals, i.e. shear stress and CCM complex, for the control of β1 integrin activation and subsequent adaptation of vascular endothelial cells to mechanostimulation by fluid shear stress.

  6. Cytoskeletal protein translation and expression in the rat brain are stressor-dependent and region-specific.

    Directory of Open Access Journals (Sweden)

    Petra Sántha

    Full Text Available Stress is an integral component of life that can sometimes cause a critical overload, depending on the qualitative and quantitative natures of the stressors. The involvement of actin, the predominant component of dendritic integrity, is a plausible candidate factor in stress-induced neuronal cytoskeletal changes. The major aim of this study was to compare the effects of three different stress conditions on the transcription and translation of actin-related cytoskeletal genes in the rat brain. Male Wistar rats were exposed to one or other of the frequently used models of physical stress, i.e. electric foot shock stress (EFSS, forced swimming stress (FSS, or psychosocial stress (PSS for periods of 3, 7, 14, or 21 days. The relative mRNA and protein expressions of β-actin, cofilin and mitogen-activated protein kinase 1 (MAPK-1 were determined by qRT- PCR and western blotting from hippocampus and frontal cortex samples. Stressor-specific alterations in both β-actin and cofilin expression levels were seen after stress. These alterations were most pronounced in response to EFSS, and exhibited a U-shaped time course. FSS led to a significant β-actin mRNA expression elevation in the hippocampus and the frontal cortex after 3 and 7 days, respectively, without any subsequent change. PSS did not cause any change in β-actin or cofilin mRNA or protein expression in the examined brain regions. EFSS, FSS and PSS had no effect on the expression of MAPK-1 mRNA at any tested time point. These findings indicate a very delicate, stress type-dependent regulation of neuronal cytoskeletal components in the rat hippocampus and frontal cortex.

  7. DNA-dependent protein kinase in nonhomologous end joining: a lock with multiple keys?

    Science.gov (United States)

    Weterings, Eric; Chen, David J

    2007-10-22

    The DNA-dependent protein kinase (DNA-PK) is one of the central enzymes involved in DNA double-strand break (DSB) repair. It facilitates proper alignment of the two ends of the broken DNA molecule and coordinates access of other factors to the repair complex. We discuss the latest findings on DNA-PK phosphorylation and offer a working model for the regulation of DNA-PK during DSB repair.

  8. Hepatitis C virus induces E6AP-dependent degradation of the retinoblastoma protein.

    Directory of Open Access Journals (Sweden)

    Tsubasa Munakata

    2007-09-01

    Full Text Available Hepatitis C virus (HCV is a positive-strand RNA virus that frequently causes persistent infections and is uniquely associated with the development of hepatocellular carcinoma. While the mechanism(s by which the virus promotes cancer are poorly defined, previous studies indicate that the HCV RNA-dependent RNA polymerase, nonstructural protein 5B (NS5B, forms a complex with the retinoblastoma tumor suppressor protein (pRb, targeting it for degradation, activating E2F-responsive promoters, and stimulating cellular proliferation. Here, we describe the mechanism underlying pRb regulation by HCV and its relevance to HCV infection. We show that the abundance of pRb is strongly downregulated, and its normal nuclear localization altered to include a major cytoplasmic component, following infection of cultured hepatoma cells with either genotype 1a or 2a HCV. We further demonstrate that this is due to NS5B-dependent ubiquitination of pRb and its subsequent degradation via the proteasome. The NS5B-dependent ubiquitination of pRb requires the ubiquitin ligase activity of E6-associated protein (E6AP, as pRb abundance was restored by siRNA knockdown of E6AP or overexpression of a dominant-negative E6AP mutant in cells containing HCV RNA replicons. E6AP also forms a complex with pRb in an NS5B-dependent manner. These findings suggest a novel mechanism for the regulation of pRb in which the HCV NS5B protein traps pRb in the cytoplasm, and subsequently recruits E6AP to this complex in a process that leads to the ubiquitination of pRb. The disruption of pRb/E2F regulatory pathways in cells infected with HCV is likely to promote hepatocellular proliferation and chromosomal instability, factors important for the development of liver cancer.

  9. Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites.

    Science.gov (United States)

    Yu, Haijia; Liu, Yinghui; Gulbranson, Daniel R; Paine, Alex; Rathore, Shailendra S; Shen, Jingshi

    2016-04-19

    Organelles are in constant communication with each other through exchange of proteins (mediated by trafficking vesicles) and lipids [mediated by both trafficking vesicles and lipid transfer proteins (LTPs)]. It has long been known that vesicle trafficking can be tightly regulated by the second messenger Ca(2+), allowing membrane protein transport to be adjusted according to physiological demands. However, it remains unclear whether LTP-mediated lipid transport can also be regulated by Ca(2+) In this work, we show that extended synaptotagmins (E-Syts), poorly understood membrane proteins at endoplasmic reticulum-plasma membrane contact sites, are Ca(2+)-dependent LTPs. Using both recombinant and endogenous mammalian proteins, we discovered that E-Syts transfer glycerophospholipids between membrane bilayers in the presence of Ca(2+) E-Syts use their lipid-accommodating synaptotagmin-like mitochondrial lipid binding protein (SMP) domains to transfer lipids. However, the SMP domains themselves cannot transport lipids unless the two membranes are tightly tethered by Ca(2+)-bound C2 domains. Strikingly, the Ca(2+)-regulated lipid transfer activity of E-Syts was fully recapitulated when the SMP domain was fused to the cytosolic domain of synaptotagmin-1, the Ca(2+)sensor in synaptic vesicle fusion, indicating that a common mechanism of membrane tethering governs the Ca(2+)regulation of lipid transfer and vesicle fusion. Finally, we showed that microsomal vesicles isolated from mammalian cells contained robust Ca(2+)-dependent lipid transfer activities, which were mediated by E-Syts. These findings established E-Syts as a novel class of LTPs and showed that LTP-mediated lipid trafficking, like vesicular transport, can be subject to tight Ca(2+)regulation.

  10. Mining Protein Evolution for Insights into Mechanisms of Voltage-Dependent Sodium Channel Auxiliary Subunits.

    Science.gov (United States)

    Molinarolo, Steven; Granata, Daniele; Carnevale, Vincenzo; Ahern, Christopher A

    2018-02-21

    Voltage-gated sodium channel (VGSC) beta (β) subunits have been called the "overachieving" auxiliary ion channel subunit. Indeed, these subunits regulate the trafficking of the sodium channel complex at the plasma membrane and simultaneously tune the voltage-dependent properties of the pore-forming alpha-subunit. It is now known that VGSC β-subunits are capable of similar modulation of multiple isoforms of related voltage-gated potassium channels, suggesting that their abilities extend into the broader voltage-gated channels. The gene family for these single transmembrane immunoglobulin beta-fold proteins extends well beyond the traditional VGSC β1-β4 subunit designation, with deep roots into the cell adhesion protein family and myelin-related proteins - where inherited mutations result in a myriad of electrical signaling disorders. Yet, very little is known about how VGSC β-subunits support protein trafficking pathways, the basis for their modulation of voltage-dependent gating, and, ultimately, their role in shaping neuronal excitability. An evolutionary approach can be useful in yielding new clues to such functions as it provides an unbiased assessment of protein residues, folds, and functions. An approach is described here which indicates the greater emergence of the modern β-subunits roughly 400 million years ago in the early neurons of Bilateria and bony fish, and the unexpected presence of distant homologues in bacteriophages. Recent structural breakthroughs containing α and β eukaryotic sodium channels containing subunits suggest a novel role for a highly conserved polar contact that occurs within the transmembrane segments. Overall, a mixture of approaches will ultimately advance our understanding of the mechanism for β-subunit interactions with voltage-sensor containing ion channels and membrane proteins.

  11. A critical reappraisal of bilateral adrenalectomy for ACTH-dependent Cushing's syndrome.

    Science.gov (United States)

    Reincke, Martin; Ritzel, Katrin; Oßwald, Andrea; Berr, Christina; Stalla, Günter; Hallfeldt, Klaus; Reisch, Nicole; Schopohl, Jochen; Beuschlein, Felix

    2015-10-01

    Our aim was to review short- and long-term outcomes of patients treated with bilateral adrenalectomy (BADx) in ACTH-dependent Cushing's syndrome. We reviewed the literature and analysed our experience with 53 patients treated with BADx since 1990 in our institution. BADx is considered if ACTH-dependent Cushing's syndrome is refractory to other treatment modalities. In Cushing's disease (CD), BADx is mainly used as an ultima ratio after transsphenoidal surgery and medical therapies have failed. In these cases, the time span between the first diagnosis of CD and treatment with BADx is relatively long (median 44 months). In ectopic Cushing's syndrome, the time from diagnosis to BADx is shorter (median 2 months), and BADx is often performed as an emergency procedure because of life-threatening complications of severe hypercortisolism. In both situations, BADx is relatively safe (median surgical morbidity 15%; median surgical mortality 3%) and provides excellent control of hypercortisolism; Cushing's-associated signs and symptoms are rapidly corrected, and co-morbidities are stabilised. In CD, the quality of life following BADx is rapidly improving, and long-term mortality is low. Specific long-term complications include the development of adrenal crisis and Nelson's syndrome. In ectopic Cushing's syndrome, long-term mortality is high but is mostly dependent on the prognosis of the underlying malignant neuroendocrine tumour. BADx is a relatively safe and highly effective treatment, and it provides adequate control of long-term co-morbidities associated with hypercortisolism. © 2015 European Society of Endocrinology.

  12. ‘Developmental Delay’ Reconsidered: The Critical Role of Age-Dependent, Co-variant Development

    Directory of Open Access Journals (Sweden)

    Yonata Levy

    2018-04-01

    Full Text Available In memory of Annette Karmiloff-Smith.This paper reviews recent neurobiological research reporting structural co-variance and temporal dependencies in age-dependent gene expression, parameters of cortical maturation, long range connectivity and interaction of the biological network with the environment. This research suggests that age by size trajectories of brain structures relate to functional properties more than absolute sizes. In line with these findings, recent behavioral studies of typically developing children whose language development was delayed reported long term consequences of such delays. As for neurodevelopmental disorders, disrupted developmental timing and slow acquisitional pace are hallmarks of these populations. It is argued that these behavioral and neuro-biological results highlight the need to commit to a developmental model which will reflect the fact that temporal dependencies overseeing structural co-variance among developmental components are major regulatory factors of typical development of the brain/mind network. Consequently, the concept of ‘developmental delay’ in developmental theorizing needs to be reconsidered.

  13. Identification and characterization of AckA-dependent protein acetylation in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Deborah M B Post

    Full Text Available Neisseria gonorrhoeae, the causative agent of gonorrhea, has a number of factors known to contribute to pathogenesis; however, a full understanding of these processes and their regulation has proven to be elusive. Post-translational modifications (PTMs of bacterial proteins are now recognized as one mechanism of protein regulation. In the present study, Western blot analyses, with an anti-acetyl-lysine antibody, indicated that a large number of gonococcal proteins are post-translationally modified. Previous work has shown that Nε-lysine acetylation can occur non-enzymatically with acetyl-phosphate (AcP as the acetyl donor. In the current study, an acetate kinase mutant (1291ackA, which accumulates AcP, was generated in N. gonorrhoeae. Broth cultures of N. gonorrhoeae 1291wt and 1291ackA were grown, proteins extracted and digested, and peptides containing acetylated-lysines (K-acetyl were affinity-enriched from both strains. Mass spectrometric analyses of these samples identified a total of 2686 unique acetylation sites. Label-free relative quantitation of the K-acetyl peptides derived from the ackA and wild-type (wt strains demonstrated that 109 acetylation sites had an ackA/wt ratio>2 and p-values <0.05 in at least 2/3 of the biological replicates and were designated as "AckA-dependent". Regulated K-acetyl sites were found in ribosomal proteins, central metabolism proteins, iron acquisition and regulation proteins, pilus assembly and regulation proteins, and a two-component response regulator. Since AckA is part of a metabolic pathway, comparative growth studies of the ackA mutant and wt strains were performed. The mutant showed a growth defect under aerobic conditions, an inability to grow anaerobically, and a defect in biofilm maturation. In conclusion, the current study identified AckA-dependent acetylation sites in N. gonorrhoeae and determined that these sites are found in a diverse group of proteins. This work lays the foundation for

  14. Final Technical Report on Quantifying Dependability Attributes of Software Based Safety Critical Instrumentation and Control Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Smidts, Carol; Huang, Fuqun; Li, Boyuan; Li, Xiang

    2016-01-01

    With the current transition from analog to digital instrumentation and control systems in nuclear power plants, the number and variety of software-based systems have significantly increased. The sophisticated nature and increasing complexity of software raises trust in these systems as a significant challenge. The trust placed in a software system is typically termed software dependability. Software dependability analysis faces uncommon challenges since software systems' characteristics differ from those of hardware systems. The lack of systematic science-based methods for quantifying the dependability attributes in software-based instrumentation as well as control systems in safety critical applications has proved itself to be a significant inhibitor to the expanded use of modern digital technology in the nuclear industry. Dependability refers to the ability of a system to deliver a service that can be trusted. Dependability is commonly considered as a general concept that encompasses different attributes, e.g., reliability, safety, security, availability and maintainability. Dependability research has progressed significantly over the last few decades. For example, various assessment models and/or design approaches have been proposed for software reliability, software availability and software maintainability. Advances have also been made to integrate multiple dependability attributes, e.g., integrating security with other dependability attributes, measuring availability and maintainability, modeling reliability and availability, quantifying reliability and security, exploring the dependencies between security and safety and developing integrated analysis models. However, there is still a lack of understanding of the dependencies between various dependability attributes as a whole and of how such dependencies are formed. To address the need for quantification and give a more objective basis to the review process -- therefore reducing regulatory uncertainty

  15. Final Technical Report on Quantifying Dependability Attributes of Software Based Safety Critical Instrumentation and Control Systems in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Smidts, Carol [The Ohio State Univ., Columbus, OH (United States); Huang, Funqun [The Ohio State Univ., Columbus, OH (United States); Li, Boyuan [The Ohio State Univ., Columbus, OH (United States); Li, Xiang [The Ohio State Univ., Columbus, OH (United States)

    2016-03-25

    With the current transition from analog to digital instrumentation and control systems in nuclear power plants, the number and variety of software-based systems have significantly increased. The sophisticated nature and increasing complexity of software raises trust in these systems as a significant challenge. The trust placed in a software system is typically termed software dependability. Software dependability analysis faces uncommon challenges since software systems’ characteristics differ from those of hardware systems. The lack of systematic science-based methods for quantifying the dependability attributes in software-based instrumentation as well as control systems in safety critical applications has proved itself to be a significant inhibitor to the expanded use of modern digital technology in the nuclear industry. Dependability refers to the ability of a system to deliver a service that can be trusted. Dependability is commonly considered as a general concept that encompasses different attributes, e.g., reliability, safety, security, availability and maintainability. Dependability research has progressed significantly over the last few decades. For example, various assessment models and/or design approaches have been proposed for software reliability, software availability and software maintainability. Advances have also been made to integrate multiple dependability attributes, e.g., integrating security with other dependability attributes, measuring availability and maintainability, modeling reliability and availability, quantifying reliability and security, exploring the dependencies between security and safety and developing integrated analysis models. However, there is still a lack of understanding of the dependencies between various dependability attributes as a whole and of how such dependencies are formed. To address the need for quantification and give a more objective basis to the review process -- therefore reducing regulatory uncertainty

  16. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription

    International Nuclear Information System (INIS)

    Rauen, Thomas; Frye, Bjoern C.; Wang, Jialin; Raffetseder, Ute; Alidousty, Christina; En-Nia, Abdelaziz; Floege, Jürgen; Mertens, Peter R.

    2016-01-01

    Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3′ enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3′ adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPO production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. - Highlights: • Hypoxia drives nuclear translocation of cold shock protein YB-1. • YB-1 physically interacts with hypoxia-inducible factor (HIF)-1α. • YB-1 binds to the hypoxia-responsive element (HRE) within the erythropoietin (EPO) 3′ enhancer. • YB-1 trans-regulates transcription of hypoxia-dependent genes such as EPO and VEGF.

  17. Polycomb Group Protein PHF1 Regulates p53-dependent Cell Growth Arrest and Apoptosis*

    Science.gov (United States)

    Yang, Yang; Wang, Chenji; Zhang, Pingzhao; Gao, Kun; Wang, Dejie; Yu, Hongxiu; Zhang, Ting; Jiang, Sirui; Hexige, Saiyin; Hong, Zehui; Yasui, Akira; Liu, Jun O.; Huang, Haojie; Yu, Long

    2013-01-01

    Polycomb group protein PHF1 is well known as a component of a novel EED-EZH2·Polycomb repressive complex 2 complex and plays important roles in H3K27 methylation and Hox gene silencing. PHF1 is also involved in the response to DNA double-strand breaks in human cells, promotes nonhomologous end-joining processes through interaction with Ku70/Ku80. Here, we identified another function of PHF1 as a potential p53 pathway activator in a pathway screen using luminescence reporter assay. Subsequent studies showed PHF1 directly interacts with p53 proteins both in vivo and in vitro and co-localized in nucleus. PHF1 binds to the C-terminal regulatory domain of p53. Overexpression of PHF1 elevated p53 protein level and prolonged its turnover. Knockdown of PHF1 reduced p53 protein level and its target gene expression both in normal state and DNA damage response. Mechanically, PHF1 protects p53 proteins from MDM2-mediated ubiquitination and degradation. Furthermore, we showed that PHF1 regulates cell growth arrest and etoposide-induced apoptosis in a p53-dependent manner. Finally, PHF1 expression was significantly down-regulated in human breast cancer samples. Taken together, we establish PHF1 as a novel positive regulator of the p53 pathway. These data shed light on the potential roles of PHF1 in tumorigenesis and/or tumor progression. PMID:23150668

  18. Conformational co-dependence between Plasmodium berghei LCCL proteins promotes complex formation and stability.

    Science.gov (United States)

    Saeed, Sadia; Tremp, Annie Z; Dessens, Johannes T

    2012-10-01

    Malaria parasites express a conserved family of LCCL-lectin adhesive-like domain proteins (LAPs) that have essential functions in sporozoite transmission. In Plasmodium falciparum all six family members are expressed in gametocytes and form a multi-protein complex. Intriguingly, knockout of P. falciparum LCCL proteins adversely affects expression of other family members at protein, but not at mRNA level, a phenomenon termed co-dependent expression. Here, we investigate this in Plasmodium berghei by crossing a PbLAP1 null mutant parasite with a parasite line expressing GFP-tagged PbLAP3 that displays strong fluorescence in gametocytes. Selected and validated double mutants show normal synthesis and subcellular localization of PbLAP3::GFP. However, GFP-based fluorescence is dramatically reduced without PbLAP1 present, indicating that PbLAP1 and PbLAP3 interact. Moreover, absence of PbLAP1 markedly reduces the half-life of PbLAP3, consistent with a scenario of misfolding. These findings unveil a potential mechanism of conformational interdependence that facilitates assembly and stability of the functional LCCL protein complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. DNA-dependent protein kinase inhibits AID-induced antibody gene conversion.

    Directory of Open Access Journals (Sweden)

    Adam J L Cook

    2007-04-01

    Full Text Available Affinity maturation and class switching of antibodies requires activation-induced cytidine deaminase (AID-dependent hypermutation of Ig V(DJ rearrangements and Ig S regions, respectively, in activated B cells. AID deaminates deoxycytidine bases in Ig genes, converting them into deoxyuridines. In V(DJ regions, subsequent excision of the deaminated bases by uracil-DNA glycosylase, or by mismatch repair, leads to further point mutation or gene conversion, depending on the species. In Ig S regions, nicking at the abasic sites produced by AID and uracil-DNA glycosylases results in staggered double-strand breaks, whose repair by nonhomologous end joining mediates Ig class switching. We have tested whether nonhomologous end joining also plays a role in V(DJ hypermutation using chicken DT40 cells deficient for Ku70 or the DNA-dependent protein kinase catalytic subunit (DNA-PKcs. Inactivation of the Ku70 or DNA-PKcs genes in DT40 cells elevated the rate of AID-induced gene conversion as much as 5-fold. Furthermore, DNA-PKcs-deficiency appeared to reduce point mutation. The data provide strong evidence that double-strand DNA ends capable of recruiting the DNA-dependent protein kinase complex are important intermediates in Ig V gene conversion.

  20. Aldose Reductase Inhibitor Protects against Hyperglycemic Stress by Activating Nrf2-Dependent Antioxidant Proteins

    Directory of Open Access Journals (Sweden)

    Kirtikar Shukla

    2017-01-01

    Full Text Available We have shown earlier that pretreatment of cultured cells with aldose reductase (AR inhibitors prevents hyperglycemia-induced mitogenic and proinflammatory responses. However, the effects of AR inhibitors on Nrf2-mediated anti-inflammatory responses have not been elucidated yet. We have investigated how AR inhibitor fidarestat protects high glucose- (HG- induced cell viability changes by increasing the expression of Nrf2 and its dependent phase II antioxidant enzymes. Fidarestat pretreatment prevents HG (25 mM-induced Thp1 monocyte viability. Further, treatment of Thp1 monocytes with fidarestat caused a time-dependent increase in the expression as well as the DNA-binding activity of Nrf2. In addition, fidarestat augmented the HG-induced Nrf2 expression and activity and also upregulated the expression of Nrf2-dependent proteins such as hemeoxygenase-1 (HO1 and NQO1 in Thp1 cells. Similarly, treatment with AR inhibitor also induced the expression of Nrf2 and HO1 in STZ-induced diabetic mice heart and kidney tissues. Further, AR inhibition increased the HG-induced expression of antioxidant enzymes such as SOD and catalase and activation of AMPK-α1 in Thp1 cells. Our results thus suggest that pretreatment with AR inhibitor prepares the monocytes against hyperglycemic stress by overexpressing the Nrf2-dependent antioxidative proteins.

  1. Aldose Reductase Inhibitor Protects against Hyperglycemic Stress by Activating Nrf2-Dependent Antioxidant Proteins.

    Science.gov (United States)

    Shukla, Kirtikar; Pal, Pabitra Bikash; Sonowal, Himangshu; Srivastava, Satish K; Ramana, Kota V

    2017-01-01

    We have shown earlier that pretreatment of cultured cells with aldose reductase (AR) inhibitors prevents hyperglycemia-induced mitogenic and proinflammatory responses. However, the effects of AR inhibitors on Nrf2-mediated anti-inflammatory responses have not been elucidated yet. We have investigated how AR inhibitor fidarestat protects high glucose- (HG-) induced cell viability changes by increasing the expression of Nrf2 and its dependent phase II antioxidant enzymes. Fidarestat pretreatment prevents HG (25 mM)-induced Thp1 monocyte viability. Further, treatment of Thp1 monocytes with fidarestat caused a time-dependent increase in the expression as well as the DNA-binding activity of Nrf2. In addition, fidarestat augmented the HG-induced Nrf2 expression and activity and also upregulated the expression of Nrf2-dependent proteins such as hemeoxygenase-1 (HO1) and NQO1 in Thp1 cells. Similarly, treatment with AR inhibitor also induced the expression of Nrf2 and HO1 in STZ-induced diabetic mice heart and kidney tissues. Further, AR inhibition increased the HG-induced expression of antioxidant enzymes such as SOD and catalase and activation of AMPK- α 1 in Thp1 cells. Our results thus suggest that pretreatment with AR inhibitor prepares the monocytes against hyperglycemic stress by overexpressing the Nrf2-dependent antioxidative proteins.

  2. Por secretion system-dependent secretion and glycosylation of Porphyromonas gingivalis hemin-binding protein 35.

    Directory of Open Access Journals (Sweden)

    Mikio Shoji

    Full Text Available The anaerobic Gram-negative bacterium Porphyromonas gingivalis is a major pathogen in severe forms of periodontal disease and refractory periapical perodontitis. We have recently found that P. gingivalis has a novel secretion system named the Por secretion system (PorSS, which is responsible for secretion of major extracellular proteinases, Arg-gingipains (Rgps and Lys-gingipain. These proteinases contain conserved C-terminal domains (CTDs in their C-termini. Hemin-binding protein 35 (HBP35, which is one of the outer membrane proteins of P. gingivalis and contributes to its haem utilization, also contains a CTD, suggesting that HBP35 is translocated to the cell surface via the PorSS. In this study, immunoblot analysis of P. gingivalis mutants deficient in the PorSS or in the biosynthesis of anionic polysaccharide-lipopolysaccharide (A-LPS revealed that HBP35 is translocated to the cell surface via the PorSS and is glycosylated with A-LPS. From deletion analysis with a GFP-CTD[HBP35] green fluorescent protein fusion, the C-terminal 22 amino acid residues of CTD[HBP35] were found to be required for cell surface translocation and glycosylation. The GFP-CTD fusion study also revealed that the CTDs of CPG70, peptidylarginine deiminase, P27 and RgpB play roles in PorSS-dependent translocation and glycosylation. However, CTD-region peptides were not found in samples of glycosylated HBP35 protein by peptide map fingerprinting analysis, and antibodies against CTD-regions peptides did not react with glycosylated HBP35 protein. These results suggest both that the CTD region functions as a recognition signal for the PorSS and that glycosylation of CTD proteins occurs after removal of the CTD region. Rabbits were used for making antisera against bacterial proteins in this study.

  3. THE SURFACE-MEDIATED UNFOLDING KINETICS OF GLOBULAR PROTEINS IS DEPENDENT ON MOLECULAR WEIGHT AND TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Patananan, A.N.; Goheen, S.C.

    2008-01-01

    The adsorption and unfolding pathways of proteins on rigid surfaces are essential in numerous complex processes associated with biomedical engineering, nanotechnology, and chromatography. It is now well accepted that the kinetics of unfolding are characterized by chemical and physical interactions dependent on protein deformability and structure, as well as environmental pH, temperature, and surface chemistry. Although this fundamental process has broad implications in medicine and industry, little is known about the mechanism because of the atomic lengths and rapid time scales involved. Therefore, the unfolding kinetics of myoglobin, β-glucosidase, and ovalbumin were investigated by adsorbing the globular proteins to non-porous cationic polymer beads. The protein fractions were adsorbed at different residence times (0, 9, 10, 20, and 30 min) at near-physiological conditions using a gradient elution system similar to that in high-performance liquid chromatography. The elution profi les and retention times were obtained by ultraviolet/visible spectrophotometry. A decrease in recovery was observed with time for almost all proteins and was attributed to irreversible protein unfolding on the non-porous surfaces. These data, and those of previous studies, fi t a positively increasing linear trend between percent unfolding after a fi xed (9 min) residence time (71.8%, 31.1%, and 32.1% of myoglobin, β-glucosidase, and ovalbumin, respectively) and molecular weight. Of all the proteins examined so far, only myoglobin deviated from this trend with higher than predicted unfolding rates. Myoglobin also exhibited an increase in retention time over a wide temperature range (0°C and 55°C, 4.39 min and 5.74 min, respectively) whereas ovalbumin and β-glucosidase did not. Further studies using a larger set of proteins are required to better understand the physiological and physiochemical implications of protein unfolding kinetics. This study confi rms that surface

  4. Protein kinase C interaction with calcium: a phospholipid-dependent process.

    LENUS (Irish Health Repository)

    Bazzi, M D

    1990-08-21

    The calcium-binding properties of calcium- and phospholipid-dependent protein kinase C (PKC) were investigated by equilibrium dialysis in the presence and the absence of phospholipids. Calcium binding to PKC displayed striking and unexpected behavior; the free proteins bound virtually no calcium at intracellular calcium concentrations and bound limited calcium (about 1 mol\\/mol of PKC) at 200 microM calcium. However, in the presence of membranes containing acidic phospholipids, PKC bound at least eight calcium ions per protein. The presence of 1 microM phorbol dibutyrate (PDBu) in the dialysis buffer had little effect on these calcium-binding properties. Analysis of PKC-calcium binding by gel filtration under equilibrium conditions gave similar results; only membrane-associated PKC bound significant amounts of calcium. Consequently, PKC is a member of what may be a large group of proteins that bind calcium in a phospholipid-dependent manner. The calcium concentrations needed to induce PKC-membrane binding were similar to those needed for calcium binding (about 40 microM calcium at the midpoint). However, the calcium concentration required for PKC-membrane binding was strongly influenced by the phosphatidylserine composition of the membranes. Membranes with higher percentages of phosphatidylserine required lower concentrations of calcium. These properties suggested that the calcium sites may be generated at the interface between PKC and the membrane. Calcium may function as a bridge between PKC and phospholipids. These studies also suggested that calcium-dependent PKC-membrane binding and PKC function could be regulated by a number of factors in addition to calcium levels and diacylglycerol content of the membrane.

  5. Structural and functional characteristics of cGMP-dependent methionine oxidation in Arabidopsis thaliana proteins

    KAUST Repository

    Marondedze, Claudius

    2013-01-05

    Background: Increasing structural and biochemical evidence suggests that post-translational methionine oxidation of proteins is not just a result of cellular damage but may provide the cell with information on the cellular oxidative status. In addition, oxidation of methionine residues in key regulatory proteins, such as calmodulin, does influence cellular homeostasis. Previous findings also indicate that oxidation of methionine residues in signaling molecules may have a role in stress responses since these specific structural modifications can in turn change biological activities of proteins. Findings. Here we use tandem mass spectrometry-based proteomics to show that treatment of Arabidopsis thaliana cells with a non-oxidative signaling molecule, the cell-permeant second messenger analogue, 8-bromo-3,5-cyclic guanosine monophosphate (8-Br-cGMP), results in a time-dependent increase in the content of oxidised methionine residues. Interestingly, the group of proteins affected by cGMP-dependent methionine oxidation is functionally enriched for stress response proteins. Furthermore, we also noted distinct signatures in the frequency of amino acids flanking oxidised and un-oxidised methionine residues on both the C- and N-terminus. Conclusions: Given both a structural and functional bias in methionine oxidation events in response to a signaling molecule, we propose that these are indicative of a specific role of such post-translational modifications in the direct or indirect regulation of cellular responses. The mechanisms that determine the specificity of the modifications remain to be elucidated. 2013 Marondedze et al.; licensee BioMed Central Ltd.

  6. Time course of protein synthesis-dependent phase of olfactory memory in the cricket Gryllus bimaculatus.

    Science.gov (United States)

    Matsumoto, Yukihisa; Noji, Sumihare; Mizunami, Makoto

    2003-04-01

    The cricket Gryllus bimaculatus forms a stable olfactory memory that lasts for practically a lifetime. As a first step to elucidate the cellular mechanisms of olfactory learning and memory retention in crickets, we studied the dependency of memory retention on the de novo brain protein synthesis by injecting the protein synthesis inhibitor cycloheximide (CHX) into the head capsule. Injection of CHX inhibited (3)H-leucine incorporation into brain proteins by > 90% for 3 hr. Crickets were trained to associate peppermint odor with water (reward) and vanilla odor with saline solution (non-reward) and were injected with CHX before or at different times after training. Their odor preferences were tested at 2 hr, 1 day and 4 days after training. Memory retention at 2 hr after training was unaffected by CHX injection. However, the level of retention at 1 day and 4 days after training was lowered when CHX was injected 1 hour before training or at 1 hr or 6 hr after training. To study the time course of the development of CHX-sensitive memory phase, crickets that had been injected with CHX at 1 hr after training were tested at different times from 2 to 12 hr after training. The level of retention was unaffected up to 4 hr after training but significantly lowered at 5 hr after training, and the CHX-sensitive memory phase developed gradually during the next several hours. CHX dissociates two phases of olfactory memory in crickets: earlier protein synthesis-independent phase ( 5 hr) protein synthesis-dependent phase.

  7. 24-Hour protein, arginine and citrulline metabolism in fed critically ill children – a stable isotope tracer study

    Science.gov (United States)

    de Betue, Carlijn T.I.; Garcia Casal, Xiomara C.; van Waardenburg, Dick A.; Schexnayder, Stephen M.; Joosten, Koen F.M.; Deutz, Nicolaas E.P.; Engelen, Marielle P.K.J.

    2017-01-01

    Background & aims The reference method to study protein and arginine metabolism in critically ill children is measuring plasma amino acid appearances with stable isotopes during a short (4–8h) time period and extrapolate results to 24-hour. However, 24-hour measurements may be variable due to critical illness related factors and a circadian rhythm could be present. Since only short duration stable isotope studies in critically ill children have been conducted before, the aim of this study was to investigate 24-hour appearance of specific amino acids representing protein and arginine metabolism, with stable isotope techniques in continuously fed critically ill children. Methods In eight critically ill children, admitted to the pediatric (n=4) or cardiovascular (n=4) intensive care unit, aged 0–10 years, receiving continuous (par)enteral nutrition with protein intake 1.0–3.7 g/kg/day, a 24-hour stable isotope tracer protocol was carried out. L-[ring-2H5]-phenylalanine, L-[3,3-2H2]-tyrosine, L-[5,5,5-2H3]-leucine, L-[guanido-15N2]-arginine and L-[5-13C-3,3,4,4-2H4]-citrulline were infused intravenously and L-[15N]-phenylalanine and L-[1-13C]leucine enterally. Arterial blood was sampled every hour. Results Coefficients of variation, representing intra-individual variability, of the amino acid appearances of phenylalanine, tyrosine, leucine, arginine and citrulline were high, on average 14–19% for intravenous tracers and 23–26% for enteral tracers. No evident circadian rhythm was present. The pattern and overall 24-hour level of whole body protein balance differed per individual. Conclusions In continuously fed stable critically ill children, the amino acid appearances of phenylalanine, tyrosine, leucine, arginine and citrulline show high variability. This should be kept in mind when performing stable isotope studies in this population. There was no apparent circadian rhythm. PMID:28089618

  8. Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egress.

    Directory of Open Access Journals (Sweden)

    Christine R Collins

    2013-05-01

    Full Text Available The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV. Eventually, in a tightly regulated process called egress, proteins of the PV and intracellular merozoite surface are modified by an essential parasite serine protease called PfSUB1, whilst the enclosing PV and erythrocyte membranes rupture, releasing merozoites to invade fresh erythrocytes. Inhibition of the Plasmodium falciparum cGMP-dependent protein kinase (PfPKG prevents egress, but the underlying mechanism is unknown. Here we show that PfPKG activity is required for PfSUB1 discharge into the PV, as well as for release of distinct merozoite organelles called micronemes. Stimulation of PfPKG by inhibiting parasite phosphodiesterase activity induces premature PfSUB1 discharge and egress of developmentally immature, non-invasive parasites. Our findings identify the signalling pathway that regulates PfSUB1 function and egress, and raise the possibility of targeting PfPKG or parasite phosphodiesterases in therapeutic approaches to dysregulate critical protease-mediated steps in the parasite life cycle.

  9. Identification and characterization of an ATP.Mg-dependent protein phosphatase from pig brain

    International Nuclear Information System (INIS)

    Yang, S.D.; Fong, Y.L.

    1985-01-01

    Substantial amounts of ATP.Mg-dependent phosphorylase phosphatase (Fc. M) and its activator (kinase FA) were identified and extensively purified from pig brain, in spite of the fact that glycogen metabolism in the brain is of little importance. The brain Fc.M was completely inactive and could only be activated by ATP.Mg and FA, isolated either from rabbit muscle or pig brain. Kinetical analysis of the dephosphorylation of endogenous brain protein indicates that Fc.M could dephosphorylate 32 P-labeled myelin basic protein (MBP) and [ 32 P]phosphorylase alpha at a comparable rate and moreover, this associated MBP phosphatase activity was also strictly kinase FA/ATP.Mg-dependent, demonstrating that MBP is a potential substrate for Fc.M in the brain. By manipulating MBP and inhibitor-2 as specific potent phosphorylase phosphatase inhibitors, we further demonstrate that 1) Fc.M contains two distinct catalytic sites to dephosphorylate different substrates, and 2) brain MBP may be a physiological trigger involved in the regulation of protein phosphatase substrate specificity in mammalian nervous tissues

  10. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    International Nuclear Information System (INIS)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih; Zhao, Bo; Kieff, Elliott; Peng, Chih-Wen

    2013-01-01

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection

  11. Serum-dependent expression of promyelocytic leukemia protein suppresses propagation of influenza virus

    International Nuclear Information System (INIS)

    Iki, Shigeo; Yokota, Shin-ichi; Okabayashi, Tamaki; Yokosawa, Noriko; Nagata, Kyosuke; Fujii, Nobuhiro

    2005-01-01

    The rate of propagation of influenza virus in human adenocarcinoma Caco-2 cells was found to negatively correlate with the concentration of fetal bovine serum (FBS) in the culture medium. Virus replicated more rapidly at lower FBS concentrations (0 or 2%) than at higher concentrations (10 or 20%) during an early stage of infection. Basal and interferon (IFN)-induced levels of typical IFN-inducible anti-viral proteins, such as 2',5'-oligoadenylate synthetase, dsRNA-activated protein kinase and MxA, were unaffected by variation in FBS concentrations. But promyelocytic leukemia protein (PML) was expressed in a serum-dependent manner. In particular, the 65 to 70 kDa isoform of PML was markedly upregulated following the addition of serum. In contrast, other isoforms were induced by IFN treatment, and weakly induced by FBS concentrations. Immunofluorescence microscopy indicated that PML was mainly formed nuclear bodies in Caco-2 cells at various FBS concentrations, and the levels of the PML-nuclear bodies were upregulated by FBS. Overexpression of PML isoform consisting of 560 or 633 amino acid residues by transfection of expression plasmid results in significantly delayed viral replication rate in Caco-2 cells. On the other hand, downregulation of PML expression by RNAi enhanced viral replication. These results indicate that PML isoforms which are expressed in a serum-dependent manner suppress the propagation of influenza virus at an early stage of infection

  12. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China); Zhao, Bo; Kieff, Elliott [Department of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Ave., Boston 02115, MA (United States); Peng, Chih-Wen, E-mail: pengcw@mail.tcu.edu.tw [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China)

    2013-01-18

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.

  13. Local Delivery Is Critical for Monocyte Chemotactic Protein-1 Mediated Site-Specific Murine Aneurysm Healing.

    Science.gov (United States)

    Hourani, Siham; Motwani, Kartik; Wajima, Daisuke; Fazal, Hanain; Jones, Chad H; Doré, Sylvain; Hosaka, Koji; Hoh, Brian L

    2018-01-01

    Local delivery of monocyte chemotactic protein-1 (MCP-1/CCL2) via our drug-eluting coil has been shown to promote intrasaccular aneurysm healing via an inflammatory pathway. In this study, we validate the importance of local MCP-1 in murine aneurysm healing. Whether systemic, rather than local, delivery of MCP-1 can direct site-specific aneurysm healing has significant translational implications. If systemic MCP-1 is effective, then MCP-1 could be administered as a pill rather than by endovascular procedure. Furthermore, we confirm that MCP-1 is the primary effector in our MCP-1 eluting coil-mediated murine aneurysm healing model. We compare aneurysm healing with repeated intraperitoneal MCP-1 versus vehicle injection, in animals with control poly(lactic-co-glycolic) acid (PLGA)-coated coils. We demonstrate elimination of the MCP-1-associated tissue-healing response by knockout of MCP-1 or CCR2 (MCP-1 receptor) and by selectively inhibiting MCP-1 or CCR2. Using immunofluorescent probing, we explore the cell populations found in healed aneurysm tissue following each intervention. Systemically administered MCP-1 with PLGA coil control does not produce comparable aneurysm healing, as seen with MCP-1 eluting coils. MCP-1-directed aneurysm healing is eliminated by selective inhibition of MCP-1 or CCR2 and in MCP-1-deficient or CCR2-deficient mice. No difference was detected in M2 macrophage and myofibroblast/smooth muscle cell staining with systemic MCP-1 versus vehicle in aneurysm wall, but a significant increase in these cell types was observed with MCP-1 eluting coil implant and attenuated by MCP-1/CCR2 blockade or deficiency. We show that systemic MCP-1 concurrent with PLGA-coated platinum coil implant is not sufficient to produce site-specific aneurysm healing. MCP-1 is a critical, not merely complementary, actor in the aneurysm healing pathway.

  14. North American experience with Low protein diet for Non-dialysis-dependent chronic kidney disease.

    Science.gov (United States)

    Kalantar-Zadeh, Kamyar; Moore, Linda W; Tortorici, Amanda R; Chou, Jason A; St-Jules, David E; Aoun, Arianna; Rojas-Bautista, Vanessa; Tschida, Annelle K; Rhee, Connie M; Shah, Anuja A; Crowley, Susan; Vassalotti, Joseph A; Kovesdy, Csaba P

    2016-07-19

    Whereas in many parts of the world a low protein diet (LPD, 0.6-0.8 g/kg/day) is routinely prescribed for the management of patients with non-dialysis-dependent chronic kidney disease (CKD), this practice is infrequent in North America. The historical underpinnings related to LPD in the USA including the non-conclusive results of the Modification of Diet in Renal Disease Study may have played a role. Overall trends to initiate dialysis earlier in the course of CKD in the US allowed less time for LPD prescription. The usual dietary intake in the US includes high dietary protein content, which is in sharp contradistinction to that of a LPD. The fear of engendering or worsening protein-energy wasting may be an important handicap as suggested by a pilot survey of US nephrologists; nevertheless, there is also potential interest and enthusiasm in gaining further insight regarding LPD's utility in both research and in practice. Racial/ethnic disparities in the US and patients' adherence are additional challenges. Adherence should be monitored by well-trained dietitians by means of both dietary assessment techniques and 24-h urine collections to estimate dietary protein intake using urinary urea nitrogen (UUN). While keto-analogues are not currently available in the USA, there are other oral nutritional supplements for the provision of high-biologic-value proteins along with dietary energy intake of 30-35 Cal/kg/day available. Different treatment strategies related to dietary intake may help circumvent the protein- energy wasting apprehension and offer novel conservative approaches for CKD management in North America.

  15. Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival.

    Directory of Open Access Journals (Sweden)

    Daniel Thomas

    Full Text Available The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K, promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3 and granulocyte macrophage colony stimulating factor (GM-CSF receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting

  16. A critical period for experience-dependent remodeling of adult-born neuron connectivity.

    Science.gov (United States)

    Bergami, Matteo; Masserdotti, Giacomo; Temprana, Silvio G; Motori, Elisa; Eriksson, Therese M; Göbel, Jana; Yang, Sung Min; Conzelmann, Karl-Klaus; Schinder, Alejandro F; Götz, Magdalena; Berninger, Benedikt

    2015-02-18

    Neurogenesis in the dentate gyrus (DG) of the adult hippocampus is a process regulated by experience. To understand whether experience also modifies the connectivity of new neurons, we systematically investigated changes in their innervation following environmental enrichment (EE). We found that EE exposure between 2-6 weeks following neuron birth, rather than merely increasing the number of new neurons, profoundly affected their pattern of monosynaptic inputs. Both local innervation by interneurons and to even greater degree long-distance innervation by cortical neurons were markedly enhanced. Furthermore, following EE, new neurons received inputs from CA3 and CA1 inhibitory neurons that were rarely observed under control conditions. While EE-induced changes in inhibitory innervation were largely transient, cortical innervation remained increased after returning animals to control conditions. Our findings demonstrate an unprecedented experience-dependent reorganization of connections impinging onto adult-born neurons, which is likely to have important impact on their contribution to hippocampal information processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Molecular Stress-inducing Compounds Increase Osteoclast Formation in a Heat Shock Factor 1 Protein-dependent Manner*

    Science.gov (United States)

    Chai, Ryan C.; Kouspou, Michelle M.; Lang, Benjamin J.; Nguyen, Chau H.; van der Kraan, A. Gabrielle J.; Vieusseux, Jessica L.; Lim, Reece C.; Gillespie, Matthew T.; Benjamin, Ivor J.; Quinn, Julian M. W.; Price, John T.

    2014-01-01

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss. PMID:24692538

  18. Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner.

    Science.gov (United States)

    Chai, Ryan C; Kouspou, Michelle M; Lang, Benjamin J; Nguyen, Chau H; van der Kraan, A Gabrielle J; Vieusseux, Jessica L; Lim, Reece C; Gillespie, Matthew T; Benjamin, Ivor J; Quinn, Julian M W; Price, John T

    2014-05-09

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss.

  19. Structural requirements for cub domain containing protein 1 (CDCP1 and Src dependent cell transformation.

    Directory of Open Access Journals (Sweden)

    Gwendlyn Kollmorgen

    Full Text Available Cub domain containing protein 1 (CDCP1 is strongly expressed in tumors derived from lung, colon, ovary, or kidney. It is a membrane protein that is phosphorylated and then bound by Src family kinases. Although expression and phosphorylation of CDCP1 have been investigated in many tumor cell lines, the CDCP1 features responsible for transformation have not been fully evaluated. This is in part due to the lack of an experimental system in which cellular transformation depends on expression of exogenous CDCP1 and Src. Here we use retrovirus mediated co-overexpression of c-Src and CDCP1 to induce focus formation of NIH3T3 cells. Employing different mutants of CDCP1 we show that for a full transformation capacity, the intact amino- and carboxy-termini of CDCP1 are essential. Mutation of any of the core intracellular tyrosine residues (Y734, Y743, or Y762 abolished transformation, and mutation of a palmitoylation motif (C689,690G strongly reduced it. Src kinase binding to CDCP1 was not required since Src with a defective SH2 domain generated even more CDCP1 dependent foci whereas Src myristoylation was necessary. Taken together, the focus formation assay allowed us to define structural requirements of CDCP1/Src dependent transformation and to characterize the interaction of CDCP1 and Src.

  20. Neuronal phosphorylated RNA-dependent protein kinase in Creutzfeldt-Jakob disease.

    LENUS (Irish Health Repository)

    Paquet, Claire

    2009-02-01

    The mechanisms of neuronal apoptosis in Creutzfeldt-Jakob disease (CJD) and their relationship to accumulated prion protein (PrP) are unclear. A recent cell culture study showed that intracytoplasmic PrP may induce phosphorylated RNA-dependent protein kinase (PKR(p))-mediated cell stress. The double-stranded RNA protein kinase PKR is a proapoptotic and stress kinase that accumulates in degenerating neurons in Alzheimer disease. To determine whether neuronal apoptosis in human CJD is associated with activation of the PKR(p) signaling pathway, we assessed in situ end labeling and immunocytochemistry for PrP, glial fibrillary acidic protein, CD68, activated caspase 3, and phosphorylated PKR (Thr451) in samples of frontal, occipital, and temporal cortex, striatum, and cerebellum from 6 patients with sporadic CJD and 5 controls. Neuronal immunostaining for activated PKR was found in all CJD cases. The most staining was in nuclei and, in contrast to findings in Alzheimer disease, cytoplasmic labeling was not detected. Both the number and distribution of PKR(p)-positive neurons correlated closely with the extent of neuronal apoptosis, spongiosis, astrocytosis, and microglial activation and with the phenotype and disease severity. There was no correlation with the type, topography, or amount of extracellular PrP deposits. These findings suggest that neuronal apoptosis in human CJD may result from PKR(p)-mediated cell stress and are consistent with recent studies supporting a pathogenic role for intracellular or transmembrane PrP.

  1. Pathology-Dependent Effects Linked to Small Heat Shock Proteins Expression: An Update

    Directory of Open Access Journals (Sweden)

    A.-P. Arrigo

    2012-01-01

    Full Text Available Small heat shock proteins (small Hsps are stress-induced molecular chaperones that act as holdases towards polypeptides that have lost their folding in stress conditions or consequently of mutations in their coding sequence. A cellular protection against the deleterious effects mediated by damaged proteins is thus provided to cells. These chaperones are also highly expressed in response to protein conformational and inflammatory diseases and cancer pathologies. Through specific and reversible modifications in their phospho-oligomeric organization, small Hsps can chaperone appropriate client proteins in order to provide cells with resistance to different types of injuries or pathological conditions. By helping cells to better cope with their pathological status, their expression can be either beneficial, such as in diseases characterized by pathological cell degeneration, or deleterious when they are required for tumor cell survival. Moreover, small Hsps are actively released by cells and can act as immunogenic molecules that have dual effects depending on the pathology. The cellular consequences linked to their expression levels and relationships with other Hsps as well as therapeutic strategies are discussed in view of their dynamic structural organization required to interact with specific client polypeptides.

  2. Cyclic nucleotide dependent dephosphorylation of regulator of G-protein signaling 18 in human platelets.

    LENUS (Irish Health Repository)

    Gegenbauer, Kristina

    2013-11-01

    Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein that turns off Gq signaling in platelets. RGS18 is regulated by binding to the adaptor protein 14-3-3 via phosphorylated serine residues S49 and S218 on RGS18. In this study we confirm that thrombin, thromboxane A2, or ADP stimulate the interaction of RGS18 and 14-3-3 by increasing the phosphorylation of S49. Cyclic AMP- and cyclic GMP-dependent kinases (PKA, PKG) inhibit the interaction of RGS18 and 14-3-3 by phosphorylating S216. To understand the effect of S216 phosphorylation we studied the phosphorylation kinetics of S49, S216, and S218 using Phos-tag gels and phosphorylation site-specific antibodies in transfected cells and in platelets. Cyclic nucleotide-induced detachment of 14-3-3 from RGS18 coincides initially with double phosphorylation of S216 and S218. This is followed by dephosphorylation of S49 and S218. Dephosphorylation of S49 and S218 might be mediated by protein phosphatase 1 (PP1) which is linked to RGS18 by the regulatory subunit PPP1R9B (spinophilin). We conclude that PKA and PKG induced S216 phosphorylation triggers the dephosphorylation of the 14-3-3 binding sites of RGS18 in platelets.

  3. New learning while consolidating memory during sleep is actively blocked by a protein synthesis dependent process.

    Science.gov (United States)

    Levy, Roi; Levitan, David; Susswein, Abraham J

    2016-12-06

    Brief experiences while a memory is consolidated may capture the consolidation, perhaps producing a maladaptive memory, or may interrupt the consolidation. Since consolidation occurs during sleep, even fleeting experiences when animals are awakened may produce maladaptive long-term memory, or may interrupt consolidation. In a learning paradigm affecting Aplysia feeding, when animals were trained after being awakened from sleep, interactions between new experiences and consolidation were prevented by blocking long-term memory arising from the new experiences. Inhibiting protein synthesis eliminated the block and allowed even a brief, generally ineffective training to produce long-term memory. Memory formation depended on consolidative proteins already expressed before training. After effective training, long term memory required subsequent transcription and translation. Memory formation during the sleep phase was correlated with increased CREB1 transcription, but not CREB2 transcription. Increased C/EBP transcription was a correlate of both effective and ineffective training and of treatments not producing memory.

  4. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli

    DEFF Research Database (Denmark)

    Cristóbal, S.; de Gier, J.-W.; Nielsen, Henrik

    1999-01-01

    -routed into the TAT pathway, suggesting that Sec-targeting signals in Lep can override TAT-targeting information in the TorA signal peptide. We also show that the TorA signal peptide can be converted into a Sec-targeting signal peptide by increasing the hydrophobicity of its h-region. Thus, beyond the twin...... the TorA TAT-targeting signal peptide to the Sec-dependent inner membrane protein leader peptidase (Lep). We find that the soluble, periplasmic P2 domain from Lep is re-routed by the TorA signal peptide into the TAT pathway. In contrast, the full-length TorA–Lep fusion protein is not re...

  5. Understanding heterogeneity in borderline personality disorder: differences in affective reactivity explained by the traits of dependency and self-criticism.

    Science.gov (United States)

    Kopala-Sibley, Daniel C; Zuroff, David C; Russell, Jennifer J; Moskowitz, D S; Paris, Joel

    2012-08-01

    This study examined whether the personality traits of self-criticism and dependency respectively moderated the effects of perceived inferiority and emotional insecurity on negative affect during interpersonal interactions in individuals with borderline personality disorder (BPD). A sample of 38 patients with BPD and matched community comparison participants completed event-contingent record forms after each significant interaction for a 20-day period. Multilevel models showed that, controlling for baseline levels of depressive symptoms and neuroticism, as well as lagged negative affect, event-level elevations in perceived inferiority and emotional insecurity were related to more negative affect in both groups. Event-level perceived inferiority was more strongly associated with negative affect in patients with BPD who reported higher levels of self-criticism, while event-level perceived emotional insecurity was more strongly associated with negative affect in patients with BPD who reported higher levels of dependency. No significant interactions emerged for the comparison group. These findings further our understanding of differences among patients with BPD and support the application of personality-vulnerability or diathesis-stress models in predicting negative affect in BPD. Results have implications for the design of therapies for patients with BPD. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  6. Denatured state is critical in determining the properties of model proteins designed on different folds

    DEFF Research Database (Denmark)

    Amatori, Andrea; Ferkinghoff-Borg, Jesper; Tiana, Guido

    2008-01-01

    The thermodynamics of proteins designed on three common folds (SH3, chymotrypsin inhibitor 2 [CI2], and protein G) is studied with a simplified C alpha, model and compared with the thermodynamics of proteins designed on random-generated folds. The model allows to design sequences to fold within a...

  7. Proteins and amino acids are fundamental to optimal nutrition support in critically ill patients

    NARCIS (Netherlands)

    Weijs, P.J.M.; Cynober, L.; DeLegge, M.; Kreymann, G.; Wernerman, J.; Wolfe, R.R.

    2014-01-01

    Proteins and amino acids are widely considered to be subcomponents in nutritional support. However, proteins and amino acids are fundamental to recovery and survival, not only for their ability to preserve active tissue (protein) mass but also for a variety of other functions. Understanding the

  8. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose phosphate synthase and is required for a proper cold stress response

    KAUST Repository

    Almadanim, M. Cecí lia; Alexandre, Bruno M.; Rosa, Margarida T.G.; Sapeta, Helena; Leitã o, Antó nio E.; Ramalho, José C.; Lam, TuKiet T.; Negrã o, Só nia; Abreu, Isabel A.; Oliveira, M. Margarida

    2017-01-01

    Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here

  9. Purification and sequencing of radish seed calmodulin antagonists phosphorylated by calcium-dependent protein kinase.

    Science.gov (United States)

    Polya, G M; Chandra, S; Condron, R

    1993-02-01

    A family of radish (Raphanus sativus) calmodulin antagonists (RCAs) was purified from seeds by extraction, centrifugation, batch-wise elution from carboxymethyl-cellulose, and high performance liquid chromatography (HPLC) on an SP5PW cation-exchange column. This RCA fraction was further resolved into three calmodulin antagonist polypeptides (RCA1, RCA2, and RCA3) by denaturation in the presence of guanidinium HCl and mercaptoethanol and subsequent reverse-phase HPLC on a C8 column eluted with an acetonitrile gradient in the presence of 0.1% trifluoroacetic acid. The RCA preparation, RCA1, RCA2, RCA3, and other radish seed proteins are phosphorylated by wheat embryo Ca(2+)-dependent protein kinase (CDPK). The RCA preparation contains other CDPK substrates in addition to RCA1, RCA2, and RCA3. The RCA preparation, RCA1, RCA2, and RCA3 inhibit chicken gizzard calmodulin-dependent myosin light chain kinase assayed with a myosin-light chain-based synthetic peptide substrate (fifty percent inhibitory concentrations of RCA2 and RCA3 are about 7 and 2 microM, respectively). N-terminal sequencing by sequential Edman degradation of RCA1, RCA2, and RCA3 revealed sequences having a high homology with the small subunit of the storage protein napin from Brassica napus and with related proteins. The deduced amino acid sequences of RCA1, RCA2, RCA3, and RCA3' (a subform of RCA3) have agreement with average molecular masses from electrospray mass spectrometry of 4537, 4543, 4532, and 4560 kD, respectively. The only sites for serine phosphorylation are near or at the C termini and hence adjacent to the sites of proteolytic precursor cleavage.

  10. Small heat shock proteins can release light dependence of tobacco seed during germination.

    Science.gov (United States)

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia; Hong, Choo Bong

    2015-03-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Small Heat Shock Proteins Can Release Light Dependence of Tobacco Seed during Germination1[OPEN

    Science.gov (United States)

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia

    2015-01-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. PMID:25604531

  12. Identification of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) as a novel target of bisphenol A.

    Science.gov (United States)

    Ito, Yuki; Ito, Takumi; Karasawa, Satoki; Enomoto, Teruya; Nashimoto, Akihiro; Hase, Yasuyoshi; Sakamoto, Satoshi; Mimori, Tsuneyo; Matsumoto, Yoshihisa; Yamaguchi, Yuki; Handa, Hiroshi

    2012-01-01

    Bisphenol A (BPA) forms the backbone of plastics and epoxy resins used to produce packaging for various foods and beverages. BPA is also an estrogenic disruptor, interacting with human estrogen receptors (ER) and other related nuclear receptors. Nevertheless, the effects of BPA on human health remain unclear. The present study identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs) as a novel BPA-binding protein. DNA-PKcs, in association with the Ku heterodimer (Ku70/80), is a critical enzyme involved in the repair of DNA double-strand breaks. Low levels of DNA-PK activity are previously reported to be associated with an increased risk of certain types of cancer. Although the Kd for the interaction between BPA and a drug-binding mutant of DNA-PKcs was comparatively low (137 nM), high doses of BPA were required before cellular effects were observed (100-300 μM). The results of an in vitro kinase assay showed that BPA inhibited DNA-PK kinase activity in a concentration-dependent manner. In M059K cells, BPA inhibited the phosphorylation of DNA-PKcs at Ser2056 and H2AX at Ser139 in response to ionizing radiation (IR)-irradiation. BPA also disrupted DNA-PKcs binding to Ku70/80 and increased the radiosensitivity of M059K cells, but not M059J cells (which are DNA-PKcs-deficient). Taken together, these results provide new evidence of the effects of BPA on DNA repair in mammalian cells, which are mediated via inhibition of DNA-PK activity. This study may warrant the consideration of the possible carcinogenic effects of high doses of BPA, which are mediated through its action on DNA-PK.

  13. Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins

    Science.gov (United States)

    Yadav, Indresh; Aswal, Vinod K.; Kohlbrecher, Joachim

    2016-05-01

    The interaction of three different sized (diameter 10, 18, and 28 nm) anionic silica nanoparticles with two model proteins—cationic lysozyme [molecular weight (MW) 14.7 kDa)] and anionic bovine serum albumin (BSA) (MW 66.4 kDa) has been studied by UV-vis spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The adsorption behavior of proteins on the nanoparticles, measured by UV-vis spectroscopy, is found to be very different for lysozyme and BSA. Lysozyme adsorbs strongly on the nanoparticles and shows exponential behavior as a function of lysozyme concentration irrespective of the nanoparticle size. The total amount of adsorbed lysozyme, as governed by the surface-to-volume ratio, increases on lowering the size of the nanoparticles for a fixed volume fraction of the nanoparticles. On the other hand, BSA does not show any adsorption for all the different sizes of the nanoparticles. Despite having different interactions, both proteins induce similar phase behavior where the nanoparticle-protein system transforms from one phase (clear) to two phase (turbid) as a function of protein concentration. The phase behavior is modified towards the lower concentrations for both proteins with increasing the nanoparticle size. DLS suggests that the phase behavior arises as a result of the nanoparticles' aggregation on the addition of proteins. The size-dependent modifications in the interaction potential, responsible for the phase behavior, have been determined by SANS data as modeled using the two-Yukawa potential accounting for the repulsive and attractive interactions in the systems. The protein-induced interaction between the nanoparticles is found to be short-range attraction for lysozyme and long-range attraction for BSA. The magnitude of attractive interaction irrespective of protein type is enhanced with increase in the size of the nanoparticles. The total (attractive+repulsive) potential leading to two-phase formation is found to be

  14. Statistical discovery of site inter-dependencies in sub-molecular hierarchical protein structuring.

    Science.gov (United States)

    Durston, Kirk K; Chiu, David Ky; Wong, Andrew Kc; Li, Gary Cl

    2012-07-13

    Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families. The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function. Our results

  15. Intermittent apnea elicits inactivity-induced phrenic motor facilitation via a retinoic acid- and protein synthesis-dependent pathway.

    Science.gov (United States)

    Baertsch, Nathan A; Baker, Tracy L

    2017-11-01

    Respiratory motoneuron pools must provide rhythmic inspiratory drive that is robust and reliable, yet dynamic enough to respond to respiratory challenges. One form of plasticity that is hypothesized to contribute to motor output stability by sensing and responding to inadequate respiratory neural activity is inactivity-induced phrenic motor facilitation (iPMF), an increase in inspiratory output triggered by a reduction in phrenic synaptic inputs. Evidence suggests that mechanisms giving rise to iPMF differ depending on the pattern of reduced respiratory neural activity (i.e., neural apnea). A prolonged neural apnea elicits iPMF via a spinal TNF-α-induced increase in atypical PKC activity, but little is known regarding mechanisms that elicit iPMF following intermittent neural apnea. We tested the hypothesis that iPMF triggered by intermittent neural apnea requires retinoic acid and protein synthesis. Phrenic nerve activity was recorded in urethane-anesthetized and -ventilated rats treated intrathecally with an inhibitor of retinoic acid synthesis (4-diethlyaminobenzaldehyde, DEAB), a protein synthesis inhibitor (emetine), or vehicle (artificial cerebrospinal fluid) before intermittent (5 episodes, ~1.25 min each) or prolonged (30 min) neural apnea. Both DEAB and emetine abolished iPMF elicited by intermittent neural apnea but had no effect on iPMF elicited by a prolonged neural apnea. Thus different patterns of reduced respiratory neural activity elicit phenotypically similar iPMF via distinct spinal mechanisms. Understanding mechanisms that allow respiratory motoneurons to dynamically tune their output may have important implications in the context of respiratory control disorders that involve varied patterns of reduced respiratory neural activity, such as central sleep apnea and spinal cord injury. NEW & NOTEWORTHY We identify spinal retinoic acid and protein synthesis as critical components in the cellular cascade whereby repetitive reductions in respiratory

  16. Transcriptional activation of NAD+-dependent protein deacetylase SIRT1 by nuclear receptor TLX.

    Science.gov (United States)

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi; Horio, Yoshiyuki

    2009-09-04

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD(+)-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  17. Transcriptional activation of NAD+-dependent protein deacetylase SIRT1 by nuclear receptor TLX

    International Nuclear Information System (INIS)

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi; Horio, Yoshiyuki

    2009-01-01

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD + -dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  18. cGMP-dependent protein kinase I, the circadian clock, sleep and learning

    OpenAIRE

    Feil, Robert; Hölter, Sabine M; Weindl, Karin; Wurst, Wolfgang; Langmesser, Sonja; Gerling, Andrea; Feil, Susanne; Albrecht, Urs

    2009-01-01

    The second messenger cGMP controls cardiovascular and gastrointestinal homeostasis in mammals. However, its physiological relevance in the nervous system is poorly understood.1 Now, we have reported that the cGMP-dependent protein kinase type I (PRKG1) is implicated in the regulation of the timing and quality of sleep and wakefulness.2 Prkg1 mutant mice showed altered distribution of sleep and wakefulness as well as reduction in rapid-eye-movement sleep (REMS) duration and in non-REMS consoli...

  19. The Arabidopsis Malectin-Like/LRR-RLK IOS1 Is Critical for BAK1-Dependent and BAK1-Independent Pattern-Triggered Immunity

    Science.gov (United States)

    Kadota, Yasuhiro; Huang, Pin-Yao; Chien, Hsiao-Chiao; Chu, Po-Wei; Zimmerli, Laurent

    2016-01-01

    Plasma membrane-localized pattern recognition receptors (PRRs) such as FLAGELLIN SENSING2 (FLS2), EF-TU RECEPTOR (EFR), and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) recognize microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). A reverse genetics approach on genes responsive to the priming agent β-aminobutyric acid (BABA) revealed IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) as a critical PTI player. Arabidopsis thaliana ios1 mutants were hypersusceptible to Pseudomonas syringae bacteria. Accordingly, ios1 mutants showed defective PTI responses, notably delayed upregulation of the PTI marker gene FLG22-INDUCED RECEPTOR-LIKE KINASE1, reduced callose deposition, and mitogen-activated protein kinase activation upon MAMP treatment. Moreover, Arabidopsis lines overexpressing IOS1 were more resistant to bacteria and showed a primed PTI response. In vitro pull-down, bimolecular fluorescence complementation, coimmunoprecipitation, and mass spectrometry analyses supported the existence of complexes between the membrane-localized IOS1 and BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1)-dependent PRRs FLS2 and EFR, as well as with the BAK1-independent PRR CERK1. IOS1 also associated with BAK1 in a ligand-independent manner and positively regulated FLS2-BAK1 complex formation upon MAMP treatment. In addition, IOS1 was critical for chitin-mediated PTI. Finally, ios1 mutants were defective in BABA-induced resistance and priming. This work reveals IOS1 as a novel regulatory protein of FLS2-, EFR-, and CERK1-mediated signaling pathways that primes PTI activation. PMID:27317676

  20. The Golgi localization of phosphatidylinositol transfer protein beta requires the protein kinase C-dependent phosphorylation of serine 262 and is essential for maintaining plasma membrane sphingomyelin levels

    NARCIS (Netherlands)

    van Tiel, Claudia M.; Westerman, Jan; Paasman, Marten A.; Hoebens, Martha M.; Wirtz, Karel W. A.; Snoek, Gerry T.

    2002-01-01

    Recombinant mouse phosphatidylinositol transfer protein (PI-TP)beta is a substrate for protein kinase C (PKC)-dependent phosphorylation in vitro. Based on site-directed mutagenesis and two-dimensional tryptic peptide mapping, Ser(262) was identified as the major site of phosphorylation and Ser(165)

  1. Effects of voluntary and treadmill exercise on spontaneous withdrawal signs, cognitive deficits and alterations in apoptosis-associated proteins in morphine-dependent rats.

    Science.gov (United States)

    Mokhtari-Zaer, Amin; Ghodrati-Jaldbakhan, Shahrbanoo; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Akhavan, Maziar M; Bandegi, Ahmad Reza; Rashidy-Pour, Ali

    2014-09-01

    Chronic exposure to morphine results in cognitive deficits and alterations of apoptotic proteins in favor of cell death in the hippocampus, a brain region critically involved in learning and memory. Physical activity has been shown to have beneficial effects on brain health. In the current work, we examined the effects of voluntary and treadmill exercise on spontaneous withdrawal signs, the associated cognitive defects, and changes of apoptotic proteins in morphine-dependent rats. Morphine dependence was induced through bi-daily administrations of morphine (10mg/kg) for 10 days. Then, the rats were trained under two different exercise protocols: mild treadmill exercise or voluntary wheel exercise for 10 days. After exercise training, their spatial learning and memory and aversive memory were examined by a water maze and by an inhibitory avoidance task, respectively. The expression of the pro-apoptotic protein Bax and the anti-apoptotic protein Bcl-2 in the hippocampus were determined by immunoblotting. We found that chronic exposure to morphine impaired spatial and aversive memory and remarkably suppressed the expression of Bcl-2, but Bax expression remained constant. Both voluntary and treadmill exercise alleviated memory impairment, increased the expression of Bcl-2 protein, and only the later suppressed the expression of Bax protein in morphine-dependent animals. Moreover, both exercise protocols diminished the occurrence of spontaneous morphine withdrawal signs. Our findings showed that exercise reduces the spontaneous morphine-withdrawal signs, blocks the associated impairment of cognitive performance, and overcomes morphine-induced alterations in apoptotic proteins in favor of cell death. Thus, exercise may be a useful therapeutic strategy for cognitive and behavioral deficits in addict individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. dsRNA-Dependent Protein Kinase PKR and its Role in Stress, Signaling and HCV Infection

    Directory of Open Access Journals (Sweden)

    Eliane F. Meurs

    2012-10-01

    Full Text Available The double-stranded RNA-dependent protein kinase PKR plays multiple roles in cells, in response to different stress situations. As a member of the interferon (IFN‑Stimulated Genes, PKR was initially recognized as an actor in the antiviral action of IFN, due to its ability to control translation, through phosphorylation, of the alpha subunit of eukaryotic initiation factor 2 (eIF2a. As such, PKR participates in the generation of stress granules, or autophagy and a number of viruses have designed strategies to inhibit its action. However, PKR deficient mice resist most viral infections, indicating that PKR may play other roles in the cell other than just acting as an antiviral agent. Indeed, PKR regulates several signaling pathways, either as an adapter protein and/or using its kinase activity. Here we review the role of PKR as an eIF2a kinase, its participation in the regulation of the NF-kB, p38MAPK and insulin pathways, and we focus on its role during infection with the hepatitis C virus (HCV. PKR binds the HCV IRES RNA, cooperates with some functions of the HCV core protein and may represent a target for NS5A or E2. Novel data points out for a role of PKR as a pro-HCV agent, both as an adapter protein and as an eIF2a-kinase, and in cooperation with the di-ubiquitin-like protein ISG15. Developing pharmaceutical inhibitors of PKR may help in resolving some viral infections as well as stress-related damages.

  3. BioC-compatible full-text passage detection for protein-protein interactions using extended dependency graph.

    Science.gov (United States)

    Peng, Yifan; Arighi, Cecilia; Wu, Cathy H; Vijay-Shanker, K

    2016-01-01

    There has been a large growth in the number of biomedical publications that report experimental results. Many of these results concern detection of protein-protein interactions (PPI). In BioCreative V, we participated in the BioC task and developed a PPI system to detect text passages with PPIs in the full-text articles. By adopting the BioC format, the output of the system can be seamlessly added to the biocuration pipeline with little effort required for the system integration. A distinctive feature of our PPI system is that it utilizes extended dependency graph, an intermediate level of representation that attempts to abstract away syntactic variations in text. As a result, we are able to use only a limited set of rules to extract PPI pairs in the sentences, and additional rules to detect additional passages for PPI pairs. For evaluation, we used the 95 articles that were provided for the BioC annotation task. We retrieved the unique PPIs from the BioGRID database for these articles and show that our system achieves a recall of 83.5%. In order to evaluate the detection of passages with PPIs, we further annotated Abstract and Results sections of 20 documents from the dataset and show that an f-value of 80.5% was obtained. To evaluate the generalizability of the system, we also conducted experiments on AIMed, a well-known PPI corpus. We achieved an f-value of 76.1% for sentence detection and an f-value of 64.7% for unique PPI detection.Database URL: http://proteininformationresource.org/iprolink/corpora. © The Author(s) 2016. Published by Oxford University Press.

  4. Selective functional activity measurement of a PEGylated protein with a modification-dependent activity assay.

    Science.gov (United States)

    Weber, Alfred; Engelmaier, Andrea; Mohr, Gabriele; Haindl, Sonja; Schwarz, Hans Peter; Turecek, Peter L

    2017-01-05

    BAX 855 (ADYNOVATE) is a PEGylated recombinant factor VIII (rFVIII) that showed prolonged circulatory half-life compared to unmodified rFVIII in hemophilic patients. Here, the development and validation of a novel assay is described that selectively measures the activity of BAX 855 as cofactor for the serine protease factor IX, which actives factor X. This method type, termed modification-dependent activity assay, is based on PEG-specific capture of BAX 855 by an anti-PEG IgG preparation, followed by a chromogenic FVIII activity assay. The assay principle enabled sensitive measurement of the FVIII cofactor activity of BAX 855 down to the pM-range without interference by non-PEGylated FVIII. The selectivity of the capture step, shown by competition studies to primarily target the terminal methoxy group of PEG, also allowed assessment of the intactness of the attached PEG chains. Altogether, the modification-dependent activity not only enriches, but complements the group of methods to selectively, accurately, and precisely measure a PEGylated drug in complex biological matrices. In contrast to all other methods described so far, it allows measurement of the biological activity of the PEGylated protein. Data obtained demonstrate that this new method principle can be extended to protein modifications other than PEGylation and to a variety of functional activity assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Pressure-dependent {sup 13}C chemical shifts in proteins: origins and applications

    Energy Technology Data Exchange (ETDEWEB)

    Wilton, David J. [University of Sheffield, Department of Molecular Biology and Biotechnology (United Kingdom); Kitahara, Ryo [Ritsumeikan University, College of Pharmaceutical Sciences (Japan); Akasaka, Kazuyuki [Kinki University, Department of Biotechnological Science, School of Biology-Oriented Science and Technology (Japan); Williamson, Mike P. [University of Sheffield, Department of Molecular Biology and Biotechnology (United Kingdom)], E-mail: m.williamson@sheffield.ac.uk

    2009-05-15

    Pressure-dependent {sup 13}C chemical shifts have been measured for aliphatic carbons in barnase and Protein G. Up to 200 MPa (2 kbar), most shift changes are linear, demonstrating pressure-independent compressibilities. CH{sub 3}, CH{sub 2} and CH carbon shifts change on average by +0.23, -0.09 and -0.18 ppm, respectively, due to a combination of bond shortening and changes in bond angles, the latter matching one explanation for the {gamma}-gauche effect. In addition, there is a residue-specific component, arising from both local compression and conformational change. To assess the relative magnitudes of these effects, residue-specific shift changes for protein G were converted into structural restraints and used to calculate the change in structure with pressure, using a genetic algorithm to convert shift changes into dihedral angle restraints. The results demonstrate that residual {sup 13}C{alpha} shifts are dominated by dihedral angle changes and can be used to calculate structural change, whereas {sup 13}C{beta} shifts retain significant dependence on local compression, making them less useful as structural restraints.

  6. Osteocalcin: The extra-skeletal role of a vitamin K-dependent protein in glucose metabolism

    Directory of Open Access Journals (Sweden)

    Eibhlís M. O'Connor

    2017-03-01

    Full Text Available The role of vitamin K in the body has long been associated with blood clotting and coagulation. In more recent times, its role in a range of physiological processes has been described including the regulation of bone and soft tissue calcification, cell growth and proliferation, cognition, inflammation, various oxidative processes and fertility, where osteocalcin is thought to up-regulate the synthesis of the enzymes needed for the biosynthesis of testosterone thereby increasing male fertility. Vitamin K dependent proteins (VKDP contain γ-carboxyglutamic acid residues which require post-translational, gamma-glutamyl carboxylation by the vitamin K-dependent (VKD gamma-glutamyl carboxylase enzyme for full functionality. These proteins are present both hepatically and extrahepatically. The role of bone-derived osteocalcin has many physiological roles including, maintenance of bone mass with more recent links to energy metabolism due to the role of the skeleton as an endocrine organ. It has been proposed that insulin binds to bone forming cells (osteoblasts promoting osteocalcin production which in turn promotes β-cell proliferation, insulin secretion and glucose control. However much of this research has been conducted in animal models with equivocal findings in human studies. This review will discuss the role of osteocalcin in relation to its role in human health, focusing specifically on glucose metabolism.

  7. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    Directory of Open Access Journals (Sweden)

    Xiquan Gao

    2014-03-01

    Full Text Available An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP, which is called PAMP-triggered immunity (PTI. The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI. Calcium (Ca2+ signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response.

  8. Evolutionary Paths of the cAMP-Dependent Protein Kinase (PKA) Catalytic Subunits

    Science.gov (United States)

    Søberg, Kristoffer; Jahnsen, Tore; Rognes, Torbjørn; Skålhegg, Bjørn S.; Laerdahl, Jon K.

    2013-01-01

    3′,5′-cyclic adenosine monophosphate (cAMP) dependent protein kinase or protein kinase A (PKA) has served as a prototype for the large family of protein kinases that are crucially important for signal transduction in eukaryotic cells. The PKA catalytic subunits Cα and Cβ, encoded by the two genes PRKACA and PRKACB, respectively, are among the best understood and characterized human kinases. Here we have studied the evolution of this gene family in chordates, arthropods, mollusks and other animals employing probabilistic methods and show that Cα and Cβ arose by duplication of an ancestral PKA catalytic subunit in a common ancestor of vertebrates. The two genes have subsequently been duplicated in teleost fishes. The evolution of the PRKACG retroposon in simians was also investigated. Although the degree of sequence conservation in the PKA Cα/Cβ kinase family is exceptionally high, a small set of signature residues defining Cα and Cβ subfamilies were identified. These conserved residues might be important for functions that are unique to the Cα or Cβ clades. This study also provides a good example of a seemingly simple phylogenetic problem which, due to a very high degree of sequence conservation and corresponding weak phylogenetic signals, combined with problematic nonphylogenetic signals, is nontrivial for state-of-the-art probabilistic phylogenetic methods. PMID:23593352

  9. DNA-dependent protein kinase participates in the radiation activation of NF-kB

    International Nuclear Information System (INIS)

    Rosenzweig, Kenneth E.; Youmell, Matthew B.; Price, Brendan D.

    1997-01-01

    The NF-kB transcription factor is maintained in an inactive state by binding to the lkBa inhibitory protein. Activation requires phosphorylation and degradation of lkBa, releasing active NF-kB. NF-kB can be activated by cytokines, antigens, free radicals and X-ray irradiation. The protein kinase responsible for phosphorylation of lkBa in vivo has not been fully characterized. Here, we have examined the role of the DNA-dependent protein kinases (DNA-PK) in the radiation-activation of NF-kB. Wortmannin is an inhibitor of DNA-PK and related kinases. Exposure of SW480 cells to wortmannin inhibited the radioactivation of NF-kB DNA-binding. Analysis of lkBa levels by western blotting indicated that wortmannin blocked the radiation induced degradation of lkBa. In in vitro experiments, purified DNA-PK was able to efficiently phosphorylate lkBa, and this phosphorylation was inhibited by wortmannin. In contrast, the induction of NF-kB activity by TNFa was unaffected by wortmannin. The results suggest that DNA-PK may phosphorylate lkBa following irradiation, leading to degradation of lkBa and the release of active NF-kB. The inability of wortmannin to block TNFa activation of NF-kB indicates there may be more than one pathway for the activation of NF-kB

  10. The role of DNA dependent protein kinase in synapsis of DNA ends.

    Science.gov (United States)

    Weterings, Eric; Verkaik, Nicole S; Brüggenwirth, Hennie T; Hoeijmakers, Jan H J; van Gent, Dik C

    2003-12-15

    DNA dependent protein kinase (DNA-PK) plays a central role in the non-homologous end-joining pathway of DNA double strand break repair. Its catalytic subunit (DNA-PK(CS)) functions as a serine/threonine protein kinase. We show that DNA-PK forms a stable complex at DNA termini that blocks the action of exonucleases and ligases. The DNA termini become accessible after autophosphorylation of DNA-PK(CS), which we demonstrate to require synapsis of DNA ends. Interestingly, the presence of DNA-PK prevents ligation of the two synapsed termini, but allows ligation to another DNA molecule. This alteration of the ligation route is independent of the type of ligase that we used, indicating that the intrinsic architecture of the DNA-PK complex itself is not able to support ligation of the synapsed DNA termini. We present a working model in which DNA-PK creates a stable molecular bridge between two DNA ends that is remodeled after DNA-PK autophosphorylation in such a way that the extreme termini become accessible without disrupting synapsis. We infer that joining of synapsed DNA termini would require an additional protein factor.

  11. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    Science.gov (United States)

    Gao, Xiquan; Cox, Kevin L.; He, Ping

    2014-01-01

    An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP), which is called PAMP-triggered immunity (PTI). The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI). Calcium (Ca2+) signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs) have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF)-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response. PMID:27135498

  12. Recombinant VSV G proteins reveal a novel raft-dependent endocytic pathway in resorbing osteoclasts

    International Nuclear Information System (INIS)

    Mulari, Mika T.K.; Nars, Martin; Laitala-Leinonen, Tiina; Kaisto, Tuula; Metsikkoe, Kalervo; Sun Yi; Vaeaenaenen, H. Kalervo

    2008-01-01

    Transcytotic membrane flow delivers degraded bone fragments from the ruffled border to the functional secretory domain, FSD, in bone resorbing osteoclasts. Here we show that there is also a FSD-to-ruffled border trafficking pathway that compensates for the membrane loss during the matrix uptake process and that rafts are essential for this ruffled border-targeted endosomal pathway. Replacing the cytoplasmic tail of the vesicular stomatitis virus G protein with that of CD4 resulted in partial insolubility in Triton X-100 and retargeting from the peripheral non-bone facing plasma membrane to the FSD. Recombinant G proteins were subsequently endosytosed and delivered from the FSD to the peripheral fusion zone of the ruffled border, which were both rich in lipid rafts as suggested by viral protein transport analysis and visualizing the rafts with fluorescent recombinant cholera toxin. Cholesterol depletion by methyl-β-cyclodextrin impaired the ruffled border-targeted vesicle trafficking pathway and inhibited bone resorption dose-dependently as quantified by measuring the CTX and TRACP 5b secreted to the culture medium and by measuring the resorbed area visualized with a bi-phasic labeling method using sulpho-NHS-biotin and WGA-lectin. Thus, rafts are vital for membrane recycling from the FSD to the late endosomal/lysosomal ruffled border and bone resorption

  13. Comparative molecular modeling study of Arabidopsis NADPH-dependent thioredoxin reductase and its hybrid protein.

    Directory of Open Access Journals (Sweden)

    Yuno Lee

    Full Text Available 2-Cys peroxiredoxins (Prxs play important roles in the protection of chloroplast proteins from oxidative damage. Arabidopsis NADPH-dependent thioredoxin reductase isotype C (AtNTRC was identified as efficient electron donor for chloroplastic 2-Cys Prx-A. There are three isotypes (A, B, and C of thioredoxin reductase (TrxR in Arabidopsis. AtNTRA contains only TrxR domain, but AtNTRC consists of N-terminal TrxR and C-terminal thioredoxin (Trx domains. AtNTRC has various oligomer structures, and Trx domain is important for chaperone activity. Our previous experimental study has reported that the hybrid protein (AtNTRA-(Trx-D, which was a fusion of AtNTRA and Trx domain from AtNTRC, has formed variety of structures and shown strong chaperone activity. But, electron transfer mechanism was not detected at all. To find out the reason of this problem with structural basis, we performed two different molecular dynamics (MD simulations on AtNTRC and AtNTRA-(Trx-D proteins with same cofactors such as NADPH and flavin adenine dinucleotide (FAD for 50 ns. Structural difference has found from superimposition of two structures that were taken relatively close to average structure. The main reason that AtNTRA-(Trx-D cannot transfer the electron from TrxR domain to Trx domain is due to the difference of key catalytic residues in active site. The long distance between TrxR C153 and disulfide bond of Trx C387-C390 has been observed in AtNTRA-(Trx-D because of following reasons: i unstable and unfavorable interaction of the linker region, ii shifted Trx domain, and iii different or weak interface interaction of Trx domains. This study is one of the good examples for understanding the relationship between structure formation and reaction activity in hybrid protein. In addition, this study would be helpful for further study on the mechanism of electron transfer reaction in NADPH-dependent thioredoxin reductase proteins.

  14. Electron mean free path dependence of the critical currents and the pair-breaking limit in superconducting films

    International Nuclear Information System (INIS)

    Fedorov, N.; Rinderer, L.

    1977-01-01

    We have studied the current-induced breakdown of superconductivity in wide (100--980 μm) and thin (0.25--0.98 μm) films of tin. It is shown that the current at which the resistance of the sample begins to rise rapidly in the process of the destruction of superconductivity by a current can be fairly well associated with the theoretical value of the pair-breaking current in the Ginzburg-Landau phenomenological approach (I/sub c//sup G L/). This effect is observed over a rather wide temperature region (up to ΔTapprox.0.7 K), depending on the electron mean free path in the films. The values of the critical currents outside the above-mentioned region correlate qualitatively with those determined by inhomogeneities of the films as proposed by Larkin and Ovchinnikov

  15. The induction of the oxidative burst in Elodea densa by sulfhydryl reagent does not depend on de novo protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Amicucci, Enrica [Milan, Univ. (Italy). Dipt. di Fisiologia e Biochimica delle Piante

    1997-12-31

    In Elodea densa Planchon leaves, N-ethylmaleimide (NEM) and other sulfhydryl-binding reagents induce a marked and temporary increase of respiration that is insensitive to cyanide, hydroxamate and propylgallate and completely inhibited by diphenylene iodonium (DPI) and by quinacrine. In this paper the author investigates whether the mechanism that causes the oxidative burst depends on the activation of preexisting oxidative systems or on the activation of de novo protein synthesis. The inhibitors used were cycloheximide (CHI) which inhibits protein synthesis in plant cells by depressing the incorporation of aminoacids into proteins and cordycepin, an effective inhibitor of mRNA synthesis. The data support the idea that the mechanism investigated depends on the activation of a long lived protein(s) and not on de novo protein synthesis.

  16. Protein phosphatases active on acetyl-CoA carboxylase phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Witters, L.A.; Bacon, G.W.

    1985-01-01

    The protein phosphatases in rat liver cytosol, active on rat liver acetyl-CoA carboxylase (ACC) phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase, have been partially purified by anion-exchange and gel filtration chromatography. The major phosphatase activities against all three substrates copurify through fractionation and appear to be identical to protein phosphatases 2A1 and 2A2. No unique protein phosphatase active on 32 P-ACC phosphorylated by the casein kinases was identified

  17. Calcium binding properties of calcium dependent protein kinase 1 (CaCDPK1) from Cicer arietinum.

    Science.gov (United States)

    Dixit, Ajay Kumar; Jayabaskaran, Chelliah

    2015-05-01

    Calcium plays a crucial role as a secondary messenger in all aspects of plant growth, development and survival. Calcium dependent protein kinases (CDPKs) are the major calcium decoders, which couple the changes in calcium level to an appropriate physiological response. The mechanism by which calcium regulates CDPK protein is not well understood. In this study, we investigated the interactions of Ca(2+) ions with the CDPK1 isoform of Cicer arietinum (CaCDPK1) using a combination of biophysical tools. CaCDPK1 has four different EF hands as predicted by protein sequence analysis. The fluorescence emission spectrum of CaCDPK1 showed quenching with a 5 nm red shift upon addition of calcium, indicating conformational changes in the tertiary structure. The plot of changes in intensity against calcium concentrations showed a biphasic curve with binding constants of 1.29 μM and 120 μM indicating two kinds of binding sites. Isothermal calorimetric (ITC) titration with CaCl2 also showed a biphasic curve with two binding constants of 0.027 μM and 1.7 μM. Circular dichroism (CD) spectra showed two prominent peaks at 208 and 222 nm indicating that CaCDPK1 is a α-helical rich protein. Calcium binding further increased the α-helical content of CaCDPK1 from 75 to 81%. Addition of calcium to CaCDPK1 also increased fluorescence of 8-anilinonaphthalene-1-sulfonic acid (ANS) indicating exposure of hydrophobic surfaces. Thus, on the whole this study provides evidence for calcium induced conformational changes, exposure of hydrophobic surfaces and heterogeneity of EF hands in CaCDPK1. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Iron Loading Selectively Increases Hippocampal Levels of Ubiquitinated Proteins and Impairs Hippocampus-Dependent Memory.

    Science.gov (United States)

    Figueiredo, Luciana Silva; de Freitas, Betânia Souza; Garcia, Vanessa Athaíde; Dargél, Vinícius Ayub; Köbe, Luiza Machado; Kist, Luiza Wilges; Bogo, Maurício Reis; Schröder, Nadja

    2016-11-01

    Alterations of brain iron levels have been observed in a number of neurodegenerative disorders. We have previously demonstrated that iron overload in the neonatal period results in severe and persistent memory deficits in the adulthood. Protein degradation mediated by the ubiquitin-proteasome system (UPS) plays a central regulatory role in several cellular processes. Impairment of the UPS has been implicated in the pathogenesis of neurodegenerative disorders. Here, we examined the effects of iron exposure in the neonatal period (12th-14th day of postnatal life) on the expression of proteasome β-1, β-2, and β-5 subunits, and ubiquitinated proteins in brains of 15-day-old rats, to evaluate the immediate effect of the treatment, and in adulthood to assess long-lasting effects. Two different memory types, emotionally motivated conditioning and object recognition were assessed in adult animals. We found that iron administered in the neonatal period impairs both emotionally motivated and recognition memory. Polyubiquitinated protein levels were increased in the hippocampus, but not in the cortex, of adult animals treated with iron. Gene expression of subunits β1 and β5 was affected by age, being higher in the early stages of development in the hippocampus, accompanied by an age-related increase in polyubiquitinated protein levels in adults. In the cortex, gene expression of the three proteasome subunits was significantly higher in adulthood than in the neonatal period. These findings suggest that expression of proteasome subunits and activity are age-dependently regulated. Iron exposure in the neonatal period produces long-lasting harmful effects on the UPS functioning, which may be related with iron-induced memory impairment.

  19. Analysis of core-periphery organization in protein contact networks reveals groups of structurally and functionally critical residues.

    Science.gov (United States)

    Isaac, Arnold Emerson; Sinha, Sitabhra

    2015-10-01

    The representation of proteins as networks of interacting amino acids, referred to as protein contact networks (PCN), and their subsequent analyses using graph theoretic tools, can provide novel insights into the key functional roles of specific groups of residues. We have characterized the networks corresponding to the native states of 66 proteins (belonging to different families) in terms of their core-periphery organization. The resulting hierarchical classification of the amino acid constituents of a protein arranges the residues into successive layers - having higher core order - with increasing connection density, ranging from a sparsely linked periphery to a densely intra-connected core (distinct from the earlier concept of protein core defined in terms of the three-dimensional geometry of the native state, which has least solvent accessibility). Our results show that residues in the inner cores are more conserved than those at the periphery. Underlining the functional importance of the network core, we see that the receptor sites for known ligand molecules of most proteins occur in the innermost core. Furthermore, the association of residues with structural pockets and cavities in binding or active sites increases with the core order. From mutation sensitivity analysis, we show that the probability of deleterious or intolerant mutations also increases with the core order. We also show that stabilization centre residues are in the innermost cores, suggesting that the network core is critically important in maintaining the structural stability of the protein. A publicly available Web resource for performing core-periphery analysis of any protein whose native state is known has been made available by us at http://www.imsc.res.in/ ~sitabhra/proteinKcore/index.html.

  20. Critical parameters in cost-effective alkaline extraction for high protein yield from leaves

    NARCIS (Netherlands)

    Zhang, C.; Sanders, J.P.M.; Bruins, M.E.

    2014-01-01

    Leaves are potential resources for feed or food, but their applications are limited due to a high proportion of insoluble protein and inefficient processing. To overcome these problems, parameters of alkaline extraction were evaluated using green tea residue (GTR). Protein extraction could be

  1. 3-Phosphoinositide-dependent PDK1 negatively regulates transforming growth factor-beta-induced signaling in a kinase-dependent manner through physical interaction with Smad proteins.

    Science.gov (United States)

    Seong, Hyun-A; Jung, Haiyoung; Kim, Kyong-Tai; Ha, Hyunjung

    2007-04-20

    We have reported previously that PDK1 physically interacts with STRAP, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and enhances STRAP-induced inhibition of TGF-beta signaling. In this study we show that PDK1 coimmunoprecipitates with Smad proteins, including Smad2, Smad3, Smad4, and Smad7, and that this association is mediated by the pleckstrin homology domain of PDK1. The association between PDK1 and Smad proteins is increased by insulin treatment but decreased by TGF-beta treatment. Analysis of the interacting proteins shows that Smad proteins enhance PDK1 kinase activity by removing 14-3-3, a negative regulator of PDK1, from the PDK1-14-3-3 complex. Knockdown of endogenous Smad proteins, including Smad3 and Smad7, by transfection with small interfering RNA produced the opposite trend and decreased PDK1 activity, protein kinase B/Akt phosphorylation, and Bad phosphorylation. Moreover, coexpression of Smad proteins and wild-type PDK1 inhibits TGF-beta-induced transcription, as well as TGF-beta-mediated biological functions, such as apoptosis and cell growth arrest. Inhibition was dose-dependent on PDK1, but no inhibition was observed in the presence of an inactive kinase-dead PDK1 mutant. In addition, confocal microscopy showed that wild-type PDK1 prevents translocation of Smad3 and Smad4 from the cytoplasm to the nucleus, as well as the redistribution of Smad7 from the nucleus to the cytoplasm in response to TGF-beta. Taken together, our results suggest that PDK1 negatively regulates TGF-beta-mediated signaling in a PDK1 kinase-dependent manner via a direct physical interaction with Smad proteins and that Smad proteins can act as potential positive regulators of PDK1.

  2. The MHV68 M2 protein drives IL-10 dependent B cell proliferation and differentiation.

    Directory of Open Access Journals (Sweden)

    Andrea M Siegel

    2008-04-01

    Full Text Available Murine gammaherpesvirus 68 (MHV68 establishes long-term latency in memory B cells similar to the human gammaherpesvirus Epstein Barr Virus (EBV. EBV encodes an interleukin-10 (IL-10 homolog and modulates cellular IL-10 expression; however, the role of IL-10 in the establishment and/or maintenance of chronic EBV infection remains unclear. Notably, MHV68 does not encode an IL-10 homolog, but virus infection has been shown to result in elevated serum IL-10 levels in wild-type mice, and IL-10 deficiency results in decreased establishment of virus latency. Here we show that a unique MHV68 latency-associated gene product, the M2 protein, is required for the elevated serum IL-10 levels observed at 2 weeks post-infection. Furthermore, M2 protein expression in primary murine B cells drives high level IL-10 expression along with increased secretion of IL-2, IL-6, and MIP-1alpha. M2 expression was also shown to significantly augment LPS driven survival and proliferation of primary murine B cells. The latter was dependent on IL-10 expression as demonstrated by the failure of IL10-/- B cells to proliferate in response to M2 protein expression and rescue of M2-associated proliferation by addition of recombinant murine IL-10. M2 protein expression in primary B cells also led to upregulated surface expression of the high affinity IL-2 receptor (CD25 and the activation marker GL7, along with down-regulated surface expression of B220, MHC II, and sIgD. The cells retained CD19 and sIgG expression, suggesting differentiation to a pre-plasma memory B cell phenotype. These observations are consistent with previous analyses of M2-null MHV68 mutants that have suggested a role for the M2 protein in expansion and differentiation of MHV68 latently infected B cells-perhaps facilitating the establishment of virus latency in memory B cells. Thus, while the M2 protein is unique to MHV68, analysis of M2 function has revealed an important role for IL-10 in MHV68 pathogenesis

  3. The MHV68 M2 protein drives IL-10 dependent B cell proliferation and differentiation.

    Science.gov (United States)

    Siegel, Andrea M; Herskowitz, Jeremy H; Speck, Samuel H

    2008-04-04

    Murine gammaherpesvirus 68 (MHV68) establishes long-term latency in memory B cells similar to the human gammaherpesvirus Epstein Barr Virus (EBV). EBV encodes an interleukin-10 (IL-10) homolog and modulates cellular IL-10 expression; however, the role of IL-10 in the establishment and/or maintenance of chronic EBV infection remains unclear. Notably, MHV68 does not encode an IL-10 homolog, but virus infection has been shown to result in elevated serum IL-10 levels in wild-type mice, and IL-10 deficiency results in decreased establishment of virus latency. Here we show that a unique MHV68 latency-associated gene product, the M2 protein, is required for the elevated serum IL-10 levels observed at 2 weeks post-infection. Furthermore, M2 protein expression in primary murine B cells drives high level IL-10 expression along with increased secretion of IL-2, IL-6, and MIP-1alpha. M2 expression was also shown to significantly augment LPS driven survival and proliferation of primary murine B cells. The latter was dependent on IL-10 expression as demonstrated by the failure of IL10-/- B cells to proliferate in response to M2 protein expression and rescue of M2-associated proliferation by addition of recombinant murine IL-10. M2 protein expression in primary B cells also led to upregulated surface expression of the high affinity IL-2 receptor (CD25) and the activation marker GL7, along with down-regulated surface expression of B220, MHC II, and sIgD. The cells retained CD19 and sIgG expression, suggesting differentiation to a pre-plasma memory B cell phenotype. These observations are consistent with previous analyses of M2-null MHV68 mutants that have suggested a role for the M2 protein in expansion and differentiation of MHV68 latently infected B cells-perhaps facilitating the establishment of virus latency in memory B cells. Thus, while the M2 protein is unique to MHV68, analysis of M2 function has revealed an important role for IL-10 in MHV68 pathogenesis-identifying a

  4. Simulation of Field Dependence of Critical Current Densities of Bulk High Tc Superconducting Materials regarding Thermally Activated Flux Motion

    Science.gov (United States)

    Santosh, M.; Naik, S. Pavan Kumar; Koblischka, M. R.

    2017-07-01

    In the upcoming generation, bulk high temperature superconductors (HTS) will play a crucial and a promising role in numerous industrial applications ranging from Maglev trains to magnetic resonance imaging, etc. Especially, the bulk HTS as permanent magnets are suitable due to the fact that they can trap magnetic fields being several orders of magnitude higher than those of the best hard ferromagnets. The bulk HTS LREBa2Cu3O7-δ (LREBCO or LRE-123, LRE: Y, Gd, etc.,) materials could obtain very powerful compact superconducting super-magnets, which can be operated at the cheaper liquid nitrogen temperature or below due to higher critical temperatures (i.e., ∼90 K). As a result, the new advanced technology can be utilized in a more attractive manner for a variety of technological and medical applications which have the capacity to revolutionize the field. An understanding of the magnetic field dependence of the critical current density (J c(H)) is important to develop better adapted materials. To achieve this goal, a variety of Jc (H) behaviours of bulk LREBCO samples were modelled regarding thermally activated flux motion. In essence, the Jc (H) curves follows a certain criterion where an exponential model is applied. However, to fit the complete Jc (H) curve of the LRE-123 samples an unique model is necessary to explain the behavior at low and high fields. The modelling of the various superconducting materials could be understood in terms of the pinning mechanisms.

  5. The dependence of critical current density of GdFeCo layer on composition of thermally assisted STT-RAM

    Science.gov (United States)

    Dai, B.; Zhu, J.; Liu, K.; Yang, L.; Han, J.

    2017-07-01

    Amorphous rare earth-transitional metal (RETM) GdFeCo memory layer with RE- and TM-rich compositions was fabricated in stacks of GdFeCo (10 nm)/Cu (3 nm)/[Co(0.2 nm)/Pd(0.4 nm)]6. Their magnetic properties and spin transfer torque (STT) switching of magnetization were investigated. The maximum magneto-resistance (MR) was around 0.24% for the TM-rich Gd21.4 (Fe90Co10)78.6 memory layer and was -0.03% for the RE-rich Gd29.0 (Fe90Co10)71.0 memory layer. The critical current densities Jc to switch the GdFeCo memory layers are in the range of 1.4 × 107 A/cm2-4.5 × 107 A/cm2. The dependence of critical current density Jc and effective anisotropy constant Keff on Gd composition were also investigated. Both Jc and Keff have maximum values in the Gd composition range from 21-29 at.%, suitable for thermally assisted STT-RAM for storage density exceeding Gb/inch2.

  6. Temperature dependence of critical current and transport current losses of 4 mm YBCO coated conductors manufactured using nonmagnetic substrate

    Science.gov (United States)

    Kvitkovic, J.; Hatwar, R.; Pamidi, S. V.; Fleshler, S.; Thieme, C.

    2015-12-01

    The temperature dependence of the critical current and AC losses were measured on American Superconductor Corporation's (AMSC) second generation high temperature superconducting (2G HTS) wire produced by Rolling Assisted Biaxially Textured Substrate (RABiTS) and Metal Organic Deposition (MOD) process. Wires manufactured with two types of substrates were characterized. The magnetic substrate with composition Ni5a%W exhibits a magnetic signature and has non-negligible AC losses in AC power applications. A new nonmagnetic substrate with an alloy composition Ni9a%W has been developed by AMSC to address the AC losses in 2G HTS. The data presented show that the performance of the new conductor is identical to the conductor with magnetic substrate in terms of critical current density. The data on AC losses demonstrate the absence of ferromagnetic loss component in the new conductor and significantly reduced AC losses at low to moderate values of I/Ic. The reduced losses will translate into reduced capital costs and lower operating costs of superconducting electrical devices for AC applications.

  7. Basal cell adhesion molecule/lutheran protein. The receptor critical for sickle cell adhesion to laminin.

    Science.gov (United States)

    Udani, M; Zen, Q; Cottman, M; Leonard, N; Jefferson, S; Daymont, C; Truskey, G; Telen, M J

    1998-01-01

    Sickle red cells bind significant amounts of soluble laminin, whereas normal red cells do not. Solid phase assays demonstrate that B-CAM/LU binds laminin on intact sickle red cells and that red cell B-CAM/LU binds immobilized laminin, whereas another putative laminin binding protein, CD44, does not. Ligand blots also identify B-CAM/LU as the only erythrocyte membrane protein(s) that binds laminin. Finally, transfection of murine erythroleukemia cells with human B-CAM cDNA induces binding of both soluble and immobilized laminin. Thus, B-CAM/LU appears to be the major laminin-binding protein of sickle red cells. Previously reported overexpression of B-CAM/LU by epithelial cancer cells suggests that this protein may also serve as a laminin receptor in malignant tumors. PMID:9616226

  8. Cycloheximide Can Induce Bax/Bak Dependent Myeloid Cell Death Independently of Multiple BH3-Only Proteins.

    Directory of Open Access Journals (Sweden)

    Katharine J Goodall

    Full Text Available Apoptosis mediated by Bax or Bak is usually thought to be triggered by BH3-only members of the Bcl-2 protein family. BH3-only proteins can directly bind to and activate Bax or Bak, or indirectly activate them by binding to anti-apoptotic Bcl-2 family members, thereby relieving their inhibition of Bax and Bak. Here we describe a third way of activation of Bax/Bak dependent apoptosis that does not require triggering by multiple BH3-only proteins. In factor dependent myeloid (FDM cell lines, cycloheximide induced apoptosis by a Bax/Bak dependent mechanism, because Bax-/-Bak-/- lines were profoundly resistant, whereas FDM lines lacking one or more genes for BH3-only proteins remained highly sensitive. Addition of cycloheximide led to the rapid loss of Mcl-1 but did not affect the expression of other Bcl-2 family proteins. In support of these findings, similar results were observed by treating FDM cells with the CDK inhibitor, roscovitine. Roscovitine reduced Mcl-1 abundance and caused Bax/Bak dependent cell death, yet FDM lines lacking one or more genes for BH3-only proteins remained highly sensitive. Therefore Bax/Bak dependent apoptosis can be regulated by the abundance of anti-apoptotic Bcl-2 family members such as Mcl-1, independently of several known BH3-only proteins.

  9. Critical epitopes in the nucleocapsid protein of SFTS virus recognized by a panel of SFTS patients derived human monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Li Yu

    Full Text Available BACKGROUND: SFTS virus (SFTSV is a newly discovered pathogen to cause severe fever with thrombocytopenia syndrome (SFTS in human. Successful control of SFTSV epidemic requires better understanding of the antigen target in humoral immune responses to the new bunyavirus infection. METHODOLOGY/PRINCIPAL FINDINGS: We have generated a combinatorial Fab antibody phage library from two SFTS patients recovered from SFTSV infection. To date, 94 unique human antibodies have been generated and characterized from over 1200 Fab antibody clones obtained by screening the library with SFTS purified virions. All those monoclonal antibodies (MAbs recognized the nucleocapsid (N protein of SFTSV while none of them were reactive to the viral glycoproteins Gn or Gc. Furthermore, over screening 1000 mouse monoclonal antibody clones derived from SFTSV virions immunization, 462 clones reacted with N protein, while only 16 clones were reactive to glycoprotein. Furthermore, epitope mapping of SFTSV N protein was performed through molecular simulation, site mutation and competitive ELISA, and we found that at least 4 distinct antigenic epitopes within N protein were recognized by those human and mouse MAbs, in particular mutation of Glu10 to Ala10 abolished or significantly reduced the binding activity of nearly most SFTS patients derived MAbs. CONCLUSIONS/SIGNIFICANCE: The large number of human recombinant MAbs derived from SFTS patients recognized the viral N protein indicated the important role of the N protein in humoral responses to SFTSV infection, and the critical epitopes we defined in this study provided molecular basis for detection and diagnosis of SFTSV infection.

  10. The role of cAMP-dependent protein kinase A in bile canalicular plasma membrane biogenesis in hepatocytes

    NARCIS (Netherlands)

    Wojtal, Kacper Andrze

    2007-01-01

    cAMP-dependent protein kinase A is one of the most important enzymes in the eukaryotic cell. The function of this protein is strictly in a close relation to the signaling pathways, which trigger the production of intracellular secondary messenger –cAMP. As a consequence of PKA activation numerous

  11. Dma1-dependent degradation of SIN proteins during meiosis in Schizosaccharomyces pombe.

    Science.gov (United States)

    Krapp, Andrea; Simanis, Viesturs

    2014-07-15

    The Schizosaccharomyces pombe septation initiation network (SIN) is required for cytokinesis during vegetative growth and for spore formation during meiosis. Regulation of the SIN during mitosis has been studied extensively, but less is known about its meiotic regulation. Here, we show that several aspects of SIN regulation differ between mitosis and meiosis. First, the presence of GTP-bound Spg1p is not the main determinant of the timing of Cdc7p and Sid1p association with the spindle pole body (SPB) during meiosis. Second, the localisation dependencies of SIN proteins differ from those in mitotic cells, suggesting a modified functional organisation of the SIN during meiosis. Third, there is stage-specific degradation of SIN components in meiosis; Byr4p is degraded after meiosis I, whereas the degradation of Cdc7p, Cdc11p and Sid4p occurs after the second meiotic division and depends upon the ubiquitin ligase Dma1p. Finally, Dma1p-dependent degradation is not restricted to the SIN, as we show that Dma1p is needed for the degradation of Mcp6p (also known as Hrs1p) during meiosis I. Taken together, these data suggest that stage-specific targeted proteolysis plays an important role in regulating meiotic progression. © 2014. Published by The Company of Biologists Ltd.

  12. Regulatory Phosphorylation of Bacterial-Type PEP Carboxylase by the Ca2+-Dependent Protein Kinase RcCDPK1 in Developing Castor Oil Seeds.

    Science.gov (United States)

    Ying, Sheng; Hill, Allyson T; Pyc, Michal; Anderson, Erin M; Snedden, Wayne A; Mullen, Robert T; She, Yi-Min; Plaxton, William C

    2017-06-01

    Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled cytosolic enzyme situated at a crucial branch point of central plant metabolism. In developing castor oil seeds ( Ricinus communis ) a novel, allosterically desensitized 910-kD Class-2 PEPC hetero-octameric complex, arises from a tight interaction between 107-kD plant-type PEPC and 118-kD bacterial-type (BTPC) subunits. The native Ca 2+ -dependent protein kinase (CDPK) responsible for in vivo inhibitory phosphorylation of Class-2 PEPC's BTPC subunit's at Ser-451 was highly purified from COS and identified as RcCDPK1 (XP_002526815) by mass spectrometry. Heterologously expressed RcCDPK1 catalyzed Ca 2+ -dependent, inhibitory phosphorylation of BTPC at Ser-451 while exhibiting: ( i ) a pair of Ca 2+ binding sites with identical dissociation constants of 5.03 μM, ( ii ) a Ca 2+ -dependent electrophoretic mobility shift, and ( iii ) a marked Ca 2+ -independent hydrophobicity. Pull-down experiments established the Ca 2+ -dependent interaction of N-terminal GST-tagged RcCDPK1 with BTPC. RcCDPK1-Cherry localized to the cytosol and nucleus of tobacco bright yellow-2 cells, but colocalized with mitochondrial-surface associated BTPC-enhanced yellow fluorescent protein when both fusion proteins were coexpressed. Deletion analyses demonstrated that although its N-terminal variable domain plays an essential role in optimizing Ca 2+ -dependent RcCDPK1 autophosphorylation and BTPC transphosphorylation activity, it is not critical for in vitro or in vivo target recognition. Arabidopsis ( Arabidopsis thaliana ) CPK4 and soybean ( Glycine max ) CDPKβ are RcCDPK1 orthologs that effectively phosphorylated castor BTPC at Ser-451. Overall, the results highlight a potential link between cytosolic Ca 2+ signaling and the posttranslational control of respiratory CO 2 refixation and anaplerotic photosynthate partitioning in support of storage oil and protein biosynthesis in developing COS. © 2017 American Society of Plant

  13. Regulatory Phosphorylation of Bacterial-Type PEP Carboxylase by the Ca2+-Dependent Protein Kinase RcCDPK1 in Developing Castor Oil Seeds1[OPEN

    Science.gov (United States)

    Hill, Allyson T.; Anderson, Erin M.; She, Yi-Min

    2017-01-01

    Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled cytosolic enzyme situated at a crucial branch point of central plant metabolism. In developing castor oil seeds (Ricinus communis) a novel, allosterically desensitized 910-kD Class-2 PEPC hetero-octameric complex, arises from a tight interaction between 107-kD plant-type PEPC and 118-kD bacterial-type (BTPC) subunits. The native Ca2+-dependent protein kinase (CDPK) responsible for in vivo inhibitory phosphorylation of Class-2 PEPC’s BTPC subunit’s at Ser-451 was highly purified from COS and identified as RcCDPK1 (XP_002526815) by mass spectrometry. Heterologously expressed RcCDPK1 catalyzed Ca2+-dependent, inhibitory phosphorylation of BTPC at Ser-451 while exhibiting: (i) a pair of Ca2+ binding sites with identical dissociation constants of 5.03 μM, (ii) a Ca2+-dependent electrophoretic mobility shift, and (iii) a marked Ca2+-independent hydrophobicity. Pull-down experiments established the Ca2+-dependent interaction of N-terminal GST-tagged RcCDPK1 with BTPC. RcCDPK1-Cherry localized to the cytosol and nucleus of tobacco bright yellow-2 cells, but colocalized with mitochondrial-surface associated BTPC-enhanced yellow fluorescent protein when both fusion proteins were coexpressed. Deletion analyses demonstrated that although its N-terminal variable domain plays an essential role in optimizing Ca2+-dependent RcCDPK1 autophosphorylation and BTPC transphosphorylation activity, it is not critical for in vitro or in vivo target recognition. Arabidopsis (Arabidopsis thaliana) CPK4 and soybean (Glycine max) CDPKβ are RcCDPK1 orthologs that effectively phosphorylated castor BTPC at Ser-451. Overall, the results highlight a potential link between cytosolic Ca2+ signaling and the posttranslational control of respiratory CO2 refixation and anaplerotic photosynthate partitioning in support of storage oil and protein biosynthesis in developing COS. PMID:28363991

  14. Critical involvement of the ATM-dependent DNA damage response in the apoptotic demise of HIV-1-elicited syncytia.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Perfettini

    Full Text Available DNA damage can activate the oncosuppressor protein ataxia telangiectasia mutated (ATM, which phosphorylates the histone H2AX within characteristic DNA damage foci. Here, we show that ATM undergoes an activating phosphorylation in syncytia elicited by the envelope glycoprotein complex (Env of human immunodeficiency virus-1 (HIV-1 in vitro. This was accompanied by aggregation of ATM in discrete nuclear foci that also contained phospho-histone H2AX. DNA damage foci containing phosphorylated ATM and H2AX were detectable in syncytia present in the brain or lymph nodes from patients with HIV-1 infection, as well as in a fraction of blood leukocytes, correlating with viral status. Knockdown of ATM or of its obligate activating factor NBS1 (Nijmegen breakage syndrome 1 protein, as well as pharmacological inhibition of ATM with KU-55933, inhibited H2AX phosphorylation and prevented Env-elicited syncytia from undergoing apoptosis. ATM was found indispensable for the activation of MAP kinase p38, which catalyzes the activating phosphorylation of p53 on serine 46, thereby causing p53 dependent apoptosis. Both wild type HIV-1 and an HIV-1 mutant lacking integrase activity induced syncytial apoptosis, which could be suppressed by inhibiting ATM. HIV-1-infected T lymphoblasts from patients with inactivating ATM or NBS1 mutations also exhibited reduced syncytial apoptosis. Altogether these results indicate that apoptosis induced by a fusogenic HIV-1 Env follows a pro-apoptotic pathway involving the sequential activation of ATM, p38MAPK and p53.

  15. Proteins and amino acids are fundamental to optimal nutrition support in critically ill patients

    NARCIS (Netherlands)

    Weijs, Peter JM; Cynober, Luc; DeLegge, Mark; Kreymann, Georg; Wernerman, Jan; Wolfe, Robert R

    2014-01-01

    In this review, we present the growing scientific evidence showing the importance of protein and amino acid provision in nutritional support and their impact on preservation of muscle mass and patient outcomes.

  16. The HSV-1 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B.

    Directory of Open Access Journals (Sweden)

    Jillian C Carmichael

    2018-05-01

    Full Text Available All herpesviruses have mechanisms for passing through cell junctions, which exclude neutralizing antibodies and offer a clear path to neighboring, uninfected cells. In the case of herpes simplex virus type 1 (HSV-1, direct cell-to-cell transmission takes place between epithelial cells and sensory neurons, where latency is established. The spreading mechanism is poorly understood, but mutations in four different HSV-1 genes can dysregulate it, causing neighboring cells to fuse to produce syncytia. Because the host proteins involved are largely unknown (other than the virus entry receptor, we were intrigued by an earlier discovery that cells infected with wild-type HSV-1 will form syncytia when treated with salubrinal. A biotinylated derivative of this drug was used to pull down cellular complexes, which were analyzed by mass spectrometry. One candidate was a protein tyrosine phosphatase (PTP1B, and although it ultimately proved not to be the target of salubrinal, it was found to be critical for the mechanism of cell-to-cell spread. In particular, a highly specific inhibitor of PTP1B (CAS 765317-72-4 blocked salubrinal-induced fusion, and by itself resulted in a dramatic reduction in the ability of HSV-1 to spread in the presence of neutralizing antibodies. The importance of this phosphatase was confirmed in the absence of drugs by using PTP1B-/- cells. Importantly, replication assays showed that virus titers were unaffected when PTP1B was inhibited or absent. Only cell-to-cell spread was altered. We also examined the effects of salubrinal and the PTP1B inhibitor on the four Syn mutants of HSV-1, and strikingly different responses were found. That is, both drugs individually enhanced fusion for some mutants and reduced fusion for others. PTP1B is the first host factor identified to be specifically required for cell-to-cell spread, and it may be a therapeutic target for preventing HSV-1 reactivation disease.

  17. The HSV-1 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B.

    Science.gov (United States)

    Carmichael, Jillian C; Yokota, Hiroki; Craven, Rebecca C; Schmitt, Anthony; Wills, John W

    2018-05-01

    All herpesviruses have mechanisms for passing through cell junctions, which exclude neutralizing antibodies and offer a clear path to neighboring, uninfected cells. In the case of herpes simplex virus type 1 (HSV-1), direct cell-to-cell transmission takes place between epithelial cells and sensory neurons, where latency is established. The spreading mechanism is poorly understood, but mutations in four different HSV-1 genes can dysregulate it, causing neighboring cells to fuse to produce syncytia. Because the host proteins involved are largely unknown (other than the virus entry receptor), we were intrigued by an earlier discovery that cells infected with wild-type HSV-1 will form syncytia when treated with salubrinal. A biotinylated derivative of this drug was used to pull down cellular complexes, which were analyzed by mass spectrometry. One candidate was a protein tyrosine phosphatase (PTP1B), and although it ultimately proved not to be the target of salubrinal, it was found to be critical for the mechanism of cell-to-cell spread. In particular, a highly specific inhibitor of PTP1B (CAS 765317-72-4) blocked salubrinal-induced fusion, and by itself resulted in a dramatic reduction in the ability of HSV-1 to spread in the presence of neutralizing antibodies. The importance of this phosphatase was confirmed in the absence of drugs by using PTP1B-/- cells. Importantly, replication assays showed that virus titers were unaffected when PTP1B was inhibited or absent. Only cell-to-cell spread was altered. We also examined the effects of salubrinal and the PTP1B inhibitor on the four Syn mutants of HSV-1, and strikingly different responses were found. That is, both drugs individually enhanced fusion for some mutants and reduced fusion for others. PTP1B is the first host factor identified to be specifically required for cell-to-cell spread, and it may be a therapeutic target for preventing HSV-1 reactivation disease.

  18. Enhancement of antibody-dependent cellular cytotoxicity of cetuximab by a chimeric protein encompassing interleukin-15.

    Science.gov (United States)

    Ochoa, Maria Carmen; Minute, Luna; López, Ascensión; Pérez-Ruiz, Elisabeth; Gomar, Celia; Vasquez, Marcos; Inoges, Susana; Etxeberria, Iñaki; Rodriguez, Inmaculada; Garasa, Saray; Mayer, Jan-Peter Andreas; Wirtz, Peter; Melero, Ignacio; Berraondo, Pedro

    2018-01-01

    Enhancement of antibody-dependent cellular cytotoxicity (ADCC) may potentiate the antitumor efficacy of tumor-targeted monoclonal antibodies. Increasing the numbers and antitumor activity of NK cells is a promising strategy to maximize the ADCC of standard-of-care tumor-targeted antibodies. For this purpose, we have preclinically tested a recombinant chimeric protein encompassing the sushi domain of the IL15Rα, IL-15, and apolipoprotein A-I (Sushi-IL15-Apo) as produced in CHO cells. The size-exclusion purified monomeric fraction of this chimeric protein was stable and retained the IL-15 and the sushi domain bioactivity as measured by CTLL-2 and Mo-7e cell proliferation and STAT5 phosphorylation in freshly isolated human NK and CD8 + T cells. On cell cultures, Sushi-IL15-Apo increases NK cell proliferation and survival as well as spontaneous and antibody-mediated cytotoxicity. Scavenger receptor class B type I (SR-B1) is the receptor for ApoA-I and is expressed on the surface of tumor cells. SR-B1 can adsorb the chimeric protein on tumor cells and can transpresent IL-15 to NK and CD8 + T cells. A transient NK-humanized murine model was developed to test the increase of ADCC attained by the chimeric protein in vivo . The EGFR + human colon cancer cell line HT-29 was intraperitoneally inoculated in immune-deficient Rag2 -/- γc -/- mice that were reconstituted with freshly isolated PBMCs and treated with the anti-EGFR mAb cetuximab. The combination of the Sushi-IL15-Apo protein and cetuximab reduced the number of remaining tumor cells in the peritoneal cavity and delayed tumor engraftment in the peritoneum. Furthermore, Sushi-IL15-Apo increased the anti-tumor effect of a murine anti-EGFR mAb in Rag1 -/- mice bearing subcutaneous MC38 colon cancer transfected to express EGFR. Thus, Sushi-IL15-Apo is a potent tool to increase the number and the activation of NK cells to promote the ADCC activity of antibodies targeting tumor antigens.

  19. Akt1/protein kinase Bα is critical for ischemic and VEGF-mediated angiogenesis

    OpenAIRE

    Ackah, Eric; Yu, Jun; Zoellner, Stefan; Iwakiri, Yasuko; Skurk, Carsten; Shibata, Rei; Ouchi, Noriyuki; Easton, Rachael M.; Galasso, Gennaro; Birnbaum, Morris J.; Walsh, Kenneth; Sessa, William C.

    2005-01-01

    Akt, or protein kinase B, is a multifunctional serine-threonine protein kinase implicated in a diverse range of cellular functions including cell metabolism, survival, migration, and gene expression. However, the in vivo roles and effectors of individual Akt isoforms in signaling are not explicitly clear. Here we show that the genetic loss of Akt1, but not Akt2, in mice results in defective ischemia and VEGF-induced angiogenesis as well as severe peripheral vascular disease. Akt1 knockout (Ak...

  20. Predictive value of C-reactive protein in critically ill patients after abdominal surgery

    Directory of Open Access Journals (Sweden)

    Frédéric Sapin

    Full Text Available OBJECTIVES: The development of sepsis after abdominal surgery is associated with high morbidity and mortality. Due to inflammation, it may be difficult to diagnose infection when it occurs, but measurement of C-reactive protein could facilitate this diagnosis. In the present study, we evaluated the predictive value and time course of C-reactive protein in relation to outcome in patients admitted to the intensive care unit (ICU after abdominal surgery. METHODS: We included patients admitted to the ICU after abdominal surgery over a period of two years. The patients were divided into two groups according to their outcome: favorable (F; left the ICU alive, without modification of the antibiotic regimen and unfavorable (D; death in the ICU, surgical revision with or without modification of the antibiotic regimen or just modification of the regimen. We then compared the highest C-reactive protein level on the first day of admission between the two groups. RESULTS: A total of 308 patients were included: 86 patients had an unfavorable outcome (group D and 222 had a favorable outcome (group F. The groups were similar in terms of leukocytosis, neutrophilia, and platelet count. C-reactive protein was significantly higher at admission in group D and was the best predictor of an unfavorable outcome, with a sensitivity of 74% and a specificity of 72% for a threshold of 41 mg/L. No changes in C-reactive protein, as assessed based on the delta C-reactive protein, especially at days 4 and 5, were associated with a poor prognosis. CONCLUSIONS: A C-reactive protein cut-off of 41 mg/L during the first day of ICU admission after abdominal surgery was a predictor of an adverse outcome. However, no changes in the C-reactive protein concentration, especially by day 4 or 5, could identify patients at risk of death.

  1. The ethanol-induced stimulation of rat duodenal mucosal bicarbonate secretion in vivo is critically dependent on luminal Cl-.

    Directory of Open Access Journals (Sweden)

    Anna Sommansson

    Full Text Available Alcohol may induce metabolic and functional changes in gastrointestinal epithelial cells, contributing to impaired mucosal barrier function. Duodenal mucosal bicarbonate secretion (DBS is a primary epithelial defense against gastric acid and also has an important function in maintaining the homeostasis of the juxtamucosal microenvironment. The aim in this study was to investigate the effects of the luminal perfusion of moderate concentrations of ethanol in vivo on epithelial DBS, fluid secretion and paracellular permeability. Under thiobarbiturate anesthesia, a ∼30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ in rats. The effects on DBS, duodenal transepithelial net fluid flux and the blood-to-lumen clearance of 51Cr-EDTA were investigated. Perfusing the duodenum with isotonic solutions of 10% or 15% ethanol-by-volume for 30 min increased DBS in a concentration-dependent manner, while the net fluid flux did not change. Pre-treatment with the CFTR inhibitor CFTRinh172 (i.p. or i.v. did not change the secretory response to ethanol, while removing Cl- from the luminal perfusate abolished the ethanol-induced increase in DBS. The administration of hexamethonium (i.v. but not capsazepine significantly reduced the basal net fluid flux and the ethanol-induced increase in DBS. Perfusing the duodenum with a combination of 1.0 mM HCl and 15% ethanol induced significantly greater increases in DBS than 15% ethanol or 1.0 mM HCl alone but did not influence fluid flux. Our data demonstrate that ethanol induces increases in DBS through a mechanism that is critically dependent on luminal Cl- and partly dependent on enteric neural pathways involving nicotinic receptors. Ethanol and HCl appears to stimulate DBS via the activation of different bicarbonate transporting mechanisms.

  2. Regulator of G protein signaling 6 is a critical mediator of both reward-related behavioral and pathological responses to alcohol.

    Science.gov (United States)

    Stewart, Adele; Maity, Biswanath; Anderegg, Simon P; Allamargot, Chantal; Yang, Jianqi; Fisher, Rory A

    2015-02-17

    Alcohol is the most commonly abused drug worldwide, and chronic alcohol consumption is a major etiological factor in the development of multiple pathological sequelae, including alcoholic cardiomyopathy and hepatic cirrhosis. Here, we identify regulator of G protein signaling 6 (RGS6) as a critical regulator of both alcohol-seeking behaviors and the associated cardiac and hepatic morbidities through two mechanistically divergent signaling actions. RGS6(-/-) mice consume less alcohol when given free access and are less susceptible to alcohol-induced reward and withdrawal. Antagonism of GABA(B) receptors or dopamine D2 receptors partially reversed the reduction in alcohol consumption in RGS6(-/-) animals. Strikingly, dopamine transporter inhibition completely restored alcohol seeking in mice lacking RGS6. RGS6 deficiency was associated with alterations in the expression of genes controlling dopamine (DA) homeostasis and a reduction in DA levels in the striatum. Taken together, these data implicate RGS6 as an essential regulator of DA bioavailability. RGS6 deficiency also provided dramatic protection against cardiac hypertrophy and fibrosis, hepatic steatosis, and gastrointestinal barrier dysfunction and endotoxemia when mice were forced to consume alcohol. Although RGS proteins canonically function as G-protein regulators, RGS6-dependent, alcohol-mediated toxicity in the heart, liver, and gastrointestinal tract involves the ability of RGS6 to promote reactive oxygen species-dependent apoptosis, an action independent of its G-protein regulatory capacity. We propose that inhibition of RGS6 might represent a viable means to reduce alcohol cravings and withdrawal in human patients, while simultaneously protecting the heart and liver from further damage upon relapse.

  3. Self-organized criticality and color vision: A guide to water-protein landscape evolution

    Science.gov (United States)

    Phillips, J. C.

    2013-02-01

    We focus here on the scaling properties of small interspecies differences between red cone opsin transmembrane proteins, using a hydropathic elastic roughening tool previously applied to the rhodopsin rod transmembrane proteins. This tool is based on a non-Euclidean hydropathic metric realistically rooted in the atomic coordinates of 5526 protein segments, which thereby encapsulates universal non-Euclidean long-range differential geometrical features of water films enveloping globular proteins in the Protein Data Bank. Whereas the rhodopsin blue rod water films are smoothest in humans, the red cone opsins’ water films are optimized for smoothness in cats and elephants, consistent with protein species landscapes that evolve differently in different contexts. We also analyze red cone opsins in the chromatophore-containing family of chameleons, snakes, zebrafish and goldfish, where short- and long-range (BLAST and hydropathic) amino acid (aa) correlations are found with values as large as 97%-99%. We use hydropathic aa optimization to estimate the maximum number Nmax of color shades that the human eye can discriminate, and obtain 106

  4. Toxic effect of visible light on Drosophila lifespan depending upon diet protein content.

    Science.gov (United States)

    Shen, Jie; Zhu, Xiang; Gu, Yitian; Zhang, Chiqian; Huang, Jiahong; Qing, Xiao

    2018-03-01

    We investigated the toxic effect of visible light on Drosophila lifespan in both sexes. The toxic effect of ultraviolet (UV) light on organisms is well known. However, the effects of illumination with visible light remain unclear. Here, we found that visible light could be toxic to Drosophila survival, depending on the protein content in diet. In addition, further analysis revealed significant interaction between light and sex, and showed that strong light shortened life span by causing opposite direction changes in mortality rate parameters in females versus males. Our findings suggest that photoageing may be a general phenomenon, and support the theory of sexual antagonistic pleiotropy in aging intervention. The results caution that exposure to visible light could be hazardous to life span and suggest that identification of the underlying mechanism would allow better understanding of aging intervention.

  5. Protein kinase C-dependent regulation of connexin43 gap junctions and hemichannels

    DEFF Research Database (Denmark)

    Alstrøm, Jette Skov; Stroemlund, Line Waring; Nielsen, Morten Schak

    2015-01-01

    Connexin43 (Cx43) generates intercellular gap junction channels involved in, among others, cardiac and brain function. Gap junctions are formed by the docking of two hemichannels from neighbouring cells. Undocked Cx43 hemichannels can upon different stimuli open towards the extracellular matrix...... and allow transport of molecules such as fluorescent dyes and ATP. A range of phosphorylated amino acids have been detected in the C-terminus of Cx43 and their physiological role has been intensively studied both in the gap junctional form of Cx43 and in its hemichannel configuration. We present the current...... knowledge of protein kinase C (PKC)-dependent regulation of Cx43 and discuss the divergent results....

  6. Development of a phosphorylated Momordica charantia protein system for inhibiting susceptible dose-dependent C. albicans to available antimycotics: An allosteric regulation of protein.

    Science.gov (United States)

    Qiao, Yuanbiao; Song, Li; Zhu, Chenchen; Wang, Qian; Guo, Tianyan; Yan, Yanhua; Li, Qingshan

    2017-11-15

    A regulatory Momordica charantia protein system was constructed allosterically by in vitro protein phosphorylation, in an attempt to evaluate antimycological pluripotency against dose-dependent susceptibilities in C. albicans. Fungal strain lineages susceptible to ketoconazole, econazole, miconazole, 5-flucytosine, nystatin and amphotericin B were prepared in laboratory, followed by identification via antifungal susceptibility testing. Protein phosphorylation was carried out in reactions with 5'-adenylic, guanidylic, cytidylic and uridylic acids and cyclic adenosine triphosphate, through catalysis of cyclin-dependent kinase 1, protein kinase A and protein kinase C respectively. Biochemical analysis of enzymatic reactions indicated the apparent Michaelis-Menten constants and maximal velocity values of 16.57-91.97mM and 55.56-208.33μM·min -1 , together with an approximate 1:1 reactant stoichiometric ratio. Three major protein phosphorylation sites were theoretically predicted at Thr255, Thr102 and Thr24 by a KinasePhos tool. Additionally, circular dichroism spectroscopy demonstrated that upon phosphorylation, protein folding structures were decreased in random coil, β6-sheet and α1-helix partial regions. McFarland equivalence standard testing yielded the concentration-dependent inhibition patterns, while fungus was grown in Sabouraud's dextrose agar. The minimal inhibitory concentrations of 0.16-0.51μM (at 50% response) were obtained for free protein and phosphorylated counterparts. With respect to the 3-cycling susceptibility testing regimen, individuals of total protein forms were administrated in-turn at 0.14μM/cycle. Relative inhibition ratios were retained to 66.13-81.04% of initial ones regarding the ketoconazole-susceptible C. albicans growth. An inhibitory protein system, with an advantage of decreasing antifungal susceptibilities to diverse antimycotics, was proposed because of regulatory pluripotency whereas little contribution to susceptibility in

  7. Evidence for differential changes of junctional complex proteins in murine neurocysticercosis dependent upon CNS vasculature.

    Science.gov (United States)

    Alvarez, Jorge I; Teale, Judy M

    2007-09-12

    The delicate balance required to maintain homeostasis of the central nervous system (CNS) is controlled by the blood-brain barrier (BBB). Upon injury, the BBB is disrupted compromising the CNS. BBB disruption has been represented as a uniform event. However, our group has shown in a murine model of neurocysticercosis (NCC) that BBB disruption varies depending upon the anatomical site/vascular bed analyzed. In this study further understanding of the mechanisms of BBB disruption was explored in blood vessels located in leptomeninges (pial vessels) and brain parenchyma (parenchymal vessels) by examining the expression of junctional complex proteins in murine brain infected with Mesocestoides corti. Both pial and parenchymal vessels from mock infected animals showed significant colocalization of junctional proteins and displayed an organized architecture. Upon infection, the patterned organization was disrupted and in some cases, particular tight junction and adherens junction proteins were undetectable or appeared to be undergoing proteolysis. The extent and timing of these changes differed between both types of vessels (pial vessel disruption within days versus weeks for parenchymal vessels). To approach potential mechanisms, the expression and activity of matrix metalloproteinase-9 (MMP-9) were evaluated by in situ zymography. The results indicated an increase in MMP-9 activity at sites of BBB disruption exhibiting leukocyte infiltration. Moreover, the timing of MMP activity in pial and parenchymal vessels correlated with the timing of permeability disruption. Thus, breakdown of the BBB is a mutable process despite the similar structure of the junctional complex between pial and parenchymal vessels and involvement of MMP activity.

  8. Calcium ion binding properties of Medicago truncatula calcium/calmodulin-dependent protein kinase.

    Science.gov (United States)

    Swainsbury, David J K; Zhou, Liang; Oldroyd, Giles E D; Bornemann, Stephen

    2012-09-04

    A calcium/calmodulin-dependent protein kinase (CCaMK) is essential in the interpretation of calcium oscillations in plant root cells for the establishment of symbiotic relationships with rhizobia and mycorrhizal fungi. Some of its properties have been studied in detail, but its calcium ion binding properties and subsequent conformational change have not. A biophysical approach was taken with constructs comprising either the visinin-like domain of Medicago truncatula CCaMK, which contains EF-hand motifs, or this domain together with the autoinhibitory domain. The visinin-like domain binds three calcium ions, leading to a conformational change involving the exposure of hydrophobic surfaces and a change in tertiary but not net secondary or quaternary structure. The affinity for calcium ions of visinin-like domain EF-hands 1 and 2 (K(d) = 200 ± 50 nM) was appropriate for the interpretation of calcium oscillations (~125-850 nM), while that of EF-hand 3 (K(d) ≤ 20 nM) implied occupancy at basal calcium ion levels. Calcium dissociation rate constants were determined for the visinin-like domain of CCaMK, M. truncatula calmodulin 1, and the complex between these two proteins (the slowest of which was 0.123 ± 0.002 s(-1)), suggesting the corresponding calcium association rate constants were at or near the diffusion-limited rate. In addition, the dissociation of calmodulin from the protein complex was shown to be on the same time scale as the dissociation of calcium ions. These observations suggest that the formation and dissociation of the complex between calmodulin and CCaMK would substantially mirror calcium oscillations, which typically have a 90 s periodicity.

  9. Maternal high-fat diet and offspring expression levels of vitamin K-dependent proteins.

    Science.gov (United States)

    Lanham, S A; Cagampang, F R; Oreffo, R O C

    2014-12-01

    Studies suggest that bone growth and development and susceptibility to vascular disease in later life are influenced by maternal nutrition during intrauterine and early postnatal life. There is evidence for a role of vitamin K-dependent proteins (VKDPs) including osteocalcin, matrix Gla protein, periostin, and growth-arrest specific- protein 6, in both bone and vascular development. We have examined whether there are alterations in these VKDPs in bone and vascular tissue from offspring of mothers subjected to a nutritional challenge: a high-fat diet during pregnancy and postnatally, using 6-week-old mouse offspring. Bone site-specific and sex-specific differences across femoral and vertebral bone in male and female offspring were observed. Overall a high-fat maternal diet and offspring diet exacerbated the bone changes observed. Sex-specific differences and tissue-specific differences were observed in VKDP levels in aorta tissue from high-fat diet-fed female offspring from high-fat diet-fed mothers displaying increased levels of Gas6 and Ggcx compared with those of female controls. In contrast, differences were seen in VKDP levels in femoral bone of female offspring with lower expression levels of Mgp in offspring of mothers fed a high-fat diet compared with those of controls. We observed a significant correlation in Mgp expression levels within the femur to measures of bone structure of the femur and vertebra, particularly in the male offspring cohort. In summary, the current study has highlighted the importance of maternal nutrition on offspring bone development and the correlation of VKDPs to bone structure.

  10. Protein farnesyltransferase isoprenoid substrate discrimination is dependent on isoprene double bonds and branched methyl groups.

    Science.gov (United States)

    Micali, E; Chehade, K A; Isaacs, R J; Andres, D A; Spielmann, H P

    2001-10-16

    Farnesylation is a posttranslational lipid modification in which a 15-carbon farnesyl isoprenoid is linked via a thioether bond to specific cysteine residues of proteins in a reaction catalyzed by protein farnesyltransferase (FTase). We synthesized the benzyloxyisoprenyl pyrophosphate (BnPP) series of transferable farnesyl pyrophosphate (FPP) analogues (1a-e) to test the length dependence of the isoprenoid substrate on the FTase-catalyzed transfer of lipid to protein substrate. Kinetic analyses show that pyrophosphates 1a-e and geranyl pyrophosphate (GPP) transfer with a lower efficiency than FPP whereas geranylgeranyl pyrophosphate (GGPP) does not transfer at all. While a correlation was found between K(m) and analogue hydrophobicity and length, there was no correlation between k(cat) and these properties. Potential binding geometries of FPP, GPP, GGPP, and analogues 1a-e were examined by modeling the molecules into the active site of the FTase crystal structure. We found that analogue 1d displaces approximately the same volume of the active site as does FPP, whereas GPP and analogues 1a-c occupy lesser volumes and 1e occupies a slightly larger volume. Modeling also indicated that GGPP adopts a different conformation than the farnesyl chain of FPP, partially occluding the space occupied by the Ca(1)a(2)X peptide in the ternary X-ray crystal structure. Within the confines of the FTase pocket, the double bonds and branched methyl groups of the geranylgeranyl chain significantly restrict the number of possible conformations relative to the more flexible lipid chain of analogues 1a-e. The modeling results also provide a molecular explanation for the observation that an aromatic ring is a good isostere for the terminal isoprene of FPP.

  11. New learning while consolidating memory during sleep is actively blocked by a protein synthesis dependent process

    Science.gov (United States)

    Levy, Roi; Levitan, David; Susswein, Abraham J

    2016-01-01

    Brief experiences while a memory is consolidated may capture the consolidation, perhaps producing a maladaptive memory, or may interrupt the consolidation. Since consolidation occurs during sleep, even fleeting experiences when animals are awakened may produce maladaptive long-term memory, or may interrupt consolidation. In a learning paradigm affecting Aplysia feeding, when animals were trained after being awakened from sleep, interactions between new experiences and consolidation were prevented by blocking long-term memory arising from the new experiences. Inhibiting protein synthesis eliminated the block and allowed even a brief, generally ineffective training to produce long-term memory. Memory formation depended on consolidative proteins already expressed before training. After effective training, long term memory required subsequent transcription and translation. Memory formation during the sleep phase was correlated with increased CREB1 transcription, but not CREB2 transcription. Increased C/EBP transcription was a correlate of both effective and ineffective training and of treatments not producing memory. DOI: http://dx.doi.org/10.7554/eLife.17769.001 PMID:27919318

  12. Evolution of the cAMP-dependent protein kinase (PKA catalytic subunit isoforms.

    Directory of Open Access Journals (Sweden)

    Kristoffer Søberg

    Full Text Available The 3',5'-cyclic adenosine monophosphate (cAMP-dependent protein kinase, or protein kinase A (PKA, pathway is one of the most versatile and best studied signaling pathways in eukaryotic cells. The two paralogous PKA catalytic subunits Cα and Cβ, encoded by the genes PRKACA and PRKACB, respectively, are among the best understood model kinases in signal transduction research. In this work, we explore and elucidate the evolution of the alternative 5' exons and the splicing pattern giving rise to the numerous PKA catalytic subunit isoforms. In addition to the universally conserved Cα1/Cβ1 isoforms, we find kinase variants with short N-termini in all main vertebrate classes, including the sperm-specific Cα2 isoform found to be conserved in all mammals. We also describe, for the first time, a PKA Cα isoform with a long N-terminus, paralogous to the PKA Cβ2 N-terminus. An analysis of isoform-specific variation highlights residues and motifs that are likely to be of functional importance.

  13. Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA.

    Science.gov (United States)

    Mori, Tetsuya; Saveliev, Sergei V; Xu, Yao; Stafford, Walter F; Cox, Michael M; Inman, Ross B; Johnson, Carl H

    2002-12-24

    KaiC from Synechococcus elongatus PCC 7942 (KaiC) is an essential circadian clock protein in cyanobacteria. Previous sequence analyses suggested its inclusion in the RecADnaB superfamily. A characteristic of the proteins of this superfamily is that they form homohexameric complexes that bind DNA. We show here that KaiC also forms ring complexes with a central pore that can be visualized by electron microscopy. A combination of analytical ultracentrifugation and chromatographic analyses demonstrates that these complexes are hexameric. The association of KaiC molecules into hexamers depends on the presence of ATP. The KaiC sequence does not include the obvious DNA-binding motifs found in RecA or DnaB. Nevertheless, KaiC binds forked DNA substrates. These data support the inclusion of KaiC into the RecADnaB superfamily and have important implications for enzymatic activity of KaiC in the circadian clock mechanism that regulates global changes in gene expression patterns.

  14. Load-dependent surface diffusion model for analyzing the kinetics of protein adsorption onto mesoporous materials.

    Science.gov (United States)

    Marbán, Gregorio; Ramírez-Montoya, Luis A; García, Héctor; Menéndez, J Ángel; Arenillas, Ana; Montes-Morán, Miguel A

    2018-02-01

    The adsorption of cytochrome c in water onto organic and carbon xerogels with narrow pore size distributions has been studied by carrying out transient and equilibrium batch adsorption experiments. It was found that equilibrium adsorption exhibits a quasi-Langmuirian behavior (a g coefficient in the Redlich-Peterson isotherms of over 0.95) involving the formation of a monolayer of cyt c with a depth of ∼4nm on the surface of all xerogels for a packing density of the protein inside the pores of 0.29gcm -3 . A load-dependent surface diffusion model (LDSDM) has been developed and numerically solved to fit the experimental kinetic adsorption curves. The results of the LDSDM show better fittings than the standard homogeneous surface diffusion model. The value of the external mass transfer coefficient obtained by numerical optimization confirms that the process is controlled by the intraparticle surface diffusion of cyt c. The surface diffusion coefficients decrease with increasing protein load down to zero for the maximum possible load. The decrease is steeper in the case of the xerogels with the smallest average pore diameter (∼15nm), the limit at which the zero-load diffusion coefficient of cyt c also begins to be negatively affected by interactions with the opposite wall of the pore. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. cGMP-Dependent Protein Kinase Inhibitors in Health and Disease

    Directory of Open Access Journals (Sweden)

    Jens Schlossmann

    2013-02-01

    Full Text Available cGMP-dependent protein kinases (PKG exhibit diverse physiological functions in the mammalian system e.g., in vascular and gastrointestinal smooth muscles, in platelets, in kidney, in bone growth, nociception and in the central nervous system. Furthermore, PKG were found in insects and in the malaria parasite Plasmodium falciparum. Two different genes of PKG exist: a the PKG-I gene that is expressed as cytosolic PKG-Iα or PKG-Iβ isoform, and b the PKG-II gene, which expresses the membrane associated PKG-II protein. The enzyme kinetics, the localization and the substrates of these PKG enzymes differ utilizing different physiological functions. Various inhibitors of PKG were developed directed against diverse functional regions of the kinase. These inhibitors of PKG have been used to analyse the specific functions of these enzymes. The review article will summarize these different inhibitors regarding their specificity and their present applications in vitro and in vivo. Furthermore, it will be discussed that the distinct inhibition of the PKG enzymes could be used as a valuable pharmacological target e.g., in the treatment of cardiovascular diseases, diarrhea, cancer or malaria.

  16. Hunting Increases Phosphorylation of Calcium/Calmodulin-Dependent Protein Kinase Type II in Adult Barn Owls

    Directory of Open Access Journals (Sweden)

    Grant S. Nichols

    2015-01-01

    Full Text Available Juvenile barn owls readily adapt to prismatic spectacles, whereas adult owls living under standard aviary conditions do not. We previously demonstrated that phosphorylation of the cyclic-AMP response element-binding protein (CREB provides a readout of the instructive signals that guide plasticity in juveniles. Here we investigated phosphorylation of calcium/calmodulin-dependent protein kinase II (pCaMKII in both juveniles and adults. In contrast to CREB, we found no differences in pCaMKII expression between prism-wearing and control juveniles within the external nucleus of the inferior colliculus (ICX, the major site of plasticity. For prism-wearing adults that hunted live mice and are capable of adaptation, expression of pCaMKII was increased relative to prism-wearing adults that fed passively on dead mice and are not capable of adaptation. This effect did not bear the hallmarks of instructive information: it was not localized to rostral ICX and did not exhibit a patchy distribution reflecting discrete bimodal stimuli. These data are consistent with a role for CaMKII as a permissive rather than an instructive factor. In addition, the paucity of pCaMKII expression in passively fed adults suggests that the permissive default setting is “off” in adults.

  17. Photoaffinity labeling of cAMP-dependent protein kinase by 4-azido-2-nitrophenyladenylyl pyrophosphate

    International Nuclear Information System (INIS)

    Johnson, D.R.; Ho, H.T.; Wong, S.S.

    1986-01-01

    A photoaffinity analogue of ATP, 4-azido-2-nitrophenyl-adenylyl pyrophosphate (ANAP) has been synthesized to investigate the topographical interaction between the catalytic and the regulatory subunits of the bovine heart type II cAMP-dependent protein kinase. The synthesis involves coupling of 4-azido-2-nitrophenyl phosphate with adenosine 5'-monophosphomorpholidate. ANAP has an absorption maximum at 260 nm (molar absorptivity = 35.4 x 10 3 M -1 cm -1 ) and a shoulder at 320 nm. Kinetically, ANAP inhibits the enzyme competitively against ATP with a Ki of 0.37 mM. The catalytic subunit is inactivated by ANAP upon photolysis in the presence of magnesium ion. ATP protects the enzyme from photoinactivation but the regulatory subunit does not. Gel electrophoretic analysis of the enzyme labeled by [ 14 C]ANAP shows that the photoincorporated ANAP is associated mainly with the catalytic subunit, even when the regulator dimer is in twelve fold excess. Little or no ANAP is found incorporated into the regulator subunit. The data suggest that the photoreactive portion of ANAP does not lie within reach of the regulatory protein when the analogue is bound to the catalytic subunit

  18. Structural basis of divergent cyclin-dependent kinase activation by Spy1/RINGO proteins

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Denise A.; Fifield, Bre-Anne; Marceau, Aimee H.; Tripathi, Sarvind; Porter, Lisa A.; Rubin, Seth M. (UCSC); (Windsor)

    2017-06-30

    Cyclin-dependent kinases (Cdks) are principal drivers of cell division and are an important therapeutic target to inhibit aberrant proliferation. Cdk enzymatic activity is tightly controlled through cyclin interactions, posttranslational modifications, and binding of inhibitors such as the p27 tumor suppressor protein. Spy1/RINGO (Spy1) proteins bind and activate Cdk but are resistant to canonical regulatory mechanisms that establish cell-cycle checkpoints. Cancer cells exploit Spy1 to stimulate proliferation through inappropriate activation of Cdks, yet the mechanism is unknown. We have determined crystal structures of the Cdk2-Spy1 and p27-Cdk2-Spy1 complexes that reveal how Spy1 activates Cdk. We find that Spy1 confers structural changes to Cdk2 that obviate the requirement of Cdk activation loop phosphorylation. Spy1 lacks the cyclin-binding site that mediates p27 and substrate affinity, explaining why Cdk-Spy1 is poorly inhibited by p27 and lacks specificity for substrates with cyclin-docking sites. We identify mutations in Spy1 that ablate its ability to activate Cdk2 and to proliferate cells. Our structural description of Spy1 provides important mechanistic insights that may be utilized for targeting upregulated Spy1 in cancer.

  19. Cyclin-dependent kinase 5, a node protein in diminished tauopathy: a systems biology approach

    Directory of Open Access Journals (Sweden)

    John Fredy Castro-Alvarez

    2014-09-01

    Full Text Available Alzheimer's disease (AD is the most common cause of dementia worldwide. One of the main pathological changes that occurs in AD is the intracellular accumulation of hyperphosphorylated Tau protein in neurons. Cyclin-dependent kinase 5 (CDK5 is one of the major kinases involved in Tau phosphorylation, directly phosphorylating various residues and simultaneously regulating various substrates such as kinases and phosphatases that influence Tau phosphorylation in a synergistic and antagonistic way. It remains unknown how the interaction between CDK5 and its substrates promotes Tau phosphorylation, and systemic approaches are needed that allow an analysis of all the proteins involved. In this review, the role of the CDK5 signaling pathway in Tau hyperphosphorylation is described, an in silico model of the CDK5 signaling pathway is presented. The relationship among these theoretical and computational models shows that the regulation of Tau phosphorylation by PP2A and GSK3β is essential under basal conditions and also describes the leading role of CDK5 under excitotoxic conditions, where silencing of CDK5 can generate changes in these enzymes to reverse a pathological condition that simulates AD.

  20. RegA Plays a Key Role in Oxygen-Dependent Establishment of Persistence and in Isocitrate Lyase Activity, a Critical Determinant of In vivo Brucella suis Pathogenicity

    Directory of Open Access Journals (Sweden)

    Elias Abdou

    2017-05-01

    Full Text Available For aerobic human pathogens, adaptation to hypoxia is a critical factor for the establishment of persistent infections, as oxygen availability is low inside the host. The two-component system RegB/A of Brucella suis plays a central role in the control of respiratory systems adapted to oxygen deficiency, and in persistence in vivo. Using an original “in vitro model of persistence” consisting in gradual oxygen depletion, we compared transcriptomes and proteomes of wild-type and ΔregA strains to identify the RegA-regulon potentially involved in the set-up of persistence. Consecutive to oxygen consumption resulting in growth arrest, 12% of the genes in B. suis were potentially controlled directly or indirectly by RegA, among which numerous transcriptional regulators were up-regulated. In contrast, genes or proteins involved in envelope biogenesis and in cellular division were repressed, suggesting a possible role for RegA in the set-up of a non-proliferative persistence state. Importantly, the greatest number of the RegA-repressed genes and proteins, including aceA encoding the functional IsoCitrate Lyase (ICL, were involved in energy production. A potential consequence of this RegA impact may be the slowing-down of the central metabolism as B. suis progressively enters into persistence. Moreover, ICL is an essential determinant of pathogenesis and long-term interactions with the host, as demonstrated by the strict dependence of B. suis on ICL activity for multiplication and persistence during in vivo infection. RegA regulates gene or protein expression of all functional groups, which is why RegA is a key regulator of B. suis in adaptation to oxygen depletion. This function may contribute to the constraint of bacterial growth, typical of chronic infection. Oxygen-dependent activation of two-component systems that control persistence regulons, shared by several aerobic human pathogens, has not been studied in Brucella sp. before. This work

  1. Activation of double-stranded RNA-dependent protein kinase inhibits proliferation of pancreatic β-cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shan-Shan [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China); Jiang, Teng [Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing (China); Wang, Yi; Gu, Li-Ze [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China); Wu, Hui-Wen [Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing (China); Tan, Lan [Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing (China); Guo, Jun, E-mail: Guoj@njmu.edu.cn [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China)

    2014-01-17

    Highlights: •PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in β-cells. •Activated PKR inhibited β-cell proliferation by arresting cell cycle at G1 phase. •Activated PKR fully abrogated the pro-proliferative effects of IGF-I on β-cells. -- Abstract: Double-stranded RNA-dependent protein kinase (PKR) is revealed to participate in the development of insulin resistance in peripheral tissues in type 2 diabetes (T2DM). Meanwhile, PKR is also characterized as a critical regulator of cell proliferation. To date, no study has focused on the impact of PKR on the proliferation of pancreatic β-cells. Here, we adopted insulinoma cell lines and mice islet β-cells to investigate: (1) the effects of glucolipotoxicity and pro-inflammatory cytokines on PKR activation; (2) the effects of PKR on proliferation of pancreatic β-cells and its underlying mechanisms; (3) the actions of PKR on pro-proliferative effects of IGF-I and its underlying pathway. Our results provided the first evidence that PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in pancreatic β-cells, and activated PKR significantly inhibited cell proliferation by arresting cell cycle at G1 phase. Reductions in cyclin D1 and D2 as well as increases in p27 and p53 were associated with the anti-proliferative effects of PKR, and proteasome-dependent degradation took part in the reduction of cyclin D1 and D2. Besides, PKR activation abrogated the pro-proliferative effects of IGF-I by activating JNK and disrupting IRS1/PI3K/Akt signaling pathway. These findings indicate that the anti-proliferative actions of PKR on pancreatic β-cells may contribute to the pathogenesis of T2DM.

  2. Activation of double-stranded RNA-dependent protein kinase inhibits proliferation of pancreatic β-cells

    International Nuclear Information System (INIS)

    Chen, Shan-Shan; Jiang, Teng; Wang, Yi; Gu, Li-Ze; Wu, Hui-Wen; Tan, Lan; Guo, Jun

    2014-01-01

    Highlights: •PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in β-cells. •Activated PKR inhibited β-cell proliferation by arresting cell cycle at G1 phase. •Activated PKR fully abrogated the pro-proliferative effects of IGF-I on β-cells. -- Abstract: Double-stranded RNA-dependent protein kinase (PKR) is revealed to participate in the development of insulin resistance in peripheral tissues in type 2 diabetes (T2DM). Meanwhile, PKR is also characterized as a critical regulator of cell proliferation. To date, no study has focused on the impact of PKR on the proliferation of pancreatic β-cells. Here, we adopted insulinoma cell lines and mice islet β-cells to investigate: (1) the effects of glucolipotoxicity and pro-inflammatory cytokines on PKR activation; (2) the effects of PKR on proliferation of pancreatic β-cells and its underlying mechanisms; (3) the actions of PKR on pro-proliferative effects of IGF-I and its underlying pathway. Our results provided the first evidence that PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in pancreatic β-cells, and activated PKR significantly inhibited cell proliferation by arresting cell cycle at G1 phase. Reductions in cyclin D1 and D2 as well as increases in p27 and p53 were associated with the anti-proliferative effects of PKR, and proteasome-dependent degradation took part in the reduction of cyclin D1 and D2. Besides, PKR activation abrogated the pro-proliferative effects of IGF-I by activating JNK and disrupting IRS1/PI3K/Akt signaling pathway. These findings indicate that the anti-proliferative actions of PKR on pancreatic β-cells may contribute to the pathogenesis of T2DM

  3. Overproduction of a Model Sec- and Tat-Dependent Secretory Protein Elicits Different Cellular Responses in Streptomyces lividans.

    Directory of Open Access Journals (Sweden)

    Sonia Gullón

    Full Text Available Streptomyces lividans is considered an efficient host for the secretory production of homologous and heterologous proteins. To identify possible bottlenecks in the protein production process, a comparative transcriptomic approach was adopted to study cellular responses during the overproduction of a Sec-dependent model protein (alpha-amylase and a Tat-dependent model protein (agarase in Streptomyces lividans. The overproduction of the model secretory proteins via the Sec or the Tat route in S. lividans does elicit a different major cell response in the bacterium. The stringent response is a bacterial response to nutrients' depletion, which naturally occurs at late times of the bacterial cell growth. While the induction of the stringent response at the exponential phase of growth may limit overall productivity in the case of the Tat route, the induction of that response does not take place in the case of the Sec route, which comparatively is an advantage in secretory protein production processes. Hence, this study identifies a potential major drawback in the secretory protein production process depending on the secretory route, and provides clues to improving S. lividans as a protein production host.

  4. Computer-aided model analysis for ionic strength-dependent effective charge of protein in ion-exchange chromatography

    DEFF Research Database (Denmark)

    Lim, Young-il; Jørgensen, Sten Bay; Kim, In-Ho

    2005-01-01

    differential algebraic equation (PDAE) system, a fast and accurate numerical method (i.e., conservation element/solution element (CE/SE) method), is proposed. Sensitivity and elasticity of the model parameters (e.g., steric/shape factors, adsorption heat coefficient, effective protein charge, equilibrium...... constant, mass transfer coefficient, axial dispersion coefficient and bed voidage) are analyzed for a BSA-salt system in a low protein concentration range. Within a low concentration range of bovine serum albumin (BSA) where linear adsorption isotherms are shown, the adsorption heat coefficient, shape...... salt concentrations, it is proposed that the effective protein charge could depend upon the salt concentration (or ionic strength). The reason for this dependence may be a steric hindrance of protein binding sites combined with a salt shielding effect neutralizing the surface charges of the protein. (c...

  5. A Critical Role of TET1/2 Proteins in Cell-Cycle Progression of Trophoblast Stem Cells

    Directory of Open Access Journals (Sweden)

    Stephanie Chrysanthou

    2018-04-01

    Full Text Available Summary: The ten-eleven translocation (TET proteins are well known for their role in maintaining naive pluripotency of embryonic stem cells. Here, we demonstrate that, jointly, TET1 and TET2 also safeguard the self-renewal potential of trophoblast stem cells (TSCs and have partially redundant roles in maintaining the epithelial integrity of TSCs. For the more abundantly expressed TET1, we show that this is achieved by binding to critical epithelial genes, notably E-cadherin, which becomes hyper-methylated and downregulated in the absence of TET1. The epithelial-to-mesenchymal transition phenotype of mutant TSCs is accompanied by centrosome duplication and separation defects. Moreover, we identify a role of TET1 in maintaining cyclin B1 stability, thereby acting as facilitator of mitotic cell-cycle progression. As a result, Tet1/2 mutant TSCs are prone to undergo endoreduplicative cell cycles leading to the formation of polyploid trophoblast giant cells. Taken together, our data reveal essential functions of TET proteins in the trophoblast lineage. : TET proteins are well known for their role in pluripotency. Here, Hemberger and colleagues show that TET1 and TET2 are also critical for maintaining the epithelial integrity of trophoblast stem cells. TET1/2 ensure mitotic cell-cycle progression by stabilizing cyclin B1 and by regulating centrosome organization. These insights reveal the importance of TET proteins beyond their role in epigenome remodeling. Keywords: TET proteins, trophoblast stem cells, cell cycle, endoreduplication, self-renewal, mitosis, trophoblast giant cells, differentiation

  6. Intrathecal delivery of protein therapeutics to the brain: a critical reassessment.

    Science.gov (United States)

    Calias, Pericles; Banks, William A; Begley, David; Scarpa, Maurizio; Dickson, Patricia

    2014-11-01

    Disorders of the central nervous system (CNS), including stroke, neurodegenerative diseases, and brain tumors, are the world's leading causes of disability. Delivery of drugs to the CNS is complicated by the blood-brain barriers that protect the brain from the unregulated leakage and entry of substances, including proteins, from the blood. Yet proteins represent one of the most promising classes of therapeutics for the treatment of CNS diseases. Many strategies for overcoming these obstacles are in development, but the relatively straightforward approach of bypassing these barriers through direct intrathecal administration has been largely overlooked. Originally discounted because of its lack of usefulness for delivering small, lipid-soluble drugs to the brain, the intrathecal route has emerged as a useful, in some cases perhaps the ideal, route of administration for certain therapeutic protein and targeted disease combinations. Here, we review blood-brain barrier functions and cerebrospinal fluid dynamics and their relevance to drug delivery via the intrathecal route, discuss animal and human studies that have investigated intrathecal delivery of protein therapeutics, and outline several characteristics of protein therapeutics that can allow them to be successfully delivered intrathecally. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The Trypanosoma cruzi Protein TcHTE Is Critical for Heme Uptake.

    Directory of Open Access Journals (Sweden)

    Marcelo L Merli

    2016-01-01

    Full Text Available Trypanosoma cruzi, the etiological agent of Chagas' disease, presents nutritional requirements for several metabolites. It requires heme for the biosynthesis of several heme-proteins involved in essential metabolic pathways like mitochondrial cytochromes and respiratory complexes, as well as enzymes involved in the biosynthesis of sterols and unsaturated fatty acids. However, this parasite lacks a complete route for its synthesis. In view of these facts, T. cruzi has to incorporate heme from the environment during its life cycle. In other words, their hosts must supply the heme for heme-protein synthesis. Although the acquisition of heme is a fundamental issue for the parasite's replication and survival, how this cofactor is imported and distributed is poorly understood. In this work, we used different fluorescent heme analogs to explore heme uptake along the different life-cycle stages of T. cruzi, showing that this parasite imports it during its replicative stages: the epimastigote in the insect vector and the intracellular amastigote in the mammalian host. Also, we identified and characterized a T. cruzi protein (TcHTE with 55% of sequence similarity to LHR1 (protein involved in L. amazonensis heme transport, which is located in the flagellar pocket, where the transport of nutrients proceeds in trypanosomatids. We postulate TcHTE as a protein involved in improving the efficiency of the heme uptake or trafficking in T. cruzi.

  8. Two short basic sequences surrounding the zinc finger of nucleocapsid protein NCp10 of Moloney murine leukemia virus are critical for RNA annealing activity.

    Science.gov (United States)

    De Rocquigny, H; Ficheux, D; Gabus, C; Allain, B; Fournie-Zaluski, M C; Darlix, J L; Roques, B P

    1993-02-25

    The 56 amino acid nucleocapsid protein (NCp10) of Moloney Murine Leukemia Virus, contains a CysX2CysX4HisX4Cys zinc finger flanked by basic residues. In vitro NCp10 promotes genomic RNA dimerization, a process most probably linked to genomic RNA packaging, and replication primer tRNA(Pro) annealing to the initiation site of reverse transcription. To characterize the amino-acid sequences involved in the various functions of NCp10, we have synthesized by solid phase method the native protein and a series of derived peptides shortened at the N- or C-terminus with or without the zinc finger domain. In the latter case, the two parts of the protein were linked by a Glycine - Glycine spacer. The in vitro studies of these peptides show that nucleic acid annealing activities of NCp10 do not require a zinc finger but are critically dependent on the presence of specific sequences located on each side of the CCHC domain and containing proline and basic residues. Thus, deletion of 11R or 49PRPQT, of the fully active 29 residue peptide 11RQGGERRRSQLDRDGGKKPRGPRGPRPQT53 leads to a complete loss of NCp10 activity. Therefore it is proposed that in NCp10, the zinc finger directs the spatial recognition of the target RNAs by the basic domains surrounding the zinc finger.

  9. The HIV1 protein Vpr acts to enhance constitutive DCAF1-dependent UNG2 turnover.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wen

    Full Text Available The HIV1 protein Vpr assembles with and acts through an ubiquitin ligase complex that includes DDB1 and cullin 4 (CRL4 to cause G2 cell cycle arrest and to promote degradation of both uracil DNA glycosylase 2 (UNG2 and single-strand selective mono-functional uracil DNA glycosylase 1 (SMUG1. DCAF1, an adaptor protein, is required for Vpr-mediated G2 arrest through the ubiquitin ligase complex. In work described here, we used UNG2 as a model substrate to study how Vpr acts through the ubiquitin ligase complex. We examined whether DCAF1 is essential for Vpr-mediated degradation of UNG2 and SMUG1. We further investigated whether Vpr is required for recruiting substrates to the ubiquitin ligase or acts to enhance its function and whether this parallels Vpr-mediated G2 arrest.We found that DCAF1 plays an important role in Vpr-independent UNG2 and SMUG1 depletion. UNG2 assembled with the ubiquitin ligase complex in the absence of Vpr, but Vpr enhanced this interaction. Further, Vpr-mediated enhancement of UNG2 degradation correlated with low Vpr expression levels. Vpr concentrations exceeding a threshold blocked UNG2 depletion and enhanced its accumulation in the cell nucleus. A similar dose-dependent trend was seen for Vpr-mediated cell cycle arrest.This work identifies UNG2 and SMUG1 as novel targets for CRL4(DCAF1-mediated degradation. It further shows that Vpr enhances rather than enables the interaction between UNG2 and the ubiquitin ligase. Vpr augments CRL4(DCAF1-mediated UNG2 degradation at low concentrations but antagonizes it at high concentrations, allowing nuclear accumulation of UNG2. Further, the protein that is targeted to cause G2 arrest behaves much like UNG2. Our findings provide the basis for determining whether the CRL4(DCAF1 complex is alone responsible for cell cycle-dependent UNG2 turnover and will also aid in establishing conditions necessary for the identification of additional targets of Vpr-enhanced degradation.

  10. Xanthene derivatives increase glucose utilization through activation of LKB1-dependent AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Yonghoon Kwon

    Full Text Available 5' AMP-activated protein kinase (AMPK is a highly conserved serine-threonine kinase that regulates energy expenditure by activating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. Therefore AMPK activators are considered to be drug targets for treatment of metabolic diseases such as diabetes mellitus. To identify novel AMPK activators, we screened xanthene derivatives. We determined that the AMPK activators 9H-xanthene-9-carboxylic acid {2,2,2-trichloro-1-[3-(3-nitro-phenyl-thioureido]-ethyl}-amide (Xn and 9H-xanthene-9-carboxylic acid {2,2,2-trichloro-1-[3-(3-cyano-phenyl-thioureido]-ethyl}-amide (Xc elevated glucose uptake in L6 myotubes by stimulating translocation of glucose transporter type 4 (GLUT4. Treatment with the chemical AMPK inhibitor compound C and infection with dominant-negative AMPKa2-virus inhibited AMPK phosphorylation and glucose uptake in myotubes induced by either Xn or Xc. Of the two major upstream kinases of AMPK, we found that Xn and Xc showed LKB1 dependency by knockdown of STK11, an ortholog of human LKB1. Single intravenous administration of Xn and Xc to high-fat diet-induced diabetic mice stimulated AMPK phosphorylation of skeletal muscle and improved glucose tolerance. Taken together, these results suggest that Xn and Xc regulate glucose homeostasis through LKB1-dependent AMPK activation and that the compounds are potential candidate drugs for the treatment of type 2 diabetes mellitus.

  11. Calcium/calmodulin-dependent protein kinase II activity regulates the proliferative potential of growth plate chondrocytes.

    Science.gov (United States)

    Li, Yuwei; Ahrens, Molly J; Wu, Amy; Liu, Jennifer; Dudley, Andrew T

    2011-01-01

    For tissues that develop throughout embryogenesis and into postnatal life, the generation of differentiated cells to promote tissue growth is at odds with the requirement to maintain the stem cell/progenitor cell population to preserve future growth potential. In the growth plate cartilage, this balance is achieved in part by establishing a proliferative phase that amplifies the number of progenitor cells prior to terminal differentiation into hypertrophic chondrocytes. Here, we show that endogenous calcium/calmodulin-dependent protein kinase II (CamkII, also known as Camk2) activity is upregulated prior to hypertrophy and that loss of CamkII function substantially blocks the transition from proliferation to hypertrophy. Wnt signaling and Pthrp-induced phosphatase activity negatively regulate CamkII activity. Release of this repression results in activation of multiple effector pathways, including Runx2- and β-catenin-dependent pathways. We present an integrated model for the regulation of proliferation potential by CamkII activity that has important implications for studies of growth control and adult progenitor/stem cell populations.

  12. Heat treatment effect on the strain dependence of the critical current for an internal-tin processed Nb3Sn strand

    International Nuclear Information System (INIS)

    Oh, Sangjun; Park, Soo-Hyeon; Lee, Chulhee; Choi, Heekyung; Kim, Keeman

    2010-01-01

    A comparative study on the effects of heat treatment, especially, the duration of the A15 reaction temperature plateau on the strain dependence of the critical current for an internal-tin processed Nb 3 Sn strand has been carried out. The strain dependence of the critical current is measured by a variable temperature Walter spiral probe that we have developed. It was shown that prolonged heat treatment can be a very effective way to improve the strain dependency. For a quantitative analysis, the measured data were analyzed with various proposed scaling laws: the scaling law based on strong-coupling theory, the modified deviatoric strain scaling law, and the interpolative scaling law. We found that there is a slight increase in the critical temperature and a substantial improvement in the maximum pinning force. The origin of improved strain dependency is further discussed.

  13. Protein Anabolism in Critically Ill Children: Pathophysiological aspects and interventional challenges

    NARCIS (Netherlands)

    C.T. de Betue (Carlijn)

    2012-01-01

    textabstractCritical illness can be defi ned as “a life threatening medical or surgical condition usually requiring intensive care unit (ICU) level care“ [1]. It mostly results from infection, sepsis and trauma (including surgery and burns). Th ese conditions are accompanied by

  14. The role of heat shock protein 70 in mediating age-dependent mortality in sepsis.

    Science.gov (United States)

    McConnell, Kevin W; Fox, Amy C; Clark, Andrew T; Chang, Nai-Yuan Nicholas; Dominguez, Jessica A; Farris, Alton B; Buchman, Timothy G; Hunt, Clayton R; Coopersmith, Craig M

    2011-03-15

    Sepsis is primarily a disease of the aged, with increased incidence and mortality occurring in aged hosts. Heat shock protein (HSP) 70 plays an important role in both healthy aging and the stress response to injury. The purpose of this study was to determine the role of HSP70 in mediating mortality and the host inflammatory response in aged septic hosts. Sepsis was induced in both young (6- to 12-wk-old) and aged (16- to 17-mo-old) HSP70(-/-) and wild-type (WT) mice to determine whether HSP70 modulated outcome in an age-dependent fashion. Young HSP70(-/-) and WT mice subjected to cecal ligation and puncture, Pseudomonas aeruginosa pneumonia, or Streptococcus pneumoniae pneumonia had no differences in mortality, suggesting HSP70 does not mediate survival in young septic hosts. In contrast, mortality was higher in aged HSP70(-/-) mice than aged WT mice subjected to cecal ligation and puncture (p = 0.01), suggesting HSP70 mediates mortality in sepsis in an age-dependent fashion. Compared with WT mice, aged septic HSP70(-/-) mice had increased gut epithelial apoptosis and pulmonary inflammation. In addition, HSP70(-/-) mice had increased systemic levels of TNF-α, IL-6, IL-10, and IL-1β compared with WT mice. These data demonstrate that HSP70 is a key determinant of mortality in aged, but not young hosts in sepsis. HSP70 may play a protective role in an age-dependent response to sepsis by preventing excessive gut apoptosis and both pulmonary and systemic inflammation.

  15. Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells.

    Directory of Open Access Journals (Sweden)

    Jeanette Wagener

    Full Text Available C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo.

  16. Cardiac hyporesponsiveness in severe sepsis is associated with nitric oxide-dependent activation of G protein receptor kinase.

    Science.gov (United States)

    Dal-Secco, Daniela; DalBó, Silvia; Lautherbach, Natalia E S; Gava, Fábio N; Celes, Mara R N; Benedet, Patricia O; Souza, Adriana H; Akinaga, Juliana; Lima, Vanessa; Silva, Katiussia P; Kiguti, Luiz Ricardo A; Rossi, Marcos A; Kettelhut, Isis C; Pupo, André S; Cunha, Fernando Q; Assreuy, Jamil

    2017-07-01

    G protein-coupled receptor kinase isoform 2 (GRK2) has a critical role in physiological and pharmacological responses to endogenous and exogenous substances. Sepsis causes an important cardiovascular dysfunction in which nitric oxide (NO) has a relevant role. The present study aimed to assess the putative effect of inducible NO synthase (NOS2)-derived NO on the activity of GRK2 in the context of septic cardiac dysfunction. C57BL/6 mice were submitted to severe septic injury by cecal ligation and puncture (CLP). Heart function was assessed by isolated and perfused heart, echocardiography, and β-adrenergic receptor binding. GRK2 was determined by immunofluorescence and Western blot analysis in the heart and isolated cardiac myocytes. Sepsis increased NOS2 expression in the heart, increased plasma nitrite + nitrate levels, and reduced isoproterenol-induced isolated ventricle contraction, whole heart tension development, and β-adrenergic receptor density. Treatment with 1400W or with GRK2 inhibitor prevented CLP-induced cardiac hyporesponsiveness 12 and 24 h after CLP. Increased labeling of total and phosphorylated GRK2 was detected in hearts after CLP. With treatment of 1400W or in hearts taken from septic NOS2 knockout mice, the activation of GRK2 was reduced. 1400W or GRK2 inhibitor reduced mortality, improved echocardiographic cardiac parameters, and prevented organ damage. Therefore, during sepsis, NOS2-derived NO increases GRK2, which leads to a reduction in β-adrenergic receptor density, contributing to the heart dysfunction. Isolated cardiac myocyte data indicate that NO acts through the soluble guanylyl cyclase/cGMP/PKG pathway. GRK2 inhibition may be a potential therapeutic target in sepsis-induced cardiac dysfunction. NEW & NOTEWORTHY The main novelty presented here is to show that septic shock induces cardiac hyporesponsiveness to isoproterenol by a mechanism dependent on nitric oxide and mediated by G protein-coupled receptor kinase isoform 2. Therefore

  17. A Critical Review of Validation, Blind Testing, and Real- World Use of Alchemical Protein-Ligand Binding Free Energy Calculations.

    Science.gov (United States)

    Abel, Robert; Wang, Lingle; Mobley, David L; Friesner, Richard A

    2017-01-01

    Protein-ligand binding is among the most fundamental phenomena underlying all molecular biology, and a greater ability to more accurately and robustly predict the binding free energy of a small molecule ligand for its cognate protein is expected to have vast consequences for improving the efficiency of pharmaceutical drug discovery. We briefly reviewed a number of scientific and technical advances that have enabled alchemical free energy calculations to recently emerge as a preferred approach, and critically considered proper validation and effective use of these techniques. In particular, we characterized a selection bias effect which may be important in prospective free energy calculations, and introduced a strategy to improve the accuracy of the free energy predictions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Critical currents in polycrystalline Y Ba2Cu3O7-x: Self-field and grain size dependence

    International Nuclear Information System (INIS)

    Babic, E.; Prester, M.; Dobrac, D.; Marohnic, Z.; Nazar, P.; Stastny, P.; Matacotta, F.C.

    1991-10-01

    The variation of critical currents (I c ) and their distributions (CCD) with thickness (t) has been investigated for two high quality YBa 2 Cu 3 O 7-x samples with different average grain size (AG≅10 and 30 μm for samples S 1 and S 2 respectively) in the temperature range 78-90K and in the applied magnetic field H c ) for S 1 initially increased but later on leveled off on reducing the thickness, whereas for S 2 remained essentially unchanged even after three-fold reduction in thickness. Since the other parameters related to macroscopic homogeneity have not changed on reducing the thickness of the samples, the variations of J c are interpreted in terms of thickness and grain size dependent self-field effects. The same model explains well the changes of CCD curves with thickness and may also explain the variation of J c with the grain size, as reported recently for ceramic YBaCuO samples. (author). 18 refs, 7 figs, 2 tabs

  19. Paxillin and embryonic PolyAdenylation Binding Protein (ePABP) engage to regulate androgen-dependent Xenopus laevis oocyte maturation - A model of kinase-dependent regulation of protein expression.

    Science.gov (United States)

    Miedlich, Susanne U; Taya, Manisha; Young, Melissa Rasar; Hammes, Stephen R

    2017-06-15

    Steroid-triggered Xenopus laevis oocyte maturation is an elegant physiologic model of nongenomic steroid signaling, as it proceeds completely independent of transcription. We previously demonstrated that androgens are the main physiologic stimulator of oocyte maturation in Xenopus oocytes, and that the adaptor protein paxillin plays a crucial role in mediating this process through a positive feedback loop in which paxillin first enhances Mos protein translation, ensued by Erk2 activation and Erk-dependent phosphorylation of paxillin on serine residues. Phosphoserine-paxillin then further augments Mos protein translation and downstream Erk2 activation, resulting in meiotic progression. We hypothesized that paxillin enhances Mos translation by interacting with embryonic PolyAdenylation Binding Protein (ePABP) on polyadenylated Mos mRNA. Knockdown of ePABP phenocopied paxillin knockdown, with reduced Mos protein expression, Erk2 and Cdk1 activation, as well as oocyte maturation. In both Xenopus oocytes and mammalian cells (HEK-293), paxillin and ePABP constitutively interacted. Testosterone (Xenopus) or EGF (HEK-293) augmented ePABP-paxillin binding, as well as ePABP binding to Mos mRNA (Xenopus), in an Erk-dependent fashion. Thus, ePABP and paxillin work together in an Erk-dependent fashion to enhance Mos protein translation and promote oocyte maturation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells.

    Directory of Open Access Journals (Sweden)

    M Emmy M Dolman

    Full Text Available Tumor cells might resist therapy with ionizing radiation (IR by non-homologous end-joining (NHEJ of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK. The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization.

  1. DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells.

    Science.gov (United States)

    Dolman, M Emmy M; van der Ploeg, Ida; Koster, Jan; Bate-Eya, Laurel Tabe; Versteeg, Rogier; Caron, Huib N; Molenaar, Jan J

    2015-01-01

    Tumor cells might resist therapy with ionizing radiation (IR) by non-homologous end-joining (NHEJ) of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK). The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide) gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization.

  2. A Calcium-Dependent Protein Kinase Is Systemically Induced upon Wounding in Tomato Plants1

    Science.gov (United States)

    Chico, José Manuel; Raíces, Marcela; Téllez-Iñón, María Teresa; Ulloa, Rita María

    2002-01-01

    A full-length cDNA clone (LeCDPK1) from tomato (Lycopersicon esculentum) encoding a calcium-dependent protein kinase (CDPK) was isolated by screening a cDNA library from tomato cell cultures exposed to Cladosporium fulvum elicitor preparations. The predicted amino acid sequence of the cDNA reveals a high degree of similarity with other members of the CDPK family. LeCDPK1 has a putative N-terminal myristoylation sequence and presents a possible palmitoylation site. The in vitro translated protein conserves the biochemical properties of a member of the CDPK family. In addition, CDPK activity was detected in soluble and particulate extracts of tomato leaves. Basal levels of LeCDPK1 mRNA were detected by northern-blot analysis in roots, stems, leaves, and flowers of tomato plants. The expression of LeCDPK1 was rapidly and transiently enhanced in detached tomato leaves treated with pathogen elicitors and H2O2. Moreover, when tomato greenhouse plants were subjected to mechanical wounding, a transient increase of LeCDPK1 steady-state mRNA levels was detected locally at the site of the injury and systemically in distant non-wounded leaves. The increase observed in LeCDPK1 mRNA upon wounding correlates with an increase in the amount and in the activity of a soluble CDPK detected in extracts of tomato leaves, suggesting that this kinase is part of physiological plant defense mechanisms against biotic or abiotic attacks. PMID:11788771

  3. Generalization of fear inhibition by disrupting hippocampal protein synthesis-dependent reconsolidation process.

    Science.gov (United States)

    Yang, Chih-Hao; Huang, Chiung-Chun; Hsu, Kuei-Sen

    2011-09-01

    Repetitive replay of fear memories may precipitate the occurrence of post-traumatic stress disorder and other anxiety disorders. Hence, the suppression of fear memory retrieval may help prevent and treat these disorders. The formation of fear memories is often linked to multiple environmental cues and these interconnected cues may act as reminders for the recall of traumatic experiences. However, as a convenience, a simple paradigm of one cue pairing with the aversive stimulus is usually used in studies of fear conditioning in animals. Here, we built a more complex fear conditioning model by presenting several environmental stimuli during fear conditioning and characterize the effectiveness of extinction training and the disruption of reconsolidation process on the expression of learned fear responses. We demonstrate that extinction training with a single-paired cue resulted in cue-specific attenuation of fear responses but responses to other cures were unchanged. The cue-specific nature of the extinction persisted despite training sessions combined with D-cycloserine treatment reveals a significant weakness in extinction-based treatment. In contrast, the inhibition of the dorsal hippocampus (DH) but not the basolateral amygdala (BLA)-dependent memory reconsolidation process using either protein synthesis inhibitors or genetic disruption of cAMP-response-element-binding protein-mediated transcription comprehensively disrupted the learned connections between fear responses and all paired environmental cues. These findings emphasize the distinct role of the DH and the BLA in the reconsolidation process of fear memories and further indicate that the disruption of memory reconsolidation process in the DH may result in generalization of fear inhibition.

  4. Renal cystic disease proteins play critical roles in the organization of the olfactory epithelium.

    Directory of Open Access Journals (Sweden)

    Jennifer L Pluznick

    Full Text Available It was reported that some proteins known to cause renal cystic disease (NPHP6; BBS1, and BBS4 also localize to the olfactory epithelium (OE, and that mutations in these proteins can cause anosmia in addition to renal cystic disease. We demonstrate here that a number of other proteins associated with renal cystic diseases - polycystin 1 and 2 (PC1, PC2, and Meckel-Gruber syndrome 1 and 3 (MKS1, MKS3 - localize to the murine OE. PC1, PC2, MKS1 and MKS3 are all detected in the OE by RT-PCR. We find that MKS3 localizes specifically to dendritic knobs of olfactory sensory neurons (OSNs, while PC1 localizes to both dendritic knobs and cilia of mature OSNs. In mice carrying mutations in MKS1, the expression of the olfactory adenylate cyclase (AC3 is substantially reduced. Moreover, in rats with renal cystic disease caused by a mutation in MKS3, the laminar organization of the OE is perturbed and there is a reduced expression of components of the odor transduction cascade (G(olf, AC3 and α-acetylated tubulin. Furthermore, we show with electron microscopy that cilia in MKS3 mutant animals do not manifest the proper microtubule architecture. Both MKS1 and MKS3 mutant animals show no obvious alterations in odor receptor expression. These data show that multiple renal cystic proteins localize to the OE, where we speculate that they work together to regulate aspects of the development, maintenance or physiological activities of cilia.

  5. Chitinolytic enzymes from bacterium inhabiting human gastrointestinal tract - critical parameters of protein isolation from anaerobic culture

    Czech Academy of Sciences Publication Activity Database

    Dušková, Jarmila; Tishchenko, Galina; Ponomareva, E.; Šimůnek, Jiří; Koppová, Ingrid; Skálová, Tereza; Štěpánková, Andrea; Hašek, Jindřich; Dohnálek, Jan

    2011-01-01

    Roč. 58, č. 2 (2011), s. 261-263 ISSN 0001-527X R&D Projects: GA ČR GA310/09/1407; GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50450515 Keywords : chitinolytic enzymes * anaerobic cultivation * protein isolation Subject RIV: EE - Microbiology, Virology Impact factor: 1.491, year: 2011 http://www.actabp.pl/pdf/2_2011/261.pdf

  6. A critical role of a cellular membrane traffic protein in poliovirus RNA replication.

    Directory of Open Access Journals (Sweden)

    George A Belov

    2008-11-01

    Full Text Available Replication of many RNA viruses is accompanied by extensive remodeling of intracellular membranes. In poliovirus-infected cells, ER and Golgi stacks disappear, while new clusters of vesicle-like structures form sites for viral RNA synthesis. Virus replication is inhibited by brefeldin A (BFA, implicating some components(s of the cellular secretory pathway in virus growth. Formation of characteristic vesicles induced by expression of viral proteins was not inhibited by BFA, but they were functionally deficient. GBF1, a guanine nucleotide exchange factor for the small cellular GTPases, Arf, is responsible for the sensitivity of virus infection to BFA, and is required for virus replication. Knockdown of GBF1 expression inhibited virus replication, which was rescued by catalytically active protein with an intact N-terminal sequence. We identified a mutation in GBF1 that allows growth of poliovirus in the presence of BFA. Interaction between GBF1 and viral protein 3A determined the outcome of infection in the presence of BFA.

  7. Pore size is a critical parameter for obtaining sustained protein release from electrochemically synthesized mesoporous silicon microparticles

    Directory of Open Access Journals (Sweden)

    Ester L. Pastor

    2015-10-01

    Full Text Available Mesoporous silicon has become a material of high interest for drug delivery due to its outstanding internal surface area and inherent biodegradability. We have previously reported the preparation of mesoporous silicon microparticles (MS-MPs synthesized by an advantageous electrochemical method, and showed that due to their inner structure they can adsorb proteins in amounts exceeding the mass of the carrier itself. Protein release from these MS-MPs showed low burst effect and fast delivery kinetics with complete release in a few hours. In this work, we explored if tailoring the size of the inner pores of the particles would retard the protein release process. To address this hypothesis, three new MS-MPs prototypes were prepared by electrochemical synthesis, and the resulting carriers were characterized for morphology, particle size, and pore structure. All MS-MP prototypes had 90 µm mean particle size, but depending on the current density applied for synthesis, pore size changed between 5 and 13 nm. The model protein α-chymotrypsinogen was loaded into MS-MPs by adsorption and solvent evaporation. In the subsequent release experiments, no burst release of the protein was detected for any prototype. However, prototypes with larger pores (>10 nm reached 100% release in 24–48 h, whereas prototypes with small mesopores (<6 nm still retained most of their cargo after 96 h. MS-MPs with ∼6 nm pores were loaded with the osteogenic factor BMP7, and sustained release of this protein for up to two weeks was achieved. In conclusion, our results confirm that tailoring pore size can modify protein release from MS-MPs, and that prototypes with potential therapeutic utility for regional delivery of osteogenic factors can be prepared by convenient techniques.

  8. Complex mixture analysis of peptides using LC/LC-MS/MS and data-dependent protein identification

    International Nuclear Information System (INIS)

    Wasinger, V.; Corthals, G.

    2001-01-01

    The comprehensive identification of proteins within complex solutions by mass-spectrometry largely depends on the sensitivity, resolving power and sampling efficiency of the technology. An integrated orthogonal approach using Strong Cation Exchange-Reverse Phase-MS/MS (SCX-RP-MS/MS) was used to evaluate the data-dependent Collision Induced Dissociation (CID) of yeast peptides. Reverse phase gradient times of 4, 10. 30, 90, and 180 minutes allowed the identification of hundreds of proteins in a nearly automated fashion from nuclear, membrane, and cytosolic distributions. Many proteins from typically difficult to resolve regions of two-dimensional gels, such as >100kDa, > pI 9.0 and Codon Adaptation Index < 0.2, were also identified using this multi-dimensional separation technology. Few low mass proteins (<10kDa) were identified. The impact of scan-range and duty-cycle on CID of peptides will be discussed

  9. Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac- and cAMP-dependent protein kinase-dependent processes

    DEFF Research Database (Denmark)

    Petersen, Rasmus Koefoed; Madsen, Lise; Pedersen, Lone Møller

    2008-01-01

    AMP-dependent stimulation of adipocyte differentiation. Epac, working via Rap, acted synergistically with cAMP-dependent protein kinase (protein kinase A [PKA]) to promote adipogenesis. The major role of PKA was to down-regulate Rho and Rho-kinase activity, rather than to enhance CREB phosphorylation. Suppression of Rho......-kinase impaired proadipogenic insulin/insulin-like growth factor 1 signaling, which was restored by activation of Epac. This interplay between PKA and Epac-mediated processes not only provides novel insight into the initiation and tuning of adipocyte differentiation, but also demonstrates a new mechanism of c......AMP signaling whereby cAMP uses both PKA and Epac to achieve an appropriate cellular response....

  10. Phosphorylation-dependent signaling controls degradation of DNA mismatch repair protein PMS2.

    Science.gov (United States)

    Hinrichsen, Inga; Weßbecher, Isabel M; Huhn, Meik; Passmann, Sandra; Zeuzem, Stefan; Plotz, Guido; Biondi, Ricardo M; Brieger, Angela

    2017-12-01

    MutLα, a heterodimer consisting of MLH1 and PMS2, plays an important role in DNA mismatch repair and has been shown to be additionally involved in several other important cellular mechanisms. Previous work indicated that AKT could modulate PMS2 stability by phosphorylation. Still, the mechanisms of regulation of MutLα remain unclear. The stability of MutLα subunits was investigated by transiently overexpression of wild type and mutant forms of MLH1 and PMS2 using immunoblotting for measuring the protein levels after treatment. We found that treatment with the cell-permeable serine/threonine phosphatase inhibitor, Calyculin, leads to degradation of PMS2 when MLH1 or its C-terminal domain is missing or if amino acids of MLH1 essential for PMS2 interaction are mutated. In addition, we discovered that the C-terminal tail of PMS2 is relevant for this Calyculin-dependent degradation. A direct involvement of AKT, which was previously described to be responsible for PMS2 degradation, could not be detected. The multi-kinase inhibitor Sorafenib, in contrast, was able to avoid the degradation of PMS2 which postulates that cellular phosphorylation is involved in this process. Together, we show that pharmacologically induced phosphorylation by Calyculin can induce the selective proteasome-dependent degradation of PMS2 but not of MLH1 and that the PMS2 degradation could be blocked by Sorafenib treatment. Curiously, the C-terminal Lynch Syndrome-variants MLH1 L749P and MLH1 Y750X make PMS2 prone to Calyculin induced degradation. Therefore, we conclude that the specific degradation of PMS2 may represent a new mechanism to regulate MutLα. © 2017 Wiley Periodicals, Inc.

  11. Insight into temperature dependence of GTPase activity in human guanylate binding protein-1.

    Directory of Open Access Journals (Sweden)

    Anjana Rani

    Full Text Available Interferon-γ induced human guanylate binding protein-1(hGBP1 belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1.

  12. High-protein-low-carbohydrate diet: deleterious metabolic and cardiovascular effects depend on age.

    Science.gov (United States)

    Bedarida, Tatiana; Baron, Stephanie; Vessieres, Emilie; Vibert, Francoise; Ayer, Audrey; Marchiol-Fournigault, Carmen; Henrion, Daniel; Paul, Jean-Louis; Noble, Florence; Golmard, Jean-Louis; Beaudeux, Jean-Louis; Cottart, Charles-Henry; Nivet-Antoine, Valerie

    2014-09-01

    High-protein-low-carbohydrate (HP-LC) diets have become widespread. Yet their deleterious consequences, especially on glucose metabolism and arteries, have already been underlined. Our previous study (2) has already shown glucose intolerance with major arterial dysfunction in very old mice subjected to an HP-LC diet. The hypothesis of this work was that this diet had an age-dependent deleterious metabolic and cardiovascular outcome. Two groups of mice, young and adult (3 and 6 mo old), were subjected for 12 wk to a standard or to an HP-LC diet. Glucose and lipid metabolism was studied. The cardiovascular system was explored from the functional stage with Doppler-echography to the molecular stage (arterial reactivity, mRNA, immunohistochemistry). Young mice did not exhibit any significant metabolic modification, whereas adult mice presented marked glucose intolerance associated with an increase in resistin and triglyceride levels. These metabolic disturbances were responsible for cardiovascular damages only in adult mice, with decreased aortic distensibility and left ventricle dysfunction. These seemed to be the consequence of arterial dysfunctions. Mesenteric arteries were the worst affected with a major oxidative stress, whereas aorta function seemed to be maintained with an appreciable role of cyclooxygenase-2 to preserve endothelial function. This study highlights for the first time the age-dependent deleterious effects of an HP-LC diet on metabolism, with glucose intolerance and lipid disorders and vascular (especially microvessels) and cardiac functions. This work shows that HP-LC lead to equivalent cardiovascular alterations, as observed in very old age, and underlines the danger of such diet. Copyright © 2014 the American Physiological Society.

  13. Cation dependency of the hydrolytic activity of activated bovine Protein C

    International Nuclear Information System (INIS)

    Hill, K.A.W.

    1986-01-01

    The hydrolytic activity of activated bovine plasma Protein C (APC) is dependent upon monovalent or divalent cations. The kinetics of APC activity were examined with a variety of monovalent and divalent cations, and significant differences were observed. Similar studies were performed with des(1-41, light chain)APC (GDAPC), from which all γ-carboxyglutamic acid residues have been removed. These studies provided useful information concerning the cation dependency. Divalent cations apparently stimulate APC and GDAPC kinetic activity through association at a single γ-carboxyglutamic acid-independent high affinity binding site. A Mn(II) binding site of this nature of GDAPC was determined by EPR spectroscopy, to possess a dissociation constant of 53 +/- 8 uM. Monovalent cations stimulate GDAPC activity through association at an apparently single binding site that is distinct from the divalent cation site. The monovalent cation , Tl(I), was determined, by 205 Tl(I) NMR spectroscopy, to bind to APC and GDAPC with dissociation constants of 16 +/- 8 mM and 32+/- 11 mM, respectively. Both NMR and EPR spectroscopy have been utilized to estimate topographical relationships between divalent cation sites, monovalent cation sites, and the active site of GDAPC. By observing the paramagnetic effects of either Mn(II) or an active site directed spin-label on the longitudinal relaxation rates of Tl(I) nuclei bound to this enzyme, the average interatomic distance between Mn(II) and Tl(I) was calculated to be 8.3 +/- 0.3 A, and the average distance between Tl(I) and the spin-label free electron was estimated to be 3.8 +/- 0.2 A

  14. Scan-rate dependence in protein calorimetry: the reversible transitions of Bacillus circulans xylanase and a disulfide-bridge mutant.

    OpenAIRE

    Davoodi, J.; Wakarchuk, W. W.; Surewicz, W. K.; Carey, P. R.

    1998-01-01

    The stabilities of Bacillus circulans xylanase and a disulfide-bridge-containing mutant (S100C/N148C) were investigated by differential scanning calorimetry (DSC) and thermal inactivation kinetics. The thermal denaturation of both proteins was found to be irreversible, and the apparent transition temperatures showed a considerable dependence upon scanning rate. In the presence of low (nondenaturing) concentrations of urea, calorimetric transitions were observed for both proteins in the second...

  15. The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2- and RanGAP2-dependent plant cell death.

    Directory of Open Access Journals (Sweden)

    Melanie Ann Sacco

    2009-08-01

    Full Text Available Plant NB-LRR proteins confer robust protection against microbes and metazoan parasites by recognizing pathogen-derived avirulence (Avr proteins that are delivered to the host cytoplasm. Microbial Avr proteins usually function as virulence factors in compatible interactions; however, little is known about the types of metazoan proteins recognized by NB-LRR proteins and their relationship with virulence. In this report, we demonstrate that the secreted protein RBP-1 from the potato cyst nematode Globodera pallida elicits defense responses, including cell death typical of a hypersensitive response (HR, through the NB-LRR protein Gpa2. Gp-Rbp-1 variants from G. pallida populations both virulent and avirulent to Gpa2 demonstrated a high degree of polymorphism, with positive selection detected at numerous sites. All Gp-RBP-1 protein variants from an avirulent population were recognized by Gpa2, whereas virulent populations possessed Gp-RBP-1 protein variants both recognized and non-recognized by Gpa2. Recognition of Gp-RBP-1 by Gpa2 correlated to a single amino acid polymorphism at position 187 in the Gp-RBP-1 SPRY domain. Gp-RBP-1 expressed from Potato virus X elicited Gpa2-mediated defenses that required Ran GTPase-activating protein 2 (RanGAP2, a protein known to interact with the Gpa2 N terminus. Tethering RanGAP2 and Gp-RBP-1 variants via fusion proteins resulted in an enhancement of Gpa2-mediated responses. However, activation of Gpa2 was still dependent on the recognition specificity conferred by amino acid 187 and the Gpa2 LRR domain. These results suggest a two-tiered process wherein RanGAP2 mediates an initial interaction with pathogen-delivered Gp-RBP-1 proteins but where the Gpa2 LRR determines which of these interactions will be productive.

  16. A microarray of ubiquitylated proteins for profiling deubiquitylase activity reveals the critical roles of both chain and substrate.

    Science.gov (United States)

    Loch, Christian M; Strickler, James E

    2012-11-01

    Substrate ubiquitylation is a reversible process critical to cellular homeostasis that is often dysregulated in many human pathologies including cancer and neurodegeneration. Elucidating the mechanistic details of this pathway could unlock a large store of information useful to the design of diagnostic and therapeutic interventions. Proteomic approaches to the questions at hand have generally utilized mass spectrometry (MS), which has been successful in identifying both ubiquitylation substrates and profiling pan-cellular chain linkages, but is generally unable to connect the two. Interacting partners of the deubiquitylating enzymes (DUBs) have also been reported by MS, although substrates of catalytically competent DUBs generally cannot be. Where they have been used towards the study of ubiquitylation, protein microarrays have usually functioned as platforms for the identification of substrates for specific E3 ubiquitin ligases. Here, we report on the first use of protein microarrays to identify substrates of DUBs, and in so doing demonstrate the first example of microarray proteomics involving multiple (i.e., distinct, sequential and opposing) enzymatic activities. This technique demonstrates the selectivity of DUBs for both substrate and type (mono- versus poly-) of ubiquitylation. This work shows that the vast majority of DUBs are monoubiquitylated in vitro, and are incapable of removing this modification from themselves. This work also underscores the critical role of utilizing both ubiquitin chains and substrates when attempting to characterize DUBs. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. cAMP-dependent Protein Kinase (PKA) Signaling Is Impaired in the Diabetic Heart.

    Science.gov (United States)

    Bockus, Lee B; Humphries, Kenneth M

    2015-12-04

    Diabetes mellitus causes cardiac dysfunction and heart failure that is associated with metabolic abnormalities and autonomic impairment. Autonomic control of ventricular function occurs through regulation of cAMP-dependent protein kinase (PKA). The diabetic heart has suppressed β-adrenergic responsiveness, partly attributable to receptor changes, yet little is known about how PKA signaling is directly affected. Control and streptozotocin-induced diabetic mice were therefore administered 8-bromo-cAMP (8Br-cAMP) acutely to activate PKA in a receptor-independent manner, and cardiac hemodynamic function and PKA signaling were evaluated. In response to 8Br-cAMP treatment, diabetic mice had impaired inotropic and lusitropic responses, thus demonstrating postreceptor defects. This impaired signaling was mediated by reduced PKA activity and PKA catalytic subunit content in the cytoplasm and myofilaments. Compartment-specific loss of PKA was reflected by reduced phosphorylation of discrete substrates. In response to 8Br-cAMP treatment, the glycolytic activator PFK-2 was robustly phosphorylated in control animals but not diabetics. Control adult cardiomyocytes cultured in lipid-supplemented media developed similar changes in PKA signaling, suggesting that lipotoxicity is a contributor to diabetes-induced β-adrenergic signaling dysfunction. This work demonstrates that PKA signaling is impaired in diabetes and suggests that treating hyperlipidemia is vital for proper cardiac signaling and function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. cAMP-dependent Protein Kinase (PKA) Signaling Is Impaired in the Diabetic Heart*

    Science.gov (United States)

    Bockus, Lee B.; Humphries, Kenneth M.

    2015-01-01

    Diabetes mellitus causes cardiac dysfunction and heart failure that is associated with metabolic abnormalities and autonomic impairment. Autonomic control of ventricular function occurs through regulation of cAMP-dependent protein kinase (PKA). The diabetic heart has suppressed β-adrenergic responsiveness, partly attributable to receptor changes, yet little is known about how PKA signaling is directly affected. Control and streptozotocin-induced diabetic mice were therefore administered 8-bromo-cAMP (8Br-cAMP) acutely to activate PKA in a receptor-independent manner, and cardiac hemodynamic function and PKA signaling were evaluated. In response to 8Br-cAMP treatment, diabetic mice had impaired inotropic and lusitropic responses, thus demonstrating postreceptor defects. This impaired signaling was mediated by reduced PKA activity and PKA catalytic subunit content in the cytoplasm and myofilaments. Compartment-specific loss of PKA was reflected by reduced phosphorylation of discrete substrates. In response to 8Br-cAMP treatment, the glycolytic activator PFK-2 was robustly phosphorylated in control animals but not diabetics. Control adult cardiomyocytes cultured in lipid-supplemented media developed similar changes in PKA signaling, suggesting that lipotoxicity is a contributor to diabetes-induced β-adrenergic signaling dysfunction. This work demonstrates that PKA signaling is impaired in diabetes and suggests that treating hyperlipidemia is vital for proper cardiac signaling and function. PMID:26468277

  19. Characterization of the regulatory subunit from brain cyclic AMP-dependent protein kinase II

    International Nuclear Information System (INIS)

    Stein, J.C.

    1985-01-01

    Tryptic peptides derived from the regulatory subunits of brain and heart cAMP-dependent protein kinase II were mapped by reverse phase HPLC. At 280 nm, 15 unique peptides were found only in the heart RII digest, while 5 other peptides were obtained only from brain RII. At 210 nm, 13 brain-RII specific and 15 heart-RII specific tryptic peptides were identified and resolved. Two-dimensional mapping analyses revealed that several 37 P-labeled tryptic fragments derived from the autophosphorylation and the photoaffinity labeled cAMP-binding sites of brain RII were separate and distinct from the 32 P-peptides isolated from similarly treated heart RII. The tryptic phosphopeptide containing the autophosphorylation site in brain RII was purified. The sequence and phosphorylation site is: Arg-Ala-Ser(P)-Val-Cys-Ala-Glu-Ala-Tyr-Asn-Pro-Asp-Glu-Glu-Glu-Asp-Asp-Ala-Glu. Astrocytes and neurons exhibit high levels of the brain RII enzyme, while oligodendrocytes contain the heart RII enzyme. Monoclonal antibodies to bovine cerebral cortex RII were made and characterized. The antibodies elucidated a subtle difference between membrane-associated and cytosolic RII from cerebral cortex

  20. Expression of MMPs is dependent on the activity of mitogen-activated protein kinase in chondrosarcoma.

    Science.gov (United States)

    Yao, Min; Wang, Xiaomei; Zhao, Yufeng; Wang, Xiaomeng; Gao, Feng

    2017-02-01

    Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) serve an important role in chondrosarcoma. The present study investigated whether the expression of MMPs was dependent on the activity of mitogen-activated protein kinase (MAPK) in chondrosarcoma. Surgical pathological specimens were collected to detect MMP-1, MMP-13, TIMP-1, type II collagen and phosphorylated MAPK levels in normal cartilage, enchondroma and chondrosarcoma tissues. The expression of MMP‑1, MMP‑13, TIMP‑1 and type II collagen was investigated utilizing MAPK inhibitors in chondrosarcoma cells. It was noted that the expression levels of MMP‑1, MMP‑13 and TIMP‑1 were increased in chondrosarcoma with the activity of MAPK. After chondrosarcoma cells were pretreated with MAPK inhibitors, the levels of MMP‑1, MMP‑13 and TIMP‑1 were inhibited. Furthermore, MMP‑1 and MMP‑13 are essential in regulating the degradation of type II collagen and decomposing cartilage matrix major. The high expression levels of MMP‑1 and MMP‑13 in chondrosarcoma expedite the invasion by chondrosarcoma cells and their expression can be depressed by MAPK inhibitors.

  1. Lipid composition of cAMP-dependent protein kinase mutants of Aspergillus niger.

    Science.gov (United States)

    Jernejc, Katarina; Bencina, Mojca

    2003-08-29

    Lipid composition of cAMP-dependent protein kinase (PKA) Aspergillus niger mutants with overexpressed or deleted genes for either regulatory and/or the catalytic subunit of PKA was analyzed. Disruption of the gene encoding the PKA regulatory subunit resulted in 20% less total lipids, 30% less neutral lipids, four times more glycolipids and two-fold higher triacylglycerol lipase activity compared to the control strain. Concomitantly a five-fold decrease in phosphatidylcholine, accompanied with 1.5-, 1.8- and 2.8-fold increases in phosphatidylethanolamine, lysophosphatidylethanolamine and phosphatidylinositol, was determined, respectively. The lack of PKA activity, due to the disruption of a gene encoding the PKA catalytic subunit, resulted in a 1.6-times increase in total lipids with two times more neutral lipids associated with lower triacylglycerol lipase activity and a decrease in phospholipids. The mutants with unrestricted PKA activity synthesized twice as much citric acid as the control strain and three times more than strains lacking PKA activity. The results indicate the involvement of cAMP-mediated PKA activity in regulation of lipid biosynthesis as well as citric acid synthesis.

  2. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion

    International Nuclear Information System (INIS)

    Mukai, Atsushi; Hashimoto, Naohiro

    2008-01-01

    Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a 'myosheet,' was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and the lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells

  3. cGMP-dependent protein kinase I, the circadian clock, sleep and learning.

    Science.gov (United States)

    Feil, Robert; Hölter, Sabine M; Weindl, Karin; Wurst, Wolfgang; Langmesser, Sonja; Gerling, Andrea; Feil, Susanne; Albrecht, Urs

    2009-07-01

    The second messenger cGMP controls cardiovascular and gastrointestinal homeostasis in mammals. However, its physiological relevance in the nervous system is poorly understood.1 Now, we have reported that the cGMP-dependent protein kinase type I (PRKG1) is implicated in the regulation of the timing and quality of sleep and wakefulness.2Prkg1 mutant mice showed altered distribution of sleep and wakefulness as well as reduction in rapid-eye-movement sleep (REMS) duration and in non-REMS consolidation. Furthermore, the ability to sustain waking episodes was compromised. These observations were also reflected in wheel-running and drinking activity. A decrease in electroencephalogram power in the delta frequency range (1-4 Hz) under baseline conditions was observed, which was normalized after sleep deprivation. Together with the finding that circadian clock amplitude is reduced in Prkg1 mutants these results indicate a decrease of the wake-promoting output of the circadian system affecting sleep. Because quality of sleep might affect learning we tested Prkg1 mutants in several learning tasks and find normal spatial learning but impaired object recognition memory in these animals. Our findings indicate that Prkg1 impinges on circadian rhythms, sleep and distinct aspects of learning.

  4. Fesselin is a target protein for calmodulin in a calcium-dependent manner

    International Nuclear Information System (INIS)

    KoIakowski, Janusz; Wrzosek, Antoni; Dabrowska, Renata

    2004-01-01

    Fesselin is a basic protein isolated from smooth muscle which binds G-actin and accelerates its polymerization as well as cross-links assembled filaments [J. Muscle Res. Cell Motil. 20 (1999) 539; Biochemistry 40 (2001) 14252]. In this report experimental evidence is provided for the first time proving that fesselin can interact with calmodulin in a Ca 2+ -dependent manner in vitro. Using ion exchange, followed by calmodulin-affinity chromatography, enabled us to simplify and shorten the fesselin preparation procedure and increase its yield by about three times in comparison to the procedure described by Leinweber et al. [J. Muscle Res. Cell Motil. 20 (1999) 539]. Fesselin interaction with dansyl-labelled calmodulin causes a 2-fold increase in maximum fluorescence intensity of the fluorophore and a 21 nm blue shift of the spectrum. The transition of complex formation between fesselin and calmodulin occurs at submicromolar concentration of calcium ions. The dissociation constant of fesselin Ca 2+ /calmodulin complexes amounted to 10 -8 M. The results suggest the existence of a direct link between Ca 2+ /calmodulin and fesselin at the level of actin cytoskeleton dynamics in smooth muscle

  5. Frank-ter Haar syndrome protein Tks4 regulates epidermal growth factor-dependent cell migration.

    Science.gov (United States)

    Bögel, Gábor; Gujdár, Annamária; Geiszt, Miklós; Lányi, Árpád; Fekete, Anna; Sipeki, Szabolcs; Downward, Julian; Buday, László

    2012-09-07

    Mutations in the SH3PXD2B gene coding for the Tks4 protein are responsible for the autosomal recessive Frank-ter Haar syndrome. Tks4, a substrate of Src tyrosine kinase, is implicated in the regulation of podosome formation. Here, we report a novel role for Tks4 in the EGF signaling pathway. In EGF-treated cells, Tks4 is tyrosine-phosphorylated and associated with the activated EGF receptor. This association is not direct but requires the presence of Src tyrosine kinase. In addition, treatment of cells with LY294002, an inhibitor of PI 3-kinase, or mutations of the PX domain reduces tyrosine phosphorylation and membrane translocation of Tks4. Furthermore, a PX domain mutant (R43W) Tks4 carrying a reported point mutation in a Frank-ter Haar syndrome patient showed aberrant intracellular expression and reduced phosphoinositide binding. Finally, silencing of Tks4 was shown to markedly inhibit HeLa cell migration in a Boyden chamber assay in response to EGF or serum. Our results therefore reveal a new function for Tks4 in the regulation of growth factor-dependent cell migration.

  6. Wheat-Dependent Exercise-Induced Anaphylaxis Sensitized with Hydrolyzed Wheat Protein in Soap

    Directory of Open Access Journals (Sweden)

    Yuko Chinuki

    2012-01-01

    Full Text Available Wheat-dependent exercise-induced anaphylaxis (WDEIA is a specific form of wheat allergy typically induced by exercise after ingestion of wheat products. Wheat ω-5 gliadin is a major allergen associated with conventional WDEIA, and detection of serum immunoglobulin E (IgE specific to recombinant ω-5 gliadin is a reliable method for its diagnosis. Recently, an increased incidence of a new subtype of WDEIA, which is likely to be sensitized via a percutaneous and/or rhinoconjunctival route to hydrolyzed wheat protein (HWP, has been observed. All of the patients with this new subtype had used the same brand of soap, which contained HWP. Approximately half of these patients developed contact allergy several months later and subsequently developed WDEIA. In each of these patients, contact allergy with soap exposure preceded food ingestion-induced reactions. Other patients directly developed generalized symptoms upon ingestion of wheat products. The predominant observed symptom of the new WDEIA subtype was angioedema of the eyelids; a number of patients developed anaphylaxis. This new subtype of WDEIA has little serum ω-5 gliadin-specific serum IgE.

  7. In vivo imaging of brain ischemia using an oxygen-dependent degradative fusion protein probe.

    Directory of Open Access Journals (Sweden)

    Youshi Fujita

    Full Text Available Within the ischemic penumbra, blood flow is sufficiently reduced that it results in hypoxia severe enough to arrest physiological function. Nevertheless, it has been shown that cells present within this region can be rescued and resuscitated by restoring perfusion and through other protective therapies. Thus, the early detection of the ischemic penumbra can be exploited to improve outcomes after focal ischemia. Hypoxia-inducible factor (HIF-1 is a transcription factor induced by a reduction in molecular oxygen levels. Although the role of HIF-1 in the ischemic penumbra remains unknown, there is a strong correlation between areas with HIF-1 activity and the ischemic penumbra. We recently developed a near-infrared fluorescently labeled-fusion protein, POH-N, with an oxygen-dependent degradation property identical to the alpha subunit of HIF-1. Here, we conduct in vivo imaging of HIF-active regions using POH-N in ischemic brains after transient focal cerebral ischemia induced using the intraluminal middle cerebral artery occlusion technique in mice. The results demonstrate that POH-N enables the in vivo monitoring and ex vivo detection of HIF-1-active regions after ischemic brain injury and suggest its potential in imaging and drug delivery to HIF-1-active areas in ischemic brains.

  8. Kinetic Basis of Nucleotide Selection Employed by a Protein Template-Dependent DNA Polymerase†

    Science.gov (United States)

    Brown, Jessica A.; Fowler, Jason D.; Suo, Zucai

    2010-01-01

    Rev1, a Y-family DNA polymerase, contributes to spontaneous and DNA damage-induced mutagenic events. In this paper, we have employed pre-steady state kinetic methodology to establish a kinetic basis for nucleotide selection by human Rev1, a unique nucleotidyl transferase that uses a protein template-directed mechanism to preferentially instruct dCTP incorporation. This work demonstrated that the high incorporation efficiency of dCTP is dependent on both substrates: an incoming dCTP and a templating base dG. The extremely low base substitution fidelity of human Rev1 (100 to 10-5) was due to the preferred misincorporation of dCTP with templating bases dA, dT, and dC over correct dNTPs. Using non-natural nucleotide analogs, we showed that hydrogen bonding interactions between residue R357 of human Rev1 and an incoming dNTP are not essential for DNA synthesis. Lastly, human Rev1 discriminates between ribonucleotides and deoxyribonucleotides mainly by reducing the rate of incorporation, and the sugar selectivity of human Rev1 is sensitive to both the size and orientation of the 2′-substituent of a ribonucleotide. PMID:20518555

  9. Gametogenesis in malaria parasites is mediated by the cGMP-dependent protein kinase.

    Directory of Open Access Journals (Sweden)

    Louisa McRobert

    2008-06-01

    Full Text Available Malaria parasite transmission requires differentiation of male and female gametocytes into gametes within a mosquito following a blood meal. A mosquito-derived molecule, xanthurenic acid (XA, can trigger gametogenesis, but the signalling events controlling this process in the human malaria parasite Plasmodium falciparum remain unknown. A role for cGMP was revealed by our observation that zaprinast (an inhibitor of phosphodiesterases that hydrolyse cGMP stimulates gametogenesis in the absence of XA. Using cGMP-dependent protein kinase (PKG inhibitors in conjunction with transgenic parasites expressing an inhibitor-insensitive mutant PKG enzyme, we demonstrate that PKG is essential for XA- and zaprinast-induced gametogenesis. Furthermore, we show that intracellular calcium (Ca2+ is required for differentiation and acts downstream of or in parallel with PKG activation. This work defines a key role for PKG in gametogenesis, elucidates the hierarchy of signalling events governing this process in P. falciparum, and demonstrates the feasibility of selective inhibition of a crucial regulator of the malaria parasite life cycle.

  10. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination.

    Directory of Open Access Journals (Sweden)

    Samantha F Kornfeld

    Full Text Available Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as

  11. Ca2+-dependent proteolytic activity in crab claw muscle: effects of inhibitors and specificity for myofibrillar proteins

    International Nuclear Information System (INIS)

    Mykles, D.L.; Skinner, D.M.

    1983-01-01

    The claw closer muscle of the Bermuda land crab, Gecarcinus lateralis, undergoes a sequential atrophy and restoration during each molting cycle. The role of Ca 2+ -dependent proteinases in the turn-over of myofibrillar protein in normal anecdysial (intermolt) claw muscle is described. Crab Ca 2+ -dependent proteinase degrades the myofibrillar proteins actin, myosin heavy and light chains, paramyosin, tropomyosin, and troponin-T and -I. Ca 2+ -dependent proteinase activity in whole homogenates and 90,000 x g supernatant fractions from muscle homogenates has been characterized with respect to Ca 2+ requirement, substrate specificity, and effects of proteinase inhibitors. The enzyme is inhibited by antipain, leupeptin, E-64, and iodoacetamide; it is insensitive to pepstatin A. The specificity of crab Ca 2+ -dependent proteinase was examined with native myosin with normal ATPase activity as well as with radioiodinated myosin and radioiodinated hemolymph proteins. Hydrolysis of 125 I-myosin occurs in two phases, both Ca 2+ -dependent: (1) heavy chain (M/sub r/ = 200,000) is cleaved into four large fragments (M/sub r/ = 160,000, 110,000, 73,000, 60,000) and numerous smaller fragments; light chain (M/sub r/ = 18,000) is cleaved to a 15,000-Da fragment; (2) the fragments produced in the first phase are hydrolyzed to acid-soluble material. Although radioiodinated native hemolymph proteins are not susceptible to the Ca 2+ -dependent proteinase, those denatured by carboxymethylation are degraded. These data suggest that crab Ca 2+ -dependent proteinase is involved in turnover of myofibrillar protein in normal muscle and muscle undergoing proecdysial atrophy

  12. Angular dependence of the upper critical field in Bi sub 2 Sr sub 2 CuO sub 6 sub + subdelta

    CERN Document Server

    Vedeneev, S I

    2002-01-01

    The angular dependence of the upper critical field has been investigated in a wide range of temperatures in very high-quality Bi sub 2 Sr sub 2 CuO sub 6 sub + subdelta single crystals with critical temperature approx = 9 K in magnetic fields up to 28 T. Although the typical value of the normal state resistivity ratio approx = 10 sup 4 , the anisotropy ratio of the upper critical fields is much smaller. A model is proposed based on a strong anisotropy and a small transparency between superconducting layers

  13. Down-regulation of lipid raft-associated onco-proteins via cholesterol-dependent lipid raft internalization in docosahexaenoic acid-induced apoptosis.

    Science.gov (United States)

    Lee, Eun Jeong; Yun, Un-Jung; Koo, Kyung Hee; Sung, Jee Young; Shim, Jaegal; Ye, Sang-Kyu; Hong, Kyeong-Man; Kim, Yong-Nyun

    2014-01-01

    Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function. © 2013.

  14. Protein kinase C-dependent signaling controls the midgut epithelial barrier to malaria parasite infection in anopheline mosquitoes.

    Directory of Open Access Journals (Sweden)

    Nazzy Pakpour

    Full Text Available Anopheline mosquitoes are the primary vectors of parasites in the genus Plasmodium, the causative agents of malaria. Malaria parasites undergo a series of complex transformations upon ingestion by the mosquito host. During this process, the physical barrier of the midgut epithelium, along with innate immune defenses, functionally restrict parasite development. Although these defenses have been studied for some time, the regulatory factors that control them are poorly understood. The protein kinase C (PKC gene family consists of serine/threonine kinases that serve as central signaling molecules and regulators of a broad spectrum of cellular processes including epithelial barrier function and immunity. Indeed, PKCs are highly conserved, ranging from 7 isoforms in Drosophila to 16 isoforms in mammals, yet none have been identified in mosquitoes. Despite conservation of the PKC gene family and their potential as targets for transmission-blocking strategies for malaria, no direct connections between PKCs, the mosquito immune response or epithelial barrier integrity are known. Here, we identify and characterize six PKC gene family members--PKCδ, PKCε, PKCζ, PKD, PKN, and an indeterminate conventional PKC--in Anopheles gambiae and Anopheles stephensi. Sequence and phylogenetic analyses of the anopheline PKCs support most subfamily assignments. All six PKCs are expressed in the midgut epithelia of A. gambiae and A. stephensi post-blood feeding, indicating availability for signaling in a tissue that is critical for malaria parasite development. Although inhibition of PKC enzymatic activity decreased NF-κB-regulated anti-microbial peptide expression in mosquito cells in vitro, PKC inhibition had no effect on expression of a panel of immune genes in the midgut epithelium in vivo. PKC inhibition did, however, significantly increase midgut barrier integrity and decrease development of P. falciparum oocysts in A. stephensi, suggesting that PKC-dependent

  15. Effect of dietary protein on the excretion of. cap alpha. /sub 2u/, the sex-dependent protein of the adult male rat

    Energy Technology Data Exchange (ETDEWEB)

    Neuhaus, O W; Flory, W

    1975-01-01

    Adult male rates were maintained on normal (20 percent casein), protein-free (0 percent casein), high protein (50 percent casein), deficient protein (20 percent zein), and a supplemented, deficient protein (20 percent zein plus L-lysine and L-tryptophan) diets. Rats on a protein-free diet excreted approximately 1 mg ..cap alpha../sub 2u//24 h compared with a normal of 10-15 mg/24 h. Depleted rats placed on the normal diet showed a rapid restoration of the normal ..cap alpha../sub 2u/ excretion as well as total urinary proteins. Accumulation of ..cap alpha../sub 2u/ in the blood serum was measured in nephrectomized rats. Rats on the protein free diet accumulated only 30 percent of the ..cap alpha../sub 2u/ compared to normals. On a 50 precent casein diet, rats excreted 30-50 mg ..cap alpha../sub 2u//24 h. However, the accumulation was normal in the serum of nephrectomized rats. A high protein diet did not stimulate ..cap alpha../sub 2u/ synthesis but probably increased the renal loss of all urinary proteins. The excretion of ..cap alpha../sub 2u/ on a zein diet was reduced to the same degree as with the protein-free diet. Supplementation with lysine and tryptophan restored the capacity to eliminate ..cap alpha../sub 2u/ to near normal levels. Accumulation of ..cap alpha../sub 2u/ in the serum of nephrectomized rats kept on the zein diets showed that the effect was to suppress the synthesis of the ..cap alpha../sub 2u/. Supplementation restored the biosynthesis of ..cap alpha../sub 2u/. It is concluded that the effect of dietary protein on the excretion of urinary proteins in the adult male rat is caused in a large part by an influence on the hepatic biosynthesis of ..cap alpha../sub 2u/. The biosynthesis of this protein, which represents approximately 30 percent of the total urinary proteins, is dependent on an adequate supply of dietary protein.

  16. A multi-angular mass spectrometric view at cyclic nucleotide signaling proteins : Structure/function and protein interactions of cAMP- and cGMP-dependent protein kinase

    NARCIS (Netherlands)

    Scholten, A.

    2006-01-01

    The primary focus of this thesis is the two kinases PKA and PKG, cAMP and cGMP dependent protein kinase respectively. PKA and PKG are studied both at structure/function level as well as at the level of interaction with other proteins in tissue. Our primary methods are all based on mass spectrometry.

  17. Post-anthesis nitrate uptake is critical to yield and grain protein content in Sorghum bicolor.

    Science.gov (United States)

    Worland, Belinda; Robinson, Nicole; Jordan, David; Schmidt, Susanne; Godwin, Ian

    2017-09-01

    Crops only use ∼50% of applied nitrogen (N) fertilizer creating N losses and pollution. Plants need to efficiently uptake and utilize N to meet growing global food demands. Here we investigate how the supply and timing of nitrate affects N status and yield in Sorghum bicolor (sorghum). Sorghum was grown in pots with either 10mM (High) or 1mM (Low) nitrate supply. Shortly before anthesis the nitrate supply was either maintained, increased 10-fold or eliminated. Leaf sheaths of sorghum grown with High nitrate accumulated nitrate in concentrations >3-times higher than leaves. Removal of nitrate supply pre-anthesis resulted in the rapid reduction of stored nitrate in all organs. Plants receiving a 10-fold increase in nitrate supply pre-anthesis achieved similar grain yield and protein content and 29% larger grains than those maintained on High nitrate, despite receiving 24% less nitrate over the whole growth period. In sorghum, plant available N is important throughout development, particularly anthesis and grain filling, for grain yield and grain protein content. Nitrate accumulation in leaf sheaths presents opportunities for the genetic analysis of mechanisms behind nitrate storage and remobilization in sorghum to improve N use efficiency. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Akt1/protein kinase Bα is critical for ischemic and VEGF-mediated angiogenesis

    Science.gov (United States)

    Ackah, Eric; Yu, Jun; Zoellner, Stefan; Iwakiri, Yasuko; Skurk, Carsten; Shibata, Rei; Ouchi, Noriyuki; Easton, Rachael M.; Galasso, Gennaro; Birnbaum, Morris J.; Walsh, Kenneth; Sessa, William C.

    2005-01-01

    Akt, or protein kinase B, is a multifunctional serine-threonine protein kinase implicated in a diverse range of cellular functions including cell metabolism, survival, migration, and gene expression. However, the in vivo roles and effectors of individual Akt isoforms in signaling are not explicitly clear. Here we show that the genetic loss of Akt1, but not Akt2, in mice results in defective ischemia and VEGF-induced angiogenesis as well as severe peripheral vascular disease. Akt1 knockout (Akt1–/–) mice also have reduced endothelial progenitor cell (EPC) mobilization in response to ischemia, and reintroduction of WT EPCs, but not EPCs isolated from Akt1–/– mice, into WT mice improves limb blood flow after ischemia. Mechanistically, the loss of Akt1 reduces the basal phosphorylation of several Akt substrates, the migration of fibroblasts and ECs, and NO release. Reconstitution of Akt1–/– ECs with Akt1 rescues the defects in substrate phosphorylation, cell migration, and NO release. Thus, the Akt1 isoform exerts an essential role in blood flow control, cellular migration, and NO synthesis during postnatal angiogenesis. PMID:16075056

  19. Divergent Small Tim Homologues Are Associated with TbTim17 and Critical for the Biogenesis of TbTim17 Protein Complexes in Trypanosoma brucei

    Science.gov (United States)

    Smith, Joseph T.; Singha, Ujjal K.; Misra, Smita

    2018-01-01

    ABSTRACT The small Tim proteins belong to a group of mitochondrial intermembrane space chaperones that aid in the import of mitochondrial inner membrane proteins with internal targeting signals. Trypanosoma brucei, the protozoan parasite that causes African trypanosomiasis, possesses multiple small Tim proteins that include homologues of T. brucei Tim9 (TbTim9) and Tim10 (TbTim10) and a unique small Tim that shares homology with both Tim8 and Tim13 (TbTim8/13). Here, we found that these three small TbTims are expressed as soluble mitochondrial intermembrane space proteins. Coimmunoprecipitation and mass spectrometry analysis showed that the small TbTims stably associated with each other and with TbTim17, the major component of the mitochondrial inner membrane translocase in T. brucei. Yeast two-hybrid analysis indicated direct interactions among the small TbTims; however, their interaction patterns appeared to be different from those of their counterparts in yeast and humans. Knockdown of the small TbTims reduced cell growth and decreased the steady-state level of TbTim17 and T. brucei ADP/ATP carrier (TbAAC), two polytopic mitochondrial inner membrane proteins. Knockdown of small TbTims also reduced the matured complexes of TbTim17 in mitochondria. Depletion of any of the small TbTims reduced TbTim17 import moderately but greatly hampered the stability of the TbTim17 complexes in T. brucei. Altogether, our results revealed that TbTim9, TbTim10, and TbTim8/13 interact with each other, associate with TbTim17, and play a crucial role in the integrity and maintenance of the levels of TbTim17 complexes. IMPORTANCE Trypanosoma brucei is the causative agent of African sleeping sickness. The parasite’s mitochondrion represents a useful source for potential chemotherapeutic targets. Similarly to yeast and humans, mitochondrial functions depend on the import of proteins that are encoded in the nucleus and made in the cytosol. Even though the machinery involved in this

  20. Increased protein-energy intake promotes anabolism in critically ill infants with viral bronchiolitis: a double-blind randomised controlled trial

    NARCIS (Netherlands)

    de Betue, C.T.; van Waardenburg, D.A.; Deutz, N.E.; van Eijk, H.M.; van Goudoever, J.B.; Luiking, Y.C.; Zimmermann, L.J.; Joosten, K.F.

    2011-01-01

    The preservation of nutritional status and growth is an important aim in critically ill infants, but difficult to achieve due to the metabolic stress response and inadequate nutritional intake, leading to negative protein balance. This study investigated whether increasing protein and energy intakes

  1. Amino acids augment muscle protein synthesis in neonatal pigs during acute endotoxemia by stimulating mTOR-dependent translation initiation.

    Science.gov (United States)

    Orellana, Renán A; Jeyapalan, Asumthia; Escobar, Jeffery; Frank, Jason W; Nguyen, Hanh V; Suryawan, Agus; Davis, Teresa A

    2007-11-01

    In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study, we determined the effect of amino acids on protein synthesis in skeletal muscle and other tissues in septic neonates. Overnight-fasted neonatal pigs were infused with endotoxin (LPS, 0 and 10 microg.kg(-1).h(-1)), whereas glucose and insulin were maintained at fasting levels; amino acids were clamped at fasting or fed levels. In the presence of fasting insulin and amino acids, LPS reduced protein synthesis in longissimus dorsi (LD) and gastrocnemius muscles and increased protein synthesis in the diaphragm, but had no effect in masseter and heart muscles. Increasing amino acids to fed levels accelerated muscle protein synthesis in LD, gastrocnemius, masseter, and diaphragm. LPS stimulated protein synthesis in liver, lung, spleen, pancreas, and kidney in fasted animals. Raising amino acids to fed levels increased protein synthesis in liver of controls, but not LPS-treated animals. The increase in muscle protein synthesis in response to amino acids was associated with increased mTOR, 4E-BP1, and S6K1 phosphorylation and eIF4G-eIF4E association in control and LPS-infused animals. These findings suggest that amino acids stimulate skeletal muscle protein synthesis during acute endotoxemia via mTOR-dependent ribosomal assembly despite reduced basal protein synthesis rates in neonatal pigs. However, provision of amino acids does not further enhance the LPS-induced increase in liver protein synthesis.

  2. A nonspecific Setaria italica lipid transfer protein gene plays a critical role under abiotic stress

    Directory of Open Access Journals (Sweden)

    Yanlin Pan

    2016-11-01

    Full Text Available Lipid transfer proteins (LTPs are a class of cysteine-rich soluble proteins having small molecular weights. LTPs participate in flower and seed development, cuticular wax deposition, also play important roles in pathogen and abiotic stress responses. A nonspecific LTP gene (SiLTP was isolated from a foxtail millet (Setaria italica suppression subtractive hybridization (SSH library enriched for differentially expressed genes after abiotic stress treatments. A semi-quantitative reverse transcriptase PCR analysis showed that SiLTP was expressed in all foxtail millet tissues. Additionally, the SiLTP promoter drove GUS expression in root tips, stems, leaves, flowers and siliques of transgenic Arabidopsis. Quantitative real-time PCR indicated that the SiLTP expression was induced by NaCl, polyethylene glycol and abscisic acid. SiLTP was localized in the cytoplasm of tobacco leaf epidermal cells and maize protoplasts. The ectopic expression of SiLTP in tobacco resulted in higher levels of salt and drought tolerance than in the wild type (WT. To further assess the function of SiLTP, SiLTP overexpression (OE and RNA interference (RNAi-based transgenic foxtail millet were obtained. SiLTP-OE lines performed better under salt and drought stresses compared with WT plants. In contrast, the RNAi lines were much more sensitive to salt and drought compared than WT. Electrophoretic mobility shift assays and yeast one-hybrids indicated that the transcription factor (TF ABA-responsive DRE-binding protein (SiARDP could bind to the dehydration-responsive element of SiLTP promoter in vitro and in vivo, respectively. Moreover, the SiLTP expression levels were higher in SiARDP-OE plants compared than the WT. These results confirmed that SiLTP plays important roles in improving salt and drought stress tolerance of foxtail millet, and may partly be up-regulated by SiARDP. SiLTP may provide an effective genetic resource for molecular breeding in crops to enhance salt and

  3. Calcinosis in juvenile dermatomyositis : a possible role for the vitamin K-dependent protein matrix Gla protein

    NARCIS (Netherlands)

    Van Summeren, M. J. H.; Spliet, W. G. M.; Van Royen-Kerkhof, A.; Vermeer, C.; Lilien, M.; Kuis, W.; Schurgers, L. J.

    Objectives. The aims of the present study were to investigate whether the calcification inhibitor matrix Gla protein (MGP) is expressed in muscle biopsies of patients with juvenile dermatomyositis (JDM), and whether different forms of MGP are differentially expressed in JDM patients with and without

  4. Time-dependent, glucose-regulated Arabidopsis Regulator of G-protein Signaling 1 network

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar Jaiswal

    2016-04-01

    Full Text Available Plants lack 7-transmembrane, G-protein coupled receptors (GPCRs because the G alpha subunit of the heterotrimeric G protein complex is “self-activating”—meaning that it spontaneously exchanges bound GDP for GTP without the need of a GPCR. In lieu of GPCRs, most plants have a seven transmembrane receptor-like regulator of G-protein signaling (RGS protein, a component of the complex that keeps G-protein signaling in its non-activated state. The addition of glucose physically uncouples AtRGS1 from the complex through specific endocytosis leaving the activated G protein at the plasma membrane. The complement of proteins in the AtRGS1/G-protein complex over time from glucose-induced endocytosis was profiled by immunoprecipitation coupled to mass spectrometry (IP-MS. A total of 119 proteins in the AtRGS1 complex were identified. Several known interactors of the complex were identified, thus validating the approach, but the vast majority (93/119 were not known previously. AtRGS1 protein interactions were dynamically modulated by d-glucose. At low glucose levels, the AtRGS1 complex is comprised of proteins involved in transport, stress and metabolism. After glucose application, the AtRGS1 complex rapidly sheds many of these proteins and recruits other proteins involved in vesicular trafficking and signal transduction. The profile of the AtRGS1 components answers several questions about the type of coat protein and vesicular trafficking GTPases used in AtRGS1 endocytosis and the function of endocytic AtRGS1.

  5. A G Protein-biased Designer G Protein-coupled Receptor Useful for Studying the Physiological Relevance of Gq/11-dependent Signaling Pathways.

    Science.gov (United States)

    Hu, Jianxin; Stern, Matthew; Gimenez, Luis E; Wanka, Lizzy; Zhu, Lu; Rossi, Mario; Meister, Jaroslawna; Inoue, Asuka; Beck-Sickinger, Annette G; Gurevich, Vsevolod V; Wess, Jürgen

    2016-04-08

    Designerreceptorsexclusivelyactivated by adesignerdrug (DREADDs) are clozapine-N-oxide-sensitive designer G protein-coupled receptors (GPCRs) that have emerged as powerful novel chemogenetic tools to study the physiological relevance of GPCR signaling pathways in specific cell types or tissues. Like endogenous GPCRs, clozapine-N-oxide-activated DREADDs do not only activate heterotrimeric G proteins but can also trigger β-arrestin-dependent (G protein-independent) signaling. To dissect the relative physiological relevance of G protein-mediatedversusβ-arrestin-mediated signaling in different cell types or physiological processes, the availability of G protein- and β-arrestin-biased DREADDs would be highly desirable. In this study, we report the development of a mutationally modified version of a non-biased DREADD derived from the M3muscarinic receptor that can activate Gq/11with high efficacy but lacks the ability to interact with β-arrestins. We also demonstrate that this novel DREADD is activein vivoand that cell type-selective expression of this new designer receptor can provide novel insights into the physiological roles of G protein (Gq/11)-dependentversusβ-arrestin-dependent signaling in hepatocytes. Thus, this novel Gq/11-biased DREADD represents a powerful new tool to study the physiological relevance of Gq/11-dependent signaling in distinct tissues and cell types, in the absence of β-arrestin-mediated cellular effects. Such studies should guide the development of novel classes of functionally biased ligands that show high efficacy in various pathophysiological conditions but display a reduced incidence of side effects. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Integration of miRNA and protein profiling reveals coordinated neuroadaptations in the alcohol-dependent mouse brain.

    Directory of Open Access Journals (Sweden)

    Giorgio Gorini

    Full Text Available The molecular mechanisms underlying alcohol dependence involve different neurochemical systems and are brain region-dependent. Chronic Intermittent Ethanol (CIE procedure, combined with a Two-Bottle Choice voluntary drinking paradigm, represents one of the best available animal models for alcohol dependence and relapse drinking. MicroRNAs, master regulators of the cellular transcriptome and proteome, can regulate their targets in a cooperative, combinatorial fashion, ensuring fine tuning and control over a large number of cellular functions. We analyzed cortex and midbrain microRNA expression levels using an integrative approach to combine and relate data to previous protein profiling from the same CIE-subjected samples, and examined the significance of the data in terms of relative contribution to alcohol consumption and dependence. MicroRNA levels were significantly altered in CIE-exposed dependent mice compared with their non-dependent controls. More importantly, our integrative analysis identified modules of coexpressed microRNAs that were highly correlated with CIE effects and predicted target genes encoding differentially expressed proteins. Coexpressed CIE-relevant proteins, in turn, were often negatively correlated with specific microRNA modules. Our results provide evidence that microRNA-orchestrated translational imbalances are driving the behavioral transition from alcohol consumption to dependence. This study represents the first attempt to combine ex vivo microRNA and protein expression on a global scale from the same mammalian brain samples. The integrative systems approach used here will improve our understanding of brain adaptive changes in response to drug abuse and suggests the potential therapeutic use of microRNAs as tools to prevent or compensate multiple neuroadaptations underlying addictive behavior.

  7. Transport of proteolipid protein to the plasma membrane does not depend on glycosphingolipid cotransport in oligodendrocyte cultures

    NARCIS (Netherlands)

    van der Haar, ME; Visser, HW; de Vries, H; Hoekstra, D

    1998-01-01

    The possibility that transport of proteolipid protein (PLP) from its site of synthesis to the plasma membrane is dependent on cotransport with (sulfo)galactocerebrosides was investigated in primary cultured oligodendrocytes and Chinese hamster ovary (CHO) cells expressing PLP. Sulfation was

  8. A potent series targeting the malarial cGMP-dependent protein kinase clears infection and blocks transmission

    NARCIS (Netherlands)

    Baker, D.A.; Stewart, L.B.; Large, J.M.; Bowyer, P.W.; Ansell, K.H.; Jimenez-Diaz, M.B.; Bakkouri, M. El; Birchall, K.; Dechering, K.J.; Bouloc, N.S.; Coombs, P.J.; Whalley, D.; Harding, D.J.; Smiljanic-Hurley, E.; Wheldon, M.C.; Walker, E.M.; Dessens, J.T.; Lafuente, M.J.; Sanz, L.M.; Gamo, F.J.; Ferrer, S.B.; Hui, R.; Bousema, T.; Angulo-Barturen, I.; Merritt, A.T.; Croft, S.L.; Gutteridge, W.E.; Kettleborough, C.A.; Osborne, S.A.

    2017-01-01

    To combat drug resistance, new chemical entities are urgently required for use in next generation anti-malarial combinations. We report here the results of a medicinal chemistry programme focused on an imidazopyridine series targeting the Plasmodium falciparum cyclic GMP-dependent protein kinase

  9. Critically Ill Children Have Low Vitamin D–Binding Protein, Influencing Bioavailability of Vitamin D

    Science.gov (United States)

    Feldman, Henry A.; Chun, Rene F.; Smith, Ellen M.; Sullivan, Ryan M.; Agan, Anna A.; Keisling, Shannon M.; Panoskaltsis-Mortari, Angela; Randolph, Adrienne G.

    2015-01-01

    Rationale: Vitamin D deficiency, often defined by total serum 25-hydroxyvitamin D (25[OH]D) interquartile range, 108–221), lower than has been reported in healthy children. Factors predicting lower levels in multivariate analysis included age <1 year, nonwhite race, being previously healthy, 25(OH)D <20 ng/ml and greater illness severity. In the subgroup that was genotyped, GC haplotype had the strongest association with VDBP level; carriage of one additional copy of GC1S was associated with a 37.5% higher level (95% confidence interval, 31.9–44.8; P < 0.001). Bioavailable 25(OH)D was also inversely associated with illness severity (r = −0.24, P < 0.001), and ratio to measured total 25(OH)D was variable and related to haplotype. Conclusions: Physiologic deficiency of 25(OH)D in critical illness may be more difficult to diagnose, given that lower VDBP levels increase bioavailability. Treatment studies conducted on the basis of total 25(OH)D level, without consideration of VDBP concentration and genotype, may increase the risk of falsely negative results. PMID:26356094

  10. Immunopurification of the suppressor tRNA dependent rabbit β-globin readthrough protein

    International Nuclear Information System (INIS)

    Hatfield, D.; Thorgeirsson, S.S.; Copeland, T.D.; Oroszlan, S.; Bustin, M.

    1988-01-01

    In mammalian cells, the rabbit β-globin readthrough protein is the only known example of a naturally occurring readthrough protein which does not involve a viral system. To provide an efficient means for its isolation, detection, and study, the authors elicited specific antibodies against this unique protein. The 22 amino acid peptide corresponding to the readthrough portion of this protein was synthesized, coupled to keyhole limpet hemocyanin, and injected into sheep. Specific antibodies to the peptide were produced as demonstrated by the enzyme-linked immunosorbent assay technique and by immunoblotting. The antibodies did not react with globin. The rabbit β-globin readthrough protein was separated from globin and other reticulocyte proteins by polyacrylamide gel electrophoresis and visualized by silver staining or by labeling with [ 35 S] methionine. Incorporation of [ 35 S] methionine into the readthrough protein was significantly enhanced upon addition of an opal suppressor tRNA to reticulocyte lysates. Immunoblotting revealed that the readthrough protein also occurs in lysates without added suppressor tRNA. The antibodies were purified on an affi-gel column which had been coupled with the peptide antigen. The readthrough protein was then purified from reticulocytes by immunoaffinity chromatography and by high-performance liquid chromatography. The results provide conclusive evidence that the β-globin readthrough protein is naturally occurring in rabbit reticulocytes

  11. 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) promotes invasion and activation of matrix metalloproteinases

    International Nuclear Information System (INIS)

    Xie, Zhihui; Yuan, Hongyan; Yin, Yuzhi; Zeng, Xiao; Bai, Renkui; Glazer, Robert I

    2006-01-01

    Metastasis is a major cause of morbidity and mortality in breast cancer with tumor cell invasion playing a crucial role in the metastatic process. PDK1 is a key molecule that couples PI3K to cell proliferation and survival signals in response to growth factor receptor activation, and is oncogenic when expressed in mouse mammary epithelial cells. We now present evidence showing that PDK1-expressing cells exhibit enhanced anchorage-dependent and -independent cell growth and are highly invasive when grown on Matrigel. These properties correlate with induction of MMP-2 activity, increased MT1-MMP expression and a unique gene expression profile. Invasion assays in Matrigel, MMP-2 zymogram analysis, gene microarray analysis and mammary isografts were used to characterize the invasive and proliferative function of cells expressing PDK1. Tissue microarray analysis of human breast cancers was used to measure PDK1 expression in invasive tumors by IHC. Enhanced invasion on Matrigel in PDK1-expressing cells was accompanied by increased MMP-2 activity resulting from stabilization against proteasomal degradation. Increased MMP-2 activity was accompanied by elevated levels of MT1-MMP, which is involved in generating active MMP-2. Gene microarray analysis identified increased expression of the ECM-associated genes decorin and type I procollagen, whose gene products are substrates of MT1-MMP. Mammary fat pad isografts of PDK1-expressing cells produced invasive adenocarcinomas. Tissue microarray analysis of human invasive breast cancer indicated that PDK1pSer241 was strongly expressed in 90% of samples. These results indicate that PDK1 serves as an important effector of mammary epithelial cell growth and invasion in the transformed phenotype. PDK1 mediates its effect in part by MT1-MMP induction, which in turn activates MMP-2 and modulates the ECM proteins decorin and collagen. The presence of increased PDK1 expression in the majority of invasive breast cancers suggests its

  12. Mechanism of Sirt1 NAD+-dependent Protein Deacetylase Inhibition by Cysteine S-Nitrosation.

    Science.gov (United States)

    Kalous, Kelsey S; Wynia-Smith, Sarah L; Olp, Michael D; Smith, Brian C

    2016-12-02

    The sirtuin family of proteins catalyze the NAD + -dependent deacylation of acyl-lysine residues. Humans encode seven sirtuins (Sirt1-7), and recent studies have suggested that post-translational modification of Sirt1 by cysteine S-nitrosation correlates with increased acetylation of Sirt1 deacetylase substrates. However, the mechanism of Sirt1 inhibition by S-nitrosation was unknown. Here, we show that Sirt1 is transnitrosated and inhibited by the physiologically relevant nitrosothiol S-nitrosoglutathione. Steady-state kinetic analyses and binding assays were consistent with Sirt1 S-nitrosation inhibiting binding of both the NAD + and acetyl-lysine substrates. Sirt1 S-nitrosation correlated with Zn 2+ release from the conserved sirtuin Zn 2+ -tetrathiolate and a loss of α-helical structure without overall thermal destabilization of the enzyme. Molecular dynamics simulations suggested that Zn 2+ loss due to Sirt1 S-nitrosation results in repositioning of the tetrathiolate subdomain away from the rest of the catalytic domain, thereby disrupting the NAD + and acetyl-lysine-binding sites. Sirt1 S-nitrosation was reversed upon exposure to the thiol-based reducing agents, including physiologically relevant concentrations of the cellular reducing agent glutathione. Reversal of S-nitrosation resulted in full restoration of Sirt1 activity only in the presence of Zn 2+ , consistent with S-nitrosation of the Zn 2+ -tetrathiolate as the primary source of Sirt1 inhibition upon S-nitrosoglutathione treatment. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Vitamin K-Dependent Carboxylation of Matrix Gla Protein Influences the Risk of Calciphylaxis.

    Science.gov (United States)

    Nigwekar, Sagar U; Bloch, Donald B; Nazarian, Rosalynn M; Vermeer, Cees; Booth, Sarah L; Xu, Dihua; Thadhani, Ravi I; Malhotra, Rajeev

    2017-06-01

    Matrix Gla protein (MGP) is a potent inhibitor of vascular calcification. The ability of MGP to inhibit calcification requires the activity of a vitamin K-dependent enzyme, which mediates MGP carboxylation. We investigated how MGP carboxylation influences the risk of calciphylaxis in adult patients receiving dialysis and examined the effects of vitamin K deficiency on MGP carboxylation. Our study included 20 patients receiving hemodialysis with calciphylaxis (cases) and 20 patients receiving hemodialysis without calciphylaxis (controls) matched for age, sex, race, and warfarin use. Cases had higher plasma levels of uncarboxylated MGP (ucMGP) and carboxylated MGP (cMGP) than controls. However, the fraction of total MGP that was carboxylated (relative cMGP concentration = cMGP/[cMGP + uncarboxylated MGP]) was lower in cases than in controls (0.58±0.02 versus 0.69±0.03, respectively; P =0.003). In patients not taking warfarin, cases had a similarly lower relative cMGP concentration. Each 0.1 unit reduction in relative cMGP concentration associated with a more than two-fold increase in calciphylaxis risk. Vitamin K deficiency associated with lower relative cMGP concentration in multivariable adjusted analyses ( β =-8.99; P =0.04). In conclusion, vitamin K deficiency-mediated reduction in relative cMGP concentration may have a role in the pathogenesis of calciphylaxis. Whether vitamin K supplementation can prevent and/or treat calciphylaxis requires further study. Copyright © 2017 by the American Society of Nephrology.

  14. Potentiation of NMDA receptor-dependent cell responses by extracellular high mobility group box 1 protein.

    Directory of Open Access Journals (Sweden)

    Marco Pedrazzi

    Full Text Available BACKGROUND: Extracellular high mobility group box 1 (HMGB1 protein can operate in a synergistic fashion with different signal molecules promoting an increase of cell Ca(2+ influx. However, the mechanisms responsible for this effect of HMGB1 are still unknown. PRINCIPAL FINDINGS: Here we demonstrate that, at concentrations of agonist per se ineffective, HMGB1 potentiates the activation of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR in isolated hippocampal nerve terminals and in a neuroblastoma cell line. This effect was abolished by the NMDA channel blocker MK-801. The HMGB1-facilitated NMDAR opening was followed by activation of the Ca(2+-dependent enzymes calpain and nitric oxide synthase in neuroblastoma cells, resulting in an increased production of NO, a consequent enhanced cell motility, and onset of morphological differentiation. We have also identified NMDAR as the mediator of HMGB1-stimulated murine erythroleukemia cell differentiation, induced by hexamethylenebisacetamide. The potentiation of NMDAR activation involved a peptide of HMGB1 located in the B box at the amino acids 130-139. This HMGB1 fragment did not overlap with binding sites for other cell surface receptors of HMGB1, such as the advanced glycation end products or the Toll-like receptor 4. Moreover, in a competition assay, the HMGB1((130-139 peptide displaced the NMDAR/HMGB1 interaction, suggesting that it comprised the molecular and functional site of HMGB1 regulating the NMDA receptor complex. CONCLUSION: We propose that the multifunctional cytokine-like molecule HMGB1 released by activated, stressed, and damaged or necrotic cells can facilitate NMDAR-mediated cell responses, both in the central nervous system and in peripheral tissues, independently of other known cell surface receptors for HMGB1.

  15. Calcium-dependent and -independent binding of the pentraxin serum amyloid P component to glycosaminoglycans and amyloid proteins

    DEFF Research Database (Denmark)

    Danielsen, B; Sørensen, I J; Nybo, Mads

    1997-01-01

    precursor protein beta2M was observed. This binding was also enhanced at slightly acid pH, most pronounced at pH 5.0. The results of this study indicate that SAP can exhibit both Ca2(+)-dependent and -independent binding to ligands involved in amyloid fibril formation and that the binding is enhanced under...... and beta2M) by ELISA. An increase in the dose-dependent binding of SAP to heparan sulfate, AA-protein and beta2M was observed as the pH decreased from 8.0 to 5.0. Furthermore, a lower, but significant Ca2(+)-independent binding of SAP to heparan sulfate, dermatan sulfate, AA protein and the amyloid...

  16. Radiation-induced p53 protein response in the A549 cell line is culture growth-phase dependent

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, N.F.; Gurule, D.M.; Carpenter, T.R.

    1995-12-01

    One role of the p53 tumor suppressor protein has been recently revealed. Kastan, M.B. reported that p53 protein accumulates in cells exposed to ionizing radiation. The accumulation of p53 protein is in response to DNA damage, most importantly double-strand breaks, that results from exposure to ionizing radiation. The rise in cellular p53 levels is necessary for an arrest in the G{sub 1} phase of the cell cycle to provide additional time for DNA repair. The p53 response has also been demonstrated to enhance PCNA-dependent repair. p53 is thus an important regulator of the cellular response to DNA-damaging radiation. From this data, it can be concluded that the magnitude of the p53 response is not dependent on the phase of culture growth.

  17. Exoproteome Analysis of the Seaweed Pathogen Nautella italica R11 Reveals Temperature-Dependent Regulation of RTX-Like Proteins

    Directory of Open Access Journals (Sweden)

    Melissa Gardiner

    2017-06-01

    Full Text Available Climate fluctuations have been linked to an increased prevalence of disease in seaweeds, including the red alga Delisea pulchra, which is susceptible to a bleaching disease caused by the bacterium Nautella italica R11 under elevated seawater temperatures. To further investigate the role of temperature in the induction of disease by N. italica R11, we assessed the effect of temperature on the expression of the extracellular proteome (exoproteome in this bacterium. Label-free quantitative mass spectrometry was used to identify 207 proteins secreted into supernatant fraction, which is equivalent to 5% of the protein coding genes in the N. italica R11 genome. Comparative analysis demonstrated that expression of over 30% of the N. italica R11 exoproteome is affected by temperature. The temperature-dependent proteins include traits that could facilitate the ATP-dependent transport of amino acid and carbohydrate, as well as several uncharacterized proteins. Further, potential virulence determinants, including two RTX-like proteins, exhibited significantly higher expression in the exoproteome at the disease inducing temperature of 24°C relative to non-inducing temperature (16°C. This is the first study to demonstrate that temperature has an influence exoproteome expression in a macroalgal pathogen. The results have revealed several temperature regulated candidate virulence factors that may have a role in macroalgal colonization and invasion at elevated sea-surface temperatures, including novel RTX-like proteins.

  18. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages.

    Science.gov (United States)

    Liu, Yingying; Li, Fengna; Kong, Xiangfeng; Tan, Bie; Li, Yinghui; Duan, Yehui; Blachier, François; Hu, Chien-An A; Yin, Yulong

    2015-01-01

    Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (Prelated AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but repressed (P<0.05) the level for p70S6K in Landrace pigs. The higher protein-NRC diet increased ratio of p-mTOR/mTOR in

  19. Self-criticism, dependency, and stress reactivity: an experience sampling approach to testing Blatt and Zuroff's (1992) theory of personality predispositions to depression in high-risk youth.

    Science.gov (United States)

    Adams, Philippe; Abela, John R Z; Auerbach, Randy; Skitch, Steven

    2009-11-01

    S. J. Blatt and D. C. Zuroff's 1992 theory of personality predispositions to depression posits that individuals who possess high levels of self-criticism and/or dependency are vulnerable to developing depression following negative events. The current study used experience sampling methodology to test this theory in a sample of 49 children ages 7 to 14. Children completed measures of dependency, self-criticism, and depressive symptoms. Subsequently, children were given a handheld computer that signaled them to complete measures of depressive symptoms and negative events at randomly selected times over 2 months. Results of hierarchical linear modeling analyses indicated that higher levels of both self-criticism and dependency were associated with greater elevations in depressive symptoms following negative events. Furthermore, each personality predisposition remained a significant predictor of such elevations after controlling for the interaction between the other personality predisposition and negative events. The results suggest that dependency and self-criticism represent distinct vulnerability factors to depression in youth.

  20. Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks.

    Directory of Open Access Journals (Sweden)

    Girish Neelakanta

    2007-03-01

    Full Text Available Survival of Borrelia burgdorferi in ticks and mammals is facilitated, at least in part, by the selective expression of lipoproteins. Outer surface protein (Osp A participates in spirochete adherence to the tick gut. As ospB is expressed on a bicistronic operon with ospA, we have now investigated the role of OspB by generating an OspB-deficient B. burgdorferi and examining its phenotype throughout the spirochete life cycle. Similar to wild-type isolates, the OspB-deficient B. burgdorferi were able to readily infect and persist in mice. OspB-deficient B. burgdorferi were capable of migrating to the feeding ticks but had an impaired ability to adhere to the tick gut and survive within the vector. Furthermore, the OspB-deficient B. burgdorferi bound poorly to tick gut extracts. The complementation of the OspB-deficient spirochete in trans, with a wild-type copy of ospB gene, restored its ability to bind tick gut. Taken together, these data suggest that OspB has an important role within Ixodes scapularis and that B. burgdorferi relies upon multiple genes to efficiently persist in ticks.

  1. Outer membrane targeting of Pseudomonas aeruginosa proteins shows variable dependence on the components of Bam and Lol machineries.

    Science.gov (United States)

    Hoang, Hanh H; Nickerson, Nicholas N; Lee, Vincent T; Kazimirova, Anastasia; Chami, Mohamed; Pugsley, Anthony P; Lory, Stephen

    2011-01-01

    In Gram-negative bacteria, the Lol and Bam machineries direct the targeting of lipidated and nonlipidated proteins, respectively, to the outer membrane (OM). Using Pseudomonas aeruginosa strains with depleted levels of specific Bam and Lol proteins, we demonstrated a variable dependence of different OM proteins on these targeting pathways. Reduction in the level of BamA significantly affected the ability of the β-barrel membrane protein OprF to localize to the OM, while the targeting of three secretins that are functionally related OM proteins was less affected (PilQ and PscC) or not at all affected (XcpQ). Depletion of LolB affected all lipoproteins examined and had a variable effect on the nonlipidated proteins. While the levels of OprF, PilQ, and PscC were significantly reduced by LolB depletion, XcpQ was unaffected and was correctly localized to the OM. These results suggest that certain β-barrel proteins such as OprF primarily utilize the complete Bam machinery. The Lol machinery participates in the OM targeting of secretins to variable degrees, likely through its involvement in the assembly of lipidated Bam components. XcpQ, but not PilQ or PscC, was shown to assemble spontaneously into liposomes as multimers. This work raises the possibility that there is a gradient of utilization of Bam and Lol insertion and targeting machineries. Structural features of individual proteins, including their β-barrel content, may determine the propensity of these proteins for folding (or misfolding) during periplasmic transit and OM insertion, thereby influencing the extent of utilization of the Bam targeting machinery, respectively. Targeting of lipidated and nonlipidated proteins to the outer membrane (OM) compartment in Gram-negative bacteria involves the transfer across the periplasm utilizing the Lol and Bam machineries, respectively. We show that depletion of Bam and Lol components in Pseudomonas aeruginosa does not lead to a general OM protein translocation defect

  2. A compact, multifunctional fusion module directs cholesterol-dependent homomultimerization and syncytiogenic efficiency of reovirus p10 FAST proteins.

    Directory of Open Access Journals (Sweden)

    Tim Key

    2014-03-01

    Full Text Available The homologous p10 fusion-associated small transmembrane (FAST proteins of the avian (ARV and Nelson Bay (NBV reoviruses are the smallest known viral membrane fusion proteins, and are virulence determinants of the fusogenic reoviruses. The small size of FAST proteins is incompatible with the paradigmatic membrane fusion pathway proposed for enveloped viral fusion proteins. Understanding how these diminutive viral fusogens mediate the complex process of membrane fusion is therefore of considerable interest, from both the pathogenesis and mechanism-of-action perspectives. Using chimeric ARV/NBV p10 constructs, the 36-40-residue ectodomain was identified as the major determinant of the differing fusion efficiencies of these homologous p10 proteins. Extensive mutagenic analysis determined the ectodomain comprises two distinct, essential functional motifs. Syncytiogenesis assays, thiol-specific surface biotinylation, and liposome lipid mixing assays identified an ∼25-residue, N-terminal motif that dictates formation of a cystine loop fusion peptide in both ARV and NBV p10. Surface immunofluorescence staining, FRET analysis and cholesterol depletion/repletion studies determined the cystine loop motif is connected through a two-residue linker to a 13-residue membrane-proximal ectodomain region (MPER. The MPER constitutes a second, independent motif governing reversible, cholesterol-dependent assembly of p10 multimers in the plasma membrane. Results further indicate that: (1 ARV and NBV homomultimers segregate to distinct, cholesterol-dependent microdomains in the plasma membrane; (2 p10 homomultimerization and cholesterol-dependent microdomain localization are co-dependent; and (3 the four juxtamembrane MPER residues present in the multimerization motif dictate species-specific microdomain association and homomultimerization. The p10 ectodomain therefore constitutes a remarkably compact, multifunctional fusion module that directs syncytiogenic

  3. Time-dependent changes in protein expression in rainbow trout muscle following hypoxia.

    Science.gov (United States)

    Wulff, Tune; Jokumsen, Alfred; Højrup, Peter; Jessen, Flemming

    2012-04-18

    Adaptation to hypoxia is a complex process, and individual proteins will be up- or down-regulated in order to address the main challenges at any given time. To investigate the dynamics of the adaptation, rainbow trout (Oncorhynchus mykiss) was exposed to 30% of normal oxygen tension for 1, 2, 5 and 24 h respectively, after which muscle samples were taken. The successful investigation of numerous proteins in a single study was achieved by selectively separating the sarcoplasmic proteins using 2-DE. In total 46 protein spots were identified as changing in abundance in response to hypoxia using one-way ANOVA and multivariate data analysis. Proteins of interest were subsequently identified by MS/MS following tryptic digestion. The observed regulation following hypoxia in skeletal muscle was determined to be time specific, as only a limited number of proteins were regulated in response to more than one time point. The cellular response to hypoxia included regulation of proteins involved in maintaining iron homeostasis, energy levels and muscle structure. In conclusion, this proteome-based study presents a comprehensive investigation of the expression profiles of numerous proteins at four different time points. This increases our understanding of timed changes in protein expression in rainbow trout muscle following hypoxia. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells.

    Science.gov (United States)

    Offringa, Remko; Huang, Fang

    2013-09-01

    In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples. © 2013 Institute of Botany, Chinese Academy of Sciences.

  5. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling.

    Science.gov (United States)

    Inda, Carolina; Dos Santos Claro, Paula A; Bonfiglio, Juan J; Senin, Sergio A; Maccarrone, Giuseppina; Turck, Christoph W; Silberstein, Susana

    2016-07-18

    Corticotropin-releasing hormone receptor 1 (CRHR1) activates G protein-dependent and internalization-dependent signaling mechanisms. Here, we report that the cyclic AMP (cAMP) response of CRHR1 in physiologically relevant scenarios engages separate cAMP sources, involving the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). cAMP produced by tmACs and sAC is required for the acute phase of extracellular signal regulated kinase 1/2 activation triggered by CRH-stimulated CRHR1, but only sAC activity is essential for the sustained internalization-dependent phase. Thus, different cAMP sources are involved in different signaling mechanisms. Examination of the cAMP response revealed that CRH-activated CRHR1 generates cAMP after endocytosis. Characterizing CRHR1 signaling uncovered a specific link between CRH-activated CRHR1, sAC, and endosome-based signaling. We provide evidence of sAC being involved in an endocytosis-dependent cAMP response, strengthening the emerging model of GPCR signaling in which the cAMP response does not occur exclusively at the plasma membrane and introducing the notion of sAC as an alternative source of cAMP. © 2016 Inda et al.

  6. Huntingtin-Interacting Protein 1-Related Protein Plays a Critical Role in Dendritic Development and Excitatory Synapse Formation in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Lin Peng

    2017-06-01

    Full Text Available Huntingtin-interacting protein 1-related (HIP1R protein is considered to be an endocytic adaptor protein like the other two members of the Sla2 family, Sla2p and HIP1. They all contain homology domains responsible for the binding of clathrin, inositol lipids and F-actin. Previous studies have revealed that HIP1R is highly expressed in different regions of the mouse brain and localizes at synaptic structures. However, the function of HIP1R in the nervous system remains unknown. In this study, we investigated HIP1R function in cultured rat hippocampal neurons using an shRNA knockdown approach. We found that, after HIP1R knockdown, the dynamics and density of dendritic filopodia, and dendritic branching and complexity were significantly reduced in developing neurons, as well as the densities of dendritic spines and PSD95 clusters in mature neurons. Moreover, HIP1R deficiency led to significantly reduced expression of the ionotropic glutamate receptor GluA1, GluN2A and GluN2B subunits, but not the GABAA receptor α1 subunit. Similarly, HIP1R knockdown reduced the amplitude and frequency of the miniature excitatory postsynaptic current, but not of the miniature inhibitory postsynaptic current. In addition, the C-terminal proline-rich region of HIP1R responsible for cortactin binding was found to confer a dominant-negative effect on dendritic branching in cultured developing neurons, implying a critical role of cortactin binding in HIP1R function. Taken together, the results of our study suggest that HIP1R plays important roles in dendritic development and excitatory synapse formation and function.

  7. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses.

    Science.gov (United States)

    Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2017-02-22

    Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation.

  8. Cuz1/Ynl155w, a Zinc-dependent Ubiquitin-binding Protein, Protects Cells from Metalloid-induced Proteotoxicity*

    Science.gov (United States)

    Hanna, John; Waterman, David; Isasa, Marta; Elsasser, Suzanne; Shi, Yuan; Gygi, Steven; Finley, Daniel

    2014-01-01

    Protein misfolding is a universal threat to cells. The ubiquitin-proteasome system mediates a cellular stress response capable of eliminating misfolded proteins. Here we identify Cuz1/Ynl155w as a component of the ubiquitin system, capable of interacting with both the proteasome and Cdc48. Cuz1/Ynl155w is regulated by the transcription factor Rpn4, and is required for cells to survive exposure to the trivalent metalloids arsenic and antimony. A related protein, Yor052c, shows similar phenotypes, suggesting a multicomponent stress response pathway. Cuz1/Ynl155w functions as a zinc-dependent ubiquitin-binding protein. Thus, Cuz1/Ynl155w is proposed to protect cells from metalloid-induced proteotoxicity by delivering ubiquitinated substrates to Cdc48 and the proteasome for destruction. PMID:24297164

  9. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  10. Novel Phosphorylation and Ubiquitination Sites Regulate Reactive Oxygen Species-dependent Degradation of Anti-apoptotic c-FLIP Protein*

    Science.gov (United States)

    Wilkie-Grantham, Rachel P.; Matsuzawa, Shu-Ichi; Reed, John C.

    2013-01-01

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIPL) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIPL protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIPL important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL. PMID:23519470

  11. Osmolyte Effects on Monoclonal Antibody Stability and Concentration-Dependent Protein Interactions with Water and Common Osmolytes.

    Science.gov (United States)

    Barnett, Gregory V; Razinkov, Vladimir I; Kerwin, Bruce A; Blake, Steven; Qi, Wei; Curtis, Robin A; Roberts, Christopher J

    2016-04-07

    Preferential interactions of proteins with water and osmolytes play a major role in controlling the thermodynamics of protein solutions. While changes in protein stability and shifts in phase behavior are often reported with the addition of osmolytes, the underlying protein interactions with water and/or osmolytes are typically inferred rather than measured directly. In this work, Kirkwood-Buff integrals for protein-water interactions (G12) and protein-osmolyte interactions (G23) were determined as a function of osmolyte concentration from density measurements of antistreptavidin immunoglobulin gamma-1 (AS-IgG1) in ternary aqueous solutions for a set of common neutral osmolytes: sucrose, trehalose, sorbitol, and poly(ethylene glycol) (PEG). For sucrose and PEG solutions, both protein-water and protein-osmolyte interactions depend strongly on osmolyte concentrations (c3). Strikingly, both osmolytes change from being preferentially excluded to preferentially accumulated with increasing c3. In contrast, sorbitol and trehalose solutions do not show large enough preferential interactions to be detected by densimetry. G12 and G23 values are used to estimate the transfer free energy for native AS-IgG1 (Δμ2N) and compared with existing models. AS-IgG1 unfolding via calorimetry shows a linear increase in midpoint temperatures as a function of trehalose, sucrose, and sorbitol concentrations, but the opposite behavior for PEG. Together, the results highlight limitations of existing models and common assumptions regarding the mechanisms of protein stabilization by osmolytes. Finally, PEG preferential interactions destabilize the Fab regions of AS-IgG1 more so than the CH2 or CH3 domains, illustrating preferential interactions can be specific to different protein domains.

  12. Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens

    International Nuclear Information System (INIS)

    Yotsui, Izumi; Serada, Satoshi; Naka, Tetsuji; Saruhashi, Masashi; Taji, Teruaki; Hayashi, Takahisa; Quatrano, Ralph S.; Sakata, Yoichi

    2016-01-01

    Desiccation tolerance is an ancestral feature of land plants and is still retained in non-vascular plants such as bryophytes and some vascular plants. However, except for seeds and spores, this trait is absent in vegetative tissues of vascular plants. Although many studies have focused on understanding the molecular basis underlying desiccation tolerance using transcriptome and proteome approaches, the critical molecular differences between desiccation tolerant plants and non-desiccation plants are still not clear. The moss Physcomitrella patens cannot survive rapid desiccation under laboratory conditions, but if cells of the protonemata are treated by the phytohormone abscisic acid (ABA) prior to desiccation, it can survive 24 h exposure to desiccation and regrow after rehydration. The desiccation tolerance induced by ABA (AiDT) is specific to this hormone, but also depends on a plant transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3). Here we report the comparative proteomic analysis of AiDT between wild type and ABI3 deleted mutant (Δabi3) of P. patens using iTRAQ (Isobaric Tags for Relative and Absolute Quantification). From a total of 1980 unique proteins that we identified, only 16 proteins are significantly altered in Δabi3 compared to wild type after desiccation following ABA treatment. Among this group, three of the four proteins that were severely affected in Δabi3 tissue were Arabidopsis orthologous genes, which were expressed in maturing seeds under the regulation of ABI3. These included a Group 1 late embryogenesis abundant (LEA) protein, a short-chain dehydrogenase, and a desiccation-related protein. Our results suggest that at least three of these proteins expressed in desiccation tolerant cells of both Arabidopsis and the moss are very likely to play important roles in acquisition of desiccation tolerance in land plants. Furthermore, our results suggest that the regulatory machinery of ABA- and ABI3-mediated gene expression for desiccation

  13. Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens

    Energy Technology Data Exchange (ETDEWEB)

    Yotsui, Izumi, E-mail: izumi.yotsui@riken.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan); Serada, Satoshi, E-mail: serada@nibiohn.go.jp [Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085 (Japan); Naka, Tetsuji, E-mail: tnaka@nibiohn.go.jp [Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085 (Japan); Saruhashi, Masashi, E-mail: s13db001@mail.saitama-u.ac.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan); Taji, Teruaki, E-mail: t3teruak@nodai.ac.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan); Hayashi, Takahisa, E-mail: t4hayash@nodai.ac.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan); Quatrano, Ralph S., E-mail: rsq@wustl.edu [Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130-4899 (United States); Sakata, Yoichi, E-mail: sakata@nodai.ac.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan)

    2016-03-18

    Desiccation tolerance is an ancestral feature of land plants and is still retained in non-vascular plants such as bryophytes and some vascular plants. However, except for seeds and spores, this trait is absent in vegetative tissues of vascular plants. Although many studies have focused on understanding the molecular basis underlying desiccation tolerance using transcriptome and proteome approaches, the critical molecular differences between desiccation tolerant plants and non-desiccation plants are still not clear. The moss Physcomitrella patens cannot survive rapid desiccation under laboratory conditions, but if cells of the protonemata are treated by the phytohormone abscisic acid (ABA) prior to desiccation, it can survive 24 h exposure to desiccation and regrow after rehydration. The desiccation tolerance induced by ABA (AiDT) is specific to this hormone, but also depends on a plant transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3). Here we report the comparative proteomic analysis of AiDT between wild type and ABI3 deleted mutant (Δabi3) of P. patens using iTRAQ (Isobaric Tags for Relative and Absolute Quantification). From a total of 1980 unique proteins that we identified, only 16 proteins are significantly altered in Δabi3 compared to wild type after desiccation following ABA treatment. Among this group, three of the four proteins that were severely affected in Δabi3 tissue were Arabidopsis orthologous genes, which were expressed in maturing seeds under the regulation of ABI3. These included a Group 1 late embryogenesis abundant (LEA) protein, a short-chain dehydrogenase, and a desiccation-related protein. Our results suggest that at least three of these proteins expressed in desiccation tolerant cells of both Arabidopsis and the moss are very likely to play important roles in acquisition of desiccation tolerance in land plants. Furthermore, our results suggest that the regulatory machinery of ABA- and ABI3-mediated gene expression for desiccation

  14. The role of Ca2+/calmodulin-dependent protein kinase II and calcineurin in TNF-α-induced myocardial hypertrophy

    International Nuclear Information System (INIS)

    Wang, Gui-Jun; Wang, Hong-Xin; Yao, Yu-Sheng; Guo, Lian-Yi; Liu, Pei

    2012-01-01

    We investigated whether Ca 2+ /calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) are involved in myocardial hypertrophy induced by tumor necrosis factor α (TNF-α). The cardiomyocytes of neonatal Wistar rats (1-2 days old) were cultured and stimulated by TNF-α (100 µg/L), and Ca 2+ signal transduction was blocked by several antagonists, including BAPTA (4 µM), KN-93 (0.2 µM) and cyclosporin A (CsA, 0.2 µM). Protein content, protein synthesis, cardiomyocyte volumes, [Ca 2+ ] i transients, CaMKIIδ B and CaN were evaluated by the Lowry method, [ 3 H]-leucine incorporation, a computerized image analysis system, a Till imaging system, and Western blot analysis, respectively. TNF-α induced a significant increase in protein content in a dose-dependent manner from 10 µg/L (53.56 µg protein/well) to 100 µg/L (72.18 µg protein/well), and in a time-dependent manner from 12 h (37.42 µg protein/well) to 72 h (42.81 µg protein/well). TNF-α (100 µg/L) significantly increased the amplitude of spontaneous [Ca 2+ ] i transients, the total protein content, cell size, and [ 3 H]-leucine incorporation in cultured cardiomyocytes, which was abolished by 4 µM BAPTA, an intracellular Ca 2+ chelator. The increases in protein content, cell size and [ 3 H]-leucine incorporation were abolished by 0.2 µM KN-93 or 0.2 µM CsA. TNF-α increased the expression of CaMKIIδ B by 35.21% and that of CaN by 22.22% compared to control. These effects were abolished by 4 µM BAPTA, which itself had no effect. These results suggest that TNF-α induces increases in [Ca 2+ ] i , CaMKIIδ B and CaN and promotes cardiac hypertrophy. Therefore, we hypothesize that the Ca 2+ /CaMKII- and CaN-dependent signaling pathways are involved in myocardial hypertrophy induced by TNF-α

  15. Electrophoretic mobility shift in native gels indicates calcium-dependent structural changes of neuronal calcium sensor proteins.

    Science.gov (United States)

    Viviano, Jeffrey; Krishnan, Anuradha; Wu, Hao; Venkataraman, Venkat

    2016-02-01

    In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature--the calcium-myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Interactions between lipids and proteins are critical for organization of plasma membrane-ordered domains in tobacco BY-2 cells.

    Science.gov (United States)

    Grosjean, Kevin; Der, Christophe; Robert, Franck; Thomas, Dominique; Mongrand, Sébastien; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2018-06-27

    The laterally heterogeneous plant plasma membrane (PM) is organized into finely controlled specialized areas that include membrane-ordered domains. Recently, the spatial distribution of such domains within the PM has been identified as playing a key role in cell responses to environmental challenges. To examine membrane order at a local level, BY-2 tobacco suspension cell PMs were labelled with an environment-sensitive probe (di-4-ANEPPDHQ). Four experimental models were compared to identify mechanisms and cell components involved in short-term (1 h) maintenance of the ordered domain organization in steady-state cell PMs: modulation of the cytoskeleton or the cell wall integrity of tobacco BY-2 cells; and formation of giant vesicles using either a lipid mixture of tobacco BY-2 cell PMs or the original lipid and protein combinations of the tobacco BY-2 cell PM. Whilst inhibiting phosphorylation or disrupting either the cytoskeleton or the cell wall had no observable effects, we found that lipids and proteins significantly modified both the abundance and spatial distribution of ordered domains. This indicates the involvement of intrinsic membrane components in the local physical state of the plant PM. Our findings support a major role for the 'lipid raft' model, defined as the sterol-dependent ordered assemblies of specific lipids and proteins in plant PM organization.

  17. The performance of broilers on a feed depends on the feed protein ...

    African Journals Online (AJOL)

    Birds were initially offered one of two feeds with widely different protein to energy ratios until they reached a pre-defined liveweight, after which they were given one of two feed protein contents in Experiment 1 and four in Experiment 2. Their performance was monitored until a second pre-defined liveweight was reached, ...

  18. Context Memory Formation Requires Activity-Dependent Protein Degradation in the Hippocampus

    Science.gov (United States)

    Cullen, Patrick K.; Ferrara, Nicole C.; Pullins, Shane E.; Helmstetter, Fred J.

    2017-01-01

    Numerous studies have indicated that the consolidation of contextual fear memories supported by an aversive outcome like footshock requires de novo protein synthesis as well as protein degradation mediated by the ubiquitin-proteasome system (UPS). Context memory formed in the absence of an aversive stimulus by simple exposure to a novel…

  19. Age-dependent changes in the total protein concentrations in the ...

    African Journals Online (AJOL)

    related changes in total protein concentrations in ten regions of the pig brain and hypophyses from birth to 36 months of age. Age-related changes in protein concentrations in all the brain regions except the pons and cerebral cortex were not ...

  20. High-throughput assessment of context-dependent effects of chromatin proteins

    NARCIS (Netherlands)

    Brueckner, L. (Laura); Van Arensbergen, J. (Joris); Akhtar, W. (Waseem); L. Pagie (Ludo); B. van Steensel (Bas)

    2016-01-01

    textabstractBackground: Chromatin proteins control gene activity in a concerted manner. We developed a high-throughput assay to study the effects of the local chromatin environment on the regulatory activity of a protein of interest. The assay combines a previously reported multiplexing strategy

  1. Time-dependent changes in protein expression in rainbow trout muscle following hypoxia

    DEFF Research Database (Denmark)

    Wulff, Tune; Jokumsen, Alfred; Højrup, Peter

    2012-01-01

    -way ANOVA and multivariate data analysis. Proteins of interest were subsequently identified by MS/MS following tryptic digestion. The observed regulation following hypoxia in skeletal muscle was determined to be time specific, as only a limited number of proteins were regulated in response to more than one...

  2. Lack of Dependence of the Sizes of the Mesoscopic Protein Clusters on Electrostatics.

    Science.gov (United States)

    Vorontsova, Maria A; Chan, Ho Yin; Lubchenko, Vassiliy; Vekilov, Peter G

    2015-11-03

    Protein-rich clusters of steady submicron size and narrow size distribution exist in protein solutions in apparent violation of the classical laws of phase equilibrium. Even though they contain a minor fraction of the total protein, evidence suggests that they may serve as essential precursors for the nucleation of ordered solids such as crystals, sickle-cell hemoglobin polymers, and amyloid fibrils. The cluster formation mechanism remains elusive. We use the highly basic protein lysozyme at nearly neutral and lower pH as a model and explore the response of the cluster population to the electrostatic forces, which govern numerous biophysical phenomena, including crystallization and fibrillization. We tune the strength of intermolecular electrostatic forces by varying the solution ionic strength I and pH and find that despite the weaker repulsion at higher I and pH, the cluster size remains constant. Cluster responses to the presence of urea and ethanol demonstrate that cluster formation is controlled by hydrophobic interactions between the peptide backbones, exposed to the solvent after partial protein unfolding that may lead to transient protein oligomers. These findings reveal that the mechanism of the mesoscopic clusters is fundamentally different from those underlying the two main classes of ordered protein solid phases, crystals and amyloid fibrils, and partial unfolding of the protein chain may play a significant role. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Role of Proteasome-Dependent Protein Degradation in Long-Term Operant Memory in "Aplysia"

    Science.gov (United States)

    Lyons, Lisa C.; Gardner, Jacob S.; Gandour, Catherine E.; Krishnan, Harini C.

    2017-01-01

    We investigated the in vivo role of protein degradation during intermediate (ITM) and long-term memory (LTM) in "Aplysia" using an operant learning paradigm. The proteasome inhibitor MG-132 inhibited the induction and molecular consolidation of LTM with no effect on ITM. Remarkably, maintenance of steady-state protein levels through…

  4. Selective inhibition of Sarcocystis neurona calcium-dependent protein kinase 1 for equine protozoal myeloencephalitis therapy.

    Science.gov (United States)

    Ojo, Kayode K; Dangoudoubiyam, Sriveny; Verma, Shiv K; Scheele, Suzanne; DeRocher, Amy E; Yeargan, Michelle; Choi, Ryan; Smith, Tess R; Rivas, Kasey L; Hulverson, Matthew A; Barrett, Lynn K; Fan, Erkang; Maly, Dustin J; Parsons, Marilyn; Dubey, Jitender P; Howe, Daniel K; Van Voorhis, Wesley C

    2016-12-01

    Sarcocystis neurona is the most frequent cause of equine protozoal myeloencephalitis, a debilitating neurological disease of horses that can be difficult to treat. We identified SnCDPK1, the S. neurona homologue of calcium-dependent protein kinase 1 (CDPK1), a validated drug target in Toxoplasma gondii. SnCDPK1 shares the glycine "gatekeeper" residue of the well-characterized T. gondii enzyme, which allows the latter to be targeted by bumped kinase inhibitors. This study presents detailed molecular and phenotypic evidence that SnCDPK1 can be targeted for rational drug development. Recombinant SnCDPK1 was tested against four bumped kinase inhibitors shown to potently inhibit both T. gondii (Tg) CDPK1 and T. gondii tachyzoite growth. SnCDPK1 was inhibited by low nanomolar concentrations of these BKIs and S. neurona growth was inhibited at 40-120nM concentrations. Thermal shift assays confirmed these bumped kinase inhibitors bind CDPK1 in S. neurona cell lysates. Treatment with bumped kinase inhibitors before or after invasion suggests that bumped kinase inhibitors interfere with S. neurona mammalian host cell invasion in the 0.5-2.5μM range but interfere with intracellular division at 2.5μM. In vivo proof-of-concept experiments were performed in a murine model of S. neurona infection. The experimental infected groups treated for 30days with compound BKI-1553 (n=10 mice) had no signs of disease, while the infected control group had severe signs and symptoms of infection. Elevated antibody responses were found in 100% of control infected animals, but only 20% of BKI-1553 treated infected animals. Parasites were found in brain tissues of 100% of the control infected animals, but only in 10% of the BKI-1553 treated animals. The bumped kinase inhibitors used in these assays have been chemically optimized for potency, selectivity and pharmacokinetic properties, and hence are good candidates for treatment of equine protozoal myeloencephalitis. Copyright © 2016

  5. Long-term memory for instrumental responses does not undergo protein synthesis-dependent reconsolidation upon retrieval.

    Science.gov (United States)

    Hernandez, Pepe J; Kelley, Ann E

    2004-01-01

    Recent evidence indicates that certain forms of memory, upon recall, may return to a labile state requiring the synthesis of new proteins in order to preserve or reconsolidate the original memory trace. While the initial consolidation of "instrumental memories" has been shown to require de novo protein synthesis in the nucleus accumbens, it is not known whether memories of this type undergo protein synthesis-dependent reconsolidation. Here we show that low doses of the protein synthesis inhibitor anisomycin (ANI; 5 or 20 mg/kg) administered systemically in rats immediately after recall of a lever-pressing task potently impaired performance on the following daily test sessions. We determined that the nature of this impairment was attributable to conditioned taste aversion (CTA) to the sugar reinforcer used in the task rather than to mnemonic or motoric impairments. However, by substituting a novel flavored reinforcer (chocolate pellets) prior to the administration of doses of ANI (150 or 210 mg/kg) previously shown to cause amnesia, a strong CTA to chocolate was induced sparing any aversion to sugar. Importantly, when sugar was reintroduced on the following session, we found that memory for the task was not significantly affected by ANI. Thus, these data suggest that memory for a well-learned instrumental response does not require protein synthesis-dependent reconsolidation as a means of long-term maintenance.

  6. Critical role of heat shock protein 27 in bufalin-induced apoptosis in human osteosarcomas: a proteomic-based research.

    Directory of Open Access Journals (Sweden)

    Xian-biao Xie

    Full Text Available Bufalin is the primary component of the traditional Chinese herb "Chan Su". Evidence suggests that this compound possesses potent anti-tumor activities, although the exact molecular mechanism(s is unknown. Our previous study showed that bufalin inhibited growth of human osteosarcoma cell lines U2OS and U2OS/MTX300 in culture. Therefore, this study aims to further clarify the in vitro and in vivo anti-osteosarcoma effects of bufalin and its molecular mechanism of action. We found bufalin inhibited both methotrexate (MTX sensitive and resistant human osteosarcoma cell growth and induced G2/M arrest and apoptosis. Using a comparative proteomics approach, 24 differentially expressed proteins following bufalin treatment were identified. In particular, the level of an anti-apoptotic protein, heat shock protein 27 (Hsp27, decreased remarkably. The down-regulation of Hsp27 and alterations of its partner signaling molecules (the decrease in p-Akt, nuclear NF-κB p65, and co-immunoprecipitated cytochrome c/Hsp27 were validated. Hsp27 over-expression protected against bufalin-induced apoptosis, reversed the dephosphorylation of Akt and preserved the level of nuclear NF-κB p65 and co-immunoprecipitated Hsp27/cytochrome c. Moreover, bufalin inhibited MTX-resistant osteosarcoma xenograft growth, and a down-regulation of Hsp27 in vivo was observed. Taken together, bufalin exerted potent anti-osteosarcoma effects in vitro and in vivo, even in MTX resistant osteosarcoma cells. The down-regulation of Hsp27 played a critical role in bufalin-induced apoptosis in osteosarcoma cells. Bufalin may have merit to be a potential chemotherapeutic agent for osteosarcoma, particularly in MTX-resistant groups.

  7. Mutational analysis of an archaeal minichromosome maintenance protein exterior hairpin reveals critical residues for helicase activity and DNA binding

    Directory of Open Access Journals (Sweden)

    Brewster Aaron S

    2010-08-01

    Full Text Available Abstract Background The mini-chromosome maintenance protein (MCM complex is an essential replicative helicase for DNA replication in Archaea and Eukaryotes. While the eukaryotic complex consists of six homologous proteins (MCM2-7, the archaeon Sulfolobus solfataricus has only one MCM protein (ssoMCM, six subunits of which form a homohexamer. We have recently reported a 4.35Å crystal structure of the near full-length ssoMCM. The structure reveals a total of four β-hairpins per subunit, three of which are located within the main channel or side channels of the ssoMCM hexamer model generated based on the symmetry of the N-terminal Methanothermobacter thermautotrophicus (mtMCM structure. The fourth β-hairpin, however, is located on the exterior of the hexamer, near the exit of the putative side channels and next to the ATP binding pocket. Results In order to better understand this hairpin's role in DNA binding and helicase activity, we performed a detailed mutational and biochemical analysis of nine residues on this exterior β-hairpin (EXT-hp. We examined the activities of the mutants related to their helicase function, including hexamerization, ATPase, DNA binding and helicase activities. The assays showed that some of the residues on this EXT-hp play a role for DNA binding as well as for helicase activity. Conclusions These results implicate several current theories regarding helicase activity by this critical hexameric enzyme. As the data suggest that EXT-hp is involved in DNA binding, the results reported here imply that the EXT-hp located near the exterior exit of the side channels may play a role in contacting DNA substrate in a manner that affects DNA unwinding.

  8. Expression of RNA virus proteins by RNA polymerase II dependent expression plasmids is hindered at multiple steps

    Directory of Open Access Journals (Sweden)

    Überla Klaus

    2007-06-01

    Full Text Available Abstract Background Proteins of human and animal viruses are frequently expressed from RNA polymerase II dependent expression cassettes to study protein function and to develop gene-based vaccines. Initial attempts to express the G protein of vesicular stomatitis virus (VSV and the F protein of respiratory syncytial virus (RSV by eukaryotic promoters revealed restrictions at several steps of gene expression. Results Insertion of an intron flanked by exonic sequences 5'-terminal to the open reading frames (ORF of VSV-G and RSV-F led to detectable cytoplasmic mRNA levels of both genes. While the exonic sequences were sufficient to stabilise the VSV-G mRNA, cytoplasmic mRNA levels of RSV-F were dependent on the presence of a functional intron. Cytoplasmic VSV-G mRNA levels led to readily detectable levels of VSV-G protein, whereas RSV-F protein expression remained undetectable. However, RSV-F expression was observed after mutating two of four consensus sites for polyadenylation present in the RSV-F ORF. Expression levels could be further enhanced by codon optimisation. Conclusion Insufficient cytoplasmic mRNA levels and premature polyadenylation prevent expression of RSV-F by RNA polymerase II dependent expression plasmids. Since RSV replicates in the cytoplasm, the presence of premature polyadenylation sites and elements leading to nuclear instability should not interfere with RSV-F expression during virus replication. The molecular mechanisms responsible for the destabilisation of the RSV-F and VSV-G mRNAs and the different requirements for their rescue by insertion of an intron remain to be defined.

  9. Dependency, self-criticism and negative affective responses following imaginary rejection and failure threats: meaning-making processes as moderators or mediators.

    Science.gov (United States)

    Besser, Avi; Priel, Beatriz

    2011-01-01

    This study evaluated the intervening role of meaning-making processes in emotional responses to negative life events based on Blatt's (1974, 2004) formulations concerning the role of personality predispositions in depression. In a pre/post within-subject study design, a community sample of 233 participants reacted to imaginary scenarios of interpersonal rejection and achievement failure. Meaning-making processes relating to threats to self-definition and interpersonal relatedness were examined following the exposure to the scenarios. The results indicated that the personality predisposition of Dependency, but not Self-Criticism predicted higher levels of negative affect following the interpersonal rejection event, independent of baseline levels of negative affect. This effect was mediated by higher levels of negative meaning-making processes related to the effect of the interpersonal rejection scenario on Dependent individuals' senses of interpersonal relatedness and self-worth. In addition, both Self-Criticism and Dependency predicted higher levels of negative affect following the achievement failure event, independent of baseline levels of negative affect. Finally, the effect of Self-Criticism was mediated by higher levels of negative meaning-making processes related to the effect of the achievement failure scenario on self-critical individuals' senses of self-definition.

  10. Amyloid-like fibril formation by polyQ proteins: a critical balance between the polyQ length and the constraints imposed by the host protein.

    Directory of Open Access Journals (Sweden)

    Natacha Scarafone

    Full Text Available Nine neurodegenerative disorders, called polyglutamine (polyQ diseases, are characterized by the formation of intranuclear amyloid-like aggregates by nine proteins containing a polyQ tract above a threshold length. These insoluble aggregates and/or some of their soluble precursors are thought to play a role in the pathogenesis. The mechanism by which polyQ expansions trigger the aggregation of the relevant proteins remains, however, unclear. In this work, polyQ tracts of different lengths were inserted into a solvent-exposed loop of the β-lactamase BlaP and the effects of these insertions on the properties of BlaP were investigated by a range of biophysical techniques. The insertion of up to 79 glutamines does not modify the structure of BlaP; it does, however, significantly destabilize the enzyme. The extent of destabilization is largely independent of the polyQ length, allowing us to study independently the effects intrinsic to the polyQ length and those related to the structural integrity of BlaP on the aggregating properties of the chimeras. Only chimeras with 55Q and 79Q readily form amyloid-like fibrils; therefore, similarly to the proteins associated with diseases, there is a threshold number of glutamines above which the chimeras aggregate into amyloid-like fibrils. Most importantly, the chimera containing 79Q forms amyloid-like fibrils at the same rate whether BlaP is folded or not, whereas the 55Q chimera aggregates into amyloid-like fibrils only if BlaP is unfolded. The threshold value for amyloid-like fibril formation depends, therefore, on the structural integrity of the β-lactamase moiety and thus on the steric and/or conformational constraints applied to the polyQ tract. These constraints have, however, no significant effect on the propensity of the 79Q tract to trigger fibril formation. These results suggest that the influence of the protein context on the aggregating properties of polyQ disease-associated proteins could be

  11. Manipulation of the membrane binding site of vitamin K-dependent proteins: Enhanced biological function of human factor VII

    OpenAIRE

    Shah, Amit M.; Kisiel, Walter; Foster, Donald C.; Nelsestuen, Gary L.

    1998-01-01

    Recent studies suggested that modification of the membrane contact site of vitamin K-dependent proteins may enhance the membrane affinity and function of members of this protein family. The properties of a factor VII mutant, factor VII-Q10E32, relative to wild-type factor VII (VII, containing P10K32), have been compared. Membrane affinity of VII-Q10E32 was about 20-fold higher than that of wild-type factor VII. The rate of autoactivation VII-Q10E32 with soluble tissue factor was 100-fold fast...

  12. Rift Valley fever virus NSs inhibits host transcription independently of the degradation of dsRNA-dependent Protein Kinase PKR

    OpenAIRE

    Kalveram, Birte; Lihoradova, Olga; Indran, Sabarish V.; Lokugamage, Nandadeva; Head, Jennifer A.; Ikegami, Tetsuro

    2012-01-01

    Rift Valley fever virus (RVFV) encodes one major virulence factor, the NSs protein. NSs suppresses host general transcription, including interferon (IFN)-β mRNA synthesis, and promotes degradation of the dsRNA-dependent protein kinase (PKR). We generated a novel RVFV mutant (rMP12-NSsR173A) specifically lacking the function to promote PKR degradation. rMP12-NSsR173A infection induces early phosphorylation of eIF2α through PKR activation, while retaining the function to inhibit host general tr...

  13. Dependency on de novo protein synthesis and proteomic changes during metamorphosis of the marine bryozoan Bugula neritina

    KAUST Repository

    Wong, Yue Him

    2010-05-24

    Background: Metamorphosis in the bryozoan Bugula neritina (Linne) includes an initial phase of rapid morphological rearrangement followed by a gradual phase of morphogenesis. We hypothesized that the first phase may be independent of de novo synthesis of proteins and, instead, involves post-translational modifications of existing proteins, providing a simple mechanism to quickly initiate metamorphosis. To test our hypothesis, we challenged B. neritina larvae with transcription and translation inhibitors. Furthermore, we employed 2D gel electrophoresis to characterize changes in the phosphoproteome and proteome during early metamorphosis. Differentially expressed proteins were identified by liquid chromatography tandem mass spectrometry and their gene expression patterns were profiled using semi-quantitative real time PCR.Results: When larvae were incubated with transcription and translation inhibitors, metamorphosis initiated through the first phase but did not complete. We found a significant down-regulation of 60 protein spots and the percentage of phosphoprotein spots decreased from 15% in the larval stage to12% during early metamorphosis. Two proteins--the mitochondrial processing peptidase beta subunit and severin--were abundantly expressed and phosphorylated in the larval stage, but down-regulated during metamorphosis. MPPbeta and severin were also down-regulated on the gene expression level.Conclusions: The initial morphogenetic changes that led to attachment of B. neritina did not depend on de novo protein synthesis, but the subsequent gradual morphogenesis did. This is the first time that the mitochondrial processing peptidase beta subunit or severin have been shown to be down-regulated on both gene and protein expression levels during the metamorphosis of B. neritina. Future studies employing immunohistochemistry to reveal the expression locality of these two proteins during metamorphosis should provide further evidence of the involvement of these two

  14. A role for barley calcium-dependent protein kinase CPK2a in the response to drought

    Directory of Open Access Journals (Sweden)

    Agata Cieśla

    2016-10-01

    Full Text Available Increasing the drought tolerance of crops is one of the most challenging goals in plant breeding. To improve crop productivity during periods of water deficit, it is essential to understand the complex regulatory pathways that adapt plant metabolism to environmental conditions. Among various plant hormones and second messengers, calcium ions are known to be involved in drought stress perception and signaling. Plants have developed specific calcium-dependent protein kinases that convert calcium signals into phosphorylation events. In this study we attempted to elucidate the role of a calcium-dependent protein kinase in the drought stress response of barley (Hordeum vulgare L., one of the most economically important crops worldwide. The ongoing barley genome project has provided useful information about genes potentially involved in the drought stress response, but information on the role of calcium-dependent kinases is still limited. We found that the gene encoding the calcium-dependent protein kinase HvCPK2a was significantly upregulated in response to drought. To better understand the role of HvCPK2a in drought stress signaling, we generated transgenic Arabidopsis plants that overexpressed the corresponding coding sequence. Overexpressing lines displayed drought sensitivity, reduced nitrogen balance index, an increase in total chlorophyll content and decreased relative water content. In addition, in vitro kinase assay experiments combined with mass spectrometry allowed HvCPK2a autophosphorylation sites to be identified. Our results suggest that HvCPK2a is a dual-specificity calcium-dependent protein kinase that functions as a negative regulator of the drought stress response in barley.

  15. Temperature and pinning strength dependence of the critical current of a superconductor with a square periodic array of pinning sites

    International Nuclear Information System (INIS)

    Benkraouda, M.; Obaidat, I.M.; Al Khawaja, U.

    2006-01-01

    We have conducted extensive series of molecular dynamic simulations on driven vortex lattices interacting with periodic square arrays of pinning sites. In solving the over damped equation of vortex motion we took into account the vortex-vortex repulsion interaction, the attractive vortex-pinning interaction, and the driving Lorentz force at several values of temperature. We have studied the effect of varying the driving Lorentz force and varying the pinning strength on the critical current for several pinning densities, and temperature values. We have found that the pinning strength play an important role in enhancing the critical current over the whole temperature range. At low temperatures, the critical current was found to increase linearly with increasing the pinning strengths for all pinning densities. As the temperature increases, the effect of small pinning strengths diminishes and becomes insignificant at high temperatures

  16. The Development of Self-Criticism and Dependency in Early Adolescence and Their Role in the Development of Depressive and Anxiety Symptoms.

    Science.gov (United States)

    Kopala-Sibley, Daniel C; Zuroff, David C; Hankin, Benjamin L; Abela, John R Z

    2015-08-01

    According to Blatt and others (e.g., A. T. Beck), self-definition, or one's sense of self, and one's sense of relatedness to others represent core lifespan developmental tasks. This study examined the role of events pertaining to self-definition or relatedness in the development of personality traits from each domain (self-criticism and dependency), and their relationship to the development of depressive and anxiety symptoms. Two hundred seventy-six early adolescents completed a measure of self-criticism and dependency at baseline and again 24 months later, along with measures of depressive and anxiety symptoms. Every 3 months, participants completed a measure of life events, which were coded as self-definitional or relatedness oriented (80% rater agreement, kappa = .70). Structural equation models showed that self-definitional events predicted increases in self-criticism, which in turn predicted increases in depressive symptoms, whereas relatedness events predicted increases in dependency, although dependency was unrelated to change in symptoms. © 2015 by the Society for Personality and Social Psychology, Inc.

  17. Nutrient-dependent methylation of a membrane-associated protein of Escherichia coli

    International Nuclear Information System (INIS)

    Young, C.C.; Alvarez, J.D.; Bernlohr, R.W.

    1990-01-01

    Starvation of a mid-log-phase culture of Escherichia coli B/r for nitrogen, phosphate, or carbon resulted in methylation of a membrane-associated protein of about 43,000 daltons (P-43) in the presence of chloramphenicol and [methyl-3H]methionine. The in vivo methylation reaction occurred with a doubling time of 2 to 5 min and was followed by a slower demethylation process. Addition of the missing nutrient to a starving culture immediately prevented further methylation of P-43. P-43 methylation is not related to the methylated chemotaxis proteins because P-43 is methylated in response to a different spectrum of nutrients and because P-43 is methylated on lysine residues. The characteristics of P-43 are similar to those of a methylated protein previously described in Bacillus subtilis and B. licheniformis and are consistent with the proposal that methylation of this protein functions in nutrient sensing

  18. Dose-dependent differential effect of hemin on protein synthesis and ...

    Indian Academy of Sciences (India)

    Unknown

    However, in situ labelling experiments along with Western blots revealed that high concentration of .... separated proteins in the gel were transferred on to nitro- cellulose membrane according to Towbin et al (1979), and probed either with ...

  19. Individual whey protein components influence lipid oxidation dependent on pH

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    In emulsions, lipid oxidation is expected to be initiated at the oil-water interface. The properties of the emulsifier used and the composition at the interface is therefore expected to be of great importance for the resulting oxidation. Previous studies have shown that individual whey protein...... by affecting the preferential adsorption of whey protein components at the interface. The aim of the study was to compare lipid oxidation in 10% fish oil-in-water emulsions prepared with 1% whey protein having either a high concentration of α-lactalbumin, a high concentration of β-lactoglobulin or equal...... amounts of the two. Emulsions were prepared at pH4 and pH7. Emulsions were characterized by their droplet sizes, viscosities, and contents of proteins in the water phase. Lipid oxidation was assessed by PV and secondary volatile oxidation products. Results showed that pH greatly influenced the oxidative...

  20. The performance of broilers on a feed depends on the feed protein ...

    African Journals Online (AJOL)

    User

    liveweight, after which they were given one of two feed protein contents in Experiment ... killed for carcass analysis. .... Gains of the chemical components were ... Table2 Main effects and interactions between genotype, sex and first and second ...

  1. The success of dietary protein restriction in alkaptonuria patients is age-dependent

    NARCIS (Netherlands)

    de Haas, V.; Carbasius Weber, E. C.; de Klerk, J. B.; Bakker, H. D.; Smit, G. P.; Huijbers, W. A.; Duran, M.; Poll-The, B. T.

    1998-01-01

    Alkaptonuria is characterized by an increased urinary excretion of homogentisic acid, pigmentation of cartilage and connective tissues, and ultimately the development of inflammatory arthropathy. Various diets low in protein have been designed to decrease homogentisic acid excretion and to prevent

  2. ESCRT-dependent degradation of ubiquitylated plasma membrane proteins in plants.

    Science.gov (United States)

    Isono, Erika; Kalinowska, Kamila

    2017-12-01

    To control the abundance of plasma membrane receptors and transporters is crucial for proper perception and response to extracellular signals from surrounding cells and the environment. Posttranslational modification of plasma membrane proteins, especially ubiquitin conjugation or ubiquitylation, is key for the determination of stability for many transmembrane proteins localized on the cell surface. The targeted degradation is ensured by a complex network of proteins among which the endosomal sorting complex required for transport (ESCRT) plays a central role. This review focuses on progresses made in recent years on the understanding of the function of the ESCRT machinery in the degradation of ubiquitylated plasma membrane proteins in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Changes in atherogenic dyslipidemia induced by carbohydrate restriction in men are dependent on dietary protein source.

    Science.gov (United States)

    Mangravite, Lara M; Chiu, Sally; Wojnoonski, Kathleen; Rawlings, Robin S; Bergeron, Nathalie; Krauss, Ronald M

    2011-12-01

    Previous studies have shown that multiple features of atherogenic dyslipidemia are improved by replacement of dietary carbohydrate with mixed sources of protein and that these lipid and lipoprotein changes are independent of dietary saturated fat content. Because epidemiological evidence suggests that red meat intake may adversely affect cardiovascular disease risk, we tested the effects of replacing dietary carbohydrate with beef protein in the context of high- vs. low-saturated fat intake in 40 healthy men. After a 3-wk baseline diet [50% daily energy (E) as carbohydrate, 13% E as protein, 15% E as saturated fat], participants consumed for 3 wk each in a randomized crossover design two high-beef diets in which protein replaced carbohydrate (31% E as carbohydrate, 31% E as protein, with 10% E as beef protein). The high-beef diets differed in saturated fat content (8% E vs. 15% E with exchange of saturated for monounsaturated fat). Two-week washout periods were included following the baseline diet period and between the randomized diets periods. Plasma TG concentrations were reduced after the 2 lower carbohydrate dietary periods relative to after the baseline diet period and these reductions were independent of saturated fat intake. Plasma total, LDL, and non-HDL cholesterol as well as apoB concentrations were lower after the low-carbohydrate, low-saturated fat diet period than after the low-carbohydrate, high-saturated fat diet period. Given our previous observations with mixed protein diets, the present findings raise the possibility that dietary protein source may modify the effects of saturated fat on atherogenic lipoproteins.

  4. Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity

    Directory of Open Access Journals (Sweden)

    Dickson Joseph

    2014-09-01

    Full Text Available The biocompatibility and ease of functionalization of gold nanoparticles underlie significant potential in biotechnology and biomedicine. Eight different proteins were examined in the preparation of gold nanoparticles (AuNPs in aqueous medium under microwave irradiation. Six of the proteins resulted in the formation of AuNPs. The intrinsic pH of the proteins played an important role in AuNPs with strong surface plasmon bands. The hydrodynamic size of the nanoparticles was larger than the values observed by TEM and ImageJ. The formation of a protein layer on the AuNPs accounts for this difference. The AuNPs exhibited sensitivity towards varying pH conditions, which was confirmed by determining the difference in the isoelectric points studied by using pH-dependent zeta potential titration. Cytotoxicity studies revealed anticancerous effects of the AuNPs at a certain micromolar concentration by constraining the growth of cancer cells with different efficacies due to the use of different proteins as capping agents. The positively charged AuNPs are internalized by the cells to a greater level than the negatively charged AuNPs. These AuNPs synthesized with protein coating holds promise as anticancer agents and would help in providing a new paradigm in area of nanoparticles.

  5. Differential role of calpain-dependent protein cleavage in intermediate and long-term operant memory in Aplysia.

    Science.gov (United States)

    Lyons, Lisa C; Gardner, Jacob S; Lentsch, Cassidy T; Gandour, Catherine E; Krishnan, Harini C; Noakes, Eric J

    2017-01-01

    In addition to protein synthesis, protein degradation or protein cleavage may be necessary for intermediate (ITM) and long-term memory (LTM) to remove molecular constraints, facilitate persistent kinase activity and modulate synaptic plasticity. Calpains, a family of conserved calcium dependent cysteine proteases, modulate synaptic function through protein cleavage. We used the marine mollusk Aplysia californica to investigate the in vivo role of calpains during intermediate and long-term operant memory formation using the learning that food is inedible (LFI) paradigm. A single LFI training session, in which the animal associates a specific netted seaweed with the failure to swallow, generates short (30min), intermediate (4-6h) and long-term (24h) memory. Using the calpain inhibitors calpeptin and MDL-28170, we found that ITM requires calpain activity for induction and consolidation similar to the previously reported requirements for persistent protein kinase C activity in intermediate-term LFI memory. The induction of LTM also required calpain activity. In contrast to ITM, calpain activity was not necessary for the molecular consolidation of LTM. Surprisingly, six hours after LFI training we found that calpain activity was necessary for LTM, although this is a time at which neither persistent PKC activity nor protein synthesis is required for the maintenance of long-term LFI memory. These results demonstrate that calpains function in multiple roles in vivo during associative memory formation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Quantum mechanical electronic structure calculation reveals orientation dependence of hydrogen bond energy in proteins.

    Science.gov (United States)

    Mondal, Abhisek; Datta, Saumen

    2017-06-01

    Hydrogen bond plays a unique role in governing macromolecular interactions with exquisite specificity. These interactions govern the fundamental biological processes like protein folding, enzymatic catalysis, molecular recognition. Despite extensive research work, till date there is no proper report available about the hydrogen bond's energy surface with respect to its geometric parameters, directly derived from proteins. Herein, we have deciphered the potential energy landscape of hydrogen bond directly from the macromolecular coordinates obtained from Protein Data Bank using quantum mechanical electronic structure calculations. The findings unravel the hydrogen bonding energies of proteins in parametric space. These data can be used to understand the energies of such directional interactions involved in biological molecules. Quantitative characterization has also been performed using Shannon entropic calculations for atoms participating in hydrogen bond. Collectively, our results constitute an improved way of understanding hydrogen bond energies in case of proteins and complement the knowledge-based potential. Proteins 2017; 85:1046-1055. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. LSD1 demethylase and the methyl-binding protein PHF20L1 prevent SET7 methyltransferase-dependent proteolysis of the stem-cell protein SOX2.

    Science.gov (United States)

    Zhang, Chunxiao; Hoang, Nam; Leng, Feng; Saxena, Lovely; Lee, Logan; Alejo, Salvador; Qi, Dandan; Khal, Anthony; Sun, Hong; Lu, Fei; Zhang, Hui

    2018-03-09

    The pluripotency-controlling stem-cell protein SRY-box 2 (SOX2) plays a pivotal role in maintaining the self-renewal and pluripotency of embryonic stem cells and also of teratocarcinoma or embryonic carcinoma cells. SOX2 is monomethylated at lysine 119 (Lys-119) in mouse embryonic stem cells by the SET7 methyltransferase, and this methylation triggers ubiquitin-dependent SOX2 proteolysis. However, the molecular regulators and mechanisms controlling SET7-induced SOX2 proteolysis are unknown. Here, we report that in human ovarian teratocarcinoma PA-1 cells, methylation-dependent SOX2 proteolysis is dynamically regulated by the LSD1 lysine demethylase and a methyl-binding protein, PHD finger protein 20-like 1 (PHF20L1). We found that LSD1 not only removes the methyl group from monomethylated Lys-117 (equivalent to Lys-119 in mouse SOX2), but it also demethylates monomethylated Lys-42 in SOX2, a reaction that SET7 also regulated and that also triggered SOX2 proteolysis. Our studies further revealed that PHF20L1 binds both monomethylated Lys-42 and Lys-117 in SOX2 and thereby prevents SOX2 proteolysis. Down-regulation of either LSD1 or PHF20L1 promoted SOX2 proteolysis, which was prevented by SET7 inactivation in both PA-1 and mouse embryonic stem cells. Our studies also disclosed that LSD1 and PHF20L1 normally regulate the growth of pluripotent mouse embryonic stem cells and PA-1 cells by preventing methylation-dependent SOX2 proteolysis. In conclusion, our findings reveal an important mechanism by which the stability of the pluripotency-controlling stem-cell protein SOX2 is dynamically regulated by the activities of SET7, LSD1, and PHF20L1 in pluripotent stem cells. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Contact- and Protein Transfer-Dependent Stimulation of Assembly of the Gliding Motility Machinery in Myxococcus xanthus.

    Directory of Open Access Journals (Sweden)

    Beata Jakobczak

    2015-07-01

    Full Text Available Bacteria engage in contact-dependent activities to coordinate cellular activities that aid their survival. Cells of Myxococcus xanthus move over surfaces by means of type IV pili and gliding motility. Upon direct contact, cells physically exchange outer membrane (OM lipoproteins, and this transfer can rescue motility i