WorldWideScience

Sample records for protein structure networks

  1. Neural Networks for protein Structure Prediction

    DEFF Research Database (Denmark)

    Bohr, Henrik

    1998-01-01

    This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...

  2. Oligomeric protein structure networks: insights into protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Brinda KV

    2005-12-01

    Full Text Available Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb. A few predictions of interface hot

  3. NAPS: Network Analysis of Protein Structures

    Science.gov (United States)

    Chakrabarty, Broto; Parekh, Nita

    2016-01-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue–residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein–protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  4. Protein enriched pasta: structure and digestibility of its protein network.

    Science.gov (United States)

    Laleg, Karima; Barron, Cécile; Santé-Lhoutellier, Véronique; Walrand, Stéphane; Micard, Valérie

    2016-02-01

    Wheat (W) pasta was enriched in 6% gluten (G), 35% faba (F) or 5% egg (E) to increase its protein content (13% to 17%). The impact of the enrichment on the multiscale structure of the pasta and on in vitro protein digestibility was studied. Increasing the protein content (W- vs. G-pasta) strengthened pasta structure at molecular and macroscopic scales but reduced its protein digestibility by 3% by forming a higher covalently linked protein network. Greater changes in the macroscopic and molecular structure of the pasta were obtained by varying the nature of protein used for enrichment. Proteins in G- and E-pasta were highly covalently linked (28-32%) resulting in a strong pasta structure. Conversely, F-protein (98% SDS-soluble) altered the pasta structure by diluting gluten and formed a weak protein network (18% covalent link). As a result, protein digestibility in F-pasta was significantly higher (46%) than in E- (44%) and G-pasta (39%). The effect of low (55 °C, LT) vs. very high temperature (90 °C, VHT) drying on the protein network structure and digestibility was shown to cause greater molecular changes than pasta formulation. Whatever the pasta, a general strengthening of its structure, a 33% to 47% increase in covalently linked proteins and a higher β-sheet structure were observed. However, these structural differences were evened out after the pasta was cooked, resulting in identical protein digestibility in LT and VHT pasta. Even after VHT drying, F-pasta had the best amino acid profile with the highest protein digestibility, proof of its nutritional interest.

  5. Human cancer protein-protein interaction network: a structural perspective.

    Directory of Open Access Journals (Sweden)

    Gozde Kar

    2009-12-01

    Full Text Available Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network. The interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins, and constituting the nodes with higher essentiality in the network (76%. We illustrate the interface related affinity properties of two cancer-related hub

  6. Influence of degree correlations on network structure and stability in protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    Zimmer Ralf

    2007-08-01

    Full Text Available Abstract Background The existence of negative correlations between degrees of interacting proteins is being discussed since such negative degree correlations were found for the large-scale yeast protein-protein interaction (PPI network of Ito et al. More recent studies observed no such negative correlations for high-confidence interaction sets. In this article, we analyzed a range of experimentally derived interaction networks to understand the role and prevalence of degree correlations in PPI networks. We investigated how degree correlations influence the structure of networks and their tolerance against perturbations such as the targeted deletion of hubs. Results For each PPI network, we simulated uncorrelated, positively and negatively correlated reference networks. Here, a simple model was developed which can create different types of degree correlations in a network without changing the degree distribution. Differences in static properties associated with degree correlations were compared by analyzing the network characteristics of the original PPI and reference networks. Dynamics were compared by simulating the effect of a selective deletion of hubs in all networks. Conclusion Considerable differences between the network types were found for the number of components in the original networks. Negatively correlated networks are fragmented into significantly less components than observed for positively correlated networks. On the other hand, the selective deletion of hubs showed an increased structural tolerance to these deletions for the positively correlated networks. This results in a lower rate of interaction loss in these networks compared to the negatively correlated networks and a decreased disintegration rate. Interestingly, real PPI networks are most similar to the randomly correlated references with respect to all properties analyzed. Thus, although structural properties of networks can be modified considerably by degree

  7. Combining neural networks for protein secondary structure prediction

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1995-01-01

    In this paper structured neural networks are applied to the problem of predicting the secondary structure of proteins. A hierarchical approach is used where specialized neural networks are designed for each structural class and then combined using another neural network. The submodels are designed...... by using a priori knowledge of the mapping between protein building blocks and the secondary structure and by using weight sharing. Since none of the individual networks have more than 600 adjustable weights over-fitting is avoided. When ensembles of specialized experts are combined the performance...

  8. Optimal neural networks for protein-structure prediction

    International Nuclear Information System (INIS)

    Head-Gordon, T.; Stillinger, F.H.

    1993-01-01

    The successful application of neural-network algorithms for prediction of protein structure is stymied by three problem areas: the sparsity of the database of known protein structures, poorly devised network architectures which make the input-output mapping opaque, and a global optimization problem in the multiple-minima space of the network variables. We present a simplified polypeptide model residing in two dimensions with only two amino-acid types, A and B, which allows the determination of the global energy structure for all possible sequences of pentamer, hexamer, and heptamer lengths. This model simplicity allows us to compile a complete structural database and to devise neural networks that reproduce the tertiary structure of all sequences with absolute accuracy and with the smallest number of network variables. These optimal networks reveal that the three problem areas are convoluted, but that thoughtful network designs can actually deconvolute these detrimental traits to provide network algorithms that genuinely impact on the ability of the network to generalize or learn the desired mappings. Furthermore, the two-dimensional polypeptide model shows sufficient chemical complexity so that transfer of neural-network technology to more realistic three-dimensional proteins is evident

  9. Topological properties of complex networks in protein structures

    Science.gov (United States)

    Kim, Kyungsik; Jung, Jae-Won; Min, Seungsik

    2014-03-01

    We study topological properties of networks in structural classification of proteins. We model the native-state protein structure as a network made of its constituent amino-acids and their interactions. We treat four structural classes of proteins composed predominantly of α helices and β sheets and consider several proteins from each of these classes whose sizes range from amino acids of the Protein Data Bank. Particularly, we simulate and analyze the network metrics such as the mean degree, the probability distribution of degree, the clustering coefficient, the characteristic path length, the local efficiency, and the cost. This work was supported by the KMAR and DP under Grant WISE project (153-3100-3133-302-350).

  10. Predicting and validating protein interactions using network structure.

    Directory of Open Access Journals (Sweden)

    Pao-Yang Chen

    2008-07-01

    Full Text Available Protein interactions play a vital part in the function of a cell. As experimental techniques for detection and validation of protein interactions are time consuming, there is a need for computational methods for this task. Protein interactions appear to form a network with a relatively high degree of local clustering. In this paper we exploit this clustering by suggesting a score based on triplets of observed protein interactions. The score utilises both protein characteristics and network properties. Our score based on triplets is shown to complement existing techniques for predicting protein interactions, outperforming them on data sets which display a high degree of clustering. The predicted interactions score highly against test measures for accuracy. Compared to a similar score derived from pairwise interactions only, the triplet score displays higher sensitivity and specificity. By looking at specific examples, we show how an experimental set of interactions can be enriched and validated. As part of this work we also examine the effect of different prior databases upon the accuracy of prediction and find that the interactions from the same kingdom give better results than from across kingdoms, suggesting that there may be fundamental differences between the networks. These results all emphasize that network structure is important and helps in the accurate prediction of protein interactions. The protein interaction data set and the program used in our analysis, and a list of predictions and validations, are available at http://www.stats.ox.ac.uk/bioinfo/resources/PredictingInteractions.

  11. An automated approach to network features of protein structure ensembles

    Science.gov (United States)

    Bhattacharyya, Moitrayee; Bhat, Chanda R; Vishveshwara, Saraswathi

    2013-01-01

    Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone-efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user-friendly, standalone program package named PSN-Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X-ray structures. The novelty in network construction lies in the explicit consideration of side-chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long-range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross-correlation/interaction energy in PSN-Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN-Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin-conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN-Ensemble for single-static structures of active/inactive states of β2-adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN-Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN-Ensemble/psn_index.html. PMID:23934896

  12. Parallel protein secondary structure prediction based on neural networks.

    Science.gov (United States)

    Zhong, Wei; Altun, Gulsah; Tian, Xinmin; Harrison, Robert; Tai, Phang C; Pan, Yi

    2004-01-01

    Protein secondary structure prediction has a fundamental influence on today's bioinformatics research. In this work, binary and tertiary classifiers of protein secondary structure prediction are implemented on Denoeux belief neural network (DBNN) architecture. Hydrophobicity matrix, orthogonal matrix, BLOSUM62 and PSSM (position specific scoring matrix) are experimented separately as the encoding schemes for DBNN. The experimental results contribute to the design of new encoding schemes. New binary classifier for Helix versus not Helix ( approximately H) for DBNN produces prediction accuracy of 87% when PSSM is used for the input profile. The performance of DBNN binary classifier is comparable to other best prediction methods. The good test results for binary classifiers open a new approach for protein structure prediction with neural networks. Due to the time consuming task of training the neural networks, Pthread and OpenMP are employed to parallelize DBNN in the hyperthreading enabled Intel architecture. Speedup for 16 Pthreads is 4.9 and speedup for 16 OpenMP threads is 4 in the 4 processors shared memory architecture. Both speedup performance of OpenMP and Pthread is superior to that of other research. With the new parallel training algorithm, thousands of amino acids can be processed in reasonable amount of time. Our research also shows that hyperthreading technology for Intel architecture is efficient for parallel biological algorithms.

  13. Cascaded bidirectional recurrent neural networks for protein secondary structure prediction.

    Science.gov (United States)

    Chen, Jinmiao; Chaudhari, Narendra

    2007-01-01

    Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri's BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38\\%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri's BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.

  14. Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection.

    Science.gov (United States)

    DeBlasio, Stacy L; Johnson, Richard; Sweeney, Michelle M; Karasev, Alexander; Gray, Stewart M; MacCoss, Michael J; Cilia, Michelle

    2015-06-01

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a nonincorporated protein in concert with numerous insect and plant proteins to regulate virus movement/transmission and tissue tropism. Affinity purification coupled to quantitative MS was used to generate protein interaction networks for a PLRV mutant that is unable to produce the read through domain (RTD) and compared to the known wild-type PLRV protein interaction network. By quantifying differences in the protein interaction networks, we identified four distinct classes of PLRV-plant interactions: those plant and nonstructural viral proteins interacting with assembled coat protein (category I); plant proteins in complex with both coat protein and RTD (category II); plant proteins in complex with the RTD (category III); and plant proteins that had higher affinity for virions lacking the RTD (category IV). Proteins identified as interacting with the RTD are potential candidates for regulating viral processes that are mediated by the RTP such as phloem retention and systemic movement and can potentially be useful targets for the development of strategies to prevent infection and/or viral transmission of Luteoviridae species that infect important crop species. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Building alternate protein structures using the elastic network model.

    Science.gov (United States)

    Yang, Qingyi; Sharp, Kim A

    2009-02-15

    We describe a method for efficiently generating ensembles of alternate, all-atom protein structures that (a) differ significantly from the starting structure, (b) have good stereochemistry (bonded geometry), and (c) have good steric properties (absence of atomic overlap). The method uses reconstruction from a series of backbone framework structures that are obtained from a modified elastic network model (ENM) by perturbation along low-frequency normal modes. To ensure good quality backbone frameworks, the single force parameter ENM is modified by introducing two more force parameters to characterize the interaction between the consecutive carbon alphas and those within the same secondary structure domain. The relative stiffness of the three parameters is parameterized to reproduce B-factors, while maintaining good bonded geometry. After parameterization, violations of experimental Calpha-Calpha distances and Calpha-Calpha-Calpha pseudo angles along the backbone are reduced to less than 1%. Simultaneously, the average B-factor correlation coefficient improves to R = 0.77. Two applications illustrate the potential of the approach. (1) 102,051 protein backbones spanning a conformational space of 15 A root mean square deviation were generated from 148 nonredundant proteins in the PDB database, and all-atom models with minimal bonded and nonbonded violations were produced from this ensemble of backbone structures using the SCWRL side chain building program. (2) Improved backbone templates for homology modeling. Fifteen query sequences were each modeled on two targets. For each of the 30 target frameworks, dozens of improved templates could be produced In all cases, improved full atom homology models resulted, of which 50% could be identified blind using the D-Fire statistical potential. (c) 2008 Wiley-Liss, Inc.

  16. The construction of an amino acid network for understanding protein structure and function.

    Science.gov (United States)

    Yan, Wenying; Zhou, Jianhong; Sun, Maomin; Chen, Jiajia; Hu, Guang; Shen, Bairong

    2014-06-01

    Amino acid networks (AANs) are undirected networks consisting of amino acid residues and their interactions in three-dimensional protein structures. The analysis of AANs provides novel insight into protein science, and several common amino acid network properties have revealed diverse classes of proteins. In this review, we first summarize methods for the construction and characterization of AANs. We then compare software tools for the construction and analysis of AANs. Finally, we review the application of AANs for understanding protein structure and function, including the identification of functional residues, the prediction of protein folding, analyzing protein stability and protein-protein interactions, and for understanding communication within and between proteins.

  17. 3DProIN: Protein-Protein Interaction Networks and Structure Visualization.

    Science.gov (United States)

    Li, Hui; Liu, Chunmei

    2014-06-14

    3DProIN is a computational tool to visualize protein-protein interaction networks in both two dimensional (2D) and three dimensional (3D) view. It models protein-protein interactions in a graph and explores the biologically relevant features of the tertiary structures of each protein in the network. Properties such as color, shape and name of each node (protein) of the network can be edited in either 2D or 3D views. 3DProIN is implemented using 3D Java and C programming languages. The internet crawl technique is also used to parse dynamically grasped protein interactions from protein data bank (PDB). It is a java applet component that is embedded in the web page and it can be used on different platforms including Linux, Mac and Window using web browsers such as Firefox, Internet Explorer, Chrome and Safari. It also was converted into a mac app and submitted to the App store as a free app. Mac users can also download the app from our website. 3DProIN is available for academic research at http://bicompute.appspot.com.

  18. Efficient identification of critical residues based only on protein structure by network analysis.

    Directory of Open Access Journals (Sweden)

    Michael P Cusack

    2007-05-01

    Full Text Available Despite the increasing number of published protein structures, and the fact that each protein's function relies on its three-dimensional structure, there is limited access to automatic programs used for the identification of critical residues from the protein structure, compared with those based on protein sequence. Here we present a new algorithm based on network analysis applied exclusively on protein structures to identify critical residues. Our results show that this method identifies critical residues for protein function with high reliability and improves automatic sequence-based approaches and previous network-based approaches. The reliability of the method depends on the conformational diversity screened for the protein of interest. We have designed a web site to give access to this software at http://bis.ifc.unam.mx/jamming/. In summary, a new method is presented that relates critical residues for protein function with the most traversed residues in networks derived from protein structures. A unique feature of the method is the inclusion of the conformational diversity of proteins in the prediction, thus reproducing a basic feature of the structure/function relationship of proteins.

  19. Exploring hierarchical and overlapping modular structure in the yeast protein interaction network

    Directory of Open Access Journals (Sweden)

    Zhao Yi

    2010-12-01

    Full Text Available Abstract Background Developing effective strategies to reveal modular structures in protein interaction networks is crucial for better understanding of molecular mechanisms of underlying biological processes. In this paper, we propose a new density-based algorithm (ADHOC for clustering vertices of a protein interaction network using a novel subgraph density measurement. Results By statistically evaluating several independent criteria, we found that ADHOC could significantly improve the outcome as compared with five previously reported density-dependent methods. We further applied ADHOC to investigate the hierarchical and overlapping modular structure in the yeast PPI network. Our method could effectively detect both protein modules and the overlaps between them, and thus greatly promote the precise prediction of protein functions. Moreover, by further assaying the intermodule layer of the yeast PPI network, we classified hubs into two types, module hubs and inter-module hubs. Each type presents distinct characteristics both in network topology and biological functions, which could conduce to the better understanding of relationship between network architecture and biological implications. Conclusions Our proposed algorithm based on the novel subgraph density measurement makes it possible to more precisely detect hierarchical and overlapping modular structures in protein interaction networks. In addition, our method also shows a strong robustness against the noise in network, which is quite critical for analyzing such a high noise network.

  20. Protein Secondary Structure Prediction Using AutoEncoder Network and Bayes Classifier

    Science.gov (United States)

    Wang, Leilei; Cheng, Jinyong

    2018-03-01

    Protein secondary structure prediction is belong to bioinformatics,and it's important in research area. In this paper, we propose a new prediction way of protein using bayes classifier and autoEncoder network. Our experiments show some algorithms including the construction of the model, the classification of parameters and so on. The data set is a typical CB513 data set for protein. In terms of accuracy, the method is the cross validation based on the 3-fold. Then we can get the Q3 accuracy. Paper results illustrate that the autoencoder network improved the prediction accuracy of protein secondary structure.

  1. Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures.

    Directory of Open Access Journals (Sweden)

    Alberto Pascual-García

    2009-03-01

    Full Text Available Structural classifications of proteins assume the existence of the fold, which is an intrinsic equivalence class of protein domains. Here, we test in which conditions such an equivalence class is compatible with objective similarity measures. We base our analysis on the transitive property of the equivalence relationship, requiring that similarity of A with B and B with C implies that A and C are also similar. Divergent gene evolution leads us to expect that the transitive property should approximately hold. However, if protein domains are a combination of recurrent short polypeptide fragments, as proposed by several authors, then similarity of partial fragments may violate the transitive property, favouring the continuous view of the protein structure space. We propose a measure to quantify the violations of the transitive property when a clustering algorithm joins elements into clusters, and we find out that such violations present a well defined and detectable cross-over point, from an approximately transitive regime at high structure similarity to a regime with large transitivity violations and large differences in length at low similarity. We argue that protein structure space is discrete and hierarchic classification is justified up to this cross-over point, whereas at lower similarities the structure space is continuous and it should be represented as a network. We have tested the qualitative behaviour of this measure, varying all the choices involved in the automatic classification procedure, i.e., domain decomposition, alignment algorithm, similarity score, and clustering algorithm, and we have found out that this behaviour is quite robust. The final classification depends on the chosen algorithms. We used the values of the clustering coefficient and the transitivity violations to select the optimal choices among those that we tested. Interestingly, this criterion also favours the agreement between automatic and expert classifications

  2. Exploring overlapping functional units with various structure in protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Zhang

    Full Text Available Revealing functional units in protein-protein interaction (PPI networks are important for understanding cellular functional organization. Current algorithms for identifying functional units mainly focus on cohesive protein complexes which have more internal interactions than external interactions. Most of these approaches do not handle overlaps among complexes since they usually allow a protein to belong to only one complex. Moreover, recent studies have shown that other non-cohesive structural functional units beyond complexes also exist in PPI networks. Thus previous algorithms that just focus on non-overlapping cohesive complexes are not able to present the biological reality fully. Here, we develop a new regularized sparse random graph model (RSRGM to explore overlapping and various structural functional units in PPI networks. RSRGM is principally dominated by two model parameters. One is used to define the functional units as groups of proteins that have similar patterns of connections to others, which allows RSRGM to detect non-cohesive structural functional units. The other one is used to represent the degree of proteins belonging to the units, which supports a protein belonging to more than one revealed unit. We also propose a regularizer to control the smoothness between the estimators of these two parameters. Experimental results on four S. cerevisiae PPI networks show that the performance of RSRGM on detecting cohesive complexes and overlapping complexes is superior to that of previous competing algorithms. Moreover, RSRGM has the ability to discover biological significant functional units besides complexes.

  3. Control of Cellular Structural Networks Through Unstructured Protein Domains

    Science.gov (United States)

    2016-07-01

    0195-z Albert J. Keung, Meimei Dong, David V. Schaffer, Sanjay Kumar. Pan-neuronal maturation but not neuronal subtype differentiation of adult neural...thin film of silicon dioxide deposited on a reflective silicon wafer. The intensity of the fluorescence excitation light is axially modulated by...star rating in Faculty of 1000. C. ENGINEERING NEURONAL BEHAVIOR VIA CYTOSKELETAL NETWORKS We have sought to understand how adult neural stem cells

  4. Gene Prioritization by Integrated Analysis of Protein Structural and Network Topological Properties for the Protein-Protein Interaction Network of Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Yashna Paul

    2016-01-01

    Full Text Available Neurological disorders are known to show similar phenotypic manifestations like anxiety, depression, and cognitive impairment. There is a need to identify shared genetic markers and molecular pathways in these diseases, which lead to such comorbid conditions. Our study aims to prioritize novel genetic markers that might increase the susceptibility of patients affected with one neurological disorder to other diseases with similar manifestations. Identification of pathways involving common candidate markers will help in the development of improved diagnosis and treatments strategies for patients affected with neurological disorders. This systems biology study for the first time integratively uses 3D-structural protein interface descriptors and network topological properties that characterize proteins in a neurological protein interaction network, to aid the identification of genes that are previously not known to be shared between these diseases. Results of protein prioritization by machine learning have identified known as well as new genetic markers which might have direct or indirect involvement in several neurological disorders. Important gene hubs have also been identified that provide an evidence for shared molecular pathways in the neurological disease network.

  5. MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.

    Science.gov (United States)

    Fang, Chao; Shang, Yi; Xu, Dong

    2018-05-01

    Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception-inside-inception (Deep3I) network, is proposed for protein secondary structure prediction and implemented as a software tool MUFOLD-SS. The input to MUFOLD-SS is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio-chemical properties of amino acids, PSI-BLAST profile, and HHBlits profile. MUFOLD-SS is composed of a sequence of nested inception modules and maps the input matrix to either eight states or three states of secondary structures. The architecture of MUFOLD-SS enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, MUFOLD-SS outperformed the best existing methods and other deep neural networks significantly. MUFold-SS can be downloaded from http://dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html. © 2018 Wiley Periodicals, Inc.

  6. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.

    Science.gov (United States)

    Spencer, Matt; Eickholt, Jesse; Jianlin Cheng

    2015-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.

  7. Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures.

    Science.gov (United States)

    Huang, Liang-Chin; Wu, Xiaogang; Chen, Jake Y

    2013-01-01

    The prediction of adverse drug reactions (ADRs) has become increasingly important, due to the rising concern on serious ADRs that can cause drugs to fail to reach or stay in the market. We proposed a framework for predicting ADR profiles by integrating protein-protein interaction (PPI) networks with drug structures. We compared ADR prediction performances over 18 ADR categories through four feature groups-only drug targets, drug targets with PPI networks, drug structures, and drug targets with PPI networks plus drug structures. The results showed that the integration of PPI networks and drug structures can significantly improve the ADR prediction performance. The median AUC values for the four groups were 0.59, 0.61, 0.65, and 0.70. We used the protein features in the best two models, "Cardiac disorders" (median-AUC: 0.82) and "Psychiatric disorders" (median-AUC: 0.76), to build ADR-specific PPI networks with literature supports. For validation, we examined 30 drugs withdrawn from the U.S. market to see if our approach can predict their ADR profiles and explain why they were withdrawn. Except for three drugs having ADRs in the categories we did not predict, 25 out of 27 withdrawn drugs (92.6%) having severe ADRs were successfully predicted by our approach. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. MetaGO: Predicting Gene Ontology of Non-homologous Proteins Through Low-Resolution Protein Structure Prediction and Protein-Protein Network Mapping.

    Science.gov (United States)

    Zhang, Chengxin; Zheng, Wei; Freddolino, Peter L; Zhang, Yang

    2018-03-10

    Homology-based transferal remains the major approach to computational protein function annotations, but it becomes increasingly unreliable when the sequence identity between query and template decreases below 30%. We propose a novel pipeline, MetaGO, to deduce Gene Ontology attributes of proteins by combining sequence homology-based annotation with low-resolution structure prediction and comparison, and partner's homology-based protein-protein network mapping. The pipeline was tested on a large-scale set of 1000 non-redundant proteins from the CAFA3 experiment. Under the stringent benchmark conditions where templates with >30% sequence identity to the query are excluded, MetaGO achieves average F-measures of 0.487, 0.408, and 0.598, for Molecular Function, Biological Process, and Cellular Component, respectively, which are significantly higher than those achieved by other state-of-the-art function annotations methods. Detailed data analysis shows that the major advantage of the MetaGO lies in the new functional homolog detections from partner's homology-based network mapping and structure-based local and global structure alignments, the confidence scores of which can be optimally combined through logistic regression. These data demonstrate the power of using a hybrid model incorporating protein structure and interaction networks to deduce new functional insights beyond traditional sequence homology-based referrals, especially for proteins that lack homologous function templates. The MetaGO pipeline is available at http://zhanglab.ccmb.med.umich.edu/MetaGO/. Copyright © 2018. Published by Elsevier Ltd.

  9. Knowledge base and neural network approach for protein secondary structure prediction.

    Science.gov (United States)

    Patel, Maulika S; Mazumdar, Himanshu S

    2014-11-21

    Protein structure prediction is of great relevance given the abundant genomic and proteomic data generated by the genome sequencing projects. Protein secondary structure prediction is addressed as a sub task in determining the protein tertiary structure and function. In this paper, a novel algorithm, KB-PROSSP-NN, which is a combination of knowledge base and modeling of the exceptions in the knowledge base using neural networks for protein secondary structure prediction (PSSP), is proposed. The knowledge base is derived from a proteomic sequence-structure database and consists of the statistics of association between the 5-residue words and corresponding secondary structure. The predicted results obtained using knowledge base are refined with a Backpropogation neural network algorithm. Neural net models the exceptions of the knowledge base. The Q3 accuracy of 90% and 82% is achieved on the RS126 and CB396 test sets respectively which suggest improvement over existing state of art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Protein secondary structure prediction using modular reciprocal bidirectional recurrent neural networks.

    Science.gov (United States)

    Babaei, Sepideh; Geranmayeh, Amir; Seyyedsalehi, Seyyed Ali

    2010-12-01

    The supervised learning of recurrent neural networks well-suited for prediction of protein secondary structures from the underlying amino acids sequence is studied. Modular reciprocal recurrent neural networks (MRR-NN) are proposed to model the strong correlations between adjacent secondary structure elements. Besides, a multilayer bidirectional recurrent neural network (MBR-NN) is introduced to capture the long-range intramolecular interactions between amino acids in formation of the secondary structure. The final modular prediction system is devised based on the interactive integration of the MRR-NN and the MBR-NN structures to arbitrarily engage the neighboring effects of the secondary structure types concurrent with memorizing the sequential dependencies of amino acids along the protein chain. The advanced combined network augments the percentage accuracy (Q₃) to 79.36% and boosts the segment overlap (SOV) up to 70.09% when tested on the PSIPRED dataset in three-fold cross-validation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. The Relationship Between Low-Frequency Motions and Community Structure of Residue Network in Protein Molecules.

    Science.gov (United States)

    Sun, Weitao

    2018-01-01

    The global shape of a protein molecule is believed to be dominant in determining low-frequency deformational motions. However, how structure dynamics relies on residue interactions remains largely unknown. The global residue community structure and the local residue interactions are two important coexisting factors imposing significant effects on low-frequency normal modes. In this work, an algorithm for community structure partition is proposed by integrating Miyazawa-Jernigan empirical potential energy as edge weight. A sensitivity parameter is defined to measure the effect of local residue interaction on low-frequency movement. We show that community structure is a more fundamental feature of residue contact networks. Moreover, we surprisingly find that low-frequency normal mode eigenvectors are sensitive to some local critical residue interaction pairs (CRIPs). A fair amount of CRIPs act as bridges and hold distributed structure components into a unified tertiary structure by bonding nearby communities. Community structure analysis and CRIP detection of 116 catalytic proteins reveal that breaking up of a CRIP can cause low-frequency allosteric movement of a residue at the far side of protein structure. The results imply that community structure and CRIP may be the structural basis for low-frequency motions.

  12. Quantitative analysis of the network structure that underlines the transitioning in mechanical responses of pea protein gels

    NARCIS (Netherlands)

    Munialo, C.D.; Linden, van der E.; Ako, K.; Jongh, de H.H.J.

    2015-01-01

    The objective of this study was to analyze quantitatively the network structure that underlines the transitioning in the mechanical responses of heat-induced pea protein gels. To achieve this, gels were prepared from pea proteins at varying pHs from 3.0 to 4.2 at a fixed 100 mg/mL protein

  13. CNNH_PSS: protein 8-class secondary structure prediction by convolutional neural network with highway.

    Science.gov (United States)

    Zhou, Jiyun; Wang, Hongpeng; Zhao, Zhishan; Xu, Ruifeng; Lu, Qin

    2018-05-08

    Protein secondary structure is the three dimensional form of local segments of proteins and its prediction is an important problem in protein tertiary structure prediction. Developing computational approaches for protein secondary structure prediction is becoming increasingly urgent. We present a novel deep learning based model, referred to as CNNH_PSS, by using multi-scale CNN with highway. In CNNH_PSS, any two neighbor convolutional layers have a highway to deliver information from current layer to the output of the next one to keep local contexts. As lower layers extract local context while higher layers extract long-range interdependencies, the highways between neighbor layers allow CNNH_PSS to have ability to extract both local contexts and long-range interdependencies. We evaluate CNNH_PSS on two commonly used datasets: CB6133 and CB513. CNNH_PSS outperforms the multi-scale CNN without highway by at least 0.010 Q8 accuracy and also performs better than CNF, DeepCNF and SSpro8, which cannot extract long-range interdependencies, by at least 0.020 Q8 accuracy, demonstrating that both local contexts and long-range interdependencies are indeed useful for prediction. Furthermore, CNNH_PSS also performs better than GSM and DCRNN which need extra complex model to extract long-range interdependencies. It demonstrates that CNNH_PSS not only cost less computer resource, but also achieves better predicting performance. CNNH_PSS have ability to extracts both local contexts and long-range interdependencies by combing multi-scale CNN and highway network. The evaluations on common datasets and comparisons with state-of-the-art methods indicate that CNNH_PSS is an useful and efficient tool for protein secondary structure prediction.

  14. The organisational structure of protein networks: revisiting the centrality-lethality hypothesis.

    Science.gov (United States)

    Raman, Karthik; Damaraju, Nandita; Joshi, Govind Krishna

    2014-03-01

    Protein networks, describing physical interactions as well as functional associations between proteins, have been unravelled for many organisms in the recent past. Databases such as the STRING provide excellent resources for the analysis of such networks. In this contribution, we revisit the organisation of protein networks, particularly the centrality-lethality hypothesis, which hypothesises that nodes with higher centrality in a network are more likely to produce lethal phenotypes on removal, compared to nodes with lower centrality. We consider the protein networks of a diverse set of 20 organisms, with essentiality information available in the Database of Essential Genes and assess the relationship between centrality measures and lethality. For each of these organisms, we obtained networks of high-confidence interactions from the STRING database, and computed network parameters such as degree, betweenness centrality, closeness centrality and pairwise disconnectivity indices. We observe that the networks considered here are predominantly disassortative. Further, we observe that essential nodes in a network have a significantly higher average degree and betweenness centrality, compared to the network average. Most previous studies have evaluated the centrality-lethality hypothesis for Saccharomyces cerevisiae and Escherichia coli; we here observe that the centrality-lethality hypothesis hold goods for a large number of organisms, with certain limitations. Betweenness centrality may also be a useful measure to identify essential nodes, but measures like closeness centrality and pairwise disconnectivity are not significantly higher for essential nodes.

  15. Using co-occurrence network structure to extract synonymous gene and protein names from MEDLINE abstracts

    Directory of Open Access Journals (Sweden)

    Spackman K

    2005-04-01

    Full Text Available Abstract Background Text-mining can assist biomedical researchers in reducing information overload by extracting useful knowledge from large collections of text. We developed a novel text-mining method based on analyzing the network structure created by symbol co-occurrences as a way to extend the capabilities of knowledge extraction. The method was applied to the task of automatic gene and protein name synonym extraction. Results Performance was measured on a test set consisting of about 50,000 abstracts from one year of MEDLINE. Synonyms retrieved from curated genomics databases were used as a gold standard. The system obtained a maximum F-score of 22.21% (23.18% precision and 21.36% recall, with high efficiency in the use of seed pairs. Conclusion The method performs comparably with other studied methods, does not rely on sophisticated named-entity recognition, and requires little initial seed knowledge.

  16. Accurate protein structure annotation through competitive diffusion of enzymatic functions over a network of local evolutionary similarities.

    Directory of Open Access Journals (Sweden)

    Eric Venner

    Full Text Available High-throughput Structural Genomics yields many new protein structures without known molecular function. This study aims to uncover these missing annotations by globally comparing select functional residues across the structural proteome. First, Evolutionary Trace Annotation, or ETA, identifies which proteins have local evolutionary and structural features in common; next, these proteins are linked together into a proteomic network of ETA similarities; then, starting from proteins with known functions, competing functional labels diffuse link-by-link over the entire network. Every node is thus assigned a likelihood z-score for every function, and the most significant one at each node wins and defines its annotation. In high-throughput controls, this competitive diffusion process recovered enzyme activity annotations with 99% and 97% accuracy at half-coverage for the third and fourth Enzyme Commission (EC levels, respectively. This corresponds to false positive rates 4-fold lower than nearest-neighbor and 5-fold lower than sequence-based annotations. In practice, experimental validation of the predicted carboxylesterase activity in a protein from Staphylococcus aureus illustrated the effectiveness of this approach in the context of an increasingly drug-resistant microbe. This study further links molecular function to a small number of evolutionarily important residues recognizable by Evolutionary Tracing and it points to the specificity and sensitivity of functional annotation by competitive global network diffusion. A web server is at http://mammoth.bcm.tmc.edu/networks.

  17. Analysis of core-periphery organization in protein contact networks reveals groups of structurally and functionally critical residues.

    Science.gov (United States)

    Isaac, Arnold Emerson; Sinha, Sitabhra

    2015-10-01

    The representation of proteins as networks of interacting amino acids, referred to as protein contact networks (PCN), and their subsequent analyses using graph theoretic tools, can provide novel insights into the key functional roles of specific groups of residues. We have characterized the networks corresponding to the native states of 66 proteins (belonging to different families) in terms of their core-periphery organization. The resulting hierarchical classification of the amino acid constituents of a protein arranges the residues into successive layers - having higher core order - with increasing connection density, ranging from a sparsely linked periphery to a densely intra-connected core (distinct from the earlier concept of protein core defined in terms of the three-dimensional geometry of the native state, which has least solvent accessibility). Our results show that residues in the inner cores are more conserved than those at the periphery. Underlining the functional importance of the network core, we see that the receptor sites for known ligand molecules of most proteins occur in the innermost core. Furthermore, the association of residues with structural pockets and cavities in binding or active sites increases with the core order. From mutation sensitivity analysis, we show that the probability of deleterious or intolerant mutations also increases with the core order. We also show that stabilization centre residues are in the innermost cores, suggesting that the network core is critically important in maintaining the structural stability of the protein. A publicly available Web resource for performing core-periphery analysis of any protein whose native state is known has been made available by us at http://www.imsc.res.in/ ~sitabhra/proteinKcore/index.html.

  18. Integration of Structural Dynamics and Molecular Evolution via Protein Interaction Networks: A New Era in Genomic Medicine

    Science.gov (United States)

    Kumar, Avishek; Butler, Brandon M.; Kumar, Sudhir; Ozkan, S. Banu

    2016-01-01

    Summary Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. PMID:26684487

  19. Integration of structural dynamics and molecular evolution via protein interaction networks: a new era in genomic medicine.

    Science.gov (United States)

    Kumar, Avishek; Butler, Brandon M; Kumar, Sudhir; Ozkan, S Banu

    2015-12-01

    Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Fascin- and α-Actinin-Bundled Networks Contain Intrinsic Structural Features that Drive Protein Sorting.

    Science.gov (United States)

    Winkelman, Jonathan D; Suarez, Cristian; Hocky, Glen M; Harker, Alyssa J; Morganthaler, Alisha N; Christensen, Jenna R; Voth, Gregory A; Bartles, James R; Kovar, David R

    2016-10-24

    Cells assemble and maintain functionally distinct actin cytoskeleton networks with various actin filament organizations and dynamics through the coordinated action of different sets of actin-binding proteins. The biochemical and functional properties of diverse actin-binding proteins, both alone and in combination, have been increasingly well studied. Conversely, how different sets of actin-binding proteins properly sort to distinct actin filament networks in the first place is not nearly as well understood. Actin-binding protein sorting is critical for the self-organization of diverse dynamic actin cytoskeleton networks within a common cytoplasm. Using in vitro reconstitution techniques including biomimetic assays and single-molecule multi-color total internal reflection fluorescence microscopy, we discovered that sorting of the prominent actin-bundling proteins fascin and α-actinin to distinct networks is an intrinsic behavior, free of complicated cellular signaling cascades. When mixed, fascin and α-actinin mutually exclude each other by promoting their own recruitment and inhibiting recruitment of the other, resulting in the formation of distinct fascin- or α-actinin-bundled domains. Subdiffraction-resolution light microscopy and negative-staining electron microscopy revealed that fascin domains are densely packed, whereas α-actinin domains consist of widely spaced parallel actin filaments. Importantly, other actin-binding proteins such as fimbrin and espin show high specificity between these two bundle types within the same reaction. Here we directly observe that fascin and α-actinin intrinsically segregate to discrete bundled domains that are specifically recognized by other actin-binding proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Prediction of protein structural features by use of artificial neural networks

    DEFF Research Database (Denmark)

    Petersen, Bent

    . There is a huge over-representation of DNA sequences when comparing the amount of experimentally verified proteins with the amount of DNA sequences. The academic and industrial research community therefore has to rely on structure predictions instead of waiting for the time consuming experimentally determined...

  2. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    Science.gov (United States)

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-05-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.

  3. Structural alterations in rat liver proteins due to streptozotocin-induced diabetes and the recovery effect of selenium: Fourier transform infrared microspectroscopy and neural network study

    Science.gov (United States)

    Bozkurt, Ozlem; Haman Bayari, Sevgi; Severcan, Mete; Krafft, Christoph; Popp, Jürgen; Severcan, Feride

    2012-07-01

    The relation between protein structural alterations and tissue dysfunction is a major concern as protein fibrillation and/or aggregation due to structural alterations has been reported in many disease states. In the current study, Fourier transform infrared microspectroscopic imaging has been used to investigate diabetes-induced changes on protein secondary structure and macromolecular content in streptozotocin-induced diabetic rat liver. Protein secondary structural alterations were predicted using neural network approach utilizing the amide I region. Moreover, the role of selenium in the recovery of diabetes-induced alterations on macromolecular content and protein secondary structure was also studied. The results revealed that diabetes induced a decrease in lipid to protein and glycogen to protein ratios in diabetic livers. Significant alterations in protein secondary structure were observed with a decrease in α-helical and an increase in β-sheet content. Both doses of selenium restored diabetes-induced changes in lipid to protein and glycogen to protein ratios. However, low-dose selenium supplementation was not sufficient to recover the effects of diabetes on protein secondary structure, while a higher dose of selenium fully restored diabetes-induced alterations in protein structure.

  4. Protein Annotation from Protein Interaction Networks and Gene Ontology

    OpenAIRE

    Nguyen, Cao D.; Gardiner, Katheleen J.; Cios, Krzysztof J.

    2011-01-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precis...

  5. Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications.

    Directory of Open Access Journals (Sweden)

    Kristin Blacklock

    2014-06-01

    Full Text Available A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple

  6. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  7. On the assessments of arabinoxylan localization and enzymatic modifications for enhanced protein networking and its structural impact on rye dough and bread.

    Science.gov (United States)

    Döring, Clemens; Hussein, Mohamed A; Jekle, Mario; Becker, Thomas

    2017-08-15

    For rye dough structure, it is hypothesised that the presence of arabinoxylan hinders the proteins from forming a coherent network. This hypothesis was investigated using fluorescent-stained antibodies that bind to the arabinoxylan chains. Image analysis proves that the arabinoxylan surrounds the proteins, negatively affecting protein networking. Further, it is hypothesised that the dosing of xylanase and transglutaminase has a positive impact on rye dough and bread characteristics; the findings in this study evidenced that this increases the protein network by up to 38% accompanied by a higher volume rise of 10.67%, compared to standard rye dough. These outcomes combine a product-oriented and physiochemical design of a recipe, targeting structural and functional relationships, and demonstrate a successful methodology for enhancing rye bread quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Pythoscape: A framework for generation of large protein similarity networks

    OpenAIRE

    Babbitt, Patricia; Barber, AE; Babbitt, PC

    2012-01-01

    Pythoscape is a framework implemented in Python for processing large protein similarity networks for visualization in other software packages. Protein similarity networks are graphical representations of sequence, structural and other similarities among pr

  9. INTEGRATING GENETIC AND STRUCTURAL DATA ON HUMAN PROTEIN KINOME IN NETWORK-BASED MODELING OF KINASE SENSITIVITIES AND RESISTANCE TO TARGETED AND PERSONALIZED ANTICANCER DRUGS.

    Science.gov (United States)

    Verkhivker, Gennady M

    2016-01-01

    The human protein kinome presents one of the largest protein families that orchestrate functional processes in complex cellular networks, and when perturbed, can cause various cancers. The abundance and diversity of genetic, structural, and biochemical data underlies the complexity of mechanisms by which targeted and personalized drugs can combat mutational profiles in protein kinases. Coupled with the evolution of system biology approaches, genomic and proteomic technologies are rapidly identifying and charactering novel resistance mechanisms with the goal to inform rationale design of personalized kinase drugs. Integration of experimental and computational approaches can help to bring these data into a unified conceptual framework and develop robust models for predicting the clinical drug resistance. In the current study, we employ a battery of synergistic computational approaches that integrate genetic, evolutionary, biochemical, and structural data to characterize the effect of cancer mutations in protein kinases. We provide a detailed structural classification and analysis of genetic signatures associated with oncogenic mutations. By integrating genetic and structural data, we employ network modeling to dissect mechanisms of kinase drug sensitivities to oncogenic EGFR mutations. Using biophysical simulations and analysis of protein structure networks, we show that conformational-specific drug binding of Lapatinib may elicit resistant mutations in the EGFR kinase that are linked with the ligand-mediated changes in the residue interaction networks and global network properties of key residues that are responsible for structural stability of specific functional states. A strong network dependency on high centrality residues in the conformation-specific Lapatinib-EGFR complex may explain vulnerability of drug binding to a broad spectrum of mutations and the emergence of drug resistance. Our study offers a systems-based perspective on drug design by unravelling

  10. Protein Networks in Alzheimer's Disease

    DEFF Research Database (Denmark)

    Carlsen, Eva Meier; Rasmussen, Rune

    2017-01-01

    Overlap of RNA and protein networks reveals glia cells as key players for the development of symptomatic Alzheimer’s disease in humans......Overlap of RNA and protein networks reveals glia cells as key players for the development of symptomatic Alzheimer’s disease in humans...

  11. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

  12. Spectral affinity in protein networks.

    Science.gov (United States)

    Voevodski, Konstantin; Teng, Shang-Hua; Xia, Yu

    2009-11-29

    Protein-protein interaction (PPI) networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to quickly find nodes closest to a queried vertex in any protein

  13. Spectral affinity in protein networks

    Directory of Open Access Journals (Sweden)

    Teng Shang-Hua

    2009-11-01

    Full Text Available Abstract Background Protein-protein interaction (PPI networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. Results We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. Conclusion We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to

  14. LECTINPred: web Server that Uses Complex Networks of Protein Structure for Prediction of Lectins with Potential Use as Cancer Biomarkers or in Parasite Vaccine Design.

    Science.gov (United States)

    Munteanu, Cristian R; Pedreira, Nieves; Dorado, Julián; Pazos, Alejandro; Pérez-Montoto, Lázaro G; Ubeira, Florencio M; González-Díaz, Humberto

    2014-04-01

    Lectins (Ls) play an important role in many diseases such as different types of cancer, parasitic infections and other diseases. Interestingly, the Protein Data Bank (PDB) contains +3000 protein 3D structures with unknown function. Thus, we can in principle, discover new Ls mining non-annotated structures from PDB or other sources. However, there are no general models to predict new biologically relevant Ls based on 3D chemical structures. We used the MARCH-INSIDE software to calculate the Markov-Shannon 3D electrostatic entropy parameters for the complex networks of protein structure of 2200 different protein 3D structures, including 1200 Ls. We have performed a Linear Discriminant Analysis (LDA) using these parameters as inputs in order to seek a new Quantitative Structure-Activity Relationship (QSAR) model, which is able to discriminate 3D structure of Ls from other proteins. We implemented this predictor in the web server named LECTINPred, freely available at http://bio-aims.udc.es/LECTINPred.php. This web server showed the following goodness-of-fit statistics: Sensitivity=96.7 % (for Ls), Specificity=87.6 % (non-active proteins), and Accuracy=92.5 % (for all proteins), considering altogether both the training and external prediction series. In mode 2, users can carry out an automatic retrieval of protein structures from PDB. We illustrated the use of this server, in operation mode 1, performing a data mining of PDB. We predicted Ls scores for +2000 proteins with unknown function and selected the top-scored ones as possible lectins. In operation mode 2, LECTINPred can also upload 3D structural models generated with structure-prediction tools like LOMETS or PHYRE2. The new Ls are expected to be of relevance as cancer biomarkers or useful in parasite vaccine design. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Protein annotation from protein interaction networks and Gene Ontology.

    Science.gov (United States)

    Nguyen, Cao D; Gardiner, Katheleen J; Cios, Krzysztof J

    2011-10-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precision and 60% recall versus 45% and 26% for Majority and 24% and 61% for χ²-statistics, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Advanced Polymer Network Structures

    Science.gov (United States)

    2016-02-01

    attractive interaction (n = 2.0) and a neutral interaction (n = 1.0); n is equal to unity for self-interactions among the monomers of first network and...... Network Structures by Robert Lambeth, Joseph Lenhart, and Tim Sirk Weapons and Materials Research Directorate, ARL Yelena Sliozberg TKC Global

  17. Comparative Study of Elastic Network Model and Protein Contact Network for Protein Complexes: The Hemoglobin Case

    Directory of Open Access Journals (Sweden)

    Guang Hu

    2017-01-01

    Full Text Available The overall topology and interfacial interactions play key roles in understanding structural and functional principles of protein complexes. Elastic Network Model (ENM and Protein Contact Network (PCN are two widely used methods for high throughput investigation of structures and interactions within protein complexes. In this work, the comparative analysis of ENM and PCN relative to hemoglobin (Hb was taken as case study. We examine four types of structural and dynamical paradigms, namely, conformational change between different states of Hbs, modular analysis, allosteric mechanisms studies, and interface characterization of an Hb. The comparative study shows that ENM has an advantage in studying dynamical properties and protein-protein interfaces, while PCN is better for describing protein structures quantitatively both from local and from global levels. We suggest that the integration of ENM and PCN would give a potential but powerful tool in structural systems biology.

  18. Construction of ontology augmented networks for protein complex prediction.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian

    2013-01-01

    Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of protein-protein interaction networks, and largely ignore the gene ontology annotation information. In this article, we constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively unified the topological structure of protein-protein interaction networks and the similarity of gene ontology annotations into unified distance measures. After constructing ontology augmented networks, a novel method (clustering based on ontology augmented networks) was proposed to predict protein complexes, which was capable of taking into account the topological structure of the protein-protein interaction network, as well as the similarity of gene ontology annotations. Our method was applied to two different yeast protein-protein interaction datasets and predicted many well-known complexes. The experimental results showed that (i) ontology augmented networks and the unified distance measure can effectively combine the structure closeness and gene ontology annotation similarity; (ii) our method is valuable in predicting protein complexes and has higher F1 and accuracy compared to other competing methods.

  19. Learning and structure of neuronal networks

    Indian Academy of Sciences (India)

    structures, protein–protein interaction networks, social interactions, the Internet, and so on can be described by complex networks [1–5]. Recent developments in the understanding of complex networks has led to deeper insights about their origin and other properties [1–5]. One common realization that emerges from these ...

  20. Evolving production network structures

    DEFF Research Database (Denmark)

    Grunow, Martin; Gunther, H.O.; Burdenik, H.

    2007-01-01

    When deciding about future production network configurations, the current structures have to be taken into account. Further, core issues such as the maturity of the products and the capacity requirements for test runs and ramp-ups must be incorporated. Our approach is based on optimization...... modelling and assigns products and capacity expansions to production sites under the above constraints. It also considers the production complexity at the individual sites and the flexibility of the network. Our implementation results for a large manufacturing network reveal substantial possible cost...

  1. Structures composing protein domains.

    Science.gov (United States)

    Kubrycht, Jaroslav; Sigler, Karel; Souček, Pavel; Hudeček, Jiří

    2013-08-01

    This review summarizes available data concerning intradomain structures (IS) such as functionally important amino acid residues, short linear motifs, conserved or disordered regions, peptide repeats, broadly occurring secondary structures or folds, etc. IS form structural features (units or elements) necessary for interactions with proteins or non-peptidic ligands, enzyme reactions and some structural properties of proteins. These features have often been related to a single structural level (e.g. primary structure) mostly requiring certain structural context of other levels (e.g. secondary structures or supersecondary folds) as follows also from some examples reported or demonstrated here. In addition, we deal with some functionally important dynamic properties of IS (e.g. flexibility and different forms of accessibility), and more special dynamic changes of IS during enzyme reactions and allosteric regulation. Selected notes concern also some experimental methods, still more necessary tools of bioinformatic processing and clinically interesting relationships. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Network Compression as a Quality Measure for Protein Interaction Networks

    Science.gov (United States)

    Royer, Loic; Reimann, Matthias; Stewart, A. Francis; Schroeder, Michael

    2012-01-01

    With the advent of large-scale protein interaction studies, there is much debate about data quality. Can different noise levels in the measurements be assessed by analyzing network structure? Because proteomic regulation is inherently co-operative, modular and redundant, it is inherently compressible when represented as a network. Here we propose that network compression can be used to compare false positive and false negative noise levels in protein interaction networks. We validate this hypothesis by first confirming the detrimental effect of false positives and false negatives. Second, we show that gold standard networks are more compressible. Third, we show that compressibility correlates with co-expression, co-localization, and shared function. Fourth, we also observe correlation with better protein tagging methods, physiological expression in contrast to over-expression of tagged proteins, and smart pooling approaches for yeast two-hybrid screens. Overall, this new measure is a proxy for both sensitivity and specificity and gives complementary information to standard measures such as average degree and clustering coefficients. PMID:22719828

  3. Patchworking Network Structures

    DEFF Research Database (Denmark)

    Norus, Jesper

    2004-01-01

    analyzes fourdifferent managerial strategies of how to create network structures to deal with theinterfaces between industry, university and public institutions. The research-orientedstrategy, the incubator strategy, the industrial-partnering strategy, and the policyorientedstrategy. The research...... groups has been treated as a contingent factor.However, little attention has been given to the managerial efforts that entrepreneurshave make to establish the fit between small firms, university research, and publicpolicies such as regulatory policies and R&D policies through network-type structures.......New biotechnology organizations are perfect objects to study these relationshipsbecause new biotechnologies and techniques predominantly come from the universitysector (Kenney, 1986; Yoxen; 1984; Zucker & Darby, 1997; Robbins-Roth, 2001).From the perspective of the small biotechnology firms (SBFs,) this paper...

  4. A conserved mammalian protein interaction network.

    Directory of Open Access Journals (Sweden)

    Åsa Pérez-Bercoff

    Full Text Available Physical interactions between proteins mediate a variety of biological functions, including signal transduction, physical structuring of the cell and regulation. While extensive catalogs of such interactions are known from model organisms, their evolutionary histories are difficult to study given the lack of interaction data from phylogenetic outgroups. Using phylogenomic approaches, we infer a upper bound on the time of origin for a large set of human protein-protein interactions, showing that most such interactions appear relatively ancient, dating no later than the radiation of placental mammals. By analyzing paired alignments of orthologous and putatively interacting protein-coding genes from eight mammals, we find evidence for weak but significant co-evolution, as measured by relative selective constraint, between pairs of genes with interacting proteins. However, we find no strong evidence for shared instances of directional selection within an interacting pair. Finally, we use a network approach to show that the distribution of selective constraint across the protein interaction network is non-random, with a clear tendency for interacting proteins to share similar selective constraints. Collectively, the results suggest that, on the whole, protein interactions in mammals are under selective constraint, presumably due to their functional roles.

  5. Structural constraints in complex networks

    International Nuclear Information System (INIS)

    Zhou, S; Mondragon, R J

    2007-01-01

    We present a link rewiring mechanism to produce surrogates of a network where both the degree distribution and the rich-club connectivity are preserved. We consider three real networks, the autonomous system (AS)-Internet, protein interaction and scientific collaboration. We show that for a given degree distribution, the rich-club connectivity is sensitive to the degree-degree correlation, and on the other hand the degree-degree correlation is constrained by the rich-club connectivity. In particular, in the case of the Internet, the assortative coefficient is always negative and a minor change in its value can reverse the network's rich-club structure completely; while fixing the degree distribution and the rich-club connectivity restricts the assortative coefficient to such a narrow range, that a reasonable model of the Internet can be produced by considering mainly the degree distribution and the rich-club connectivity. We also comment on the suitability of using the maximal random network as a null model to assess the rich-club connectivity in real networks

  6. A tensegrity model for hydrogen bond networks in proteins

    OpenAIRE

    Bywater, Robert P.

    2017-01-01

    Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger − c...

  7. [Network structures in biological systems].

    Science.gov (United States)

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  8. vhv supply networks, problems of network structure

    Energy Technology Data Exchange (ETDEWEB)

    Raimbault, J

    1966-04-01

    The present and future power requirements of the Paris area and the structure of the existing networks are discussed. The various limitations that will have to be allowed for to lay down the structure of a regional transmission network leading in the power of the large national transmission network to within the Paris built up area are described. The theoretical solution that has been adopted, and the features of its final achievement, which is planned for about the year 2000, and the intermediate stages are given. The problem of the structure of the National Power Transmission network which is to supply the regional network was studied. To solve this problem, a 730 kV voltage network will have to be introduced.

  9. DETECTION OF TOPOLOGICAL PATTERNS IN PROTEIN NETWORKS.

    Energy Technology Data Exchange (ETDEWEB)

    MASLOV,S.SNEPPEN,K.

    2003-11-17

    Complex networks appear in biology on many different levels: (1) All biochemical reactions taking place in a single cell constitute its metabolic network, where nodes are individual metabolites, and edges are metabolic reactions converting them to each other. (2) Virtually every one of these reactions is catalyzed by an enzyme and the specificity of this catalytic function is ensured by the key and lock principle of its physical interaction with the substrate. Often the functional enzyme is formed by several mutually interacting proteins. Thus the structure of the metabolic network is shaped by the network of physical interactions of cell's proteins with their substrates and each other. (3) The abundance and the level of activity of each of the proteins in the physical interaction network in turn is controlled by the regulatory network of the cell. Such regulatory network includes all of the multiple mechanisms in which proteins in the cell control each other including transcriptional and translational regulation, regulation of mRNA editing and its transport out of the nucleus, specific targeting of individual proteins for degradation, modification of their activity e.g. by phosphorylation/dephosphorylation or allosteric regulation, etc. To get some idea about the complexity and interconnectedness of protein-protein regulations in baker's yeast Saccharomyces Cerevisiae in Fig. 1 we show a part of the regulatory network corresponding to positive or negative regulations that regulatory proteins exert on each other. (4) On yet higher level individual cells of a multicellular organism exchange signals with each other. This gives rise to several new networks such as e.g. nervous, hormonal, and immune systems of animals. The intercellular signaling network stages the development of a multicellular organism from the fertilized egg. (5) Finally, on the grandest scale, the interactions between individual species in ecosystems determine their food webs. An

  10. Protein Structure Prediction by Protein Threading

    Science.gov (United States)

    Xu, Ying; Liu, Zhijie; Cai, Liming; Xu, Dong

    The seminal work of Bowie, Lüthy, and Eisenberg (Bowie et al., 1991) on "the inverse protein folding problem" laid the foundation of protein structure prediction by protein threading. By using simple measures for fitness of different amino acid types to local structural environments defined in terms of solvent accessibility and protein secondary structure, the authors derived a simple and yet profoundly novel approach to assessing if a protein sequence fits well with a given protein structural fold. Their follow-up work (Elofsson et al., 1996; Fischer and Eisenberg, 1996; Fischer et al., 1996a,b) and the work by Jones, Taylor, and Thornton (Jones et al., 1992) on protein fold recognition led to the development of a new brand of powerful tools for protein structure prediction, which we now term "protein threading." These computational tools have played a key role in extending the utility of all the experimentally solved structures by X-ray crystallography and nuclear magnetic resonance (NMR), providing structural models and functional predictions for many of the proteins encoded in the hundreds of genomes that have been sequenced up to now.

  11. Pythoscape: a framework for generation of large protein similarity networks.

    Science.gov (United States)

    Barber, Alan E; Babbitt, Patricia C

    2012-11-01

    Pythoscape is a framework implemented in Python for processing large protein similarity networks for visualization in other software packages. Protein similarity networks are graphical representations of sequence, structural and other similarities among proteins for which pairwise all-by-all similarity connections have been calculated. Mapping of biological and other information to network nodes or edges enables hypothesis creation about sequence-structure-function relationships across sets of related proteins. Pythoscape provides several options to calculate pairwise similarities for input sequences or structures, applies filters to network edges and defines sets of similar nodes and their associated data as single nodes (termed representative nodes) for compression of network information and output data or formatted files for visualization.

  12. CNNcon: improved protein contact maps prediction using cascaded neural networks.

    Directory of Open Access Journals (Sweden)

    Wang Ding

    Full Text Available BACKGROUNDS: Despite continuing progress in X-ray crystallography and high-field NMR spectroscopy for determination of three-dimensional protein structures, the number of unsolved and newly discovered sequences grows much faster than that of determined structures. Protein modeling methods can possibly bridge this huge sequence-structure gap with the development of computational science. A grand challenging problem is to predict three-dimensional protein structure from its primary structure (residues sequence alone. However, predicting residue contact maps is a crucial and promising intermediate step towards final three-dimensional structure prediction. Better predictions of local and non-local contacts between residues can transform protein sequence alignment to structure alignment, which can finally improve template based three-dimensional protein structure predictors greatly. METHODS: CNNcon, an improved multiple neural networks based contact map predictor using six sub-networks and one final cascade-network, was developed in this paper. Both the sub-networks and the final cascade-network were trained and tested with their corresponding data sets. While for testing, the target protein was first coded and then input to its corresponding sub-networks for prediction. After that, the intermediate results were input to the cascade-network to finish the final prediction. RESULTS: The CNNcon can accurately predict 58.86% in average of contacts at a distance cutoff of 8 Å for proteins with lengths ranging from 51 to 450. The comparison results show that the present method performs better than the compared state-of-the-art predictors. Particularly, the prediction accuracy keeps steady with the increase of protein sequence length. It indicates that the CNNcon overcomes the thin density problem, with which other current predictors have trouble. This advantage makes the method valuable to the prediction of long length proteins. As a result, the effective

  13. Exploring biological network structure with clustered random networks

    Directory of Open Access Journals (Sweden)

    Bansal Shweta

    2009-12-01

    Full Text Available Abstract Background Complex biological systems are often modeled as networks of interacting units. Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical processes that shape and traverse these systems. The degrees of nodes (numbers of interactions and the extent of clustering (the tendency for a set of three nodes to be interconnected are two of many well-studied network properties that can fundamentally shape a system. Disentangling the interdependent effects of the various network properties, however, can be difficult. Simple network models can help us quantify the structure of empirical networked systems and understand the impact of various topological properties on dynamics. Results Here we develop and implement a new Markov chain simulation algorithm to generate simple, connected random graphs that have a specified degree sequence and level of clustering, but are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered Random Networks provides the generation of random graphs optimized according to a local or global, and relative or absolute measure of clustering. We compare our algorithm to other similar methods and show that ours more successfully produces desired network characteristics. Finding appropriate null models is crucial in bioinformatics research, and is often difficult, particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can serve as random controls when investigating the impacts of complex network features beyond the byproduct of degree and clustering in empirical networks. Conclusion ClustRNet generates ensembles of graphs of specified edge structure and clustering. These graphs allow for systematic study of the impacts of connectivity and redundancies on network function and dynamics. This process is a key step in

  14. In silico modeling of the yeast protein and protein family interaction network

    Science.gov (United States)

    Goh, K.-I.; Kahng, B.; Kim, D.

    2004-03-01

    Understanding of how protein interaction networks of living organisms have evolved or are organized can be the first stepping stone in unveiling how life works on a fundamental ground. Here we introduce an in silico ``coevolutionary'' model for the protein interaction network and the protein family network. The essential ingredient of the model includes the protein family identity and its robustness under evolution, as well as the three previously proposed: gene duplication, divergence, and mutation. This model produces a prototypical feature of complex networks in a wide range of parameter space, following the generalized Pareto distribution in connectivity. Moreover, we investigate other structural properties of our model in detail with some specific values of parameters relevant to the yeast Saccharomyces cerevisiae, showing excellent agreement with the empirical data. Our model indicates that the physical constraints encoded via the domain structure of proteins play a crucial role in protein interactions.

  15. Understanding Protein-Protein Interactions Using Local Structural Features

    DEFF Research Database (Denmark)

    Planas-Iglesias, Joan; Bonet, Jaume; García-García, Javier

    2013-01-01

    Protein-protein interactions (PPIs) play a relevant role among the different functions of a cell. Identifying the PPI network of a given organism (interactome) is useful to shed light on the key molecular mechanisms within a biological system. In this work, we show the role of structural features...... interacting and non-interacting protein pairs to classify the structural features that sustain the binding (or non-binding) behavior. Our study indicates that not only the interacting region but also the rest of the protein surface are important for the interaction fate. The interpretation...... to score the likelihood of the interaction between two proteins and to develop a method for the prediction of PPIs. We have tested our method on several sets with unbalanced ratios of interactions and non-interactions to simulate real conditions, obtaining accuracies higher than 25% in the most unfavorable...

  16. Protein Structure and the Sequential Structure of mRNA

    DEFF Research Database (Denmark)

    Brunak, Søren; Engelbrecht, Jacob

    1996-01-01

    entries in the Brookhaven Protein Data Bank produced 719 protein chains with matching mRNA sequence, amino acid sequence, and secondary structure assignment, By neural network analysis, we found strong signals in mRNA sequence regions surrounding helices and sheets, These signals do not originate from......A direct comparison of experimentally determined protein structures and their corresponding protein coding mRNA sequences has been performed, We examine whether real world data support the hypothesis that clusters of rare codons correlate with the location of structural units in the resulting...... protein, The degeneracy of the genetic code allows for a biased selection of codons which may control the translational rate of the ribosome, and may thus in vivo have a catalyzing effect on the folding of the polypeptide chain, A complete search for GenBank nucleotide sequences coding for structural...

  17. Enhancing the Functional Content of Eukaryotic Protein Interaction Networks

    Science.gov (United States)

    Pandey, Gaurav; Arora, Sonali; Manocha, Sahil; Whalen, Sean

    2014-01-01

    Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the rich information embedded in these networks, these networks face important data quality challenges of noise and incompleteness that adversely affect the results obtained from their analysis. Here, we apply a robust measure of local network structure called common neighborhood similarity (CNS) to address these challenges. Although several CNS measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network with those from the original network. Using a large set of human and fly protein interactions, and a set of over GO terms for both, we find that several of the transformed networks produce more accurate predictions than those obtained from the original network. In particular, the measure and other continuous CNS measures perform well this task, especially for large networks. Further investigation reveals that the two major factors contributing to this improvement are the abilities of CNS measures to prune out noisy edges and enhance functional coherence in the transformed networks. PMID:25275489

  18. Metagovernance, network structure, and legitimacy

    DEFF Research Database (Denmark)

    Daugbjerg, Carsten; Fawcett, Paul

    2017-01-01

    This article develops a heuristic for comparative governance analysis. The heuristic depicts four network types by combining network structure with the state’s capacity to metagovern. It suggests that each network type produces a particular combination of input and output legitimacy. We illustrate...... the heuristic and its utility using a comparative study of agri-food networks (organic farming and land use) in four countries, which each exhibit different combinations of input and output legitimacy respectively. The article concludes by using a fifth case study to illustrate what a network type that produces...... high levels of input and output legitimacy might look like....

  19. Hepatitis C virus infection protein network.

    Science.gov (United States)

    de Chassey, B; Navratil, V; Tafforeau, L; Hiet, M S; Aublin-Gex, A; Agaugué, S; Meiffren, G; Pradezynski, F; Faria, B F; Chantier, T; Le Breton, M; Pellet, J; Davoust, N; Mangeot, P E; Chaboud, A; Penin, F; Jacob, Y; Vidalain, P O; Vidal, M; André, P; Rabourdin-Combe, C; Lotteau, V

    2008-01-01

    A proteome-wide mapping of interactions between hepatitis C virus (HCV) and human proteins was performed to provide a comprehensive view of the cellular infection. A total of 314 protein-protein interactions between HCV and human proteins was identified by yeast two-hybrid and 170 by literature mining. Integration of this data set into a reconstructed human interactome showed that cellular proteins interacting with HCV are enriched in highly central and interconnected proteins. A global analysis on the basis of functional annotation highlighted the enrichment of cellular pathways targeted by HCV. A network of proteins associated with frequent clinical disorders of chronically infected patients was constructed by connecting the insulin, Jak/STAT and TGFbeta pathways with cellular proteins targeted by HCV. CORE protein appeared as a major perturbator of this network. Focal adhesion was identified as a new function affected by HCV, mainly by NS3 and NS5A proteins.

  20. Advanced path sampling of the kinetic network of small proteins

    NARCIS (Netherlands)

    Du, W.

    2014-01-01

    This thesis is focused on developing advanced path sampling simulation methods to study protein folding and unfolding, and to build kinetic equilibrium networks describing these processes. In Chapter 1 the basic knowledge of protein structure and folding theories were introduced and a brief overview

  1. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose...... a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  2. Unified Alignment of Protein-Protein Interaction Networks.

    Science.gov (United States)

    Malod-Dognin, Noël; Ban, Kristina; Pržulj, Nataša

    2017-04-19

    Paralleling the increasing availability of protein-protein interaction (PPI) network data, several network alignment methods have been proposed. Network alignments have been used to uncover functionally conserved network parts and to transfer annotations. However, due to the computational intractability of the network alignment problem, aligners are heuristics providing divergent solutions and no consensus exists on a gold standard, or which scoring scheme should be used to evaluate them. We comprehensively evaluate the alignment scoring schemes and global network aligners on large scale PPI data and observe that three methods, HUBALIGN, L-GRAAL and NATALIE, regularly produce the most topologically and biologically coherent alignments. We study the collective behaviour of network aligners and observe that PPI networks are almost entirely aligned with a handful of aligners that we unify into a new tool, Ulign. Ulign enables complete alignment of two networks, which traditional global and local aligners fail to do. Also, multiple mappings of Ulign define biologically relevant soft clusterings of proteins in PPI networks, which may be used for refining the transfer of annotations across networks. Hence, PPI networks are already well investigated by current aligners, so to gain additional biological insights, a paradigm shift is needed. We propose such a shift come from aligning all available data types collectively rather than any particular data type in isolation from others.

  3. Collective network for computer structures

    Science.gov (United States)

    Blumrich, Matthias A [Ridgefield, CT; Coteus, Paul W [Yorktown Heights, NY; Chen, Dong [Croton On Hudson, NY; Gara, Alan [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Takken, Todd E [Brewster, NY; Steinmacher-Burow, Burkhard D [Wernau, DE; Vranas, Pavlos M [Bedford Hills, NY

    2011-08-16

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.

  4. A tensegrity model for hydrogen bond networks in proteins

    Directory of Open Access Journals (Sweden)

    Robert P. Bywater

    2017-05-01

    Full Text Available Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger − covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance (“closure” is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins (“domains” as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating

  5. European networks in structural integrity

    International Nuclear Information System (INIS)

    Crutzen, S.; Davies, M.; Hemsworth, B.; Hurst, R.; Kussmaul, K.

    1994-01-01

    Several institutions and electrical utilities in Europe, including the Joint Research Centre (JRC) have the capability to deal problems posed by the operation and ageing of structural components and with their structural integrity assessment. These institutions and the JRC have developed cooperative programmes now organised in networks. They include utilities, engineering companies, R and D laboratories and Regulatory Bodies. Networks are organised and managed like the successful PISC programme: The Institute for Advanced Materials of JRC plays the role of Operating Agent and Manager of these networks: ENIQ, AMES, NESC, each of them dealing with a specific aspect of fitness for purpose of materials in structural components. There exist strong links between the networks and EC Working Groups on Structural Integrity Codes and Standards. (orig.)

  6. Inferring network structure from cascades

    Science.gov (United States)

    Ghonge, Sushrut; Vural, Dervis Can

    2017-07-01

    Many physical, biological, and social phenomena can be described by cascades taking place on a network. Often, the activity can be empirically observed, but not the underlying network of interactions. In this paper we offer three topological methods to infer the structure of any directed network given a set of cascade arrival times. Our formulas hold for a very general class of models where the activation probability of a node is a generic function of its degree and the number of its active neighbors. We report high success rates for synthetic and real networks, for several different cascade models.

  7. LIBP-Pred: web server for lipid binding proteins using structural network parameters; PDB mining of human cancer biomarkers and drug targets in parasites and bacteria.

    Science.gov (United States)

    González-Díaz, Humberto; Munteanu, Cristian R; Postelnicu, Lucian; Prado-Prado, Francisco; Gestal, Marcos; Pazos, Alejandro

    2012-03-01

    Lipid-Binding Proteins (LIBPs) or Fatty Acid-Binding Proteins (FABPs) play an important role in many diseases such as different types of cancer, kidney injury, atherosclerosis, diabetes, intestinal ischemia and parasitic infections. Thus, the computational methods that can predict LIBPs based on 3D structure parameters became a goal of major importance for drug-target discovery, vaccine design and biomarker selection. In addition, the Protein Data Bank (PDB) contains 3000+ protein 3D structures with unknown function. This list, as well as new experimental outcomes in proteomics research, is a very interesting source to discover relevant proteins, including LIBPs. However, to the best of our knowledge, there are no general models to predict new LIBPs based on 3D structures. We developed new Quantitative Structure-Activity Relationship (QSAR) models based on 3D electrostatic parameters of 1801 different proteins, including 801 LIBPs. We calculated these electrostatic parameters with the MARCH-INSIDE software and they correspond to the entire protein or to specific protein regions named core, inner, middle, and surface. We used these parameters as inputs to develop a simple Linear Discriminant Analysis (LDA) classifier to discriminate 3D structure of LIBPs from other proteins. We implemented this predictor in the web server named LIBP-Pred, freely available at , along with other important web servers of the Bio-AIMS portal. The users can carry out an automatic retrieval of protein structures from PDB or upload their custom protein structural models from their disk created with LOMETS server. We demonstrated the PDB mining option performing a predictive study of 2000+ proteins with unknown function. Interesting results regarding the discovery of new Cancer Biomarkers in humans or drug targets in parasites have been discussed here in this sense.

  8. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction

    KAUST Repository

    Cui, Xuefeng

    2016-06-15

    Motivation: Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. Method: We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence–structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. Results: We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM–HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods.

  9. A tensegrity model for hydrogen bond networks in proteins.

    Science.gov (United States)

    Bywater, Robert P

    2017-05-01

    Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger - covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance ("closure") is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins ("domains") as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating elements in fibrous proteins.

  10. Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design.

    Science.gov (United States)

    Maguire, Jack B; Boyken, Scott E; Baker, David; Kuhlman, Brian

    2018-05-08

    Hydrogen bond networks play a critical role in determining the stability and specificity of biomolecular complexes, and the ability to design such networks is important for engineering novel structures, interactions, and enzymes. One key feature of hydrogen bond networks that makes them difficult to rationally engineer is that they are highly cooperative and are not energetically favorable until the hydrogen bonding potential has been satisfied for all buried polar groups in the network. Existing computational methods for protein design are ill-equipped for creating these highly cooperative networks because they rely on energy functions and sampling strategies that are focused on pairwise interactions. To enable the design of complex hydrogen bond networks, we have developed a new sampling protocol in the molecular modeling program Rosetta that explicitly searches for sets of amino acid mutations that can form self-contained hydrogen bond networks. For a given set of designable residues, the protocol often identifies many alternative sets of mutations/networks, and we show that it can readily be applied to large sets of residues at protein-protein interfaces or in the interior of proteins. The protocol builds on a recently developed method in Rosetta for designing hydrogen bond networks that has been experimentally validated for small symmetric systems but was not extensible to many larger protein structures and complexes. The sampling protocol we describe here not only recapitulates previously validated designs with performance improvements but also yields viable hydrogen bond networks for cases where the previous method fails, such as the design of large, asymmetric interfaces relevant to engineering protein-based therapeutics.

  11. Network based approaches reveal clustering in protein point patterns

    Science.gov (United States)

    Parker, Joshua; Barr, Valarie; Aldridge, Joshua; Samelson, Lawrence E.; Losert, Wolfgang

    2014-03-01

    Recent advances in super-resolution imaging have allowed for the sub-diffraction measurement of the spatial location of proteins on the surfaces of T-cells. The challenge is to connect these complex point patterns to the internal processes and interactions, both protein-protein and protein-membrane. We begin analyzing these patterns by forming a geometric network amongst the proteins and looking at network measures, such the degree distribution. This allows us to compare experimentally observed patterns to models. Specifically, we find that the experimental patterns differ from heterogeneous Poisson processes, highlighting an internal clustering structure. Further work will be to compare our results to simulated protein-protein interactions to determine clustering mechanisms.

  12. An analysis pipeline for the inference of protein-protein interaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Ronald C.; Singhal, Mudita; Daly, Don S.; Gilmore, Jason M.; Cannon, William R.; Domico, Kelly O.; White, Amanda M.; Auberry, Deanna L.; Auberry, Kenneth J.; Hooker, Brian S.; Hurst, G. B.; McDermott, Jason E.; McDonald, W. H.; Pelletier, Dale A.; Schmoyer, Denise A.; Wiley, H. S.

    2009-12-01

    An analysis pipeline has been created for deployment of a novel algorithm, the Bayesian Estimator of Protein-Protein Association Probabilities (BEPro), for use in the reconstruction of protein-protein interaction networks. We have combined the Software Environment for BIological Network Inference (SEBINI), an interactive environment for the deployment and testing of network inference algorithms that use high-throughput data, and the Collective Analysis of Biological Interaction Networks (CABIN), software that allows integration and analysis of protein-protein interaction and gene-to-gene regulatory evidence obtained from multiple sources, to allow interactions computed by BEPro to be stored, visualized, and further analyzed. Incorporating BEPro into SEBINI and automatically feeding the resulting inferred network into CABIN, we have created a structured workflow for protein-protein network inference and supplemental analysis from sets of mass spectrometry bait-prey experiment data. SEBINI demo site: https://www.emsl.pnl.gov /SEBINI/ Contact: ronald.taylor@pnl.gov. BEPro is available at http://www.pnl.gov/statistics/BEPro3/index.htm. Contact: ds.daly@pnl.gov. CABIN is available at http://www.sysbio.org/dataresources/cabin.stm. Contact: mudita.singhal@pnl.gov.

  13. Protein secondary structure: category assignment and predictability

    DEFF Research Database (Denmark)

    Andersen, Claus A.; Bohr, Henrik; Brunak, Søren

    2001-01-01

    In the last decade, the prediction of protein secondary structure has been optimized using essentially one and the same assignment scheme known as DSSP. We present here a different scheme, which is more predictable. This scheme predicts directly the hydrogen bonds, which stabilize the secondary......-forward neural network with one hidden layer on a data set identical to the one used in earlier work....

  14. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  15. Prediction of protein–protein interactions: unifying evolution and structure at protein interfaces

    International Nuclear Information System (INIS)

    Tuncbag, Nurcan; Gursoy, Attila; Keskin, Ozlem

    2011-01-01

    The vast majority of the chores in the living cell involve protein–protein interactions. Providing details of protein interactions at the residue level and incorporating them into protein interaction networks are crucial toward the elucidation of a dynamic picture of cells. Despite the rapid increase in the number of structurally known protein complexes, we are still far away from a complete network. Given experimental limitations, computational modeling of protein interactions is a prerequisite to proceed on the way to complete structural networks. In this work, we focus on the question 'how do proteins interact?' rather than 'which proteins interact?' and we review structure-based protein–protein interaction prediction approaches. As a sample approach for modeling protein interactions, PRISM is detailed which combines structural similarity and evolutionary conservation in protein interfaces to infer structures of complexes in the protein interaction network. This will ultimately help us to understand the role of protein interfaces in predicting bound conformations

  16. Structural principles in network glasses

    International Nuclear Information System (INIS)

    Boolchand, P.

    1986-01-01

    Substantial progress in decoding the structure of network glasses has taken place in the past few years. Crucial insights into the molecular structure of glasses have emerged by application of Raman bond and Moessbauer site spectroscopy. In this context, the complimentary role of each spectroscopy as a check on the interpretation of the other, is perhaps one of the more significant developments in the field. New advances in the theory of the subject have also taken place. It is thus appropriate to inquire what general principles if any, have emerged on the structure of real glasses. The author reviews some of the principal ideas on the structure of inorganic network glasses with the aid of specific examples. (Auth.)

  17. Data management of protein interaction networks

    CERN Document Server

    Cannataro, Mario

    2012-01-01

    Interactomics: a complete survey from data generation to knowledge extraction With the increasing use of high-throughput experimental assays, more and more protein interaction databases are becoming available. As a result, computational analysis of protein-to-protein interaction (PPI) data and networks, now known as interactomics, has become an essential tool to determine functionally associated proteins. From wet lab technologies to data management to knowledge extraction, this timely book guides readers through the new science of interactomics, giving them the tools needed to: Generate

  18. Finding local communities in protein networks.

    Science.gov (United States)

    Voevodski, Konstantin; Teng, Shang-Hua; Xia, Yu

    2009-09-18

    Protein-protein interactions (PPIs) play fundamental roles in nearly all biological processes, and provide major insights into the inner workings of cells. A vast amount of PPI data for various organisms is available from BioGRID and other sources. The identification of communities in PPI networks is of great interest because they often reveal previously unknown functional ties between proteins. A large number of global clustering algorithms have been applied to protein networks, where the entire network is partitioned into clusters. Here we take a different approach by looking for local communities in PPI networks. We develop a tool, named Local Protein Community Finder, which quickly finds a community close to a queried protein in any network available from BioGRID or specified by the user. Our tool uses two new local clustering algorithms Nibble and PageRank-Nibble, which look for a good cluster among the most popular destinations of a short random walk from the queried vertex. The quality of a cluster is determined by proportion of outgoing edges, known as conductance, which is a relative measure particularly useful in undersampled networks. We show that the two local clustering algorithms find communities that not only form excellent clusters, but are also likely to be biologically relevant functional components. We compare the performance of Nibble and PageRank-Nibble to other popular and effective graph partitioning algorithms, and show that they find better clusters in the graph. Moreover, Nibble and PageRank-Nibble find communities that are more functionally coherent. The Local Protein Community Finder, accessible at http://xialab.bu.edu/resources/lpcf, allows the user to quickly find a high-quality community close to a queried protein in any network available from BioGRID or specified by the user. We show that the communities found by our tool form good clusters and are functionally coherent, making our application useful for biologists who wish to

  19. Finding local communities in protein networks

    Directory of Open Access Journals (Sweden)

    Teng Shang-Hua

    2009-09-01

    Full Text Available Abstract Background Protein-protein interactions (PPIs play fundamental roles in nearly all biological processes, and provide major insights into the inner workings of cells. A vast amount of PPI data for various organisms is available from BioGRID and other sources. The identification of communities in PPI networks is of great interest because they often reveal previously unknown functional ties between proteins. A large number of global clustering algorithms have been applied to protein networks, where the entire network is partitioned into clusters. Here we take a different approach by looking for local communities in PPI networks. Results We develop a tool, named Local Protein Community Finder, which quickly finds a community close to a queried protein in any network available from BioGRID or specified by the user. Our tool uses two new local clustering algorithms Nibble and PageRank-Nibble, which look for a good cluster among the most popular destinations of a short random walk from the queried vertex. The quality of a cluster is determined by proportion of outgoing edges, known as conductance, which is a relative measure particularly useful in undersampled networks. We show that the two local clustering algorithms find communities that not only form excellent clusters, but are also likely to be biologically relevant functional components. We compare the performance of Nibble and PageRank-Nibble to other popular and effective graph partitioning algorithms, and show that they find better clusters in the graph. Moreover, Nibble and PageRank-Nibble find communities that are more functionally coherent. Conclusion The Local Protein Community Finder, accessible at http://xialab.bu.edu/resources/lpcf, allows the user to quickly find a high-quality community close to a queried protein in any network available from BioGRID or specified by the user. We show that the communities found by our tool form good clusters and are functionally coherent

  20. Protein interfacial structure and nanotoxicology

    International Nuclear Information System (INIS)

    White, John W.; Perriman, Adam W.; McGillivray, Duncan J.; Lin, J.-M.

    2009-01-01

    Here we briefly recapitulate the use of X-ray and neutron reflectometry at the air-water interface to find protein structures and thermodynamics at interfaces and test a possibility for understanding those interactions between nanoparticles and proteins which lead to nanoparticle toxicology through entry into living cells. Stable monomolecular protein films have been made at the air-water interface and, with a specially designed vessel, the substrate changed from that which the air-water interfacial film was deposited. This procedure allows interactions, both chemical and physical, between introduced species and the monomolecular film to be studied by reflectometry. The method is briefly illustrated here with some new results on protein-protein interaction between β-casein and κ-casein at the air-water interface using X-rays. These two proteins are an essential component of the structure of milk. In the experiments reported, specific and directional interactions appear to cause different interfacial structures if first, a β-casein monolayer is attacked by a κ-casein solution compared to the reverse. The additional contrast associated with neutrons will be an advantage here. We then show the first results of experiments on the interaction of a β-casein monolayer with a nanoparticle titanium oxide sol, foreshadowing the study of the nanoparticle 'corona' thought to be important for nanoparticle-cell wall penetration.

  1. Protein interfacial structure and nanotoxicology

    Energy Technology Data Exchange (ETDEWEB)

    White, John W. [Research School of Chemistry, Australian National University, Canberra (Australia)], E-mail: jww@rsc.anu.edu.au; Perriman, Adam W.; McGillivray, Duncan J.; Lin, J.-M. [Research School of Chemistry, Australian National University, Canberra (Australia)

    2009-02-21

    Here we briefly recapitulate the use of X-ray and neutron reflectometry at the air-water interface to find protein structures and thermodynamics at interfaces and test a possibility for understanding those interactions between nanoparticles and proteins which lead to nanoparticle toxicology through entry into living cells. Stable monomolecular protein films have been made at the air-water interface and, with a specially designed vessel, the substrate changed from that which the air-water interfacial film was deposited. This procedure allows interactions, both chemical and physical, between introduced species and the monomolecular film to be studied by reflectometry. The method is briefly illustrated here with some new results on protein-protein interaction between {beta}-casein and {kappa}-casein at the air-water interface using X-rays. These two proteins are an essential component of the structure of milk. In the experiments reported, specific and directional interactions appear to cause different interfacial structures if first, a {beta}-casein monolayer is attacked by a {kappa}-casein solution compared to the reverse. The additional contrast associated with neutrons will be an advantage here. We then show the first results of experiments on the interaction of a {beta}-casein monolayer with a nanoparticle titanium oxide sol, foreshadowing the study of the nanoparticle 'corona' thought to be important for nanoparticle-cell wall penetration.

  2. The DIMA web resource--exploring the protein domain network.

    Science.gov (United States)

    Pagel, Philipp; Oesterheld, Matthias; Stümpflen, Volker; Frishman, Dmitrij

    2006-04-15

    Conserved domains represent essential building blocks of most known proteins. Owing to their role as modular components carrying out specific functions they form a network based both on functional relations and direct physical interactions. We have previously shown that domain interaction networks provide substantially novel information with respect to networks built on full-length protein chains. In this work we present a comprehensive web resource for exploring the Domain Interaction MAp (DIMA), interactively. The tool aims at integration of multiple data sources and prediction techniques, two of which have been implemented so far: domain phylogenetic profiling and experimentally demonstrated domain contacts from known three-dimensional structures. A powerful yet simple user interface enables the user to compute, visualize, navigate and download domain networks based on specific search criteria. http://mips.gsf.de/genre/proj/dima

  3. Communication on the structure of biological networks

    Indian Academy of Sciences (India)

    Introduction. Over the past few years, network science has drawn attention from a large number of ... The qualitative properties of biological networks cannot ... Here, we study the underlying undirected structure of empirical biological networks.

  4. From network structure to network reorganization: implications for adult neurogenesis

    International Nuclear Information System (INIS)

    Schneider-Mizell, Casey M; Zochowski, Michal R; Sander, Leonard M; Parent, Jack M; Ben-Jacob, Eshel

    2010-01-01

    Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells

  5. Specificity and evolvability in eukaryotic protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Pedro Beltrao

    2007-02-01

    Full Text Available Progress in uncovering the protein interaction networks of several species has led to questions of what underlying principles might govern their organization. Few studies have tried to determine the impact of protein interaction network evolution on the observed physiological differences between species. Using comparative genomics and structural information, we show here that eukaryotic species have rewired their interactomes at a fast rate of approximately 10(-5 interactions changed per protein pair, per million years of divergence. For Homo sapiens this corresponds to 10(3 interactions changed per million years. Additionally we find that the specificity of binding strongly determines the interaction turnover and that different biological processes show significantly different link dynamics. In particular, human proteins involved in immune response, transport, and establishment of localization show signs of positive selection for change of interactions. Our analysis suggests that a small degree of molecular divergence can give rise to important changes at the network level. We propose that the power law distribution observed in protein interaction networks could be partly explained by the cell's requirement for different degrees of protein binding specificity.

  6. The ability to store energy in pea protein gels is set by network dimensions smaller than 50 nm

    NARCIS (Netherlands)

    Munialo, C.D.; Linden, van der E.; Jongh, de H.H.J.

    2014-01-01

    The objective of this study was to identify which length scales set the ability to elastically store energy in pea protein network structures. Various network structures were obtained frompea proteins by varying the pH and salt conditions during gel formation. The coarseness of the network structure

  7. Structural Analysis of Complex Networks

    CERN Document Server

    Dehmer, Matthias

    2011-01-01

    Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,

  8. Structural entanglements in protein complexes

    Science.gov (United States)

    Zhao, Yani; Chwastyk, Mateusz; Cieplak, Marek

    2017-06-01

    We consider multi-chain protein native structures and propose a criterion that determines whether two chains in the system are entangled or not. The criterion is based on the behavior observed by pulling at both termini of each chain simultaneously in the two chains. We have identified about 900 entangled systems in the Protein Data Bank and provided a more detailed analysis for several of them. We argue that entanglement enhances the thermodynamic stability of the system but it may have other functions: burying the hydrophobic residues at the interface and increasing the DNA or RNA binding area. We also study the folding and stretching properties of the knotted dimeric proteins MJ0366, YibK, and bacteriophytochrome. These proteins have been studied theoretically in their monomeric versions so far. The dimers are seen to separate on stretching through the tensile mechanism and the characteristic unraveling force depends on the pulling direction.

  9. Evolution of a protein domain interaction network

    International Nuclear Information System (INIS)

    Li-Feng, Gao; Jian-Jun, Shi; Shan, Guan

    2010-01-01

    In this paper, we attempt to understand complex network evolution from the underlying evolutionary relationship between biological organisms. Firstly, we construct a Pfam domain interaction network for each of the 470 completely sequenced organisms, and therefore each organism is correlated with a specific Pfam domain interaction network; secondly, we infer the evolutionary relationship of these organisms with the nearest neighbour joining method; thirdly, we use the evolutionary relationship between organisms constructed in the second step as the evolutionary course of the Pfam domain interaction network constructed in the first step. This analysis of the evolutionary course shows: (i) there is a conserved sub-network structure in network evolution; in this sub-network, nodes with lower degree prefer to maintain their connectivity invariant, and hubs tend to maintain their role as a hub is attached preferentially to new added nodes; (ii) few nodes are conserved as hubs; most of the other nodes are conserved as one with very low degree; (iii) in the course of network evolution, new nodes are added to the network either individually in most cases or as clusters with relative high clustering coefficients in a very few cases. (general)

  10. Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome

    Science.gov (United States)

    Poirot, Olivier; Timsit, Youri

    2016-05-01

    From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through “molecular synapses”, ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the “sensory-proteins” innervate the functional ribosomal sites, while the “inter-proteins” interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing.

  11. Validation of protein models by a neural network approach

    Directory of Open Access Journals (Sweden)

    Fantucci Piercarlo

    2008-01-01

    Full Text Available Abstract Background The development and improvement of reliable computational methods designed to evaluate the quality of protein models is relevant in the context of protein structure refinement, which has been recently identified as one of the bottlenecks limiting the quality and usefulness of protein structure prediction. Results In this contribution, we present a computational method (Artificial Intelligence Decoys Evaluator: AIDE which is able to consistently discriminate between correct and incorrect protein models. In particular, the method is based on neural networks that use as input 15 structural parameters, which include energy, solvent accessible surface, hydrophobic contacts and secondary structure content. The results obtained with AIDE on a set of decoy structures were evaluated using statistical indicators such as Pearson correlation coefficients, Znat, fraction enrichment, as well as ROC plots. It turned out that AIDE performances are comparable and often complementary to available state-of-the-art learning-based methods. Conclusion In light of the results obtained with AIDE, as well as its comparison with available learning-based methods, it can be concluded that AIDE can be successfully used to evaluate the quality of protein structures. The use of AIDE in combination with other evaluation tools is expected to further enhance protein refinement efforts.

  12. Social structure of Facebook networks

    Science.gov (United States)

    Traud, Amanda L.; Mucha, Peter J.; Porter, Mason A.

    2012-08-01

    We study the social structure of Facebook “friendship” networks at one hundred American colleges and universities at a single point in time, and we examine the roles of user attributes-gender, class year, major, high school, and residence-at these institutions. We investigate the influence of common attributes at the dyad level in terms of assortativity coefficients and regression models. We then examine larger-scale groupings by detecting communities algorithmically and comparing them to network partitions based on user characteristics. We thereby examine the relative importance of different characteristics at different institutions, finding for example that common high school is more important to the social organization of large institutions and that the importance of common major varies significantly between institutions. Our calculations illustrate how microscopic and macroscopic perspectives give complementary insights on the social organization at universities and suggest future studies to investigate such phenomena further.

  13. Soliton concepts and protein structure

    Science.gov (United States)

    Krokhotin, Andrei; Niemi, Antti J.; Peng, Xubiao

    2012-03-01

    Structural classification shows that the number of different protein folds is surprisingly small. It also appears that proteins are built in a modular fashion from a relatively small number of components. Here we propose that the modular building blocks are made of the dark soliton solution of a generalized discrete nonlinear Schrödinger equation. We find that practically all protein loops can be obtained simply by scaling the size and by joining together a number of copies of the soliton, one after another. The soliton has only two loop-specific parameters, and we compute their statistical distribution in the Protein Data Bank (PDB). We explicitly construct a collection of 200 sets of parameters, each determining a soliton profile that describes a different short loop. The ensuing profiles cover practically all those proteins in PDB that have a resolution which is better than 2.0 Å, with a precision such that the average root-mean-square distance between the loop and its soliton is less than the experimental B-factor fluctuation distance. We also present two examples that describe how the loop library can be employed both to model and to analyze folded proteins.

  14. Topology-function conservation in protein-protein interaction networks.

    Science.gov (United States)

    Davis, Darren; Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Stojmirovic, Aleksandar; Pržulj, Nataša

    2015-05-15

    Proteins underlay the functioning of a cell and the wiring of proteins in protein-protein interaction network (PIN) relates to their biological functions. Proteins with similar wiring in the PIN (topology around them) have been shown to have similar functions. This property has been successfully exploited for predicting protein functions. Topological similarity is also used to guide network alignment algorithms that find similarly wired proteins between PINs of different species; these similarities are used to transfer annotation across PINs, e.g. from model organisms to human. To refine these functional predictions and annotation transfers, we need to gain insight into the variability of the topology-function relationships. For example, a function may be significantly associated with specific topologies, while another function may be weakly associated with several different topologies. Also, the topology-function relationships may differ between different species. To improve our understanding of topology-function relationships and of their conservation among species, we develop a statistical framework that is built upon canonical correlation analysis. Using the graphlet degrees to represent the wiring around proteins in PINs and gene ontology (GO) annotations to describe their functions, our framework: (i) characterizes statistically significant topology-function relationships in a given species, and (ii) uncovers the functions that have conserved topology in PINs of different species, which we term topologically orthologous functions. We apply our framework to PINs of yeast and human, identifying seven biological process and two cellular component GO terms to be topologically orthologous for the two organisms. © The Author 2015. Published by Oxford University Press.

  15. Exploration of the dynamic properties of protein complexes predicted from spatially constrained protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Eric A Yen

    2014-05-01

    Full Text Available Protein complexes are not static, but rather highly dynamic with subunits that undergo 1-dimensional diffusion with respect to each other. Interactions within protein complexes are modulated through regulatory inputs that alter interactions and introduce new components and deplete existing components through exchange. While it is clear that the structure and function of any given protein complex is coupled to its dynamical properties, it remains a challenge to predict the possible conformations that complexes can adopt. Protein-fragment Complementation Assays detect physical interactions between protein pairs constrained to ≤8 nm from each other in living cells. This method has been used to build networks composed of 1000s of pair-wise interactions. Significantly, these networks contain a wealth of dynamic information, as the assay is fully reversible and the proteins are expressed in their natural context. In this study, we describe a method that extracts this valuable information in the form of predicted conformations, allowing the user to explore the conformational landscape, to search for structures that correlate with an activity state, and estimate the abundance of conformations in the living cell. The generator is based on a Markov Chain Monte Carlo simulation that uses the interaction dataset as input and is constrained by the physical resolution of the assay. We applied this method to an 18-member protein complex composed of the seven core proteins of the budding yeast Arp2/3 complex and 11 associated regulators and effector proteins. We generated 20,480 output structures and identified conformational states using principle component analysis. We interrogated the conformation landscape and found evidence of symmetry breaking, a mixture of likely active and inactive conformational states and dynamic exchange of the core protein Arc15 between core and regulatory components. Our method provides a novel tool for prediction and

  16. Protein structure based prediction of catalytic residues.

    Science.gov (United States)

    Fajardo, J Eduardo; Fiser, Andras

    2013-02-22

    Worldwide structural genomics projects continue to release new protein structures at an unprecedented pace, so far nearly 6000, but only about 60% of these proteins have any sort of functional annotation. We explored a range of features that can be used for the prediction of functional residues given a known three-dimensional structure. These features include various centrality measures of nodes in graphs of interacting residues: closeness, betweenness and page-rank centrality. We also analyzed the distance of functional amino acids to the general center of mass (GCM) of the structure, relative solvent accessibility (RSA), and the use of relative entropy as a measure of sequence conservation. From the selected features, neural networks were trained to identify catalytic residues. We found that using distance to the GCM together with amino acid type provide a good discriminant function, when combined independently with sequence conservation. Using an independent test set of 29 annotated protein structures, the method returned 411 of the initial 9262 residues as the most likely to be involved in function. The output 411 residues contain 70 of the annotated 111 catalytic residues. This represents an approximately 14-fold enrichment of catalytic residues on the entire input set (corresponding to a sensitivity of 63% and a precision of 17%), a performance competitive with that of other state-of-the-art methods. We found that several of the graph based measures utilize the same underlying feature of protein structures, which can be simply and more effectively captured with the distance to GCM definition. This also has the added the advantage of simplicity and easy implementation. Meanwhile sequence conservation remains by far the most influential feature in identifying functional residues. We also found that due the rapid changes in size and composition of sequence databases, conservation calculations must be recalibrated for specific reference databases.

  17. Network structure exploration via Bayesian nonparametric models

    International Nuclear Information System (INIS)

    Chen, Y; Wang, X L; Xiang, X; Tang, B Z; Bu, J Z

    2015-01-01

    Complex networks provide a powerful mathematical representation of complex systems in nature and society. To understand complex networks, it is crucial to explore their internal structures, also called structural regularities. The task of network structure exploration is to determine how many groups there are in a complex network and how to group the nodes of the network. Most existing structure exploration methods need to specify either a group number or a certain type of structure when they are applied to a network. In the real world, however, the group number and also the certain type of structure that a network has are usually unknown in advance. To explore structural regularities in complex networks automatically, without any prior knowledge of the group number or the certain type of structure, we extend a probabilistic mixture model that can handle networks with any type of structure but needs to specify a group number using Bayesian nonparametric theory. We also propose a novel Bayesian nonparametric model, called the Bayesian nonparametric mixture (BNPM) model. Experiments conducted on a large number of networks with different structures show that the BNPM model is able to explore structural regularities in networks automatically with a stable, state-of-the-art performance. (paper)

  18. An evolving network model with community structure

    International Nuclear Information System (INIS)

    Li Chunguang; Maini, Philip K

    2005-01-01

    Many social and biological networks consist of communities-groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties

  19. Communication on the structure of biological networks

    Indian Academy of Sciences (India)

    Networks are widely used to represent interaction pattern among the components in complex systems. Structures of real networks from different domains may vary quite significantly. As there is an interplay between network architecture and dynamics, structure plays an important role in communication and spreading of ...

  20. True Nature of Supply Network Communication Structure

    Directory of Open Access Journals (Sweden)

    Lokhman Hakim bin Osman

    2016-04-01

    Full Text Available Globalization of world economy has altered the definition of organizational structure. Global supply chain can no longer be viewed as an arm-length structure. It has become more complex. The complexity demands deeper research and understanding. This research analyzed a structure of supply network in an attempt to elucidate the true structure of the supply network. Using the quantitative Social Network Analysis methodology, findings of this study indicated that, the structure of the supply network differs depending on the types of network relations. An important implication of these findings would be a more focus resource management upon network relationship development that is based on firms’ positions in the different network structure. This research also contributes to the various strategies of effective and efficient supply chain management.

  1. HKC: An Algorithm to Predict Protein Complexes in Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xiaomin Wang

    2011-01-01

    Full Text Available With the availability of more and more genome-scale protein-protein interaction (PPI networks, research interests gradually shift to Systematic Analysis on these large data sets. A key topic is to predict protein complexes in PPI networks by identifying clusters that are densely connected within themselves but sparsely connected with the rest of the network. In this paper, we present a new topology-based algorithm, HKC, to detect protein complexes in genome-scale PPI networks. HKC mainly uses the concepts of highest k-core and cohesion to predict protein complexes by identifying overlapping clusters. The experiments on two data sets and two benchmarks show that our algorithm has relatively high F-measure and exhibits better performance compared with some other methods.

  2. Network structure exploration in networks with node attributes

    Science.gov (United States)

    Chen, Yi; Wang, Xiaolong; Bu, Junzhao; Tang, Buzhou; Xiang, Xin

    2016-05-01

    Complex networks provide a powerful way to represent complex systems and have been widely studied during the past several years. One of the most important tasks of network analysis is to detect structures (also called structural regularities) embedded in networks by determining group number and group partition. Most of network structure exploration models only consider network links. However, in real world networks, nodes may have attributes that are useful for network structure exploration. In this paper, we propose a novel Bayesian nonparametric (BNP) model to explore structural regularities in networks with node attributes, called Bayesian nonparametric attribute (BNPA) model. This model does not only take full advantage of both links between nodes and node attributes for group partition via shared hidden variables, but also determine group number automatically via the Bayesian nonparametric theory. Experiments conducted on a number of real and synthetic networks show that our BNPA model is able to automatically explore structural regularities in networks with node attributes and is competitive with other state-of-the-art models.

  3. Protein Structure Refinement by Optimization

    DEFF Research Database (Denmark)

    Carlsen, Martin

    on whether the three-dimensional structure of a homologous sequence is known. Whether or not a protein model can be used for industrial purposes depends on the quality of the predicted structure. A model can be used to design a drug when the quality is high. The overall goal of this project is to assess...... that correlates maximally to a native-decoy distance. The main contribution of this thesis is methods developed for analyzing the performance of metrically trained knowledge-based potentials and for optimizing their performance while making them less dependent on the decoy set used to define them. We focus...... being at-least a local minimum of the potential. To address how far the current functional form of the potential is from an ideal potential we present two methods for finding the optimal metrically trained potential that simultaneous has a number of native structures as a local minimum. Our results...

  4. Global Electricity Trade Network: Structures and Implications

    Science.gov (United States)

    Ji, Ling; Jia, Xiaoping; Chiu, Anthony S. F.; Xu, Ming

    2016-01-01

    Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions. PMID:27504825

  5. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    Science.gov (United States)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  6. Managing Network Partitions in Structured P2P Networks

    Science.gov (United States)

    Shafaat, Tallat M.; Ghodsi, Ali; Haridi, Seif

    Structured overlay networks form a major class of peer-to-peer systems, which are touted for their abilities to scale, tolerate failures, and self-manage. Any long-lived Internet-scale distributed system is destined to face network partitions. Consequently, the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems. This makes it a crucial requirement for building any structured peer-to-peer systems to be resilient to network partitions. Although the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems, it has hardly been studied in the context of structured peer-to-peer systems. Structured overlays have mainly been studied under churn (frequent joins/failures), which as a side effect solves the problem of network partitions, as it is similar to massive node failures. Yet, the crucial aspect of network mergers has been ignored. In fact, it has been claimed that ring-based structured overlay networks, which constitute the majority of the structured overlays, are intrinsically ill-suited for merging rings. In this chapter, we motivate the problem of network partitions and mergers in structured overlays. We discuss how a structured overlay can automatically detect a network partition and merger. We present an algorithm for merging multiple similar ring-based overlays when the underlying network merges. We examine the solution in dynamic conditions, showing how our solution is resilient to churn during the merger, something widely believed to be difficult or impossible. We evaluate the algorithm for various scenarios and show that even when falsely detecting a merger, the algorithm quickly terminates and does not clutter the network with many messages. The algorithm is flexible as the tradeoff between message complexity and time complexity can be adjusted by a parameter.

  7. Robustness and structure of complex networks

    Science.gov (United States)

    Shao, Shuai

    This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks

  8. Improving Protein Fold Recognition by Deep Learning Networks

    Science.gov (United States)

    Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin

    2015-12-01

    For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl’s benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at http://iris.rnet.missouri.edu/dnfold.

  9. Improving Protein Fold Recognition by Deep Learning Networks.

    Science.gov (United States)

    Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin

    2015-12-04

    For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl's benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at http://iris.rnet.missouri.edu/dnfold.

  10. Immunization of networks with community structure

    International Nuclear Information System (INIS)

    Masuda, Naoki

    2009-01-01

    In this study, an efficient method to immunize modular networks (i.e. networks with community structure) is proposed. The immunization of networks aims at fragmenting networks into small parts with a small number of removed nodes. Its applications include prevention of epidemic spreading, protection against intentional attacks on networks, and conservation of ecosystems. Although preferential immunization of hubs is efficient, good immunization strategies for modular networks have not been established. On the basis of an immunization strategy based on eigenvector centrality, we develop an analytical framework for immunizing modular networks. To this end, we quantify the contribution of each node to the connectivity in a coarse-grained network among modules. We verify the effectiveness of the proposed method by applying it to model and real networks with modular structure.

  11. A scored human protein-protein interaction network to catalyze genomic interpretation

    DEFF Research Database (Denmark)

    Li, Taibo; Wernersson, Rasmus; Hansen, Rasmus B

    2017-01-01

    Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (InWeb_InBioMap,......Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (In...

  12. Epidemics in adaptive networks with community structure

    Science.gov (United States)

    Shaw, Leah; Tunc, Ilker

    2010-03-01

    Models for epidemic spread on static social networks do not account for changes in individuals' social interactions. Recent studies of adaptive networks have modeled avoidance behavior, as non-infected individuals try to avoid contact with infectives. Such models have not generally included realistic social structure. Here we study epidemic spread on an adaptive network with community structure. We model the effect of heterogeneous communities on infection levels and epidemic extinction. We also show how an epidemic can alter the community structure.

  13. Airline network structure in competitive market

    Directory of Open Access Journals (Sweden)

    Babić Danica D.

    2014-01-01

    Full Text Available Airline's network is the key element of its business strategy and selected network structure will not have influence only on the airline's costs but could gain some advantage in revenues, too. Network designing implies that an airline has to make decisions about markets that it will serve and how to serve those markets. Network choice raises the following questions for an airline: a what markets to serve, b how to serve selected markets, c what level of service to offer, d what are the benefits/cost of the that decisions and e what is the influence of the competition. We analyzed the existing airline business models and corresponding network structure. The paper highlights the relationship between the network structures and the airline business strategies. Using a simple model we examine the relationship between the network structure and service quality in deregulated market.

  14. SDSL-ESR-based protein structure characterization.

    Science.gov (United States)

    Strancar, Janez; Kavalenka, Aleh; Urbancic, Iztok; Ljubetic, Ajasja; Hemminga, Marcus A

    2010-03-01

    As proteins are key molecules in living cells, knowledge about their structure can provide important insights and applications in science, biotechnology, and medicine. However, many protein structures are still a big challenge for existing high-resolution structure-determination methods, as can be seen in the number of protein structures published in the Protein Data Bank. This is especially the case for less-ordered, more hydrophobic and more flexible protein systems. The lack of efficient methods for structure determination calls for urgent development of a new class of biophysical techniques. This work attempts to address this problem with a novel combination of site-directed spin labelling electron spin resonance spectroscopy (SDSL-ESR) and protein structure modelling, which is coupled by restriction of the conformational spaces of the amino acid side chains. Comparison of the application to four different protein systems enables us to generalize the new method and to establish a general procedure for determination of protein structure.

  15. Pinning Control Strategy of Multicommunity Structure Networks

    Directory of Open Access Journals (Sweden)

    Chao Ding

    2017-01-01

    Full Text Available In order to investigate the effects of community structure on synchronization, a pinning control strategy is researched in a class of complex networks with community structure in this paper. A feedback control law is designed based on the network community structure information. The stability condition is given and proved by using Lyapunov stability theory. Our research shows that as to community structure networks, there being a threshold hT≈5, when coupling strength bellows this threshold, the stronger coupling strength corresponds to higher synchronizability; vice versa, the stronger coupling strength brings lower synchronizability. In addition the synchronizability of overlapping and nonoverlapping community structure networks was simulated and analyzed; while the nodes were controlled randomly and intensively, the results show that intensive control strategy is better than the random one. The network will reach synchronization easily when the node with largest betweenness was controlled. Furthermore, four difference networks’ synchronizability, such as Barabási-Albert network, Watts-Strogatz network, Erdös-Rényi network, and community structure network, are simulated; the research shows that the community structure network is more easily synchronized under the same control strength.

  16. Discriminating lysosomal membrane protein types using dynamic neural network.

    Science.gov (United States)

    Tripathi, Vijay; Gupta, Dwijendra Kumar

    2014-01-01

    This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.

  17. Deep recurrent conditional random field network for protein secondary prediction

    DEFF Research Database (Denmark)

    Johansen, Alexander Rosenberg; Sønderby, Søren Kaae; Sønderby, Casper Kaae

    2017-01-01

    Deep learning has become the state-of-the-art method for predicting protein secondary structure from only its amino acid residues and sequence profile. Building upon these results, we propose to combine a bi-directional recurrent neural network (biRNN) with a conditional random field (CRF), which...... of the labels for all time-steps. We condition the CRF on the output of biRNN, which learns a distributed representation based on the entire sequence. The biRNN-CRF is therefore close to ideally suited for the secondary structure task because a high degree of cross-talk between neighboring elements can...

  18. Clustering and visualizing similarity networks of membrane proteins.

    Science.gov (United States)

    Hu, Geng-Ming; Mai, Te-Lun; Chen, Chi-Ming

    2015-08-01

    We proposed a fast and unsupervised clustering method, minimum span clustering (MSC), for analyzing the sequence-structure-function relationship of biological networks, and demonstrated its validity in clustering the sequence/structure similarity networks (SSN) of 682 membrane protein (MP) chains. The MSC clustering of MPs based on their sequence information was found to be consistent with their tertiary structures and functions. For the largest seven clusters predicted by MSC, the consistency in chain function within the same cluster is found to be 100%. From analyzing the edge distribution of SSN for MPs, we found a characteristic threshold distance for the boundary between clusters, over which SSN of MPs could be properly clustered by an unsupervised sparsification of the network distance matrix. The clustering results of MPs from both MSC and the unsupervised sparsification methods are consistent with each other, and have high intracluster similarity and low intercluster similarity in sequence, structure, and function. Our study showed a strong sequence-structure-function relationship of MPs. We discussed evidence of convergent evolution of MPs and suggested applications in finding structural similarities and predicting biological functions of MP chains based on their sequence information. © 2015 Wiley Periodicals, Inc.

  19. Protein-Protein Interaction Network and Gene Ontology

    Science.gov (United States)

    Choi, Yunkyu; Kim, Seok; Yi, Gwan-Su; Park, Jinah

    Evolution of computer technologies makes it possible to access a large amount and various kinds of biological data via internet such as DNA sequences, proteomics data and information discovered about them. It is expected that the combination of various data could help researchers find further knowledge about them. Roles of a visualization system are to invoke human abilities to integrate information and to recognize certain patterns in the data. Thus, when the various kinds of data are examined and analyzed manually, an effective visualization system is an essential part. One instance of these integrated visualizations can be combination of protein-protein interaction (PPI) data and Gene Ontology (GO) which could help enhance the analysis of PPI network. We introduce a simple but comprehensive visualization system that integrates GO and PPI data where GO and PPI graphs are visualized side-by-side and supports quick reference functions between them. Furthermore, the proposed system provides several interactive visualization methods for efficiently analyzing the PPI network and GO directedacyclic- graph such as context-based browsing and common ancestors finding.

  20. Protein function prediction using neighbor relativity in protein-protein interaction network.

    Science.gov (United States)

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.

    Science.gov (United States)

    Li, Min; Li, Wenkai; Wu, Fang-Xiang; Pan, Yi; Wang, Jianxin

    2018-06-14

    Essential proteins are important participants in various life activities and play a vital role in the survival and reproduction of living organisms. Identification of essential proteins from protein-protein interaction (PPI) networks has great significance to facilitate the study of human complex diseases, the design of drugs and the development of bioinformatics and computational science. Studies have shown that highly connected proteins in a PPI network tend to be essential. A series of computational methods have been proposed to identify essential proteins by analyzing topological structures of PPI networks. However, the high noise in the PPI data can degrade the accuracy of essential protein prediction. Moreover, proteins must be located in the appropriate subcellular localization to perform their functions, and only when the proteins are located in the same subcellular localization, it is possible that they can interact with each other. In this paper, we propose a new network-based essential protein discovery method based on sub-network partition and prioritization by integrating subcellular localization information, named SPP. The proposed method SPP was tested on two different yeast PPI networks obtained from DIP database and BioGRID database. The experimental results show that SPP can effectively reduce the effect of false positives in PPI networks and predict essential proteins more accurately compared with other existing computational methods DC, BC, CC, SC, EC, IC, NC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Prediction of protein hydration sites from sequence by modular neural networks

    DEFF Research Database (Denmark)

    Ehrlich, L.; Reczko, M.; Bohr, Henrik

    1998-01-01

    The hydration properties of a protein are important determinants of its structure and function. Here, modular neural networks are employed to predict ordered hydration sites using protein sequence information. First, secondary structure and solvent accessibility are predicted from sequence with two...... separate neural networks. These predictions are used as input together with protein sequences for networks predicting hydration of residues, backbone atoms and sidechains. These networks are teined with protein crystal structures. The prediction of hydration is improved by adding information on secondary...... structure and solvent accessibility and, using actual values of these properties, redidue hydration can be predicted to 77% accuracy with a Metthews coefficient of 0.43. However, predicted property data with an accuracy of 60-70% result in less than half the improvement in predictive performance observed...

  3. Modularity in protein structures: study on all-alpha proteins.

    Science.gov (United States)

    Khan, Taushif; Ghosh, Indira

    2015-01-01

    Modularity is known as one of the most important features of protein's robust and efficient design. The architecture and topology of proteins play a vital role by providing necessary robust scaffolds to support organism's growth and survival in constant evolutionary pressure. These complex biomolecules can be represented by several layers of modular architecture, but it is pivotal to understand and explore the smallest biologically relevant structural component. In the present study, we have developed a component-based method, using protein's secondary structures and their arrangements (i.e. patterns) in order to investigate its structural space. Our result on all-alpha protein shows that the known structural space is highly populated with limited set of structural patterns. We have also noticed that these frequently observed structural patterns are present as modules or "building blocks" in large proteins (i.e. higher secondary structure content). From structural descriptor analysis, observed patterns are found to be within similar deviation; however, frequent patterns are found to be distinctly occurring in diverse functions e.g. in enzymatic classes and reactions. In this study, we are introducing a simple approach to explore protein structural space using combinatorial- and graph-based geometry methods, which can be used to describe modularity in protein structures. Moreover, analysis indicates that protein function seems to be the driving force that shapes the known structure space.

  4. Prediction and characterization of protein-protein interaction networks in swine

    Directory of Open Access Journals (Sweden)

    Wang Fen

    2012-01-01

    Full Text Available Abstract Background Studying the large-scale protein-protein interaction (PPI network is important in understanding biological processes. The current research presents the first PPI map of swine, which aims to give new insights into understanding their biological processes. Results We used three methods, Interolog-based prediction of porcine PPI network, domain-motif interactions from structural topology-based prediction of porcine PPI network and motif-motif interactions from structural topology-based prediction of porcine PPI network, to predict porcine protein interactions among 25,767 porcine proteins. We predicted 20,213, 331,484, and 218,705 porcine PPIs respectively, merged the three results into 567,441 PPIs, constructed four PPI networks, and analyzed the topological properties of the porcine PPI networks. Our predictions were validated with Pfam domain annotations and GO annotations. Averages of 70, 10,495, and 863 interactions were related to the Pfam domain-interacting pairs in iPfam database. For comparison, randomized networks were generated, and averages of only 4.24, 66.79, and 44.26 interactions were associated with Pfam domain-interacting pairs in iPfam database. In GO annotations, we found 52.68%, 75.54%, 27.20% of the predicted PPIs sharing GO terms respectively. However, the number of PPI pairs sharing GO terms in the 10,000 randomized networks reached 52.68%, 75.54%, 27.20% is 0. Finally, we determined the accuracy and precision of the methods. The methods yielded accuracies of 0.92, 0.53, and 0.50 at precisions of about 0.93, 0.74, and 0.75, respectively. Conclusion The results reveal that the predicted PPI networks are considerably reliable. The present research is an important pioneering work on protein function research. The porcine PPI data set, the confidence score of each interaction and a list of related data are available at (http://pppid.biositemap.com/.

  5. Protein-protein interaction network-based detection of functionally similar proteins within species.

    Science.gov (United States)

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  6. STRUCTURE AND COOPTATION IN ORGANIZATION NETWORK

    Directory of Open Access Journals (Sweden)

    Valéria Riscarolli

    2007-10-01

    Full Text Available Business executive are rethinking business concept, based on horizontalization principles. As so, most organizational functions are outsourced, leading the enterprise to build business through a network of organizations. Here we study the case of Cia Hering’s network of organizations, a leader in knit apparel segment in Latin America (IEMI, 2004, looking at the network’s structure and levels of cooptation. A theoretical model was used using Quinn et al. (2001 “sun ray” network structure as basis to analyze the case study. Main results indicate higher degree of structural conformity, but incipient degree of coopetation in the network.

  7. Structure-based barcoding of proteins.

    Science.gov (United States)

    Metri, Rahul; Jerath, Gaurav; Kailas, Govind; Gacche, Nitin; Pal, Adityabarna; Ramakrishnan, Vibin

    2014-01-01

    A reduced representation in the format of a barcode has been developed to provide an overview of the topological nature of a given protein structure from 3D coordinate file. The molecular structure of a protein coordinate file from Protein Data Bank is first expressed in terms of an alpha-numero code and further converted to a barcode image. The barcode representation can be used to compare and contrast different proteins based on their structure. The utility of this method has been exemplified by comparing structural barcodes of proteins that belong to same fold family, and across different folds. In addition to this, we have attempted to provide an illustration to (i) the structural changes often seen in a given protein molecule upon interaction with ligands and (ii) Modifications in overall topology of a given protein during evolution. The program is fully downloadable from the website http://www.iitg.ac.in/probar/. © 2013 The Protein Society.

  8. Analysis of protein-protein interaction networks by means of annotated graph mining algorithms

    NARCIS (Netherlands)

    Rahmani, Hossein

    2012-01-01

    This thesis discusses solutions to several open problems in Protein-Protein Interaction (PPI) networks with the aid of Knowledge Discovery. PPI networks are usually represented as undirected graphs, with nodes corresponding to proteins and edges representing interactions among protein pairs. A large

  9. Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry

    NARCIS (Netherlands)

    Liu, Fan; Heck, Albert J R

    2015-01-01

    Proteins are involved in almost all processes of the living cell. They are organized through extensive networks of interaction, by tightly bound macromolecular assemblies or more transiently via signaling nodes. Therefore, revealing the architecture of protein complexes and protein interaction

  10. Cross-linked structure of network evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bassett, Danielle S., E-mail: dsb@seas.upenn.edu [Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Sage Center for the Study of the Mind, University of California, Santa Barbara, California 93106 (United States); Wymbs, Nicholas F.; Grafton, Scott T. [Department of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, California 93106 (United States); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP (United Kingdom); Mucha, Peter J. [Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  11. Cross-linked structure of network evolution

    International Nuclear Information System (INIS)

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-01-01

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks

  12. Network structure and travel time perception.

    Science.gov (United States)

    Parthasarathi, Pavithra; Levinson, David; Hochmair, Hartwig

    2013-01-01

    The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time.

  13. Protein mechanics: a route from structure to function

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    and how fast individual amino acid side chains change their conformational ... within the overall protein structure, we could simply analyze the fluctuations of the mean ... value simply acts as an overall scale factor on the final results). In this case .... database (Porter et al 2004) or in an earlier elastic network study (Yang and ...

  14. Learning Latent Structure in Complex Networks

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai

    such as the Modularity, it has recently been shown that latent structure in complex networks is learnable by Bayesian generative link distribution models (Airoldi et al., 2008, Hofman and Wiggins, 2008). In this paper we propose a new generative model that allows representation of latent community structure......Latent structure in complex networks, e.g., in the form of community structure, can help understand network dynamics, identify heterogeneities in network properties, and predict ‘missing’ links. While most community detection algorithms are based on optimizing heuristic clustering objectives...... as in the previous Bayesian approaches and in addition allows learning of node specific link properties similar to that in the modularity objective. We employ a new relaxation method for efficient inference in these generative models that allows us to learn the behavior of very large networks. We compare the link...

  15. Network Structure, Collaborative Context, and Individual Creativity

    DEFF Research Database (Denmark)

    Stea, Diego; Soda, Giuseppe; Pedersen, Torben

    2016-01-01

    Network research has yet to determine whether bonding ties or bridging ties are more beneficial for individual creativity, but the debate has mostly overlooked the organizational context in which such ties are formed. In particular, the causal chain connecting network structures and individual...... with the network’s organizational context. Thus, actors in dense network structures acquire more knowledge and eventually become more creative in organizational contexts where collaboration is high. Conversely, brokers who arbitrage information across disconnected network contacts acquire more valuable knowledge...

  16. The interface of protein structure, protein biophysics, and molecular evolution

    Science.gov (United States)

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  17. SDSL-ESR-based protein structure characterization

    NARCIS (Netherlands)

    Strancar, J.; Kavalenka, A.A.; Urbancic, I.; Ljubetic, A.; Hemminga, M.A.

    2010-01-01

    As proteins are key molecules in living cells, knowledge about their structure can provide important insights and applications in science, biotechnology, and medicine. However, many protein structures are still a big challenge for existing high-resolution structure-determination methods, as can be

  18. Category theoretic analysis of hierarchical protein materials and social networks.

    Directory of Open Access Journals (Sweden)

    David I Spivak

    Full Text Available Materials in biology span all the scales from Angstroms to meters and typically consist of complex hierarchical assemblies of simple building blocks. Here we describe an application of category theory to describe structural and resulting functional properties of biological protein materials by developing so-called ologs. An olog is like a "concept web" or "semantic network" except that it follows a rigorous mathematical formulation based on category theory. This key difference ensures that an olog is unambiguous, highly adaptable to evolution and change, and suitable for sharing concepts with other olog. We consider simple cases of beta-helical and amyloid-like protein filaments subjected to axial extension and develop an olog representation of their structural and resulting mechanical properties. We also construct a representation of a social network in which people send text-messages to their nearest neighbors and act as a team to perform a task. We show that the olog for the protein and the olog for the social network feature identical category-theoretic representations, and we proceed to precisely explicate the analogy or isomorphism between them. The examples presented here demonstrate that the intrinsic nature of a complex system, which in particular includes a precise relationship between structure and function at different hierarchical levels, can be effectively represented by an olog. This, in turn, allows for comparative studies between disparate materials or fields of application, and results in novel approaches to derive functionality in the design of de novo hierarchical systems. We discuss opportunities and challenges associated with the description of complex biological materials by using ologs as a powerful tool for analysis and design in the context of materiomics, and we present the potential impact of this approach for engineering, life sciences, and medicine.

  19. Overcoming barriers to membrane protein structure determination.

    Science.gov (United States)

    Bill, Roslyn M; Henderson, Peter J F; Iwata, So; Kunji, Edmund R S; Michel, Hartmut; Neutze, Richard; Newstead, Simon; Poolman, Bert; Tate, Christopher G; Vogel, Horst

    2011-04-01

    After decades of slow progress, the pace of research on membrane protein structures is beginning to quicken thanks to various improvements in technology, including protein engineering and microfocus X-ray diffraction. Here we review these developments and, where possible, highlight generic new approaches to solving membrane protein structures based on recent technological advances. Rational approaches to overcoming the bottlenecks in the field are urgently required as membrane proteins, which typically comprise ~30% of the proteomes of organisms, are dramatically under-represented in the structural database of the Protein Data Bank.

  20. Evaluation of clustering algorithms for protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    van Helden Jacques

    2006-11-01

    Full Text Available Abstract Background Protein interactions are crucial components of all cellular processes. Recently, high-throughput methods have been developed to obtain a global description of the interactome (the whole network of protein interactions for a given organism. In 2002, the yeast interactome was estimated to contain up to 80,000 potential interactions. This estimate is based on the integration of data sets obtained by various methods (mass spectrometry, two-hybrid methods, genetic studies. High-throughput methods are known, however, to yield a non-negligible rate of false positives, and to miss a fraction of existing interactions. The interactome can be represented as a graph where nodes correspond with proteins and edges with pairwise interactions. In recent years clustering methods have been developed and applied in order to extract relevant modules from such graphs. These algorithms require the specification of parameters that may drastically affect the results. In this paper we present a comparative assessment of four algorithms: Markov Clustering (MCL, Restricted Neighborhood Search Clustering (RNSC, Super Paramagnetic Clustering (SPC, and Molecular Complex Detection (MCODE. Results A test graph was built on the basis of 220 complexes annotated in the MIPS database. To evaluate the robustness to false positives and false negatives, we derived 41 altered graphs by randomly removing edges from or adding edges to the test graph in various proportions. Each clustering algorithm was applied to these graphs with various parameter settings, and the clusters were compared with the annotated complexes. We analyzed the sensitivity of the algorithms to the parameters and determined their optimal parameter values. We also evaluated their robustness to alterations of the test graph. We then applied the four algorithms to six graphs obtained from high-throughput experiments and compared the resulting clusters with the annotated complexes. Conclusion This

  1. Information transfer in community structured multiplex networks

    Directory of Open Access Journals (Sweden)

    Albert eSolé Ribalta

    2015-08-01

    Full Text Available The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.. The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.

  2. Information transfer in community structured multiplex networks

    Science.gov (United States)

    Solé Ribalta, Albert; Granell, Clara; Gómez, Sergio; Arenas, Alex

    2015-08-01

    The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.

  3. A network biology approach to understanding the importance of chameleon proteins in human physiology and pathology.

    Science.gov (United States)

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Marashi, Sayed-Amir

    2017-02-01

    Chameleon proteins are proteins which include sequences that can adopt α-helix-β-strand (HE-chameleon) or α-helix-coil (HC-chameleon) or β-strand-coil (CE-chameleon) structures to operate their crucial biological functions. In this study, using a network-based approach, we examined the chameleon proteins to give a better knowledge on these proteins. We focused on proteins with identical chameleon sequences with more than or equal to seven residues long in different PDB entries, which adopt HE-chameleon, HC-chameleon, and CE-chameleon structures in the same protein. One hundred and ninety-one human chameleon proteins were identified via our in-house program. Then, protein-protein interaction (PPI) networks, Gene ontology (GO) enrichment, disease network, and pathway enrichment analyses were performed for our derived data set. We discovered that there are chameleon sequences which reside in protein-protein interaction regions between two proteins critical for their dual function. Analysis of the PPI networks for chameleon proteins introduced five hub proteins, namely TP53, EGFR, HSP90AA1, PPARA, and HIF1A, which were presented in four PPI clusters. The outcomes demonstrate that the chameleon regions are in critical domains of these proteins and are important in the development and treatment of human cancers. The present report is the first network-based functional study of chameleon proteins using computational approaches and might provide a new perspective for understanding the mechanisms of diseases helping us in developing new medical therapies along with discovering new proteins with chameleon properties which are highly important in cancer.

  4. Mapping monomeric threading to protein-protein structure prediction.

    Science.gov (United States)

    Guerler, Aysam; Govindarajoo, Brandon; Zhang, Yang

    2013-03-25

    The key step of template-based protein-protein structure prediction is the recognition of complexes from experimental structure libraries that have similar quaternary fold. Maintaining two monomer and dimer structure libraries is however laborious, and inappropriate library construction can degrade template recognition coverage. We propose a novel strategy SPRING to identify complexes by mapping monomeric threading alignments to protein-protein interactions based on the original oligomer entries in the PDB, which does not rely on library construction and increases the efficiency and quality of complex template recognitions. SPRING is tested on 1838 nonhomologous protein complexes which can recognize correct quaternary template structures with a TM score >0.5 in 1115 cases after excluding homologous proteins. The average TM score of the first model is 60% and 17% higher than that by HHsearch and COTH, respectively, while the number of targets with an interface RMSD benchmark proteins. Although the relative performance of SPRING and ZDOCK depends on the level of homology filters, a combination of the two methods can result in a significantly higher model quality than ZDOCK at all homology thresholds. These data demonstrate a new efficient approach to quaternary structure recognition that is ready to use for genome-scale modeling of protein-protein interactions due to the high speed and accuracy.

  5. Graph theoretic analysis of protein interaction networks of eukaryotes

    Science.gov (United States)

    Goh, K.-I.; Kahng, B.; Kim, D.

    2005-11-01

    Owing to the recent progress in high-throughput experimental techniques, the datasets of large-scale protein interactions of prototypical multicellular species, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, have been assayed. The datasets are obtained mainly by using the yeast hybrid method, which contains false-positive and false-negative simultaneously. Accordingly, while it is desirable to test such datasets through further wet experiments, here we invoke recent developed network theory to test such high-throughput datasets in a simple way. Based on the fact that the key biological processes indispensable to maintaining life are conserved across eukaryotic species, and the comparison of structural properties of the protein interaction networks (PINs) of the two species with those of the yeast PIN, we find that while the worm and yeast PIN datasets exhibit similar structural properties, the current fly dataset, though most comprehensively screened ever, does not reflect generic structural properties correctly as it is. The modularity is suppressed and the connectivity correlation is lacking. Addition of interologs to the current fly dataset increases the modularity and enhances the occurrence of triangular motifs as well. The connectivity correlation function of the fly, however, remains distinct under such interolog additions, for which we present a possible scenario through an in silico modeling.

  6. CombiMotif: A new algorithm for network motifs discovery in protein-protein interaction networks

    Science.gov (United States)

    Luo, Jiawei; Li, Guanghui; Song, Dan; Liang, Cheng

    2014-12-01

    Discovering motifs in protein-protein interaction networks is becoming a current major challenge in computational biology, since the distribution of the number of network motifs can reveal significant systemic differences among species. However, this task can be computationally expensive because of the involvement of graph isomorphic detection. In this paper, we present a new algorithm (CombiMotif) that incorporates combinatorial techniques to count non-induced occurrences of subgraph topologies in the form of trees. The efficiency of our algorithm is demonstrated by comparing the obtained results with the current state-of-the art subgraph counting algorithms. We also show major differences between unicellular and multicellular organisms. The datasets and source code of CombiMotif are freely available upon request.

  7. Construction and analysis of protein-protein interaction network correlated with ankylosing spondylitis.

    Science.gov (United States)

    Kanwal, Attiya; Fazal, Sahar

    2018-01-05

    Ankylosing spondylitis, a systemic illness is a foundation of progressing joint swelling that for the most part influences the spine. However, it frequently causes aggravation in different joints far from the spine, and in addition organs, for example, the eyes, heart, lungs, and kidneys. It's an immune system ailment that may be activated by specific sorts of bacterial or viral diseases that initiate an invulnerable reaction that don't close off after the contamination is recuperated. The particular reason for ankylosing spondylitis is obscure, yet hereditary qualities assume a huge part in this condition. The rising apparatuses of network medicine offer a stage to investigate an unpredictable illness at framework level. In this study, we meant to recognize the key proteins and the biological regulator pathways including in AS and further investigating the molecular connectivity between these pathways by the topological examination of the Protein-protein communication (PPI) system. The extended network including of 93 nodes and have 199 interactions respectively scanned from STRING database and some separated small networks. 24 proteins with high BC at the threshold of 0.01 and 55 proteins with large degree at the threshold of 1 have been identified. CD4 with highest BC and Closeness centrality located in the centre of the network. The backbone network derived from high BC proteins presents a clear and visual overview which shows all important regulatory pathways for AS and the crosstalk between them. The finding of this research suggests that AS variation is orchestrated by an integrated PPI network centered on CD4 out of 93 nodes. Ankylosing spondylitis, a systemic disease is an establishment of advancing joint swelling that generally impacts the spine. Be that as it may, it as often as possible causes disturbance in various joints a long way from the spine, and what's more organs. It's a resistant framework affliction that might be actuated by particular sorts

  8. PSAIA – Protein Structure and Interaction Analyzer

    Directory of Open Access Journals (Sweden)

    Vlahoviček Kristian

    2008-04-01

    Full Text Available Abstract Background PSAIA (Protein Structure and Interaction Analyzer was developed to compute geometric parameters for large sets of protein structures in order to predict and investigate protein-protein interaction sites. Results In addition to most relevant established algorithms, PSAIA offers a new method PIADA (Protein Interaction Atom Distance Algorithm for the determination of residue interaction pairs. We found that PIADA produced more satisfactory results than comparable algorithms implemented in PSAIA. Particular advantages of PSAIA include its capacity to combine different methods to detect the locations and types of interactions between residues and its ability, without any further automation steps, to handle large numbers of protein structures and complexes. Generally, the integration of a variety of methods enables PSAIA to offer easier automation of analysis and greater reliability of results. PSAIA can be used either via a graphical user interface or from the command-line. Results are generated in either tabular or XML format. Conclusion In a straightforward fashion and for large sets of protein structures, PSAIA enables the calculation of protein geometric parameters and the determination of location and type for protein-protein interaction sites. XML formatted output enables easy conversion of results to various formats suitable for statistic analysis. Results from smaller data sets demonstrated the influence of geometry on protein interaction sites. Comprehensive analysis of properties of large data sets lead to new information useful in the prediction of protein-protein interaction sites.

  9. Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility.

    Science.gov (United States)

    Heffernan, Rhys; Yang, Yuedong; Paliwal, Kuldip; Zhou, Yaoqi

    2017-09-15

    The accuracy of predicting protein local and global structural properties such as secondary structure and solvent accessible surface area has been stagnant for many years because of the challenge of accounting for non-local interactions between amino acid residues that are close in three-dimensional structural space but far from each other in their sequence positions. All existing machine-learning techniques relied on a sliding window of 10-20 amino acid residues to capture some 'short to intermediate' non-local interactions. Here, we employed Long Short-Term Memory (LSTM) Bidirectional Recurrent Neural Networks (BRNNs) which are capable of capturing long range interactions without using a window. We showed that the application of LSTM-BRNN to the prediction of protein structural properties makes the most significant improvement for residues with the most long-range contacts (|i-j| >19) over a previous window-based, deep-learning method SPIDER2. Capturing long-range interactions allows the accuracy of three-state secondary structure prediction to reach 84% and the correlation coefficient between predicted and actual solvent accessible surface areas to reach 0.80, plus a reduction of 5%, 10%, 5% and 10% in the mean absolute error for backbone ϕ , ψ , θ and τ angles, respectively, from SPIDER2. More significantly, 27% of 182724 40-residue models directly constructed from predicted C α atom-based θ and τ have similar structures to their corresponding native structures (6Å RMSD or less), which is 3% better than models built by ϕ and ψ angles. We expect the method to be useful for assisting protein structure and function prediction. The method is available as a SPIDER3 server and standalone package at http://sparks-lab.org . yaoqi.zhou@griffith.edu.au or yuedong.yang@griffith.edu.au. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email

  10. Network Ecology and Adolescent Social Structure.

    Science.gov (United States)

    McFarland, Daniel A; Moody, James; Diehl, David; Smith, Jeffrey A; Thomas, Reuben J

    2014-12-01

    Adolescent societies-whether arising from weak, short-term classroom friendships or from close, long-term friendships-exhibit various levels of network clustering, segregation, and hierarchy. Some are rank-ordered caste systems and others are flat, cliquish worlds. Explaining the source of such structural variation remains a challenge, however, because global network features are generally treated as the agglomeration of micro-level tie-formation mechanisms, namely balance, homophily, and dominance. How do the same micro-mechanisms generate significant variation in global network structures? To answer this question we propose and test a network ecological theory that specifies the ways features of organizational environments moderate the expression of tie-formation processes, thereby generating variability in global network structures across settings. We develop this argument using longitudinal friendship data on schools (Add Health study) and classrooms (Classroom Engagement study), and by extending exponential random graph models to the study of multiple societies over time.

  11. Industrial entrepreneurial network: Structural and functional analysis

    Science.gov (United States)

    Medvedeva, M. A.; Davletbaev, R. H.; Berg, D. B.; Nazarova, J. J.; Parusheva, S. S.

    2016-12-01

    Structure and functioning of two model industrial entrepreneurial networks are investigated in the present paper. One of these networks is forming when implementing an integrated project and consists of eight agents, which interact with each other and external environment. The other one is obtained from the municipal economy and is based on the set of the 12 real business entities. Analysis of the networks is carried out on the basis of the matrix of mutual payments aggregated over the certain time period. The matrix is created by the methods of experimental economics. Social Network Analysis (SNA) methods and instruments were used in the present research. The set of basic structural characteristics was investigated: set of quantitative parameters such as density, diameter, clustering coefficient, different kinds of centrality, and etc. They were compared with the random Bernoulli graphs of the corresponding size and density. Discovered variations of random and entrepreneurial networks structure are explained by the peculiarities of agents functioning in production network. Separately, were identified the closed exchange circuits (cyclically closed contours of graph) forming an autopoietic (self-replicating) network pattern. The purpose of the functional analysis was to identify the contribution of the autopoietic network pattern in its gross product. It was found that the magnitude of this contribution is more than 20%. Such value allows using of the complementary currency in order to stimulate economic activity of network agents.

  12. The Structure of Online Consumer Communication Networks

    NARCIS (Netherlands)

    B.G.C. Dellaert (Benedict); M.J.W. Harmsen-van Hout (Marjolein); P.J.J. Herings (Jean-Jacques)

    2006-01-01

    textabstractIn this paper we study the structure of the bilateral communication links within Online Consumer Communication Networks (OCCNs), such as virtual communities. Compared to the offline world, consumers in online networks are highly flexible to choose their communication partners and little

  13. The global structure of knowledge network

    NARCIS (Netherlands)

    Angelopoulos, Spyros; Lomi, Alessandro

    2017-01-01

    In this paper, we treat patent citations as knowledge networks connecting pieces of formalized knowledge and people, and focus on how ideas are connected, rather than how they are protected. We focus on the global structural properties of formalized knowledge network, and more specifically on the

  14. Similar pathogen targets in Arabidopsis thaliana and homo sapiens protein networks.

    Directory of Open Access Journals (Sweden)

    Paulo Shakarian

    Full Text Available We study the behavior of pathogens on host protein networks for humans and Arabidopsis - noting striking similarities. Specifically, we preform [Formula: see text]-shell decomposition analysis on these networks - which groups the proteins into various "shells" based on network structure. We observe that shells with a higher average degree are more highly targeted (with a power-law relationship and that highly targeted nodes lie in shells closer to the inner-core of the network. Additionally, we also note that the inner core of the network is significantly under-targeted. We show that these core proteins may have a role in intra-cellular communication and hypothesize that they are less attacked to ensure survival of the host. This may explain why certain high-degree proteins are not significantly attacked.

  15. Solution NMR structure determination of proteins revisited

    International Nuclear Information System (INIS)

    Billeter, Martin; Wagner, Gerhard; Wuethrich, Kurt

    2008-01-01

    This 'Perspective' bears on the present state of protein structure determination by NMR in solution. The focus is on a comparison of the infrastructure available for NMR structure determination when compared to protein crystal structure determination by X-ray diffraction. The main conclusion emerges that the unique potential of NMR to generate high resolution data also on dynamics, interactions and conformational equilibria has contributed to a lack of standard procedures for structure determination which would be readily amenable to improved efficiency by automation. To spark renewed discussion on the topic of NMR structure determination of proteins, procedural steps with high potential for improvement are identified

  16. Extracting knowledge from protein structure geometry

    DEFF Research Database (Denmark)

    Røgen, Peter; Koehl, Patrice

    2013-01-01

    potential from geometric knowledge extracted from native and misfolded conformers of protein structures. This new potential, Metric Protein Potential (MPP), has two main features that are key to its success. Firstly, it is composite in that it includes local and nonlocal geometric information on proteins...

  17. Network Centric Information Structure - Crisis Information Management

    National Research Council Canada - National Science Library

    Aarholt, Eldar; Berg, Olav

    2004-01-01

    This paper presents a generic Network Centric Information Structure (NCIS) that can be used by civilian, military and public sectors, and that supports information handling applied to crises management and emergency response...

  18. NCI National Clinical Trials Network Structure

    Science.gov (United States)

    Learn about how the National Clinical Trials Network (NCTN) is structured. The NCTN is a program of the National Cancer Institute that gives funds and other support to cancer research organizations to conduct cancer clinical trials.

  19. Unveiling protein functions through the dynamics of the interaction network.

    Directory of Open Access Journals (Sweden)

    Irene Sendiña-Nadal

    Full Text Available Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes.

  20. The architectural design of networks of protein domain architectures.

    Science.gov (United States)

    Hsu, Chia-Hsin; Chen, Chien-Kuo; Hwang, Ming-Jing

    2013-08-23

    Protein domain architectures (PDAs), in which single domains are linked to form multiple-domain proteins, are a major molecular form used by evolution for the diversification of protein functions. However, the design principles of PDAs remain largely uninvestigated. In this study, we constructed networks to connect domain architectures that had grown out from the same single domain for every single domain in the Pfam-A database and found that there are three main distinctive types of these networks, which suggests that evolution can exploit PDAs in three different ways. Further analysis showed that these three different types of PDA networks are each adopted by different types of protein domains, although many networks exhibit the characteristics of more than one of the three types. Our results shed light on nature's blueprint for protein architecture and provide a framework for understanding architectural design from a network perspective.

  1. Nonparametric inference of network structure and dynamics

    Science.gov (United States)

    Peixoto, Tiago P.

    The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among

  2. Nuclear Structure and Decay Data (NSDD) network

    International Nuclear Information System (INIS)

    Pronyaev, V.G.

    2001-02-01

    This report provides a brief description of the Nuclear Structure and Decay Data (NSDD) Network in response to a request from the Advisory Group Meeting on ''Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators'' (IAEA, Vienna, 14-17 December 1998, report IAEA(NDS)-399 (1999)). This report supersedes the special issue of the Nuclear Data Newsletter No. 20 published in November 1994. (author)

  3. Modelling the structure of complex networks

    DEFF Research Database (Denmark)

    Herlau, Tue

    networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...

  4. Validation-driven protein-structure improvement

    NARCIS (Netherlands)

    Touw, W.G.

    2016-01-01

    High-quality protein structure models are essential for many Life Science applications, such as protein engineering, molecular dynamics, drug design, and homology modelling. The WHAT_CHECK model validation project and the PDB_REDO model optimisation project have shown that many structure models in

  5. Protein complex prediction based on k-connected subgraphs in protein interaction network

    OpenAIRE

    Habibi, Mahnaz; Eslahchi, Changiz; Wong, Limsoon

    2010-01-01

    Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on ...

  6. Complex modular structure of large-scale brain networks

    Science.gov (United States)

    Valencia, M.; Pastor, M. A.; Fernández-Seara, M. A.; Artieda, J.; Martinerie, J.; Chavez, M.

    2009-06-01

    Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large scale (voxel level) extracted from functional magnetic resonance imaging signals. By using a random-walk-based method, we unveil the modularity of brain webs and show modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intramodular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.

  7. The Deep Structure of Organizational Online Networking

    DEFF Research Database (Denmark)

    Trier, Matthias; Richter, Alexander

    2015-01-01

    While research on organizational online networking recently increased significantly, most studies adopt quantitative research designs with a focus on the consequences of social network configurations. Very limited attention is paid to comprehensive theoretical conceptions of the complex phenomenon...... of organizational online networking. We address this gap by adopting a theoretical framework of the deep structure of organizational online networking with a focus on their emerging meaning for the employees. We apply and assess the framework in a qualitative case study of a large-scale implementation...... of a corporate social network site (SNS) in a global organization. We reveal organizational online networking as a multi-dimensional phenomenon with multiplex relationships that are unbalanced, primarily consist of weak ties and are subject to temporal change. Further, we identify discourse drivers...

  8. SCOWLP classification: Structural comparison and analysis of protein binding regions

    Directory of Open Access Journals (Sweden)

    Anders Gerd

    2008-01-01

    Full Text Available Abstract Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions

  9. Heterochiral Knottin Protein: Folding and Solution Structure.

    Science.gov (United States)

    Mong, Surin K; Cochran, Frank V; Yu, Hongtao; Graziano, Zachary; Lin, Yu-Shan; Cochran, Jennifer R; Pentelute, Bradley L

    2017-10-31

    Homochirality is a general feature of biological macromolecules, and Nature includes few examples of heterochiral proteins. Herein, we report on the design, chemical synthesis, and structural characterization of heterochiral proteins possessing loops of amino acids of chirality opposite to that of the rest of a protein scaffold. Using the protein Ecballium elaterium trypsin inhibitor II, we discover that selective β-alanine substitution favors the efficient folding of our heterochiral constructs. Solution nuclear magnetic resonance spectroscopy of one such heterochiral protein reveals a homogeneous global fold. Additionally, steered molecular dynamics simulation indicate β-alanine reduces the free energy required to fold the protein. We also find these heterochiral proteins to be more resistant to proteolysis than homochiral l-proteins. This work informs the design of heterochiral protein architectures containing stretches of both d- and l-amino acids.

  10. Amino acid code of protein secondary structure.

    Science.gov (United States)

    Shestopalov, B V

    2003-01-01

    The calculation of protein three-dimensional structure from the amino acid sequence is a fundamental problem to be solved. This paper presents principles of the code theory of protein secondary structure, and their consequence--the amino acid code of protein secondary structure. The doublet code model of protein secondary structure, developed earlier by the author (Shestopalov, 1990), is part of this theory. The theory basis are: 1) the name secondary structure is assigned to the conformation, stabilized only by the nearest (intraresidual) and middle-range (at a distance no more than that between residues i and i + 5) interactions; 2) the secondary structure consists of regular (alpha-helical and beta-structural) and irregular (coil) segments; 3) the alpha-helices, beta-strands and coil segments are encoded, respectively, by residue pairs (i, i + 4), (i, i + 2), (i, i = 1), according to the numbers of residues per period, 3.6, 2, 1; 4) all such pairs in the amino acid sequence are codons for elementary structural elements, or structurons; 5) the codons are divided into 21 types depending on their strength, i.e. their encoding capability; 6) overlappings of structurons of one and the same structure generate the longer segments of this structure; 7) overlapping of structurons of different structures is forbidden, and therefore selection of codons is required, the codon selection is hierarchic; 8) the code theory of protein secondary structure generates six variants of the amino acid code of protein secondary structure. There are two possible kinds of model construction based on the theory: the physical one using physical properties of amino acid residues, and the statistical one using results of statistical analysis of a great body of structural data. Some evident consequences of the theory are: a) the theory can be used for calculating the secondary structure from the amino acid sequence as a partial solution of the problem of calculation of protein three

  11. On Adding Structure to Unstructured Overlay Networks

    Science.gov (United States)

    Leitão, João; Carvalho, Nuno A.; Pereira, José; Oliveira, Rui; Rodrigues, Luís

    Unstructured peer-to-peer overlay networks are very resilient to churn and topology changes, while requiring little maintenance cost. Therefore, they are an infrastructure to build highly scalable large-scale services in dynamic networks. Typically, the overlay topology is defined by a peer sampling service that aims at maintaining, in each process, a random partial view of peers in the system. The resulting random unstructured topology is suboptimal when a specific performance metric is considered. On the other hand, structured approaches (for instance, a spanning tree) may optimize a given target performance metric but are highly fragile. In fact, the cost for maintaining structures with strong constraints may easily become prohibitive in highly dynamic networks. This chapter discusses different techniques that aim at combining the advantages of unstructured and structured networks. Namely we focus on two distinct approaches, one based on optimizing the overlay and another based on optimizing the gossip mechanism itself.

  12. K-nearest uphill clustering in the protein structure space

    KAUST Repository

    Cui, Xuefeng; Gao, Xin

    2016-01-01

    The protein structure classification problem, which is to assign a protein structure to a cluster of similar proteins, is one of the most fundamental problems in the construction and application of the protein structure space. Early manually curated

  13. Automated protein structure calculation from NMR data

    International Nuclear Information System (INIS)

    Williamson, Mike P.; Craven, C. Jeremy

    2009-01-01

    Current software is almost at the stage to permit completely automatic structure determination of small proteins of <15 kDa, from NMR spectra to structure validation with minimal user interaction. This goal is welcome, as it makes structure calculation more objective and therefore more easily validated, without any loss in the quality of the structures generated. Moreover, it releases expert spectroscopists to carry out research that cannot be automated. It should not take much further effort to extend automation to ca 20 kDa. However, there are technological barriers to further automation, of which the biggest are identified as: routines for peak picking; adoption and sharing of a common framework for structure calculation, including the assembly of an automated and trusted package for structure validation; and sample preparation, particularly for larger proteins. These barriers should be the main target for development of methodology for protein structure determination, particularly by structural genomics consortia

  14. Structural anatomy of telomere OB proteins.

    Science.gov (United States)

    Horvath, Martin P

    2011-10-01

    Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA.

  15. Structural and Function Prediction of Musa acuminata subsp. Malaccensis Protein

    Directory of Open Access Journals (Sweden)

    Anum Munir

    2016-03-01

    Full Text Available Hypothetical proteins (HPs are the proteins whose presence has been anticipated, yet in vivo function has not been built up. Illustrating the structural and functional privileged insights of these HPs might likewise prompt a superior comprehension of the protein-protein associations or networks in diverse types of life. Bananas (Musa acuminata spp., including sweet and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister grouped to the all-around considered Poales, which incorporate oats. Bananas are crucial for nourishment security in numerous tropical and subtropical nations and the most prominent organic product in industrialized nations. In the present study, the hypothetical protein of M. acuminata (Banana was chosen for analysis and modeling by distinctive bioinformatics apparatuses and databases. As indicated by primary and secondary structure analysis, XP_009393594.1 is a stable hydrophobic protein containing a noteworthy extent of α-helices; Homology modeling was done utilizing SWISS-MODEL server where the templates identity with XP_009393594.1 protein was less which demonstrated novelty of our protein. Ab initio strategy was conducted to produce its 3D structure. A few evaluations of quality assessment and validation parameters determined the generated protein model as stable with genuinely great quality. Functional analysis was completed by ProtFun 2.2, and KEGG (KAAS, recommended that the hypothetical protein is a transcription factor with cytoplasmic domain as zinc finger. The protein was observed to be vital for translation process, involved in metabolism, signaling and cellular processes, genetic information processing and Zinc ion binding. It is suggested that further test approval would help to anticipate the structures and functions of other uncharacterized proteins of different plants and living being.

  16. Evidence of probabilistic behaviour in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2008-01-01

    Full Text Available Abstract Background Data from high-throughput experiments of protein-protein interactions are commonly used to probe the nature of biological organization and extract functional relationships between sets of proteins. What has not been appreciated is that the underlying mechanisms involved in assembling these networks may exhibit considerable probabilistic behaviour. Results We find that the probability of an interaction between two proteins is generally proportional to the numerical product of their individual interacting partners, or degrees. The degree-weighted behaviour is manifested throughout the protein-protein interaction networks studied here, except for the high-degree, or hub, interaction areas. However, we find that the probabilities of interaction between the hubs are still high. Further evidence is provided by path length analyses, which show that these hubs are separated by very few links. Conclusion The results suggest that protein-protein interaction networks incorporate probabilistic elements that lead to scale-rich hierarchical architectures. These observations seem to be at odds with a biologically-guided organization. One interpretation of the findings is that we are witnessing the ability of proteins to indiscriminately bind rather than the protein-protein interactions that are actually utilized by the cell in biological processes. Therefore, the topological study of a degree-weighted network requires a more refined methodology to extract biological information about pathways, modules, or other inferred relationships among proteins.

  17. Network structure of subway passenger flows

    Science.gov (United States)

    Xu, Q.; Mao, B. H.; Bai, Y.

    2016-03-01

    The results of transportation infrastructure network analyses have been used to analyze complex networks in a topological context. However, most modeling approaches, including those based on complex network theory, do not fully account for real-life traffic patterns and may provide an incomplete view of network functions. This study utilizes trip data obtained from the Beijing Subway System to characterize individual passenger movement patterns. A directed weighted passenger flow network was constructed from the subway infrastructure network topology by incorporating trip data. The passenger flow networks exhibit several properties that can be characterized by power-law distributions based on flow size, and log-logistic distributions based on the fraction of boarding and departing passengers. The study also characterizes the temporal patterns of in-transit and waiting passengers and provides a hierarchical clustering structure for passenger flows. This hierarchical flow organization varies in the spatial domain. Ten cluster groups were identified, indicating a hierarchical urban polycentric structure composed of large concentrated flows at urban activity centers. These empirical findings provide insights regarding urban human mobility patterns within a large subway network.

  18. DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network.

    Science.gov (United States)

    Mistry, Divya; Wise, Roger P; Dickerson, Julie A

    2017-01-01

    Identification of central genes and proteins in biomolecular networks provides credible candidates for pathway analysis, functional analysis, and essentiality prediction. The DiffSLC centrality measure predicts central and essential genes and proteins using a protein-protein interaction network. Network centrality measures prioritize nodes and edges based on their importance to the network topology. These measures helped identify critical genes and proteins in biomolecular networks. The proposed centrality measure, DiffSLC, combines the number of interactions of a protein and the gene coexpression values of genes from which those proteins were translated, as a weighting factor to bias the identification of essential proteins in a protein interaction network. Potentially essential proteins with low node degree are promoted through eigenvector centrality. Thus, the gene coexpression values are used in conjunction with the eigenvector of the network's adjacency matrix and edge clustering coefficient to improve essentiality prediction. The outcome of this prediction is shown using three variations: (1) inclusion or exclusion of gene co-expression data, (2) impact of different coexpression measures, and (3) impact of different gene expression data sets. For a total of seven networks, DiffSLC is compared to other centrality measures using Saccharomyces cerevisiae protein interaction networks and gene expression data. Comparisons are also performed for the top ranked proteins against the known essential genes from the Saccharomyces Gene Deletion Project, which show that DiffSLC detects more essential proteins and has a higher area under the ROC curve than other compared methods. This makes DiffSLC a stronger alternative to other centrality methods for detecting essential genes using a protein-protein interaction network that obeys centrality-lethality principle. DiffSLC is implemented using the igraph package in R, and networkx package in Python. The python package can be

  19. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis.

    Science.gov (United States)

    Holland, David O; Johnson, Margaret E

    2018-03-01

    Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that 'leftover' proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module

  20. How structure determines correlations in neuronal networks.

    Directory of Open Access Journals (Sweden)

    Volker Pernice

    2011-05-01

    Full Text Available Networks are becoming a ubiquitous metaphor for the understanding of complex biological systems, spanning the range between molecular signalling pathways, neural networks in the brain, and interacting species in a food web. In many models, we face an intricate interplay between the topology of the network and the dynamics of the system, which is generally very hard to disentangle. A dynamical feature that has been subject of intense research in various fields are correlations between the noisy activity of nodes in a network. We consider a class of systems, where discrete signals are sent along the links of the network. Such systems are of particular relevance in neuroscience, because they provide models for networks of neurons that use action potentials for communication. We study correlations in dynamic networks with arbitrary topology, assuming linear pulse coupling. With our novel approach, we are able to understand in detail how specific structural motifs affect pairwise correlations. Based on a power series decomposition of the covariance matrix, we describe the conditions under which very indirect interactions will have a pronounced effect on correlations and population dynamics. In random networks, we find that indirect interactions may lead to a broad distribution of activation levels with low average but highly variable correlations. This phenomenon is even more pronounced in networks with distance dependent connectivity. In contrast, networks with highly connected hubs or patchy connections often exhibit strong average correlations. Our results are particularly relevant in view of new experimental techniques that enable the parallel recording of spiking activity from a large number of neurons, an appropriate interpretation of which is hampered by the currently limited understanding of structure-dynamics relations in complex networks.

  1. Beyond E-business : towards networked structures

    NARCIS (Netherlands)

    Grefen, P.W.P.J.

    2015-01-01

    In Beyond E-Business: Towards Networked Structures Paul Grefen returns with his tried and tested BOAT framework for e-business, now fully expanded and updated with the very latest overview of digitally connected business; from business models, organization structures and architecture, to information

  2. Structural Connectivity Networks of Transgender People

    NARCIS (Netherlands)

    Hahn, Andreas; Kranz, Georg S.; Küblböck, Martin; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.; Lanzenberger, Rupert

    2015-01-01

    Although previous investigations of transsexual people have focused on regional brain alterations, evaluations on a network level, especially those structural in nature, are largely missing. Therefore, we investigated the structural connectome of 23 female-to-male (FtM) and 21 male-to-female (MtF)

  3. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins.

    Science.gov (United States)

    Yalçın, Belgin; Zhao, Lu; Stofanko, Martin; O'Sullivan, Niamh C; Kang, Zi Han; Roost, Annika; Thomas, Matthew R; Zaessinger, Sophie; Blard, Olivier; Patto, Alex L; Sohail, Anood; Baena, Valentina; Terasaki, Mark; O'Kane, Cahir J

    2017-07-25

    Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function.

  4. Integrated analysis of multiple data sources reveals modular structure of biological networks

    International Nuclear Information System (INIS)

    Lu Hongchao; Shi Baochen; Wu Gaowei; Zhang Yong; Zhu Xiaopeng; Zhang Zhihua; Liu Changning; Zhao, Yi; Wu Tao; Wang Jie; Chen Runsheng

    2006-01-01

    It has been a challenging task to integrate high-throughput data into investigations of the systematic and dynamic organization of biological networks. Here, we presented a simple hierarchical clustering algorithm that goes a long way to achieve this aim. Our method effectively reveals the modular structure of the yeast protein-protein interaction network and distinguishes protein complexes from functional modules by integrating high-throughput protein-protein interaction data with the added subcellular localization and expression profile data. Furthermore, we take advantage of the detected modules to provide a reliably functional context for the uncharacterized components within modules. On the other hand, the integration of various protein-protein association information makes our method robust to false-positives, especially for derived protein complexes. More importantly, this simple method can be extended naturally to other types of data fusion and provides a framework for the study of more comprehensive properties of the biological network and other forms of complex networks

  5. Algorithms for Protein Structure Prediction

    DEFF Research Database (Denmark)

    Paluszewski, Martin

    -trace. Here we present three different approaches for reconstruction of C-traces from predictable measures. In our first approach [63, 62], the C-trace is positioned on a lattice and a tabu-search algorithm is applied to find minimum energy structures. The energy function is based on half-sphere-exposure (HSE......) is more robust than standard Monte Carlo search. In the second approach for reconstruction of C-traces, an exact branch and bound algorithm has been developed [67, 65]. The model is discrete and makes use of secondary structure predictions, HSE, CN and radius of gyration. We show how to compute good lower...... bounds for partial structures very fast. Using these lower bounds, we are able to find global minimum structures in a huge conformational space in reasonable time. We show that many of these global minimum structures are of good quality compared to the native structure. Our branch and bound algorithm...

  6. Structural symmetry and protein function.

    Science.gov (United States)

    Goodsell, D S; Olson, A J

    2000-01-01

    The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of

  7. Linking structural features of protein complexes and biological function.

    Science.gov (United States)

    Sowmya, Gopichandran; Breen, Edmond J; Ranganathan, Shoba

    2015-09-01

    Protein-protein interaction (PPI) establishes the central basis for complex cellular networks in a biological cell. Association of proteins with other proteins occurs at varying affinities, yet with a high degree of specificity. PPIs lead to diverse functionality such as catalysis, regulation, signaling, immunity, and inhibition, playing a crucial role in functional genomics. The molecular principle of such interactions is often elusive in nature. Therefore, a comprehensive analysis of known protein complexes from the Protein Data Bank (PDB) is essential for the characterization of structural interface features to determine structure-function relationship. Thus, we analyzed a nonredundant dataset of 278 heterodimer protein complexes, categorized into major functional classes, for distinguishing features. Interestingly, our analysis has identified five key features (interface area, interface polar residue abundance, hydrogen bonds, solvation free energy gain from interface formation, and binding energy) that are discriminatory among the functional classes using Kruskal-Wallis rank sum test. Significant correlations between these PPI interface features amongst functional categories are also documented. Salt bridges correlate with interface area in regulator-inhibitors (r = 0.75). These representative features have implications for the prediction of potential function of novel protein complexes. The results provide molecular insights for better understanding of PPIs and their relation to biological functions. © 2015 The Protein Society.

  8. Efficient protein structure search using indexing methods.

    Science.gov (United States)

    Kim, Sungchul; Sael, Lee; Yu, Hwanjo

    2013-01-01

    Understanding functions of proteins is one of the most important challenges in many studies of biological processes. The function of a protein can be predicted by analyzing the functions of structurally similar proteins, thus finding structurally similar proteins accurately and efficiently from a large set of proteins is crucial. A protein structure can be represented as a vector by 3D-Zernike Descriptor (3DZD) which compactly represents the surface shape of the protein tertiary structure. This simplified representation accelerates the searching process. However, computing the similarity of two protein structures is still computationally expensive, thus it is hard to efficiently process many simultaneous requests of structurally similar protein search. This paper proposes indexing techniques which substantially reduce the search time to find structurally similar proteins. In particular, we first exploit two indexing techniques, i.e., iDistance and iKernel, on the 3DZDs. After that, we extend the techniques to further improve the search speed for protein structures. The extended indexing techniques build and utilize an reduced index constructed from the first few attributes of 3DZDs of protein structures. To retrieve top-k similar structures, top-10 × k similar structures are first found using the reduced index, and top-k structures are selected among them. We also modify the indexing techniques to support θ-based nearest neighbor search, which returns data points less than θ to the query point. The results show that both iDistance and iKernel significantly enhance the searching speed. In top-k nearest neighbor search, the searching time is reduced 69.6%, 77%, 77.4% and 87.9%, respectively using iDistance, iKernel, the extended iDistance, and the extended iKernel. In θ-based nearest neighbor serach, the searching time is reduced 80%, 81%, 95.6% and 95.6% using iDistance, iKernel, the extended iDistance, and the extended iKernel, respectively.

  9. Protein structure: geometry, topology and classification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, William R.; May, Alex C.W.; Brown, Nigel P.; Aszodi, Andras [Division of Mathematical Biology, National Institute for Medical Research, London (United Kingdom)

    2001-04-01

    The structural principals of proteins are reviewed and analysed from a geometric perspective with a view to revealing the underlying regularities in their construction. Computer methods for the automatic comparison and classification of these structures are then reviewed with an analysis of the statistical significance of comparing different shapes. Following an analysis of the current state of the classification of proteins, more abstract geometric and topological representations are explored, including the occurrence of knotted topologies. The review concludes with a consideration of the origin of higher-level symmetries in protein structure. (author)

  10. Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes.

    Science.gov (United States)

    Martin, Juliette; Regad, Leslie; Etchebest, Catherine; Camproux, Anne-Claude

    2008-11-15

    Interresidue protein contacts in proteins structures and at protein-protein interface are classically described by the amino acid types of interacting residues and the local structural context of the contact, if any, is described using secondary structures. In this study, we present an alternate analysis of interresidue contact using local structures defined by the structural alphabet introduced by Camproux et al. This structural alphabet allows to describe a 3D structure as a sequence of prototype fragments called structural letters, of 27 different types. Each residue can then be assigned to a particular local structure, even in loop regions. The analysis of interresidue contacts within protein structures defined using Voronoï tessellations reveals that pairwise contact specificity is greater in terms of structural letters than amino acids. Using a simple heuristic based on specificity score comparison, we find that 74% of the long-range contacts within protein structures are better described using structural letters than amino acid types. The investigation is extended to a set of protein-protein complexes, showing that the similar global rules apply as for intraprotein contacts, with 64% of the interprotein contacts best described by local structures. We then present an evaluation of pairing functions integrating structural letters to decoy scoring and show that some complexes could benefit from the use of structural letter-based pairing functions.

  11. Network Structure, Collaborative Context, and Individual Creativity

    DEFF Research Database (Denmark)

    Soda, Giuseppe; Stea, Diego; Pedersen, Torben

    2017-01-01

    The debate on whether bonding or bridging ties are more beneficial for acquiring knowledge that is conducive to individual creativity has mostly overlooked the context in which such ties are formed. We challenge the widespread assumption that closed, heavily bonded networks imply a collaborative...... attitude on the part of the embedded actors and propose that the level of collaboration in a network can be independent from that network’s structural characteristics, such that it moderates the effects of closed and brokering network positions on the acquisition of knowledge that supports creativity....... Individuals embedded in closed networks acquire more knowledge and become more creative when the level of collaboration in their network is high. Brokers who arbitrage information across disconnected contacts acquire more knowledge and become more creative when collaboration is low. An analysis of employee...

  12. Fast loop modeling for protein structures

    Science.gov (United States)

    Zhang, Jiong; Nguyen, Son; Shang, Yi; Xu, Dong; Kosztin, Ioan

    2015-03-01

    X-ray crystallography is the main method for determining 3D protein structures. In many cases, however, flexible loop regions of proteins cannot be resolved by this approach. This leads to incomplete structures in the protein data bank, preventing further computational study and analysis of these proteins. For instance, all-atom molecular dynamics (MD) simulation studies of structure-function relationship require complete protein structures. To address this shortcoming, we have developed and implemented an efficient computational method for building missing protein loops. The method is database driven and uses deep learning and multi-dimensional scaling algorithms. We have implemented the method as a simple stand-alone program, which can also be used as a plugin in existing molecular modeling software, e.g., VMD. The quality and stability of the generated structures are assessed and tested via energy scoring functions and by equilibrium MD simulations. The proposed method can also be used in template-based protein structure prediction. Work supported by the National Institutes of Health [R01 GM100701]. Computer time was provided by the University of Missouri Bioinformatics Consortium.

  13. Analysis of protein folds using protein contact networks

    Indian Academy of Sciences (India)

    is a well-recognized classification system of proteins, which is based on manual in- ... can easily correspond to the information in the 2D matrix. ..... [7] U K Muppirala and Zhijun Li, Protein Engineering, Design & Selection 19, 265 (2006).

  14. Automatic extraction of gene ontology annotation and its correlation with clusters in protein networks

    Directory of Open Access Journals (Sweden)

    Mazo Ilya

    2007-07-01

    . An increase in the number and size of GO groups without any noticeable decrease of the link density within the groups indicated that this expansion significantly broadens the public GO annotation without diluting its quality. We revealed that functional GO annotation correlates mostly with clustering in a physical interaction protein network, while its overlap with indirect regulatory network communities is two to three times smaller. Conclusion Protein functional annotations extracted by the NLP technology expand and enrich the existing GO annotation system. The GO functional modularity correlates mostly with the clustering in the physical interaction network, suggesting that the essential role of structural organization maintained by these interactions. Reciprocally, clustering of proteins in physical interaction networks can serve as an evidence for their functional similarity.

  15. Structure and growth of weighted networks

    Energy Technology Data Exchange (ETDEWEB)

    Riccaboni, Massimo [Department of Computer and Management Sciences, University of Trento, Trento (Italy); Schiavo, Stefano [Department of Economics, University of Trento, Trento (Italy)], E-mail: massimo.riccaboni@unitn.it, E-mail: stefano.schiavo@unitn.it

    2010-02-15

    We develop a simple theoretical framework for the evolution of weighted networks that is consistent with a number of stylized features of real-world data. In our framework, the Barabasi-Albert model of network evolution is extended by assuming that link weights evolve according to a geometric Brownian motion. Our model is verified by means of simulations and real-world trade data. We show that the model correctly predicts the intensity and growth distribution of links, the size-variance relationship of the growth of link weights, the relationship between the degree and strength of nodes, and the scale-free structure of the network.

  16. Polarized DIS Structure Functions from Neural Networks

    International Nuclear Information System (INIS)

    Del Debbio, L.; Guffanti, A.; Piccione, A.

    2007-01-01

    We present a parametrization of polarized Deep-Inelastic-Scattering (DIS) structure functions based on Neural Networks. The parametrization provides a bias-free determination of the probability measure in the space of structure functions, which retains information on experimental errors and correlations. As an example we discuss the application of this method to the study of the structure function g 1 p (x,Q 2 )

  17. Protein networks in induced sputum from smokers and COPD patients

    Directory of Open Access Journals (Sweden)

    Baraniuk JN

    2015-09-01

    Full Text Available James N Baraniuk,1 Begona Casado,1 Lewis K Pannell,2 Peter B McGarvey,3 Piera Boschetto,4 Maurizio Luisetti,5,† Paolo Iadarola6 1Division of Rheumatology, Immunology and Allergy, Georgetown University, Washington, DC, 2Proteomics and Mass Spectrometry Laboratory, Mitchell Cancer Center, University of South Alabama, Mobile, AL, 3Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC, USA; 4Department of Medical Sciences, University of Ferrara, Ferrara, 5SC Pneumologia, Dipartimento Medicina Molecolare, Fondazione IRCCS Policlinico San Matteo, 6Lazzaro Spallanzani Department of Biology and Biotechnology, University of Pavia, Pavia, Italy †Maurizio Luisetti passed away on October 20, 2014 Rationale: Subtypes of cigarette smoke-induced disease affect different lung structures and may have distinct pathophysiological mechanisms. Objective: To determine if proteomic classification of the cellular and vascular origins of sputum proteins can characterize these mechanisms and phenotypes. Subjects and methods: Individual sputum specimens from lifelong nonsmokers (n=7 and smokers with normal lung function (n=13, mucous hypersecretion with normal lung function (n=11, obstructed airflow without emphysema (n=15, and obstruction plus emphysema (n=10 were assessed with mass spectrometry. Data reduction, logarithmic transformation of spectral counts, and Cytoscape network-interaction analysis were performed. The original 203 proteins were reduced to the most informative 50. Sources were secretory dimeric IgA, submucosal gland serous and mucous cells, goblet and other epithelial cells, and vascular permeability. Results: Epithelial proteins discriminated nonsmokers from smokers. Mucin 5AC was elevated in healthy smokers and chronic bronchitis, suggesting a continuum with the severity of hypersecretion determined by mechanisms of goblet-cell hyperplasia. Obstructed airflow was correlated with glandular proteins and lower levels of

  18. Simultaneous determination of protein structure and dynamics

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Best, Robert B.; DePristo, M. A.

    2005-01-01

    at the atomic level about the structural and dynamical features of proteins-with the ability of molecular dynamics simulations to explore a wide range of protein conformations. We illustrate the method for human ubiquitin in solution and find that there is considerable conformational heterogeneity throughout......We present a protocol for the experimental determination of ensembles of protein conformations that represent simultaneously the native structure and its associated dynamics. The procedure combines the strengths of nuclear magnetic resonance spectroscopy-for obtaining experimental information...... the protein structure. The interior atoms of the protein are tightly packed in each individual conformation that contributes to the ensemble but their overall behaviour can be described as having a significant degree of liquid-like character. The protocol is completely general and should lead to significant...

  19. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  20. Predicting Protein Function via Semantic Integration of Multiple Networks.

    Science.gov (United States)

    Yu, Guoxian; Fu, Guangyuan; Wang, Jun; Zhu, Hailong

    2016-01-01

    Determining the biological functions of proteins is one of the key challenges in the post-genomic era. The rapidly accumulated large volumes of proteomic and genomic data drives to develop computational models for automatically predicting protein function in large scale. Recent approaches focus on integrating multiple heterogeneous data sources and they often get better results than methods that use single data source alone. In this paper, we investigate how to integrate multiple biological data sources with the biological knowledge, i.e., Gene Ontology (GO), for protein function prediction. We propose a method, called SimNet, to Semantically integrate multiple functional association Networks derived from heterogenous data sources. SimNet firstly utilizes GO annotations of proteins to capture the semantic similarity between proteins and introduces a semantic kernel based on the similarity. Next, SimNet constructs a composite network, obtained as a weighted summation of individual networks, and aligns the network with the kernel to get the weights assigned to individual networks. Then, it applies a network-based classifier on the composite network to predict protein function. Experiment results on heterogenous proteomic data sources of Yeast, Human, Mouse, and Fly show that, SimNet not only achieves better (or comparable) results than other related competitive approaches, but also takes much less time. The Matlab codes of SimNet are available at https://sites.google.com/site/guoxian85/simnet.

  1. Visualization of protein interaction networks: problems and solutions

    Directory of Open Access Journals (Sweden)

    Agapito Giuseppe

    2013-01-01

    Full Text Available Abstract Background Visualization concerns the representation of data visually and is an important task in scientific research. Protein-protein interactions (PPI are discovered using either wet lab techniques, such mass spectrometry, or in silico predictions tools, resulting in large collections of interactions stored in specialized databases. The set of all interactions of an organism forms a protein-protein interaction network (PIN and is an important tool for studying the behaviour of the cell machinery. Since graphic representation of PINs may highlight important substructures, e.g. protein complexes, visualization is more and more used to study the underlying graph structure of PINs. Although graphs are well known data structures, there are different open problems regarding PINs visualization: the high number of nodes and connections, the heterogeneity of nodes (proteins and edges (interactions, the possibility to annotate proteins and interactions with biological information extracted by ontologies (e.g. Gene Ontology that enriches the PINs with semantic information, but complicates their visualization. Methods In these last years many software tools for the visualization of PINs have been developed. Initially thought for visualization only, some of them have been successively enriched with new functions for PPI data management and PIN analysis. The paper analyzes the main software tools for PINs visualization considering four main criteria: (i technology, i.e. availability/license of the software and supported OS (Operating System platforms; (ii interoperability, i.e. ability to import/export networks in various formats, ability to export data in a graphic format, extensibility of the system, e.g. through plug-ins; (iii visualization, i.e. supported layout and rendering algorithms and availability of parallel implementation; (iv analysis, i.e. availability of network analysis functions, such as clustering or mining of the graph, and the

  2. Towards a map of the Populus biomass protein-protein interaction network

    Energy Technology Data Exchange (ETDEWEB)

    Beers, Eric [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Brunner, Amy [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Helm, Richard [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Dickerman, Allan [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2015-07-31

    Biofuels can be produced from a variety of plant feedstocks. The value of a particular feedstock for biofuels production depends in part on the degree of difficulty associated with the extraction of fermentable sugars from the plant biomass. The wood of trees is potentially a rich source fermentable sugars. However, the sugars in wood exist in a tightly cross-linked matrix of cellulose, hemicellulose, and lignin, making them largely recalcitrant to release and fermentation for biofuels production. Before breeders and genetic engineers can effectively develop plants with reduced recalcitrance to fermentation, it is necessary to gain a better understanding of the fundamental biology of the mechanisms responsible for wood formation. Regulatory, structural, and enzymatic proteins are required for the complicated process of wood formation. To function properly, proteins must interact with other proteins. Yet, very few of the protein-protein interactions necessary for wood formation are known. The main objectives of this project were to 1) identify new protein-protein interactions relevant to wood formation, and 2) perform in-depth characterizations of selected protein-protein interactions. To identify relevant protein-protein interactions, we cloned a set of approximately 400 genes that were highly expressed in the wood-forming tissue (known as secondary xylem) of poplar (Populus trichocarpa). We tested whether the proteins encoded by these biomass genes interacted with each other in a binary matrix design using the yeast two-hybrid (Y2H) method for protein-protein interaction discovery. We also tested a subset of the 400 biomass proteins for interactions with all proteins present in wood-forming tissue of poplar in a biomass library screen design using Y2H. Together, these two Y2H screens yielded over 270 interactions involving over 75 biomass proteins. For the second main objective we selected several interacting pairs or groups of interacting proteins for in

  3. Protein structure database search and evolutionary classification.

    Science.gov (United States)

    Yang, Jinn-Moon; Tung, Chi-Hua

    2006-01-01

    As more protein structures become available and structural genomics efforts provide structural models in a genome-wide strategy, there is a growing need for fast and accurate methods for discovering homologous proteins and evolutionary classifications of newly determined structures. We have developed 3D-BLAST, in part, to address these issues. 3D-BLAST is as fast as BLAST and calculates the statistical significance (E-value) of an alignment to indicate the reliability of the prediction. Using this method, we first identified 23 states of the structural alphabet that represent pattern profiles of the backbone fragments and then used them to represent protein structure databases as structural alphabet sequence databases (SADB). Our method enhanced BLAST as a search method, using a new structural alphabet substitution matrix (SASM) to find the longest common substructures with high-scoring structured segment pairs from an SADB database. Using personal computers with Intel Pentium4 (2.8 GHz) processors, our method searched more than 10 000 protein structures in 1.3 s and achieved a good agreement with search results from detailed structure alignment methods. [3D-BLAST is available at http://3d-blast.life.nctu.edu.tw].

  4. Modeling protein structures: construction and their applications.

    Science.gov (United States)

    Ring, C S; Cohen, F E

    1993-06-01

    Although no general solution to the protein folding problem exists, the three-dimensional structures of proteins are being successfully predicted when experimentally derived constraints are used in conjunction with heuristic methods. In the case of interleukin-4, mutagenesis data and CD spectroscopy were instrumental in the accurate assignment of secondary structure. In addition, the tertiary structure was highly constrained by six cysteines separated by many residues that formed three disulfide bridges. Although the correct structure was a member of a short list of plausible structures, the "best" structure was the topological enantiomer of the experimentally determined conformation. For many proteases, other experimentally derived structures can be used as templates to identify the secondary structure elements. In a procedure called modeling by homology, the structure of a known protein is used as a scaffold to predict the structure of another related protein. This method has been used to model a serine and a cysteine protease that are important in the schistosome and malarial life cycles, respectively. The model structures were then used to identify putative small molecule enzyme inhibitors computationally. Experiments confirm that some of these nonpeptidic compounds are active at concentrations of less than 10 microM.

  5. Community Structure in Online Collegiate Social Networks

    Science.gov (United States)

    Traud, Amanda; Kelsic, Eric; Mucha, Peter; Porter, Mason

    2009-03-01

    Online social networking sites have become increasingly popular with college students. The networks we studied are defined through ``friendships'' indicated by Facebook users from UNC, Oklahoma, Caltech, Georgetown, and Princeton. We apply the tools of network science to study the Facebook networks from these five different universities at a single point in time. We investigate each single-institution network's community structure, which we obtain through partitioning the graph using an eigenvector method. We use both graphical and quantitative tools, including pair-counting methods, which we interpret through statistical analysis and permutation tests to measure the correlations between the network communities and a set of characteristics given by each user (residence, class year, major, and high school). We also analyze the single gender subsets of these networks, and the impact of missing demographical data. Our study allows us to compare the online social networks for the five schools as well as infer differences in offline social interactions. At the schools studied, we were able to define which characteristics of the Facebook users correlate best with friendships.

  6. Networks: structure and action : steering in and steering by policy networks

    NARCIS (Netherlands)

    Dassen, A.

    2010-01-01

    This thesis explores the opportunities to build a structural policy network model that is rooted in social network theories. By making a distinction between a process of steering in networks, and a process of steering by networks, it addresses the effects of network structures on network dynamics as

  7. Proteins with Novel Structure, Function and Dynamics

    Science.gov (United States)

    Pohorille, Andrew

    2014-01-01

    Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.

  8. Overcoming barriers to membrane protein structure determination

    NARCIS (Netherlands)

    Bill, Roslyn M.; Henderson, Peter J. F.; Iwata, So; Kunji, Edmund R. S.; Michel, Hartmut; Neutze, Richard; Newstead, Simon; Poolman, Bert; Tate, Christopher G.; Vogel, Horst

    After decades of slow progress, the pace of research on membrane protein structures is beginning to quicken thanks to various improvements in technology, including protein engineering and microfocus X-ray diffraction. Here we review these developments and, where possible, highlight generic new

  9. Protein structural similarity search by Ramachandran codes

    Directory of Open Access Journals (Sweden)

    Chang Chih-Hung

    2007-08-01

    Full Text Available Abstract Background Protein structural data has increased exponentially, such that fast and accurate tools are necessary to access structure similarity search. To improve the search speed, several methods have been designed to reduce three-dimensional protein structures to one-dimensional text strings that are then analyzed by traditional sequence alignment methods; however, the accuracy is usually sacrificed and the speed is still unable to match sequence similarity search tools. Here, we aimed to improve the linear encoding methodology and develop efficient search tools that can rapidly retrieve structural homologs from large protein databases. Results We propose a new linear encoding method, SARST (Structural similarity search Aided by Ramachandran Sequential Transformation. SARST transforms protein structures into text strings through a Ramachandran map organized by nearest-neighbor clustering and uses a regenerative approach to produce substitution matrices. Then, classical sequence similarity search methods can be applied to the structural similarity search. Its accuracy is similar to Combinatorial Extension (CE and works over 243,000 times faster, searching 34,000 proteins in 0.34 sec with a 3.2-GHz CPU. SARST provides statistically meaningful expectation values to assess the retrieved information. It has been implemented into a web service and a stand-alone Java program that is able to run on many different platforms. Conclusion As a database search method, SARST can rapidly distinguish high from low similarities and efficiently retrieve homologous structures. It demonstrates that the easily accessible linear encoding methodology has the potential to serve as a foundation for efficient protein structural similarity search tools. These search tools are supposed applicable to automated and high-throughput functional annotations or predictions for the ever increasing number of published protein structures in this post-genomic era.

  10. NatalieQ: A web server for protein-protein interaction network querying

    NARCIS (Netherlands)

    El-Kebir, M.; Brandt, B.W.; Heringa, J.; Klau, G.W.

    2014-01-01

    Background Molecular interactions need to be taken into account to adequately model the complex behavior of biological systems. These interactions are captured by various types of biological networks, such as metabolic, gene-regulatory, signal transduction and protein-protein interaction networks.

  11. Structural health monitoring using wireless sensor networks

    Science.gov (United States)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  12. A 'periodic table' for protein structures.

    Science.gov (United States)

    Taylor, William R

    2002-04-11

    Current structural genomics programs aim systematically to determine the structures of all proteins coded in both human and other genomes, providing a complete picture of the number and variety of protein structures that exist. In the past, estimates have been made on the basis of the incomplete sample of structures currently known. These estimates have varied greatly (between 1,000 and 10,000; see for example refs 1 and 2), partly because of limited sample size but also owing to the difficulties of distinguishing one structure from another. This distinction is usually topological, based on the fold of the protein; however, in strict topological terms (neglecting to consider intra-chain cross-links), protein chains are open strings and hence are all identical. To avoid this trivial result, topologies are determined by considering secondary links in the form of intra-chain hydrogen bonds (secondary structure) and tertiary links formed by the packing of secondary structures. However, small additions to or loss of structure can make large changes to these perceived topologies and such subjective solutions are neither robust nor amenable to automation. Here I formalize both secondary and tertiary links to allow the rigorous and automatic definition of protein topology.

  13. Structural covariance networks in the mouse brain.

    Science.gov (United States)

    Pagani, Marco; Bifone, Angelo; Gozzi, Alessandro

    2016-04-01

    The presence of networks of correlation between regional gray matter volume as measured across subjects in a group of individuals has been consistently described in several human studies, an approach termed structural covariance MRI (scMRI). Complementary to prevalent brain mapping modalities like functional and diffusion-weighted imaging, the approach can provide precious insights into the mutual influence of trophic and plastic processes in health and pathological states. To investigate whether analogous scMRI networks are present in lower mammal species amenable to genetic and experimental manipulation such as the laboratory mouse, we employed high resolution morphoanatomical MRI in a large cohort of genetically-homogeneous wild-type mice (C57Bl6/J) and mapped scMRI networks using a seed-based approach. We show that the mouse brain exhibits robust homotopic scMRI networks in both primary and associative cortices, a finding corroborated by independent component analyses of cortical volumes. Subcortical structures also showed highly symmetric inter-hemispheric correlations, with evidence of distributed antero-posterior networks in diencephalic regions of the thalamus and hypothalamus. Hierarchical cluster analysis revealed six identifiable clusters of cortical and sub-cortical regions corresponding to previously described neuroanatomical systems. Our work documents the presence of homotopic cortical and subcortical scMRI networks in the mouse brain, thus supporting the use of this species to investigate the elusive biological and neuroanatomical underpinnings of scMRI network development and its derangement in neuropathological states. The identification of scMRI networks in genetically homogeneous inbred mice is consistent with the emerging view of a key role of environmental factors in shaping these correlational networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. msiDBN: A Method of Identifying Critical Proteins in Dynamic PPI Networks

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2014-01-01

    Full Text Available Dynamics of protein-protein interactions (PPIs reveals the recondite principles of biological processes inside a cell. Shown in a wealth of study, just a small group of proteins, rather than the majority, play more essential roles at crucial points of biological processes. This present work focuses on identifying these critical proteins exhibiting dramatic structural changes in dynamic PPI networks. First, a comprehensive way of modeling the dynamic PPIs is presented which simultaneously analyzes the activity of proteins and assembles the dynamic coregulation correlation between proteins at each time point. Second, a novel method is proposed, named msiDBN, which models a common representation of multiple PPI networks using a deep belief network framework and analyzes the reconstruction errors and the variabilities across the time courses in the biological process. Experiments were implemented on data of yeast cell cycles. We evaluated our network construction method by comparing the functional representations of the derived networks with two other traditional construction methods. The ranking results of critical proteins in msiDBN were compared with the results from the baseline methods. The results of comparison showed that msiDBN had better reconstruction rate and identified more proteins of critical value to yeast cell cycle process.

  15. The function of communities in protein interaction networks at multiple scales

    Directory of Open Access Journals (Sweden)

    Jones Nick S

    2010-07-01

    Full Text Available Abstract Background If biology is modular then clusters, or communities, of proteins derived using only protein interaction network structure should define protein modules with similar biological roles. We investigate the link between biological modules and network communities in yeast and its relationship to the scale at which we probe the network. Results Our results demonstrate that the functional homogeneity of communities depends on the scale selected, and that almost all proteins lie in a functionally homogeneous community at some scale. We judge functional homogeneity using a novel test and three independent characterizations of protein function, and find a high degree of overlap between these measures. We show that a high mean clustering coefficient of a community can be used to identify those that are functionally homogeneous. By tracing the community membership of a protein through multiple scales we demonstrate how our approach could be useful to biologists focusing on a particular protein. Conclusions We show that there is no one scale of interest in the community structure of the yeast protein interaction network, but we can identify the range of resolution parameters that yield the most functionally coherent communities, and predict which communities are most likely to be functionally homogeneous.

  16. Robustness and modular structure in networks

    DEFF Research Database (Denmark)

    Bagrow, James P.; Lehmann, Sune; Ahn, Yong-Yeol

    2015-01-01

    -12]. Many complex systems, from power grids and the Internet to the brain and society [13-15], can be modeled using modular networks comprised of small, densely connected groups of nodes [16, 17]. These modules often overlap, with network elements belonging to multiple modules [18, 19]. Yet existing work...... on robustness has not considered the role of overlapping, modular structure. Here we study the robustness of these systems to the failure of elements. We show analytically and empirically that it is possible for the modules themselves to become uncoupled or non-overlapping well before the network disintegrates....... If overlapping modular organization plays a role in overall functionality, networks may be far more vulnerable than predicted by conventional percolation theory....

  17. Structural analysis of recombinant human protein QM

    International Nuclear Information System (INIS)

    Gualberto, D.C.H.; Fernandes, J.L.; Silva, F.S.; Saraiva, K.W.; Affonso, R.; Pereira, L.M.; Silva, I.D.C.G.

    2012-01-01

    Full text: The ribosomal protein QM belongs to a family of ribosomal proteins, which is highly conserved from yeast to humans. The presence of the QM protein is necessary for joining the 60S and 40S subunits in a late step of the initiation of mRNA translation. Although the exact extra-ribosomal functions of QM are not yet fully understood, it has been identified as a putative tumor suppressor. This protein was reported to interact with the transcription factor c-Jun and thereby prevent c-Jun actives genes of the cellular growth. In this study, the human QM protein was expressed in bacterial system, in the soluble form and this structure was analyzed by Circular Dichroism and Fluorescence. The results of Circular Dichroism showed that this protein has less alpha helix than beta sheet, as described in the literature. QM protein does not contain a leucine zipper region; however the ion zinc is necessary for binding of QM to c-Jun. Then we analyzed the relationship between the removal of zinc ions and folding of protein. Preliminary results obtained by the technique Fluorescence showed a gradual increase in fluorescence with the addition of increasing concentration of EDTA. This suggests that the zinc is important in the tertiary structure of the protein. More studies are being made for better understand these results. (author)

  18. Functional modules by relating protein interaction networks and gene expression.

    Science.gov (United States)

    Tornow, Sabine; Mewes, H W

    2003-11-01

    Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.

  19. Protein Structure Determination Using Chemical Shifts

    DEFF Research Database (Denmark)

    Christensen, Anders Steen

    is determined using only chemical shifts recorded and assigned through automated processes. The CARMSD to the experimental X-ray for this structure is 1.1. Å. Additionally, the method is combined with very sparse NOE-restraints and evolutionary distance restraints and tested on several protein structures >100...

  20. On characterization of anisotropic plant protein structures

    NARCIS (Netherlands)

    Krintiras, G.A.; Göbel, J.; Bouwman, W.G.; Goot, van der A.J.; Stefanidis, G.D.

    2014-01-01

    In this paper, a set of complementary techniques was used to characterize surface and bulk structures of an anisotropic Soy Protein Isolate (SPI)–vital wheat gluten blend after it was subjected to heat and simple shear flow in a Couette Cell. The structured biopolymer blend can form a basis for a

  1. Social Network Structures among Groundnut Farmers

    Science.gov (United States)

    Thuo, Mary; Bell, Alexandra A.; Bravo-Ureta, Boris E.; Okello, David K.; Okoko, Evelyn Nasambu; Kidula, Nelson L.; Deom, C. Michael; Puppala, Naveen

    2013-01-01

    Purpose: Groundnut farmers in East Africa have experienced declines in production despite research and extension efforts to increase productivity. This study examined how social network structures related to acquisition of information about new seed varieties and productivity among groundnut farmers in Uganda and Kenya.…

  2. Decentralized Networked Control of Building Structures

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír; Rehák, Branislav; Papík, Martin

    2016-01-01

    Roč. 31, č. 11 (2016), s. 871-886 ISSN 1093-9687 R&D Projects: GA ČR GA13-02149S Institutional support: RVO:67985556 Keywords : decentralized control * networked control * building structures Subject RIV: BC - Control Systems Theory Impact factor: 5.786, year: 2016

  3. Hidden Structural Codes in Protein Intrinsic Disorder.

    Science.gov (United States)

    Borkosky, Silvia S; Camporeale, Gabriela; Chemes, Lucía B; Risso, Marikena; Noval, María Gabriela; Sánchez, Ignacio E; Alonso, Leonardo G; de Prat Gay, Gonzalo

    2017-10-17

    Intrinsic disorder is a major structural category in biology, accounting for more than 30% of coding regions across the domains of life, yet consists of conformational ensembles in equilibrium, a major challenge in protein chemistry. Anciently evolved papillomavirus genomes constitute an unparalleled case for sequence to structure-function correlation in cases in which there are no folded structures. E7, the major transforming oncoprotein of human papillomaviruses, is a paradigmatic example among the intrinsically disordered proteins. Analysis of a large number of sequences of the same viral protein allowed for the identification of a handful of residues with absolute conservation, scattered along the sequence of its N-terminal intrinsically disordered domain, which intriguingly are mostly leucine residues. Mutation of these led to a pronounced increase in both α-helix and β-sheet structural content, reflected by drastic effects on equilibrium propensities and oligomerization kinetics, and uncovers the existence of local structural elements that oppose canonical folding. These folding relays suggest the existence of yet undefined hidden structural codes behind intrinsic disorder in this model protein. Thus, evolution pinpoints conformational hot spots that could have not been identified by direct experimental methods for analyzing or perturbing the equilibrium of an intrinsically disordered protein ensemble.

  4. Protein Structure Recognition: From Eigenvector Analysis to Structural Threading Method

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Haibo [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    In this work, they try to understand the protein folding problem using pair-wise hydrophobic interaction as the dominant interaction for the protein folding process. They found a strong correlation between amino acid sequences and the corresponding native structure of the protein. Some applications of this correlation were discussed in this dissertation include the domain partition and a new structural threading method as well as the performance of this method in the CASP5 competition. In the first part, they give a brief introduction to the protein folding problem. Some essential knowledge and progress from other research groups was discussed. This part includes discussions of interactions among amino acids residues, lattice HP model, and the design ability principle. In the second part, they try to establish the correlation between amino acid sequence and the corresponding native structure of the protein. This correlation was observed in the eigenvector study of protein contact matrix. They believe the correlation is universal, thus it can be used in automatic partition of protein structures into folding domains. In the third part, they discuss a threading method based on the correlation between amino acid sequences and ominant eigenvector of the structure contact-matrix. A mathematically straightforward iteration scheme provides a self-consistent optimum global sequence-structure alignment. The computational efficiency of this method makes it possible to search whole protein structure databases for structural homology without relying on sequence similarity. The sensitivity and specificity of this method is discussed, along with a case of blind test prediction. In the appendix, they list the overall performance of this threading method in CASP5 blind test in comparison with other existing approaches.

  5. Protein structure recognition: From eigenvector analysis to structural threading method

    Science.gov (United States)

    Cao, Haibo

    In this work, we try to understand the protein folding problem using pair-wise hydrophobic interaction as the dominant interaction for the protein folding process. We found a strong correlation between amino acid sequence and the corresponding native structure of the protein. Some applications of this correlation were discussed in this dissertation include the domain partition and a new structural threading method as well as the performance of this method in the CASP5 competition. In the first part, we give a brief introduction to the protein folding problem. Some essential knowledge and progress from other research groups was discussed. This part include discussions of interactions among amino acids residues, lattice HP model, and the designablity principle. In the second part, we try to establish the correlation between amino acid sequence and the corresponding native structure of the protein. This correlation was observed in our eigenvector study of protein contact matrix. We believe the correlation is universal, thus it can be used in automatic partition of protein structures into folding domains. In the third part, we discuss a threading method based on the correlation between amino acid sequence and ominant eigenvector of the structure contact-matrix. A mathematically straightforward iteration scheme provides a self-consistent optimum global sequence-structure alignment. The computational efficiency of this method makes it possible to search whole protein structure databases for structural homology without relying on sequence similarity. The sensitivity and specificity of this method is discussed, along with a case of blind test prediction. In the appendix, we list the overall performance of this threading method in CASP5 blind test in comparison with other existing approaches.

  6. Protein Structure Recognition: From Eigenvector Analysis to Structural Threading Method

    International Nuclear Information System (INIS)

    Haibo Cao

    2003-01-01

    In this work, they try to understand the protein folding problem using pair-wise hydrophobic interaction as the dominant interaction for the protein folding process. They found a strong correlation between amino acid sequences and the corresponding native structure of the protein. Some applications of this correlation were discussed in this dissertation include the domain partition and a new structural threading method as well as the performance of this method in the CASP5 competition. In the first part, they give a brief introduction to the protein folding problem. Some essential knowledge and progress from other research groups was discussed. This part includes discussions of interactions among amino acids residues, lattice HP model, and the design ability principle. In the second part, they try to establish the correlation between amino acid sequence and the corresponding native structure of the protein. This correlation was observed in the eigenvector study of protein contact matrix. They believe the correlation is universal, thus it can be used in automatic partition of protein structures into folding domains. In the third part, they discuss a threading method based on the correlation between amino acid sequences and ominant eigenvector of the structure contact-matrix. A mathematically straightforward iteration scheme provides a self-consistent optimum global sequence-structure alignment. The computational efficiency of this method makes it possible to search whole protein structure databases for structural homology without relying on sequence similarity. The sensitivity and specificity of this method is discussed, along with a case of blind test prediction. In the appendix, they list the overall performance of this threading method in CASP5 blind test in comparison with other existing approaches

  7. Genomic analysis of the hierarchical structure of regulatory networks

    Science.gov (United States)

    Yu, Haiyuan; Gerstein, Mark

    2006-01-01

    A fundamental question in biology is how the cell uses transcription factors (TFs) to coordinate the expression of thousands of genes in response to various stimuli. The relationships between TFs and their target genes can be modeled in terms of directed regulatory networks. These relationships, in turn, can be readily compared with commonplace “chain-of-command” structures in social networks, which have characteristic hierarchical layouts. Here, we develop algorithms for identifying generalized hierarchies (allowing for various loop structures) and use these approaches to illuminate extensive pyramid-shaped hierarchical structures existing in the regulatory networks of representative prokaryotes (Escherichia coli) and eukaryotes (Saccharomyces cerevisiae), with most TFs at the bottom levels and only a few master TFs on top. These masters are situated near the center of the protein–protein interaction network, a different type of network from the regulatory one, and they receive most of the input for the whole regulatory hierarchy through protein interactions. Moreover, they have maximal influence over other genes, in terms of affecting expression-level changes. Surprisingly, however, TFs at the bottom of the regulatory hierarchy are more essential to the viability of the cell. Finally, one might think master TFs achieve their wide influence through directly regulating many targets, but TFs with most direct targets are in the middle of the hierarchy. We find, in fact, that these midlevel TFs are “control bottlenecks” in the hierarchy, and this great degree of control for “middle managers” has parallels in efficient social structures in various corporate and governmental settings. PMID:17003135

  8. Construction and analysis of protein-protein interaction networks based on proteomics data of prostate cancer

    Science.gov (United States)

    CHEN, CHEN; SHEN, HONG; ZHANG, LI-GUO; LIU, JIAN; CAO, XIAO-GE; YAO, AN-LIANG; KANG, SHAO-SAN; GAO, WEI-XING; HAN, HUI; CAO, FENG-HONG; LI, ZHI-GUO

    2016-01-01

    Currently, using human prostate cancer (PCa) tissue samples to conduct proteomics research has generated a large amount of data; however, only a very small amount has been thoroughly investigated. In this study, we manually carried out the mining of the full text of proteomics literature that involved comparisons between PCa and normal or benign tissue and identified 41 differentially expressed proteins verified or reported more than 2 times from different research studies. We regarded these proteins as seed proteins to construct a protein-protein interaction (PPI) network. The extended network included one giant network, which consisted of 1,264 nodes connected via 1,744 edges, and 3 small separate components. The backbone network was then constructed, which was derived from key nodes and the subnetwork consisting of the shortest path between seed proteins. Topological analyses of these networks were conducted to identify proteins essential for the genesis of PCa. Solute carrier family 2 (facilitated glucose transporter), member 4 (SLC2A4) had the highest closeness centrality located in the center of each network, and the highest betweenness centrality and largest degree in the backbone network. Tubulin, beta 2C (TUBB2C) had the largest degree in the giant network and subnetwork. In addition, using module analysis of the whole PPI network, we obtained a densely connected region. Functional annotation indicated that the Ras protein signal transduction biological process, mitogen-activated protein kinase (MAPK), neurotrophin and the gonadotropin-releasing hormone (GnRH) signaling pathway may play an important role in the genesis and development of PCa. Further investigation of the SLC2A4, TUBB2C proteins, and these biological processes and pathways may therefore provide a potential target for the diagnosis and treatment of PCa. PMID:27121963

  9. Network structure shapes spontaneous functional connectivity dynamics.

    Science.gov (United States)

    Shen, Kelly; Hutchison, R Matthew; Bezgin, Gleb; Everling, Stefan; McIntosh, Anthony R

    2015-04-08

    The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the underlying structural network. Here, we empirically examined the influence of network structure on FC dynamics by comparing resting-state FC (rsFC) obtained using BOLD-fMRI in macaques (Macaca fascicularis) to structural connectivity derived from macaque axonal tract tracing studies. Consistent with predictions from simulation studies, the correspondence between rsFC and structural connectivity increased as the sample duration increased. Regions with reciprocal structural connections showed the most stable rsFC across time. The data suggest that the transient nature of FC is in part dependent on direct underlying structural connections, but also that dynamic coordination can occur via polysynaptic pathways. Temporal stability was found to be dependent on structural topology, with functional connections within the rich-club core exhibiting the greatest stability over time. We discuss these findings in light of highly variable functional hubs. The results further elucidate how large-scale dynamic functional coordination exists within a fixed structural architecture. Copyright © 2015 the authors 0270-6474/15/355579-10$15.00/0.

  10. Structure and non-structure of centrosomal proteins.

    Science.gov (United States)

    Dos Santos, Helena G; Abia, David; Janowski, Robert; Mortuza, Gulnahar; Bertero, Michela G; Boutin, Maïlys; Guarín, Nayibe; Méndez-Giraldez, Raúl; Nuñez, Alfonso; Pedrero, Juan G; Redondo, Pilar; Sanz, María; Speroni, Silvia; Teichert, Florian; Bruix, Marta; Carazo, José M; Gonzalez, Cayetano; Reina, José; Valpuesta, José M; Vernos, Isabelle; Zabala, Juan C; Montoya, Guillermo; Coll, Miquel; Bastolla, Ugo; Serrano, Luis

    2013-01-01

    Here we perform a large-scale study of the structural properties and the expression of proteins that constitute the human Centrosome. Centrosomal proteins tend to be larger than generic human proteins (control set), since their genes contain in average more exons (20.3 versus 14.6). They are rich in predicted disordered regions, which cover 57% of their length, compared to 39% in the general human proteome. They also contain several regions that are dually predicted to be disordered and coiled-coil at the same time: 55 proteins (15%) contain disordered and coiled-coil fragments that cover more than 20% of their length. Helices prevail over strands in regions homologous to known structures (47% predicted helical residues against 17% predicted as strands), and even more in the whole centrosomal proteome (52% against 7%), while for control human proteins 34.5% of the residues are predicted as helical and 12.8% are predicted as strands. This difference is mainly due to residues predicted as disordered and helical (30% in centrosomal and 9.4% in control proteins), which may correspond to alpha-helix forming molecular recognition features (α-MoRFs). We performed expression assays for 120 full-length centrosomal proteins and 72 domain constructs that we have predicted to be globular. These full-length proteins are often insoluble: Only 39 out of 120 expressed proteins (32%) and 19 out of 72 domains (26%) were soluble. We built or retrieved structural models for 277 out of 361 human proteins whose centrosomal localization has been experimentally verified. We could not find any suitable structural template with more than 20% sequence identity for 84 centrosomal proteins (23%), for which around 74% of the residues are predicted to be disordered or coiled-coils. The three-dimensional models that we built are available at http://ub.cbm.uam.es/centrosome/models/index.php.

  11. Epidemic spreading on complex networks with community structures

    NARCIS (Netherlands)

    Stegehuis, C.; van der Hofstad, R.W.; van Leeuwaarden, J.S.H.

    2016-01-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities

  12. Modeling Insurgent Network Structure and Dynamics

    Science.gov (United States)

    Gabbay, Michael; Thirkill-Mackelprang, Ashley

    2010-03-01

    We present a methodology for mapping insurgent network structure based on their public rhetoric. Indicators of cooperative links between insurgent groups at both the leadership and rank-and-file levels are used, such as joint policy statements or joint operations claims. In addition, a targeting policy measure is constructed on the basis of insurgent targeting claims. Network diagrams which integrate these measures of insurgent cooperation and ideology are generated for different periods of the Iraqi and Afghan insurgencies. The network diagrams exhibit meaningful changes which track the evolution of the strategic environment faced by insurgent groups. Correlations between targeting policy and network structure indicate that insurgent targeting claims are aimed at establishing a group identity among the spectrum of rank-and-file insurgency supporters. A dynamical systems model of insurgent alliance formation and factionalism is presented which evolves the relationship between insurgent group dyads as a function of their ideological differences and their current relationships. The ability of the model to qualitatively and quantitatively capture insurgent network dynamics observed in the data is discussed.

  13. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.

    Science.gov (United States)

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-11

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  14. Information diffusion in structured online social networks

    Science.gov (United States)

    Li, Pei; Zhang, Yini; Qiao, Fengcai; Wang, Hui

    2015-05-01

    Nowadays, due to the word-of-mouth effect, online social networks have been considered to be efficient approaches to conduct viral marketing, which makes it of great importance to understand the diffusion dynamics in online social networks. However, most research on diffusion dynamics in epidemiology and existing social networks cannot be applied directly to characterize online social networks. In this paper, we propose models to characterize the information diffusion in structured online social networks with push-based forwarding mechanism. We introduce the term user influence to characterize the average number of times that messages are browsed which is incurred by a given type user generating a message, and study the diffusion threshold, above which the user influence of generating a message will approach infinity. We conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of use in understanding the diffusion dynamics in online social networks and also critical for advertisers in viral marketing who want to estimate the user influence before posting an advertisement.

  15. Identification of Protein Complexes Using Weighted PageRank-Nibble Algorithm and Core-Attachment Structure.

    Science.gov (United States)

    Peng, Wei; Wang, Jianxin; Zhao, Bihai; Wang, Lusheng

    2015-01-01

    Protein complexes play a significant role in understanding the underlying mechanism of most cellular functions. Recently, many researchers have explored computational methods to identify protein complexes from protein-protein interaction (PPI) networks. One group of researchers focus on detecting local dense subgraphs which correspond to protein complexes by considering local neighbors. The drawback of this kind of approach is that the global information of the networks is ignored. Some methods such as Markov Clustering algorithm (MCL), PageRank-Nibble are proposed to find protein complexes based on random walk technique which can exploit the global structure of networks. However, these methods ignore the inherent core-attachment structure of protein complexes and treat adjacent node equally. In this paper, we design a weighted PageRank-Nibble algorithm which assigns each adjacent node with different probability, and propose a novel method named WPNCA to detect protein complex from PPI networks by using weighted PageRank-Nibble algorithm and core-attachment structure. Firstly, WPNCA partitions the PPI networks into multiple dense clusters by using weighted PageRank-Nibble algorithm. Then the cores of these clusters are detected and the rest of proteins in the clusters will be selected as attachments to form the final predicted protein complexes. The experiments on yeast data show that WPNCA outperforms the existing methods in terms of both accuracy and p-value. The software for WPNCA is available at "http://netlab.csu.edu.cn/bioinfomatics/weipeng/WPNCA/download.html".

  16. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks.

    Science.gov (United States)

    Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing

    2009-03-11

    Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene

  17. Fast and Accurate Identification of Cross-Linked Peptides for the Structural Analysis of Large Protein Complexes and Elucidation of Interaction Networks. / Tahir, Salman; Bukowski-Wills, Jimi-Carlo; Rasmussen, Morten; Rappsilber, Juri

    DEFF Research Database (Denmark)

    Rasmussen, Morten

    to investigate protein structure and protein-protein interactions. When applied to single proteins or small purified protein complexes, this methodology works well. However certain challenges arise when applied to more complex samples. One of the main problems is the combinatorial increase in the search space...... simplify a spectrum because we remove all peaks that are accounted for by the fragmentation of peptide one. This approach is highly sensitive and scales well as revealed by searching our data of synthetic cross-links against a large sequence database. Currently, against a protein database of >1300 proteins...... a spectrum is searched in 0.35 seconds - a vast improvement when compared to the exhaustive search method of combining every potential cross-link for each spectrum(60 hours). In fact the search time is comparable, if not better, than existing linear search engines. Furthermore, we auto-validate the results...

  18. Network structure of multivariate time series.

    Science.gov (United States)

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-21

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  19. Structural deformation upon protein-protein interaction: a structural alphabet approach.

    Science.gov (United States)

    Martin, Juliette; Regad, Leslie; Lecornet, Hélène; Camproux, Anne-Claude

    2008-02-28

    In a number of protein-protein complexes, the 3D structures of bound and unbound partners significantly differ, supporting the induced fit hypothesis for protein-protein binding. In this study, we explore the induced fit modifications on a set of 124 proteins available in both bound and unbound forms, in terms of local structure. The local structure is described thanks to a structural alphabet of 27 structural letters that allows a detailed description of the backbone. Using a control set to distinguish induced fit from experimental error and natural protein flexibility, we show that the fraction of structural letters modified upon binding is significantly greater than in the control set (36% versus 28%). This proportion is even greater in the interface regions (41%). Interface regions preferentially involve coils. Our analysis further reveals that some structural letters in coil are not favored in the interface. We show that certain structural letters in coil are particularly subject to modifications at the interface, and that the severity of structural change also varies. These information are used to derive a structural letter substitution matrix that summarizes the local structural changes observed in our data set. We also illustrate the usefulness of our approach to identify common binding motifs in unrelated proteins. Our study provides qualitative information about induced fit. These results could be of help for flexible docking.

  20. Structural deformation upon protein-protein interaction: A structural alphabet approach

    Directory of Open Access Journals (Sweden)

    Lecornet Hélène

    2008-02-01

    Full Text Available Abstract Background In a number of protein-protein complexes, the 3D structures of bound and unbound partners significantly differ, supporting the induced fit hypothesis for protein-protein binding. Results In this study, we explore the induced fit modifications on a set of 124 proteins available in both bound and unbound forms, in terms of local structure. The local structure is described thanks to a structural alphabet of 27 structural letters that allows a detailed description of the backbone. Using a control set to distinguish induced fit from experimental error and natural protein flexibility, we show that the fraction of structural letters modified upon binding is significantly greater than in the control set (36% versus 28%. This proportion is even greater in the interface regions (41%. Interface regions preferentially involve coils. Our analysis further reveals that some structural letters in coil are not favored in the interface. We show that certain structural letters in coil are particularly subject to modifications at the interface, and that the severity of structural change also varies. These information are used to derive a structural letter substitution matrix that summarizes the local structural changes observed in our data set. We also illustrate the usefulness of our approach to identify common binding motifs in unrelated proteins. Conclusion Our study provides qualitative information about induced fit. These results could be of help for flexible docking.

  1. An examination of a reciprocal relationship between network governance and network structure

    DEFF Research Database (Denmark)

    Bergenholtz, Carsten; Goduscheit, René Chester

    2011-01-01

    In the present article, we examine the network structure and governance of inter-organisational innovation networks over time. Network governance refers to the issue of how to manage and coordinate the relational activities and processes in the network while research on network structure deals...

  2. Dengue-2 Structural Proteins Associate with Human Proteins to Produce a Coagulation and Innate Immune Response Biased Interactome

    Directory of Open Access Journals (Sweden)

    Soares Luis RB

    2011-01-01

    Full Text Available Abstract Background Dengue virus infection is a public health threat to hundreds of millions of individuals in the tropical regions of the globe. Although Dengue infection usually manifests itself in its mildest, though often debilitating clinical form, dengue fever, life-threatening complications commonly arise in the form of hemorrhagic shock and encephalitis. The etiological basis for the virus-induced pathology in general, and the different clinical manifestations in particular, are not well understood. We reasoned that a detailed knowledge of the global biological processes affected by virus entry into a cell might help shed new light on this long-standing problem. Methods A bacterial two-hybrid screen using DENV2 structural proteins as bait was performed, and the results were used to feed a manually curated, global dengue-human protein interaction network. Gene ontology and pathway enrichment, along with network topology and microarray meta-analysis, were used to generate hypothesis regarding dengue disease biology. Results Combining bioinformatic tools with two-hybrid technology, we screened human cDNA libraries to catalogue proteins physically interacting with the DENV2 virus structural proteins, Env, cap and PrM. We identified 31 interacting human proteins representing distinct biological processes that are closely related to the major clinical diagnostic feature of dengue infection: haemostatic imbalance. In addition, we found dengue-binding human proteins involved with additional key aspects, previously described as fundamental for virus entry into cells and the innate immune response to infection. Construction of a DENV2-human global protein interaction network revealed interesting biological properties suggested by simple network topology analysis. Conclusions Our experimental strategy revealed that dengue structural proteins interact with human protein targets involved in the maintenance of blood coagulation and innate anti

  3. Beta-structures in fibrous proteins.

    Science.gov (United States)

    Kajava, Andrey V; Squire, John M; Parry, David A D

    2006-01-01

    The beta-form of protein folding, one of the earliest protein structures to be defined, was originally observed in studies of silks. It was then seen in early studies of synthetic polypeptides and, of course, is now known to be present in a variety of guises as an essential component of globular protein structures. However, in the last decade or so it has become clear that the beta-conformation of chains is present not only in many of the amyloid structures associated with, for example, Alzheimer's Disease, but also in the prion structures associated with the spongiform encephalopathies. Furthermore, X-ray crystallography studies have revealed the high incidence of the beta-fibrous proteins among virulence factors of pathogenic bacteria and viruses. Here we describe the basic forms of the beta-fold, summarize the many different new forms of beta-structural fibrous arrangements that have been discovered, and review advances in structural studies of amyloid and prion fibrils. These and other issues are described in detail in later chapters.

  4. Using the clustered circular layout as an informative method for visualizing protein-protein interaction networks.

    Science.gov (United States)

    Fung, David C Y; Wilkins, Marc R; Hart, David; Hong, Seok-Hee

    2010-07-01

    The force-directed layout is commonly used in computer-generated visualizations of protein-protein interaction networks. While it is good for providing a visual outline of the protein complexes and their interactions, it has two limitations when used as a visual analysis method. The first is poor reproducibility. Repeated running of the algorithm does not necessarily generate the same layout, therefore, demanding cognitive readaptation on the investigator's part. The second limitation is that it does not explicitly display complementary biological information, e.g. Gene Ontology, other than the protein names or gene symbols. Here, we present an alternative layout called the clustered circular layout. Using the human DNA replication protein-protein interaction network as a case study, we compared the two network layouts for their merits and limitations in supporting visual analysis.

  5. Emergence of modularity and disassortativity in protein-protein interaction networks.

    Science.gov (United States)

    Wan, Xi; Cai, Shuiming; Zhou, Jin; Liu, Zengrong

    2010-12-01

    In this paper, we present a simple evolution model of protein-protein interaction networks by introducing a rule of small-preference duplication of a node, meaning that the probability of a node chosen to duplicate is inversely proportional to its degree, and subsequent divergence plus nonuniform heterodimerization based on some plausible mechanisms in biology. We show that our model cannot only reproduce scale-free connectivity and small-world pattern, but also exhibit hierarchical modularity and disassortativity. After comparing the features of our model with those of real protein-protein interaction networks, we believe that our model can provide relevant insights into the mechanism underlying the evolution of protein-protein interaction networks. © 2010 American Institute of Physics.

  6. Computational Modeling of Complex Protein Activity Networks

    NARCIS (Netherlands)

    Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude

    2017-01-01

    Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a

  7. Fibrous Protein Structures: Hierarchy, History and Heroes.

    Science.gov (United States)

    Squire, John M; Parry, David A D

    2017-01-01

    During the 1930s and 1940s the technique of X-ray diffraction was applied widely by William Astbury and his colleagues to a number of naturally-occurring fibrous materials. On the basis of the diffraction patterns obtained, he observed that the structure of each of the fibres was dominated by one of a small number of different types of molecular conformation. One group of fibres, known as the k-m-e-f group of proteins (keratin - myosin - epidermin - fibrinogen), gave rise to diffraction characteristics that became known as the α-pattern. Others, such as those from a number of silks, gave rise to a different pattern - the β-pattern, while connective tissues yielded a third unique set of diffraction characteristics. At the time of Astbury's work, the structures of these materials were unknown, though the spacings of the main X-ray reflections gave an idea of the axial repeats and the lateral packing distances. In a breakthrough in the early 1950s, the basic structures of all of these fibrous proteins were determined. It was found that the long protein chains, composed of strings of amino acids, could be folded up in a systematic manner to generate a limited number of structures that were consistent with the X-ray data. The most important of these were known as the α-helix, the β-sheet, and the collagen triple helix. These studies provided information about the basic building blocks of all proteins, both fibrous and globular. They did not, however, provide detailed information about how these molecules packed together in three-dimensions to generate the fibres found in vivo. A number of possible packing arrangements were subsequently deduced from the X-ray diffraction and other data, but it is only in the last few years, through the continued improvements of electron microscopy, that the packing details within some fibrous proteins can now be seen directly. Here we outline briefly some of the milestones in fibrous protein structure determination, the role of the

  8. Self-Healing Networks: Redundancy and Structure

    Science.gov (United States)

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-01-01

    We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. We then analyze the effect of the level of redundancy on the resilience to multiple failures; in particular, we measure the fraction of nodes still served for increasing levels of network damages. Finally, we study the effects of redundancy under different connectivity patterns—from planar grids, to small-world, up to scale-free networks—on healing performances. Small-world topologies show that introducing some long-range connections in planar grids greatly enhances the resilience to multiple failures with performances comparable to the case of the most resilient (and least realistic) scale-free structures. Obvious applications of self-healing are in the important field of infrastructural networks like gas, power, water, oil distribution systems. PMID:24533065

  9. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Ma

    Full Text Available A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.

  10. Protein diffusion in photopolymerized poly(ethylene glycol) hydrogel networks

    International Nuclear Information System (INIS)

    Engberg, Kristin; Frank, Curtis W

    2011-01-01

    In this study, protein diffusion through swollen hydrogel networks prepared from end-linked poly(ethylene glycol)-diacrylate (PEG-DA) was investigated. Hydrogels were prepared via photopolymerization from PEG-DA macromonomer solutions of two molecular weights, 4600 Da and 8000 Da, with three initial solid contents: 20, 33 and 50 wt/wt% PEG. Diffusion coefficients for myoglobin traveling across the hydrogel membrane were determined for all PEG network compositions. The diffusion coefficient depended on PEG molecular weight and initial solid content, with the slowest diffusion occurring through lower molecular weight, high-solid-content networks (D gel = 0.16 ± 0.02 x 10 -8 cm 2 s -1 ) and the fastest diffusion occurring through higher molecular weight, low-solid-content networks (D gel = 11.05 ± 0.43 x 10 -8 cm 2 s -1 ). Myoglobin diffusion coefficients increased linearly with the increase of water content within the hydrogels. The permeability of three larger model proteins (horseradish peroxidase, bovine serum albumin and immunoglobulin G) through PEG(8000) hydrogel membranes was also examined, with the observation that globular molecules as large as 10.7 nm in hydrodynamic diameter can diffuse through the PEG network. Protein diffusion coefficients within the PEG hydrogels ranged from one to two orders of magnitude lower than the diffusion coefficients in free water. Network defects were determined to be a significant contributing factor to the observed protein diffusion.

  11. Topological and functional properties of the small GTPases protein interaction network.

    Directory of Open Access Journals (Sweden)

    Anna Delprato

    Full Text Available Small GTP binding proteins of the Ras superfamily (Ras, Rho, Rab, Arf, and Ran regulate key cellular processes such as signal transduction, cell proliferation, cell motility, and vesicle transport. A great deal of experimental evidence supports the existence of signaling cascades and feedback loops within and among the small GTPase subfamilies suggesting that these proteins function in a coordinated and cooperative manner. The interplay occurs largely through association with bi-partite regulatory and effector proteins but can also occur through the active form of the small GTPases themselves. In order to understand the connectivity of the small GTPases signaling routes, a systems-level approach that analyzes data describing direct and indirect interactions was used to construct the small GTPases protein interaction network. The data were curated from the Search Tool for the Retrieval of Interacting Genes (STRING database and include only experimentally validated interactions. The network method enables the conceptualization of the overall structure as well as the underlying organization of the protein-protein interactions. The interaction network described here is comprised of 778 nodes and 1943 edges and has a scale-free topology. Rac1, Cdc42, RhoA, and HRas are identified as the hubs. Ten sub-network motifs are also identified in this study with themes in apoptosis, cell growth/proliferation, vesicle traffic, cell adhesion/junction dynamics, the nicotinamide adenine dinucleotide phosphate (NADPH oxidase response, transcription regulation, receptor-mediated endocytosis, gene silencing, and growth factor signaling. Bottleneck proteins that bridge signaling paths and proteins that overlap in multiple small GTPase networks are described along with the functional annotation of all proteins in the network.

  12. Structure of the human chromosome interaction network.

    Directory of Open Access Journals (Sweden)

    Sergio Sarnataro

    Full Text Available New Hi-C technologies have revealed that chromosomes have a complex network of spatial contacts in the cell nucleus of higher organisms, whose organisation is only partially understood. Here, we investigate the structure of such a network in human GM12878 cells, to derive a large scale picture of nuclear architecture. We find that the intensity of intra-chromosomal interactions is power-law distributed. Inter-chromosomal interactions are two orders of magnitude weaker and exponentially distributed, yet they are not randomly arranged along the genomic sequence. Intra-chromosomal contacts broadly occur between epigenomically homologous regions, whereas inter-chromosomal contacts are especially associated with regions rich in highly expressed genes. Overall, genomic contacts in the nucleus appear to be structured as a network of networks where a set of strongly individual chromosomal units, as envisaged in the 'chromosomal territory' scenario derived from microscopy, interact with each other via on average weaker, yet far from random and functionally important interactions.

  13. Positive Selection and Centrality in the Yeast and Fly Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Sandip Chakraborty

    2016-01-01

    Full Text Available Proteins within a molecular network are expected to be subject to different selective pressures depending on their relative hierarchical positions. However, it is not obvious what genes within a network should be more likely to evolve under positive selection. On one hand, only mutations at genes with a relatively high degree of control over adaptive phenotypes (such as those encoding highly connected proteins are expected to be “seen” by natural selection. On the other hand, a high degree of pleiotropy at these genes is expected to hinder adaptation. Previous analyses of the human protein-protein interaction network have shown that genes under long-term, recurrent positive selection (as inferred from interspecific comparisons tend to act at the periphery of the network. It is unknown, however, whether these trends apply to other organisms. Here, we show that long-term positive selection has preferentially targeted the periphery of the yeast interactome. Conversely, in flies, genes under positive selection encode significantly more connected and central proteins. These observations are not due to covariation of genes’ adaptability and centrality with confounding factors. Therefore, the distribution of proteins encoded by genes under recurrent positive selection across protein-protein interaction networks varies from one species to another.

  14. DeepQA: improving the estimation of single protein model quality with deep belief networks.

    Science.gov (United States)

    Cao, Renzhi; Bhattacharya, Debswapna; Hou, Jie; Cheng, Jianlin

    2016-12-05

    Protein quality assessment (QA) useful for ranking and selecting protein models has long been viewed as one of the major challenges for protein tertiary structure prediction. Especially, estimating the quality of a single protein model, which is important for selecting a few good models out of a large model pool consisting of mostly low-quality models, is still a largely unsolved problem. We introduce a novel single-model quality assessment method DeepQA based on deep belief network that utilizes a number of selected features describing the quality of a model from different perspectives, such as energy, physio-chemical characteristics, and structural information. The deep belief network is trained on several large datasets consisting of models from the Critical Assessment of Protein Structure Prediction (CASP) experiments, several publicly available datasets, and models generated by our in-house ab initio method. Our experiments demonstrate that deep belief network has better performance compared to Support Vector Machines and Neural Networks on the protein model quality assessment problem, and our method DeepQA achieves the state-of-the-art performance on CASP11 dataset. It also outperformed two well-established methods in selecting good outlier models from a large set of models of mostly low quality generated by ab initio modeling methods. DeepQA is a useful deep learning tool for protein single model quality assessment and protein structure prediction. The source code, executable, document and training/test datasets of DeepQA for Linux is freely available to non-commercial users at http://cactus.rnet.missouri.edu/DeepQA/ .

  15. Characteristic imsets for learning Bayesian network structure

    Czech Academy of Sciences Publication Activity Database

    Hemmecke, R.; Lindner, S.; Studený, Milan

    2012-01-01

    Roč. 53, č. 9 (2012), s. 1336-1349 ISSN 0888-613X R&D Projects: GA MŠk(CZ) 1M0572; GA ČR GA201/08/0539 Institutional support: RVO:67985556 Keywords : learning Bayesian network structure * essential graph * standard imset * characteristic imset * LP relaxation of a polytope Subject RIV: BA - General Mathematics Impact factor: 1.729, year: 2012 http://library.utia.cas.cz/separaty/2012/MTR/studeny-0382596.pdf

  16. The effect of oil type on network formation by protein aggregates into oleogels

    NARCIS (Netherlands)

    Vries, de Auke; Lopez Gomez, Yuly; Linden, van der Erik; Scholten, Elke

    2017-01-01

    The aim of this study was to assess the effect of oil type on the network formation of heat-set protein aggregates in liquid oil. The gelling properties of such aggregates to structure oil into so-called ‘oleogels’ are related to both the particle-particle and particle-solvent interactions. To

  17. A Kernel for Protein Secondary Structure Prediction

    OpenAIRE

    Guermeur , Yann; Lifchitz , Alain; Vert , Régis

    2004-01-01

    http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10338&mode=toc; International audience; Multi-class support vector machines have already proved efficient in protein secondary structure prediction as ensemble methods, to combine the outputs of sets of classifiers based on different principles. In this chapter, their implementation as basic prediction methods, processing the primary structure or the profile of multiple alignments, is investigated. A kernel devoted to the task is in...

  18. Mining protein interactomes to improve their reliability and support the advancement of network medicine

    KAUST Repository

    Alanis Lobato, Gregorio

    2015-09-23

    High-throughput detection of protein interactions has had a major impact in our understanding of the intricate molecular machinery underlying the living cell, and has permitted the construction of very large protein interactomes. The protein networks that are currently available are incomplete and a significant percentage of their interactions are false positives. Fortunately, the structural properties observed in good quality social or technological networks are also present in biological systems. This has encouraged the development of tools, to improve the reliability of protein networks and predict new interactions based merely on the topological characteristics of their components. Since diseases are rarely caused by the malfunction of a single protein, having a more complete and reliable interactome is crucial in order to identify groups of inter-related proteins involved in disease etiology. These system components can then be targeted with minimal collateral damage. In this article, an important number of network mining tools is reviewed, together with resources from which reliable protein interactomes can be constructed. In addition to the review, a few representative examples of how molecular and clinical data can be integrated to deepen our understanding of pathogenesis are discussed.

  19. Mining protein interactomes to improve their reliability and support the advancement of network medicine

    Directory of Open Access Journals (Sweden)

    Gregorio eAlanis-Lobato

    2015-09-01

    Full Text Available High-throughput detection of protein interactions has had a major impact in our understanding of the intricate molecular machinery underlying the living cell, and has permitted the construction of very large protein interactomes. The protein networks that are currently available are incomplete and a significant percentage of their interactions are false positives. Fortunately, the structural properties observed in good quality social or technological networks are also present in biological systems. This has encouraged the development of tools, to improve the reliability of protein networks and predict new interactions based merely on the topological characteristics of their components. Since diseases are rarely caused by the malfunction of a single protein, having a more complete and reliable interactome is crucial in order to identify groups of inter-related proteins involved in disease aetiology. These system components can then be targeted with minimal collateral damage. In this article, an important number of network mining tools is reviewed, together with resources from which reliable protein interactomes can be constructed. In addition to the review, a few representative examples of how molecular and clinical data can be integrated to deepen our understanding of pathogenesis are discussed.

  20. Droplet networks with incorporated protein diodes show collective properties

    Science.gov (United States)

    Maglia, Giovanni; Heron, Andrew J.; Hwang, William L.; Holden, Matthew A.; Mikhailova, Ellina; Li, Qiuhong; Cheley, Stephen; Bayley, Hagan

    2009-07-01

    Recently, we demonstrated that submicrolitre aqueous droplets submerged in an apolar liquid containing lipid can be tightly connected by means of lipid bilayers to form networks. Droplet interface bilayers have been used for rapid screening of membrane proteins and to form asymmetric bilayers with which to examine the fundamental properties of channels and pores. Networks, meanwhile, have been used to form microscale batteries and to detect light. Here, we develop an engineered protein pore with diode-like properties that can be incorporated into droplet interface bilayers in droplet networks to form devices with electrical properties including those of a current limiter, a half-wave rectifier and a full-wave rectifier. The droplet approach, which uses unsophisticated components (oil, lipid, salt water and a simple pore), can therefore be used to create multidroplet networks with collective properties that cannot be produced by droplet pairs.

  1. Discovering disease-associated genes in weighted protein-protein interaction networks

    Science.gov (United States)

    Cui, Ying; Cai, Meng; Stanley, H. Eugene

    2018-04-01

    Although there have been many network-based attempts to discover disease-associated genes, most of them have not taken edge weight - which quantifies their relative strength - into consideration. We use connection weights in a protein-protein interaction (PPI) network to locate disease-related genes. We analyze the topological properties of both weighted and unweighted PPI networks and design an improved random forest classifier to distinguish disease genes from non-disease genes. We use a cross-validation test to confirm that weighted networks are better able to discover disease-associated genes than unweighted networks, which indicates that including link weight in the analysis of network properties provides a better model of complex genotype-phenotype associations.

  2. Protein complex prediction based on k-connected subgraphs in protein interaction network

    Directory of Open Access Journals (Sweden)

    Habibi Mahnaz

    2010-09-01

    Full Text Available Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on connectivity number on subgraphs. We evaluate CFA using several protein interaction networks on reference protein complexes in two benchmark data sets (MIPS and Aloy, containing 1142 and 61 known complexes respectively. We compare CFA to some existing protein complex prediction methods (CMC, MCL, PCP and RNSC in terms of recall and precision. We show that CFA predicts more complexes correctly at a competitive level of precision. Conclusions Many real complexes with different connectivity level in protein interaction network can be predicted based on connectivity number. Our CFA program and results are freely available from http://www.bioinf.cs.ipm.ir/softwares/cfa/CFA.rar.

  3. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks.

    Science.gov (United States)

    He, Jieyue; Li, Chaojun; Ye, Baoliu; Zhong, Wei

    2012-06-25

    Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the

  4. 3D bioprinting of structural proteins.

    Science.gov (United States)

    Włodarczyk-Biegun, Małgorzata K; Del Campo, Aránzazu

    2017-07-01

    3D bioprinting is a booming method to obtain scaffolds of different materials with predesigned and customized morphologies and geometries. In this review we focus on the experimental strategies and recent achievements in the bioprinting of major structural proteins (collagen, silk, fibrin), as a particularly interesting technology to reconstruct the biochemical and biophysical composition and hierarchical morphology of natural scaffolds. The flexibility in molecular design offered by structural proteins, combined with the flexibility in mixing, deposition, and mechanical processing inherent to bioprinting technologies, enables the fabrication of highly functional scaffolds and tissue mimics with a degree of complexity and organization which has only just started to be explored. Here we describe the printing parameters and physical (mechanical) properties of bioinks based on structural proteins, including the biological function of the printed scaffolds. We describe applied printing techniques and cross-linking methods, highlighting the modifications implemented to improve scaffold properties. The used cell types, cell viability, and possible construct applications are also reported. We envision that the application of printing technologies to structural proteins will enable unprecedented control over their supramolecular organization, conferring printed scaffolds biological properties and functions close to natural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Functions and structures of eukaryotic recombination proteins

    International Nuclear Information System (INIS)

    Ogawa, Tomoko

    1994-01-01

    We have found that Rad51 and RecA Proteins form strikingly similar structures together with dsDNA and ATP. Their right handed helical nucleoprotein filaments extend the B-form DNA double helixes to 1.5 times in length and wind the helix. The similarity and uniqueness of their structures must reflect functional homologies between these proteins. Therefore, it is highly probable that similar recombination proteins are present in various organisms of different evolutional states. We have succeeded to clone RAD51 genes from human, mouse, chicken and fission yeast genes, and found that the homologues are widely distributed in eukaryotes. The HsRad51 and MmRad51 or ChRad51 proteins consist of 339 amino acids differing only by 4 or 12 amino acids, respectively, and highly homologous to both yeast proteins, but less so to Dmcl. All of these proteins are homologous to the region from residues 33 to 240 of RecA which was named ''homologous core. The homologous core is likely to be responsible for functions common for all of them, such as the formation of helical nucleoprotein filament that is considered to be involved in homologous pairing in the recombination reaction. The mouse gene is transcribed at a high level in thymus, spleen, testis, and ovary, at lower level in brain and at a further lower level in some other tissues. It is transcribed efficiently in recombination active tissues. A clear functional difference of Rad51 homologues from RecA was suggested by the failure of heterologous genes to complement the deficiency of Scrad51 mutants. This failure seems to reflect the absence of a compatible partner, such as ScRad52 protein in the case of ScRad51 protein, between different species. Thus, these discoveries play a role of the starting point to understand the fundamental gene targeting in mammalian cells and in gene therapy. (J.P.N.)

  6. Chaperone-protease networks in mitochondrial protein homeostasis.

    Science.gov (United States)

    Voos, Wolfgang

    2013-02-01

    As essential organelles, mitochondria are intimately integrated into the metabolism of a eukaryotic cell. The maintenance of the functional integrity of the mitochondrial proteome, also termed protein homeostasis, is facing many challenges both under normal and pathological conditions. First, since mitochondria are derived from bacterial ancestor cells, the proteins in this endosymbiotic organelle have a mixed origin. Only a few proteins are encoded on the mitochondrial genome, most genes for mitochondrial proteins reside in the nuclear genome of the host cell. This distribution requires a complex biogenesis of mitochondrial proteins, which are mostly synthesized in the cytosol and need to be imported into the organelle. Mitochondrial protein biogenesis usually therefore comprises complex folding and assembly processes to reach an enzymatically active state. In addition, specific protein quality control (PQC) processes avoid an accumulation of damaged or surplus polypeptides. Mitochondrial protein homeostasis is based on endogenous enzymatic components comprising a diverse set of chaperones and proteases that form an interconnected functional network. This review describes the different types of mitochondrial proteins with chaperone functions and covers the current knowledge of their roles in protein biogenesis, folding, proteolytic removal and prevention of aggregation, the principal reactions of protein homeostasis. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. An examination of a reciprocal relationship between network governance and network structure

    DEFF Research Database (Denmark)

    Bergenholtz, Carsten; Goduscheit, René Chester

    The present article examines the network structure and governance of inter-organisational innovation networks. Network governance refers to the issue of how to manage and coordinate the relational activities and processes in the network while research on network structure deals with the overall...... structural relations between the actors in the network. These streams of research do contain references to each other but mostly rely on a static conception of the relationship between network structure and the applied network governance. The paper is based on a primarily qualitative case study of a loosely...... coupled Danish inter-organisational innovation network. The proposition is that a reciprocal relation between network governance and network structure can be identified....

  8. Context-specific protein network miner - an online system for exploring context-specific protein interaction networks from the literature

    KAUST Repository

    Chowdhary, Rajesh

    2012-04-06

    Background: Protein interaction networks (PINs) specific within a particular context contain crucial information regarding many cellular biological processes. For example, PINs may include information on the type and directionality of interaction (e.g. phosphorylation), location of interaction (i.e. tissues, cells), and related diseases. Currently, very few tools are capable of deriving context-specific PINs for conducting exploratory analysis. Results: We developed a literature-based online system, Context-specific Protein Network Miner (CPNM), which derives context-specific PINs in real-time from the PubMed database based on a set of user-input keywords and enhanced PubMed query system. CPNM reports enriched information on protein interactions (with type and directionality), their network topology with summary statistics (e.g. most densely connected proteins in the network; most densely connected protein-pairs; and proteins connected by most inbound/outbound links) that can be explored via a user-friendly interface. Some of the novel features of the CPNM system include PIN generation, ontology-based PubMed query enhancement, real-time, user-queried, up-to-date PubMed document processing, and prediction of PIN directionality. Conclusions: CPNM provides a tool for biologists to explore PINs. It is freely accessible at http://www.biotextminer.com/CPNM/. © 2012 Chowdhary et al.

  9. Context-specific protein network miner - an online system for exploring context-specific protein interaction networks from the literature

    KAUST Repository

    Chowdhary, Rajesh; Tan, Sin Lam; Zhang, Jinfeng; Karnik, Shreyas; Bajic, Vladimir B.; Liu, Jun S.

    2012-01-01

    Background: Protein interaction networks (PINs) specific within a particular context contain crucial information regarding many cellular biological processes. For example, PINs may include information on the type and directionality of interaction (e.g. phosphorylation), location of interaction (i.e. tissues, cells), and related diseases. Currently, very few tools are capable of deriving context-specific PINs for conducting exploratory analysis. Results: We developed a literature-based online system, Context-specific Protein Network Miner (CPNM), which derives context-specific PINs in real-time from the PubMed database based on a set of user-input keywords and enhanced PubMed query system. CPNM reports enriched information on protein interactions (with type and directionality), their network topology with summary statistics (e.g. most densely connected proteins in the network; most densely connected protein-pairs; and proteins connected by most inbound/outbound links) that can be explored via a user-friendly interface. Some of the novel features of the CPNM system include PIN generation, ontology-based PubMed query enhancement, real-time, user-queried, up-to-date PubMed document processing, and prediction of PIN directionality. Conclusions: CPNM provides a tool for biologists to explore PINs. It is freely accessible at http://www.biotextminer.com/CPNM/. © 2012 Chowdhary et al.

  10. Distance matrix-based approach to protein structure prediction.

    Science.gov (United States)

    Kloczkowski, Andrzej; Jernigan, Robert L; Wu, Zhijun; Song, Guang; Yang, Lei; Kolinski, Andrzej; Pokarowski, Piotr

    2009-03-01

    dynamics. After structure matching, we apply principal component analysis (PCA) to obtain the important apparent motions for both bound and unbound structures. There are significant similarities between the first few key motions and the first few low-frequency normal modes calculated from a static representative structure with an elastic network model (ENM) that is based on the contact matrix C (related to D), strongly suggesting that the variations among the observed structures and the corresponding conformational changes are facilitated by the low-frequency, global motions intrinsic to the structure. Similarities are also found when the approach is applied to an NMR ensemble, as well as to atomic molecular dynamics (MD) trajectories. Thus, a sufficiently large number of experimental structures can directly provide important information about protein dynamics, but ENM can also provide a similar sampling of conformations. Finally, we use distance constraints from databases of known protein structures for structure refinement. We use the distributions of distances of various types in known protein structures to obtain the most probable ranges or the mean-force potentials for the distances. We then impose these constraints on structures to be refined or include the mean-force potentials directly in the energy minimization so that more plausible structural models can be built. This approach has been successfully used by us in 2006 in the CASPR structure refinement (http://predictioncenter.org/caspR).

  11. Water polygons in high-resolution protein crystal structures.

    Science.gov (United States)

    Lee, Jonas; Kim, Sung-Hou

    2009-07-01

    We have analyzed the interstitial water (ISW) structures in 1500 protein crystal structures deposited in the Protein Data Bank that have greater than 1.5 A resolution with less than 90% sequence similarity with each other. We observed varieties of polygonal water structures composed of three to eight water molecules. These polygons may represent the time- and space-averaged structures of "stable" water oligomers present in liquid water, and their presence as well as relative population may be relevant in understanding physical properties of liquid water at a given temperature. On an average, 13% of ISWs are localized enough to be visible by X-ray diffraction. Of those, averages of 78% are water molecules in the first water layer on the protein surface. Of the localized ISWs beyond the first layer, almost half of them form water polygons such as trigons, tetragons, as well as expected pentagons, hexagons, higher polygons, partial dodecahedrons, and disordered networks. Most of the octagons and nanogons are formed by fusion of smaller polygons. The trigons are most commonly observed. We suggest that our observation provides an experimental basis for including these water polygon structures in correlating and predicting various water properties in liquid state.

  12. Exploring the Ligand-Protein Networks in Traditional Chinese Medicine: Current Databases, Methods, and Applications

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhao

    2013-01-01

    Full Text Available The traditional Chinese medicine (TCM, which has thousands of years of clinical application among China and other Asian countries, is the pioneer of the “multicomponent-multitarget” and network pharmacology. Although there is no doubt of the efficacy, it is difficult to elucidate convincing underlying mechanism of TCM due to its complex composition and unclear pharmacology. The use of ligand-protein networks has been gaining significant value in the history of drug discovery while its application in TCM is still in its early stage. This paper firstly surveys TCM databases for virtual screening that have been greatly expanded in size and data diversity in recent years. On that basis, different screening methods and strategies for identifying active ingredients and targets of TCM are outlined based on the amount of network information available, both on sides of ligand bioactivity and the protein structures. Furthermore, applications of successful in silico target identification attempts are discussed in detail along with experiments in exploring the ligand-protein networks of TCM. Finally, it will be concluded that the prospective application of ligand-protein networks can be used not only to predict protein targets of a small molecule, but also to explore the mode of action of TCM.

  13. A combinatorial approach to detect coevolved amino acid networks in protein families of variable divergence.

    Directory of Open Access Journals (Sweden)

    Julie Baussand

    2009-09-01

    Full Text Available Communication between distant sites often defines the biological role of a protein: amino acid long-range interactions are as important in binding specificity, allosteric regulation and conformational change as residues directly contacting the substrate. The maintaining of functional and structural coupling of long-range interacting residues requires coevolution of these residues. Networks of interaction between coevolved residues can be reconstructed, and from the networks, one can possibly derive insights into functional mechanisms for the protein family. We propose a combinatorial method for mapping conserved networks of amino acid interactions in a protein which is based on the analysis of a set of aligned sequences, the associated distance tree and the combinatorics of its subtrees. The degree of coevolution of all pairs of coevolved residues is identified numerically, and networks are reconstructed with a dedicated clustering algorithm. The method drops the constraints on high sequence divergence limiting the range of applicability of the statistical approaches previously proposed. We apply the method to four protein families where we show an accurate detection of functional networks and the possibility to treat sets of protein sequences of variable divergence.

  14. The Oncogenic Palmitoyi-Protein Network in Prostate Cancer

    Science.gov (United States)

    2015-06-01

    was performed by comparing LFQ intensities computed by MaxQuant.16 After statistical analysis, we identified 29 significantly downregulated and 32... statistical analysis, 30 candidate palmitoyl-proteins with an H/L ratio cutoff of 0.667 were accepted as candidate DHHC3 substrates (Table 1). Among...proteomics, we identified a gigantic palmitoyl-protein network regulated by caveolin-1. Moreover, by integrating RNA interference (RNAi), triplex SILAC, and

  15. Artificial Intelligence in Prediction of Secondary Protein Structure Using CB513 Database

    Science.gov (United States)

    Avdagic, Zikrija; Purisevic, Elvir; Omanovic, Samir; Coralic, Zlatan

    2009-01-01

    In this paper we describe CB513 a non-redundant dataset, suitable for development of algorithms for prediction of secondary protein structure. A program was made in Borland Delphi for transforming data from our dataset to make it suitable for learning of neural network for prediction of secondary protein structure implemented in MATLAB Neural-Network Toolbox. Learning (training and testing) of neural network is researched with different sizes of windows, different number of neurons in the hidden layer and different number of training epochs, while using dataset CB513. PMID:21347158

  16. Measuring structural similarity in large online networks.

    Science.gov (United States)

    Shi, Yongren; Macy, Michael

    2016-09-01

    Structural similarity based on bipartite graphs can be used to detect meaningful communities, but the networks have been tiny compared to massive online networks. Scalability is important in applications involving tens of millions of individuals with highly skewed degree distributions. Simulation analysis holding underlying similarity constant shows that two widely used measures - Jaccard index and cosine similarity - are biased by the distribution of out-degree in web-scale networks. However, an alternative measure, the Standardized Co-incident Ratio (SCR), is unbiased. We apply SCR to members of Congress, musical artists, and professional sports teams to show how massive co-following on Twitter can be used to map meaningful affiliations among cultural entities, even in the absence of direct connections to one another. Our results show how structural similarity can be used to map cultural alignments and demonstrate the potential usefulness of social media data in the study of culture, politics, and organizations across the social and behavioral sciences. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Adaptation of coordination mechanisms to network structures

    Directory of Open Access Journals (Sweden)

    Herwig Mittermayer

    2008-12-01

    Full Text Available The coordination efficiency of Supply Chain Management is determined by two opposite poles: benefit from improved planning results and associated coordination cost. The centralization grade, applied coordination mechanisms and IT support have influence on both categories. Therefore three reference types are developed and subsequently detailed in business process models for different network structures. In a simulation study the performance of these organization forms are compared in a process plant network. Coordination benefit is observed if the planning mode is altered by means of a demand planning IT tool. Coordination cost is divided into structural and activity-dependent cost. The activity level rises when reactive planning iterations become necessary as a consequence of inconsistencies among planning levels. Some characteristic influence factors are considered to be a reason for uninfeasible planning. In this study the effect of capacity availability and stochastic machine downtimes is investigated in an uncertain demand situation. Results that if the network runs with high overcapacity, central planning is less likely to increase benefit enough to outweigh associated cost. Otherwise, if capacity constraints are crucial, a central planning mode is recommendable. When also unforeseen machine downtimes are low, the use of sophisticated IT tools is most profitable.

  18. Discrete Haar transform and protein structure.

    Science.gov (United States)

    Morosetti, S

    1997-12-01

    The discrete Haar transform of the sequence of the backbone dihedral angles (phi and psi) was performed over a set of X-ray protein structures of high resolution from the Brookhaven Protein Data Bank. Afterwards, the new dihedral angles were calculated by the inverse transform, using a growing number of Haar functions, from the lower to the higher degree. New structures were obtained using these dihedral angles, with standard values for bond lengths and angles, and with omega = 0 degree. The reconstructed structures were compared with the experimental ones, and analyzed by visual inspection and statistical analysis. When half of the Haar coefficients were used, all the reconstructed structures were not yet collapsed to a tertiary folding, but they showed yet realized most of the secondary motifs. These results indicate a substantial separation of structural information in the space of Haar transform, with the secondary structural information mainly present in the Haar coefficients of lower degrees, and the tertiary one present in the higher degree coefficients. Because of this separation, the representation of the folded structures in the space of Haar transform seems a promising candidate to encompass the problem of premature convergence in genetic algorithms.

  19. Recognition of functional sites in protein structures.

    Science.gov (United States)

    Shulman-Peleg, Alexandra; Nussinov, Ruth; Wolfson, Haim J

    2004-06-04

    Recognition of regions on the surface of one protein, that are similar to a binding site of another is crucial for the prediction of molecular interactions and for functional classifications. We first describe a novel method, SiteEngine, that assumes no sequence or fold similarities and is able to recognize proteins that have similar binding sites and may perform similar functions. We achieve high efficiency and speed by introducing a low-resolution surface representation via chemically important surface points, by hashing triangles of physico-chemical properties and by application of hierarchical scoring schemes for a thorough exploration of global and local similarities. We proceed to rigorously apply this method to functional site recognition in three possible ways: first, we search a given functional site on a large set of complete protein structures. Second, a potential functional site on a protein of interest is compared with known binding sites, to recognize similar features. Third, a complete protein structure is searched for the presence of an a priori unknown functional site, similar to known sites. Our method is robust and efficient enough to allow computationally demanding applications such as the first and the third. From the biological standpoint, the first application may identify secondary binding sites of drugs that may lead to side-effects. The third application finds new potential sites on the protein that may provide targets for drug design. Each of the three applications may aid in assigning a function and in classification of binding patterns. We highlight the advantages and disadvantages of each type of search, provide examples of large-scale searches of the entire Protein Data Base and make functional predictions.

  20. Protein interaction networks by proteome peptide scanning.

    Directory of Open Access Journals (Sweden)

    Christiane Landgraf

    2004-01-01

    Full Text Available A substantial proportion of protein interactions relies on small domains binding to short peptides in the partner proteins. Many of these interactions are relatively low affinity and transient, and they impact on signal transduction. However, neither the number of potential interactions mediated by each domain nor the degree of promiscuity at a whole proteome level has been investigated. We have used a combination of phage display and SPOT synthesis to discover all the peptides in the yeast proteome that have the potential to bind to eight SH3 domains. We first identified the peptides that match a relaxed consensus, as deduced from peptides selected by phage display experiments. Next, we synthesized all the matching peptides at high density on a cellulose membrane, and we probed them directly with the SH3 domains. The domains that we have studied were grouped by this approach into five classes with partially overlapping specificity. Within the classes, however, the domains display a high promiscuity and bind to a large number of common targets with comparable affinity. We estimate that the yeast proteome contains as few as six peptides that bind to the Abp1 SH3 domain with a dissociation constant lower than 100 microM, while it contains as many as 50-80 peptides with corresponding affinity for the SH3 domain of Yfr024c. All the targets of the Abp1 SH3 domain, identified by this approach, bind to the native protein in vivo, as shown by coimmunoprecipitation experiments. Finally, we demonstrate that this strategy can be extended to the analysis of the entire human proteome. We have developed an approach, named WISE (whole interactome scanning experiment, that permits rapid and reliable identification of the partners of any peptide recognition module by peptide scanning of a proteome. Since the SPOT synthesis approach is semiquantitative and provides an approximation of the dissociation constants of the several thousands of interactions that are

  1. Defining an essence of structure determining residue contacts in proteins.

    Science.gov (United States)

    Sathyapriya, R; Duarte, Jose M; Stehr, Henning; Filippis, Ioannis; Lappe, Michael

    2009-12-01

    The network of native non-covalent residue contacts determines the three-dimensional structure of a protein. However, not all contacts are of equal structural significance, and little knowledge exists about a minimal, yet sufficient, subset required to define the global features of a protein. Characterisation of this "structural essence" has remained elusive so far: no algorithmic strategy has been devised to-date that could outperform a random selection in terms of 3D reconstruction accuracy (measured as the Ca RMSD). It is not only of theoretical interest (i.e., for design of advanced statistical potentials) to identify the number and nature of essential native contacts-such a subset of spatial constraints is very useful in a number of novel experimental methods (like EPR) which rely heavily on constraint-based protein modelling. To derive accurate three-dimensional models from distance constraints, we implemented a reconstruction pipeline using distance geometry. We selected a test-set of 12 protein structures from the four major SCOP fold classes and performed our reconstruction analysis. As a reference set, series of random subsets (ranging from 10% to 90% of native contacts) are generated for each protein, and the reconstruction accuracy is computed for each subset. We have developed a rational strategy, termed "cone-peeling" that combines sequence features and network descriptors to select minimal subsets that outperform the reference sets. We present, for the first time, a rational strategy to derive a structural essence of residue contacts and provide an estimate of the size of this minimal subset. Our algorithm computes sparse subsets capable of determining the tertiary structure at approximately 4.8 A Ca RMSD with as little as 8% of the native contacts (Ca-Ca and Cb-Cb). At the same time, a randomly chosen subset of native contacts needs about twice as many contacts to reach the same level of accuracy. This "structural essence" opens new avenues in the

  2. Automated Protein Structure Modeling with SWISS-MODEL Workspace and the Protein Model Portal

    OpenAIRE

    Bordoli, Lorenza; Schwede, Torsten

    2012-01-01

    Comparative protein structure modeling is a computational approach to build three-dimensional structural models for proteins using experimental structures of related protein family members as templates. Regular blind assessments of modeling accuracy have demonstrated that comparative protein structure modeling is currently the most reliable technique to model protein structures. Homology models are often sufficiently accurate to substitute for experimental structures in a wide variety of appl...

  3. P-Finder: Reconstruction of Signaling Networks from Protein-Protein Interactions and GO Annotations.

    Science.gov (United States)

    Young-Rae Cho; Yanan Xin; Speegle, Greg

    2015-01-01

    Because most complex genetic diseases are caused by defects of cell signaling, illuminating a signaling cascade is essential for understanding their mechanisms. We present three novel computational algorithms to reconstruct signaling networks between a starting protein and an ending protein using genome-wide protein-protein interaction (PPI) networks and gene ontology (GO) annotation data. A signaling network is represented as a directed acyclic graph in a merged form of multiple linear pathways. An advanced semantic similarity metric is applied for weighting PPIs as the preprocessing of all three methods. The first algorithm repeatedly extends the list of nodes based on path frequency towards an ending protein. The second algorithm repeatedly appends edges based on the occurrence of network motifs which indicate the link patterns more frequently appearing in a PPI network than in a random graph. The last algorithm uses the information propagation technique which iteratively updates edge orientations based on the path strength and merges the selected directed edges. Our experimental results demonstrate that the proposed algorithms achieve higher accuracy than previous methods when they are tested on well-studied pathways of S. cerevisiae. Furthermore, we introduce an interactive web application tool, called P-Finder, to visualize reconstructed signaling networks.

  4. Structure Learning in Power Distribution Networks

    Energy Technology Data Exchange (ETDEWEB)

    Deka, Deepjyoti [Univ. of Texas, Austin, TX (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-13

    Traditionally power distribution networks are either not observable or only partially observable. This complicates development and implementation of new smart grid technologies, such as these related to demand response, outage detection and management, and improved load-monitoring. Here, inspired by proliferation of the metering technology, we discuss statistical estimation problems in structurally loopy but operationally radial distribution grids consisting in learning operational layout of the network from measurements, e.g. voltage data, which are either already available or can be made available with a relatively minor investment. Our newly suggested algorithms apply to a wide range of realistic scenarios. The algorithms are also computationally efficient – polynomial in time – which is proven theoretically and illustrated computationally on a number of test cases. The technique developed can be applied to detect line failures in real time as well as to understand the scope of possible adversarial attacks on the grid.

  5. Prediction of the location and type of beta-turns in proteins using neural networks.

    OpenAIRE

    Shepherd, A. J.; Gorse, D.; Thornton, J. M.

    1999-01-01

    A neural network has been used to predict both the location and the type of beta-turns in a set of 300 nonhomologous protein domains. A substantial improvement in prediction accuracy compared with previous methods has been achieved by incorporating secondary structure information in the input data. The total percentage of residues correctly classified as beta-turn or not-beta-turn is around 75% with predicted secondary structure information. More significantly, the method gives a Matthews cor...

  6. The network structure of human personality according to the NEO-PI-R: matching network community structure to factor structure.

    Directory of Open Access Journals (Sweden)

    Rutger Goekoop

    Full Text Available INTRODUCTION: Human personality is described preferentially in terms of factors (dimensions found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. AIM: To directly compare the ability of network community detection (NCD and principal component factor analysis (PCA to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R. METHODS: 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. RESULTS: At facet level, NCS showed a best match (96.2% with a 'confirmatory' 5-FS. At item level, NCS showed a best match (80% with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with 'confirmatory' 5-FS and 'exploratory' 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. CONCLUSION: We present the first optimized network graph of personality traits according to the NEO-PI-R: a 'Personality Web'. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network.

  7. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies.

    Directory of Open Access Journals (Sweden)

    Holly J Atkinson

    Full Text Available The dramatic increase in heterogeneous types of biological data--in particular, the abundance of new protein sequences--requires fast and user-friendly methods for organizing this information in a way that enables functional inference. The most widely used strategy to link sequence or structure to function, homology-based function prediction, relies on the fundamental assumption that sequence or structural similarity implies functional similarity. New tools that extend this approach are still urgently needed to associate sequence data with biological information in ways that accommodate the real complexity of the problem, while being accessible to experimental as well as computational biologists. To address this, we have examined the application of sequence similarity networks for visualizing functional trends across protein superfamilies from the context of sequence similarity. Using three large groups of homologous proteins of varying types of structural and functional diversity--GPCRs and kinases from humans, and the crotonase superfamily of enzymes--we show that overlaying networks with orthogonal information is a powerful approach for observing functional themes and revealing outliers. In comparison to other primary methods, networks provide both a good representation of group-wise sequence similarity relationships and a strong visual and quantitative correlation with phylogenetic trees, while enabling analysis and visualization of much larger sets of sequences than trees or multiple sequence alignments can easily accommodate. We also define important limitations and caveats in the application of these networks. As a broadly accessible and effective tool for the exploration of protein superfamilies, sequence similarity networks show great potential for generating testable hypotheses about protein structure-function relationships.

  8. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies.

    Science.gov (United States)

    Atkinson, Holly J; Morris, John H; Ferrin, Thomas E; Babbitt, Patricia C

    2009-01-01

    The dramatic increase in heterogeneous types of biological data--in particular, the abundance of new protein sequences--requires fast and user-friendly methods for organizing this information in a way that enables functional inference. The most widely used strategy to link sequence or structure to function, homology-based function prediction, relies on the fundamental assumption that sequence or structural similarity implies functional similarity. New tools that extend this approach are still urgently needed to associate sequence data with biological information in ways that accommodate the real complexity of the problem, while being accessible to experimental as well as computational biologists. To address this, we have examined the application of sequence similarity networks for visualizing functional trends across protein superfamilies from the context of sequence similarity. Using three large groups of homologous proteins of varying types of structural and functional diversity--GPCRs and kinases from humans, and the crotonase superfamily of enzymes--we show that overlaying networks with orthogonal information is a powerful approach for observing functional themes and revealing outliers. In comparison to other primary methods, networks provide both a good representation of group-wise sequence similarity relationships and a strong visual and quantitative correlation with phylogenetic trees, while enabling analysis and visualization of much larger sets of sequences than trees or multiple sequence alignments can easily accommodate. We also define important limitations and caveats in the application of these networks. As a broadly accessible and effective tool for the exploration of protein superfamilies, sequence similarity networks show great potential for generating testable hypotheses about protein structure-function relationships.

  9. Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes.

    Science.gov (United States)

    Nillegoda, Nadinath B; Stank, Antonia; Malinverni, Duccio; Alberts, Niels; Szlachcic, Anna; Barducci, Alessandro; De Los Rios, Paolo; Wade, Rebecca C; Bukau, Bernd

    2017-05-15

    Hsp70 participates in a broad spectrum of protein folding processes extending from nascent chain folding to protein disaggregation. This versatility in function is achieved through a diverse family of J-protein cochaperones that select substrates for Hsp70. Substrate selection is further tuned by transient complexation between different classes of J-proteins, which expands the range of protein aggregates targeted by metazoan Hsp70 for disaggregation. We assessed the prevalence and evolutionary conservation of J-protein complexation and cooperation in disaggregation. We find the emergence of a eukaryote-specific signature for interclass complexation of canonical J-proteins. Consistently, complexes exist in yeast and human cells, but not in bacteria, and correlate with cooperative action in disaggregation in vitro. Signature alterations exclude some J-proteins from networking, which ensures correct J-protein pairing, functional network integrity and J-protein specialization. This fundamental change in J-protein biology during the prokaryote-to-eukaryote transition allows for increased fine-tuning and broadening of Hsp70 function in eukaryotes.

  10. PCNA Structure and Interactions with Partner Proteins

    KAUST Repository

    Oke, Muse; Zaher, Manal S.; Hamdan, Samir

    2018-01-01

    Proliferating cell nuclear antigen (PCNA) consists of three identical monomers that topologically encircle double-stranded DNA. PCNA stimulates the processivity of DNA polymerase δ and, to a less extent, the intrinsically highly processive DNA polymerase ε. It also functions as a platform that recruits and coordinates the activities of a large number of DNA processing proteins. Emerging structural and biochemical studies suggest that the nature of PCNA-partner proteins interactions is complex. A hydrophobic groove at the front side of PCNA serves as a primary docking site for the consensus PIP box motifs present in many PCNA-binding partners. Sequences that immediately flank the PIP box motif or regions that are distant from it could also interact with the hydrophobic groove and other regions of PCNA. Posttranslational modifications on the backside of PCNA could add another dimension to its interaction with partner proteins. An encounter of PCNA with different DNA structures might also be involved in coordinating its interactions. Finally, the ability of PCNA to bind up to three proteins while topologically linked to DNA suggests that it would be a versatile toolbox in many different DNA processing reactions.

  11. PCNA Structure and Interactions with Partner Proteins

    KAUST Repository

    Oke, Muse

    2018-01-29

    Proliferating cell nuclear antigen (PCNA) consists of three identical monomers that topologically encircle double-stranded DNA. PCNA stimulates the processivity of DNA polymerase δ and, to a less extent, the intrinsically highly processive DNA polymerase ε. It also functions as a platform that recruits and coordinates the activities of a large number of DNA processing proteins. Emerging structural and biochemical studies suggest that the nature of PCNA-partner proteins interactions is complex. A hydrophobic groove at the front side of PCNA serves as a primary docking site for the consensus PIP box motifs present in many PCNA-binding partners. Sequences that immediately flank the PIP box motif or regions that are distant from it could also interact with the hydrophobic groove and other regions of PCNA. Posttranslational modifications on the backside of PCNA could add another dimension to its interaction with partner proteins. An encounter of PCNA with different DNA structures might also be involved in coordinating its interactions. Finally, the ability of PCNA to bind up to three proteins while topologically linked to DNA suggests that it would be a versatile toolbox in many different DNA processing reactions.

  12. Prioritizing disease candidate proteins in cardiomyopathy-specific protein-protein interaction networks based on "guilt by association" analysis.

    Directory of Open Access Journals (Sweden)

    Wan Li

    Full Text Available The cardiomyopathies are a group of heart muscle diseases which can be inherited (familial. Identifying potential disease-related proteins is important to understand mechanisms of cardiomyopathies. Experimental identification of cardiomyophthies is costly and labour-intensive. In contrast, bioinformatics approach has a competitive advantage over experimental method. Based on "guilt by association" analysis, we prioritized candidate proteins involving in human cardiomyopathies. We first built weighted human cardiomyopathy-specific protein-protein interaction networks for three subtypes of cardiomyopathies using the known disease proteins from Online Mendelian Inheritance in Man as seeds. We then developed a method in prioritizing disease candidate proteins to rank candidate proteins in the network based on "guilt by association" analysis. It was found that most candidate proteins with high scores shared disease-related pathways with disease seed proteins. These top ranked candidate proteins were related with the corresponding disease subtypes, and were potential disease-related proteins. Cross-validation and comparison with other methods indicated that our approach could be used for the identification of potentially novel disease proteins, which may provide insights into cardiomyopathy-related mechanisms in a more comprehensive and integrated way.

  13. Protein-mediated surface structuring in biomembranes

    Directory of Open Access Journals (Sweden)

    Maggio B.

    2005-01-01

    Full Text Available The lipids and proteins of biomembranes exhibit highly dissimilar conformations, geometrical shapes, amphipathicity, and thermodynamic properties which constrain their two-dimensional molecular packing, electrostatics, and interaction preferences. This causes inevitable development of large local tensions that frequently relax into phase or compositional immiscibility along lateral and transverse planes of the membrane. On the other hand, these effects constitute the very codes that mediate molecular and structural changes determining and controlling the possibilities for enzymatic activity, apposition and recombination in biomembranes. The presence of proteins constitutes a major perturbing factor for the membrane sculpturing both in terms of its surface topography and dynamics. We will focus on some results from our group within this context and summarize some recent evidence for the active involvement of extrinsic (myelin basic protein, integral (Folch-Lees proteolipid protein and amphitropic (c-Fos and c-Jun proteins, as well as a membrane-active amphitropic phosphohydrolytic enzyme (neutral sphingomyelinase, in the process of lateral segregation and dynamics of phase domains, sculpturing of the surface topography, and the bi-directional modulation of the membrane biochemical reactivity.

  14. A Global Protein Kinase and Phosphatase Interaction Network in Yeast

    Science.gov (United States)

    Breitkreutz, Ashton; Choi, Hyungwon; Sharom, Jeffrey R.; Boucher, Lorrie; Neduva, Victor; Larsen, Brett; Lin, Zhen-Yuan; Breitkreutz, Bobby-Joe; Stark, Chris; Liu, Guomin; Ahn, Jessica; Dewar-Darch, Danielle; Reguly, Teresa; Tang, Xiaojing; Almeida, Ricardo; Qin, Zhaohui Steve; Pawson, Tony; Gingras, Anne-Claude; Nesvizhskii, Alexey I.; Tyers, Mike

    2011-01-01

    The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses. PMID:20489023

  15. Structural analysis of site-directed mutants of cellular retinoic acid-binding protein II addresses the relationship between structural integrity and ligand binding

    International Nuclear Information System (INIS)

    Vaezeslami, Soheila; Jia, Xiaofei; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H.

    2008-01-01

    A water network stabilizes the structure of cellular retionic acid binding protein II. The structural integrity of cellular retinoic acid-binding protein II (CRABPII) has been investigated using the crystal structures of CRABPII mutants. The overall fold was well maintained by these CRABPII mutants, each of which carried multiple different mutations. A water-mediated network is found to be present across the large binding cavity, extending from Arg111 deep inside the cavity to the α2 helix at its entrance. This chain of interactions acts as a ‘pillar’ that maintains the integrity of the protein. The disruption of the water network upon loss of Arg111 leads to decreased structural integrity of the protein. A water-mediated network can be re-established by introducing the hydrophilic Glu121 inside the cavity, which results in a rigid protein with the α2 helix adopting an altered conformation compared with wild-type CRABPII

  16. Integration of relational and hierarchical network information for protein function prediction

    Directory of Open Access Journals (Sweden)

    Jiang Xiaoyu

    2008-08-01

    Full Text Available Abstract Background In the current climate of high-throughput computational biology, the inference of a protein's function from related measurements, such as protein-protein interaction relations, has become a canonical task. Most existing technologies pursue this task as a classification problem, on a term-by-term basis, for each term in a database, such as the Gene Ontology (GO database, a popular rigorous vocabulary for biological functions. However, ontology structures are essentially hierarchies, with certain top to bottom annotation rules which protein function predictions should in principle follow. Currently, the most common approach to imposing these hierarchical constraints on network-based classifiers is through the use of transitive closure to predictions. Results We propose a probabilistic framework to integrate information in relational data, in the form of a protein-protein interaction network, and a hierarchically structured database of terms, in the form of the GO database, for the purpose of protein function prediction. At the heart of our framework is a factorization of local neighborhood information in the protein-protein interaction network across successive ancestral terms in the GO hierarchy. We introduce a classifier within this framework, with computationally efficient implementation, that produces GO-term predictions that naturally obey a hierarchical 'true-path' consistency from root to leaves, without the need for further post-processing. Conclusion A cross-validation study, using data from the yeast Saccharomyces cerevisiae, shows our method offers substantial improvements over both standard 'guilt-by-association' (i.e., Nearest-Neighbor and more refined Markov random field methods, whether in their original form or when post-processed to artificially impose 'true-path' consistency. Further analysis of the results indicates that these improvements are associated with increased predictive capabilities (i.e., increased

  17. A Physical Interaction Network of Dengue Virus and Human Proteins*

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D.; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S.; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J.; Perera, Rushika; LaCount, Douglas J.

    2011-01-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection. PMID:21911577

  18. A physical interaction network of dengue virus and human proteins.

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J; Perera, Rushika; LaCount, Douglas J

    2011-12-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection.

  19. P³DB 3.0: From plant phosphorylation sites to protein networks.

    Science.gov (United States)

    Yao, Qiuming; Ge, Huangyi; Wu, Shangquan; Zhang, Ning; Chen, Wei; Xu, Chunhui; Gao, Jianjiong; Thelen, Jay J; Xu, Dong

    2014-01-01

    In the past few years, the Plant Protein Phosphorylation Database (P(3)DB, http://p3db.org) has become one of the most significant in vivo data resources for studying plant phosphoproteomics. We have substantially updated P(3)DB with respect to format, new datasets and analytic tools. In the P(3)DB 3.0, there are altogether 47 923 phosphosites in 16 477 phosphoproteins curated across nine plant organisms from 32 studies, which have met our multiple quality standards for acquisition of in vivo phosphorylation site data. Centralized by these phosphorylation data, multiple related data and annotations are provided, including protein-protein interaction (PPI), gene ontology, protein tertiary structures, orthologous sequences, kinase/phosphatase classification and Kinase Client Assay (KiC Assay) data--all of which provides context for the phosphorylation event. In addition, P(3)DB 3.0 incorporates multiple network viewers for the above features, such as PPI network, kinase-substrate network, phosphatase-substrate network, and domain co-occurrence network to help study phosphorylation from a systems point of view. Furthermore, the new P(3)DB reflects a community-based design through which users can share datasets and automate data depository processes for publication purposes. Each of these new features supports the goal of making P(3)DB a comprehensive, systematic and interactive platform for phosphoproteomics research.

  20. Completing sparse and disconnected protein-protein network by deep learning.

    Science.gov (United States)

    Huang, Lei; Liao, Li; Wu, Cathy H

    2018-03-22

    Protein-protein interaction (PPI) prediction remains a central task in systems biology to achieve a better and holistic understanding of cellular and intracellular processes. Recently, an increasing number of computational methods have shifted from pair-wise prediction to network level prediction. Many of the existing network level methods predict PPIs under the assumption that the training network should be connected. However, this assumption greatly affects the prediction power and limits the application area because the current golden standard PPI networks are usually very sparse and disconnected. Therefore, how to effectively predict PPIs based on a training network that is sparse and disconnected remains a challenge. In this work, we developed a novel PPI prediction method based on deep learning neural network and regularized Laplacian kernel. We use a neural network with an autoencoder-like architecture to implicitly simulate the evolutionary processes of a PPI network. Neurons of the output layer correspond to proteins and are labeled with values (1 for interaction and 0 for otherwise) from the adjacency matrix of a sparse disconnected training PPI network. Unlike autoencoder, neurons at the input layer are given all zero input, reflecting an assumption of no a priori knowledge about PPIs, and hidden layers of smaller sizes mimic ancient interactome at different times during evolution. After the training step, an evolved PPI network whose rows are outputs of the neural network can be obtained. We then predict PPIs by applying the regularized Laplacian kernel to the transition matrix that is built upon the evolved PPI network. The results from cross-validation experiments show that the PPI prediction accuracies for yeast data and human data measured as AUC are increased by up to 8.4 and 14.9% respectively, as compared to the baseline. Moreover, the evolved PPI network can also help us leverage complementary information from the disconnected training network

  1. Design principles for cancer therapy guided by changes in complexity of protein-protein interaction networks.

    Science.gov (United States)

    Benzekry, Sebastian; Tuszynski, Jack A; Rietman, Edward A; Lakka Klement, Giannoula

    2015-05-28

    The ever-increasing expanse of online bioinformatics data is enabling new ways to, not only explore the visualization of these data, but also to apply novel mathematical methods to extract meaningful information for clinically relevant analysis of pathways and treatment decisions. One of the methods used for computing topological characteristics of a space at different spatial resolutions is persistent homology. This concept can also be applied to network theory, and more specifically to protein-protein interaction networks, where the number of rings in an individual cancer network represents a measure of complexity. We observed a linear correlation of R = -0.55 between persistent homology and 5-year survival of patients with a variety of cancers. This relationship was used to predict the proteins within a protein-protein interaction network with the most impact on cancer progression. By re-computing the persistent homology after computationally removing an individual node (protein) from the protein-protein interaction network, we were able to evaluate whether such an inhibition would lead to improvement in patient survival. The power of this approach lied in its ability to identify the effects of inhibition of multiple proteins and in the ability to expose whether the effect of a single inhibition may be amplified by inhibition of other proteins. More importantly, we illustrate specific examples of persistent homology calculations, which correctly predict the survival benefit observed effects in clinical trials using inhibitors of the identified molecular target. We propose that computational approaches such as persistent homology may be used in the future for selection of molecular therapies in clinic. The technique uses a mathematical algorithm to evaluate the node (protein) whose inhibition has the highest potential to reduce network complexity. The greater the drop in persistent homology, the greater reduction in network complexity, and thus a larger

  2. Building and analyzing protein interactome networks by cross-species comparisons

    Directory of Open Access Journals (Sweden)

    Blackman Barron

    2010-03-01

    Full Text Available Abstract Background A genomic catalogue of protein-protein interactions is a rich source of information, particularly for exploring the relationships between proteins. Numerous systems-wide and small-scale experiments have been conducted to identify interactions; however, our knowledge of all interactions for any one species is incomplete, and alternative means to expand these network maps is needed. We therefore took a comparative biology approach to predict protein-protein interactions across five species (human, mouse, fly, worm, and yeast and developed InterologFinder for research biologists to easily navigate this data. We also developed a confidence score for interactions based on available experimental evidence and conservation across species. Results The connectivity of the resultant networks was determined to have scale-free distribution, small-world properties, and increased local modularity, indicating that the added interactions do not disrupt our current understanding of protein network structures. We show examples of how these improved interactomes can be used to analyze a genome-scale dataset (RNAi screen and to assign new function to proteins. Predicted interactions within this dataset were tested by co-immunoprecipitation, resulting in a high rate of validation, suggesting the high quality of networks produced. Conclusions Protein-protein interactions were predicted in five species, based on orthology. An InteroScore, a score accounting for homology, number of orthologues with evidence of interactions, and number of unique observations of interactions, is given to each known and predicted interaction. Our website http://www.interologfinder.org provides research biologists intuitive access to this data.

  3. Community detection for networks with unipartite and bipartite structure

    Science.gov (United States)

    Chang, Chang; Tang, Chao

    2014-09-01

    Finding community structures in networks is important in network science, technology, and applications. To date, most algorithms that aim to find community structures only focus either on unipartite or bipartite networks. A unipartite network consists of one set of nodes and a bipartite network consists of two nonoverlapping sets of nodes with only links joining the nodes in different sets. However, a third type of network exists, defined here as the mixture network. Just like a bipartite network, a mixture network also consists of two sets of nodes, but some nodes may simultaneously belong to two sets, which breaks the nonoverlapping restriction of a bipartite network. The mixture network can be considered as a general case, with unipartite and bipartite networks viewed as its limiting cases. A mixture network can represent not only all the unipartite and bipartite networks, but also a wide range of real-world networks that cannot be properly represented as either unipartite or bipartite networks in fields such as biology and social science. Based on this observation, we first propose a probabilistic model that can find modules in unipartite, bipartite, and mixture networks in a unified framework based on the link community model for a unipartite undirected network [B Ball et al (2011 Phys. Rev. E 84 036103)]. We test our algorithm on synthetic networks (both overlapping and nonoverlapping communities) and apply it to two real-world networks: a southern women bipartite network and a human transcriptional regulatory mixture network. The results suggest that our model performs well for all three types of networks, is competitive with other algorithms for unipartite or bipartite networks, and is applicable to real-world networks.

  4. Structuring detergents for extracting and stabilizing functional membrane proteins.

    Directory of Open Access Journals (Sweden)

    Rima Matar-Merheb

    Full Text Available BACKGROUND: Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. METHODOLOGY/PRINCIPAL FINDINGS: Anionic calix[4]arene based detergents (C4Cn, n=1-12 were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5-24 nm, with the critical micellar concentration (CMC being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein, a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM. They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux much more efficiently than SDS (sodium dodecyl sulphate, FC12 (Foscholine 12 or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. CONCLUSION/SIGNIFICANCE: These compounds seem promising to extract in a functional state

  5. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  6. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  7. Ice cream structure modification by ice-binding proteins.

    Science.gov (United States)

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The E4 protein; structure, function and patterns of expression

    Energy Technology Data Exchange (ETDEWEB)

    Doorbar, John, E-mail: jdoorba@nimr.mrc.ac.uk

    2013-10-15

    }E4, these kinases regulate one of the E1{sup ∧}E4 proteins main functions, the association with the cellular keratin network, and eventually also its cleavage by the protease calpain which allows assembly into amyloid-like fibres and reorganisation of the keratin network. Although the E4 proteins of different HPV types appear divergent at the level of their primary amino acid sequence, they share a recognisable modular organisation and pattern of expression, which may underlie conserved functions and regulation. Assembly into higher-order multimers and suppression of cell proliferation are common to all E4 proteins examined. Although not yet formally demonstrated, a role in virus release and transmission remains a likely function for E4. - Highlights: • E4 gene products have a modular structure, and are expressed from the E1{sup ∧}E4 spliced mRNA. • E4 proteins are modified during epithelial differentiation by phosphorylation and proteolysis. • The E4 proteins contribute to genome amplification-efficiency and virus synthesis. • E4 proteins are abundantly expressed and may facilitate efficient virus release and transmission. • High-risk E4 proteins are deposited as amyloid fibres and can be used as infection biomarkers.

  9. Design and Construction of a High-speed Network Connecting All the Protein Crystallography Beamlines at the Photon Factory

    International Nuclear Information System (INIS)

    Matsugaki, Naohiro; Yamada, Yusuke; Igarashi, Noriyuki; Wakatsuki, Soichi

    2007-01-01

    A private network, physically separated from the facility network, was designed and constructed which covered all the four protein crystallography beamlines at the Photon Factory (PF) and Structural Biology Research Center (SBRC). Connecting all the beamlines in the same network allows for simple authentication and a common working environment for a user who uses multiple beamlines. Giga-bit Ethernet wire-speed was achieved for the communication among the beamlines and SBRC buildings

  10. Interplay between chaperones and protein disorder promotes the evolution of protein networks.

    Directory of Open Access Journals (Sweden)

    Sebastian Pechmann

    2014-06-01

    Full Text Available Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the

  11. Annotating the protein-RNA interaction sites in proteins using evolutionary information and protein backbone structure.

    Science.gov (United States)

    Li, Tao; Li, Qian-Zhong

    2012-11-07

    RNA-protein interactions play important roles in various biological processes. The precise detection of RNA-protein interaction sites is very important for understanding essential biological processes and annotating the function of the proteins. In this study, based on various features from amino acid sequence and structure, including evolutionary information, solvent accessible surface area and torsion angles (φ, ψ) in the backbone structure of the polypeptide chain, a computational method for predicting RNA-binding sites in proteins is proposed. When the method is applied to predict RNA-binding sites in three datasets: RBP86 containing 86 protein chains, RBP107 containing 107 proteins chains and RBP109 containing 109 proteins chains, better sensitivities and specificities are obtained compared to previously published methods in five-fold cross-validation tests. In order to make further examination for the efficiency of our method, the RBP107 dataset is used as training set, RBP86 and RBP109 datasets are used as the independent test sets. In addition, as examples of our prediction, RNA-binding sites in a few proteins are presented. The annotated results are consistent with the PDB annotation. These results show that our method is useful for annotating RNA binding sites of novel proteins.

  12. Towards structural controllability of local-world networks

    International Nuclear Information System (INIS)

    Sun, Shiwen; Ma, Yilin; Wu, Yafang; Wang, Li; Xia, Chengyi

    2016-01-01

    Controlling complex networks is of vital importance in science and engineering. Meanwhile, local-world effect is an important ingredient which should be taken into consideration in the complete description of real-world complex systems. In this letter, structural controllability of a class of local-world networks is investigated. Through extensive numerical simulations, firstly, effects of local world size M and network size N on structural controllability are examined. For local-world networks with sparse topological configuration, compared to network size, local-world size can induce stronger influence on controllability, however, for dense networks, controllability is greatly affected by network size and local-world effect can be neglected. Secondly, relationships between controllability and topological properties are analyzed. Lastly, the robustness of local-world networks under targeted attacks regarding structural controllability is discussed. These results can help to deepen the understanding of structural complexity and connectivity patterns of complex systems. - Highlights: • Structural controllability of a class of local-world networks is investigated. • For sparse local-world networks, compared to network size, local-world size can bring stronger influence on controllability. • For dense networks, controllability is greatly affected by network size and the effect of local-world size can be neglected. • Structural controllability against targeted node attacks is discussed.

  13. Towards structural controllability of local-world networks

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shiwen, E-mail: sunsw80@126.com [Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384 (China); Key Laboratory of Computer Vision and System (Tianjin University of Technology), Ministry of Education, Tianjin 300384 (China); Ma, Yilin; Wu, Yafang; Wang, Li; Xia, Chengyi [Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384 (China); Key Laboratory of Computer Vision and System (Tianjin University of Technology), Ministry of Education, Tianjin 300384 (China)

    2016-05-20

    Controlling complex networks is of vital importance in science and engineering. Meanwhile, local-world effect is an important ingredient which should be taken into consideration in the complete description of real-world complex systems. In this letter, structural controllability of a class of local-world networks is investigated. Through extensive numerical simulations, firstly, effects of local world size M and network size N on structural controllability are examined. For local-world networks with sparse topological configuration, compared to network size, local-world size can induce stronger influence on controllability, however, for dense networks, controllability is greatly affected by network size and local-world effect can be neglected. Secondly, relationships between controllability and topological properties are analyzed. Lastly, the robustness of local-world networks under targeted attacks regarding structural controllability is discussed. These results can help to deepen the understanding of structural complexity and connectivity patterns of complex systems. - Highlights: • Structural controllability of a class of local-world networks is investigated. • For sparse local-world networks, compared to network size, local-world size can bring stronger influence on controllability. • For dense networks, controllability is greatly affected by network size and the effect of local-world size can be neglected. • Structural controllability against targeted node attacks is discussed.

  14. Phase synchronization on small-world networks with community structure

    International Nuclear Information System (INIS)

    Xiao-Hua, Wang; Li-Cheng, Jiao; Jian-She, Wu

    2010-01-01

    In this paper, we propose a simple model that can generate small-world network with community structure. The network is introduced as a tunable community organization with parameter r, which is directly measured by the ratio of inter- to intra-community connectivity, and a smaller r corresponds to a stronger community structure. The structure properties, including the degree distribution, clustering, the communication efficiency and modularity are also analysed for the network. In addition, by using the Kuramoto model, we investigated the phase synchronization on this network, and found that increasing the fuzziness of community structure will markedly enhance the network synchronizability; however, in an abnormal region (r ≤ 0.001), the network has even worse synchronizability than the case of isolated communities (r = 0). Furthermore, this network exhibits a remarkable synchronization behaviour in topological scales: the oscillators of high densely interconnected communities synchronize more easily, and more rapidly than the whole network. (general)

  15. Social inheritance can explain the structure of animal social networks

    Science.gov (United States)

    Ilany, Amiyaal; Akçay, Erol

    2016-01-01

    The social network structure of animal populations has major implications for survival, reproductive success, sexual selection and pathogen transmission of individuals. But as of yet, no general theory of social network structure exists that can explain the diversity of social networks observed in nature, and serve as a null model for detecting species and population-specific factors. Here we propose a simple and generally applicable model of social network structure. We consider the emergence of network structure as a result of social inheritance, in which newborns are likely to bond with maternal contacts, and via forming bonds randomly. We compare model output with data from several species, showing that it can generate networks with properties such as those observed in real social systems. Our model demonstrates that important observed properties of social networks, including heritability of network position or assortative associations, can be understood as consequences of social inheritance. PMID:27352101

  16. PROSPECTS OF REGIONAL NETWORK STRUCTURES IN THE SOUTHERN FEDERAL DISTRICT

    Directory of Open Access Journals (Sweden)

    I. V. Morozov

    2014-01-01

    Full Text Available The article reveals the possibility of the Southern Federal District to form regional network structures. The prospects for the formation of networks in the region in relation to the Olympic Winter Games Sochi 2014.

  17. Predicting the binding patterns of hub proteins: a study using yeast protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Carson M Andorf

    Full Text Available Protein-protein interactions are critical to elucidating the role played by individual proteins in important biological pathways. Of particular interest are hub proteins that can interact with large numbers of partners and often play essential roles in cellular control. Depending on the number of binding sites, protein hubs can be classified at a structural level as singlish-interface hubs (SIH with one or two binding sites, or multiple-interface hubs (MIH with three or more binding sites. In terms of kinetics, hub proteins can be classified as date hubs (i.e., interact with different partners at different times or locations or party hubs (i.e., simultaneously interact with multiple partners.Our approach works in 3 phases: Phase I classifies if a protein is likely to bind with another protein. Phase II determines if a protein-binding (PB protein is a hub. Phase III classifies PB proteins as singlish-interface versus multiple-interface hubs and date versus party hubs. At each stage, we use sequence-based predictors trained using several standard machine learning techniques.Our method is able to predict whether a protein is a protein-binding protein with an accuracy of 94% and a correlation coefficient of 0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data; distinguish date hubs/party hubs with 69% accuracy and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC curve of 0.84. Because our method is based on sequence information alone, it can be used even in settings where reliable protein-protein interaction data or structures of protein-protein complexes are unavailable to obtain useful insights into the functional and evolutionary characteristics of proteins and their interactions.We provide a web server for our three-phase approach: http://hybsvm.gdcb.iastate.edu.

  18. Detection of Locally Over-Represented GO Terms in Protein-Protein Interaction Networks

    Science.gov (United States)

    LAVALLÉE-ADAM, MATHIEU; COULOMBE, BENOIT; BLANCHETTE, MATHIEU

    2015-01-01

    High-throughput methods for identifying protein-protein interactions produce increasingly complex and intricate interaction networks. These networks are extremely rich in information, but extracting biologically meaningful hypotheses from them and representing them in a human-readable manner is challenging. We propose a method to identify Gene Ontology terms that are locally over-represented in a subnetwork of a given biological network. Specifically, we propose several methods to evaluate the degree of clustering of proteins associated to a particular GO term in both weighted and unweighted PPI networks, and describe efficient methods to estimate the statistical significance of the observed clustering. We show, using Monte Carlo simulations, that our best approximation methods accurately estimate the true p-value, for random scale-free graphs as well as for actual yeast and human networks. When applied to these two biological networks, our approach recovers many known complexes and pathways, but also suggests potential functions for many subnetworks. Online Supplementary Material is available at www.liebertonline.com. PMID:20377456

  19. Classification of proteins: available structural space for molecular modeling.

    Science.gov (United States)

    Andreeva, Antonina

    2012-01-01

    The wealth of available protein structural data provides unprecedented opportunity to study and better understand the underlying principles of protein folding and protein structure evolution. A key to achieving this lies in the ability to analyse these data and to organize them in a coherent classification scheme. Over the past years several protein classifications have been developed that aim to group proteins based on their structural relationships. Some of these classification schemes explore the concept of structural neighbourhood (structural continuum), whereas other utilize the notion of protein evolution and thus provide a discrete rather than continuum view of protein structure space. This chapter presents a strategy for classification of proteins with known three-dimensional structure. Steps in the classification process along with basic definitions are introduced. Examples illustrating some fundamental concepts of protein folding and evolution with a special focus on the exceptions to them are presented.

  20. Protein crystal structure analysis using synchrotron radiation at atomic resolution

    International Nuclear Information System (INIS)

    Nonaka, Takamasa

    1999-01-01

    We can now obtain a detailed picture of protein, allowing the identification of individual atoms, by interpreting the diffraction of X-rays from a protein crystal at atomic resolution, 1.2 A or better. As of this writing, about 45 unique protein structures beyond 1.2 A resolution have been deposited in the Protein Data Bank. This review provides a simplified overview of how protein crystallographers use such diffraction data to solve, refine, and validate protein structures. (author)

  1. Classification of Beta-lactamases and penicillin binding proteins using ligand-centric network models.

    Directory of Open Access Journals (Sweden)

    Hakime Öztürk

    Full Text Available β-lactamase mediated antibiotic resistance is an important health issue and the discovery of new β-lactam type antibiotics or β-lactamase inhibitors is an area of intense research. Today, there are about a thousand β-lactamases due to the evolutionary pressure exerted by these ligands. While β-lactamases hydrolyse the β-lactam ring of antibiotics, rendering them ineffective, Penicillin-Binding Proteins (PBPs, which share high structural similarity with β-lactamases, also confer antibiotic resistance to their host organism by acquiring mutations that allow them to continue their participation in cell wall biosynthesis. In this paper, we propose a novel approach to include ligand sharing information for classifying and clustering β-lactamases and PBPs in an effort to elucidate the ligand induced evolution of these β-lactam binding proteins. We first present a detailed summary of the β-lactamase and PBP families in the Protein Data Bank, as well as the compounds they bind to. Then, we build two different types of networks in which the proteins are represented as nodes, and two proteins are connected by an edge with a weight that depends on the number of shared identical or similar ligands. These models are analyzed under three different edge weight settings, namely unweighted, weighted, and normalized weighted. A detailed comparison of these six networks showed that the use of ligand sharing information to cluster proteins resulted in modules comprising proteins with not only sequence similarity but also functional similarity. Consideration of ligand similarity highlighted some interactions that were not detected in the identical ligand network. Analysing the β-lactamases and PBPs using ligand-centric network models enabled the identification of novel relationships, suggesting that these models can be used to examine other protein families to obtain information on their ligand induced evolutionary paths.

  2. A Decomposition Algorithm for Learning Bayesian Network Structures from Data

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Cordero Hernandez, Jorge

    2008-01-01

    It is a challenging task of learning a large Bayesian network from a small data set. Most conventional structural learning approaches run into the computational as well as the statistical problems. We propose a decomposition algorithm for the structure construction without having to learn...... the complete network. The new learning algorithm firstly finds local components from the data, and then recover the complete network by joining the learned components. We show the empirical performance of the decomposition algorithm in several benchmark networks....

  3. Bayesian network model for identification of pathways by integrating protein interaction with genetic interaction data.

    Science.gov (United States)

    Fu, Changhe; Deng, Su; Jin, Guangxu; Wang, Xinxin; Yu, Zu-Guo

    2017-09-21

    Molecular interaction data at proteomic and genetic levels provide physical and functional insights into a molecular biosystem and are helpful for the construction of pathway structures complementarily. Despite advances in inferring biological pathways using genetic interaction data, there still exists weakness in developed models, such as, activity pathway networks (APN), when integrating the data from proteomic and genetic levels. It is necessary to develop new methods to infer pathway structure by both of interaction data. We utilized probabilistic graphical model to develop a new method that integrates genetic interaction and protein interaction data and infers exquisitely detailed pathway structure. We modeled the pathway network as Bayesian network and applied this model to infer pathways for the coherent subsets of the global genetic interaction profiles, and the available data set of endoplasmic reticulum genes. The protein interaction data were derived from the BioGRID database. Our method can accurately reconstruct known cellular pathway structures, including SWR complex, ER-Associated Degradation (ERAD) pathway, N-Glycan biosynthesis pathway, Elongator complex, Retromer complex, and Urmylation pathway. By comparing N-Glycan biosynthesis pathway and Urmylation pathway identified from our approach with that from APN, we found that our method is able to overcome its weakness (certain edges are inexplicable). According to underlying protein interaction network, we defined a simple scoring function that only adopts genetic interaction information to avoid the balance difficulty in the APN. Using the effective stochastic simulation algorithm, the performance of our proposed method is significantly high. We developed a new method based on Bayesian network to infer detailed pathway structures from interaction data at proteomic and genetic levels. The results indicate that the developed method performs better in predicting signaling pathways than previously

  4. Protein Kinase C Epsilon and Genetic Networks in Osteosarcoma Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Atta, E-mail: atta.goudarzi@utoronto.ca [Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8 (Canada); Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON M5G 1X5 (Canada); Gokgoz, Nalan; Gill, Mona; Pinnaduwage, Dushanthi [Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON M5G 1X5 (Canada); Merico, Daniele [The Centre for Applied Genomics, The Hospital for Sick Children, MaRS Centre-East Tower, 101 College Street Rm.14-701, Toronto, ON M5G 1L7 (Canada); Wunder, Jay S. [Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON M5G 1X5 (Canada); Andrulis, Irene L. [Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8 (Canada); Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON M5G 1X5 (Canada)

    2013-04-08

    Osteosarcoma (OS) is the most common primary malignant tumor of the bone, and pulmonary metastasis is the most frequent cause of OS mortality. The aim of this study was to discover and characterize genetic networks differentially expressed in metastatic OS. Expression profiling of OS tumors, and subsequent supervised network analysis, was performed to discover genetic networks differentially activated or organized in metastatic OS compared to localized OS. Broad trends among the profiles of metastatic tumors include aberrant activity of intracellular organization and translation networks, as well as disorganization of metabolic networks. The differentially activated PRKCε-RASGRP3-GNB2 network, which interacts with the disorganized DLG2 hub, was also found to be differentially expressed among OS cell lines with differing metastatic capacity in xenograft models. PRKCε transcript was more abundant in some metastatic OS tumors; however the difference was not significant overall. In functional studies, PRKCε was not found to be involved in migration of M132 OS cells, but its protein expression was induced in M112 OS cells following IGF-1 stimulation.

  5. Protein Kinase C Epsilon and Genetic Networks in Osteosarcoma Metastasis

    International Nuclear Information System (INIS)

    Goudarzi, Atta; Gokgoz, Nalan; Gill, Mona; Pinnaduwage, Dushanthi; Merico, Daniele; Wunder, Jay S.; Andrulis, Irene L.

    2013-01-01

    Osteosarcoma (OS) is the most common primary malignant tumor of the bone, and pulmonary metastasis is the most frequent cause of OS mortality. The aim of this study was to discover and characterize genetic networks differentially expressed in metastatic OS. Expression profiling of OS tumors, and subsequent supervised network analysis, was performed to discover genetic networks differentially activated or organized in metastatic OS compared to localized OS. Broad trends among the profiles of metastatic tumors include aberrant activity of intracellular organization and translation networks, as well as disorganization of metabolic networks. The differentially activated PRKCε-RASGRP3-GNB2 network, which interacts with the disorganized DLG2 hub, was also found to be differentially expressed among OS cell lines with differing metastatic capacity in xenograft models. PRKCε transcript was more abundant in some metastatic OS tumors; however the difference was not significant overall. In functional studies, PRKCε was not found to be involved in migration of M132 OS cells, but its protein expression was induced in M112 OS cells following IGF-1 stimulation

  6. GH32 family activity: a topological approach through protein contact networks.

    Science.gov (United States)

    Cimini, Sara; Di Paola, Luisa; Giuliani, Alessandro; Ridolfi, Alessandra; De Gara, Laura

    2016-11-01

    The application of Protein Contact Networks methodology allowed to highlight a novel response of border region between the two domains to substrate binding. Glycoside hydrolases (GH) are enzymes that mainly hydrolyze the glycosidic bond between two carbohydrates or a carbohydrate and a non-carbohydrate moiety. These enzymes are involved in many fundamental and diverse biological processes in plants. We have focused on the GH32 family, including enzymes very similar in both sequence and structure, each having however clear specificities of substrate preferences and kinetic properties. Structural and topological differences among proteins of the GH32 family have been here identified by means of an emerging approach (Protein Contact network, PCN) based on the formalization of 3D structures as contact networks among amino-acid residues. The PCN approach proved successful in both reconstructing the already known functional domains and in identifying the structural counterpart of the properties of GH32 enzymes, which remain uncertain, like their allosteric character. The main outcome of the study was the discovery of the activation upon binding of the border (cleft) region between the two domains. This reveals the allosteric nature of the enzymatic activity for all the analyzed forms in the GH32 family, a character yet to be highlighted in biochemical studies. Furthermore, we have been able to recognize a topological signature (graph energy) of the different affinity of the enzymes towards small and large substrates.

  7. The effect of aging on network structure

    OpenAIRE

    Zhu, Han; Wang, Xin-Ran; Zhu, Jian-Yang

    2003-01-01

    In network evolution, the effect of aging is universal: in scientific collaboration network, scientists have a finite time span of being active; in movie actors network, once popular stars are retiring from stage; devices on the Internet may become outmoded with techniques developing so rapidly. Here we find in citation networks that this effect can be represented by an exponential decay factor, $e^{-\\beta \\tau}$, where $\\tau $ is the node age, while other evolving networks (the Internet for ...

  8. Scalable rule-based modelling of allosteric proteins and biochemical networks.

    Directory of Open Access Journals (Sweden)

    Julien F Ollivier

    2010-11-01

    Full Text Available Much of the complexity of biochemical networks comes from the information-processing abilities of allosteric proteins, be they receptors, ion-channels, signalling molecules or transcription factors. An allosteric protein can be uniquely regulated by each combination of input molecules that it binds. This "regulatory complexity" causes a combinatorial increase in the number of parameters required to fit experimental data as the number of protein interactions increases. It therefore challenges the creation, updating, and re-use of biochemical models. Here, we propose a rule-based modelling framework that exploits the intrinsic modularity of protein structure to address regulatory complexity. Rather than treating proteins as "black boxes", we model their hierarchical structure and, as conformational changes, internal dynamics. By modelling the regulation of allosteric proteins through these conformational changes, we often decrease the number of parameters required to fit data, and so reduce over-fitting and improve the predictive power of a model. Our method is thermodynamically grounded, imposes detailed balance, and also includes molecular cross-talk and the background activity of enzymes. We use our Allosteric Network Compiler to examine how allostery can facilitate macromolecular assembly and how competitive ligands can change the observed cooperativity of an allosteric protein. We also develop a parsimonious model of G protein-coupled receptors that explains functional selectivity and can predict the rank order of potency of agonists acting through a receptor. Our methodology should provide a basis for scalable, modular and executable modelling of biochemical networks in systems and synthetic biology.

  9. Predicting Protein Secondary Structure with Markov Models

    DEFF Research Database (Denmark)

    Fischer, Paul; Larsen, Simon; Thomsen, Claus

    2004-01-01

    we are considering here, is to predict the secondary structure from the primary one. To this end we train a Markov model on training data and then use it to classify parts of unknown protein sequences as sheets, helices or coils. We show how to exploit the directional information contained...... in the Markov model for this task. Classifications that are purely based on statistical models might not always be biologically meaningful. We present combinatorial methods to incorporate biological background knowledge to enhance the prediction performance....

  10. GIS: a comprehensive source for protein structure similarities.

    Science.gov (United States)

    Guerler, Aysam; Knapp, Ernst-Walter

    2010-07-01

    A web service for analysis of protein structures that are sequentially or non-sequentially similar was generated. Recently, the non-sequential structure alignment algorithm GANGSTA+ was introduced. GANGSTA+ can detect non-sequential structural analogs for proteins stated to possess novel folds. Since GANGSTA+ ignores the polypeptide chain connectivity of secondary structure elements (i.e. alpha-helices and beta-strands), it is able to detect structural similarities also between proteins whose sequences were reshuffled during evolution. GANGSTA+ was applied in an all-against-all comparison on the ASTRAL40 database (SCOP version 1.75), which consists of >10,000 protein domains yielding about 55 x 10(6) possible protein structure alignments. Here, we provide the resulting protein structure alignments as a public web-based service, named GANGSTA+ Internet Services (GIS). We also allow to browse the ASTRAL40 database of protein structures with GANGSTA+ relative to an externally given protein structure using different constraints to select specific results. GIS allows us to analyze protein structure families according to the SCOP classification scheme. Additionally, users can upload their own protein structures for pairwise protein structure comparison, alignment against all protein structures of the ASTRAL40 database (SCOP version 1.75) or symmetry analysis. GIS is publicly available at http://agknapp.chemie.fu-berlin.de/gplus.

  11. Structural equation models from paths to networks

    CERN Document Server

    Westland, J Christopher

    2015-01-01

    This compact reference surveys the full range of available structural equation modeling (SEM) methodologies.  It reviews applications in a broad range of disciplines, particularly in the social sciences where many key concepts are not directly observable.  This is the first book to present SEM’s development in its proper historical context–essential to understanding the application, strengths and weaknesses of each particular method.  This book also surveys the emerging path and network approaches that complement and enhance SEM, and that will grow in importance in the near future.  SEM’s ability to accommodate unobservable theory constructs through latent variables is of significant importance to social scientists.  Latent variable theory and application are comprehensively explained, and methods are presented for extending their power, including guidelines for data preparation, sample size calculation, and the special treatment of Likert scale data.  Tables of software, methodologies and fit st...

  12. Automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal.

    Science.gov (United States)

    Bordoli, Lorenza; Schwede, Torsten

    2012-01-01

    Comparative protein structure modeling is a computational approach to build three-dimensional structural models for proteins using experimental structures of related protein family members as templates. Regular blind assessments of modeling accuracy have demonstrated that comparative protein structure modeling is currently the most reliable technique to model protein structures. Homology models are often sufficiently accurate to substitute for experimental structures in a wide variety of applications. Since the usefulness of a model for specific application is determined by its accuracy, model quality estimation is an essential component of protein structure prediction. Comparative protein modeling has become a routine approach in many areas of life science research since fully automated modeling systems allow also nonexperts to build reliable models. In this chapter, we describe practical approaches for automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal.

  13. Peptide microarrays to probe for competition for binding sites in a protein interaction network

    NARCIS (Netherlands)

    Sinzinger, M.D.S.; Ruttekolk, I.R.R.; Gloerich, J.; Wessels, H.; Chung, Y.D.; Adjobo-Hermans, M.J.W.; Brock, R.E.

    2013-01-01

    Cellular protein interaction networks are a result of the binding preferences of a particular protein and the entirety of interactors that mutually compete for binding sites. Therefore, the reconstruction of interaction networks by the accumulation of interaction networks for individual proteins

  14. Prediction of Protein Thermostability by an Efficient Neural Network Approach

    Directory of Open Access Journals (Sweden)

    Jalal Rezaeenour

    2016-10-01

    Full Text Available Introduction: Manipulation of protein stability is important for understanding the principles that govern protein thermostability, both in basic research and industrial applications. Various data mining techniques exist for prediction of thermostable proteins. Furthermore, ANN methods have attracted significant attention for prediction of thermostability, because they constitute an appropriate approach to mapping the non-linear input-output relationships and massive parallel computing. Method: An Extreme Learning Machine (ELM was applied to estimate thermal behavior of 1289 proteins. In the proposed algorithm, the parameters of ELM were optimized using a Genetic Algorithm (GA, which tuned a set of input variables, hidden layer biases, and input weights, to and enhance the prediction performance. The method was executed on a set of amino acids, yielding a total of 613 protein features. A number of feature selection algorithms were used to build subsets of the features. A total of 1289 protein samples and 613 protein features were calculated from UniProt database to understand features contributing to the enzymes’ thermostability and find out the main features that influence this valuable characteristic. Results:At the primary structure level, Gln, Glu and polar were the features that mostly contributed to protein thermostability. At the secondary structure level, Helix_S, Coil, and charged_Coil were the most important features affecting protein thermostability. These results suggest that the thermostability of proteins is mainly associated with primary structural features of the protein. According to the results, the influence of primary structure on the thermostabilty of a protein was more important than that of the secondary structure. It is shown that prediction accuracy of ELM (mean square error can improve dramatically using GA with error rates RMSE=0.004 and MAPE=0.1003. Conclusion: The proposed approach for forecasting problem

  15. Structure based alignment and clustering of proteins (STRALCP)

    Science.gov (United States)

    Zemla, Adam T.; Zhou, Carol E.; Smith, Jason R.; Lam, Marisa W.

    2013-06-18

    Disclosed are computational methods of clustering a set of protein structures based on local and pair-wise global similarity values. Pair-wise local and global similarity values are generated based on pair-wise structural alignments for each protein in the set of protein structures. Initially, the protein structures are clustered based on pair-wise local similarity values. The protein structures are then clustered based on pair-wise global similarity values. For each given cluster both a representative structure and spans of conserved residues are identified. The representative protein structure is used to assign newly-solved protein structures to a group. The spans are used to characterize conservation and assign a "structural footprint" to the cluster.

  16. Alpha complexes in protein structure prediction

    DEFF Research Database (Denmark)

    Winter, Pawel; Fonseca, Rasmus

    2015-01-01

    Reducing the computational effort and increasing the accuracy of potential energy functions is of utmost importance in modeling biological systems, for instance in protein structure prediction, docking or design. Evaluating interactions between nonbonded atoms is the bottleneck of such computations......-complexes from scratch for every configuration encountered during the search for the native structure would make this approach hopelessly slow. However, it is argued that kinetic a-complexes can be used to reduce the computational effort of determining the potential energy when "moving" from one configuration...... to a neighboring one. As a consequence, relatively expensive (initial) construction of an a-complex is expected to be compensated by subsequent fast kinetic updates during the search process. Computational results presented in this paper are limited. However, they suggest that the applicability of a...

  17. Course 12: Proteins: Structural, Thermodynamic and Kinetic Aspects

    Science.gov (United States)

    Finkelstein, A. V.

    1 Introduction 2 Overview of protein architectures and discussion of physical background of their natural selection 2.1 Protein structures 2.2 Physical selection of protein structures 3 Thermodynamic aspects of protein folding 3.1 Reversible denaturation of protein structures 3.2 What do denatured proteins look like? 3.3 Why denaturation of a globular protein is the first-order phase transition 3.4 "Gap" in energy spectrum: The main characteristic that distinguishes protein chains from random polymers 4 Kinetic aspects of protein folding 4.1 Protein folding in vivo 4.2 Protein folding in vitro (in the test-tube) 4.3 Theory of protein folding rates and solution of the Levinthal paradox

  18. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2013-07-15

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, {>=}90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed ({phi}, {psi}) torsion angles of ca 12 Masculine-Ordinal-Indicator . TALOS-N also reports sidechain {chi}{sup 1} rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.

  19. Clustering coefficient and community structure of bipartite networks

    Science.gov (United States)

    Zhang, Peng; Wang, Jinliang; Li, Xiaojia; Li, Menghui; Di, Zengru; Fan, Ying

    2008-12-01

    Many real-world networks display natural bipartite structure, where the basic cycle is a square. In this paper, with the similar consideration of standard clustering coefficient in binary networks, a definition of the clustering coefficient for bipartite networks based on the fraction of squares is proposed. In order to detect community structures in bipartite networks, two different edge clustering coefficients LC4 and LC3 of bipartite networks are defined, which are based on squares and triples respectively. With the algorithm of cutting the edge with the least clustering coefficient, communities in artificial and real world networks are identified. The results reveal that investigating bipartite networks based on the original structure can show the detailed properties that is helpful to get deep understanding about the networks.

  20. Developing a network-level structural capacity index for structural evaluation of pavements.

    Science.gov (United States)

    2013-03-01

    The objective of this project was to develop a structural index for use in network-level pavement evaluation to facilitate : the inclusion of the pavements structural condition in pavement management applications. The primary goal of network-level...

  1. Distance metric learning for complex networks: Towards size-independent comparison of network structures

    Science.gov (United States)

    Aliakbary, Sadegh; Motallebi, Sadegh; Rashidian, Sina; Habibi, Jafar; Movaghar, Ali

    2015-02-01

    Real networks show nontrivial topological properties such as community structure and long-tail degree distribution. Moreover, many network analysis applications are based on topological comparison of complex networks. Classification and clustering of networks, model selection, and anomaly detection are just some applications of network comparison. In these applications, an effective similarity metric is needed which, given two complex networks of possibly different sizes, evaluates the amount of similarity between the structural features of the two networks. Traditional graph comparison approaches, such as isomorphism-based methods, are not only too time consuming but also inappropriate to compare networks with different sizes. In this paper, we propose an intelligent method based on the genetic algorithms for integrating, selecting, and weighting the network features in order to develop an effective similarity measure for complex networks. The proposed similarity metric outperforms state of the art methods with respect to different evaluation criteria.

  2. The prisoner's dilemma in structured scale-free networks

    International Nuclear Information System (INIS)

    Li Xing; Wu Yonghui; Zhang Zhongzhi; Zhou Shuigeng; Rong Zhihai

    2009-01-01

    The conventional wisdom is that scale-free networks are prone to cooperation spreading. In this paper we investigate the cooperative behavior on the structured scale-free network. In contrast to the conventional wisdom that scale-free networks are prone to cooperation spreading, the evolution of cooperation is inhibited on the structured scale-free network when the prisoner's dilemma (PD) game is modeled. First, we demonstrate that neither the scale-free property nor the high clustering coefficient is responsible for the inhibition of cooperation spreading on the structured scale-free network. Then we provide one heuristic method to argue that the lack of age correlations and its associated 'large-world' behavior in the structured scale-free network inhibit the spread of cooperation. These findings may help enlighten further studies on the evolutionary dynamics of the PD game in scale-free networks

  3. Secondary Structure Prediction of Protein using Resilient Back Propagation Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Jyotshna Dongardive

    2015-12-01

    Full Text Available The paper proposes a neural network based approach to predict secondary structure of protein. It uses Multilayer Feed Forward Network (MLFN with resilient back propagation as the learning algorithm. Point Accepted Mutation (PAM is adopted as the encoding scheme and CB396 data set is used for the training and testing of the network. Overall accuracy of the network has been experimentally calculated with different window sizes for the sliding window scheme and by varying the number of units in the hidden layer. The best results were obtained with eleven as the window size and seven as the number of units in the hidden layer.

  4. Unveiling network-based functional features through integration of gene expression into protein networks.

    Science.gov (United States)

    Jalili, Mahdi; Gebhardt, Tom; Wolkenhauer, Olaf; Salehzadeh-Yazdi, Ali

    2018-06-01

    Decoding health and disease phenotypes is one of the fundamental objectives in biomedicine. Whereas high-throughput omics approaches are available, it is evident that any single omics approach might not be adequate to capture the complexity of phenotypes. Therefore, integrated multi-omics approaches have been used to unravel genotype-phenotype relationships such as global regulatory mechanisms and complex metabolic networks in different eukaryotic organisms. Some of the progress and challenges associated with integrated omics studies have been reviewed previously in comprehensive studies. In this work, we highlight and review the progress, challenges and advantages associated with emerging approaches, integrating gene expression and protein-protein interaction networks to unravel network-based functional features. This includes identifying disease related genes, gene prioritization, clustering protein interactions, developing the modules, extract active subnetworks and static protein complexes or dynamic/temporal protein complexes. We also discuss how these approaches contribute to our understanding of the biology of complex traits and diseases. This article is part of a Special Issue entitled: Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction.

    Science.gov (United States)

    Deng, Lei; Fan, Chao; Zeng, Zhiwen

    2017-12-28

    Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach.

  6. Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana.

    Science.gov (United States)

    Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan

    2017-06-07

    Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.

  7. Structural determination of intact proteins using mass spectrometry

    Science.gov (United States)

    Kruppa, Gary [San Francisco, CA; Schoeniger, Joseph S [Oakland, CA; Young, Malin M [Livermore, CA

    2008-05-06

    The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.

  8. Joint Bayesian variable and graph selection for regression models with network-structured predictors

    Science.gov (United States)

    Peterson, C. B.; Stingo, F. C.; Vannucci, M.

    2015-01-01

    In this work, we develop a Bayesian approach to perform selection of predictors that are linked within a network. We achieve this by combining a sparse regression model relating the predictors to a response variable with a graphical model describing conditional dependencies among the predictors. The proposed method is well-suited for genomic applications since it allows the identification of pathways of functionally related genes or proteins which impact an outcome of interest. In contrast to previous approaches for network-guided variable selection, we infer the network among predictors using a Gaussian graphical model and do not assume that network information is available a priori. We demonstrate that our method outperforms existing methods in identifying network-structured predictors in simulation settings, and illustrate our proposed model with an application to inference of proteins relevant to glioblastoma survival. PMID:26514925

  9. Protein and signaling networks in vertebrate photoreceptor cells

    Directory of Open Access Journals (Sweden)

    Karl-Wilhelm eKoch

    2015-11-01

    Full Text Available Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination. The photoexcitation and adaptation machinery in photoreceptor cells consists of protein complexes that can form highly ordered supramolecular structures and control the homeostasis and mutual dependence of the secondary messengers cGMP and Ca2+. The visual pigment in rod photoreceptors, the G protein-coupled receptor rhodopsin is organized in tracks of dimers thereby providing a signaling platform for the dynamic scaffolding of the G protein transducin. Illuminated rhodopsin is turned off by phosphorylation catalyzed by rhodopsin kinase GRK1 under control of Ca2+-recoverin. The GRK1 protein complex partly assembles in lipid raft structures, where shutting off rhodopsin seems to be more effective. Re-synthesis of cGMP is another crucial step in the recovery of the photoresponse after illumination. It is catalyzed by membrane bound sensory guanylate cyclases and is regulated by specific neuronal Ca2+-sensor proteins called GCAPs. At least one guanylate cyclase (ROS-GC1 was shown to be part of a multiprotein complex having strong interactions with the cytoskeleton and being controlled in a multimodal Ca2+-dependent fashion. The final target of the cGMP signaling cascade is a cyclic nucleotide-gated channel that is a hetero-oligomeric protein located in the plasma membrane and interacting with accessory proteins in highly organized microdomains. We summarize results and interpretations of findings related to the inhomogeneous organization of signaling units in photoreceptor outer segments.

  10. Predicting highly-connected hubs in protein interaction networks by QSAR and biological data descriptors

    Science.gov (United States)

    Hsing, Michael; Byler, Kendall; Cherkasov, Artem

    2009-01-01

    Hub proteins (those engaged in most physical interactions in a protein interaction network (PIN) have recently gained much research interest due to their essential role in mediating cellular processes and their potential therapeutic value. It is straightforward to identify hubs if the underlying PIN is experimentally determined; however, theoretical hub prediction remains a very challenging task, as physicochemical properties that differentiate hubs from less connected proteins remain mostly uncharacterized. To adequately distinguish hubs from non-hub proteins we have utilized over 1300 protein descriptors, some of which represent QSAR (quantitative structure-activity relationship) parameters, and some reflect sequence-derived characteristics of proteins including domain composition and functional annotations. Those protein descriptors, together with available protein interaction data have been processed by a machine learning method (boosting trees) and resulted in the development of hub classifiers that are capable of predicting highly interacting proteins for four model organisms: Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster and Homo sapiens. More importantly, through the analyses of the most relevant protein descriptors, we are able to demonstrate that hub proteins not only share certain common physicochemical and structural characteristics that make them different from non-hub counterparts, but they also exhibit species-specific characteristics that should be taken into account when analyzing different PINs. The developed prediction models can be used for determining highly interacting proteins in the four studied species to assist future proteomics experiments and PIN analyses. Availability The source code and executable program of the hub classifier are available for download at: http://www.cnbi2.ca/hub-analysis/ PMID:20198194

  11. Joint Modelling of Structural and Functional Brain Networks

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Herlau, Tue; Mørup, Morten

    -parametric Bayesian network model which allows for joint modelling and integration of multiple networks. We demonstrate the model’s ability to detect vertices that share structure across networks jointly in functional MRI (fMRI) and diffusion MRI (dMRI) data. Using two fMRI and dMRI scans per subject, we establish...

  12. Ames and other European networks in integrity of ageing structures

    International Nuclear Information System (INIS)

    Davies, L.M.; Von Estorff, U.; Crutzen, S.

    1996-01-01

    Several European institutions and organisations and the Joint Research Centre have developed co-operative programmes now organised into Networks for mutual benefit. They include utilities, engineering companies, Research and Development laboratories and regulatory bodies. Networks are organised and managed like the successful Programme for the Inspection of Steel Components (PISC). The JRC's Institute for Advanced Materials of the European Commission plays the role of Operating Agent and manager of these Networks: ENIQ. AMES, NESC, each of them dealing with specific aspect of fitness for purpose of materials in structural components. This paper describes the structure and the objectives of these networks. Particular emphasis is given to the network AMES

  13. Structural factoring approach for analyzing stochastic networks

    Science.gov (United States)

    Hayhurst, Kelly J.; Shier, Douglas R.

    1991-01-01

    The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.

  14. Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review

    Science.gov (United States)

    Csermely, Peter; Korcsmáros, Tamás; Kiss, Huba J.M.; London, Gábor; Nussinov, Ruth

    2013-01-01

    Despite considerable progress in genome- and proteome-based high-throughput screening methods and in rational drug design, the increase in approved drugs in the past decade did not match the increase of drug development costs. Network description and analysis not only gives a systems-level understanding of drug action and disease complexity, but can also help to improve the efficiency of drug design. We give a comprehensive assessment of the analytical tools of network topology and dynamics. The state-of-the-art use of chemical similarity, protein structure, protein-protein interaction, signaling, genetic interaction and metabolic networks in the discovery of drug targets is summarized. We propose that network targeting follows two basic strategies. The “central hit strategy” selectively targets central node/edges of the flexible networks of infectious agents or cancer cells to kill them. The “network influence strategy” works against other diseases, where an efficient reconfiguration of rigid networks needs to be achieved. It is shown how network techniques can help in the identification of single-target, edgetic, multi-target and allo-network drug target candidates. We review the recent boom in network methods helping hit identification, lead selection optimizing drug efficacy, as well as minimizing side-effects and drug toxicity. Successful network-based drug development strategies are shown through the examples of infections, cancer, metabolic diseases, neurodegenerative diseases and aging. Summarizing >1200 references we suggest an optimized protocol of network-aided drug development, and provide a list of systems-level hallmarks of drug quality. Finally, we highlight network-related drug development trends helping to achieve these hallmarks by a cohesive, global approach. PMID:23384594

  15. Structural Behavioral Study on the General Aviation Network Based on Complex Network

    Science.gov (United States)

    Zhang, Liang; Lu, Na

    2017-12-01

    The general aviation system is an open and dissipative system with complex structures and behavioral features. This paper has established the system model and network model for general aviation. We have analyzed integral attributes and individual attributes by applying the complex network theory and concluded that the general aviation network has influential enterprise factors and node relations. We have checked whether the network has small world effect, scale-free property and network centrality property which a complex network should have by applying degree distribution of functions and proved that the general aviation network system is a complex network. Therefore, we propose to achieve the evolution process of the general aviation industrial chain to collaborative innovation cluster of advanced-form industries by strengthening network multiplication effect, stimulating innovation performance and spanning the structural hole path.

  16. Trichomes: different regulatory networks lead to convergent structures.

    Science.gov (United States)

    Serna, Laura; Martin, Cathie

    2006-06-01

    Sometimes, proteins, biological structures or even organisms have similar functions and appearances but have evolved through widely divergent pathways. There is experimental evidence to suggest that different developmental pathways have converged to produce similar outgrowths of the aerial plant epidermis, referred to as trichomes. The emerging picture suggests that trichomes in Arabidopsis thaliana and, perhaps, in cotton develop through a transcriptional regulatory network that differs from those regulating trichome formation in Antirrhinum and Solanaceous species. Several lines of evidence suggest that the duplication of a gene controlling anthocyanin production and subsequent divergence might be the major force driving trichome formation in Arabidopsis, whereas the multicellular trichomes of Antirrhinum and Solanaceous species appear to have a different regulatory origin.

  17. Structural analysis of behavioral networks from the Internet

    International Nuclear Information System (INIS)

    Meiss, M R; Menczer, F; Vespignani, A

    2008-01-01

    In spite of the Internet's phenomenal growth and social impact, many aspects of the collective communication behavior of its users are largely unknown. Understanding the structure and dynamics of the behavioral networks that connect users with each other and with services across the Internet is key to modeling the network and designing future applications. We present a characterization of the properties of the behavioral networks generated by several million users of the Abilene (Internet2) network. Structural features of these networks offer new insights into scaling properties of network activity and ways of distinguishing particular patterns of traffic. For example, we find that the structure of the behavioral network associated with Web activity is characterized by such extreme heterogeneity as to challenge any simple attempt to model Web server traffic

  18. Structural analysis of behavioral networks from the Internet

    Energy Technology Data Exchange (ETDEWEB)

    Meiss, M R; Menczer, F [Department of Computer Science, Indiana University, Bloomington, IN 47405 (United States); Vespignani, A [Department of Informatics, Indiana University, Bloomington, IN 47408 (United States)], E-mail: mmeiss@indiana.edu

    2008-06-06

    In spite of the Internet's phenomenal growth and social impact, many aspects of the collective communication behavior of its users are largely unknown. Understanding the structure and dynamics of the behavioral networks that connect users with each other and with services across the Internet is key to modeling the network and designing future applications. We present a characterization of the properties of the behavioral networks generated by several million users of the Abilene (Internet2) network. Structural features of these networks offer new insights into scaling properties of network activity and ways of distinguishing particular patterns of traffic. For example, we find that the structure of the behavioral network associated with Web activity is characterized by such extreme heterogeneity as to challenge any simple attempt to model Web server traffic.

  19. A new hierarchical method to find community structure in networks

    Science.gov (United States)

    Saoud, Bilal; Moussaoui, Abdelouahab

    2018-04-01

    Community structure is very important to understand a network which represents a context. Many community detection methods have been proposed like hierarchical methods. In our study, we propose a new hierarchical method for community detection in networks based on genetic algorithm. In this method we use genetic algorithm to split a network into two networks which maximize the modularity. Each new network represents a cluster (community). Then we repeat the splitting process until we get one node at each cluster. We use the modularity function to measure the strength of the community structure found by our method, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our method are highly effective at discovering community structure in both computer-generated and real-world network data.

  20. Structure function relations in PDZ-domain-containing proteins ...

    Indian Academy of Sciences (India)

    G P Manjunath

    2017-12-30

    Dec 30, 2017 ... Implications for protein networks in cellular signalling ..... However, surface plasmon resonance .... entiate between conformation changes in the PDZ domain or .... NHERF1, through long-range electrostatic and hydrophobic.

  1. Protein structure similarity from principle component correlation analysis

    Directory of Open Access Journals (Sweden)

    Chou James

    2006-01-01

    Full Text Available Abstract Background Owing to rapid expansion of protein structure databases in recent years, methods of structure comparison are becoming increasingly effective and important in revealing novel information on functional properties of proteins and their roles in the grand scheme of evolutionary biology. Currently, the structural similarity between two proteins is measured by the root-mean-square-deviation (RMSD in their best-superimposed atomic coordinates. RMSD is the golden rule of measuring structural similarity when the structures are nearly identical; it, however, fails to detect the higher order topological similarities in proteins evolved into different shapes. We propose new algorithms for extracting geometrical invariants of proteins that can be effectively used to identify homologous protein structures or topologies in order to quantify both close and remote structural similarities. Results We measure structural similarity between proteins by correlating the principle components of their secondary structure interaction matrix. In our approach, the Principle Component Correlation (PCC analysis, a symmetric interaction matrix for a protein structure is constructed with relationship parameters between secondary elements that can take the form of distance, orientation, or other relevant structural invariants. When using a distance-based construction in the presence or absence of encoded N to C terminal sense, there are strong correlations between the principle components of interaction matrices of structurally or topologically similar proteins. Conclusion The PCC method is extensively tested for protein structures that belong to the same topological class but are significantly different by RMSD measure. The PCC analysis can also differentiate proteins having similar shapes but different topological arrangements. Additionally, we demonstrate that when using two independently defined interaction matrices, comparison of their maximum

  2. Dynamical community structure of populations evolving on genotype networks

    International Nuclear Information System (INIS)

    Capitán, José A.; Aguirre, Jacobo; Manrubia, Susanna

    2015-01-01

    Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks of genotypes. These networks, formed by all genotypes that yield the same phenotype, have a complex architecture that conditions the molecular composition of populations and their movements on genome spaces. Here we consider as an example the case of populations evolving on RNA secondary structure neutral networks and study the community structure of the network revealed through dynamical properties of the population at equilibrium and during adaptive transients. We unveil a rich hierarchical community structure that, eventually, can be traced back to the non-trivial relationship between RNA secondary structure and sequence composition. We demonstrate that usual measures of modularity that only take into account the static, topological structure of networks, cannot identify the community structure disclosed by population dynamics

  3. Disease candidate gene identification and prioritization using protein interaction networks

    Directory of Open Access Journals (Sweden)

    Aronow Bruce J

    2009-02-01

    Full Text Available Abstract Background Although most of the current disease candidate gene identification and prioritization methods depend on functional annotations, the coverage of the gene functional annotations is a limiting factor. In the current study, we describe a candidate gene prioritization method that is entirely based on protein-protein interaction network (PPIN analyses. Results For the first time, extended versions of the PageRank and HITS algorithms, and the K-Step Markov method are applied to prioritize disease candidate genes in a training-test schema. Using a list of known disease-related genes from our earlier study as a training set ("seeds", and the rest of the known genes as a test list, we perform large-scale cross validation to rank the candidate genes and also evaluate and compare the performance of our approach. Under appropriate settings – for example, a back probability of 0.3 for PageRank with Priors and HITS with Priors, and step size 6 for K-Step Markov method – the three methods achieved a comparable AUC value, suggesting a similar performance. Conclusion Even though network-based methods are generally not as effective as integrated functional annotation-based methods for disease candidate gene prioritization, in a one-to-one comparison, PPIN-based candidate gene prioritization performs better than all other gene features or annotations. Additionally, we demonstrate that methods used for studying both social and Web networks can be successfully used for disease candidate gene prioritization.

  4. Unravelling Protein-Protein Interaction Networks Linked to Aliphatic and Indole Glucosinolate Biosynthetic Pathways in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sebastian J. Nintemann

    2017-11-01

    Full Text Available Within the cell, biosynthetic pathways are embedded in protein-protein interaction networks. In Arabidopsis, the biosynthetic pathways of aliphatic and indole glucosinolate defense compounds are well-characterized. However, little is known about the spatial orchestration of these enzymes and their interplay with the cellular environment. To address these aspects, we applied two complementary, untargeted approaches—split-ubiquitin yeast 2-hybrid and co-immunoprecipitation screens—to identify proteins interacting with CYP83A1 and CYP83B1, two homologous enzymes specific for aliphatic and indole glucosinolate biosynthesis, respectively. Our analyses reveal distinct functional networks with substantial interconnection among the identified interactors for both pathway-specific markers, and add to our knowledge about how biochemical pathways are connected to cellular processes. Specifically, a group of protein interactors involved in cell death and the hypersensitive response provides a potential link between the glucosinolate defense compounds and defense against biotrophic pathogens, mediated by protein-protein interactions.

  5. Functional equivalency inferred from "authoritative sources" in networks of homologous proteins.

    Science.gov (United States)

    Natarajan, Shreedhar; Jakobsson, Eric

    2009-06-12

    A one-on-one mapping of protein functionality across different species is a critical component of comparative analysis. This paper presents a heuristic algorithm for discovering the Most Likely Functional Counterparts (MoLFunCs) of a protein, based on simple concepts from network theory. A key feature of our algorithm is utilization of the user's knowledge to assign high confidence to selected functional identification. We show use of the algorithm to retrieve functional equivalents for 7 membrane proteins, from an exploration of almost 40 genomes form multiple online resources. We verify the functional equivalency of our dataset through a series of tests that include sequence, structure and function comparisons. Comparison is made to the OMA methodology, which also identifies one-on-one mapping between proteins from different species. Based on that comparison, we believe that incorporation of user's knowledge as a key aspect of the technique adds value to purely statistical formal methods.

  6. A Hierarchical Dispatch Structure for Distribution Network Pricing

    OpenAIRE

    Yuan, Zhao; Hesamzadeh, Mohammad Reza

    2015-01-01

    This paper presents a hierarchical dispatch structure for efficient distribution network pricing. The dispatch coordination problem in the context of hierarchical network operators are addressed. We formulate decentralized generation dispatch into a bilevel optimization problem in which main network operator and the connected distribution network operator optimize their costs in two levels. By using Karush-Kuhn-Tucker conditions and Fortuny-Amat McCarl linearization, the bilevel optimization ...

  7. Gene, protein and network of male sterility in rice

    Directory of Open Access Journals (Sweden)

    Wang eKun

    2013-04-01

    Full Text Available Rice is one of the most important model crop plants whose heterosis has been well exploited in commercial hybrid seed production via a variety of types of male sterile lines. Hybrid rice cultivation area is steadily expanding around the world, especially in Southern Asia. Characterization of genes and proteins related to male sterility aims to understand how and why the male sterility occurs, and which proteins are the key players for microspores abortion. Recently, a series of genes and proteins related to cytoplasmic male sterility, photoperiod sensitive male sterility, self-incompatibility and other types of microspores deterioration have been characterized through genetics or proteomics. Especially the latter, offers us a powerful and high throughput approach to discern the novel proteins involving in male-sterile pathways which may help us to breed artificial male-sterile system. This represents an alternative tool to meet the critical challenge of further development of hybrid rice. In this paper, we reviewed the recent developments in our understanding of male sterility in rice hybrid production across gene, protein and integrated network levels, and also, present a perspective on the engineering of male sterile lines for hybrid rice production.

  8. Influence of choice of null network on small-world parameters of structural correlation networks.

    Directory of Open Access Journals (Sweden)

    S M Hadi Hosseini

    Full Text Available In recent years, coordinated variations in brain morphology (e.g., volume, thickness have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1 networks constructed by topology randomization (TOP, 2 networks matched to the distributional properties of the observed covariance matrix (HQS, and 3 networks generated from correlation of randomized input data (COR. The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures.

  9. Influence of Choice of Null Network on Small-World Parameters of Structural Correlation Networks

    Science.gov (United States)

    Hosseini, S. M. Hadi; Kesler, Shelli R.

    2013-01-01

    In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures. PMID:23840672

  10. Duplicate retention in signalling proteins and constraints from network dynamics.

    Science.gov (United States)

    Soyer, O S; Creevey, C J

    2010-11-01

    Duplications are a major driving force behind evolution. Most duplicates are believed to fix through genetic drift, but it is not clear whether this process affects all duplications equally or whether there are certain gene families that are expected to show neutral expansions under certain circumstances. Here, we analyse the neutrality of duplications in different functional classes of signalling proteins based on their effects on response dynamics. We find that duplications involving intermediary proteins in a signalling network are neutral more often than those involving receptors. Although the fraction of neutral duplications in all functional classes increase with decreasing population size and selective pressure on dynamics, this effect is most pronounced for receptors, indicating a possible expansion of receptors in species with small population size. In line with such an expectation, we found a statistically significant increase in the number of receptors as a fraction of genome size in eukaryotes compared with prokaryotes. Although not confirmative, these results indicate that neutral processes can be a significant factor in shaping signalling networks and affect proteins from different functional classes differently. © 2010 The Authors. Journal Compilation © 2010 European Society For Evolutionary Biology.

  11. Wireless sensor networks for structural health monitoring

    CERN Document Server

    Cao, Jiannong

    2016-01-01

    This brief covers the emerging area of wireless sensor network (WSN)-based structural health monitoring (SHM) systems, and introduces the authors’ WSN-based platform called SenetSHM. It helps the reader differentiate specific requirements of SHM applications from other traditional WSN applications, and demonstrates how these requirements are addressed by using a series of systematic approaches. The brief serves as a practical guide, explaining both the state-of-the-art technologies in domain-specific applications of WSNs, as well as the methodologies used to address the specific requirements for a WSN application. In particular, the brief offers instruction for problem formulation and problem solving based on the authors’ own experiences implementing SenetSHM. Seven concise chapters cover the development of hardware and software design of SenetSHM, as well as in-field experiments conducted while testing the platform. The brief’s exploration of the SenetSHM platform is a valuable feature for civil engine...

  12. Network versus portfolio structure in financial systems

    Science.gov (United States)

    Kobayashi, Teruyoshi

    2013-10-01

    The question of how to stabilize financial systems has attracted considerable attention since the global financial crisis of 2007-2009. Recently, Beale et al. [Proc. Natl. Acad. Sci. USA 108, 12647 (2011)] demonstrated that higher portfolio diversity among banks would reduce systemic risk by decreasing the risk of simultaneous defaults at the expense of a higher likelihood of individual defaults. In practice, however, a bank default has an externality in that it undermines other banks’ balance sheets. This paper explores how each of these different sources of risk, simultaneity risk and externality, contributes to systemic risk. The results show that the allocation of external assets that minimizes systemic risk varies with the topology of the financial network as long as asset returns have negative correlations. In the model, a well-known centrality measure, PageRank, reflects an appropriately defined “infectiveness” of a bank. An important result is that the most infective bank needs not always to be the safest bank. Under certain circumstances, the most infective node should act as a firewall to prevent large-scale collective defaults. The introduction of a counteractive portfolio structure will significantly reduce systemic risk.

  13. Exploring network structure, dynamics, and function using networkx

    Energy Technology Data Exchange (ETDEWEB)

    Hagberg, Aric [Los Alamos National Laboratory; Swart, Pieter [Los Alamos National Laboratory; S Chult, Daniel [COLGATE UNIV

    2008-01-01

    NetworkX is a Python language package for exploration and analysis of networks and network algorithms. The core package provides data structures for representing many types of networks, or graphs, including simple graphs, directed graphs, and graphs with parallel edges and self loops. The nodes in NetworkX graphs can be any (hashable) Python object and edges can contain arbitrary data; this flexibility mades NetworkX ideal for representing networks found in many different scientific fields. In addition to the basic data structures many graph algorithms are implemented for calculating network properties and structure measures: shortest paths, betweenness centrality, clustering, and degree distribution and many more. NetworkX can read and write various graph formats for eash exchange with existing data, and provides generators for many classic graphs and popular graph models, such as the Erdoes-Renyi, Small World, and Barabasi-Albert models, are included. The ease-of-use and flexibility of the Python programming language together with connection to the SciPy tools make NetworkX a powerful tool for scientific computations. We discuss some of our recent work studying synchronization of coupled oscillators to demonstrate how NetworkX enables research in the field of computational networks.

  14. Structure versus time in the evolutionary diversification of avian carotenoid metabolic networks.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2018-05-01

    Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre-existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution - historical continuity of a deterministic network that links past and present functional associations of its components. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  15. Convolutional neural network architectures for predicting DNA–protein binding

    Science.gov (United States)

    Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.

    2016-01-01

    Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608

  16. Complex network perspective on structure and function of ...

    Indian Academy of Sciences (India)

    of community social networks, which are dense node–node links within modules, but have sparser links between ... 3.2 Bow tie structure. The whole metabolic network of S. aureus is then decomposed into four parts based on the 'bow tie' structure (figure 2, table 2). It should be noted that most nodes in S, P and IS parts are ...

  17. Changing organizational structures of jihadist networks in the Netherlands

    NARCIS (Netherlands)

    de Bie, Jasper L.; de Poot, Christianne J.; Freilich, Joshua D.; Chermak, Steven M.

    2017-01-01

    This paper uses Social Network Analysis to study and compare the organizational structures and division of roles of three jihadist networks in the Netherlands. It uses unique longitudinal Dutch police data covering the 2000–2013 period. This study demonstrates how the organizational structures

  18. Online Social Networks: Essays on Membership, Privacy, and Structure

    NARCIS (Netherlands)

    Hofstra, B.

    2017-01-01

    The structure of social networks is crucial for obtaining social support, for meaningful connections to unknown social groups, and to overcome prejudice. Yet, we know little about the structure of social networks beyond those contacts that stand closest to us. This lack of knowledge results from a

  19. Nonlinear deterministic structures and the randomness of protein sequences

    CERN Document Server

    Huang Yan Zhao

    2003-01-01

    To clarify the randomness of protein sequences, we make a detailed analysis of a set of typical protein sequences representing each structural classes by using nonlinear prediction method. No deterministic structures are found in these protein sequences and this implies that they behave as random sequences. We also give an explanation to the controversial results obtained in previous investigations.

  20. The structure of a cholesterol-trapping protein

    Science.gov (United States)

    cholesterol-trapping protein Contact: Dan Krotz, dakrotz@lbl.gov Berkeley Lab Science Beat Lab website index Institute researchers determined the three-dimensional structure of a protein that controls cholesterol level in the bloodstream. Knowing the structure of the protein, a cellular receptor that ensnares

  1. STRUCTURAL FEATURES OF PLANT CHITINASES AND CHITIN-BINDING PROTEINS

    NARCIS (Netherlands)

    BEINTEMA, JJ

    1994-01-01

    Structural features of plant chitinases and chitin-binding proteins are discussed. Many of these proteins consist of multiple domains,of which the chitin-binding hevein domain is a predominant one. X-ray and NMR structures of representatives of the major classes of these proteins are available now,

  2. Getting to the Edge: Protein dynamical networks as a new frontier in plant-microbe interactions

    Directory of Open Access Journals (Sweden)

    Cassandra C Garbutt

    2014-06-01

    Full Text Available A systems perspective on diverse phenotypes, mechanisms of infection, and responses to environmental stresses can lead to considerable advances in agriculture and medicine. A significant promise of systems biology within plants is the development of disease-resistant crop varieties, which would maximize yield output for food, clothing, building materials and biofuel production. A systems or -omics perspective frames the next frontier in the search for enhanced knowledge of plant network biology. The functional understanding of network structure and dynamics s is vital to expanding our knowledge of how the intercellular communication processes are executed. . This review article will systematically discuss various levels of organization of systems biology beginning with the building blocks termed –omes and ending with complex transcriptional and protein-protein interaction networks. We will also highlight the prevailing computational modeling approaches of biological regulatory network dynamics. The latest developments in the -omics approach will be reviewed and discussed to underline and highlight novel technologies and research directions in plant network biology.

  3. Reconstructing consensus Bayesian network structures with application to learning molecular interaction networks

    NARCIS (Netherlands)

    Fröhlich, H.; Klau, G.W.

    2013-01-01

    Bayesian Networks are an established computational approach for data driven network inference. However, experimental data is limited in its availability and corrupted by noise. This leads to an unavoidable uncertainty about the correct network structure. Thus sampling or bootstrap based strategies

  4. Rapidly exploring structural and dynamic properties of signaling networks using PathwayOracle

    Directory of Open Access Journals (Sweden)

    Ram Prahlad T

    2008-08-01

    Full Text Available Abstract Background In systems biology the experimentalist is presented with a selection of software for analyzing dynamic properties of signaling networks. These tools either assume that the network is in steady-state or require highly parameterized models of the network of interest. For biologists interested in assessing how signal propagates through a network under specific conditions, the first class of methods does not provide sufficiently detailed results and the second class requires models which may not be easily and accurately constructed. A tool that is able to characterize the dynamics of a signaling network using an unparameterized model of the network would allow biologists to quickly obtain insights into a signaling network's behavior. Results We introduce PathwayOracle, an integrated suite of software tools for computationally inferring and analyzing structural and dynamic properties of a signaling network. The feature which differentiates PathwayOracle from other tools is a method that can predict the response of a signaling network to various experimental conditions and stimuli using only the connectivity of the signaling network. Thus signaling models are relatively easy to build. The method allows for tracking signal flow in a network and comparison of signal flows under different experimental conditions. In addition, PathwayOracle includes tools for the enumeration and visualization of coherent and incoherent signaling paths between proteins, and for experimental analysis – loading and superimposing experimental data, such as microarray intensities, on the network model. Conclusion PathwayOracle provides an integrated environment in which both structural and dynamic analysis of a signaling network can be quickly conducted and visualized along side experimental results. By using the signaling network connectivity, analyses and predictions can be performed quickly using relatively easily constructed signaling network models

  5. Functional clustering in hippocampal cultures: relating network structure and dynamics

    International Nuclear Information System (INIS)

    Feldt, S; Dzakpasu, R; Olariu, E; Żochowski, M; Wang, J X; Shtrahman, E

    2010-01-01

    In this work we investigate the relationship between gross anatomic structural network properties, neuronal dynamics and the resultant functional structure in dissociated rat hippocampal cultures. Specifically, we studied cultures as they developed under two conditions: the first supporting glial cell growth (high glial group), and the second one inhibiting it (low glial group). We then compared structural network properties and the spatio-temporal activity patterns of the neurons. Differences in dynamics between the two groups could be linked to the impact of the glial network on the neuronal network as the cultures developed. We also implemented a recently developed algorithm called the functional clustering algorithm (FCA) to obtain the resulting functional network structure. We show that this new algorithm is useful for capturing changes in functional network structure as the networks evolve over time. The FCA detects changes in functional structure that are consistent with expected dynamical differences due to the impact of the glial network. Cultures in the high glial group show an increase in global synchronization as the cultures age, while those in the low glial group remain locally synchronized. We additionally use the FCA to quantify the amount of synchronization present in the cultures and show that the total level of synchronization in the high glial group is stronger than in the low glial group. These results indicate an interdependence between the glial and neuronal networks present in dissociated cultures

  6. Functional structural motifs for protein-ligand, protein-protein, and protein-nucleic acid interactions and their connection to supersecondary structures.

    Science.gov (United States)

    Kinjo, Akira R; Nakamura, Haruki

    2013-01-01

    Protein functions are mediated by interactions between proteins and other molecules. One useful approach to analyze protein functions is to compare and classify the structures of interaction interfaces of proteins. Here, we describe the procedures for compiling a database of interface structures and efficiently comparing the interface structures. To do so requires a good understanding of the data structures of the Protein Data Bank (PDB). Therefore, we also provide a detailed account of the PDB exchange dictionary necessary for extracting data that are relevant for analyzing interaction interfaces and secondary structures. We identify recurring structural motifs by classifying similar interface structures, and we define a coarse-grained representation of supersecondary structures (SSS) which represents a sequence of two or three secondary structure elements including their relative orientations as a string of four to seven letters. By examining the correspondence between structural motifs and SSS strings, we show that no SSS string has particularly high propensity to be found interaction interfaces in general, indicating any SSS can be used as a binding interface. When individual structural motifs are examined, there are some SSS strings that have high propensity for particular groups of structural motifs. In addition, it is shown that while the SSS strings found in particular structural motifs for nonpolymer and protein interfaces are as abundant as in other structural motifs that belong to the same subunit, structural motifs for nucleic acid interfaces exhibit somewhat stronger preference for SSS strings. In regard to protein folds, many motif-specific SSS strings were found across many folds, suggesting that SSS may be a useful description to investigate the universality of ligand binding modes.

  7. A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2

    Directory of Open Access Journals (Sweden)

    Sylvie Lalonde

    2010-09-01

    Full Text Available Interactions between membrane proteins and the soluble fraction are essential for signal transduction and for regulating nutrient transport. To gain insights into the membrane-based interactome, 3,852 open reading frames (ORFs out of a target list of 8,383 representing membrane and signaling proteins from Arabidopsis thaliana were cloned into a Gateway compatible vector. The mating-based split-ubiquitin system was used to screen for potential protein-protein interactions (pPPIs among 490 Arabidopsis ORFs. A binary robotic screen between 142 receptor-like kinases, 72 transporters, 57 soluble protein kinases and phosphatases, 40 glycosyltransferases, 95 proteins of various functions and 89 proteins with unknown function detected 387 out of 90,370 possible PPIs. A secondary screen confirmed 343 (of 387 pPPIs between 179 proteins, yielding a scale-free network (r2=0.863. Eighty of 142 transmembrane receptor-like kinases (RLK tested positive, identifying three homomers, 63 heteromers and 80 pPPIs with other proteins. Thirty-one out of 142 RLK interactors (including RLKs had previously been found to be phosphorylated; thus interactors may be substrates for respective RLKs. None of the pPPIs described here had been reported in the major interactome databases, including potential interactors of G protein-coupled receptors, phospholipase C, and AMT ammonium transporters. Two RLKs found as putative interactors of AMT1;1 were independently confirmed using a split luciferase assay in Arabidopsis protoplasts. These RLKs may be involved in ammonium-dependent phosphorylation of the C-terminus and regulation of ammonium uptake activity. The robotic screening method established here will enable a systematic analysis of membrane protein interactions in fungi, plants and metazoa.

  8. Identification of key residues for protein conformational transition using elastic network model.

    Science.gov (United States)

    Su, Ji Guo; Xu, Xian Jin; Li, Chun Hua; Chen, Wei Zu; Wang, Cun Xin

    2011-11-07

    Proteins usually undergo conformational transitions between structurally disparate states to fulfill their functions. The large-scale allosteric conformational transitions are believed to involve some key residues that mediate the conformational movements between different regions of the protein. In the present work, a thermodynamic method based on the elastic network model is proposed to predict the key residues involved in protein conformational transitions. In our method, the key functional sites are identified as the residues whose perturbations largely influence the free energy difference between the protein states before and after transition. Two proteins, nucleotide binding domain of the heat shock protein 70 and human/rat DNA polymerase β, are used as case studies to identify the critical residues responsible for their open-closed conformational transitions. The results show that the functionally important residues mainly locate at the following regions for these two proteins: (1) the bridging point at the interface between the subdomains that control the opening and closure of the binding cleft; (2) the hinge region between different subdomains, which mediates the cooperative motions between the corresponding subdomains; and (3) the substrate binding sites. The similarity in the positions of the key residues for these two proteins may indicate a common mechanism in their conformational transitions.

  9. The role of exon shuffling in shaping protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    França Gustavo S

    2010-12-01

    Full Text Available Abstract Background Physical protein-protein interaction (PPI is a critical phenomenon for the function of most proteins in living organisms and a significant fraction of PPIs are the result of domain-domain interactions. Exon shuffling, intron-mediated recombination of exons from existing genes, is known to have been a major mechanism of domain shuffling in metazoans. Thus, we hypothesized that exon shuffling could have a significant influence in shaping the topology of PPI networks. Results We tested our hypothesis by compiling exon shuffling and PPI data from six eukaryotic species: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Cryptococcus neoformans and Arabidopsis thaliana. For all four metazoan species, genes enriched in exon shuffling events presented on average higher vertex degree (number of interacting partners in PPI networks. Furthermore, we verified that a set of protein domains that are simultaneously promiscuous (known to interact to multiple types of other domains, self-interacting (able to interact with another copy of themselves and abundant in the genomes presents a stronger signal for exon shuffling. Conclusions Exon shuffling appears to have been a recurrent mechanism for the emergence of new PPIs along metazoan evolution. In metazoan genomes, exon shuffling also promoted the expansion of some protein domains. We speculate that their promiscuous and self-interacting properties may have been decisive for that expansion.

  10. Structure of an essential bacterial protein YeaZ (TM0874) from Thermotoga maritima at 2.5 Å resolution

    International Nuclear Information System (INIS)

    Xu, Qingping; McMullan, Daniel; Jaroszewski, Lukasz; Krishna, S. Sri; Elsliger, Marc-André; Yeh, Andrew P.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; Duan, Lian; Feuerhelm, Julie; Grant, Joanna; Han, Gye Won; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Bedem, Henry van den; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2009-01-01

    The crystal structure of an essential bacterial protein, YeaZ, from T. maritima identifies an interface that potentially mediates protein–protein interaction. YeaZ is involved in a protein network that is essential for bacteria. The crystal structure of YeaZ from Thermotoga maritima was determined to 2.5 Å resolution. Although this protein belongs to a family of ancient actin-like ATPases, it appears that it has lost the ability to bind ATP since it lacks some key structural features that are important for interaction with ATP. A conserved surface was identified, supporting its role in the formation of protein complexes

  11. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction

    KAUST Repository

    Cui, Xuefeng; Lu, Zhiwu; Wang, Sheng; Jing-Yan Wang, Jim; Gao, Xin

    2016-01-01

    Motivation: Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment

  12. From protein-protein interactions to protein co-expression networks: a new perspective to evaluate large-scale proteomic data.

    Science.gov (United States)

    Vella, Danila; Zoppis, Italo; Mauri, Giancarlo; Mauri, Pierluigi; Di Silvestre, Dario

    2017-12-01

    The reductionist approach of dissecting biological systems into their constituents has been successful in the first stage of the molecular biology to elucidate the chemical basis of several biological processes. This knowledge helped biologists to understand the complexity of the biological systems evidencing that most biological functions do not arise from individual molecules; thus, realizing that the emergent properties of the biological systems cannot be explained or be predicted by investigating individual molecules without taking into consideration their relations. Thanks to the improvement of the current -omics technologies and the increasing understanding of the molecular relationships, even more studies are evaluating the biological systems through approaches based on graph theory. Genomic and proteomic data are often combined with protein-protein interaction (PPI) networks whose structure is routinely analyzed by algorithms and tools to characterize hubs/bottlenecks and topological, functional, and disease modules. On the other hand, co-expression networks represent a complementary procedure that give the opportunity to evaluate at system level including organisms that lack information on PPIs. Based on these premises, we introduce the reader to the PPI and to the co-expression networks, including aspects of reconstruction and analysis. In particular, the new idea to evaluate large-scale proteomic data by means of co-expression networks will be discussed presenting some examples of application. Their use to infer biological knowledge will be shown, and a special attention will be devoted to the topological and module analysis.

  13. Learning and structure of neuronal networks

    Indian Academy of Sciences (India)

    We study the effect of learning dynamics on network topology. Firstly, a network of discrete dynamical systems is considered for this purpose and the coupling strengths are made to evolve according to a temporal learning rule that is based on the paradigm of spike-time-dependent plasticity (STDP). This incorporates ...

  14. Wireless Sensor Networks : Structure and Algorithms

    NARCIS (Netherlands)

    van Dijk, T.C.

    2014-01-01

    In this thesis we look at various problems in wireless networking. First we consider two problems in physical-model networks. We introduce a new model for localisation. The model is based on a range-free model of radio transmissions. The first scheme is randomised and we analyse its expected

  15. Fundamental structures of dynamic social networks

    DEFF Research Database (Denmark)

    Sekara, Vedran; Stopczynski, Arkadiusz; Jørgensen, Sune Lehmann

    2016-01-01

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships...... and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection......, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals...

  16. Structural characterization of the photoswitchable fluorescent protein Dronpa-C62S

    International Nuclear Information System (INIS)

    Nam, Ki-Hyun; Kwon, Oh Yeun; Sugiyama, Kanako; Lee, Won-Ho; Kim, Young Kwan; Song, Hyun Kyu; Kim, Eunice Eunkyung; Park, Sam-Yong; Jeon, Hyesung; Hwang, Kwang Yeon

    2007-01-01

    The photoswitching behavior of green fluorescent proteins (GFPs) or GFP-like proteins is increasingly recognized as a new technique for optical marking. Recently, Ando and his colleagues developed a new green fluorescent protein Dronpa, which possesses the unique photochromic property of being photoswitchable in a non-destructive manner. To better understand this mechanism, we determined the crystal structures of a new GFP Dronpa and its mutant C62S, at 1.9 A and 1.8 A, respectively. Determination of the structures demonstrates that a unique hydrogen-bonding network and the sulfur atom of the chromophore are critical to the photoswitching property of Dronpa. Reversible photoswitching was lost in cells expressing the Dronpa-C62S upon repetitive irradiation compared to the native protein. Structural and mutational analyses reveal the chemical basis for the functional properties of photoswitchable fluorescent proteins and provide the basis for subsequent coherent engineering of this subfamily of Dronpa homolog's

  17. Protein Function Prediction Based on Sequence and Structure Information

    KAUST Repository

    Smaili, Fatima Z.

    2016-01-01

    operate. In this master thesis project, we worked on inferring protein functions based on the primary protein sequence. In the approach we follow, 3D models are first constructed using I-TASSER. Functions are then deduced by structurally matching

  18. K-nearest uphill clustering in the protein structure space

    KAUST Repository

    Cui, Xuefeng

    2016-08-26

    The protein structure classification problem, which is to assign a protein structure to a cluster of similar proteins, is one of the most fundamental problems in the construction and application of the protein structure space. Early manually curated protein structure classifications (e.g., SCOP and CATH) are very successful, but recently suffer the slow updating problem because of the increased throughput of newly solved protein structures. Thus, fully automatic methods to cluster proteins in the protein structure space have been designed and developed. In this study, we observed that the SCOP superfamilies are highly consistent with clustering trees representing hierarchical clustering procedures, but the tree cutting is very challenging and becomes the bottleneck of clustering accuracy. To overcome this challenge, we proposed a novel density-based K-nearest uphill clustering method that effectively eliminates noisy pairwise protein structure similarities and identifies density peaks as cluster centers. Specifically, the density peaks are identified based on K-nearest uphills (i.e., proteins with higher densities) and K-nearest neighbors. To our knowledge, this is the first attempt to apply and develop density-based clustering methods in the protein structure space. Our results show that our density-based clustering method outperforms the state-of-the-art clustering methods previously applied to the problem. Moreover, we observed that computational methods and human experts could produce highly similar clusters at high precision values, while computational methods also suggest to split some large superfamilies into smaller clusters. © 2016 Elsevier B.V.

  19. Structural Evolution in Photoactive Yellow Protein Studied by Femtosecond Stimulated Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yoshizawa M.

    2013-03-01

    Full Text Available Ultrafast structural evolution in photoactive yellow protein (PYP is studied by femtosecond stimulated Raman spectroscopy. A comparison between wild-type PYP and E46Q mutant reveals that the hydrogen-bonding network surrounding the chromophore of PYP is immediately rearranged in the electronic excited state.

  20. Structural and robustness properties of smart-city transportation networks

    Science.gov (United States)

    Zhang, Zhen-Gang; Ding, Zhuo; Fan, Jing-Fang; Meng, Jun; Ding, Yi-Min; Ye, Fang-Fu; Chen, Xiao-Song

    2015-09-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. Project supported by the Major Projects of the China National Social Science Fund (Grant No. 11 & ZD154).

  1. Structural and robustness properties of smart-city transportation networks

    International Nuclear Information System (INIS)

    Zhang Zhen-Gang; Ding Zhuo; Fan Jing-Fang; Chen Xiao-Song; Meng Jun; Ye Fang-Fu; Ding Yi-Min

    2015-01-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. (rapid communication)

  2. Use of designed sequences in protein structure recognition.

    Science.gov (United States)

    Kumar, Gayatri; Mudgal, Richa; Srinivasan, Narayanaswamy; Sandhya, Sankaran

    2018-05-09

    Knowledge of the protein structure is a pre-requisite for improved understanding of molecular function. The gap in the sequence-structure space has increased in the post-genomic era. Grouping related protein sequences into families can aid in narrowing the gap. In the Pfam database, structure description is provided for part or full-length proteins of 7726 families. For the remaining 52% of the families, information on 3-D structure is not yet available. We use the computationally designed sequences that are intermediately related to two protein domain families, which are already known to share the same fold. These strategically designed sequences enable detection of distant relationships and here, we have employed them for the purpose of structure recognition of protein families of yet unknown structure. We first measured the success rate of our approach using a dataset of protein families of known fold and achieved a success rate of 88%. Next, for 1392 families of yet unknown structure, we made structural assignments for part/full length of the proteins. Fold association for 423 domains of unknown function (DUFs) are provided as a step towards functional annotation. The results indicate that knowledge-based filling of gaps in protein sequence space is a lucrative approach for structure recognition. Such sequences assist in traversal through protein sequence space and effectively function as 'linkers', where natural linkers between distant proteins are unavailable. This article was reviewed by Oliviero Carugo, Christine Orengo and Srikrishna Subramanian.

  3. Adapting Bayes Network Structures to Non-stationary Domains

    DEFF Research Database (Denmark)

    Nielsen, Søren Holbech; Nielsen, Thomas Dyhre

    2008-01-01

    When an incremental structural learning method gradually modifies a Bayesian network (BN) structure to fit a sequential stream of observations, we call the process structural adaptation. Structural adaptation is useful when the learner is set to work in an unknown environment, where a BN is gradu...

  4. Using an alignment of fragment strings for comparing protein structures

    DEFF Research Database (Denmark)

    Friedberg, Iddo; Harder, Tim; Kolodny, Rachel

    2007-01-01

    . RESULTS: Here we describe the use of a particular structure fragment library, denoted here as KL-strings, for the 1D representation of protein structure. Using KL-strings, we develop an infrastructure for comparing protein structures with a 1D representation. This study focuses on the added value gained...

  5. Rheology and structure of milk protein gels

    NARCIS (Netherlands)

    Vliet, van T.; Lakemond, C.M.M.; Visschers, R.W.

    2004-01-01

    Recent studies on gel formation and rheology of milk gels are reviewed. A distinction is made between gels formed by aggregated casein, gels of `pure` whey proteins and gels in which both casein and whey proteins contribute to their properties. For casein' whey protein mixtures, it has been shown

  6. Resolving structural variability in network models and the brain.

    Directory of Open Access Journals (Sweden)

    Florian Klimm

    2014-03-01

    Full Text Available Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling--in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity do not in general simultaneously display a second (e.g., hierarchy. This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful

  7. Covariance, correlation matrix, and the multiscale community structure of networks.

    Science.gov (United States)

    Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing

    2010-07-01

    Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.

  8. A hidden markov model derived structural alphabet for proteins.

    Science.gov (United States)

    Camproux, A C; Gautier, R; Tufféry, P

    2004-06-04

    Understanding and predicting protein structures depends on the complexity and the accuracy of the models used to represent them. We have set up a hidden Markov model that discretizes protein backbone conformation as series of overlapping fragments (states) of four residues length. This approach learns simultaneously the geometry of the states and their connections. We obtain, using a statistical criterion, an optimal systematic decomposition of the conformational variability of the protein peptidic chain in 27 states with strong connection logic. This result is stable over different protein sets. Our model fits well the previous knowledge related to protein architecture organisation and seems able to grab some subtle details of protein organisation, such as helix sub-level organisation schemes. Taking into account the dependence between the states results in a description of local protein structure of low complexity. On an average, the model makes use of only 8.3 states among 27 to describe each position of a protein structure. Although we use short fragments, the learning process on entire protein conformations captures the logic of the assembly on a larger scale. Using such a model, the structure of proteins can be reconstructed with an average accuracy close to 1.1A root-mean-square deviation and for a complexity of only 3. Finally, we also observe that sequence specificity increases with the number of states of the structural alphabet. Such models can constitute a very relevant approach to the analysis of protein architecture in particular for protein structure prediction.

  9. Structural and Infrastructural Underpinnings of International R&D Networks

    DEFF Research Database (Denmark)

    Niang, Mohamed; Sørensen, Brian Vejrum

    2009-01-01

    This paper explores the process of globally distributing R&D activities with an emphasis on the effects of network maturity. It discusses emerging configurations by asking how the structure and infrastructure of international R&D networks evolve along with the move from a strong R&D center...... to dispersed development. Drawing from case studies of two international R&D networks, it presents a capability maturity model and argues that understanding the interaction between new structures and infrastructures of the dispersed networks has become a key requirement for developing organizational...

  10. Implementation of a Parallel Protein Structure Alignment Service on Cloud

    Directory of Open Access Journals (Sweden)

    Che-Lun Hung

    2013-01-01

    Full Text Available Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform.

  11. Conversation practices and network structure in Twitter

    DEFF Research Database (Denmark)

    Rossi, Luca; Magnani, Matteo

    2012-01-01

    that this double nature of Twitter is widely recognized among scholars there is still little literature facing the relationships between these two networks. This paper presents the results of an empirical research aimed at discovering how the Twitter network is affected by what happens on the topical network. Does...... the participation in the same hashtag based conversation change the follower list of the participants? Is it possible to point out specific social behaviors that would produce a major gain of followers? Our conclusions are based on real data concerning the popular TV show Xfactor, that largely used Twitter...

  12. Evidence for the additions of clustered interacting nodes during the evolution of protein interaction networks from network motifs

    Directory of Open Access Journals (Sweden)

    Guo Hao

    2011-05-01

    Full Text Available Abstract Background High-throughput screens have revealed large-scale protein interaction networks defining most cellular functions. How the proteins were added to the protein interaction network during its growth is a basic and important issue. Network motifs represent the simplest building blocks of cellular machines and are of biological significance. Results Here we study the evolution of protein interaction networks from the perspective of network motifs. We find that in current protein interaction networks, proteins of the same age class tend to form motifs and such co-origins of motif constituents are affected by their topologies and biological functions. Further, we find that the proteins within motifs whose constituents are of the same age class tend to be densely interconnected, co-evolve and share the same biological functions, and these motifs tend to be within protein complexes. Conclusions Our findings provide novel evidence for the hypothesis of the additions of clustered interacting nodes and point out network motifs, especially the motifs with the dense topology and specific function may play important roles during this process. Our results suggest functional constraints may be the underlying driving force for such additions of clustered interacting nodes.

  13. A human protein interaction network shows conservation of aging processes between human and invertebrate species.

    Directory of Open Access Journals (Sweden)

    Russell Bell

    2009-03-01

    Full Text Available We have mapped a protein interaction network of human homologs of proteins that modify longevity in invertebrate species. This network is derived from a proteome-scale human protein interaction Core Network generated through unbiased high-throughput yeast two-hybrid searches. The longevity network is composed of 175 human homologs of proteins known to confer increased longevity through loss of function in yeast, nematode, or fly, and 2,163 additional human proteins that interact with these homologs. Overall, the network consists of 3,271 binary interactions among 2,338 unique proteins. A comparison of the average node degree of the human longevity homologs with random sets of proteins in the Core Network indicates that human homologs of longevity proteins are highly connected hubs with a mean node degree of 18.8 partners. Shortest path length analysis shows that proteins in this network are significantly more connected than would be expected by chance. To examine the relationship of this network to human aging phenotypes, we compared the genes encoding longevity network proteins to genes known to be changed transcriptionally during aging in human muscle. In the case of both the longevity protein homologs and their interactors, we observed enrichments for differentially expressed genes in the network. To determine whether homologs of human longevity interacting proteins can modulate life span in invertebrates, homologs of 18 human FRAP1 interacting proteins showing significant changes in human aging muscle were tested for effects on nematode life span using RNAi. Of 18 genes tested, 33% extended life span when knocked-down in Caenorhabditis elegans. These observations indicate that a broad class of longevity genes identified in invertebrate models of aging have relevance to human aging. They also indicate that the longevity protein interaction network presented here is enriched for novel conserved longevity proteins.

  14. Implications of network structure on public health collaboratives.

    Science.gov (United States)

    Retrum, Jessica H; Chapman, Carrie L; Varda, Danielle M

    2013-10-01

    Interorganizational collaboration is an essential function of public health agencies. These partnerships form social networks that involve diverse types of partners and varying levels of interaction. Such collaborations are widely accepted and encouraged, yet very little comparative research exists on how public health partnerships develop and evolve, specifically in terms of how subsequent network structures are linked to outcomes. A systems science approach, that is, one that considers the interdependencies and nested features of networks, provides the appropriate methods to examine the complex nature of these networks. Applying Mays and Scutchfields's categorization of "structural signatures" (breadth, density, and centralization), this research examines how network structure influences the outcomes of public health collaboratives. Secondary data from the Program to Analyze, Record, and Track Networks to Enhance Relationships (www.partnertool.net) data set are analyzed. This data set consists of dyadic (N = 12,355), organizational (N = 2,486), and whole network (N = 99) data from public health collaborations around the United States. Network data are used to calculate structural signatures and weighted least squares regression is used to examine how network structures can predict selected intermediary outcomes (resource contributions, overall value and trust rankings, and outcomes) in public health collaboratives. Our findings suggest that network structure may have an influence on collaborative-related outcomes. The structural signature that had the most significant relationship to outcomes was density, with higher density indicating more positive outcomes. Also significant was the finding that more breadth creates new challenges such as difficulty in reaching consensus and creating ties with other members. However, assumptions that these structural components lead to improved outcomes for public health collaboratives may be slightly premature. Implications of

  15. Conversation practices and network structure in Twitter

    DEFF Research Database (Denmark)

    Rossi, Luca; Magnani, Matteo

    2012-01-01

    The public by default nature of Twitter messages, together with the adoption of the #hashtag convention led, in few years, to the creation of a digital space able to host worldwide conversation on almost every kind of topic. From major TV shows to Natural disasters there is no contemporary event...... that does not have its own #hashtag to gather together the ongoing Twitter conversation. These topical discussions take place outside of the Twitter network made of followers and friends. Nevertheless this topical network is where many of the most studied phenomena take place. Therefore Twitter based...... communication exists on two almost autonomous levels: the Twitter network made of followers and friends that shows a certain level of stability and the topical network, characterized by a high level of contingency, that appears and disappears following the rhythm of a worldwide conversation. Despite the fact...

  16. Compare local pocket and global protein structure models by small structure patterns

    KAUST Repository

    Cui, Xuefeng; Kuwahara, Hiroyuki; Li, Shuai Cheng; Gao, Xin

    2015-01-01

    Researchers proposed several criteria to assess the quality of predicted protein structures because it is one of the essential tasks in the Critical Assessment of Techniques for Protein Structure Prediction (CASP) competitions. Popular criteria

  17. PDB2CD visualises dynamics within protein structures.

    Science.gov (United States)

    Janes, Robert W

    2017-10-01

    Proteins tend to have defined conformations, a key factor in enabling their function. Atomic resolution structures of proteins are predominantly obtained by either solution nuclear magnetic resonance (NMR) or crystal structure methods. However, when considering a protein whose structure has been determined by both these approaches, on many occasions, the resultant conformations are subtly different, as illustrated by the examples in this study. The solution NMR approach invariably results in a cluster of structures whose conformations satisfy the distance boundaries imposed by the data collected; it might be argued that this is evidence of the dynamics of proteins when in solution. In crystal structures, the proteins are often in an energy minimum state which can result in an increase in the extent of regular secondary structure present relative to the solution state depicted by NMR, because the more dynamic ends of alpha helices and beta strands can become ordered at the lower temperatures. This study examines a novel way to display the differences in conformations within an NMR ensemble and between these and a crystal structure of a protein. Circular dichroism (CD) spectroscopy can be used to characterise protein structures in solution. Using the new bioinformatics tool, PDB2CD, which generates CD spectra from atomic resolution protein structures, the differences between, and possible dynamic range of, conformations adopted by a protein can be visualised.

  18. Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model.

    Science.gov (United States)

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2016-10-06

    Comparative analysis of protein-protein interaction (PPI) networks provides an effective means of detecting conserved functional network modules across different species. Such modules typically consist of orthologous proteins with conserved interactions, which can be exploited to computationally predict the modules through network comparison. In this work, we propose a novel probabilistic framework for comparing PPI networks and effectively predicting the correspondence between proteins, represented as network nodes, that belong to conserved functional modules across the given PPI networks. The basic idea is to estimate the steady-state network flow between nodes that belong to different PPI networks based on a Markov random walk model. The random walker is designed to make random moves to adjacent nodes within a PPI network as well as cross-network moves between potential orthologous nodes with high sequence similarity. Based on this Markov random walk model, we estimate the steady-state network flow - or the long-term relative frequency of the transitions that the random walker makes - between nodes in different PPI networks, which can be used as a probabilistic score measuring their potential correspondence. Subsequently, the estimated scores can be used for detecting orthologous proteins in conserved functional modules through network alignment. Through evaluations based on multiple real PPI networks, we demonstrate that the proposed scheme leads to improved alignment results that are biologically more meaningful at reduced computational cost, outperforming the current state-of-the-art algorithms. The source code and datasets can be downloaded from http://www.ece.tamu.edu/~bjyoon/CUFID .

  19. DNA mimic proteins: functions, structures, and bioinformatic analysis.

    Science.gov (United States)

    Wang, Hao-Ching; Ho, Chun-Han; Hsu, Kai-Cheng; Yang, Jinn-Moon; Wang, Andrew H-J

    2014-05-13

    DNA mimic proteins have DNA-like negative surface charge distributions, and they function by occupying the DNA binding sites of DNA binding proteins to prevent these sites from being accessed by DNA. DNA mimic proteins control the activities of a variety of DNA binding proteins and are involved in a wide range of cellular mechanisms such as chromatin assembly, DNA repair, transcription regulation, and gene recombination. However, the sequences and structures of DNA mimic proteins are diverse, making them difficult to predict by bioinformatic search. To date, only a few DNA mimic proteins have been reported. These DNA mimics were not found by searching for functional motifs in their sequences but were revealed only by structural analysis of their charge distribution. This review highlights the biological roles and structures of 16 reported DNA mimic proteins. We also discuss approaches that might be used to discover new DNA mimic proteins.

  20. Weighted Protein Interaction Network Analysis of Frontotemporal Dementia.

    Science.gov (United States)

    Ferrari, Raffaele; Lovering, Ruth C; Hardy, John; Lewis, Patrick A; Manzoni, Claudia

    2017-02-03

    The genetic analysis of complex disorders has undoubtedly led to the identification of a wealth of associations between genes and specific traits. However, moving from genetics to biochemistry one gene at a time has, to date, rather proved inefficient and under-powered to comprehensively explain the molecular basis of phenotypes. Here we present a novel approach, weighted protein-protein interaction network analysis (W-PPI-NA), to highlight key functional players within relevant biological processes associated with a given trait. This is exemplified in the current study by applying W-PPI-NA to frontotemporal dementia (FTD): We first built the state of the art FTD protein network (FTD-PN) and then analyzed both its topological and functional features. The FTD-PN resulted from the sum of the individual interactomes built around FTD-spectrum genes, leading to a total of 4198 nodes. Twenty nine of 4198 nodes, called inter-interactome hubs (IIHs), represented those interactors able to bridge over 60% of the individual interactomes. Functional annotation analysis not only reiterated and reinforced previous findings from single genes and gene-coexpression analyses but also indicated a number of novel potential disease related mechanisms, including DNA damage response, gene expression regulation, and cell waste disposal and potential biomarkers or therapeutic targets including EP300. These processes and targets likely represent the functional core impacted in FTD, reflecting the underlying genetic architecture contributing to disease. The approach presented in this study can be applied to other complex traits for which risk-causative genes are known as it provides a promising tool for setting the foundations for collating genomics and wet laboratory data in a bidirectional manner. This is and will be critical to accelerate molecular target prioritization and drug discovery.

  1. A network model to correlate conformational change and the impedance spectrum of single proteins

    Energy Technology Data Exchange (ETDEWEB)

    Alfinito, Eleonora; Pennetta, Cecilia; Reggiani, Lino [Dipartimento di Ingegneria dell' Innovazione, Universita del Salento, Via Arnesano, Lecce (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM) (Italy)

    2008-02-13

    Integrated nanodevices based on proteins or biomolecules are attracting increasing interest in today's research. In fact, it has been shown that proteins such as azurin and bacteriorhodopsin manifest some electrical properties that are promising for the development of active components of molecular electronic devices. Here we focus on two relevant kinds of protein: bovine rhodopsin, prototype of G-protein-coupled-receptor (GPCR) proteins, and the enzyme acetylcholinesterase (AChE), whose inhibition is one of the most qualified treatments of Alzheimer's disease. Both these proteins exert their function starting with a conformational change of their native structure. Our guess is that such a change should be accompanied with a detectable variation of their electrical properties. To investigate this conjecture, we present an impedance network model of proteins, able to estimate the different impedance spectra associated with the different configurations. The distinct types of conformational change of rhodopsin and AChE agree with their dissimilar electrical responses. In particular, for rhodopsin the model predicts variations of the impedance spectra up to about 30%, while for AChE the same variations are limited to about 10%, which supports the existence of a dynamical equilibrium between its native and complexed states.

  2. Prediction of the Ebola Virus Infection Related Human Genes Using Protein-Protein Interaction Network.

    Science.gov (United States)

    Cao, HuanHuan; Zhang, YuHang; Zhao, Jia; Zhu, Liucun; Wang, Yi; Li, JiaRui; Feng, Yuan-Ming; Zhang, Ning

    2017-01-01

    Ebola hemorrhagic fever (EHF) is caused by Ebola virus (EBOV). It is reported that human could be infected by EBOV with a high fatality rate. However, association factors between EBOV and host still tend to be ambiguous. According to the "guilt by association" (GBA) principle, proteins interacting with each other are very likely to function similarly or the same. Based on this assumption, we tried to obtain EBOV infection-related human genes in a protein-protein interaction network using Dijkstra algorithm. We hope it could contribute to the discovery of novel effective treatments. Finally, 15 genes were selected as potential EBOV infection-related human genes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Network Properties of the Ensemble of RNA Structures

    Science.gov (United States)

    Clote, Peter; Bayegan, Amir

    2015-01-01

    We describe the first dynamic programming algorithm that computes the expected degree for the network, or graph G = (V, E) of all secondary structures of a given RNA sequence a = a 1, …, a n. Here, the nodes V correspond to all secondary structures of a, while an edge exists between nodes s, t if the secondary structure t can be obtained from s by adding, removing or shifting a base pair. Since secondary structure kinetics programs implement the Gillespie algorithm, which simulates a random walk on the network of secondary structures, the expected network degree may provide a better understanding of kinetics of RNA folding when allowing defect diffusion, helix zippering, and related conformation transformations. We determine the correlation between expected network degree, contact order, conformational entropy, and expected number of native contacts for a benchmarking dataset of RNAs. Source code is available at http://bioinformatics.bc.edu/clotelab/RNAexpNumNbors. PMID:26488894

  4. Structure of Retail Services in the Brazilian Hosting Network

    Directory of Open Access Journals (Sweden)

    Claudio Zancan

    2015-08-01

    Full Text Available this research has identified Brazilian hosting networks through infrastructure services indicators that it was sold to tourists in organizations that form these networks. The theory consulted the discussion of structural techniques present in Social Network Analysis. The study has three stages: documental research, creation of Tourism database and interviews. The results identified three networks with the highest expression in Brazil formed by hotels, lodges, and resorts. Different char-acteristics of infrastructure and services were observed between hosting networks. Future studies suggest a comparative analysis of structural indicators present in other segments of tourism services, as well as the existing international influ-ence on the development of the Brazilian hosting networks.

  5. Thick Filament Protein Network, Functions, and Disease Association.

    Science.gov (United States)

    Wang, Li; Geist, Janelle; Grogan, Alyssa; Hu, Li-Yen R; Kontrogianni-Konstantopoulos, Aikaterini

    2018-03-13

    Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  6. Relation between native ensembles and experimental structures of proteins

    DEFF Research Database (Denmark)

    Best, R. B.; Lindorff-Larsen, Kresten; DePristo, M. A.

    2006-01-01

    Different experimental structures of the same protein or of proteins with high sequence similarity contain many small variations. Here we construct ensembles of "high-sequence similarity Protein Data Bank" (HSP) structures and consider the extent to which such ensembles represent the structural...... Data Bank ensembles; moreover, we show that the effects of uncertainties in structure determination are insufficient to explain the results. These results highlight the importance of accounting for native-state protein dynamics in making comparisons with ensemble-averaged experimental data and suggest...... heterogeneity of the native state in solution. We find that different NMR measurements probing structure and dynamics of given proteins in solution, including order parameters, scalar couplings, and residual dipolar couplings, are remarkably well reproduced by their respective high-sequence similarity Protein...

  7. PRED-CLASS: cascading neural networks for generalized protein classification and genome-wide applications.

    Science.gov (United States)

    Pasquier, C; Promponas, V J; Hamodrakas, S J

    2001-08-15

    A cascading system of hierarchical, artificial neural networks (named PRED-CLASS) is presented for the generalized classification of proteins into four distinct classes-transmembrane, fibrous, globular, and mixed-from information solely encoded in their amino acid sequences. The architecture of the individual component networks is kept very simple, reducing the number of free parameters (network synaptic weights) for faster training, improved generalization, and the avoidance of data overfitting. Capturing information from as few as 50 protein sequences spread among the four target classes (6 transmembrane, 10 fibrous, 13 globular, and 17 mixed), PRED-CLASS was able to obtain 371 correct predictions out of a set of 387 proteins (success rate approximately 96%) unambiguously assigned into one of the target classes. The application of PRED-CLASS to several test sets and complete proteomes of several organisms demonstrates that such a method could serve as a valuable tool in the annotation of genomic open reading frames with no functional assignment or as a preliminary step in fold recognition and ab initio structure prediction methods. Detailed results obtained for various data sets and completed genomes, along with a web sever running the PRED-CLASS algorithm, can be accessed over the World Wide Web at http://o2.biol.uoa.gr/PRED-CLASS.

  8. Displacement and deformation measurement for large structures by camera network

    Science.gov (United States)

    Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu

    2014-03-01

    A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.

  9. Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks

    Science.gov (United States)

    2012-09-21

    Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks Paulo Shakarian1*, J. Kenneth Wickiser2 1 Paulo Shakarian...significantly attacked. Citation: Shakarian P, Wickiser JK (2012) Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks...to 00-00-2012 4. TITLE AND SUBTITLE Similar Pathogen Targets in Arabidopsis thaliana and Homo sapiens Protein Networks 5a. CONTRACT NUMBER 5b

  10. A homologous mapping method for three-dimensional reconstruction of protein networks reveals disease-associated mutations.

    Science.gov (United States)

    Huang, Sing-Han; Lo, Yu-Shu; Luo, Yong-Chun; Tseng, Yu-Yao; Yang, Jinn-Moon

    2018-03-19

    One of the crucial steps toward understanding the associations among molecular interactions, pathways, and diseases in a cell is to investigate detailed atomic protein-protein interactions (PPIs) in the structural interactome. Despite the availability of large-scale methods for analyzing PPI networks, these methods often focused on PPI networks using genome-scale data and/or known experimental PPIs. However, these methods are unable to provide structurally resolved interaction residues and their conservations in PPI networks. Here, we reconstructed a human three-dimensional (3D) structural PPI network (hDiSNet) with the detailed atomic binding models and disease-associated mutations by enhancing our PPI families and 3D-domain interologs from 60,618 structural complexes and complete genome database with 6,352,363 protein sequences across 2274 species. hDiSNet is a scale-free network (γ = 2.05), which consists of 5177 proteins and 19,239 PPIs with 5843 mutations. These 19,239 structurally resolved PPIs not only expanded the number of PPIs compared to present structural PPI network, but also achieved higher agreement with gene ontology similarities and higher co-expression correlation than the ones of 181,868 experimental PPIs recorded in public databases. Among 5843 mutations, 1653 and 790 mutations involved in interacting domains and contacting residues, respectively, are highly related to diseases. Our hDiSNet can provide detailed atomic interactions of human disease and their associated proteins with mutations. Our results show that the disease-related mutations are often located at the contacting residues forming the hydrogen bonds or conserved in the PPI family. In addition, hDiSNet provides the insights of the FGFR (EGFR)-MAPK pathway for interpreting the mechanisms of breast cancer and ErbB signaling pathway in brain cancer. Our results demonstrate that hDiSNet can explore structural-based interactions insights for understanding the mechanisms of disease

  11. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks.

    Science.gov (United States)

    Hanson, Jack; Yang, Yuedong; Paliwal, Kuldip; Zhou, Yaoqi

    2017-03-01

    Capturing long-range interactions between structural but not sequence neighbors of proteins is a long-standing challenging problem in bioinformatics. Recently, long short-term memory (LSTM) networks have significantly improved the accuracy of speech and image classification problems by remembering useful past information in long sequential events. Here, we have implemented deep bidirectional LSTM recurrent neural networks in the problem of protein intrinsic disorder prediction. The new method, named SPOT-Disorder, has steadily improved over a similar method using a traditional, window-based neural network (SPINE-D) in all datasets tested without separate training on short and long disordered regions. Independent tests on four other datasets including the datasets from critical assessment of structure prediction (CASP) techniques and >10 000 annotated proteins from MobiDB, confirmed SPOT-Disorder as one of the best methods in disorder prediction. Moreover, initial studies indicate that the method is more accurate in predicting functional sites in disordered regions. These results highlight the usefulness combining LSTM with deep bidirectional recurrent neural networks in capturing non-local, long-range interactions for bioinformatics applications. SPOT-disorder is available as a web server and as a standalone program at: http://sparks-lab.org/server/SPOT-disorder/index.php . j.hanson@griffith.edu.au or yuedong.yang@griffith.edu.au or yaoqi.zhou@griffith.edu.au. Supplementary data is available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  12. Docking-based modeling of protein-protein interfaces for extensive structural and functional characterization of missense mutations.

    Science.gov (United States)

    Barradas-Bautista, Didier; Fernández-Recio, Juan

    2017-01-01

    Next-generation sequencing (NGS) technologies are providing genomic information for an increasing number of healthy individuals and patient populations. In the context of the large amount of generated genomic data that is being generated, understanding the effect of disease-related mutations at molecular level can contribute to close the gap between genotype and phenotype and thus improve prevention, diagnosis or treatment of a pathological condition. In order to fully characterize the effect of a pathological mutation and have useful information for prediction purposes, it is important first to identify whether the mutation is located at a protein-binding interface, and second to understand the effect on the binding affinity of the affected interaction/s. Computational methods, such as protein docking are currently used to complement experimental efforts and could help to build the human structural interactome. Here we have extended the original pyDockNIP method to predict the location of disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the protein-protein complex. We have applied this approach to the pathological interaction networks of six diseases with low structural data on PPIs. This approach can almost double the number of nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously unknown. This can help to annotate and interpret genomic data from large-scale population studies, and to achieve a better understanding of disease at molecular level.

  13. Docking-based modeling of protein-protein interfaces for extensive structural and functional characterization of missense mutations.

    Directory of Open Access Journals (Sweden)

    Didier Barradas-Bautista

    Full Text Available Next-generation sequencing (NGS technologies are providing genomic information for an increasing number of healthy individuals and patient populations. In the context of the large amount of generated genomic data that is being generated, understanding the effect of disease-related mutations at molecular level can contribute to close the gap between genotype and phenotype and thus improve prevention, diagnosis or treatment of a pathological condition. In order to fully characterize the effect of a pathological mutation and have useful information for prediction purposes, it is important first to identify whether the mutation is located at a protein-binding interface, and second to understand the effect on the binding affinity of the affected interaction/s. Computational methods, such as protein docking are currently used to complement experimental efforts and could help to build the human structural interactome. Here we have extended the original pyDockNIP method to predict the location of disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the protein-protein complex. We have applied this approach to the pathological interaction networks of six diseases with low structural data on PPIs. This approach can almost double the number of nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously unknown. This can help to annotate and interpret genomic data from large-scale population studies, and to achieve a better understanding of disease at molecular level.

  14. Current strategies for protein production and purification enabling membrane protein structural biology.

    Science.gov (United States)

    Pandey, Aditya; Shin, Kyungsoo; Patterson, Robin E; Liu, Xiang-Qin; Rainey, Jan K

    2016-12-01

    Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).

  15. Synchronization in complex networks with a modular structure.

    Science.gov (United States)

    Park, Kwangho; Lai, Ying-Cheng; Gupte, Saurabh; Kim, Jong-Won

    2006-03-01

    Networks with a community (or modular) structure arise in social and biological sciences. In such a network individuals tend to form local communities, each having dense internal connections. The linkage among the communities is, however, much more sparse. The dynamics on modular networks, for instance synchronization, may be of great social or biological interest. (Here by synchronization we mean some synchronous behavior among the nodes in the network, not, for example, partially synchronous behavior in the network or the synchronizability of the network with some external dynamics.) By using a recent theoretical framework, the master-stability approach originally introduced by Pecora and Carroll in the context of synchronization in coupled nonlinear oscillators, we address synchronization in complex modular networks. We use a prototype model and develop scaling relations for the network synchronizability with respect to variations of some key network structural parameters. Our results indicate that random, long-range links among distant modules is the key to synchronization. As an application we suggest a viable strategy to achieve synchronous behavior in social networks.

  16. Structuring evolution: biochemical networks and metabolic diversification in birds.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2016-08-25

    Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.

  17. Predicting nucleic acid binding interfaces from structural models of proteins.

    Science.gov (United States)

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.

  18. Information Propagation in Complex Networks : Structures and Dynamics

    NARCIS (Netherlands)

    Märtens, M.

    2018-01-01

    This thesis is a contribution to a deeper understanding of how information propagates and what this process entails. At its very core is the concept of the network: a collection of nodes and links, which describes the structure of the systems under investigation. The network is a mathematical model

  19. Structural dimensions of knowledge-action networks for sustainability

    Science.gov (United States)

    Tischa A. Munoz; B.B. Cutts

    2016-01-01

    Research on the influence of social network structure over flows of knowledge in support of sustainability governance and action has recently flourished. These studies highlight three challenges to evaluating knowledge-action networks: first, defining boundaries; second, characterizing power distributions; and third, identifying obstacles to knowledge sharing and...

  20. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding.

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  1. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  2. Ion pairs in non-redundant protein structures

    Indian Academy of Sciences (India)

    Ion pairs contribute to several functions including the activity of catalytic triads, fusion of viral membranes, stability in thermophilic proteins and solvent–protein interactions. Furthermore, they have the ability to affect the stability of protein structures and are also a part of the forces that act to hold monomers together.

  3. The structure and function of endophilin proteins

    DEFF Research Database (Denmark)

    Kjaerulff, Ole; Brodin, Lennart; Jung, Anita

    2011-01-01

    Members of the BAR domain protein superfamily are essential elements of cellular traffic. Endophilins are among the best studied BAR domain proteins. They have a prominent function in synaptic vesicle endocytosis (SVE), receptor trafficking and apoptosis, and in other processes that require...

  4. BLAST-based structural annotation of protein residues using Protein Data Bank.

    Science.gov (United States)

    Singh, Harinder; Raghava, Gajendra P S

    2016-01-25

    In the era of next-generation sequencing where thousands of genomes have been already sequenced; size of protein databases is growing with exponential rate. Structural annotation of these proteins is one of the biggest challenges for the computational biologist. Although, it is easy to perform BLAST search against Protein Data Bank (PDB) but it is difficult for a biologist to annotate protein residues from BLAST search. A web-server StarPDB has been developed for structural annotation of a protein based on its similarity with known protein structures. It uses standard BLAST software for performing similarity search of a query protein against protein structures in PDB. This server integrates wide range modules for assigning different types of annotation that includes, Secondary-structure, Accessible surface area, Tight-turns, DNA-RNA and Ligand modules. Secondary structure module allows users to predict regular secondary structure states to each residue in a protein. Accessible surface area predict the exposed or buried residues in a protein. Tight-turns module is designed to predict tight turns like beta-turns in a protein. DNA-RNA module developed for predicting DNA and RNA interacting residues in a protein. Similarly, Ligand module of server allows one to predicted ligands, metal and nucleotides ligand interacting residues in a protein. In summary, this manuscript presents a web server for comprehensive annotation of a protein based on similarity search. It integrates number of visualization tools that facilitate users to understand structure and function of protein residues. This web server is available freely for scientific community from URL http://crdd.osdd.net/raghava/starpdb .

  5. The macroecology of phylogenetically structured hummingbird-plant networks

    DEFF Research Database (Denmark)

    González, Ana M. Martín; Dalsgaard, Bo; Nogues, David Bravo

    2015-01-01

    Aim To investigate the association between hummingbird–plant network structure and species richness, phylogenetic signal on species' interaction pattern, insularity and historical and current climate. Location Fifty-four communities along a c. 10,000 km latitudinal gradient across the Americas (39...... approach, we examined the influence of species richness, phylogenetic signal, insularity and current and historical climate conditions on network structure (null-model-corrected specialization and modularity). Results Phylogenetically related species, especially plants, showed a tendency to interact...... with a similar array of mutualistic partners. The spatial variation in network structure exhibited a constant association with species phylogeny (R2 = 0.18–0.19); however, network structure showed the strongest association with species richness and environmental factors (R2 = 0.20–0.44 and R2 = 0...

  6. Mesoscopic structure conditions the emergence of cooperation on social networks.

    Directory of Open Access Journals (Sweden)

    Sergi Lozano

    Full Text Available BACKGROUND: We study the evolutionary Prisoner's Dilemma on two social networks substrates obtained from actual relational data. METHODOLOGY/PRINCIPAL FINDINGS: We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement with the observations in both real substrates. CONCLUSION: Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.

  7. Mesoscopic structure conditions the emergence of cooperation on social networks

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, S.; Arenas, A.; Sanchez, A.

    2008-12-01

    We study the evolutionary Prisoner's Dilemma on two social networks substrates obtained from actual relational data. We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement with the observations in both real substrates. Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.

  8. Exploiting the Past and the Future in Protein Secondary Structure Prediction

    DEFF Research Database (Denmark)

    Baldi, Pierre; Brunak, Søren; Frasconi, P

    1999-01-01

    predictions based on variable ranges of dependencies. These architectures extend recurrent neural networks, introducing non-causal bidirectional dynamics to capture both upstream and downstream information. The prediction algorithm is completed by the use of mixtures of estimators that leverage evolutionary......Motivation: Predicting the secondary structure of a protein (alpha-helix, beta-sheet, coil) is an important step towards elucidating its three-dimensional structure, as well as its function. Presently, the best predictors are based on machine learning approaches, in particular neural network...

  9. Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding

    KAUST Repository

    Cannistraci, Carlo; Alanis Lobato, Gregorio; Ravasi, Timothy

    2013-01-01

    Motivation: Most functions within the cell emerge thanks to protein-protein interactions (PPIs), yet experimental determination of PPIs is both expensive and time-consuming. PPI networks present significant levels of noise and incompleteness

  10. Neural network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence homology.

    Science.gov (United States)

    Bakhtiarizadeh, Mohammad Reza; Moradi-Shahrbabak, Mohammad; Ebrahimi, Mansour; Ebrahimie, Esmaeil

    2014-09-07

    Due to the central roles of lipid binding proteins (LBPs) in many biological processes, sequence based identification of LBPs is of great interest. The major challenge is that LBPs are diverse in sequence, structure, and function which results in low accuracy of sequence homology based methods. Therefore, there is a need for developing alternative functional prediction methods irrespective of sequence similarity. To identify LBPs from non-LBPs, the performances of support vector machine (SVM) and neural network were compared in this study. Comprehensive protein features and various techniques were employed to create datasets. Five-fold cross-validation (CV) and independent evaluation (IE) tests were used to assess the validity of the two methods. The results indicated that SVM outperforms neural network. SVM achieved 89.28% (CV) and 89.55% (IE) overall a