WorldWideScience

Sample records for protein p4 hemolin

  1. Upregulation of the immune protein gene hemolin in the epidermis during the wandering larval stage of the Indian meal moth, Plodia interpunctella.

    Science.gov (United States)

    Aye, Tin Tin; Shim, Jae-Kyoung; Rhee, In-Koo; Lee, Kyeong-Yeoll

    2008-08-01

    Expression of hemolin, which generates an immune protein, was up-regulated in wandering fifth instar larval stage of Plodia interpunctella. The mRNA level peaked in the middle of the wandering stage. Major expression was in the epidermis, rather than in the fat body or gut. To test a possible ecdysteroid effect on hemolin induction we treated with RH-5992, an ecdysteroid agonist, and KK-42, which inhibits ecdysteroid biosynthesis in both feeding and wandering fifth instar larvae. When feeding larvae were treated with RH-5992 the hemolin mRNA level was increased. When wandering larvae were treated with KK-42 its level was reduced. In addition, when KK-42-treated larvae were subsequently treated with RH-5992 the hemolin mRNA level was recovered. These results strongly suggest that ecdysteroid up-regulates the expression of hemolin mRNA. Hormonal and bacterial effects on hemolin induction were further analyzed at the tissue level. Major induction of hemolin mRNA was detected following both RH-5992 treatment and bacterial injection in the epidermis of both feeding and wandering larvae. Minor induction of hemolin was detected in the fat body following a bacterial injection, but not RH-5992 treatment. We infer that in P. interpunctella larvae, the epidermis is the major tissue for hemolin induction in naïve insects and in insects manipulated with bacterial and hormonal treatments.

  2. Hemolin expression in the silk glands of Galleria mellonella in response to bacterial challenge and prior to cell disintegration

    Czech Academy of Sciences Publication Activity Database

    Shaik, Haq Abdul; Sehnal, František

    2009-01-01

    Roč. 55, č. 9 (2009), s. 781-787 ISSN 0022-1910 R&D Projects: GA AV ČR IAA5007402 Institutional research plan: CEZ:AV0Z50070508 Keywords : cell recognition * hemolin * 20-hydroxyecdysone Subject RIV: ED - Physiology Impact factor: 2.235, year: 2009

  3. The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing.

    Science.gov (United States)

    Fusaro, Adriana F; Barton, Deborah A; Nakasugi, Kenlee; Jackson, Craig; Kalischuk, Melanie L; Kawchuk, Lawrence M; Vaslin, Maite F S; Correa, Regis L; Waterhouse, Peter M

    2017-10-10

    The plant viral family Luteoviridae is divided into three genera: Luteovirus , Polerovirus and Enamovirus . Without assistance from another virus, members of the family are confined to the cells of the host plant's vascular system. The first open reading frame (ORF) of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs) against the plant's viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV), however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant's silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant's anti-viral defense.

  4. The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing

    Directory of Open Access Journals (Sweden)

    Adriana F. Fusaro

    2017-10-01

    Full Text Available The plant viral family Luteoviridae is divided into three genera: Luteovirus, Polerovirus and Enamovirus. Without assistance from another virus, members of the family are confined to the cells of the host plant’s vascular system. The first open reading frame (ORF of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs against the plant’s viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV, however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant’s silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant’s anti-viral defense.

  5. Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin.

    Science.gov (United States)

    Lee, Chang Woo; Kim, Jung Eun; Do, Hackwon; Kim, Ryeo-Ok; Lee, Sung Gu; Park, Hyun Ho; Chang, Jeong Ho; Yim, Joung Han; Park, Hyun; Kim, Il-Chan; Lee, Jun Hyuck

    2015-09-11

    Fatty acid-binding proteins (FABPs) are involved in transporting hydrophobic fatty acids between various aqueous compartments of the cell by directly binding ligands inside their β-barrel cavities. Here, we report the crystal structures of ligand-unbound pFABP4, linoleate-bound pFABP4, and palmitate-bound pFABP5, obtained from gentoo penguin (Pygoscelis papua), at a resolution of 2.1 Å, 2.2 Å, and 2.3 Å, respectively. The pFABP4 and pFABP5 proteins have a canonical β-barrel structure with two short α-helices that form a cap region and fatty acid ligand binding sites in the hydrophobic cavity within the β-barrel structure. Linoleate-bound pFABP4 and palmitate-bound pFABP5 possess different ligand-binding modes and a unique ligand-binding pocket due to several sequence dissimilarities (A76/L78, T30/M32, underlining indicates pFABP4 residues) between the two proteins. Structural comparison revealed significantly different conformational changes in the β3-β4 loop region (residues 57-62) as well as the flipped Phe60 residue of pFABP5 than that in pFABP4 (the corresponding residue is Phe58). A ligand-binding study using fluorophore displacement assays shows that pFABP4 has a relatively strong affinity for linoleate as compared to pFABP5. In contrast, pFABP5 exhibits higher affinity for palmitate than that for pFABP4. In conclusion, our high-resolution structures and ligand-binding studies provide useful insights into the ligand-binding preferences of pFABPs based on key protein-ligand interactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis.

    Science.gov (United States)

    Dennis, Michael D; Jefferson, Leonard S; Kimball, Scot R

    2012-12-14

    Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5'-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.

  7. SUN family proteins Sun4p, Uth1p and Sim1p are secreted from Saccharomyces cerevisiae and produced dependently on oxygen level.

    Directory of Open Access Journals (Sweden)

    Evgeny Kuznetsov

    Full Text Available The SUN family is comprised of proteins that are conserved among various yeasts and fungi, but that are absent in mammals and plants. Although the function(s of these proteins are mostly unknown, they have been linked to various, often unrelated cellular processes such as those connected to mitochondrial and cell wall functions. Here we show that three of the four Saccharomyces cerevisiae SUN family proteins, Uth1p, Sim1p and Sun4p, are efficiently secreted out of the cells in different growth phases and their production is affected by the level of oxygen. The Uth1p, Sim1p, Sun4p and Nca3p are mostly synthesized during the growth phase of both yeast liquid cultures and colonies. Culture transition to slow-growing or stationary phases is linked with a decreased cellular concentration of Sim1p and Sun4p and with their efficient release from the cells. In contrast, Uth1p is released mainly from growing cells. The synthesis of Uth1p and Sim1p, but not of Sun4p, is repressed by anoxia. All four proteins confer cell sensitivity to zymolyase. In addition, Uth1p affects cell sensitivity to compounds influencing cell wall composition and integrity (such as Calcofluor white and Congo red differently when growing on fermentative versus respiratory carbon sources. In contrast, Uth1p is essential for cell resistance to boric acids irrespective of carbon source. In summary, our novel findings support the hypothesis that SUN family proteins are involved in the remodeling of the yeast cell wall during the various phases of yeast culture development and under various environmental conditions. The finding that Uth1p is involved in cell sensitivity to boric acid, i.e. to a compound that is commonly used as an important antifungal in mycoses, opens up new possibilities of investigating the mechanisms of boric acid's action.

  8. p16(INK4a) promoter methylation and protein expression in breast fibroadenoma and carcinoma.

    Science.gov (United States)

    Di Vinci, Angela; Perdelli, Luisa; Banelli, Barbara; Salvi, Sandra; Casciano, Ida; Gelvi, Ilaria; Allemanni, Giorgio; Margallo, Edoardo; Gatteschi, Beatrice; Romani, Massimo

    2005-04-10

    The potential role of p16(INK4a) methylation in breast cancer is controversial whereas there are no data on fibroadenoma. To assess if inactivation of p16(INK4a) by promoter hypermethylation occurs in this hyperproliferative benign breast lesion or, on the contrary, it is strictly related to the carcinogenic process, we have tested the different histological components of 15 cases of fibroadenoma and the intraductal and infiltrating components of 15 cases of carcinoma and their adjacent non-tumoral epithelium. All samples were obtained by laser-assisted microdissection. The relationship between promoter methylation status, immunohistochemical protein expression and ki67 proliferative activity was evaluated for each lesion. Our data demonstrate that hypermethylation of p16(INK4a) promoter is a common event occurring at similar frequency in all the different histological areas of the benign and malignant breast lesions taken into exam. Conversely, protein p16 expression, although heterogeneously distributed within the section, is considerably higher in breast carcinoma as compared to fibroadenoma in both tumoral and non-tumoral epithelia and stroma. The protein localization was almost exclusively nuclear in fibroadenoma and non-tumoral epithelia whereas, in carcinoma, the staining was both nuclear and cytoplasmic or cytoplasmic alone. Furthermore, in a subset of fibroadenoma with higher proliferative activity, p16 protein expression was substantially decreased as compared to those showing lower proliferation. We did not observe this association in carcinomas. Our data demonstrate that the hypermethylation of the p16(INK4a) promoter is not specifically associated with malignancy and that, on the contrary, the overexpression of p16 and its cytoplasmic sequestration is a feature of breast carcinoma. (c) 2004 Wiley-Liss, Inc.

  9. P4-ATPases

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura; Theorin, Lisa; Palmgren, Michael Broberg

    2014-01-01

    ) comprises lipid flippases that catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of cell membranes. While initially characterized as aminophospholipid translocases, recent studies of individual P4-ATPase family members from fungi, plants, and animals show that P4......Cellular membranes, notably eukaryotic plasma membranes, are equipped with special proteins that actively translocate lipids from one leaflet to the other and thereby help generate membrane lipid asymmetry. Among these ATP-driven transporters, the P4 subfamily of P-type ATPases (P4-ATPases...... to include the regulation of membrane traffic, cytoskeletal dynamics, cell division, lipid metabolism, and lipid signaling. In this review, we will summarize the basic features of P4-ATPases and the physiological implications of their lipid transport activity in the cell....

  10. The adenovirus E4 11 k protein binds and relocalizes the cytoplasmic P-body component Ddx6 to aggresomes

    International Nuclear Information System (INIS)

    Greer, Amy E.; Hearing, Patrick; Ketner, Gary

    2011-01-01

    The adenovirus E4 11 k protein, product of E4 ORF3, is required in infection for processes including normal accumulation of viral late mRNAs. 11 k restructures both the nucleus and cytoplasm of infected cells by relocalizing specific host cell target proteins, most strikingly components of nuclear PML oncogenic domains. It is likely that in many cases relocalization inactivates target proteins to produce 11 k's effects, although the mechanism and targets for stimulation of late mRNA accumulation is unknown. We have identified a new set of proteins relocalized by 11 k: at least five protein components of cytoplasmic mRNA processing bodies (p-bodies) are found in 11 k-induced cytoplasmic aggresomes, sites where proteins are inactivated or destroyed. One of these p-body proteins, RNA helicase Ddx6, binds 11 k, suggesting a mechanism for relocalization. Because p-bodies are sites for mRNA degradation, their modification by 11 k may provide an explanation for the role of 11 k in viral late mRNA accumulation.

  11. Regulation of protein quality control by UBE4B and LSD1 through p53-mediated transcription.

    Directory of Open Access Journals (Sweden)

    Goran Periz

    2015-04-01

    Full Text Available Protein quality control is essential for clearing misfolded and aggregated proteins from the cell, and its failure is associated with many neurodegenerative disorders. Here, we identify two genes, ufd-2 and spr-5, that when inactivated, synergistically and robustly suppress neurotoxicity associated with misfolded proteins in Caenorhabditis elegans. Loss of human orthologs ubiquitination factor E4 B (UBE4B and lysine-specific demethylase 1 (LSD1, respectively encoding a ubiquitin ligase and a lysine-specific demethylase, promotes the clearance of misfolded proteins in mammalian cells by activating both proteasomal and autophagic degradation machineries. An unbiased search in this pathway reveals a downstream effector as the transcription factor p53, a shared substrate of UBE4B and LSD1 that functions as a key regulator of protein quality control to protect against proteotoxicity. These studies identify a new protein quality control pathway via regulation of transcription factors and point to the augmentation of protein quality control as a wide-spectrum antiproteotoxicity strategy.

  12. Kinase-Mediated Regulation of P4-ATPases

    DEFF Research Database (Denmark)

    Frøsig, Merethe Mørch

    designed a fast and efficient screening strategy to identify novel regulator proteins of P4-ATPases. The system is based on heterologous expression in a specially designed yeast strain, and regulatory proteins can be identified via change in activity of the P4-ATPase of interest. Hereby the first steps...

  13. Transcriptional Activation Domains of the Candida albicans Gcn4p and Gal4p Homologs▿ †

    OpenAIRE

    Martchenko, Mikhail; Levitin, Anastasia; Whiteway, Malcolm

    2006-01-01

    Many putative transcription factors in the pathogenic fungus Candida albicans contain sequence similarity to well-defined transcriptional regulators in the budding yeast Saccharomyces cerevisiae, but this sequence similarity is often limited to the DNA binding domains of the molecules. The Gcn4p and Gal4p proteins of Saccharomyces cerevisiae are highly studied and well-understood eukaryotic transcription factors of the basic leucine zipper (Gcn4p) and C6 zinc cluster (Gal4p) families; C. albi...

  14. Binding of the cyclic AMP receptor protein of Escherichia coli and DNA bending at the P4 promoter of pBR322.

    Science.gov (United States)

    Brierley, I; Hoggett, J G

    1992-07-01

    The binding of the Escherichia coli cyclic AMP receptor protein (CRP) to its specific site on the P4 promoter of pBR322 has been studied by gel electrophoresis. Binding to the P4 site was about 40-50-fold weaker than to the principal CRP site on the lactose promoter at both low (0.01 M) and high (0.1 M) ionic strengths. CRP-induced bending at the P4 site was investigated from the mobilities of CRP bound to circularly permuted P4 fragments. The estimated bending angle, based on comparison with Zinkel & Crothers [(1990) Biopolymers 29, 29-38] A-tract bending standards, was found to be approximately 96 degrees, similar to that found for binding to the lac site. These observations suggest that there is not a simple relationship between strength of CRP binding and the extent of induced bending for different CRP sites. The apparent centre of bending in P4 is displaced about 6-8 bp away from the conserved TGTGA sequence and the P4 transcription start site.

  15. Microfibrillar-associated protein 4

    DEFF Research Database (Denmark)

    Johansson, Sofie Lock; Roberts, Nassim Bazeghi; Schlosser, Anders

    2014-01-01

    BACKGROUND: Microfibrillar-associated protein 4 (MFAP4) is a matricellular glycoprotein that co-localises with elastic fibres and is highly expressed in the lungs. The aim of this study was to test the hypothesis that plasma MFAP4 (pMFAP4) reflects clinical outcomes in chronic obstructive pulmonary...

  16. Microfibrillar-Associated Protein 4

    DEFF Research Database (Denmark)

    Sækmose, Susanne Gjørup; Mössner, Belinda; Christensen, Peer Brehm

    2015-01-01

    associations between plasma MFAP4 (pMFAP4) and transient elastography or chronic hepatitis C virus infection in drug users and in a mixed patient cohort with increased risk of liver disease. Moreover, the study aimed to identify comorbidities that significantly influence pMFAP4. METHODS: pMFAP4 was measured......BACKGROUND AND AIMS: A method for assessment of liver fibrosis and cirrhosis without the need for a liver biopsy is desirable. Microfibrillar-associated protein 4 (MFAP4) is a suggested biomarker for identification of high-risk patients with severe fibrosis stages. This study aimed to examine...... patient cohort, pMFAP4 was significantly increased among patients with a previous diagnosis of liver disease or congestive heart failure compared to patients with other diagnoses. CONCLUSIONS: pMFAP4 has the potential to be used as an outreach-screening tool for liver fibrosis in drug users and in mixed...

  17. The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane.

    Science.gov (United States)

    Baskin, Jeremy M; Wu, Xudong; Christiano, Romain; Oh, Michael S; Schauder, Curtis M; Gazzerro, Elisabetta; Messa, Mirko; Baldassari, Simona; Assereto, Stefania; Biancheri, Roberta; Zara, Federico; Minetti, Carlo; Raimondi, Andrea; Simons, Mikael; Walther, Tobias C; Reinisch, Karin M; De Camilli, Pietro

    2016-01-01

    Genetic defects in myelin formation and maintenance cause leukodystrophies, a group of white matter diseases whose mechanistic underpinnings are poorly understood. Hypomyelination and congenital cataract (HCC), one of these disorders, is caused by mutations in FAM126A, a gene of unknown function. We show that FAM126A, also known as hyccin, regulates the synthesis of phosphatidylinositol 4-phosphate (PtdIns(4)P), a determinant of plasma membrane identity. HCC patient fibroblasts exhibit reduced PtdIns(4)P levels. FAM126A is an intrinsic component of the plasma membrane phosphatidylinositol 4-kinase complex that comprises PI4KIIIα and its adaptors TTC7 and EFR3 (refs 5,7). A FAM126A-TTC7 co-crystal structure reveals an all-α-helical heterodimer with a large protein-protein interface and a conserved surface that may mediate binding to PI4KIIIα. Absence of FAM126A, the predominant FAM126 isoform in oligodendrocytes, destabilizes the PI4KIIIα complex in mouse brain and patient fibroblasts. We propose that HCC pathogenesis involves defects in PtdIns(4)P production in oligodendrocytes, whose specialized function requires massive plasma membrane expansion and thus generation of PtdIns(4)P and downstream phosphoinositides. Our results point to a role for FAM126A in supporting myelination, an important process in development and also following acute exacerbations in multiple sclerosis.

  18. Identification of a third protein 4.1 tumor suppressor, protein 4.1R, in meningioma pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Victoria A.; Li, Wen; Gascard, Philippe; Perry, Arie; Mohandas, Narla; Gutmann, David H.

    2003-06-11

    Meningiomas are common tumors of the central nervous system, however, the mechanisms under lying their pathogenesis are largely undefined. Two members of the Protein 4.1 super family, the neuro fibromatosis 2 (NF2) gene product (merlin/schwannomin) and Protein 4.1B have been implicated as meningioma tumor suppressors. In this report, we demonstrate that another Protein 4.1 family member, Protein 4.1R, also functions as a meningioma tumor suppressor. Based on the assignment of the Protein 4.1R gene to chromosome 1p32-36, a common region of deletion observed in meningiomas, we analyzed Protein 4.1R expression in meningioma cell lines and surgical tumor specimens. We observed loss of Protein 4.1R protein expression in two meningioma cell lines (IOMM-Lee, CH157-MN) by Western blotting as well as in 6 of 15 sporadic meningioma as by immuno histo chemistry (IHC). Analysis of a subset of these sporadic meningiomas by fluorescent in situ hybridization (FISH) with a Protein 4.1R specific probe demonstrated 100 percent concordance with the IHC results. In support of a meningioma tumor suppressor function, over expression of Protein 4.1R resulted in suppression of IOMM-Lee and CH157MN cell proliferation. Similar to the Protein 4.1B and merlin meningioma tumor suppressors, Protein 4.1R localization in the membrane fraction increased significantly under conditions of growth arrest in vitro. Lastly, Protein 4.1R interacted with some known merlin/Protein 4.1B interactors such as CD44 and bII-spectrin, but did not associate with the Protein 4.1B interactors 14-3-3 and PRMT3 or the merlin binding proteins SCHIP-1 and HRS. Collectively, these results suggest that Protein 4.1R functions as an important tumor suppressor important in the molecular pathogenesis of meningioma.

  19. Novel RepA-MCM proteins encoded in plasmids pTAU4, pORA1 and pTIK4 from Sulfolobus neozealandicus

    DEFF Research Database (Denmark)

    Greve, B.; Jensen, S.; Phan, H.

    2005-01-01

    Three plasmids isolated from the crenarchaeal thermoacidophile Sulfolobus neozealandicus were characterized. Plasmids pTAU4 (7,192 bp), pORA1 (9,689 bp) and pTIK4 (13,638 bp) show unusual properties that distinguish them from previously characterized cryptic plasmids of the genus Sulfolobus. Plas...

  20. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers

    OpenAIRE

    de Saint-Jean, Maud; Delfosse, Vanessa; Douguet, Dominique; Chicanne, Gaetan; Payrastre, Bernard; Bourguet, William; Antonny, Bruno; Drin, Guillaume

    2011-01-01

    Osh/Orp proteins transport sterols between organelles and are involved in phosphoinositide metabolism. The link between these two aspects remains elusive. Using novel assays, we address the influence of membrane composition on the ability of Osh4p/Kes1p to extract, deliver, or transport dehydroergosterol (DHE). Surprisingly, phosphatidylinositol 4-phosphate (PI(4)P) specifically inhibited DHE extraction because PI(4)P was itself efficiently extracted by Osh4p. We solve the structure of the Os...

  1. The Cellular Prion Protein Prevents Copper-Induced Inhibition of P2X4 Receptors

    Directory of Open Access Journals (Sweden)

    Ramón A. Lorca

    2011-01-01

    Full Text Available Although the physiological function of the cellular prion protein (PrPC remains unknown, several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ through a domain composed by four to five repeats of eight amino acids. Previously, we have shown that the perfusion of this domain prevents and reverses the inhibition by Cu2+ of the adenosine triphosphate (ATP-evoked currents in the P2X4 receptor subtype, highlighting a modulatory role for PrPC in synaptic transmission through regulation of Cu2+ levels. Here, we study the effect of full-length PrPC in Cu2+ inhibition of P2X4 receptor when both are coexpressed. PrPC expression does not significantly change the ATP concentration-response curve in oocytes expressing P2X4 receptors. However, the presence of PrPC reduces the inhibition by Cu2+ of the ATP-elicited currents in these oocytes, confirming our previous observations with the Cu2+ binding domain. Thus, our observations suggest a role for PrPC in modulating synaptic activity through binding of extracellular Cu2+.

  2. EVALUATION OF P16INK4A PROTEIN AS A BIOMARKER FOR CERVICAL INTRAEPITHELIAL NEOPLASIA AND SQUAMOUS CELL CARCINOMA OF THE UTERINE CERVIX

    Directory of Open Access Journals (Sweden)

    Biljana Đorđević

    2011-06-01

    Full Text Available The association of human papilloma virus (HPV infection and cervical intraepithelial neoplasia (CIN is well known. Interaction of HPV proteins with cellular regulatory proteins leads to up regulation of p16INK4A. The aim of this study was to evaluate p16INK4A protein as a biomarker for CIN lesions and squamous cell carcinoma on biopsy specimens of patients who underwent biopsy of the uterine cervix due to abnormal cytological finding.The authors analyzed biopsies from 50 patients with CIN and invasive squamous cell carcinoma of the uterine cervix. Expression of p16INK4A in CIN and invasive squamous cell carcinoma was immunohistochemically analyzed by using monoclonal anti-p16INK4A antibody.A total of 50 patients with CIN and invasive squamous cell carcinoma of the uterine cervix (mean age 40.2±11.5 years, range 20-74 years were analyzed. CIN I lesions were found in 27 (54%, CIN II/CIN III lesions in 9 (18%, and invasive squamous cell carcinoma in 14 (28% patients. Differences in the expression of p16INK4A between CIN I, CIN II/CIN III and squamous cell carcinoma were statistically significant (p<0.0001. Expression of p16INK4A showed low sensitivity (7%, specificity (8%, positive predictive value (8%, and negative predictive value (7% for CIN I. Sensitivity, specificity, positive predictive value, and negative predictive value of p16INK4A were 78%, 61%, 30%, and 93% for CIN II/CIN III, and 100%, 75%, 61%, and 100% for squamous cell carcinoma, respectively.Results of this study suggest that p16INK4A protein may be a sensitive biomarker for CIN II/CIN III lesions and invasive squamous cell carcinoma of the uterine cervix.

  3. P4 ATPases: Flippases in Health and Disease

    Directory of Open Access Journals (Sweden)

    Coen C. Paulusma

    2013-04-01

    Full Text Available P4 ATPases catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of biological membranes, a process termed “lipid flipping”. Accumulating evidence obtained in lower eukaryotes points to an important role for P4 ATPases in vesicular protein trafficking. The human genome encodes fourteen P4 ATPases (fifteen in mouse of which the cellular and physiological functions are slowly emerging. Thus far, deficiencies of at least two P4 ATPases, ATP8B1 and ATP8A2, are the cause of severe human disease. However, various mouse models and in vitro studies are contributing to our understanding of the cellular and physiological functions of P4-ATPases. This review summarizes current knowledge on the basic function of these phospholipid translocating proteins, their proposed action in intracellular vesicle transport and their physiological role.

  4. Daya Cerna Protein Pakan, Kandungan Protein Daging, dan Pertambahan Berat Badan Ayam Broiler setelah Pemberian Pakan yang Difermentasi dengan Effective Microorganisms-4 (EM-4

    Directory of Open Access Journals (Sweden)

    SUTARNO

    2006-05-01

    Full Text Available Effective Microorganisms-4 ( EM-4 is a mixture consists of photosynthetic bacteria, lactic acid bacteria (Lactobacillus sp, yeast (Saccharomyces sp, Actinomycetes and fermentation mushroom (Aspergillus sp, Penicillium sp. EM-4 able to increase digestibility capacity through the balancing of microorganism in digestive tract. The objectives of the research are to know the influence of giving various concentration of EM-4 fermented feed on feed protein digestibility, meat protein and increasing body weight of broiler chicken. Complete Random Design (RAL involving five treatments with five repetitions were used in this study. The treatments given were subsequently of: addition of 5% (PI, 10% (P2, 15% (P3 and 20% (P4 of starter solution and a control group (P0 without any addition of starter solution. The Broiler Chicken used was 25 broiler cocks produced by CP 707 of PT. Charoen Pokphand Jaya Farma. The protein content was measured by Kjedahl method. Collected data were then analyzed statistically by ANOVA and followed with DMRT test with significance level of 5%. The result of the research indicated that the treatment significantly increased the digestibility of feed protein, meat protein content and increasing of body weight of broiler chicken. The use of EM-4 at the concentration of 15% (P3 increased feed quality and feed efficiency by increasing feed protein content. Therefore, addition of EM-4 fermented feed could increase feed protein digestibility, meat protein content and increasing body weight of broiler chicken.

  5. Kinetics of activation of the P4 promoter of pBR322 by the Escherichia coli cyclic AMP receptor protein.

    Science.gov (United States)

    Hoggett, J G; Brierley, I

    1992-11-01

    The activation of transcription initiation from the P4 promoter of pBR322 by the Escherichia coli cyclic AMP receptor protein (CRP) has been investigated using a fluorescence abortive initiation assay. The effect of the cyclic-AMP/CRP complex on the linear P4 promoter was to increase the initial binding (KB) of RNA polymerase to the promoter by about a factor of 10, but the rate of isomerization of closed to open complex (kf) was unaffected. One molecule of CRP per promoter was required for activation, and the concentration of cyclic AMP producing half-maximal stimulation was about 7-8 microM. Supercoiling caused a 2-3-fold increase in the rate of isomerization of the CRP-activated promoter, but weakened the initial binding of polymerase by about one order of magnitude. The unactivated supercoiled promoter was too weak to allow reliable assessment of kinetic parameters against the high background rate originating from the rest of the plasmid.

  6. Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily.

    Directory of Open Access Journals (Sweden)

    Aleksander F Sikorski

    2007-01-01

    Full Text Available The review is focused on the domain structure and function of protein 4.1, one of the proteins belonging to the membrane skeleton. The protein 4.1 of the red blood cells (4.1R is a multifunctional protein that localizes to the membrane skeleton and stabilizes erythrocyte shape and membrane mechanical properties, such as deformability and stability, via lateral interactions with spectrin, actin, glycophorin C and protein p55. Protein 4.1 binding is modulated through the action of kinases and/or calmodulin-Ca2+. Non-erythroid cells express the 4.1R homologues: 4.1G (general type, 4.1B (brain type, and 4.1N (neuron type, and the whole group belongs to the protein 4.1 superfamily, which is characterized by the presence of a highly conserved FERM domain at the N-terminus of the molecule. Proteins 4.1R, 4.1G, 4.1N and 4.1B are encoded by different genes. Most of the 4.1 superfamily proteins also contain an actin-binding domain. To date, more than 40 members have been identified. They can be divided into five groups: protein 4.1 molecules, ERM proteins, talin-related molecules, protein tyrosine phosphatase (PTPH proteins and NBL4 proteins. We have focused our attention on the main, well known representatives of 4.1 superfamily and tried to choose the proteins which are close to 4.1R or which have distinct functions. 4.1 family proteins are not just linkers between the plasma membrane and membrane skeleton; they also play an important role in various processes. Some, such as focal adhesion kinase (FAK, non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells, play the role in cell adhesion. The other members control or take part in tumor suppression, regulation of cell cycle progression, inhibition of cell proliferation, downstream signaling of the glutamate receptors, and establishment of cell polarity; some are also involved in cell proliferation, cell motility, and/or cell-to-cell communication.

  7. S100A4 interacts with p53 in the nucleus and promotes p53 degradation.

    Science.gov (United States)

    Orre, L M; Panizza, E; Kaminskyy, V O; Vernet, E; Gräslund, T; Zhivotovsky, B; Lehtiö, J

    2013-12-05

    S100A4 is a small calcium-binding protein that is commonly overexpressed in a range of different tumor types, and it is widely accepted that S100A4 has an important role in the process of cancer metastasis. In vitro binding assays has shown that S100A4 interacts with the tumor suppressor protein p53, indicating that S100A4 may have additional roles in tumor development. In the present study, we show that endogenous S100A4 and p53 interact in complex samples, and that the interaction increases after inhibition of MDM2-dependent p53 degradation using Nutlin-3A. Further, using proximity ligation assay, we show that the interaction takes place in the cell nucleus. S100A4 knockdown experiments in two p53 wild-type cell lines, A549 and HeLa, resulted in stabilization of p53 protein, indicating that S100A4 is promoting p53 degradation. Finally, we demonstrate that S100A4 knockdown leads to p53-dependent cell cycle arrest and increased cisplatin-induced apoptosis. Thus, our data add a new layer to the oncogenic properties of S100A4 through its inhibition of p53-dependent processes.

  8. Crystallization and preliminary X-ray analysis of coagulation factor IX-binding protein from habu snake venom at pH 6.5 and 4.6

    International Nuclear Information System (INIS)

    Suzuki, Nobuhiro; Shikamoto, Yasuo; Fujimoto, Zui; Morita, Takashi; Mizuno, Hiroshi

    2004-01-01

    Crystals of habu coagulation factor IX-binding protein have been obtained at pH 6.5 and 4.6 and characterized by X-ray diffraction. Coagulation factor IX-binding protein isolated from Trimeresurus flavoviridis (IX-bp) is a C-type lectin-like protein. It is an anticoagulant protein consisting of homologous subunits A and B. The subunits both contain a Ca 2+ -binding site with differing affinity (K d values of 14 and 130 µM at pH 7.5). These binding characteristics are pH-dependent; under acidic conditions, the affinity of the low-affinity site was reduced considerably. In order to identify which site has high affinity and also to investigate the Ca 2+ -releasing mechanism, IX-bp was crystallized at pH 6.5 and 4.6. The crystals at pH 6.5 and 4.6 diffracted to 1.72 and 2.29 Å resolution, respectively; the former crystals belong to the monoclinic space group P2 1 , with unit-cell parameters a = 60.7, b = 63.5, c = 66.9 Å, β = 117.0°, while the latter belong to the monoclinic space group C2, with a = 134.1, b = 37.8, c = 55.8 Å, β = 110.4°

  9. Gene fusions AHRR-NCOA2, NCOA2-ETV4, ETV4-AHRR, P4HA2-TBCK, and TBCK-P4HA2 resulting from the translocations t(5;8;17)(p15;q13;q21) and t(4;5)(q24;q31) in a soft tissue angiofibroma.

    Science.gov (United States)

    Panagopoulos, Ioannis; Gorunova, Ludmila; Viset, Trond; Heim, Sverre

    2016-11-01

    We present an angiofibroma of soft tissue with the karyotype 46,XY,t(4;5)(q24;q31),t(5;8;17)(p15;q13;q21)[8]/46,XY,t(1;14)(p31;q32)[2]/46,XY[3]. RNA‑sequencing showed that the t(4;5)(q24;q31) resulted in recombination of the genes TBCK on 4q24 and P4HA2 on 5q31.1 with generation of an in‑frame TBCK‑P4HA2 and the reciprocal but out‑of‑frame P4HA2‑TBCK fusion transcripts. The putative TBCK‑P4HA2 protein would contain the kinase, the rhodanese‑like domain, and the Tre‑2/Bub2/Cdc16 (TBC) domains of TBCK together with the P4HA2 protein which is a component of the prolyl 4‑hydroxylase. The t(5;8;17)(p15;q13;q21) three‑way chromosomal translocation targeted AHRR (on 5p15), NCOA2 (on 8q13), and ETV4 (on 17q21) generating the in‑frame fusions AHRR‑NCOA2 and NCOA2‑ETV4 as well as an out‑of‑frame ETV4‑AHRR transcript. In the AHRR‑NCOA2 protein, the C‑terminal part of AHRR is replaced by the C‑terminal part of NCOA2 which contains two activation domains. The NCOA2‑ETV4 protein would contain the helix‑loop‑helix, PAS_9 and PAS_11, CITED domains, the SRC‑1 domain of NCOA2 and the ETS DNA‑binding domain of ETV4. No fusion gene corresponding to t(1;14)(p31;q32) was found. Our findings indicate that, in spite of the recurrence of AHRR‑NCOA2 in angiofibroma of soft tissue, additional genetic events (or fusion genes) might be required for the development of this tumor.

  10. Regulation of proliferation in developing human tooth germs by MSX homeodomain proteins and cyclin-dependent kinase inhibitor p19INK4d.

    Science.gov (United States)

    Kero, Darko; Vukojevic, Katarina; Stazic, Petra; Sundov, Danijela; Mardesic Brakus, Snjezana; Saraga-Babic, Mirna

    2017-10-02

    Before the secretion of hard dental tissues, tooth germs undergo several distinctive stages of development (dental lamina, bud, cap and bell). Every stage is characterized by specific proliferation patterns, which is regulated by various morphogens, growth factors and homeodomain proteins. The role of MSX homeodomain proteins in odontogenesis is rather complex. Expression domains of genes encoding for murine Msx1/2 during development are observed in tissues containing highly proliferative progenitor cells. Arrest of tooth development in Msx knockout mice can be attributed to impaired proliferation of progenitor cells. In Msx1 knockout mice, these progenitor cells start to differentiate prematurely as they strongly express cyclin-dependent kinase inhibitor p19 INK4d . p19 INK4d induces terminal differentiation of cells by blocking the cell cycle in mitogen-responsive G1 phase. Direct suppression of p19 INK4d by Msx1 protein is, therefore, important for maintaining proliferation of progenitor cells at levels required for the normal progression of tooth development. In this study, we examined the expression patterns of MSX1, MSX2 and p19 INK4d in human incisor tooth germs during the bud, cap and early bell stages of development. The distribution of expression domains of p19 INK4d throughout the investigated period indicates that p19 INK4d plays active role during human tooth development. Furthermore, comparison of expression domains of p19 INK4d with those of MSX1, MSX2 and proliferation markers Ki67, Cyclin A2 and pRb, indicates that MSX-mediated regulation of proliferation in human tooth germs might not be executed by the mechanism similar to one described in developing tooth germs of wild-type mouse.

  11. Characterization of the archaeal ribonuclease P proteins from Pyrococcus horikoshii OT3.

    Science.gov (United States)

    Terada, Atsushi; Honda, Takashi; Fukuhara, Hideo; Hada, Kazumasa; Kimura, Makoto

    2006-08-01

    Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the processing of the 5'-leader sequence of precursor tRNA (pre-tRNA). Our earlier study revealed that RNase P RNA (pRNA) and five proteins (PhoPop5, PhoRpp38, PhoRpp21, PhoRpp29, and PhoRpp30) in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 reconstituted RNase P activity that exhibits enzymatic properties like those of the authentic enzyme. In present study, we investigated involvement of the individual proteins in RNase P activity. Two particles (R-3Ps), in which pRNA was mixed with three proteins, PhoPop5, PhoRpp30, and PhoRpp38 or PhoPop5, PhoRpp30, and PhoRpp21 showed a detectable RNase P activity, and five reconstituted particles (R-4Ps) composed of pRNA and four proteins exhibited RNase P activity, albeit at reduced level compared to that of the reconstituted particle (R-5P) composed of pRNA and five proteins. Time-course analysis of the RNase P activities of R-4Ps indicated that the R-4Ps lacking PhoPop5, PhoRpp21, or PhoRpp30 had virtually reduced activity, while omission of PhoRpp29 or PhoRpp38 had a slight effect on the activity. The results indicate that the proteins contribute to RNase P activity in order of PhoPop5 > PhoRpp30 > PhoRpp21 > PhoRpp29 > PhoRpp38. It was further found that R-4Ps showed a characteristic Mg2+ ion dependency approximately identical to that of R-5P. However, R-4Ps had optimum temperature of around at 55 degrees C which is lower than 70 degrees C for R-5P. Together, it is suggested that the P. horikoshii RNase P proteins are predominantly involved in optimization of the pRNA conformation, though they are individually dispensable for RNase P activity in vitro.

  12. Expression and localization of p-glycoprotein, multidrug resistance protein 4, and breast cancer resistance protein in the female lower genital tract of human and pigtailed macaque.

    Science.gov (United States)

    Zhou, Tian; Hu, Minlu; Pearlman, Andrew; Patton, Dorothy; Rohan, Lisa

    2014-11-01

    Antiretroviral drug absorption and disposition in cervicovaginal tissue is important for the effectiveness of vaginally or orally administered drug products in preexposure prophylaxis (PrEP) of HIV-1 sexual transmission to women. Therefore, it is imperative to understand critical determinants of cervicovaginal tissue pharmacokinetics. This study aimed to examine the mRNA expression and protein localization of three efflux transporters, P-glycoprotein (P-gp), multidrug resistance-associated protein 4 (MRP4), and breast cancer resistance protein (BCRP), in the lower genital tract of premenopausal women and pigtailed macaques. Along the human lower genital tract, the three transporters were moderately to highly expressed compared to colorectal tissue and liver, as revealed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). In a given genital tract segment, the transporter with the highest expression level was either BCRP or P-gp, while MRP4 was always expressed at the lowest level among the three transporters tested. The immunohistochemical staining showed that P-gp and MRP4 were localized in multiple cell types including epithelial cells and vascular endothelial cells. BCRP was predominantly localized in the vascular endothelial cells. Differences in transporter mRNA level and localization were observed among endocervix, ectocervix, and vagina. Compared to human tissues, the macaque cervicovaginal tissues displayed comparable expression and localization patterns of the three transporters, although subtle differences were observed between the two species. The role of these cervicovaginal transporters in drug absorption and disposition warrants further studies. The resemblance between human and pigtailed macaque in transporter expression and localization suggests the utility of the macaque model in the studies of human cervicovaginal transporters.

  13. Modulation of Cyclins, p53 and Mitogen-Activated Protein Kinases Signaling in Breast Cancer Cell Lines by 4-(3,4,5-Trimethoxyphenoxybenzoic Acid

    Directory of Open Access Journals (Sweden)

    Kuan-Han Lee

    2014-01-01

    Full Text Available Despite the advances in cancer therapy and early detection, breast cancer remains a leading cause of cancer-related deaths among females worldwide. The aim of the current study was to investigate the antitumor activity of a novel compound, 4-(3,4,5-trimethoxyphenoxybenzoic acid (TMPBA and its mechanism of action, in breast cancer. Results indicated the relatively high sensitivity of human breast cancer cell-7 and MDA-468 cells towards TMPBA with IC50 values of 5.9 and 7.9 µM, respectively compared to hepatocarcinoma cell line Huh-7, hepatocarcinoma cell line HepG2, and cervical cancer cell line Hela cells. Mechanistically, TMPBA induced apoptotic cell death in MCF-7 cells as indicated by 4',6-diamidino-2-phenylindole (DAPI nuclear staining, cell cycle analysis and the activation of caspase-3. Western blot analysis revealed the ability of TMPBA to target pathways mediated by mitogen-activated protein (MAP kinases, 5' adenosine monophosphate-activated protein kinase (AMPK, and p53, of which the concerted action underlined its antitumor efficacy. In addition, TMPBA induced alteration of cyclin proteins’ expression and consequently modulated the cell cycle. Taken together, the current study underscores evidence that TMPBA induces apoptosis in breast cancer cells via the modulation of cyclins and p53 expression as well as the modulation of AMPK and mitogen-activated protein kinases (MAPK signaling. These findings support TMPBA’s clinical promise as a potential candidate for breast cancer therapy.

  14. Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P2.

    Science.gov (United States)

    Bukiya, Anna N; Rosenhouse-Dantsker, Avia

    2017-07-01

    G-protein gated inwardly rectifying potassium (GIRK or Kir3) channels play a major role in the control of the heart rate, and require the membrane phospholipid phosphatidylinositol-bis-phosphate (PI(4,5)P 2 ) for activation. Recently, we have shown that the activity of the heterotetrameric Kir3.1/Kir3.4 channel that underlies atrial K ACh currents was enhanced by cholesterol. Similarly, the activities of both the Kir3.4 homomer and its active pore mutant Kir3.4* (Kir3.4_S143T) were also enhanced by cholesterol. Here we employ planar lipid bilayers to investigate the crosstalk between PI(4,5)P 2 and cholesterol, and demonstrate that these two lipids act synergistically to activate Kir3.4* currents. Further studies using the Xenopus oocytes heterologous expression system suggest that PI(4,5)P 2 and cholesterol act via distinct binding sites. Whereas PI(4,5)P 2 binds to the cytosolic domain of the channel, the putative binding region of cholesterol is located at the center of the transmembrane domain overlapping the central glycine hinge region of the channel. Together, our data suggest that changes in the levels of two key membrane lipids - cholesterol and PI(4,5)P 2 - could act in concert to provide fine-tuning of Kir3 channel function. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. P4 ATPases - lipid flippases and their role in disease

    NARCIS (Netherlands)

    Folmer, Dineke E.; Elferink, Ronald P. J. Oude; Paulusma, Coen C.

    2009-01-01

    P4 ATPases (type 4 P-type ATPases) are multispan transmembrane proteins that have been implicated in phospholipid translocation from the exoplasmic to the cytoplasmic leaflet of biological membranes. Studies in Saccharomyces cerevisiae have indicated that P4 ATPases are important in vesicle

  16. Metastasis-associated protein, S100A4 mediates cardiac fibrosis potentially through the modulation of p53 in cardiac fibroblasts

    DEFF Research Database (Denmark)

    Tamaki, Yodo; Iwanaga, Yoshitaka; Niizuma, Shinichiro

    2013-01-01

    Metastasis-associated protein, S100A4 is suggested as a marker for fibrosis in several organs. It also modulates DNA binding of p53 and affects its function. However, the functional role of S100A4 in the myocardium has remained unclear. Therefore, we investigated the role of S100A4 and its relati...

  17. Cloning of pCDNA3-IgG4 and pQE-2-IgG4 human hinge region ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... diseases and in allergy-related immunoassays, thus, anti-hIgG4 antibody is of interest in the development of ... pQE-2-. IgG4 will be used for protein expression in M15 prokaryotic .... Solution conformation of wild-type and ...

  18. Interactions between whey proteins and salivary proteins as related to astringency of whey protein beverages at low pH.

    Science.gov (United States)

    Ye, A; Streicher, C; Singh, H

    2011-12-01

    Whey protein beverages have been shown to be astringent at low pH. In the present study, the interactions between model whey proteins (β-lactoglobulin and lactoferrin) and human saliva in the pH range from 7 to 2 were investigated using particle size, turbidity, and ζ-potential measurements and sodium dodecyl sulfate-PAGE. The correlation between the sensory results of astringency and the physicochemical data was discussed. Strong interactions between β-lactoglobulin and salivary proteins led to an increase in the particle size and turbidity of mixtures of both unheated and heated β-lactoglobulin and human saliva at pH ∼3.4. However, the large particle size and high turbidity that occurred at pH 2.0 were the result of aggregation of human salivary proteins. The intense astringency in whey protein beverages may result from these increases in particle size and turbidity at these pH values and from the aggregation and precipitation of human salivary proteins alone at pH salivary proteins in the interaction is a key factor in the perception of astringency in whey protein beverages. At any pH, the increases in particle size and turbidity were much smaller in mixtures of lactoferrin and saliva, which suggests that aggregation and precipitation may not be the only mechanism linked to the perception of astringency in whey protein. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Structural insights into the p97-Ufd1-Npl4 complex

    Science.gov (United States)

    Pye, Valerie E.; Beuron, Fabienne; Keetch, Catherine A.; McKeown, Ciaran; Robinson, Carol V.; Meyer, Hemmo H.; Zhang, Xiaodong; Freemont, Paul S.

    2007-01-01

    p97/VCP (Cdc48 in yeast) is an essential and abundant member of the AAA+ family of ATPases and is involved in a number of diverse cellular pathways through interactions with different adaptor proteins. The two most characterized adaptors for p97 are p47 and the Ufd1 (ubiquitin fusion degradation 1)-Npl4 (nuclear protein localization 4) complex. p47 directs p97 to membrane fusion events and has been shown to be involved in protein degradation. The Ufd1-Npl4 complex directs p97 to an essential role in endoplasmic reticulum-associated degradation and an important role in mitotic spindle disassembly postmitosis. Here we describe the structural features of the Ufd1-Npl4 complex and its interaction with p97 with the aid of EM and other biophysical techniques. The Ufd1-Npl4 heterodimer has an elongated bilobed structure that is ≈80 × 30 Å in dimension. One Ufd1-Npl4 heterodimer is shown to interact with one p97 hexamer to form the p97-Ufd1-Npl4 complex. The Ufd1-Npl4 heterodimer emanates from one region on the periphery of the N-D1 plane of the p97 hexamer. Intriguingly, the p97-p47 and the p97-Ufd1-Npl4 complexes are significantly different in stoichiometry, symmetry, and quaternary arrangement, reflecting their specific actions and their ability to interact with additional cofactors that cooperate with p97 in diverse cellular pathways. PMID:17202270

  20. A genome-wide association study identifies protein quantitative trait loci (pQTLs.

    Directory of Open Access Journals (Sweden)

    David Melzer

    2008-05-01

    Full Text Available There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8x10(-57, CCL4L1 (p = 3.9x10(-21, IL18 (p = 6.8x10(-13, LPA (p = 4.4x10(-10, GGT1 (p = 1.5x10(-7, SHBG (p = 3.1x10(-7, CRP (p = 6.4x10(-6 and IL1RN (p = 7.3x10(-6 genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R, altered secretion rates of different sized proteins (LPA, variation in gene copy number (CCL4L1 and altered transcription (GGT1. We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha levels (p = 6.8x10(-40, but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis

  1. Synthesis of P-protein in mature phloem of Cucurbita maxima.

    Science.gov (United States)

    Nuske, J; Eschrich, W

    1976-01-01

    Cotyledons of Cucurbita maxima Duch. seedlings were provided with (14)C-labeled amino acids for 12 h. Besides the bulk of labeled amino acids the sieve-tube exudate also carried labeled proteins. 80% of the incorporated radioactivity was found in the P-protein, 20% in a neutral protein, and traces were found in acidic proteins after fractionation on diethyl-aminoethyl cellulose columns. The radioactive elutes were characterized by autoradiographs of both disc- and sodium dodecyl sulfate-gelelectropherograms, and by isoelectric focusing. The P-protein fraction appeared with the void volume from the diethylaminoethyl-cellulose column. Obviously, this is the protein that gels when oxidized and that is reversibly precipitable giving rise to filaments when processed for electron microscopy. Its main component has a molecular weight of 115,000 Dalton. By isoelectric focusing this fraction separated into 3 proteins with isoelectric points of 9.8, 9.4, and 9.2. The isoelectric point 9.2-protein probably is identical with an oligomer of a 30,000 Dalton protein with neutral isoelectric point, which keeps 20% of the incorporated label. Microautoradiographs suggest that the labeled proteins were synthesized in companion cells. The results indicate that P-protein of Cucurbita maxima is synthesized continuously in mature phloem. It can be assumed that P-protein has a relatively high turn-over rate. Therefore it seems unlikely that P-protein is a "structural" protein.

  2. Binding of complement proteins C1q and C4bp to serum amyloid P component (SAP) in solid contra liquid phase

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Nielsen, EH; Andersen, Ove

    1996-01-01

    Serum amyloid P component (SAP), a member of the conserved pentraxin family of plasma proteins, binds calcium dependently to its ligands. The authors investigated SAPs interaction with the complement proteins C4b binding protein (C4bp) and C1q by ELISA, immunoelectrophoresis and electron microscopy....... Binding of these proteins to SAP was demonstrated when SAP was immobilized using F(ab')2 anti-SAP, but not when SAP reacted with these proteins in liquid phase; thus the binding to human SAP was markedly phase state dependent. Presaturation of solid phase SAP with heparin, which binds SAP with high...... affinity, did not interfere with the subsequent binding of C4bp or C1q to SAP. In contrast, collagen I and IV showed partial competition with the binding of C1q to SAP. Using fresh serum, immobilized native SAP bound C4bp whereas binding of C1q/C1 could not be demonstrated. Altogether the results indicate...

  3. Avaliação da expressão imunoistoquímica da proteína p16INK4a no adenocarcinoma de esôfago Protein p16INK4a immunohistochemical expression in adenocarcinoma of the esophagus

    Directory of Open Access Journals (Sweden)

    Mário Henrique Osanai

    2011-12-01

    events. The alterations in p16INK4a are frequent in Barrett´s esophagus and esophageal carcinoma. AIM: To verify the prevalence of the immunohistochemical expression of the p16INK4a protein in patients with esophageal adenocarcinoma. METHODS: The study population consisted of 37 patients with resected esophageal adenocarcinoma. The p16INK4a protein expression was determined by immunohistochemistry using primary antibody p16INK4aAb-7, clone 16P07 NeoMarkers and assessed according to the Immunoreactive scoring system (IRS. RESULTS: Of 37 analyzed patients, the most were male (86,5% and the advanced disease was predominant (stages III and IV = 67,5%. In 12 (32,4% the immunohistochemistry was positive for p16INK4a.There was no significative relation between the protein expression and the degrees of histological differentiation of the biopsies and surgical especimens (p=0,81 neither with the staging (p=0,485. CONCLUSION: The lost of the immunohistochemical expression of the p16INK4a protein in this study suggests that p16 is enroled in the carcinogenesis of the adenocarcinoma of esophagus.

  4. DNA-binding proteins regulating pIP501 transfer and replication

    Directory of Open Access Journals (Sweden)

    Elisabeth Grohmann

    2016-08-01

    Full Text Available pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently found in clinical Enterococcus faecalis and Enterococcus faecium isolates. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual role: It acts as transcriptional repressor at the repR promoter and prevents convergent transcription of RNAIII and repR mRNA (RNAII, thereby indirectly increasing RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII. Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including filamentous streptomycetes and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter, which overlaps with the origin of transfer (oriT. The T4SS operon encodes the DNA-binding proteins TraJ (VirD4

  5. Protein mobilities and P-selectin storage in Weibel-Palade bodies.

    Science.gov (United States)

    Kiskin, Nikolai I; Hellen, Nicola; Babich, Victor; Hewlett, Lindsay; Knipe, Laura; Hannah, Matthew J; Carter, Tom

    2010-09-01

    Using fluorescence recovery after photobleaching (FRAP) we measured the mobilities of EGFP-tagged soluble secretory proteins in the endoplasmic reticulum (ER) and in individual Weibel-Palade bodies (WPBs) at early (immature) and late (mature) stages in their biogenesis. Membrane proteins (P-selectin, CD63, Rab27a) were also studied in individual WPBs. In the ER, soluble secretory proteins were mobile; however, following insertion into immature WPBs larger molecules (VWF, Proregion, tPA) and P-selectin became immobilised, whereas small proteins (ssEGFP, eotaxin-3) became less mobile. WPB maturation led to further decreases in mobility of small proteins and CD63. Acute alkalinisation of mature WPBs selectively increased the mobilities of small soluble proteins without affecting larger molecules and the membrane proteins. Disruption of the Proregion-VWF paracrystalline core by prolonged incubation with NH(4)Cl rendered P-selectin mobile while VWF remained immobile. FRAP of P-selectin mutants revealed that immobilisation most probably involves steric entrapment of the P-selectin extracellular domain by the Proregion-VWF paracrystal. Significantly, immobilisation contributed to the enrichment of P-selectin in WPBs; a mutation of P-selectin preventing immobilisation led to a failure of enrichment. Together these data shed new light on the transitions that occur for soluble and membrane proteins following their entry and storage into post-Golgi-regulated secretory organelles.

  6. [Construction of cTnC-linker-TnI (P) Genes, Expression of Fusion Protein and Preparation of Lyophilized Protein].

    Science.gov (United States)

    Song, Xiaoli; Liu, Xiaoyun; Cai, Lei; Wu, Jianwei; Wang, Jihua

    2015-12-01

    In order to construct and express human cardiac troponin C-linker-troponin I(P) [ cTnC-linker-TnI(P)] fusion protein, detect its activity and prepare lyophilized protein, we searched the CDs of human cTnC and cTnI from GenBank, synthesized cTnC and cTnI(30-110aa) into cloning vector by a short DNA sequence coding for 15 neutral amino acid residues. pCold I-cTnC-linker-TnI(P) was constructed and transformed into E. coli BL21(DE3). Then, cTnC-linker-TnI(P) fusion protein was induced by isopropyl-β-D-thiogalactopyranoside (IPTG). Soluable expression of cTnC-linker-TnI(P) in prokaryotic system was successfully obtained. The fusion protein was purified by Ni²⁺ Sepharose 6 Fast Flow affinity chromatography with over 95% purity and prepared into lyophilized protein. The activity of purified cTnC-linker-TnI(P) and its lyophilized protein were detected by Wondfo Finecare™ cTnI Test. Lyophilized protein of cTnC-linker-TnI(P) was stable for 10 or more days at 37 °C and 4 or more months at 25 °C and 4 °C. The expression system established in this research is feasible and efficient. Lyophilized protein is stable enough to be provided as biological raw materials for further research.

  7. Decoding P4-ATPase substrate interactions.

    Science.gov (United States)

    Roland, Bartholomew P; Graham, Todd R

    Cellular membranes display a diversity of functions that are conferred by the unique composition and organization of their proteins and lipids. One important aspect of lipid organization is the asymmetric distribution of phospholipids (PLs) across the plasma membrane. The unequal distribution of key PLs between the cytofacial and exofacial leaflets of the bilayer creates physical surface tension that can be used to bend the membrane; and like Ca 2+ , a chemical gradient that can be used to transduce biochemical signals. PL flippases in the type IV P-type ATPase (P4-ATPase) family are the principle transporters used to set and repair this PL gradient and the asymmetric organization of these membranes are encoded by the substrate specificity of these enzymes. Thus, understanding the mechanisms of P4-ATPase substrate specificity will help reveal their role in membrane organization and cell biology. Further, decoding the structural determinants of substrate specificity provides investigators the opportunity to mutationally tune this specificity to explore the role of particular PL substrates in P4-ATPase cellular functions. This work reviews the role of P4-ATPases in membrane biology, presents our current understanding of P4-ATPase substrate specificity, and discusses how these fundamental aspects of P4-ATPase enzymology may be used to enhance our knowledge of cellular membrane biology.

  8. Synergistic cooperation of PDI family members in peroxiredoxin 4-driven oxidative protein folding.

    Science.gov (United States)

    Sato, Yoshimi; Kojima, Rieko; Okumura, Masaki; Hagiwara, Masatoshi; Masui, Shoji; Maegawa, Ken-ichi; Saiki, Masatoshi; Horibe, Tomohisa; Suzuki, Mamoru; Inaba, Kenji

    2013-01-01

    The mammalian endoplasmic reticulum (ER) harbors disulfide bond-generating enzymes, including Ero1α and peroxiredoxin 4 (Prx4), and nearly 20 members of the protein disulfide isomerase family (PDIs), which together constitute a suitable environment for oxidative protein folding. Here, we clarified the Prx4 preferential recognition of two PDI family proteins, P5 and ERp46, and the mode of interaction between Prx4 and P5 thioredoxin domain. Detailed analyses of oxidative folding catalyzed by the reconstituted Prx4-PDIs pathways demonstrated that, while P5 and ERp46 are dedicated to rapid, but promiscuous, disulfide introduction, PDI is an efficient proofreader of non-native disulfides. Remarkably, the Prx4-dependent formation of native disulfide bonds was accelerated when PDI was combined with ERp46 or P5, suggesting that PDIs work synergistically to increase the rate and fidelity of oxidative protein folding. Thus, the mammalian ER seems to contain highly systematized oxidative networks for the efficient production of large quantities of secretory proteins.

  9. Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival

    KAUST Repository

    Lambert, Hélène Perreten

    2014-09-18

    Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival.

  10. Aberrant Expression of ID2 protein and its correlation with EBV-LMP1 and P16(INK4A) in Classical Hodgkin Lymphoma in China

    International Nuclear Information System (INIS)

    Zhao, Po; Lu, Yali; Liu, Lin; Zhong, Mei

    2008-01-01

    The relationships between the expression of ID2, EBV-LMP1 and P16(INK4A) in Chinese classical Hodgkin lymphoma are unknown and need exploring. Samples of classical Hodgkin lymphoma from 60 Chinese patients were analyzed for the expression of ID2, EBV-LMP1 and p16(INK4A) proteins by immunohistochemistry. ID2 protein was expressed in 83.3% of this group of classical Hodgkin lymphoma, staining strongly in both cytoplasm and nucleus of the Hodgkin and Reed-Sternberg (HRS) cells. EBV-LMP1 and P16(INK4A) were overexpressed in 85.0% and 71.7% of Hodgkin lymphoma, respectively. EBV-LMP1 was noted in the cytoplasm, membrane and nucleus of HRS cells; P16(INK4A) was in the nucleus and cytoplasm. Microscopically, ID2, EBV-LMP1 and P16(INK4A) staining distinguished the HRS cells from the complex background of lymphocytes. ID2 was positively correlated with EBV-LMP1(P < 0.01), but P16(INK4A) was inversely related to EBV-LMP1 (P < 0.05). It is suggested that ID2, EBV-LMP1 and P16(INK4A) could play an important role in the evolution of classical Hodgkin lymphoma, and be considered as potential adjunct markers to identify HRS cells in diagnosis

  11. New insights into potential functions for the protein 4.1superfamily of proteins in kidney epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu; Brittin,Sachi; Mohandas, Narla; Lecomte, Marie-Christine; Gascard, Philippe

    2005-06-17

    Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1 proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.

  12. Proteomic analysis reveals a novel function of the kinase Sat4p in Saccharomyces cerevisiae mitochondria.

    Directory of Open Access Journals (Sweden)

    Uta Gey

    Full Text Available The Saccharomyces cerevisiae kinase Sat4p has been originally identified as a protein involved in salt tolerance and stabilization of plasma membrane transporters, implicating a cytoplasmic localization. Our study revealed an additional mitochondrial (mt localization, suggesting a dual function for Sat4p. While no mt related phenotype was observed in the absence of Sat4p, its overexpression resulted in significant changes of a specific mitochondrial subproteome. As shown by a comparative two dimensional difference gel electrophoresis (2D-DIGE approach combined with mass spectrometry, particularly two groups of proteins were affected: the iron-sulfur containing aconitase-type proteins (Aco1p, Lys4p and the lipoamide-containing subproteome (Lat1p, Kgd2p and Gcv3p. The lipoylation sites of all three proteins could be assigned by nanoLC-MS/MS to Lys75 (Lat1p, Lys114 (Kgd2p and Lys102 (Gcv3p, respectively. Sat4p overexpression resulted in accumulation of the delipoylated protein variants and in reduced levels of aconitase-type proteins, accompanied by a decrease in the activities of the respective enzyme complexes. We propose a regulatory role of Sat4p in the late steps of the maturation of a specific subset of mitochondrial iron-sulfur cluster proteins, including Aco1p and lipoate synthase Lip5p. Impairment of the latter enzyme may account for the observed lipoylation defects.

  13. Prognostic implications of the nuclear localization of Y-box-binding protein-1 and CXCR4 expression in ovarian cancer: their correlation with activated Akt, LRP/MVP and P-glycoprotein expression.

    Science.gov (United States)

    Oda, Yoshinao; Ohishi, Yoshihiro; Basaki, Yuji; Kobayashi, Hiroaki; Hirakawa, Toshio; Wake, Norio; Ono, Mayumi; Nishio, Kazuto; Kuwano, Michihiko; Tsuneyoshi, Masazumi

    2007-07-01

    The nuclear localization of Y-box-binding protein-1 (YB-1) is known to be a poor prognostic factor in several human malignancies, including ovarian carcinoma. Following on from our basic study dealing with microarray analyses of YB-1-associated gene expression in ovarian cancer cells, we examined whether nuclear localization of YB-1 is associated with the expression of CXCR4, a vault protein named lung resistance-related vault protein (LRP/MVP), phosphorylated Akt (p-Akt) or P-glycoprotein (P-gp) in human ovarian carcinoma. Fifty-three surgically resected ovarian carcinomas treated with paclitaxel and carboplatin were examined immunohistochemically for nuclear YB-1 expression and intrinsic expression of p-Akt, P-gp, LRP/MVP and CXCR4. Nuclear expression of YB-1 demonstrated significant correlation with p-Akt, P-gp and LRP expression, but no relationship with CXCR4 expression. By multivariate analysis, only YB-1 nuclear expression and CXCR4 expression were independent prognostic factors with regard to overall survival. These results indicate that YB-1 nuclear expression and CXCR4 expression are important prognostic factors in ovarian carcinoma.

  14. A rapid chemical method of labelling human plasma proteins with sup(99m)Tc-pertechnetate at pH 7.4

    International Nuclear Information System (INIS)

    Wong, D.W.; Mishkin, F.; Lee, T.

    1978-01-01

    A successful method for labelling human plasma proteins with sup(99m)Tc-pertechnetate by chemical means is described. The labelling methodology involves the production of Sup(99m)Tc-(Sn)citrate complex species with high protein binding capacity at pH 7.4 condition following initial chemical reduction of sodium sup(99m)Tc-pertechnetate by stannous chloride. A combined labelling efficiency range of 95-99% for sup(99m)Tc-labelled fibrinogen, immune gamma globulin and serum albumin is achieved. The actual amount of labelled protein content in the product is found to be 85-95% when assayed by ITLC and 74-85% by TCAA protein precipitation. In vitro experimental data indicate that sup(99m)Tc-fibrinogen contains an average of 85% clottable protein with an average clottability of 95%. This strongly suggests that the radioactive proteins retain much of their biological and physiological activities after the labelling process. (author)

  15. Molecular cloning of human protein 4.2: A major component of the erythrocyte membrane

    International Nuclear Information System (INIS)

    Sung, L.A.; Chien, Shu; Lambert, K.; Chang, Longsheng; Bliss, S.A.; Bouhassira, E.E.; Nagel, R.L.; Schwartz, R.S.; Rybicki, A.C.

    1990-01-01

    Protein 4.2 (P4.2) comprises ∼5% of the protein mass of human erythrocyte (RBC) membranes. Anemia occurs in patients with RBCs deficient in P4.2, suggesting a role for this protein in maintaining RBC stability and integrity. The authors now report the molecular cloning and characterization of human RBC P4.2 cDNAs. By immunoscreening a human reticulocyte cDNA library and by using the polymerase chain reaction, two cDNA sequences of 2.4 and 2.5 kilobases (kb) were obtained. These cDNAs differ only by a 90-base-air insert in the longer isoform located three codons downstream from the putative initiation site. The 2.4- and 2.5-kb cDNAs predict proteins of ∼77 and ∼80 kDa, respectively, and the authenticity was confirmed by sequence identity with 46 amino acids of three cyanogen bromide-cleaved peptides of P4.2. Northern blot analysis detected a major 2.4-kb RNA species in reticulocytes. Isolation of two P4.2 cDNAs implies existence of specific regulation of P4.2 expression in human RBCs. Human RBC P4.2 has significant homology with human factor XIII subunit a and guinea pig liver transglutaminase. Sequence alignment of P4.2 with these two transglutaminases, however, revealed that P4.2 lacks the critical cysteine residue required for the enzymatic crosslinking of substrates

  16. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    International Nuclear Information System (INIS)

    Tsutsui, Shinichi; Yasuda, Kazuhiro; Suzuki, Kosuke; Takeuchi, Hideya; Nishizaki, Takashi; Higashi, Hidefumi; Era, Shoichi

    2006-01-01

    Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. The Bcl-2 protein expression was found to be decreased in 105 (42%) cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089) associated with a worse disease free survival (DFS), while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer

  17. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    Directory of Open Access Journals (Sweden)

    Nishizaki Takashi

    2006-07-01

    Full Text Available Abstract Background Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. Methods The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. Results The Bcl-2 protein expression was found to be decreased in 105 (42% cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089 associated with a worse disease free survival (DFS, while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. Conclusion The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer.

  18. PEG-Immobilized Keratin for Protein Drug Sequestration and pH-Mediated Delivery

    Directory of Open Access Journals (Sweden)

    Roche C. de Guzman

    2016-01-01

    Full Text Available Protein drugs like growth factors are promising therapeutics for damaged-tissue repair. Their local delivery often requires biomaterial carriers for achieving the therapeutic dose range while extending efficacy. In this study, polyethylene glycol (PEG and keratin were crosslinked and used as sponge-like scaffolds (KTN-PEG to absorb test proteins with different isoelectric points (pI: albumin (~5, hemoglobin (~7, and lysozyme (~11. The protein release kinetics was influenced by charge at physiological pH 7.4. The keratin network, with pI 5.3, electrostatically attracted lysozyme and repulsed albumin generating the release rate profile: albumin > hemoglobin > lysozyme. However, under acidic conditions (pH 4, all proteins including keratins were positively charged and consequently intermolecular repulsion altered the release hierarchy, now determined by size (MW diffusion: lysozyme (14 kDa > hemoglobin (64 kDa > albumin (66 kDa. Vascular endothelial growth factor C (VEGF-C, with properties comparable to lysozyme, was absorbed into the KTN-PEG scaffold. Endothelial cells cultured on this substrate had significantly larger numbers than on scaffolds without VEGF-C suggesting that the ionically bound and retained growth factor at neutral pH indirectly increased acute cell attachment and viability. PEG and keratin based sequestrations of proteins with basic pIs are therefore a feasible strategy with potential applications for selective biologics delivery.

  19. 2,2',4,4'-Tetrachlorobiphenyl upregulates cyclooxygenase-2 in HL-60 cells via p38 mitogen-activated protein kinase and NF-κB

    International Nuclear Information System (INIS)

    Bezdecny, Steven A.; Karmaus, Peer; Roth, Robert A.; Ganey, Patricia E.

    2007-01-01

    Polychlorinated biphenyls (PCBs) are ubiquitous, persistent environmental contaminants that affect a number of cellular systems, including neutrophils. Among the effects caused by the noncoplanar PCB 2,2',4,4'-tetrachlorobiphenyl (2244-TCB) in granulocytic HL-60 cells are increases in superoxide anion production, activation of phospholipase A 2 with subsequent release of arachidonic acid (AA) and upregulation of the inflammatory gene cyclooxygenase-2 (COX-2). The objective of this study was to determine the signal transduction pathways involved in the upregulation of COX-2 by 2244-TCB. Treatment of HL-60 cells with 2244-TCB led to increased expression of COX-2 mRNA. This increase was prevented by the transcriptional inhibitor actinomycin D in cells pretreated with 2244-TCB for 10 min. The increase in COX-2 mRNA was associated with release of 3 H-AA, phosphorylation of p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinases, increased levels of nuclear NF-κB and increased superoxide anion production. Bromoenol lactone, an inhibitor of the calcium-independent phospholipase A 2 , reduced 3 H-AA release but had no effect on COX-2 mRNA, protein or activity. Pretreatment with SB-202190 or SB-203580, inhibitors of the p38 MAP kinase pathway, prevented the 2244-TCB-mediated induction of COX-2 and phosphorylation of p38 and ERK MAP kinases. These inhibitors did not alter 3 H-AA release. Treatment with PD 98059 or U 0126, inhibitors of the MAP/ERK (MEK) pathway, prevented the 2244-TCB-mediated activation of ERK but had no effect on COX-2 induction or p38 phosphorylation. 2244-TCB treatment did not affect c-Jun N-terminal kinase (JNK) phosphorylation. 2244-TCB exposure increased the amount of nuclear NF-κB. This increase was prevented by pretreatment with p38 MAP kinase inhibitors, but not by pretreatment with MEK inhibitors. Pretreatment with inhibitors of NF-κB prevented the 2244-TCB-mediated induction of COX-2 mRNA. 2244-TCB

  20. Pengaruh lama fermentasi EM-4 terhadap kandungan protein kasar padatan kering lumpur organik unit gas bio

    Directory of Open Access Journals (Sweden)

    M. Wildan Fajarudin

    2014-02-01

    Full Text Available The objective of this research is to know good duration against the influence of the duration of EM-4 fermentation by adding EM-4 to increase contents of crude protein for dry solids of unit organic sludge bio gas. The materials of this research were dry solids of organic sludge biogas unit resulted from the separation of organic sludge. The research method was experiments using Completely Randomized Design with different duration of fermentation treatments as follow 0 hour (P1, 24 hours (P2, 48 hours (P3, and 72 hours (P4 with 6 times recurrences to each treatments. Data were analyzed using Analysis of Variance (ANOVA and continued by Duncan's Multiple Range test if they were significantly different. The result of Analysis of Variance shows that there was an increase of rough protein to P1, P2, P3, and P4. Specifically for P4 treatment gave very different influence (P<0.01 against crude protein contents. The research suggested adding EM-4 in the fermentation process of organic sludge solids biogas unit for 72 hour to increase the crude protein content. Keywords: fermentation, biogas, sludge, crude protein

  1. Immunohistochemical positive stained p53 protein in bladder transitional cell carcinoma

    Directory of Open Access Journals (Sweden)

    Halimi Monireh

    2009-04-01

    Full Text Available Background: Molecular genetics and immunopathologic analysis of bladder cancer have shown some abnormalities in a number of genes and proteins that have been implicated in the development and progression of such tumors, mainly in the p53 pathway. Aims: To investigate the rate of positively stained p53 protein in patients with urothelial papillary carcinoma of the bladder (UCB by immunohistochemistry and its relationship with tumor grade, gender and age of the patients. Settings and Design: During the present cross-sectional study, 100 paraffin-embedded specimens of UCB, which were provided from biopsies of the bladder by transurethral access, were immunohistochemically stained and studied for p53 protein from May 2006 to May 2007 in our referral center pathology laboratory. Materials and Methods: First, 4 µm slices of paraffin sections were provided and then stained by the avidin-biotin peroxidase method. The rate of positively stained p53 protein (defined as positive nuclear staining in over 10% of the cells was assessed. This rate was also estimated and compared between grades, genders and age-related groups (< 70 years, ≥70 years. Statistical Analysis: The χ2 , Fisher′s exact test and Mann-Whitney U test were used for comparing. Results: The overall rate of positively stained specimens was 11% for nuclear p53 protein. This rate was significantly higher in females (10/29 vs. 1/71; P < 0.001; odds ratio [OR]: 0.23; 95% confidence interval [CI]: 4.43-306.08, patients with 70 or older than 70 years (8/42 vs. 3/58; P = 0.04; OR: 0.55; 95% CI: 1.07-17.39 and in high-grade tumors (10/58 vs. 1/42; P = 0.02; OR: 0.59; 95% CI: 0.01-0.95. Conclusions: The rate of positively stained p53 protein for UCB was lower in our population. This rate was also higher in females, patients with 70 or older than 70 years and high grade of UCB.

  2. Towards the structure of yeast and mammalian P4-ATPases

    DEFF Research Database (Denmark)

    Lyons, Joseph; Laban, Milena; Mikkelsen, Stine

    2017-01-01

    P4-ATPases are members of the P-type ATPase superfamily that drive the inward translocation (flipping) of lipids within the membrane. These lipid flippase largely function as binary complexes with an auxiliary protein from the CDC50 family. The bulk of our knowledge has derived genetic and bioche......P4-ATPases are members of the P-type ATPase superfamily that drive the inward translocation (flipping) of lipids within the membrane. These lipid flippase largely function as binary complexes with an auxiliary protein from the CDC50 family. The bulk of our knowledge has derived genetic...... a basis for the analysis of reported mutagenesis data, we aim to solve the first molecular structures of the PS transporting P4-ATPases using electron microscopy. To date, negative stain EM analysis, on detergent, amphipol and saposin-lipoprotein nanoparticle (Salipro) reconstituted of both Drs2p/CDC50p...... and bATP8A2/CDC50A, has yielded comparable low-resolution envelopes of these two transporters, highlighting the bulk architecture of the complex. Current efforts and progress on the functional characterization and cryo-EM analysis of both lipid transporters reconstituted in Salipro are described...

  3. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding.

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  4. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  5. Characterization of purified Sindbis virus nsP4 RNA-dependent RNA polymerase activity in vitro

    International Nuclear Information System (INIS)

    Rubach, Jon K.; Wasik, Brian R.; Rupp, Jonathan C.; Kuhn, Richard J.; Hardy, Richard W.; Smith, Janet L.

    2009-01-01

    The Sindbis virus RNA-dependent RNA polymerase (nsP4) is responsible for the replication of the viral RNA genome. In infected cells, nsP4 is localized in a replication complex along with the other viral non-structural proteins. nsP4 has been difficult to homogenously purify from infected cells due to its interactions with the other replication proteins and the fact that its N-terminal residue, a tyrosine, causes the protein to be rapidly turned over in cells. We report the successful expression and purification of Sindbis nsP4 in a bacterial system, in which nsP4 is expressed as an N-terminal SUMO fusion protein. After purification the SUMO tag is removed, resulting in the isolation of full-length nsP4 possessing the authentic N-terminal tyrosine. This purified enzyme is able to produce minus-strand RNA de novo from plus-strand templates, as well as terminally add adenosine residues to the 3' end of an RNA substrate. In the presence of the partially processed viral replicase polyprotein, P123, purified nsP4 is able to synthesize discrete template length minus-strand RNA products. Mutations in the 3' CSE or poly(A) tail of viral template RNA prevent RNA synthesis by the replicase complex containing purified nsP4, consistent with previously reported template requirements for minus-strand RNA synthesis. Optimal reaction conditions were determined by investigating the effects of time, pH, and the concentrations of nsP4, P123 and magnesium on the synthesis of RNA

  6. Debittering of Protein Hydrolysates by Lactobacillus LBL-4 Aminopeptidase

    Directory of Open Access Journals (Sweden)

    Bozhidar Tchorbanov

    2011-01-01

    Full Text Available Yoghurt strain Lactobacillus LBL-4 cultivated for 8–10 h at pH ~6.0 was investigated as a considerable food-grade source of intracellular aminopeptidase. Cell-free extract manifesting >200 AP U/l was obtained from cells harvested from 1 L culture media. Subtilisin-induced hydrolysates of casein, soybean isolate, and Scenedesmus cell protein with degree of hydrolysis 20–22% incubated at 45∘C for 10 h by 10 AP U/g peptides caused an enlarging of DH up to 40–42%, 46–48%, and 38–40% respectively. The DH increased rapidly during the first 4 h, but gel chromatography studies on BioGel P-2 showed significant changes occurred during 4–10 h of enzyme action when the DH increased gradually. After the digestion, the remained AP activity can be recovered by ultrafiltration (yield 40–50%. Scenedesmus protein hydrolysate with DH 20% was inoculated by Lactobacillus LBL-4 cells, and after 72 h cultivation the DH reached 32%. The protein hydrolysates (DH above 40% obtained from casein and soybean isolate (high Q value demonstrated a negligible bitterness while Scenedesmus protein hydrolysates (low Q value after both treatments were free of bitterness.

  7. Protein p 16INK4A expression in cervical intraepithelial neoplasia and invasive squamous cell carcinoma of uterine cervix

    Directory of Open Access Journals (Sweden)

    Gupta Ruchi

    2010-01-01

    Full Text Available The association of human papilloma virus (HPV infection and cervical intraepithelial neoplasia (CIN is well recognized. Interaction of HPV oncogenic proteins with cellular regulatory proteins leads to up regulation of p16 INK4A , a CDK inhibitor, which is a biomarker for HPV infection. We investigated p16 expression in CIN and invasive squamous cell carcinoma (SCC which has not been reported in the Indian population previously. Materials and Methods: Retrospective analysis of 100 cases with 20 cases each of histologically normal cervical epithelium, CIN1, 2, 3 and invasive SCC for p16 expression was performed by immunohistochemistry using commercially available mouse monoclonal antibody to p16 (clone 6H12. Statistical Analysis: For differences in expression among groups, statistical analysis was carried out using ANOVA and post hoc test of Scheffe. Results: p16 immunoreactivity was found to be both nuclear and/or cytoplasmic. The normal cervical epithelium was predominantly negative for p16 (18/20. There was a progressive increase of p16 expression with the grade of CIN. In CIN 1, two cases (20% showed nuclear and nucleocytoplasmic positivity respectively. In contrast, diffuse strong nuclear or nucleocytoplasmic expression was observed in 45 and 55% cases of CIN 2 and CIN 3 respectively. All except one squamous cell carcinoma stained strongly positive for p16. The difference in expression between CIN 2/3 and SCC versus normal cervix was found highly significant (p is equal to 0.008 and p less than 0.001. Conclusions: p16 expression correlates excellently with the grade of CIN and is a sensitive marker of cervical intraepithelial neoplasia.

  8. Structure of Pfu Pop5, an archaeal RNase P protein.

    Science.gov (United States)

    Wilson, Ross C; Bohlen, Christopher J; Foster, Mark P; Bell, Charles E

    2006-01-24

    We have used NMR spectroscopy and x-ray crystallography to determine the three-dimensional structure of PF1378 (Pfu Pop5), one of four protein subunits of archaeal RNase P that shares a homolog in the eukaryotic enzyme. RNase P is an essential and ubiquitous ribonucleoprotein enzyme required for maturation of tRNA. In bacteria, the enzyme's RNA subunit is responsible for cleaving the single-stranded 5' leader sequence of precursor tRNA molecules (pre-tRNA), whereas the protein subunit assists in substrate binding. Although in bacteria the RNase P holoenzyme consists of one large catalytic RNA and one small protein subunit, in archaea and eukarya the enzyme contains several (> or =4) protein subunits, each of which lacks sequence similarity to the bacterial protein. The functional role of the proteins is poorly understood, as is the increased complexity in comparison to the bacterial enzyme. Pfu Pop5 has been directly implicated in catalysis by the observation that it pairs with PF1914 (Pfu Rpp30) to functionally reconstitute the catalytic domain of the RNA subunit. The protein adopts an alpha-beta sandwich fold highly homologous to the single-stranded RNA binding RRM domain. Furthermore, the three-dimensional arrangement of Pfu Pop5's structural elements is remarkably similar to that of the bacterial protein subunit. NMR spectra have been used to map the interaction of Pop5 with Pfu Rpp30. The data presented permit tantalizing hypotheses regarding the role of this protein subunit shared by archaeal and eukaryotic RNase P.

  9. A surrogate p53 reporter in Drosophila reveals the interaction of eIF4E and p53

    International Nuclear Information System (INIS)

    Corujo, G.; Campagno, R.; Rivera Pomar, R.; Ferrero, P.; Lu, W.J.

    2011-01-01

    eIF4E promotes translation upon binding the mRNA 5'cap and it is required for cell proliferation. p53 is a proapoptotic protein which is activated in response to DNA damage. There is evidence that suggests that eIF4E and p53 are connected in a mechanism that regulates their function. We propose a model for that such a mechanism to explain the equilibrium between apoptosis and cell proliferation. Our data shows a correlation between the overexpression of eIF4E and the suppression of apoptosis triggered by the overexpression of p53 in Drosophila imaginal discs. We also studied a reporter transgene which expresses GFP in response to p53 activation by gamma radiation. We could confirm that this p53 surrogate works in imaginal discs as well as in embryos. This provided us a tool to quantify the effect on the GFP signal by overexpression of eIF4E to confirm how these two proteins could interact in vivo. Our results suggest that p53 and eIF4E are indeed in an equilibrium that decides if a cell shall proliferate or die. (authors)

  10. Brd4 and HEXIM1: Multiple Roles in P-TEFb Regulation and Cancer

    Directory of Open Access Journals (Sweden)

    Ruichuan Chen

    2014-01-01

    Full Text Available Bromodomain-containing protein 4 (Brd4 and hexamethylene bisacetamide (HMBA inducible protein 1 (HEXIM1 are two opposing regulators of the positive transcription elongation factor b (P-TEFb, which is the master modulator of RNA polymerase II during transcriptional elongation. While Brd4 recruits P-TEFb to promoter-proximal chromatins to activate transcription, HEXIM1 sequesters P-TEFb into an inactive complex containing the 7SK small nuclear RNA. Besides regulating P-TEFb’s transcriptional activity, recent evidence demonstrates that both Brd4 and HEXIM1 also play novel roles in cell cycle progression and tumorigenesis. Here we will discuss the current knowledge on Brd4 and HEXIM1 and their implication as novel therapeutic options against cancer.

  11. Functional interaction between Smad, CREB binding protein, and p68 RNA helicase

    International Nuclear Information System (INIS)

    Warner, Dennis R.; Bhattacherjee, Vasker; Yin, Xiaolong; Singh, Saurabh; Mukhopadhyay, Partha; Pisano, M. Michele; Greene, Robert M.

    2004-01-01

    The transforming growth factors β control a diversity of biological processes including cellular proliferation, differentiation, apoptosis, and extracellular matrix production, and are critical effectors of embryonic patterning and development, including that of the orofacial region. TGFβ superfamily members signal through specific cell surface receptors that phosphorylate the cytoplasmic Smad proteins, resulting in their translocation to the nucleus and interaction with promoters of TGFβ-responsive genes. Subsequent alterations in transcription are cell type-specific and dependent on recruitment to the Smad/transcription factor complex of coactivators, such as CBP and p300, or corepressors, such as c-ski and SnoN. Since the affinity of Smads for DNA is generally low, additional accessory proteins that facilitate Smad/DNA binding are required, and are often cell- and tissue-specific. In order to identify novel Smad 3 binding proteins in developing orofacial tissue, a yeast two hybrid assay was employed in which the MH2 domain of Smad 3 was used to screen an expression library derived from mouse embryonic orofacial tissue. The RNA helicase, p68, was identified as a unique Smad binding protein, and the specificity of the interaction was confirmed through various in vitro and in vivo assays. Co-expression of Smad 3 and a CBP-Gal4 DNA binding domain fusion protein in a Gal4-luciferase reporter assay resulted in increased TGFβ-stimulated reporter gene transcription. Moreover, co-expression of p68 RNA helicase along with Smad 3 and CBP-Gal4 resulted in synergistic activation of Gal4-luciferase reporter expression. Collectively, these data indicate that the RNA helicase, p68, can directly interact with Smad 3 resulting in formation of a transcriptionally active ternary complex containing Smad 3, p68, and CBP. This offers a means of enhancing TGFβ-mediated cellular responses in developing orofacial tissue

  12. Characterization of fatty acid binding by the P2 myelin protein

    International Nuclear Information System (INIS)

    Gudaitis, P.G.; Weise, M.J.

    1987-01-01

    In recent years, significant sequence homology has been found between the P2 protein of peripheral myelin and intracellular retinoid- and fatty acid-binding proteins. They have found that salt extracts of bovine intradural nerve roots contain the P2 basic protein in association with free fatty acid. Preliminary results from quantitative analyses showed a ratio of 0.4-1.1 fatty acid (mainly oleate and palmitate) per P2 molecule. P2/ligand interactions were partially characterized using ( 3 H)-oleate in gel permeation assays and binding studies using lipidex to separated bound and free fatty acid. Methyloleate was found to displace ( 3 H)-oleate from P2, indicating that ligand binding interactions are predominantly hydrophobic in nature. On the other hand, myristic acid and retinol did not inhibit the binding of oleate to the protein, results consistent with a decided affinity for long chain fatty acids but not for the retinoids. The binding between P2 and oleic acid showed an apparent Kd in the micromolar range, a value comparable to those found for other fatty acid-binding proteins. From these results they conclude that P2 shares not only structural homology with certain fatty acid binding proteins but also an ability to bind long chain fatty acids. Although the significance of these similarities is not yet clear, they may, by analogy, expect P2 to have a role in PNS lipid metabolism

  13. E2F1 induces p19INK4d, a protein involved in the DNA damage response, following UV irradiation.

    Science.gov (United States)

    Carcagno, Abel L; Giono, Luciana E; Marazita, Mariela C; Castillo, Daniela S; Pregi, Nicolás; Cánepa, Eduardo T

    2012-07-01

    Central to the maintenance of genomic integrity is the cellular DNA damage response. Depending on the type of genotoxic stress and through the activation of multiple signaling cascades, it can lead to cell cycle arrest, DNA repair, senescence, and apoptosis. p19INK4d, a member of the INK4 family of CDK inhibitors, plays a dual role in the DNA damage response, inhibiting cell proliferation and promoting DNA repair. Consistently, p19INK4d has been reported to become upregulated in response to UV irradiation and a great variety of genotoxic agents. Here, this induction is shown to result from a transcriptional stimulatory mechanism that can occur at every phase of the cell cycle except during mitosis. Moreover, evidence is presented that demonstrates that E2F1 is involved in the induction of p19INK4d following UV treatment, as it is prevented by E2F1 protein ablation and DNA-binding inhibition. Specific inhibition of this regulation using triplex-forming oligonucleotides that target the E2F response elements present in the p19INK4d promoter also block p19INK4d upregulation and sensitize cells to DNA damage. These results constitute the first description of a mechanism for the induction of p19INK4d in response to UV irradiation and demonstrate the physiological relevance of this regulation following DNA damage.

  14. Effect of RNAi p21 gene on uncoupling of EL-4 cells induced by X-irradiation

    International Nuclear Information System (INIS)

    Ju Guizhi; Yan Fengqin; Fu Shibo; Shen Bo; Sun Shilong; Yang Ying; Li Pengwu

    2008-01-01

    Objective: To investigate the effect of RNAi p21 gene on uncoupling of EL-4 cells induced by X-irradiation. Methods: Construction of RNAi p21 plasmid of pSileneer3.1-H1 neo-p21 was performed. Lipofectamine transfection assay was used to transfer the p21siBNA into EL-4 cells. Fluorescent staining and flow cytometry (FCM) analysis were employed for measurement of protein expression. Fluorescent staining of propidium iodide (PI) and FCM were used for measurement of potyploid cells. Results: In dose-effect experiment it was found that the expression of P21 protein of EL-4 cells increased significantly 24 h after X- irradiation with different doses compared with sham-inadiated control. In time course experiment it was found that the expression of P21 protein of EL-4 cells increased significantly at 8 h to 72 h after 4.0 Gy X-irradiation compared with sham-irradiated control. The results showed that the number of polyploid cells in EL-4 cells was not changed markedly after X-irradiation with doses of 0.5-6.0 Gy. After RNA interference with p21 gene, the expression of P21 protein of EL-4 cells decreased significantly 24 h and 48 h after 4.0 Gy X-irradiation in transfection of plasmid of pSilencer3.1-H1 neo-p21 compared with transfection of plasmid of pSilencer3.1-H1 nco control. And at the same time, the number of polyploid cells in EL-4 cells was increased significantly in transfection of plasmid of pSilencer3.1-H1 neo-p21 compared with transfection of plasmid of pSilencer3.1-H1 nco control. Conclusions: Uncoupling could be induced by X-irradiation in EL-4 cells following BNAi p21 gene, suggesting that P21 protein may play an important role in uncoupling induced by X-rays. (authors)

  15. Individual whey protein components influence lipid oxidation dependent on pH

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    In emulsions, lipid oxidation is expected to be initiated at the oil-water interface. The properties of the emulsifier used and the composition at the interface is therefore expected to be of great importance for the resulting oxidation. Previous studies have shown that individual whey protein...... by affecting the preferential adsorption of whey protein components at the interface. The aim of the study was to compare lipid oxidation in 10% fish oil-in-water emulsions prepared with 1% whey protein having either a high concentration of α-lactalbumin, a high concentration of β-lactoglobulin or equal...... amounts of the two. Emulsions were prepared at pH4 and pH7. Emulsions were characterized by their droplet sizes, viscosities, and contents of proteins in the water phase. Lipid oxidation was assessed by PV and secondary volatile oxidation products. Results showed that pH greatly influenced the oxidative...

  16. Environmental pH-controlled loading and release of protein on mesoporous hydroxyapatite nanoparticles for bone tissue engineering.

    Science.gov (United States)

    Zhang, Ning; Gao, Tianlin; Wang, Yu; Wang, Zongliang; Zhang, Peibiao; Liu, Jianguo

    2015-01-01

    To explore the controlled delivery of protein drugs in micro-environment established by osteoblasts or osteoclasts, the loading/release properties of bovine serum albumin (BSA) depending on pH environment were assessed. The adsorption amounts over mesoporous hydroxyapatite (MHA) or hydroxyapatite (HA) decreased as the pH increased, negatively correlating with zeta-potential values. The adsorption behavior over MHA fits well with the Freundlich and Langmuir models at different pHs. The results suggest that the adsorbed amount of protein on MHA or HA depended on the pH of protein solution. MHA adsorbed BSA at basic pH (MHApH 8.4) exhibited a different release kinetics compared with those in acid and neutral environments (MHApH 4.7 and MHApH 7.4), indicating that the release of protein could be regulated by environmental pH at which MHAs adsorb protein. MHApH 8.4 showed a sustained release for 6h before a gradual release when immersing in acidic environment, which is 2h longer than that in neutral environment. This suggests that MHApH 8.4 showed a more sustained release in acidic environment, which can be established by osteoclasts. The variation of adsorption strength between protein and MHA may be responsible for these behaviors. Our findings may be very useful for the development of MHA applications on both bone repair and protein delivery. Copyright © 2014. Published by Elsevier B.V.

  17. Analysis of the protein-protein interactions between the human acidic ribosomal P-proteins: evaluation by the two hybrid system

    DEFF Research Database (Denmark)

    Tchórzewski, M; Boldyreff, B; Issinger, O

    2000-01-01

    The surface acidic ribosomal proteins (P-proteins), together with ribosomal core protein P0 form a multimeric lateral protuberance on the 60 S ribosomal subunit. This structure, also called stalk, is important for efficient translational activity of the ribosome. In order to shed more light...... forms the 60 S ribosomal stalk: P0-(P1/P2)(2). Additionally, mutual interactions among human and yeast P-proteins were analyzed. Heterodimer formation could be observed between human P2 and yeast P1 proteins....

  18. Effects of ionizing radiation on expression of P21 protein in Jurkat cell line and p21 gene in thymocytes and splenocytes of mice

    International Nuclear Information System (INIS)

    Ni Guanying; Wu Ning; Guo Haizhuo; Jin Shunzi

    2011-01-01

    Objective: To investigate the effects of ionizing radiation on the expression of P21 protein in Jurkat cell line and p21 gene in thymocytes and splenocytes of mice. Methods: Flow cytometry (FCM) was used to analyze the expression of P21 protein in Jurkat cells at 12 and 24 h after irradiation to 0, 0.5, 1.0, 2.0, 4.0, and 6.0 Gy. Real-time PCR was used to detect the expression of p21 gene in thymocytes and splenocytes of mice at 4 and 24 h after irradiation to 0, 0.5, 1.0, 2.0, 4.0, and 6.0 Gy. Multi-staining was used to analyze the micronucleus rates of Rct in bone marrow. Results: The expressions of P21 protein were increased in a dose-dependent manner during 0.5-4.0 Gy (t=-24.23 - -3.96, P<0.05), but decreased at 6.0 Gy at 12 and 24 h post-irradiation (t=-11.19, -14.50, P<0.05). The expressions of p21 gene in both thymocytes and splenocytes of mice were increased in dose-dependent manner in the range of 0-6.0 Gy (including 6.0 Gy) (t=-29.96-8.80, P<0.05), and reached to the peak at 6.0 Gy at 4 and 24 h post-irradiation (t=-11.84 - -3.42, P<0.05), except thymocytes at 4 h and 1.0 Gy post-irradiation (t=-3.42, P>0.05). Conclusions: The expressions of P21 protein and p21 gene could be increased by X-ray irradiation, which shows good dose-dependent manners in certain range of dose. (authors)

  19. Immunohistochemical Expression of P53 Protein in Cutaneous Basal Cell Carcinoma: A Clinicopathological Study of 66 Cases

    Directory of Open Access Journals (Sweden)

    Vladim and iacute;r Barto and scaron;

    2016-12-01

    Full Text Available Objective: Nuclear expression of p53 protein is associated with a biological behavior in a variety of human malignancies. In cutaneous basal cell carcinoma (BCC, however, many studies have provided conflicting results in this regard. We aimed to determine whether there is relationship between p53 expression and different histologic subtypes of BCC, and whether it may indicate tumor aggressiveness. Materials and Methods: Biopsy samples from 66 cutaneous BCCs from 57 patients were collected. P53 expression was demonstrated by immunohistochemical staining using the anti-p53 antibody. Among them, 52 cases were also evaluated for Ki-67 antigen. Results: Immunoreactivity of p53 protein varied in the range of 0 to 100% of total tumor tissue (mean value 46.0%. The expression exceeding 5% of cancer tissue (positive staining was found in 54 BCCs (81.8%. Within this group, there were 25 cases (37.9% with low and 29 cases (43.9% with high expression. In superficial, superficial-nodular, nodular, nodular-infiltrative and infiltrative BCCs, p53 protein positivity was found in 100% (8/8, 80% (8/10, 70.4% (19/27, 88.2% (15/17 and 100% (4/4, respectively. We did not reveal a significant correlation between the extent of p53 protein expression and BCC subtypes except for nodular BCC, in which a number of negative cases (8/27, 29.6% were just above the threshold of statistical significance (P = 0.04. After merging cancers into non-aggressive and aggressive growth phenotype, no association with expression of p53 protein was found. There was no relationship between p53 protein expression and topographical sites after they have been gathered into sun-exposed and sun-protected locations. We did not observe any association between expression of p53 protein and Ki-67 antigen. Conclusion: In cutaneous BCC, the expression of p53 protein does not seem to reflect a biological behavior and tumor aggressiveness. Therefore, in a routine dermatopathological practice

  20. pH induced protein-scaffold biosynthesis of tunable shape gold nanoparticles

    International Nuclear Information System (INIS)

    Zhang Xiaorong; He Xiaoxiao; Wang Kemin; Ren Fang; Qin Zhihe

    2011-01-01

    In this paper, a pH-inductive protein-scaffold biosynthesis of shape-tunable crystalline gold nanoparticles at room temperature has been developed. By simple manipulation of the reaction solution's pH, anisotropic gold nanoparticles including spheres, triangles and cubes could be produced by incubating an aqueous solution of sodium tetrachloroaurate with Dolichomitriopsis diversiformis biomasses after immersion in ultrapure Millipore water overnight. A moss protein with molecular weight of about 71 kDa and pI of 4.9 was the primary biomolecule involved in the biosynthesis of gold nanoparticles. The secondary configuration of the proteins by CD spectrum implied that the moss protein could display different secondary configurations including random coil, α-helix and intermediate conformations between random coil and α-helix for the experimental pH solution. The growth process of gold nanoparticles further showed that the moss protein with different configurations provided the template scaffold for the shape-controlled biosynthesis of gold nanoparticles. The constrained shape of the gold nanoparticles, however, disappeared in boiled moss extract. The gold nanoparticles with designed morphology were successfully reconstructed using the moss protein purified from the gold nanoparticles. Structural characterizations by SEM, TEM and SAED showed that the triangular and cubic gold nanoparticles were single crystalline.

  1. Direct observation of electrogenic NH4(+) transport in ammonium transport (Amt) proteins.

    Science.gov (United States)

    Wacker, Tobias; Garcia-Celma, Juan J; Lewe, Philipp; Andrade, Susana L A

    2014-07-08

    Ammonium transport (Amt) proteins form a ubiquitous family of integral membrane proteins that specifically shuttle ammonium across membranes. In prokaryotes, archaea, and plants, Amts are used as environmental NH4(+) scavengers for uptake and assimilation of nitrogen. In the eukaryotic homologs, the Rhesus proteins, NH4(+)/NH3 transport is used instead in acid-base and pH homeostasis in kidney or NH4(+)/NH3 (and eventually CO2) detoxification in erythrocytes. Crystal structures and variant proteins are available, but the inherent challenges associated with the unambiguous identification of substrate and monitoring of transport events severely inhibit further progress in the field. Here we report a reliable in vitro assay that allows us to quantify the electrogenic capacity of Amt proteins. Using solid-supported membrane (SSM)-based electrophysiology, we have investigated the three Amt orthologs from the euryarchaeon Archaeoglobus fulgidus. Af-Amt1 and Af-Amt3 are electrogenic and transport the ammonium and methylammonium cation with high specificity. Transport is pH-dependent, with a steep decline at pH values of ∼5.0. Despite significant sequence homologies, functional differences between the three proteins became apparent. SSM electrophysiology provides a long-sought-after functional assay for the ubiquitous ammonium transporters.

  2. Heterologous Expression of Membrane and Soluble Proteins Derepresses GCN4 mRNA Translation in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Steffensen, L.; Pedersen, P. A.

    2006-01-01

    -ATPase also induced GCN4 translation. Derepression of GCN4 translation required phosphorylation of eIF-2 , the tRNA binding domain of Gcn2p, and the ribosome-associated proteins Gcn1p and Gcn20p. The increase in Gcn4p density in response to heterologous expression did not induce transcription from the HIS4...... promoter, a traditional Gcn4p target.......This paper describes the first physiological response at the translational level towards heterologous protein production in Saccharomyces cerevisiae. In yeast, the phosphorylation of eukaryotic initiation factor 2 (eIF-2 ) by Gcn2p protein kinase mediates derepression of GCN4 mRNA translation. Gcn4...

  3. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein

    International Nuclear Information System (INIS)

    Lee, G.; Ronai, Z.A.; Pincus, M.R.; Brandt-Rauf, P.W.; Weinstein, I.B.; Murphy, R.B.; Delohery, T.M.; Nishimura, S.; Yamaizumi, Z.

    1989-01-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with modified p21 protein, the cells were pulsed with [ 35 S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21 - protein complexes. By using this technique, the authors found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. They suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes

  4. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools*

    OpenAIRE

    Goto, Asako; Charman, Mark; Ridgway, Neale D.

    2015-01-01

    Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to de...

  5. CCHCR1 interacts with EDC4, suggesting its localization in P-bodies

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Y.H.; Wong, C.C. [School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China); Li, K.W. [Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam (Netherlands); Chan, K.M. [School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China); Boukamp, P. [Division of Genetics of Skin Carcinogenesis, A110 German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Liu, W.K., E-mail: ken-liu@cuhk.edu.hk [School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China)

    2014-09-10

    Coiled‐coil alpha‐helical rod protein 1 (CCHCR1) is suggested as a candidate biomarker for psoriasis for more than a decade but its function remains poorly understood because of the inconsistent findings in the literature. CCHCR1 protein is suggested to be localized in the cytoplasm, nucleus, mitochondria, or centrosome and to regulate various cellular functions, including steroidogenesis, proliferation, differentiation, and cytoskeleton organization. In this study, we attempted to find a consensus between these findings by identifying the interaction partners of CCHCR1 using co-immunoprecipiation with a stable cell line expressing EGFP-tagged CCHCR1. Out of more than 100 co-immunoprecipitants identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), the enhancer of mRNA-decapping protein 4 (EDC4), which is a processing body (P-body) component, was particularly found to be the major interacting partner of CCHCR1. Confocal imaging confirmed the localization of CCHCR1 in P-bodies and its N-terminus is required for this subcellular localization, suggesting that CCHCR1 is a novel P-body component. As P-bodies are the site for mRNA metabolism, our findings provide a molecular basis for the function of CCHCR1, any disruption of which may affect the transcriptome of the cell, and causing abnormal cell functions. - Highlights: • We identified CCHCR1 as a novel P-body component. • We identified EDC4 as the major interacting partner of CCHCR1. • N-terminus of CCHCR1 protein is required for its P-bodies localization.

  6. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein.

    Science.gov (United States)

    Lee, G; Ronai, Z A; Pincus, M R; Brandt-Rauf, P W; Murphy, R B; Delohery, T M; Nishimura, S; Yamaizumi, Z; Weinstein, I B

    1989-11-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with the modified p21 protein, the cells were pulsed with [35S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21-protein complexes. By using this technique, we found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein into the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. We suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes.

  7. Protein kinase C-mediated ATP stimulation of Na(+)-ATPase activity in LLC-PK1 cells involves a P2Y2 and/or P2Y4 receptor.

    Science.gov (United States)

    Wengert, M; Ribeiro, M C; Abreu, T P; Coutinho-Silva, R; Leão-Ferreira, L R; Pinheiro, A A S; Caruso-Neves, C

    2013-07-15

    ATP-activated P2Y receptors play an important role in renal sodium excretion. The aim of this study was to evaluate the modulation of ATPase-driven sodium reabsorption in the proximal tubule by ATP or adenosine (Ado). LLC-PK1 cells, a model of porcine proximal tubule cells, were used. ATP (10(-6)M) or Ado (10(-6)M) specifically stimulated Na(+)-ATPase activity without any changes in (Na(+)+K(+))-ATPase activity. Our results show that the Ado effect is mediated by its conversion to ATP. Furthermore, it was observed that the effect of ATP was mimicked by UTP, ATPγS and 2-thio-UTP, an agonist of P2Y2 and P2Y4 receptors. In addition, ATP-stimulated Na(+)-ATPase activity involves protein kinase C (PKC). Our results indicate that ATP-induced stimulation of proximal tubule Na(+)-ATPase activity is mediated by a PKC-dependent P2Y2 and/or P2Y4 pathway. These findings provide new perspectives on the role of the effect of P2Y-mediated extracellular ATP on renal sodium handling. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools*

    Science.gov (United States)

    Goto, Asako; Charman, Mark; Ridgway, Neale D.

    2016-01-01

    Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to determine how OSBP controls the availability of PI-4P for this metabolic pathway. Treatment of fibroblasts or Chinese hamster ovary (CHO) cells with 25OH caused a 50–70% reduction in Golgi-associated immunoreactive PI-4P that correlated with Golgi localization of OSBP. In contrast, 25OH caused an OSBP-dependent enrichment in Golgi PI-4P that was detected with a pleckstrin homology domain probe. The cellular mass of phosphatidylinositol monophosphates and Golgi PI-4P measured with an unbiased PI-4P probe (P4M) was unaffected by 25OH and OSBP silencing, indicating that OSBP shifts the distribution of PI-4P upon localization to ER-Golgi contact sites. The PI-4P and sterol binding activities of OSBP were both required for 25OH activation of sphingomyelin synthesis, suggesting that 25OH must be exchanged for PI-4P to be concentrated at contact sites. We propose a model wherein 25OH activation of OSBP promotes the binding and retention of PI-4P at ER-Golgi contact sites. This pool of PI-4P specifically recruits pleckstrin homology domain-containing proteins involved in lipid transfer and metabolism, such as CERT. PMID:26601944

  9. Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold

    Science.gov (United States)

    Mazzer, Alice R.; Perraud, Xavier; Halley, Jennifer; O’Hara, John; Bracewell, Daniel G.

    2015-01-01

    Protein A chromatography is a near-ubiquitous method of mAb capture in bioprocesses. The use of low pH buffer for elution from protein A is known to contribute to product aggregation. Yet, a more limited set of evidence suggests that low pH may not be the sole cause of aggregation in protein A chromatography, rather, other facets of the process may contribute significantly. This paper presents a well-defined method for investigating this problem. An IgG4 was incubated in elution buffer after protein A chromatography (typical of the viral inactivation hold) and the quantity of monomer in neutralised samples was determined by size exclusion chromatography; elution buffers of different pH values predetermined to induce aggregation of the IgG4 were used. Rate constants for monomer decay over time were determined by fitting exponential decay functions to the data. Similar experiments were implemented in the absence of a chromatography step, i.e. IgG4 aggregation at low pH. Rate constants for aggregation after protein A chromatography were considerably higher than those from low pH exposure alone; a distinct shift in aggregation rates was apparent across the pH range tested. PMID:26346187

  10. Crystallization and Preliminary X-ray Analysis of Bacteriophasge T4 UvsY Recombination Mediator Protein

    International Nuclear Information System (INIS)

    Xu, H.; Beernink, H.; Rould, M.; Morrical, S.

    2006-01-01

    Bacteriophage T4 UvsY protein is considered to be the prototype of recombination mediator proteins, a class of proteins which assist in the loading of recombinases onto DNA. Wild-type and Se-substituted UvsY protein have been expressed and purified and crystallized by hanging-drop vapor diffusion. The crystals diffract to 2.4 (angstrom) using in-house facilities and to 2.2 (angstrom) at NSLS, Brookhaven National Laboratory. The crystals belong to space group P422, P4 2 22, P42 1 2 or P4 2 2 1 2, the ambiguity arising from pseudo-centering, with unit-cell parameters a = b = 76.93, c = 269.8 (angstrom). Previous biophysical characterization of UvsY indicates that it exists primarily as a hexamer in solution. Along with the absence of a crystallographic threefold, this suggests that the asymmetric unit of these crystals is likely to contain either three monomers, giving a solvent content of 71%, or six monomers, giving a solvent content of 41%

  11. Expression of Caspase-3, P53 in EL-4 cells induced by ionizing radiation and its biological implications

    International Nuclear Information System (INIS)

    Ju Guizhi; Shen Bo; Sun Shilong; Yan Fengqin; Fu Shibo; Li Pengwu

    2006-01-01

    Objective: To investigate the effect of ionizing radiation on the expressions of Caspase-3 and P53 proteins in EL-4 cells and its implications in the induction of apoptosis and polyploid cells. Methods: EL- 4 cells were irradiated with 4.0 Gy X-rays (180 kV, 15 mA, 0.287 Gy/min). Fluorescent staining and flow cytometry analysis were used to measure protein expression, apoptosis and polyploid cells. Results: It was found that the expression of Caspase-3 protein was increased significantly at 8 h and 12 h after the irradiation compared with sham-irradiated control (P<0.05), and the expression of P53 protein was also increased significantly at 2,4,8,12 and 24 h after the irradiation compared with sham-irradiated control (P<0.05 or P<0.01). The results showed that apoptosis of EL-4 cells was increased significantly at 2,4,8,12,24,48, and 72 h after 4.0 Gy irradiation compared with sham-irradiated control (P<0.05 or P<0.01 or P<0.001). However, no significant change in the number of polyploidy cells was found during the period from 2 to 48 h after the irradiation with 4.0 Gy X-rays. Conclusions: It is indicated that the expressions of Caspase-3 and P53 protein in EL-4 cells can be induced by ionizing radiation, and play an important role in the induction of apoptosis; the molecular pathway for polyploid formation might be P53-independent. (authors)

  12. Requirement for the eIF4E binding proteins for the synergistic down-regulation of protein synthesis by hypertonic conditions and mTOR inhibition.

    Science.gov (United States)

    Clemens, Michael J; Elia, Androulla; Morley, Simon J

    2013-01-01

    The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.

  13. Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-03-01

    Full Text Available For reducing protein aggregation in foam fractionation, the role of pH-induced structural change in the interface-induced protein aggregation was analyzed using bovine serum albumin (BSA as a model protein. The results show that the decrease in pH from 7.0 to 3.0 gradually unfolded the BSA structure to increase the molecular size and the relative content of β-sheet and thus reduced the stability of BSA in the aqueous solution. At the isoelectric point (pH 4.7, BSA suffered the lowest level in protein aggregation induced by the gas–liquid interface. In the pH range from 7.0 to 4.7, most BSA aggregates were formed in the defoaming process while in the pH range from 4.7 to 3.0, the BSA aggregates were formed at the gas–liquid interface due to the unfolded BSA structure and they further aggregated to form insoluble ones in the desorption process.

  14. Skp2B overexpression alters a prohibitin-p53 axis and the transcription of PAPP-A, the protease of insulin-like growth factor binding protein 4.

    Directory of Open Access Journals (Sweden)

    Harish Chander

    Full Text Available We previously reported that the degradation of prohibitin by the SCF(Skp2B ubiquitin ligase results in a defect in the activity of p53. We also reported that MMTV-Skp2B transgenic mice develop mammary gland tumors that are characterized by an increased proteolytic cleavage of the insulin-like growth factor binding protein 4 (IGFBP-4, an inhibitor of IGF signaling. However, whether a link exists between a defect in p53 activity and proteolysis of IGFBP-4 was not established.We analyzed the levels of pregnancy-associated plasma protein A (PAPP-A, the protease of IGFBP-4, in MMTV-Skp2B transgenic mice and found that PAPP-A levels are elevated. Further, we found a p53 binding site in intron 1 of the PAPP-A gene and that both wild type and mutant p53 bind to this site. However, binding of wild type p53 results in the transcriptional repression of PAPP-A, while binding of mutant p53 results in the transcriptional activation of PAPP-A. Since MMTV-Skp2B mice express wild type p53 and yet show elevated levels of PAPP-A, at first, these observations appeared contradictory. However, further analysis revealed that the defect in p53 activity in Skp2B overexpressing cells does not only abolish the activity of wild type of p53 but actually mimics that of mutant p53. Our results suggest that in absence of prohibitin, the half-life of p53 is increased and like mutant p53, the conformation of p53 is denatured.These observations revealed a novel function of prohibitin as a chaperone of p53. Further, they suggest that binding of denatured p53 in intron 1 causes an enhancer effect and increases the transcription of PAPP-A. Therefore, these findings indicate that the defect in p53 function and the increased proteolysis of IGFBP-4, we had observed, represent two components of the same pathway, which contributes to the oncogenic function of Skp2B.

  15. Effect of chitosan on the heat stability of whey protein solution as a function of pH.

    Science.gov (United States)

    Zhao, Zhengtao; Xiao, Qian

    2017-03-01

    Chitosan was reported to interact with proteins through electrostatic interactions. Their interaction was influenced by pH, which was not fully characterized. Further research on the interactions between protein and chitosan at different pH and their influence on the thermal denaturation of proteins is necessary. In this research, the effect of chitosan on the heat stability of whey protein solution at pH 4.0-6.0 was studied. At pH 4.0, a small amount chitosan was able to prevent the heat-induced denaturation and aggregation of whey protein molecules. At higher pH values (5.5 and 6.0), whey proteins complexed with chitosan through electrostatic attraction. The formation of chitosan-whey protein complexes at pH 5.5 improved the heat stability of dispersions and no precipitation could be detected up to 20 days. The dispersion with a medium amount of chitosan (chitosan:whey protein 1:5) produced the most stable particles, which had an average radius of 135 ± 14 nm and a zeta potential value of 36 ± 1 mV. In contrast, at pH 6.0 only the dispersion with a high amount of chitosan (chitosan:whey protein 1:2) showed good shelf stability up to 20 days. It was possible to produce heat-stable whey protein beverages by regulating the interaction between chitosan and whey protein molecules. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools.

    Science.gov (United States)

    Goto, Asako; Charman, Mark; Ridgway, Neale D

    2016-01-15

    Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to determine how OSBP controls the availability of PI-4P for this metabolic pathway. Treatment of fibroblasts or Chinese hamster ovary (CHO) cells with 25OH caused a 50-70% reduction in Golgi-associated immunoreactive PI-4P that correlated with Golgi localization of OSBP. In contrast, 25OH caused an OSBP-dependent enrichment in Golgi PI-4P that was detected with a pleckstrin homology domain probe. The cellular mass of phosphatidylinositol monophosphates and Golgi PI-4P measured with an unbiased PI-4P probe (P4M) was unaffected by 25OH and OSBP silencing, indicating that OSBP shifts the distribution of PI-4P upon localization to ER-Golgi contact sites. The PI-4P and sterol binding activities of OSBP were both required for 25OH activation of sphingomyelin synthesis, suggesting that 25OH must be exchanged for PI-4P to be concentrated at contact sites. We propose a model wherein 25OH activation of OSBP promotes the binding and retention of PI-4P at ER-Golgi contact sites. This pool of PI-4P specifically recruits pleckstrin homology domain-containing proteins involved in lipid transfer and metabolism, such as CERT. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Correlation between Urothelial Differentiation and Sensory Proteins P2X3, P2X5, TRPV1, and TRPV4 in Normal Urothelium and Papillary Carcinoma of Human Bladder

    Directory of Open Access Journals (Sweden)

    Igor Sterle

    2014-01-01

    Full Text Available Terminal differentiation of urothelium is a prerequisite for blood-urine barrier formation and enables normal sensory function of the urinary bladder. In this study, urothelial differentiation of normal human urothelium and of low and high grade papillary urothelial carcinomas was correlated with the expression and localization of purinergic receptors (P2X3, and P2X5 and transient receptor potential vanilloid channels (TRPV1, and TRPV4. Western blotting and immunofluorescence of uroplakins together with scanning electron microscopy of urothelial apical surface demonstrated terminal differentiation of normal urothelium, partial differentiation of low grade carcinoma, and poor differentiation of high grade carcinoma. P2X3 was expressed in normal urothelium as well as in low grade carcinoma and in both cases immunolabeling was stronger in the superficial cells. P2X3 expression decreased in high grade carcinoma. P2X5 expression was detected in normal urothelium and in high grade carcinoma, while in low grade carcinoma its expression was diminished. The expression of TRPV1 decreased in low grade and even more in high grade carcinoma when compared with normal urothelium, while TRPV4 expression was unchanged in all samples. Our results suggest that sensory proteins P2X3 and TRPV1 are in correlation with urothelial differentiation, while P2X5 and TRPV4 have unique expression patterns.

  18. The 4s24p3-4s4p4 transition in AsI-like AgXV

    International Nuclear Information System (INIS)

    Dong Chenzhong; Zhao Jinbao

    1992-01-01

    Some terms of the 4s 4p 4 configuration in RuXII, RhXIII and PdXIV ions can be improved and all the energy values of the configuration in AgXV can be predicted theoretically by means of a configuration-interaction ab initio analysis for the level structure of the 4s 4p 4 configuration along the AsI sequence of KrIV-AgXV ions. Calculations of the wavelengths and oscillator strenghts are presented for the 4s 2 4p 3 -4s 4p 4 transition in AgXV. (orig.)

  19. Differential effects of the enantiomers of tamsulosin and tolterodine on P-glycoprotein and cytochrome P450 3A4.

    Science.gov (United States)

    Doricakova, Aneta; Theile, Dirk; Weiss, Johanna; Vrzal, Radim

    2017-01-01

    The pregnane X receptor (PXR) is a transcription factor regulating P-glycoprotein (P-gp; ABCB1)-mediated transport and cytochrome P450 3A4 (CYP3A4)-mediated metabolism of xenobiotics thereby affecting the pharmacokinetics of many drugs and potentially modulating clinical efficacy. Thus, pharmacokinetic drug-drug interactions can arise from PXR activation. Here, we examined whether the selective α1-adrenoreceptor blocker tamsulosin or the antagonist of muscarinic receptors tolterodine affect PXR-mediated regulation of CYP3A4 and of P-gp at the messenger RNA (mRNA) and protein level in an enantiomer-specific way. In addition, the effect of tamsulosin and tolterodine on P-gp activity was evaluated. We used quantitative real-time PCR, gene reporter assay, western blotting, rhodamine efflux assay, and calcein assay for determination of expression, activity, and inhibition of P-glycoprotein. The studied compounds significantly and concentration-dependently increased PXR activity in the ABCB1-driven luciferase-based reporter gene assay. We observed much stronger induction of ABCB1 mRNA by S-tamsulosin as compared to the R or racemic form. R or racemic form of tolterodine and R-tamsulosin concentration-dependently increased P-gp protein expression; the latter also enhanced P-gp efflux function in a rhodamine-based efflux assay. R-tamsulosin and all forms of tolderodine slightly inhibited P-gp. The effect on CYP3A4 expression followed the same pattern but was much weaker. Taken together, tamsulosin and tolterodine are demonstrated to interfere with P-gp and CYP3A4 regulation in an enantiomer-specific way.

  20. p16(INK4a translation suppressed by miR-24.

    Directory of Open Access Journals (Sweden)

    Ashish Lal

    2008-03-01

    Full Text Available Expression of the tumor suppressor p16(INK4a increases during aging and replicative senescence.Here, we report that the microRNA miR-24 suppresses p16 expression in human diploid fibroblasts and cervical carcinoma cells. Increased p16 expression with replicative senescence was associated with decreased levels of miR-24, a microRNA that was predicted to associate with the p16 mRNA coding and 3'-untranslated regions. Ectopic miR-24 overexpression reduced p16 protein but not p16 mRNA levels. Conversely, introduction of antisense (AS-miR-24 blocked miR-24 expression and markedly enhanced p16 protein levels, p16 translation, and the production of EGFP-p16 reporter bearing the miR-24 target recognition sites.Together, our results suggest that miR-24 represses the initiation and elongation phases of p16 translation.

  1. Osh4p is needed to reduce the level of phosphatidylinositol-4-phosphate on secretory vesicles as they mature

    OpenAIRE

    Ling, Yading; Hayano, Scott; Novick, Peter

    2014-01-01

    Phosphatidylinositol-4-phosphate (PI4P) is produced on both the Golgi and the plasma membrane. Despite extensive vesicular traffic between these compartments, genetic analysis suggests that the two pools of PI4P do not efficiently mix with one another. Several lines of evidence indicate that the PI4P produced on the Golgi is normally incorporated into secretory vesicles, but the fate of that pool has been unclear. We show here that in yeast the oxysterol-binding proteins Osh1?Osh7 are collect...

  2. SYNTHESIS OF TETRA-p-PROPENYLTETRAESTERCALIX[4]ARENE AND TETRA-p-PROPENYLTETRACARBOXYLICACIDCALIX[4]ARENE FROM p-t-BUTYLPHENOL

    Directory of Open Access Journals (Sweden)

    Triana Kusumaningsih

    2010-06-01

    Full Text Available A research has been conducted to synthesize tetra-p-propenyltetraestercalix[4]arene and tetra-p-propenyltetracarboxylicacidcalix[4] arene using p-t-butylphenol as a starting material. The synthesis was carried out in following stages, i.e (1 synthesis of p-t-butylcalix[4]arene from p-t-butylphenol, (2 debutylation of p-t-butylcalix[4]arene, (3 tetraallilation of 25,26,27,28-tetrahydroxycalix[4]arene with NaH and allilbromida in dry tetrahydrofuran, (4 Claissen rearrangement of 25,26,27,28-tetrapropenyloxycalix[4]arene, (5 esterification of tetra-p-propenyltetrahydroxycalix[4]arene, (6 hydrolisis of tetra-p-propenyltetraestercalix[4]arene. The all structures of products were observed by means of melting point, FTIR, and 1H-NMR spectrometers. Tetra-p-propenyltetraestercalix[4]arene compound was obtained as yellow liquid product in 55.08% yield. Tetra-p-propenyltetracarboxylicacidcalix[4]arene compound was obtained as white solid product with the melting point 135-137 °C at decomposed and in 70.05% yield.   Keywords: calix[4]arene, Claissen rearrangement, esterification, hydrolisis

  3. 4-Hydroxyhexenal- and 4-Hydroxynonenal-Modified Proteins in Pterygia

    Directory of Open Access Journals (Sweden)

    Ichiya Sano

    2013-01-01

    Full Text Available Oxidative stress has been suspected of contributing to the pathogenesis of pterygia. We evaluated the immunohistochemical localization of the markers of oxidative stress, that is, the proteins modified by 4-hydroxyhexenal (4-HHE and 4-hydroxynonenal (4-HNE, which are reactive aldehydes derived from nonenzymatic oxidation of n-3 and n-6 polyunsaturated fatty acids, respectively. In the pterygial head, labeling of 4-HHE- and 4-HNE-modified proteins was prominent in the nuclei and cytosol of the epithelium. In the pterygial body, strong labeling was observed in the nuclei and cytosol of the epithelium and proliferating subepithelial connective tissue. In normal conjunctival specimens, only trace immunoreactivity of both proteins was observed in the epithelial and stromal layers. Exposures of ultraviolet (330 nm, 48.32 ± 0.55 J/cm2 or blue light (400 nm, 293.0 ± 2.0 J/cm2 to rat eyes enhanced labeling of 4-HHE- and 4-HNE-modified proteins in the nuclei of conjunctival epithelium. Protein modifications by biologically active aldehydes are a molecular event involved in the development of pterygia.

  4. Simulation of Different Truncated p16INK4a Forms and In Silico Study of Interaction with Cdk4

    Directory of Open Access Journals (Sweden)

    Najmeh Fahham

    2009-01-01

    Full Text Available Protein-protein interactions studies can greatly increase the amount of structural and functional information pertaining to biologically active molecules and processes. The information obtained from such studies can lead to design and application of new modification in order to obtain a desired bioactivity. Many application packages and servers performing docking, such as HEX, DOT, AUTODOCK, and ZDOCK are now available for predicting the lowest free energy state of a protein complex. In this study, we have focused on cyclin-dependent kinase 4 (Cdk4, a key molecule in the regulation of cell cycle progression at the G1-S phase restriction point and p16INK4a, a tumor suppressor which inhibits Cdk4 activity. Truncated structures were created to find the more critical regions of p16 for interaction. The tertiary structures were determined by ProSAL, GENO3D Web Server. We evaluated their interactions with Cdk4 using two docking systems, HEX 4.5 and DOT 1. Calculations were performed on a high-speed computer. Minimizations and visualizations were carried out by PdbViewer 3.7. Considering shape and shape/electrostatic total energy, structures containing ANK II, III and IV motifs that lack the N-terminal region of the full length p16 molecule showed the best fi t complexes among the p16 truncated forms. The free energies were compatible with that of p16 full length original form, the full length. It seems that the N-terminal of the molecule is not crucial for the interaction since the truncated structure containing only this region did not show a good total energy.

  5. Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation

    International Nuclear Information System (INIS)

    Ostlund, Cecilia; Guan, Tinglu; Figlewicz, Denise A.; Hays, Arthur P.; Worman, Howard J.; Gerace, Larry; Schirmer, Eric C.

    2009-01-01

    Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients with FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.

  6. Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ostlund, Cecilia [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Guan, Tinglu [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Figlewicz, Denise A. [Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States); Hays, Arthur P. [Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Worman, Howard J. [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Gerace, Larry [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Schirmer, Eric C., E-mail: e.schirmer@ed.ac.uk [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR (United Kingdom)

    2009-11-13

    Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients with FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.

  7. Population inversion and gain calculations for 4p54d-4p55p and 4p55s - 4p55p Kr-like transitions in Y IV, Zr V, Nb VI and Mo VII

    International Nuclear Information System (INIS)

    Fournier, K.B.; Goldstein, W.H.; Stutman, D.; Finkenthal, M.; Soukhanovskii, V.; May, M.J.

    1999-01-01

    We present calculations of the quasi-steady state gain coefficient for the 4p 5 4d 1 P-4p 5 5p 1/2[1/2] 0 transition in Kr-like Y IV, Zr V, Nb VI and Mo VII ions. Gain coefficients which can lead to FUV-VUV (∝260 to 60 nm) lasing are found in all ions. Large gain coefficients are found for each ion at temperatures in excess of the ion's equilibrium temperature; realizing lasing in these systems will require a transient excitation mechanism. The density at which the maximal gain coefficient obtains increases for increasing ionization state. The 4p 5 5s 1/2[1/2] 1 -4p 5 5p 1/2[1/2] 0 and 4p 5 5s 3/2[3/2] 1 -4p 5 5p 1/2[1/2] 0 transitions also show population inversion and modest gain coefficients. Attractive features of these ions as potential lasents are the large ratio between the energy of the lasing transition and the excitation energy of the upper level of the lasing transition as well as the case with which they are produced in a low temperature, table-top scale plasma source. (orig.)

  8. Serum retinol binding protein 4 in patients with familial partial lipodystrophy.

    Science.gov (United States)

    Godoy-Matos, Amélio F; Moreira, Rodrigo O; MacDowell, Renata; Bendet, Izidro; Mory, Patrícia B; Moises, Regina S

    2009-07-01

    To determine Retinol Binding Protein 4 (RBP4) levels in patients with Familial Partial Lipodystrophy (FPLD). Ten patients with FPLD and a control group (9 patients) were selected to participate in the study. RBP4-log levels were lower in patients with FPLD in comparison to control group (1.52 +/- 0.32 vs 1.84+/-0.25, p=0.029). A statistical trend was observed between Waist-to-Hip Ratio and RBP4-log (r=-0.44, p=0.054). RBP4 levels are decreased in FPLD.

  9. P-body proteins regulate transcriptional rewiring to promote DNA replication stress resistance.

    Science.gov (United States)

    Loll-Krippleber, Raphael; Brown, Grant W

    2017-09-15

    mRNA-processing (P-) bodies are cytoplasmic granules that form in eukaryotic cells in response to numerous stresses to serve as sites of degradation and storage of mRNAs. Functional P-bodies are critical for the DNA replication stress response in yeast, yet the repertoire of P-body targets and the mechanisms by which P-bodies promote replication stress resistance are unknown. In this study we identify the complete complement of mRNA targets of P-bodies during replication stress induced by hydroxyurea treatment. The key P-body protein Lsm1 controls the abundance of HHT1, ACF4, ARL3, TMA16, RRS1 and YOX1 mRNAs to prevent their toxic accumulation during replication stress. Accumulation of YOX1 mRNA causes aberrant downregulation of a network of genes critical for DNA replication stress resistance and leads to toxic acetaldehyde accumulation. Our data reveal the scope and the targets of regulation by P-body proteins during the DNA replication stress response.P-bodies form in response to stress and act as sites of mRNA storage and degradation. Here the authors identify the mRNA targets of P-bodies during DNA replication stress, and show that P-body proteins act to prevent toxic accumulation of these target transcripts.

  10. Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass - Prediction of viscosity through protein-protein interaction measurements

    DEFF Research Database (Denmark)

    Neergaard, Martin S; Kalonia, Devendra S; Parshad, Henrik

    2013-01-01

    The purpose of this work was to explore the relation between protein-protein interactions (PPIs) and solution viscosity at high protein concentration using three monoclonal antibodies (mAbs), two of the IgG4 subclass and one of the IgG1 subclass. A range of methods was used to quantify the PPI...... low or high protein concentration determined using DLS. The PPI measurements were correlated with solution viscosity (measured by DLS using polystyrene nanospheres and ultrasonic shear rheology) as a function of pH (4-9) and ionic strength (10, 50 and 150mM). Our measurements showed that the highest...... solution viscosity was observed under conditions with the most negative kD, the highest apparent radius and the lowest net charge. An increase in ionic strength resulted in a change in the nature of the PPI at low pH from repulsive to attractive. In the neutral to alkaline pH region the mAbs behaved...

  11. pKa values in proteins determined by electrostatics applied to molecular dynamics trajectories.

    Science.gov (United States)

    Meyer, Tim; Knapp, Ernst-Walter

    2015-06-09

    For a benchmark set of 194 measured pKa values in 13 proteins, electrostatic energy computations are performed in which pKa values are computed by solving the Poisson-Boltzmann equation. In contrast to the previous approach of Karlsberg(+) (KB(+)) that essentially used protein crystal structures with variations in their side chain conformations, the present approach (KB2(+)MD) uses protein conformations from four molecular dynamics (MD) simulations of 10 ns each. These MD simulations are performed with different specific but fixed protonation patterns, selected to sample the conformational space for the different protonation patterns faithfully. The root-mean-square deviation between computed and measured pKa values (pKa RMSD) is shown to be reduced from 1.17 pH units using KB(+) to 0.96 pH units using KB2(+)MD. The pKa RMSD can be further reduced to 0.79 pH units, if each conformation is energy-minimized with a dielectric constant of εmin = 4 prior to calculating the electrostatic energy. The electrostatic energy expressions upon which the computations are based have been reformulated such that they do not involve terms that mix protein and solvent environment contributions and no thermodynamic cycle is needed. As a consequence, conformations of the titratable residues can be treated independently in the protein and solvent environments. In addition, the energy terms used here avoid the so-called intrinsic pKa and can therefore be interpreted without reference to arbitrary protonation states and conformations.

  12. Critical lysine residues of Klf4 required for protein stabilization and degradation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Key-Hwan; Kim, So-Ra; Ramakrishna, Suresh; Baek, Kwang-Hyun, E-mail: baek@cha.ac.kr

    2014-01-24

    Highlights: • Klf4 undergoes the 26S proteasomal degradation by ubiquitination on its multiple lysine residues. • Essential Klf4 ubiquitination sites are accumulated between 190–263 amino acids. • A mutation of lysine at 232 on Klf4 elongates protein turnover. • Klf4 mutants dramatically suppress p53 expression both under normal and UV irradiated conditions. - Abstract: The transcription factor, Krüppel-like factor 4 (Klf4) plays a crucial role in generating induced pluripotent stem cells (iPSCs). As the ubiquitination and degradation of the Klf4 protein have been suggested to play an important role in its function, the identification of specific lysine sites that are responsible for protein degradation is of prime interest to improve protein stability and function. However, the molecular mechanism regulating proteasomal degradation of the Klf4 is poorly understood. In this study, both the analysis of Klf4 ubiquitination sites using several Klf4 deletion fragments and bioinformatics predictions showed that the lysine sites which are signaling for Klf4 protein degradation lie in its N-terminal domain (aa 1–296). The results also showed that Lys32, 52, 232, and 252 of Klf4 are responsible for the proteolysis of the Klf4 protein. These results suggest that Klf4 undergoes proteasomal degradation and that these lysine residues are critical for Klf4 ubiquitination.

  13. The 10 kDa domain of human erythrocyte protein 4.1 binds the Plasmodium falciparum EBA-181 protein

    Directory of Open Access Journals (Sweden)

    Coetzer Theresa L

    2006-11-01

    Full Text Available Abstract Background Erythrocyte invasion by Plasmodium falciparum parasites represents a key mechanism during malaria pathogenesis. Erythrocyte binding antigen-181 (EBA-181 is an important invasion protein, which mediates a unique host cell entry pathway. A novel interaction between EBA-181 and human erythrocyte membrane protein 4.1 (4.1R was recently demonstrated using phage display technology. In the current study, recombinant proteins were utilized to define and characterize the precise molecular interaction between the two proteins. Methods 4.1R structural domains (30, 16, 10 and 22 kDa domain and the 4.1R binding region in EBA-181 were synthesized in specific Escherichia coli strains as recombinant proteins and purified using magnetic bead technology. Recombinant proteins were subsequently used in blot-overlay and histidine pull-down assays to determine the binding domain in 4.1R. Results Blot overlay and histidine pull-down experiments revealed specific interaction between the 10 kDa domain of 4.1R and EBA-181. Binding was concentration dependent as well as saturable and was abolished by heat denaturation of 4.1R. Conclusion The interaction of EBA-181 with the highly conserved 10 kDa domain of 4.1R provides new insight into the molecular mechanisms utilized by P. falciparum during erythrocyte entry. The results highlight the potential multifunctional role of malaria invasion proteins, which may contribute to the success of the pathogenic stage of the parasite's life cycle.

  14. Posttranslational modification of hepatic cytochrome P-450. Phosphorylation of phenobarbital-inducible P-450 forms PB-4 (IIB1) and PB-5 (IIB2) in isolated rat hepatocytes and in vivo

    International Nuclear Information System (INIS)

    Koch, J.A.; Waxman, D.J.

    1989-01-01

    Phosphorylation of hepatic cytochrome P-450 was studied in isolated hepatocytes incubated in the presence of agents known to stimulate protein kinase activity. Incubation of hepatocytes isolated from phenobarbital-induced adult male rats with [ 32 P]orthophosphate in the presence of N 6 , O 2' -dibutyryl-cAMP (diBtcAMP) or glucagon resulted in the phosphorylation of microsomal proteins that are immunoprecipitable by polyclonal antibodies raised to the phenobarbital-induced P-450 form PB-4 (P-450 gene IIB1). Two-dimensional gel electrophoresis revealed that these 32 P-labeled microsomal proteins consist of a mixture of P-450 PB-4 and the closely related P-450 PB-5 (gene IIB2), both of which exhibited heterogeneity in the isoelectric focusing dimension. Phosphorylation of both P-450 forms was markedly enhanced by diBtcAMP at concentrations as low as 5 μM. Phosphoamino acid analysis of the 32 P-labeled P-450 PB-4 + PB-5 immunoprecipitate revealed that these P-450s are phosphorylated on serine in the isolated hepatocytes. Peptide mapping indicated that the site of phosphorylation in hepatocytes is indistinguishable from the site utilized by cAMP-dependent protein kinase in vitro, which was previously identified as serine-128 for the related rabbit protein P-450 LM2. In vitro analyses revealed that phosphorylation of P-450 PB-4 leads to a loss of monooxygenase activity, suggesting that the posttranslational modification of this P-450 enzyme by cAMP-dependent protein kinase may play a role in the modulation of P-450-dependent monooxygenase activity in vivo

  15. The influence of sleep deprivation on expression of apoptosis regulatory proteins p53, bcl-2 and bax following rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide

    Directory of Open Access Journals (Sweden)

    Juliana Noguti

    2013-01-01

    Full Text Available Background: The aim of this study was to evaluate whether paradoxical sleep deprivation could affects the mechanisms and pathways essentials for cancer cells in tongue cancer induced by 4-nitroquinole 1-oxide in Wistar rats. Materials and Methods: For this purpose, the animals were distributed into 4 groups of 5 animals each treated with 50 ppm 4 nitroquinoline 1 oxide (4 NQO solution through their drinking water for 4 and 12 weeks. The animals were submitted to paradoxical sleep deprivation (PSD for 72 h using the modified multiple platform method, which consisted of placing 5 mice in a cage (41 × 34 × 16 cm containing 10 circular platforms (3.5 cm in diameter with water 1 cm below the upper surface. The investigations were conducted using immunohistochemistry of p53, Bax and Bcl-2 proteins related to apoptosis and its pathways. Statistical analysis was performed by Kruskal-Wallis non-parametric test followed by the Dunn′s test using SPSS software pack (version 1.0. P value < 0.05 was considered for statistic significance. Results: Although no histopathological abnormalities were induced in the epithelium after 4 weeks of carcinogen exposure in all groups, in 12 weeks were observed pre-neoplasic lesions. Data analysis revealed statistically significant differences ( P < 0.05 in 4 weeks group for p53 and for bcl-2 and for all immunomarkers after 12 weeks of 4NQO administration. Conclusion: Our results reveal that sleep deprivation exerted alterations in proteins associated with proliferation and apoptosis in carcinogenesis.

  16. Peptide mimetic of the S100A4 protein modulates peripheral nerve regeneration and attenuates the progression of neuropathy in myelin protein P0 null mice

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Pinchenko, Volodymyr; Dmytriyeva, Oksana

    2013-01-01

    and mimicked the S100A4-induced neuroprotection in brain trauma. Here, we investigated a possible function of S100A4 and its mimetics in the pathologies of the peripheral nervous system (PNS). We found that S100A4 was expressed in the injured PNS and that its peptide mimetic (H3) affected the regeneration......, these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1...... disease), where the peptide attenuated the deterioration of nerve conduction, demyelination and axonal loss. From these results, S100A4 mimetics emerge as a possible means to enhance axonal sprouting and survival, especially in the context of demyelinating neuropathies with secondary axonal loss...

  17. A proteomic screen reveals the mitochondrial outer membrane protein Mdm34p as an essential target of the F-box protein Mdm30p.

    Science.gov (United States)

    Ota, Kazuhisa; Kito, Keiji; Okada, Satoshi; Ito, Takashi

    2008-10-01

    Ubiquitination plays various critical roles in eukaryotic cellular regulation and is mediated by a cascade of enzymes including ubiquitin protein ligase (E3). The Skp1-Cullin-F-box protein complex comprises the largest E3 family, in each member of which a unique F-box protein binds its targets to define substrate specificity. Although genome sequencing uncovers a growing number of F-box proteins, most of them have remained as "orphans" because of the difficulties in identification of their substrates. To address this issue, we tested a quantitative proteomic approach by combining the stable isotope labeling by amino acids in cell culture (SILAC), parallel affinity purification (PAP) that we had developed for efficient enrichment of ubiquitinated proteins, and mass spectrometry (MS). We applied this SILAC-PAP-MS approach to compare ubiquitinated proteins between yeast cells with and without over-expressed Mdm30p, an F-box protein implicated in mitochondrial morphology. Consequently, we identified the mitochondrial outer membrane protein Mdm34p as a target of Mdm30p. Furthermore, we found that mitochondrial defects induced by deletion of MDM30 are not only recapitulated by a mutant Mdm34p defective in interaction with Mdm30p but alleviated by ubiquitination-mimicking forms of Mdm34p. These results indicate that Mdm34p is a physiologically important target of Mdm30p.

  18. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions.

    Science.gov (United States)

    Cánepa, Eduardo T; Scassa, María E; Ceruti, Julieta M; Marazita, Mariela C; Carcagno, Abel L; Sirkin, Pablo F; Ogara, María F

    2007-07-01

    The cyclin D-Cdk4-6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The members of INK4 family, comprising p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d), block the progression of the cell cycle by binding to either Cdk4 or Cdk6 and inhibiting the action of cyclin D. These INK4 proteins share a similar structure dominated by several ankyrin repeats. Although they appear to be structurally redundant and equally potent as inhibitors, the INK4 family members are differentially expressed during mouse development. The striking diversity in the pattern of expression of INK4 genes suggested that this family of cell cycle inhibitors might have cell lineage-specific or tissue-specific functions. The INK4 proteins are commonly lost or inactivated by mutations in diverse types of cancer, and they represent established or candidate tumor suppressors. Apart from their capacity to arrest cells in the G1-phase of the cell cycle they have been shown to participate in an increasing number of cellular processes. Given their emerging roles in fundamental physiological as well as pathological processes, it is interesting to explore the diverse roles for the individual INK4 family members in different functions other than cell cycle regulation. Extensive studies, over the past few years, uncover the involvement of INK4 proteins in senescence, apoptosis, DNA repair, and multistep oncogenesis. We will focus the discussion here on these unexpected issues.

  19. Copper Selenidophosphates Cu4P2Se6, Cu4P3Se4, Cu4P4Se3, and CuP2Se, Featuring Zero-, One-, and Two-Dimensional Anions.

    Science.gov (United States)

    Kuhn, Alexander; Schoop, Leslie M; Eger, Roland; Moudrakovski, Igor; Schwarzmüller, Stefan; Duppel, Viola; Kremer, Reinhard K; Oeckler, Oliver; Lotsch, Bettina V

    2016-08-15

    Five new compounds in the Cu/P/Se phase diagram have been synthesized, and their crystal structures have been determined. The crystal structures of these compounds comprise four previously unreported zero-, one-, and two-dimensional selenidophosphate anions containing low-valent phosphorus. In addition to two new modifications of Cu4P2Se6 featuring the well-known hexaselenidohypodiphosphate(IV) ion, there are three copper selenidophosphates with low-valent P: Cu4P3Se4 contains two different new anions, (i) a monomeric (zero-dimensional) selenidophosphate anion [P2Se4](4-) and (ii) a one-dimensional selenidophosphate anion [Formula: see text], which is related to the well-known gray-Se-like [Formula: see text] Zintl anion. Cu4P4Se3 contains one-dimensional [Formula: see text] polyanions, whereas CuP2Se contains the 2D selenidophosphate [Formula: see text] polyanion. It consists of charge-neutral CuP2Se layers separated by a van der Waals gap which is very rare for a Zintl-type phase. Hence, besides black P, CuP2Se constitutes a new possible source of 2D oxidized phosphorus containing layers for intercalation or exfoliation experiments. Additionally, the electronic structures and some fundamental physical properties of the new compounds are reported. All compounds are semiconducting with indirect band gaps of the orders of around 1 eV. The phases reported here add to the structural diversity of chalcogenido phosphates. The structural variety of this family of compounds may translate into a variety of tunable physical properties.

  20. The DNA-mimic antirestriction proteins ArdA ColIB-P9, Arn T4, and Ocr T7 as activators of H-NS-dependent gene transcription.

    Science.gov (United States)

    Melkina, Olga E; Goryanin, Ignatiy I; Zavilgelsky, Gennadii B

    2016-11-01

    The antirestriction proteins ArdA ColIb-P9, Arn T4 and Ocr T7 specifically inhibit type I and type IV restriction enzymes and belong to the family of DNA-mimic proteins because their three-dimensional structure is similar to the double-helical B-form DNA. It is proposed that the DNA-mimic proteins are able to bind nucleoid protein H-NS and alleviate H-NS-silencing of the transcription of bacterial genes. Escherichia coli lux biosensors were constructed by inserting H-NS-dependent promoters into a vector, thereby placing each fragment upstream of the promoterless Photorhabdus luminescens luxCDABE operon. It was demonstrated that the DNA-mimic proteins ArdA, Arn and Ocr activate the transcription of H-NS-dependent promoters of the lux operon of marine luminescent bacteria (mesophilic Aliivibrio fischeri and psychrophilic Aliivibrio logei), and the dps gene from E. coli. It was also demonstrated that the ArdA antirestriction protein, the genes of which are located on transmissive plasmids ColIb-P9, R64, PK101, decreases levels of H-NS silencing of the PluxC promoter during conjugation in the recipient bacteria. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Eukaryotic Initiation Factor 4H Is under Transcriptional Control of p65/NF-κB

    Science.gov (United States)

    Fiume, Giuseppe; Rossi, Annalisa; de Laurentiis, Annamaria; Falcone, Cristina; Pisano, Antonio; Vecchio, Eleonora; Pontoriero, Marilena; Scala, Iris; Scialdone, Annarita; Masci, Francesca Fasanella; Mimmi, Selena; Palmieri, Camillo; Scala, Giuseppe; Quinto, Ileana

    2013-01-01

    Protein synthesis is mainly regulated at the initiation step, allowing the fast, reversible and spatial control of gene expression. Initiation of protein synthesis requires at least 13 translation initiation factors to assemble the 80S ribosomal initiation complex. Loss of translation control may result in cell malignant transformation. Here, we asked whether translational initiation factors could be regulated by NF-κB transcription factor, a major regulator of genes involved in cell proliferation, survival, and inflammatory response. We show that the p65 subunit of NF-κB activates the transcription of eIF4H gene, which is the regulatory subunit of eIF4A, the most relevant RNA helicase in translation initiation. The p65-dependent transcriptional activation of eIF4H increased the eIF4H protein content augmenting the rate of global protein synthesis. In this context, our results provide novel insights into protein synthesis regulation in response to NF-κB activation signalling, suggesting a transcription-translation coupled mechanism of control. PMID:23776612

  2. 4s24p3--4s4p4 and 4s24p3--4s2fp25s transitions in Y VII, Zr VIII, Nb IX, and MoX

    International Nuclear Information System (INIS)

    Reader, J.; Acquista, N.

    1981-01-01

    Spectra of ionized Y, Zr, Nb, and Mo have been observed in sliding-spark and triggered-spark discharges on 10.7-m normal- and grazing-incidence spectrographs at the National Bureau of Standards in Washington, D. C. From these observations the 4s 2 4p 3 --4s4p 4 transitions in Y VII, Zr VIII, Nb IX, and Mo X have been identified. The 4s 2 4p 3 --4s 2 4p 2 5s transitions in Y VII-Mo X, previously identified by Rahimullah et al. [Phys. Scr. 14, 221--223 (1976); 18, 96--106 (1978)], have been confirmed. In Y VII the 4s 2 4p 3 --4s 2 4p 2 6s and 4s4p 4 --4p 5 transition also have been found. The parameters obtained from least-squares fits to the energy levels are compared with Hartree--Fock calculations. Preliminary values of the ionization energies have been determined as 110.02 +- 0.15 eV for Y VII, 133.7 +- 0.5 eV for Zr VIII, 159.2 +- 0.7 eV for Nb IX, and 186.4 +- 1.2 eV for Mo X

  3. Organotin(IV Derivatives of 2-Acetylpyridine-N(4-Phenylthiosemicarbazone, HAP4P, and 2-Hydroxyacetophenone-N(4-Phenylthiosemicarbazone, H2DAP4P: Crystal and Molecular Structure of [SnMe2(DAP4P] and [SnBu2(DAP4P

    Directory of Open Access Journals (Sweden)

    Sousa Gerimário F. de

    2001-01-01

    Full Text Available The reactions of 2-acetylpyridine-N(4-phenylthiosemicarbazone, HAP4P, and 2-hydroxyacetophenone-N(4-phenylthiosemicarbazone, H2DAP4P, with R4-mSnXm (m = 2, 3; R = Me, nBu, Ph and X = Cl, Br led to the formation of hexa- and penta-coordinated organotin(IV complexes, which were studied by microanalysis, IR, ¹H-NMR and Mössbauer spectroscopies. The molecular structures of [SnMe2(DAP4P] and [Sn nBu2(DAP4P] were determined by single-crystal X-ray diffraction studies. In the compounds [SnClMe2(AP4P] and [SnBrMe2(AP4P], the deprotonated ligand AP4P- is N,N,S-bonded to the Sn(IV atoms, which exhibit strongly distorted octahedral coordination. The structures of [SnMe2(DAP4P] and [Sn nBu2(DAP4P] revealed that the DAP4P2- anion acts as a O,N,S-tridentate ligand. In these cases, the Sn(IV atoms adopt a strongly distorted trigonal bipyramidal configuration where the azomethine N and the two C atoms are on the equatorial plane while the O and the S atoms occupy the axial positions.

  4. Association of antibody to E2 protein of human papillomavirus and p16INK4A with progression of HPV-infected cervical lesions.

    Science.gov (United States)

    Chuerduangphui, Jureeporn; Pientong, Chamsai; Swangphon, Piyawut; Luanratanakorn, Sanguanchoke; Sangkomkamhang, Ussanee; Tungsiriwattana, Thumwadee; Kleebkaow, Pilaiwan; Burassakarn, Ati; Ekalaksananan, Tipaya

    2018-05-09

    Human papillomavirus (HPV) E2 and L1 proteins are expressed in cervical cells during the lytic stage of infection. Overexpression of p16 INK4A is a biomarker of HPV-associated cervical neoplasia. This study investigated antibodies to HPV16 E2, HPV16 L1, and p16 INK4A in sera from women with no squamous intraepithelial lesion (No-SIL) of the cervix, low-grade SIL, high-grade SIL, and cervical squamous cell carcinoma (SCC). HPV DNA was detected by polymerase chain reaction. Anti-E2, -L1, and -p16 INK4A antibodies in sera were determined by western blot. Among 116 samples, 69 (60%) were HPV DNA-positive. Percentages seropositive for anti-E2, -L1, and -p16 INK4A antibodies were 39.6, 22.4, and 23.3%, respectively. Anti-E2 antibody was significantly correlated with HPV DNA-positive cases. Eighty-seven women (75%) were regarded as infected with HPV, having at least one positive result from HPV DNA, L1, or E2 antibody. Antibody to p16 INK4A was associated with HPV infection (odds = 5.444, 95% CI 1.203-24.629, P = 0.028) and precancerous cervical lesions (odds = 5.132, 95% CI 1.604-16.415, P = 0.006). Interestingly, the concurrent detection of anti-E2 and -p16 INK4A antibodies was significantly associated with HPV infection (odds = 1.382, 95% CI 1.228-1.555, P = 0.044). These antibodies might be good candidate biomarkers for monitoring HPV-associated cervical lesion development to cancer.

  5. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif

    Directory of Open Access Journals (Sweden)

    Asita Elengoe

    2015-01-01

    Full Text Available Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD of heat shock 70 kDa protein (PDB: 1HJO with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD simulation. Human DNA binding domain of p53 motif (SCMGGMNR retrieved from UniProt (UniProtKB: P04637 was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were −0.44 Kcal/mol and −9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy.

  6. Conserved amino acids within the N-terminus of the West Nile virus NS4A protein contribute to virus replication, protein stability and membrane proliferation

    International Nuclear Information System (INIS)

    Ambrose, R.L.; Mackenzie, J.M.

    2015-01-01

    The West Nile virus strain Kunjin virus (WNV KUN ) NS4A protein is a multifunctional protein involved in many aspects of the virus life-cycle and is a major component of the WNV KUN replication complex (RC). Previously we identified a conserved region in the C-terminus of NS4A regulating proteolytic processing and RC assembly, and now investigate key conserved residues in the N-terminus of NS4A and their contribution to WNV KUN replication. Mutation of P13 completely ablated replication, whereas, mutation of P48 and D49, near the first transmembrane helix, and G66 within the helix, showed variable defects in replication, virion secretion and membrane proliferation. Intriguingly, the P48 and G66 NS4A mutants resulted in specific proteasome depletion of NS4A that could in part be rescued with a proteasome inhibitor. Our results suggest that the N-terminus of NS4A contributes to correct folding and stability, essential for facilitating the essential roles of NS4A during replication. - Highlights: • Mutation of Proline13 of the WNV NS4A protein is lethal to replication. • 1st TMB helix of NS4A contributes to protein stability and membrane remodelling. • Unstable mutants of NS4A can be rescued with a proteasome inhibitor. • This study (and of others) contributes to a functional mapping of the NS4A protein

  7. Molecular Recognition of PTS-1 Cargo Proteins by Pex5p: Implications for Protein Mistargeting in Primary Hyperoxaluria

    Directory of Open Access Journals (Sweden)

    Noel Mesa-Torres

    2015-02-01

    Full Text Available Peroxisomal biogenesis and function critically depends on the import of cytosolic proteins carrying a PTS1 sequence into this organelle upon interaction with the peroxin Pex5p. Recent structural studies have provided important insights into the molecular recognition of cargo proteins by Pex5p. Peroxisomal import is a key feature in the pathogenesis of primary hyperoxaluria type 1 (PH1, where alanine:glyoxylate aminotransferase (AGT undergoes mitochondrial mistargeting in about a third of patients. Here, we study the molecular recognition of PTS1 cargo proteins by Pex5p using oligopeptides and AGT variants bearing different natural PTS1 sequences, and employing an array of biophysical, computational and cell biology techniques. Changes in affinity for Pex5p (spanning over 3–4 orders of magnitude reflect different thermodynamic signatures, but overall bury similar amounts of molecular surface. Structure/energetic analyses provide information on the contribution of ancillary regions and the conformational changes induced in Pex5p and the PTS1 cargo upon complex formation. Pex5p stability in vitro is enhanced upon cargo binding according to their binding affinities. Moreover, we provide evidence that the rational modulation of the AGT: Pex5p binding affinity might be useful tools to investigate mistargeting and misfolding in PH1 by pulling the folding equilibria towards the native and peroxisomal import competent state.

  8. Distinct phosphorylation events regulate p130- and p107-mediated repression of E2F-4

    DEFF Research Database (Denmark)

    Farkas, Thomas; Hansen, Klaus; Holm, Karin

    2002-01-01

    The "pocket proteins" pRb (retinoblastoma tumor suppressor protein), p107, and p130 regulate cell proliferation via phosphorylation-sensitive interactions with E2F transcription factors and other proteins. We previously identified 22 in vivo phosphorylation sites in human p130, including three...

  9. Differential association of protein subunits with the human RNase MRP and RNase P complexes.

    Science.gov (United States)

    Welting, Tim J M; Kikkert, Bastiaan J; van Venrooij, Walther J; Pruijn, Ger J M

    2006-07-01

    RNase MRP is a eukaryotic endoribonuclease involved in nucleolar and mitochondrial RNA processing events. RNase MRP is a ribonucleoprotein particle, which is structurally related to RNase P, an endoribonuclease involved in pre-tRNA processing. Most of the protein components of RNase MRP have been reported to be associated with RNase P as well. In this study we determined the association of these protein subunits with the human RNase MRP and RNase P particles by glycerol gradient sedimentation and coimmunoprecipitation. In agreement with previous studies, RNase MRP sedimented at 12S and 60-80S. In contrast, only a single major peak was observed for RNase P at 12S. The analysis of individual protein subunits revealed that hPop4 (also known as Rpp29), Rpp21, Rpp20, and Rpp25 only sedimented in 12S fractions, whereas hPop1, Rpp40, Rpp38, and Rpp30 were also found in 60-80S fractions. In agreement with their cosedimentation with RNase P RNA in the 12S peak, coimmunoprecipitation with VSV-epitope-tagged protein subunits revealed that hPop4, Rpp21, and in addition Rpp14 preferentially associate with RNase P. These data show that hPop4, Rpp21, and Rpp14 may not be associated with RNase MRP. Furthermore, Rpp20 and Rpp25 appear to be associated with only a subset of RNase MRP particles, in contrast to hPop1, Rpp40, Rpp38, and Rpp30 (and possibly also hPop5), which are probably associated with all RNase MRP complexes. Our data are consistent with a transient association of Rpp20 and Rpp25 with RNase MRP, which may be inversely correlated to its involvement in pre-rRNA processing.

  10. Ion channel regulation by phosphoinositides analyzed with VSPs – PI(4,5P2 affinity, phosphoinositide selectivity, and PI(4,5P2 pool accessibility

    Directory of Open Access Journals (Sweden)

    Alexandra eRjasanow

    2015-06-01

    Full Text Available The activity of many proteins depends on the phosphoinositide (PI content of the membrane. E.g., dynamic changes of the concentration of PI(4,5P2 are cellular signals that regulate ion channels. The susceptibility of a channel to such dynamics depends on its affinity for PI(4,5P2. Yet, measuring affinities for endogenous PIs has not been possible directly, but has relied largely on the response to soluble analogs, which may not quantitatively reflect binding to native lipids.Voltage-sensitive phosphatases (VSPs turn over PI(4,5P2 to PI(4P when activated by depolarization. In combination with voltage-clamp electrophysiology VSPs are useful tools for rapid and reversible depletion of PI(4,5P2. Because cellular PI(4,5P2 is resynthesized rapidly, steady state PI(4,5P2 changes with the degree of VSP activation and thus depends on membrane potential.Here we show that titration of endogenous PI(4,5P2 with Ci-VSP allows for the quantification of relative PI(4,5P2 affinities of ion channels. The sensitivity of inward rectifier and voltage-gated K+ channels to Ci-VSP allowed for comparison of PI(4,5P2 affinities within and across channel subfamilies and detected changes of affinity in mutant channels. The results also reveal that VSPs are useful only for PI effectors with high binding specificity among PI isoforms, because PI(4,5P2 depletion occurs at constant overall PI level. Thus, Kir6.2, a channel activated by PI(4,5P2 and PI(4P was insensitive to VSP.Surprisingly, despite comparable PI(4,5P2 affinity as determined by Ci-VSP, the Kv7 and Kir channel families strongly differed in their sensitivity to receptor-mediated depletion of PI(4,5P2. While Kv7 members were highly sensitive to activation of PLC by Gq-coupled receptors, Kir channels were insensitive even when PI(4,5P2 affinity was lowered by mutation. We hypothesize that different channels may be associated with distinct pools of PI(4,5P2 that differ in their accessibility to PLC and VSPs.

  11. P2X4: A fast and sensitive purinergic receptor

    Directory of Open Access Journals (Sweden)

    Jaanus Suurväli

    2017-10-01

    Full Text Available Extracellular nucleotides have been recognized as important mediators of activation, triggering multiple responses via plasma membrane receptors known as P2 receptors. P2 receptors comprise P2X ionotropic receptors and G protein-coupled P2Y receptors. P2X receptors are expressed in many tissues, where they are involved in a number of functions including synaptic transmission, muscle contraction, platelet aggregation, inflammation, macrophage activation, differentiation and proliferation, neuropathic and inflammatory pain. P2X4 is one of the most sensitive purinergic receptors (at nanomolar ATP concentrations, about one thousand times more than the archetypal P2X7. P2X4 is widely expressed in central and peripheral neurons, in microglia, and also found in various epithelial tissues and endothelial cells. It localizes on the plasma membrane, but also in intracellular compartments. P2X4 is preferentially localized in lysosomes, where it is protected from proteolysis by its glycosylation. High ATP concentration in the lysosomes does not activate P2X4 at low pH; P2X4 gets activated by intra-lysosomal ATP only in its fully dissociated tetra-anionic form, when the pH increases to 7.4. Thus, P2X4 is functioning as a Ca2+-channel after the fusion of late endosomes and lysosomes. P2X4 modulates major neurotransmitter systems and regulates alcohol-induced responses in microglia. P2X4 is one of the key receptors mediating neuropathic pain. However, injury-induced upregulation of P2X4 expression is gender dependent and plays a key role in pain difference between males and females. P2X4 is also involved in inflammation. Extracellular ATP being a pro-inflammatory molecule, P2X4 can trigger inflammation in response to high ATP release. It is therefore involved in multiple pathologies, like post-ischemic inflammation, rheumatoid arthritis, airways inflammation in asthma, neurodegenerative diseases and even metabolic syndrome. Although P2X4 remains poorly

  12. Immunohistochemical analysis of P53 protein in odontogenic cysts

    Science.gov (United States)

    Gaballah, Essam Taher M.A.; Tawfik, Mohamed A.

    2010-01-01

    The p53 is a well-known tumor suppressor gene, the mutations of which are closely related to the decreased differentiation of cells. Findings of studies on immunohistochemical P53 expression in odontogenic cysts are controversial. The present study was carried-out to investigate the immunohistochemical expression of P53 protein in odontogenic cysts. Thirty paraffin blocks of diagnosed odontogenic cysts were processed to determine the immunohistochemical expression of P53 protein. Nine of the 11 odontogenic keratocysts (81.8%) expressed P53, one of three dentigerous cyst cases expressed P53, while none of the 16 radicular cysts expressed P53 protein. The findings of the present work supported the reclassification of OKC as keratocystic odontogenic tumor. PMID:23960493

  13. Human Cytochrome P450 3A4 as a Biocatalyst: Effects of the Engineered Linker in Modulation of Coupling Efficiency in 3A4-BMR Chimeras.

    Science.gov (United States)

    Degregorio, Danilo; D'Avino, Serena; Castrignanò, Silvia; Di Nardo, Giovanna; Sadeghi, Sheila J; Catucci, Gianluca; Gilardi, Gianfranco

    2017-01-01

    Human liver cytochrome P450 3A4 is the main enzyme involved in drug metabolism. This makes it an attractive target for biocatalytic applications, such as the synthesis of pharmaceuticals and drug metabolites. However, its poor solubility, stability and low coupling have limited its application in the biotechnological context. We previously demonstrated that the solubility of P450 3A4 can be increased by creating fusion proteins between the reductase from Bacillus megaterium BM3 (BMR) and the N-terminally modified P450 3A4 (3A4-BMR). In this work, we aim at increasing stability and coupling efficiency by varying the length of the loop connecting the two domains to allow higher inter-domain flexibility, optimizing the interaction between the domains. Starting from the construct 3A4-BMR containing the short linker Pro-Ser-Arg, two constructs were generated by introducing a 3 and 5 glycine hinge (3A4-3GLY-BMR and 3A4-5GLY-BMR). The three fusion proteins show the typical absorbance at 450 nm of the reduced heme-CO adduct as well as the correct incorporation of the FAD and FMN cofactors. Each of the three chimeric proteins were more stable than P450 3A4 alone. Moreover, the 3A4-BMR-3-GLY enzyme showed the highest NADPH oxidation rate in line with the most positive reduction potential. On the other hand, the 3A4-BMR-5-GLY fusion protein showed a V max increased by 2-fold as well as a higher coupling efficiency when compared to 3A4-BMR in the hydroxylation of the marker substrate testosterone. This protein also showed the highest rate value of cytochrome c reduction when this external electron acceptor is used to intercept electrons from BMR to P450. The data suggest that the flexibility and the interaction between domains in the chimeric proteins is a key parameter to improve turnover and coupling efficiency. These findings provide important guidelines in engineering catalytically self-sufficient human P450 for applications in biocatalysis.

  14. Vaccination with Recombinant Non-transmembrane Domain of Protein Mannosyltransferase 4 Improves Survival during Murine Disseminated Candidiasis.

    Science.gov (United States)

    Wang, Li; Yan, Lan; Li, Xing Xing; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2015-01-01

    Candida albicans is the most common cause of invasive fungal infections in humans. The C. albicans cell wall proteins play an important role in crucial host-fungus interactions and might be ideal vaccine targets to induce protective immune response in host. Meanwhile, protein that is specific to C. albicans is also an ideal target of vaccine. In this study, 11 proteins involving cell wall biosynthesis, yeast-to-hypha formation, or specific to C. albicans were chosen and were successfully cloned, purified and verified. The immune protection of vaccination with each recombinant protein respectively in preventing systemic candidiasis in BALB/c mice was assessed. The injection of rPmt4p vaccination significantly increased survival rate, decreased fungal burdens in the heart, liver, brain, and kidneys, and increased serum levels of both immunoglobulin G (IgG) and IgM against rPmt4p in the immunized mice. Histopathological assessment demonstrated that rPmt4p vaccination protected the tissue structure, and decreased the infiltration of inflammatory cells. Passive transfer of the rPmt4p immunized serum increased survival rate against murine systemic candidiasis and significantly reduced organ fungal burden. The immune serum enhanced mouse neutrophil killing activity by directly neutralizing rPmt4p effects in vitro. Levels of interleukin (IL)-4, IL-10, IL-12p70, IL-17A and tumor necrosis factor (TNF)-α in serum were higher in the immunized mice compared to those in the adjuvant control group. In conclusion, our results suggested that rPmt4p vaccination may be considered as a potential vaccine candidate against systemic candidiasis.

  15. X-ray crystallographic analysis of adipocyte fatty acid binding protein (aP2) modified with 4-hydroxy-2-nonenal

    Energy Technology Data Exchange (ETDEWEB)

    Hellberg, Kristina; Grimsrud, Paul A.; Kruse, Andrew C.; Banaszak, Leonard J.; Ohlendorf, Douglas H.; Bernlohr, David A. (UMM)

    2012-07-11

    Fatty acid binding proteins (FABP) have been characterized as facilitating the intracellular solubilization and transport of long-chain fatty acyl carboxylates via noncovalent interactions. More recent work has shown that the adipocyte FABP is also covalently modified in vivo on Cys117 with 4-hydroxy-2-nonenal (4-HNE), a bioactive aldehyde linked to oxidative stress and inflammation. To evaluate 4-HNE binding and modification, the crystal structures of adipocyte FABP covalently and noncovalently bound to 4-HNE have been solved to 1.9 {angstrom} and 2.3 {angstrom} resolution, respectively. While the 4-HNE in the noncovalently modified protein is coordinated similarly to a carboxylate of a fatty acid, the covalent form show a novel coordination through a water molecule at the polar end of the lipid. Other defining features between the two structures with 4-HNE and previously solved structures of the protein include a peptide flip between residues Ala36 and Lys37 and the rotation of the side chain of Phe57 into its closed conformation. Representing the first structure of an endogenous target protein covalently modified by 4-HNE, these results define a new class of in vivo ligands for FABPs and extend their physiological substrates to include bioactive aldehydes.

  16. The cell cycle regulator protein P16 and the cellular senescence of dental follicle cells.

    Science.gov (United States)

    Morsczeck, Christian; Hullmann, Markus; Reck, Anja; Reichert, Torsten E

    2018-02-01

    Cellular senescence is a restricting factor for regenerative therapies with somatic stem cells. We showed previously that the onset of cellular senescence inhibits the osteogenic differentiation in stem cells of the dental follicle (DFCs), although the mechanism remains elusive. Two different pathways are involved in the induction of the cellular senescence, which are driven either by the cell cycle protein P21 or by the cell cycle protein P16. In this study, we investigated the expression of cell cycle proteins in DFCs after the induction of cellular senescence. The induction of cellular senescence was proved by an increased expression of β-galactosidase and an increased population doubling time after a prolonged cell culture. Cellular senescence regulated the expression of cell cycle proteins. The expression of cell cycle protein P16 was up-regulated, which correlates with the induction of cellular senescence markers in DFCs. However, the expression of cyclin-dependent kinases (CDK)2 and 4 and the expression of the cell cycle protein P21 were successively decreased in DFCs. In conclusion, our data suggest that a P16-dependent pathway drives the induction of cellular senescence in DFCs.

  17. Soluble expression of recomb inant cMyc, Klf4, Oct4, and Sox2 proteins in bacteria and transduction into living cells

    Directory of Open Access Journals (Sweden)

    Guo-Dan Liu

    2017-04-01

    Full Text Available AIM: To develop a new method to produce recombinant reprogramming proteins, cMyc, Klf4, Oct4, and Sox2, in soluble format with low cost for the generation of induced pluripotent stem cells (iPSCs. METHODS: A short polypeptide sequence derived from the HIV trans-activator of transcription protein (TAT and the nucleus localization signal (NLS polypeptide were fused to the N terminus of the reprogramming proteins and they were constructed into pCold-SUMO vector which can extremely improve the solubility of recombinant proteins. Then these vector plasmids were transformed into E. coli BL21 (DE3 Chaperone competent cells for amplification. The solubility of these recombinant proteins was determined by SDS-PAGE and Coomassie brilliant blue staining. The recombinant proteins were purified by Ni-NTA resin and identified by Western blot. The transduction of these proteins into HEK 293T cells were evaluated by immunofluorescence staining. RESULTS: These four reprogramming proteins could be produced in soluble format in pCold-SUMO expression vector system with the assistance of chaperone proteins in bacteria. The proteins were purified successfully with a purity of over 70% with a relative high transduction rate into 293 cells. CONCLUSION: The results in the present study indicate the four important reprogramming proteins, cMyc, Klf4, Oct4, and Sox2, can be produced in soluble format in bacteria with low cost. Our new method thus might be expected to greatly contribute to the future study of iPSCs.

  18. Meiotic and pedigree segregation analyses in carriers of t(4;8)(p16;p23.1) differing in localization of breakpoint positions at 4p subband 4p16.3 and 4p16.1.

    Science.gov (United States)

    Midro, Alina T; Zollino, Marcella; Wiland, Ewa; Panasiuk, Barbara; Iwanowski, Piotr S; Murdolo, Marina; Śmigiel, Robert; Sąsiadek, Maria; Pilch, Jacek; Kurpisz, Maciej

    2016-02-01

    The purpose of this study was to compare meiotic segregation in sperm cells from two carriers with t(4;8)(p16;p23.1) reciprocal chromosome translocations (RCTs), differing in localization of the breakpoint positions at the 4p subband-namely, 4p16.3 (carrier 1) and 4p16.1 (carrier 2)-and to compare data of the pedigree analyses performed by direct method. Three-color fluorescent in situ hybridization (FISH) on sperm cells and FISH mapping for the evaluation of the breakpoint positions, data from pedigrees, and direct segregation analysis of the pedigrees were performed. Similar proportions of normal/balanced and unbalanced sperm cells were found in both carriers. The most common was an alternate type of segregation (about 52 % and about 48 %, respectively). Unbalanced adjacent I and adjacent II karyotypes were found in similar proportions about 15 %. The direct segregation analysis (following Stengel-Rutkowski) of the pedigree of carriers of t(4;8)(p16.1;p23.1) was performed and results were compared with the data of the pedigree segregation analysis obtained earlier through the indirect method. The probability of live-born progeny with unbalanced karyotype for carriers of t(4;8)(p16.1;p23.1) was moderately high at 18.8 %-comparable to the value obtained using the indirect method for the same carriership, which was 12 %. This was, however, markedly lower than the value of 41.2 % obtained through the pedigree segregation indirect analysis estimated for carriers of t(4;8)(p16.3;p23.1), perhaps due to the unique composition of genes present within the 4p16.1-4p 16.3 region. Revealed differences in pedigree segregation analysis did not correspond to the very similar profile of meiotic segregation patterns presented by carrier 1 and carrier 2. Most probably, such discordances may be due to differences in embryo survival rates arising from different genetic backgrounds.

  19. Phosphorylation of the human respiratory syncytial virus P protein mediates M2-2 regulation of viral RNA synthesis, a process that involves two P proteins.

    Science.gov (United States)

    Asenjo, Ana; Villanueva, Nieves

    2016-01-04

    The M2-2 protein regulates the balance between human respiratory syncytial virus (HRSV) transcription and replication. Here it is shown that M2-2 mediated transcriptional inhibition is managed through P protein phosphorylation. Transcription inhibition by M2-2 of the HRSV based minigenome pRSVluc, required P protein phosphorylation at serines (S) in positions 116, 117, 119 and increased inhibition is observed if S232 or S237 is also phosphorylated. Phosphorylation of these residues is required for viral particle egression from infected cells. Viral RNA synthesis complementation assays between P protein variants, suggest that two types of P proteins participate in the process as components of RNA dependent RNA polymerase (RdRp). Type I is only functional when, as a homotetramer, it is bound to N and L proteins through residues 203-241. Type II is functionally independent of these interactions and binds to N protein at a region outside residues 232-241. P protein type I phosphorylation at S116, S117 and S119, did not affect the activity of RdRp but this phosphorylation in type II avoids its interaction with N protein and impairs RdRp functionality for transcription and replication. Structural changes in the RdRp, mediated by phosphorylation turnover at the indicated residues, in the two types of P proteins, may result in a fine adjustment, late in the infectious cycle, of transcription, replication and progression in the morphogenetic process that ends in egression of the viral particles from infected cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Correlation of random urine protein creatinine (P-C) ratio with 24-hour urine protein and P-C ratio, based on physical activity: a pilot study.

    Science.gov (United States)

    Sadjadi, Seyed-Ali; Jaipaul, Navin

    2010-09-07

    Quantification of proteinuria is usually predicated upon 24-hour urine collection. Multiple factors influence urine collection and the rate of protein and creatinine excretion. Urine collection is often incomplete, and therefore creatinine and protein excretion rates are underestimated. A random urine protein-creatinine (P-C) ratio has been shown over the years to be a reliable alternative to the 24-hour collection for detection and follow up of proteinuria. However, urine protein excretion may be influenced by physical activity. We studied 48 patients with proteinuria and varying levels of physical activity to determine the correlation between the measures of urine protein excretion. The correlation coefficient (r) between 24-hour urine total protein and random urine P-C ratio was 0.75 (P r = 0.99 (P r = 0.95 (P bedridden patients; r = 0.44 (P = not significant [NS]) and r = 0.54 (P = NS) in semiactive patients; and r = 0.44 (P = NS) and r = 0.58 (P 3500 mg/day) and non-nephrotic (r = 0.84; P r = 0.99 (P r = 0.92 (P bedridden patients; r = 0.61 (P = NS) and r = 0.54 (P = NS) in semiactive patients; and r = 0.64 (P r = 0.52 (P < 0.05) in active patients with nephrotic and non-nephrotic range proteinuria, respectively. We conclude that the random urine P-C ratio is a reliable and practical way of estimating and following proteinuria, but its precision and accuracy may be affected by the level of patient physical activity.

  1. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    Directory of Open Access Journals (Sweden)

    Laulumaa Saara

    2015-01-01

    Full Text Available Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  2. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    Science.gov (United States)

    Laulumaa, Saara; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  3. Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor.

    Science.gov (United States)

    Tantama, Mathew; Hung, Yin Pun; Yellen, Gary

    2011-07-06

    Intracellular pH affects protein structure and function, and proton gradients underlie the function of organelles such as lysosomes and mitochondria. We engineered a genetically encoded pH sensor by mutagenesis of the red fluorescent protein mKeima, providing a new tool to image intracellular pH in live cells. This sensor, named pHRed, is the first ratiometric, single-protein red fluorescent sensor of pH. Fluorescence emission of pHRed peaks at 610 nm while exhibiting dual excitation peaks at 440 and 585 nm that can be used for ratiometric imaging. The intensity ratio responds with an apparent pK(a) of 6.6 and a >10-fold dynamic range. Furthermore, pHRed has a pH-responsive fluorescence lifetime that changes by ~0.4 ns over physiological pH values and can be monitored with single-wavelength two-photon excitation. After characterizing the sensor, we tested pHRed's ability to monitor intracellular pH by imaging energy-dependent changes in cytosolic and mitochondrial pH.

  4. Plant P4-ATPases: lipid translocators with a role in membrane traficking

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura

    a large family of membrane proteins involved in pumping different physiologically-relevant substrates across biological membranes [4]. The members of the P4 subfamily (also known as flippases) catalyze the energy-driven translocation of lipids necessary for establishing transbilayer lipid asymmetry [5......], a feature necessary for correct functioning of the cells [6,7]. Deletion of one or more P4-ATPase genes causes defects in vesicle budding in various organisms [8-10] and some members of the yeast family have been shown to interact with the vesiculation machinery [11,12]. Thus, unraveling the key features...... of P4-ATPase functioning is crucial to understand the mechanisms underlying the whole secretory and endocytic pathways. In the model plant Arabidopsis, 12 members of the P4-ATPase family have been described (ALA1-ALA12, for Aminophospholipid ATPase) [4]. In the past years, we have characterized several...

  5. High CpG island methylation of p16 gene and loss of p16 protein ...

    Indian Academy of Sciences (India)

    The study subjects consisted of 75 healthy ... that p16 protein expression was significantly lower in ToF group compared to ... in p16 promoters in ToF patients was negatively correlated with p16 protein ... studies, human foetal ventricular cardiomyocytes (HFCs) are ..... oral epithelial dysplasia: a prospective cohort study.

  6. Predicting pKa for proteins using COSMO-RS

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Jensen, Jan Halborg; Stipp, Susan Louise Svane

    2013-01-01

    We have used the COSMO-RS implicit solvation method to calculate the equilibrium constants, pKa, for deprotonation of the acidic residues of the ovomucoid inhibitor protein, OMTKY3. The root mean square error for comparison with experimental data is only 0.5 pH units and the maximum error 0.8 p......H units. The results show that the accuracy of pKa prediction using COSMO-RS is as good for large biomolecules as it is for smaller inorganic and organic acids and that the method compares very well to previous pKa predictions of the OMTKY3 protein using Quantum Mechanics/Molecular Mechanics. Our approach...

  7. Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1).

    Science.gov (United States)

    Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan

    2013-08-09

    Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.

  8. Overexpression of p53, MDM2 proteins in some atr radiation-induced skin ulcers

    International Nuclear Information System (INIS)

    Gu Qingyang; Gao Yabing; Wang Dewen; Cui Yufang; Zhao Po; Yang Zhixiang; Zhou Jie

    2000-01-01

    An animal model of radiation-induced skin ulcer was set up with 140 rats, which were locally irradiated with 35-55 Gy γ-rays. The pathological changes were observed for 1 year. Immunohistochemical studies were performed in 72 rat radiation skin ulcer specimens using anti-p53 and anti-MDM2 proteins polyclonal antibodies. The results showed that the positive rate for overexpression of p53 protein was 9.7%, and for that of MDM2 was 19.4%. The overexpression of p53 was mainly seen in the nuclei of activated squamous epithelial cells, and in fibroblasts, endotheliocytes in deeper part of the skin ulcers. The overexpression of MDM2 had the same localizations. It is suggested that the changes of p53 and MDM2, genes and proteins, may be related to the cancer transformation and poor healing of radiation-induced skin ulcers

  9. Effect of initial protein concentration and pH on in vitro gastric digestion of heated whey proteins.

    Science.gov (United States)

    Zhang, Sha; Vardhanabhuti, Bongkosh

    2014-02-15

    The in vitro digestion of heated whey protein aggregates having different structure and physicochemical properties was evaluated under simulated gastric conditions. Aggregates were formed by heating whey protein isolates (WPI) at 3-9% w/w initial protein concentration and pH 3.0-7.0. Results showed that high protein concentration led to formation of larger WPI aggregates with fewer remaining monomers. Aggregates formed at high protein concentrations showed slower degradation rate compared to those formed at low protein concentration. The effect of initial protein concentration on peptide release pattern was not apparent. Heating pH was a significant factor affecting digestion pattern. At pH above the isoelectric point, the majority of the proteins involved in the aggregation, and aggregates formed at pH 6.0 were more susceptible to pepsin digestion than at pH 7.0. At acidic conditions, only small amount of proteins was involved in the aggregation and heated aggregates were easily digested by pepsin, while the remaining unaggregated proteins were very resistant to gastric digestion. The potential physiological implication of these results on satiety was discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Prion protein (PrP) gene-knockout cell lines: insight into functions of the PrP

    OpenAIRE

    Sakudo, Akikazu; Onodera, Takashi

    2015-01-01

    Elucidation of prion protein (PrP) functions is crucial to fully understand prion diseases. A major approach to studying PrP functions is the use of PrP gene-knockout (Prnp ?/?) mice. So far, six types of Prnp ?/? mice have been generated, demonstrating the promiscuous functions of PrP. Recently, other PrP family members, such as Doppel and Shadoo, have been found. However, information obtained from comparative studies of structural and functional analyses of these PrP family proteins do not ...

  11. A rec(4) dup 4p inherited from a maternal inv(4)(p15q35): case report and review.

    Science.gov (United States)

    Garcia-Heras, Jaime; Martin, Judith

    2002-05-01

    A rec(4) dup 4p inherited from a maternal inv(4)(p15q35) was detected in a four-year-old girl with malformations, developmental delay, and behavioral problems that resemble those for trisomy 4p. A review of eight other liveborns with rec(4) dup 4p shows that about 40% of them also have manifestations in common with trisomy 4p, but the rest have a variable spectrum of malformations. Overall, the rec(4) dup 4p phenotype is not specific, and a diagnosis would not have been feasible without cytogenetic studies. This lack of a clinically recognizable phenotype could reflect the effects of the variable sizes of deletions of 4q, molecular differences in the break points, or the known variable expression of trisomy 4p. The fact that 79% of the recombinants in the offspring of inv(4)(p13-p15q35) carriers are rec(4) dup 4p suggests that meiotic recombination favors its generation or that rec(4) dup 4q are more lethal in utero. Copyright 2002 Wiley-Liss, Inc.

  12. Electrophoretic detection of protein p53 in human leukocytes

    International Nuclear Information System (INIS)

    Paponov, V.D.; Kupsik, E.G.; Shcheglova, E.G.; Yarullin, N.N.

    1986-01-01

    The authors have found an acid-soluble protein with mol. wt. of about 53 kD in peripheral blood leukocytes of persons with Down's syndrome. It was present in different quantities in all 20 patients tested, but was virtually not discovered in 12 healthy blood donors. This paper determines the possible identity of this protein with protein p53 from mouse ascites carcinoma by comparing their electrophoretic mobilities, because the accuracy of electrophoretic determination of the molecular weight of proteins is not sufficient to identify them. The paper also describes experiments to detect a protein with electrophoretic mobility identical with that of a protein in the leukocytes of patients with Down's syndrome in leukocytes of patients with leukemia. To discover if protein p53 is involved in cell proliferation, the protein composition of leukocytes from healthy blood donors, cultured in the presence and absence of phytohemagglutinin (PHA), was compared. Increased incorporation of H 3-thymidine by leukocytes of patients with Down's syndrome is explained by the presence of a population of immature leukocytes actively synthesizing DNA in the peripheral blood of these patients, and this can also explain the presence of protein p53 in the leukocytes of these patients

  13. Protein expression of P13K and P53 in prediction of response to radiotherapy in cervical cancer

    International Nuclear Information System (INIS)

    Teja Kisnanto; Devita Tetriana; Iin Kurnia; Sudiono S; Mellova Amir; Budiningsih Siregar; Ramli; Andrijono; Setiawan Soetopo; Irwan; Tjahya Kurjana; Bethy S Hernowo; Maringan DL Tobing

    2015-01-01

    Cervical cancer is a malignant disease that is common in women and is the first order of malignant disease in Indonesia. Radiotherapy is the main treatment on cervical cancer, especially at an advanced stage (IIB-IIB). P13K and P-53 protein plays a role in the regulation of apoptosis (programmed cell death). The purpose of this study was to determine the protein expression of P13K and P-53 in the prediction of response to radiotherapy action in patients with cervical cancer. Microscopic preparations obtained from biopsy tissue cancer (IIB-IIIB) to 20 patients from RSCM and RSHS. The method used is the method of immunohistochemistry using P13K and P-53 protein biomarkers in cervical cancer tissue preparations. P13K protein expression value obtained by the method of immuno reactive Score (IRS). P13K protein positive expression marked in blue on the cell cytoplasm and P-53 protein is characterized by brown or dark colors contained in the cell nucleus. Results showed that IRS value by 10% a negative P13K, P13K IRS weaker by 70%, IRS P13K was at 15%, and the IRS P13K stronger by 5%. While the index positive P-53 was obtained by 75% and negative P-53 index by 5%. Radiotherapy response analysis showed that there were 75% good response and 25% a bad response. The conclusion from this study is the expression of the protein P13K and P-53 for response prediction of radiotherapy IRS P13K values obtained in response to both radiotherapy is higher compared with radiotherapy response is bad, and the P-53 protein is not found differences in response to radiotherapy between positive and negative expressions. (author)

  14. Application of artificial neural networks for the determination of proteins with CPA-pI by rayleigh light scattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Dong Lijun [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Xingguo [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)]. E-mail: chenxg@lzu.edu.cn; Hu Zhide [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2007-05-15

    The determination of proteins with 2-(4-chloro-2-phosphonophenylazo)-7-(4-iodophenylazo) -1,8-dihydroxynaphthalene-3,6-disulfonic acid (CPA-pI) by Rayleigh light scattering (RLS) was studied in this paper. The weak RLS of CPA-pI and BSA can be enhanced greatly by the addition of Al{sup 3+} at the pH 5.6 and an enhanced RLS signal was produced at 365-385 nm. Based on the reaction of CPA-pI, Al{sup 3+} and proteins, a new quantitative determination method for proteins has been developed. The effect of three variables for the determination of proteins was optimized by means of artificial neural networks (ANNs) using extended delta-bar-delta (EDBD) algorithms with the optimal network structure of 3-5-1. This method is very sensitive (2.5-35.4 {mu}g/ml for bovine serum albumin (BSA)), rapid (<2 min), simple (one step) and tolerance of most interfering substances. Six samples of protein in human serum were determined and the maximum relative error is no more than 2% and the recovery is between 95% and 105%.

  15. Chronology of p53 protein accumulation in gastric carcinogenesis

    NARCIS (Netherlands)

    Craanen, M. E.; Blok, P.; Dekker, W.; Offerhaus, G. J.; Tytgat, G. N.

    1995-01-01

    p53 Protein accumulation in early gastric carcinoma was studied in relation to the histological type (Lauren classification) and the type of growth pattern, including the chronology of p53 protein accumulation during carcinogenesis. Forty five, paraffin embedded gastrectomy specimens from early

  16. Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p

    DEFF Research Database (Denmark)

    Madsen, Christian Toft; Sylvestersen, Kathrine Beck; Young, Clifford

    2015-01-01

    deficiency. Upregulated mitochondrial acetylation sites correlate with the cellular deficiency of the Hst4p deacetylase, and a biotin-starvation-induced accumulation of Hst4p in mitochondria supports a role for Hst4p in lowering mitochondrial acetylation. We show that biotin starvation and knockout of Hst4p...... cause alterations in cellular respiration and an increase in reactive oxygen species (ROS). These results suggest that Hst4p plays a pivotal role in biotin metabolism and cellular energy homeostasis, and supports that Hst4p is a functional yeast homologue of the sirtuin deacetylase SIRT3. With biotin...

  17. Phosphatidylinositol 4,5-Bisphosphate (PtdIns(4,5)P2) Specifically Induces Membrane Penetration and Deformation by Bin/Amphiphysin/Rvs (BAR) Domains*

    Science.gov (United States)

    Yoon, Youngdae; Zhang, Xiuqi; Cho, Wonhwa

    2012-01-01

    Cellular proteins containing Bin/amphiphysin/Rvs (BAR) domains play a key role in clathrin-mediated endocytosis. Despite extensive structural and functional studies of BAR domains, it is still unknown how exactly these domains interact with the plasma membrane containing phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and whether they function by a universal mechanism or by different mechanisms. Here we report that PtdIns(4,5)P2 specifically induces partial membrane penetration of the N-terminal amphiphilic α-helix (H0) of two representative N-BAR domains from Drosophila amphiphysin (dAmp-BAR) and rat endophilin A1 (EndoA1-BAR). Our quantitative fluorescence imaging analysis shows that PtdIns(4,5)P2-dependent membrane penetration of H0 is important for self-association of membrane-bound dAmp-BAR and EndoA1-BAR and their membrane deformation activity. EndoA1-BAR behaves differently from dAmp-BAR because the former has an additional amphiphilic α-helix that penetrates the membrane in a PtdIns(4,5)P2-independent manner. Depletion of PtdIns(4,5)P2 from the plasma membrane of HEK293 cells abrogated the membrane deforming activity of EndoA1-BAR and dAmp-BAR. Collectively, these studies suggest that the local PtdIns(4,5)P2 concentration in the plasma membrane may regulate the membrane interaction and deformation by N-BAR domain-containing proteins during clathrin-mediated endocytosis. PMID:22888025

  18. NBCe1 (SLC4A4) a potential pH regulator in enamel organ cells during enamel development in the mouse

    NARCIS (Netherlands)

    Jalali, R.; Guo, J.; Zandieh-Doulabi, B.; Bervoets, T.J.M.; Paine, M.L.; Boron, W.F.; Parker, M.D.; Bijvelds, M.J.C.; Medina, J.F.; DenBesten, P.K.; Bronckers, A.L.J.J.

    2014-01-01

    During the formation of dental enamel, maturation-stage ameloblasts express ion-transporting transmembrane proteins. The SLC4 family of ion-transporters regulates intra- and extracellular pH in eukaryotic cells by cotransporting HCO3 − with Na+. Mutation in SLC4A4 (coding for the sodium-bicarbonate

  19. Alfalfa mosaic virus replicase proteins, P1 and P2, localize to the tonoplast in the presence of virus RNA

    International Nuclear Information System (INIS)

    Ibrahim, Amr; Hutchens, Heather M.; Howard Berg, R.; Sue Loesch-Fries, L.

    2012-01-01

    To identify the virus components important for assembly of the Alfalfa mosaic virus replicase complex, we used live cell imaging of Arabidopsis thaliana protoplasts that expressed various virus cDNAs encoding native and GFP-fusion proteins of P1 and P2 replicase proteins and full-length virus RNAs. Expression of P1-GFP alone resulted in fluorescent vesicle-like bodies in the cytoplasm that colocalized with FM4-64, an endocytic marker, and RFP-AtVSR2, RabF2a/Rha1-mCherry, and RabF2b/Ara7-mCherry, all of which localize to multivesicular bodies (MVBs), which are also called prevacuolar compartments, that mediate traffic to the lytic vacuole. GFP-P2 was driven from the cytosol to MVBs when expressed with P1 indicating that P1 recruited GFP-P2. P1-GFP localized on the tonoplast, which surrounds the vacuole, in the presence of infectious virus RNA, replication competent RNA2, or P2 and replication competent RNA1 or RNA3. This suggests that a functional replication complex containing P1, P2, and a full-length AMV RNA assembles on MVBs to traffic to the tonoplast.

  20. Alfalfa mosaic virus replicase proteins, P1 and P2, localize to the tonoplast in the presence of virus RNA

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Amr [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States); Present address: Genomics Facility, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619 (Egypt); Hutchens, Heather M. [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States); Howard Berg, R. [Integrated Microscopy Facility, Donald Danforth Plant Science Center, Saint Louis, MO 63132 (United States); Sue Loesch-Fries, L., E-mail: loeschfr@purdue.edu [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States)

    2012-11-25

    To identify the virus components important for assembly of the Alfalfa mosaic virus replicase complex, we used live cell imaging of Arabidopsis thaliana protoplasts that expressed various virus cDNAs encoding native and GFP-fusion proteins of P1 and P2 replicase proteins and full-length virus RNAs. Expression of P1-GFP alone resulted in fluorescent vesicle-like bodies in the cytoplasm that colocalized with FM4-64, an endocytic marker, and RFP-AtVSR2, RabF2a/Rha1-mCherry, and RabF2b/Ara7-mCherry, all of which localize to multivesicular bodies (MVBs), which are also called prevacuolar compartments, that mediate traffic to the lytic vacuole. GFP-P2 was driven from the cytosol to MVBs when expressed with P1 indicating that P1 recruited GFP-P2. P1-GFP localized on the tonoplast, which surrounds the vacuole, in the presence of infectious virus RNA, replication competent RNA2, or P2 and replication competent RNA1 or RNA3. This suggests that a functional replication complex containing P1, P2, and a full-length AMV RNA assembles on MVBs to traffic to the tonoplast.

  1. BiP clustering facilitates protein folding in the endoplasmic reticulum.

    Directory of Open Access Journals (Sweden)

    Marc Griesemer

    2014-07-01

    Full Text Available The chaperone BiP participates in several regulatory processes within the endoplasmic reticulum (ER: translocation, protein folding, and ER-associated degradation. To facilitate protein folding, a cooperative mechanism known as entropic pulling has been proposed to demonstrate the molecular-level understanding of how multiple BiP molecules bind to nascent and unfolded proteins. Recently, experimental evidence revealed the spatial heterogeneity of BiP within the nuclear and peripheral ER of S. cerevisiae (commonly referred to as 'clusters'. Here, we developed a model to evaluate the potential advantages of accounting for multiple BiP molecules binding to peptides, while proposing that BiP's spatial heterogeneity may enhance protein folding and maturation. Scenarios were simulated to gauge the effectiveness of binding multiple chaperone molecules to peptides. Using two metrics: folding efficiency and chaperone cost, we determined that the single binding site model achieves a higher efficiency than models characterized by multiple binding sites, in the absence of cooperativity. Due to entropic pulling, however, multiple chaperones perform in concert to facilitate the resolubilization and ultimate yield of folded proteins. As a result of cooperativity, multiple binding site models used fewer BiP molecules and maintained a higher folding efficiency than the single binding site model. These insilico investigations reveal that clusters of BiP molecules bound to unfolded proteins may enhance folding efficiency through cooperative action via entropic pulling.

  2. Simultaneous Hypoxia and Low Extracellular pH Suppress Overall Metabolic Rate and Protein Synthesis In Vitro.

    Science.gov (United States)

    Sørensen, Brita Singers; Busk, Morten; Overgaard, Jens; Horsman, Michael R; Alsner, Jan

    2015-01-01

    The tumor microenvironment is characterized by regions of hypoxia and acidosis which are linked to poor prognosis. This occurs due to an aberrant vasculature as well as high rates of glycolysis and lactate production in tumor cells even in the presence of oxygen (the Warburg effect), which weakens the spatial linkage between hypoxia and acidosis. Five different human squamous cell carcinoma cell lines (SiHa, FaDuDD, UTSCC5, UTSCC14 and UTSCC15) were treated with hypoxia, acidosis (pH 6.3), or a combination, and gene expression analyzed using microarray. SiHa and FaDuDD were chosen for further characterization of cell energetics and protein synthesis. Total cellular ATP turnover and relative glycolytic dependency was determined by simultaneous measurements of oxygen consumption and lactate synthesis rates and total protein synthesis was determined by autoradiographic quantification of the incorporation of 35S-labelled methionine and cysteine into protein. Microarray analysis allowed differentiation between genes induced at low oxygen only at normal extracellular pH (pHe), genes induced at low oxygen at both normal and low pHe, and genes induced at low pHe independent of oxygen concentration. Several genes were found to be upregulated by acidosis independent of oxygenation. Acidosis resulted in a more wide-scale change in gene expression profiles than hypoxia including upregulation of genes involved in the translation process, for example Eukaryotic translation initiation factor 4A, isoform 2 (EIF4A2), and Ribosomal protein L37 (RPL37). Acidosis suppressed overall ATP turnover and protein synthesis by 50%. Protein synthesis, but not total ATP production, was also suppressed under hypoxic conditions. A dramatic decrease in ATP turnover (SiHa) and protein synthesis (both cell lines) was observed when hypoxia and low pHe were combined. We demonstrate here that the influence of hypoxia and acidosis causes different responses, both in gene expression and in de novo

  3. Identification and characterization of an insect toxin protein, Bb70p, from the entomopathogenic fungus, Beauveria bassiana, using Galleria mellonella as a model system.

    Science.gov (United States)

    Khan, Sehroon; Nadir, Sadia; Lihua, Guo; Xu, Jianchu; Holmes, Keith A; Dewen, Qiu

    2016-01-01

    An insect-toxic protein, Bb70p, was purified from Beauveria bassiana 70 using ammonium sulfate precipitation, ion exchange chromatography, and gel filtration. Bb70p has a high affinity for anion exchangers and 2D electrophoresis results revealed a single spot with a molecular weight of 35.5 kDa and an iso-electric point of ∼4.5. Bb70p remains active from 4 to 60°C, within a pH range of 4-10, but is more active in slightly acidic pH. A pure protein, Bb70p does not have any carbohydrate side chains. The protein caused high mortality by intra-haemocelic injection into Galleria mellonella with LD50 of 334.4 μg/g body weight and activates the phenol oxidase cascade. With a partial amino acid sequence comparison using the NCBI database, we showed no homology to known toxin proteins of entomopathogenic fungi. Thus, Bb70p appears to be an insect toxin protein, demonstrating novelty. Identification of this insect-toxic protein presents potential to enhance the virulence of B. bassiana through genetic manipulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Sphingosine 1-phosphate (S1P) suppresses the collagen-induced activation of human platelets via S1P4 receptor.

    Science.gov (United States)

    Onuma, Takashi; Tanabe, Kumiko; Kito, Yuko; Tsujimoto, Masanori; Uematsu, Kodai; Enomoto, Yukiko; Matsushima-Nishiwaki, Rie; Doi, Tomoaki; Nagase, Kiyoshi; Akamatsu, Shigeru; Tokuda, Haruhiko; Ogura, Shinji; Iwama, Toru; Kozawa, Osamu; Iida, Hiroki

    2017-08-01

    Sphingosine 1-phosphate (S1P) is as an extracellular factor that acts as a potent lipid mediator by binding to specific receptors, S1P receptors (S1PRs). However, the precise role of S1P in human platelets that express S1PRs has not yet been fully clarified. We previously reported that heat shock protein 27 (HSP27) is released from human platelets accompanied by its phosphorylation stimulated by collagen. In the present study, we investigated the effect of S1P on the collagen-induced platelet activation. S1P pretreatment markedly attenuated the collagen-induced aggregation. Co-stimulation with S1P and collagen suppressed collagen-induced platelet activation, but the effect was weaker than that of S1P-pretreatment. The collagen-stimulated secretion of platelet-derived growth factor (PDGF)-AB and the soluble CD40 ligand (sCD40L) release were significantly reduced by S1P. In addition, S1P suppressed the collagen-induced release of HSP27 as well as the phosphorylation of HSP27. S1P significantly suppressed the collagen-induced phosphorylation of p38 mitogen-activated protein kinase. S1P increased the levels of GTP-bound Gαi and GTP-bound Gα13 coupled to S1PPR1 and/or S1PR4. CYM50260, a selective S1PR4 agonist, but not SEW2871, a selective S1PR1 agonist, suppressed the collagen-stimulated platelet aggregation, PDGF-AB secretion and sCD40L release. In addition, CYM50260 reduced the release of phosphorylated-HSP27 by collagen as well as the phosphorylation of HSP27. The selective S1PR4 antagonist CYM50358, which failed to affect collagen-induced HSP27 phosphorylation, reversed the S1P-induced attenuation of HSP27 phosphorylation by collagen. These results strongly suggest that S1P inhibits the collagen-induced human platelet activation through S1PR4 but not S1PR1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Changes in protein expression in p53 deleted spontaneous thymic lymphomas

    DEFF Research Database (Denmark)

    Honoré, Bent; Vorum, Henrik; Pedersen, Anders Elm

    2004-01-01

    with the protein expression in p53+/+ and p53-/- thymocytes. Only a minority (13 proteins) of the quantitatively changed proteins were common for the two thymic lymphoma cell lines, suggesting that the p53 deficiency mainly results in genetic dysfunctions which are individual for a given tumor. Two of the detected...... structure containing motifs of the glyoxalase-bleomycin resistance protein family (MDR) as deduced from the cDNA....

  6. A theoretical survey of 4s-4p and 4p-4d transitions in nickel-like ions through Sn XXIII

    International Nuclear Information System (INIS)

    Wyart, J.F.

    1987-01-01

    The predictions of 4s-4p and 4p-4d transitions derived from Slater-Condon type calculations of 3d 9 4s, -4p and -4d configurations in the sequence Zn III-Se VII have been recently confirmed experimentally through Mo XV. These new data are used here to refine the predictions in the sequence Mo XV-Sn XXIII. The radial parameters involved in the three configurations are determined in generalized least-squares fits using all known levels in the sequence. (orig.)

  7. Obtaining a citric tristeza virus p65 protein antibody and preliminary results of p65 in vivo expression

    Directory of Open Access Journals (Sweden)

    Yanneth Torres

    2003-07-01

    Full Text Available The citric tristeza virus (CTV belongs to the Closteroviridae family which indudes the only vegetal viruses possessing genes homologous to HSP70 thermal cellular shock proteins in their genome. Such is the case of the gene encoding for the CTV p65 protein which presents high homology with the HSP70 protein family. It has been shown recently that HSP70h viral proteins (such as CTV p65 are involved both in viral assembly, as a microtubule binding protein, and in cell-cell movement. Since CTV is the most deleterious citrus pathogen, understanding this protein's role in the pathogenesis process is important. Rabbits were immunised with four synthetic peptides (corresponding to CTV p65 thermal shock protein's carboxyl-terminal region to obtain polyclonal antibodies. All the peptides used were immunogenic, even though two of them showed greater response. Whilst none of the antibodies obtained reacted to non-infected plant extract, the p65 proteins was detected in extracts taken from citric plants infected with CTV Based on the antibody's reaction to two Colombian isolates having different serological characteristics, the p65 antibody's immunological behaviour appeared to be independent of the symptomatic severity of the CTV isolates. It was shown that the ORF encoded for the HSP70 homologue in CTV was expressed in vivo, even though the p65 antibody was only detected in concentrated protein extracts taken from infected plants, supporting reports from other studies that the concentration of this protein in plants infected with CTV is low. This is the first time that a polyclonal CTV antibody has been obtained in Colombia against p65 (a protein intervening in viral assembly and movement. Adapting a technique for obtaining p65 antibodies by using synthetic peptides as immunogens could be useful in the future for detecting or diagnosing p65 proteins present in different Colombian CTV isolates, especially in developing studies contributing towards greater

  8. Energy level properties of 4p64d3, 4p64d24f, and 4p54d4 configurations of the W35+ ion

    International Nuclear Information System (INIS)

    Bogdanovich, P.; Kisielius, R.

    2014-01-01

    The ab initio quasirelativistic Hartree–Fock method developed specifically for the calculation of spectroscopic parameters of heavy atoms and highly charged ions was used to derive spectral data for the multicharged tungsten ion W 35+ . The configuration interaction method was applied to include the electron-correlation effects. The relativistic effects were taken into account in the Breit–Pauli approximation for quasirelativistic Hartree–Fock radial orbitals. The energy level spectra, radiative lifetimes τ, and Lande g-factors have been calculated for the 4p 6 4d 3 , 4p 6 4d 2 4f, and 4p 5 4d 4 configurations of the W 35+ ion

  9. Common variations in 4p locus are related to male completed suicide.

    Science.gov (United States)

    Must, Anne; Kõks, Sulev; Vasar, Eero; Tasa, Gunnar; Lang, Aavo; Maron, Eduard; Väli, Marika

    2009-01-01

    Suicidal behavior is a multifactorial phenomenon, with a significant genetic predisposition. To assess the contribution of genes in the 4p region to suicide risk, we genotyped 36 single nucleotide polymorphisms from a 49Mb region on the chromosome arm 4p11-16 in a total of 288 male suicide victims and 327 healthy male volunteers. The nonsynonymous variants rs1383180 in EVC gene, rs6811863 in TBC1D1 gene, rs362272 in HTT gene, and rs734312 in WFS1 gene were associated to the male completed suicide. However, only EVC polymorphism remained significant after correcting for multiple comparisons (P < .05 after 10 K permutations). The function of these genes is not clear yet. WFS1 and HTT are related to the unfolded protein response and endoplasmic reticulum stress, and TBC1D1 is a GTPase activator. EVC is a protein with transmembrane and leucine zipper domains, its function has not been elucidated yet. Further studies are required in order to reveal the role of these four polymorphisms in the pathoetiology of suicide.

  10. Species-Specific Monoclonal Antibodies to Escherichia coli-Expressed p36 Cytosolic Protein of Mycoplasma hyopneumoniae

    Science.gov (United States)

    Caron, J.; Sawyer, N.; Moumen, B. Ben Abdel; Bouh, K. Cheikh Saad; Dea, S.

    2000-01-01

    The p36 protein of Mycoplasma hyopneumoniae is a cytosolic protein carrying species-specific antigenic determinants. Based on the genomic sequence of the reference strain ATCC 25934, primers were designed for PCR amplification of the p36-encoding gene (948 bp). These primers were shown to be specific to M. hyopneumoniae since no DNA amplicons could be obtained with other mycoplasma species and pathogenic bacteria that commonly colonize the porcine respiratory tract. The amplified p36 gene was subcloned into the pGEX-4T-1 vector to be expressed in Escherichia coli as a fusion protein with glutathione S-transferase (GST). The GST-p36 recombinant fusion protein was purified by affinity chromatography and cut by thrombin, and the enriched p36 protein was used to immunize female BALB/c mice for the production of anti-p36 monoclonal antibodies (MAbs). The polypeptide specificity of the nine MAbs obtained was confirmed by Western immunoblotting with cell lysates prepared from the homologous strain. Cross-reactivity studies of the anti-p36 MAbs towards two other M. hyopneumoniae reference strains (ATCC 25095 and J strains) and Quebec field strains that had been isolated in culture suggested that these anti-p36 MAbs were directed against a highly conserved epitope, or closely located epitopes, of the p36 protein. No reactivity was demonstrated against other mycoplasma species tested. Clinical signs and lesions suggestive of enzootic pneumonia were reproduced in specific-pathogen-free pigs infected experimentally with a virulent Quebec field strain (IAF-DM9827) of M. hyopneumoniae. The bacteria could be recovered from lung homogenates of pigs that were killed after the 3-week observation period by both PCR and cultivation procedures. Furthermore, the anti-p36 MAbs permitted effective detection by indirect immunofluorescence of M. hyopneumoniae in frozen lung sections from experimentally infected pigs. However, attempts to use the recombinant p36 protein as an antigen in an

  11. Two Crinivirus-specific proteins of Lettuce infectious yellows virus (LIYV), P26 and P9, are self-interacting.

    Science.gov (United States)

    Stewart, Lucy R; Hwang, Min Sook; Falk, Bryce W

    2009-11-01

    Interactions of Lettuce infectious yellows virus (LIYV)-encoded proteins were tested by yeast-two-hybrid (Y2H) assays. LIYV-encoded P34, Hsp70h, P59, CP, CPm, and P26 were tested in all possible pairwise combinations. Interaction was detected only for the P26-P26 combination. P26 self-interaction domains were mapped using a series of N- and C-terminal truncations. Orthologous P26 proteins from the criniviruses Beet pseudoyellows virus (BPYV), Cucurbit yellow stunting disorder virus (CYSDV), and Lettuce chlorosis virus (LCV) were also tested, and each exhibited strong self-interaction but no interaction with orthologous proteins. Two small putative proteins encoded by LIYV RNA2, P5 and P9, were also tested for interactions with the six aforementioned LIYV proteins and each other. No interactions were detected for P5, but P9-P9 self-interaction was detected. P26- and P9-encoding genes are present in all described members of the genus Crinivirus, but are not present in other members of the family Closteroviridae. LIYV P26 has previously been demonstrated to induce a unique LIYV cytopathology, plasmalemma deposits (PLDs), but no role is yet known for P9.

  12. 3' Phosphatase activity toward phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] by voltage-sensing phosphatase (VSP).

    Science.gov (United States)

    Kurokawa, Tatsuki; Takasuga, Shunsuke; Sakata, Souhei; Yamaguchi, Shinji; Horie, Shigeo; Homma, Koichi J; Sasaki, Takehiko; Okamura, Yasushi

    2012-06-19

    Voltage-sensing phosphatases (VSPs) consist of a voltage-sensor domain and a cytoplasmic region with remarkable sequence similarity to phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor phosphatase. VSPs dephosphorylate the 5' position of the inositol ring of both phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] upon voltage depolarization. However, it is unclear whether VSPs also have 3' phosphatase activity. To gain insights into this question, we performed in vitro assays of phosphatase activities of Ciona intestinalis VSP (Ci-VSP) and transmembrane phosphatase with tensin homology (TPTE) and PTEN homologous inositol lipid phosphatase (TPIP; one human ortholog of VSP) with radiolabeled PI(3,4,5)P(3). TLC assay showed that the 3' phosphate of PI(3,4,5)P(3) was not dephosphorylated, whereas that of phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)] was removed by VSPs. Monitoring of PI(3,4)P(2) levels with the pleckstrin homology (PH) domain from tandem PH domain-containing protein (TAPP1) fused with GFP (PH(TAPP1)-GFP) by confocal microscopy in amphibian oocytes showed an increase of fluorescence intensity during depolarization to 0 mV, consistent with 5' phosphatase activity of VSP toward PI(3,4,5)P(3). However, depolarization to 60 mV showed a transient increase of GFP fluorescence followed by a decrease, indicating that, after PI(3,4,5)P(3) is dephosphorylated at the 5' position, PI(3,4)P(2) is then dephosphorylated at the 3' position. These results suggest that substrate specificity of the VSP changes with membrane potential.

  13. LocateP: Genome-scale subcellular-location predictor for bacterial proteins

    Directory of Open Access Journals (Sweden)

    Zhou Miaomiao

    2008-03-01

    Full Text Available Abstract Background In the past decades, various protein subcellular-location (SCL predictors have been developed. Most of these predictors, like TMHMM 2.0, SignalP 3.0, PrediSi and Phobius, aim at the identification of one or a few SCLs, whereas others such as CELLO and Psortb.v.2.0 aim at a broader classification. Although these tools and pipelines can achieve a high precision in the accurate prediction of signal peptides and transmembrane helices, they have a much lower accuracy when other sequence characteristics are concerned. For instance, it proved notoriously difficult to identify the fate of proteins carrying a putative type I signal peptidase (SPIase cleavage site, as many of those proteins are retained in the cell membrane as N-terminally anchored membrane proteins. Moreover, most of the SCL classifiers are based on the classification of the Swiss-Prot database and consequently inherited the inconsistency of that SCL classification. As accurate and detailed SCL prediction on a genome scale is highly desired by experimental researchers, we decided to construct a new SCL prediction pipeline: LocateP. Results LocateP combines many of the existing high-precision SCL identifiers with our own newly developed identifiers for specific SCLs. The LocateP pipeline was designed such that it mimics protein targeting and secretion processes. It distinguishes 7 different SCLs within Gram-positive bacteria: intracellular, multi-transmembrane, N-terminally membrane anchored, C-terminally membrane anchored, lipid-anchored, LPxTG-type cell-wall anchored, and secreted/released proteins. Moreover, it distinguishes pathways for Sec- or Tat-dependent secretion and alternative secretion of bacteriocin-like proteins. The pipeline was tested on data sets extracted from literature, including experimental proteomics studies. The tests showed that LocateP performs as well as, or even slightly better than other SCL predictors for some locations and outperforms

  14. Correlation of random urine protein creatinine (P-C ratio with 24-hour urine protein and P-C ratio, based on physical activity: a pilot study

    Directory of Open Access Journals (Sweden)

    Seyed-Ali Sadjadi

    2010-07-01

    Full Text Available Seyed-Ali Sadjadi1,2, Navin Jaipaul1,21Jerry L Pettis Memorial VA Medical Center, 2Loma Linda University School of Medicine, Loma Linda, CA, USAAbstract: Quantification of proteinuria is usually predicated upon 24-hour urine collection. Multiple factors influence urine collection and the rate of protein and creatinine excretion. Urine collection is often incomplete, and therefore creatinine and protein excretion rates are underestimated. A random urine protein-creatinine (P-C ratio has been shown over the years to be a reliable alternative to the 24-hour collection for detection and follow up of proteinuria. However, urine protein excretion may be influenced by physical activity. We studied 48 patients with proteinuria and varying levels of physical activity to determine the correlation between the measures of urine protein excretion. The correlation coefficient (r between 24-hour urine total protein and random urine P-C ratio was 0.75 (P < 0.01 in the overall study population, but varied according to the level of proteinuria and physical activity in a stratified analysis: r = 0.99 (P < 0.001 and r = 0.95 (P < 0.01 in bedridden patients; r = 0.44 (P = not significant [NS] and r = 0.54 (P = NS in semiactive patients; and r = 0.44 (P = NS and r = 0.58 (P < 0.05 in active patients with nephrotic- (>3500 mg/day and non-nephrotic (<3500 mg/day range proteinuria, respectively. The correlation appeared to be stronger between random urine and 24-hour urine P-C ratio for the overall study population (r = 0.84; P < 0.001, and when stratified according to the level of proteinuria and physical activity: r = 0.99 (P < 0.001 and r = 0.92 (P < 0.01 in bedridden patients; r = 0.61 (P = NS and r = 0.54 (P = NS in semiactive patients; and r = 0.64 (P < 0.02 and r = 0.52 (P < 0.05 in active patients with nephrotic and non-nephrotic range proteinuria, respectively. We conclude that the random urine P-C ratio is a reliable and practical way of estimating and

  15. Characterization of tumour virus proteins. I. radioimmunoassay of the P27 protein of avian viruses

    International Nuclear Information System (INIS)

    Higuchi, T.

    1977-01-01

    The major structural protein of avian oncornaviruses, a core component of about 27000 daltons, has been measured by radioimmunoassay. The purified protein was labelled with 125 Iodine by chloramine-T method. The immune serum titer was defined as the highest serum dilution able to precipitate 50% of the labelled antigon present in the system. Standard competition curve was constructed in order to determine the equivalents of protein, in a system with limiting antibody concentration. In the experimental conditions used, 0.14 ng of AMV-P27 inhibited 50% of 125 I-AMV-P27 (1.0 ng) precipitation. The 125 I-AMV-P27 vs anti-AMV-P27 system was used to study the competition of normal cells, purified virus suspension, productive cells and supernatant fluids. Most of the chicken ombryo fibroblast showed expression of this viral component. The phenomena of cell transformation, the increase in total protein, and the expression of P27 were studied in rapid transformation of CEF by RSV-SR sub(A) [pt

  16. Expression of cdk4 and p16 in Oral Lichen Planus.

    Science.gov (United States)

    Goel, Sinny; Khurana, Nita; Marwah, Akanksha; Gupta, Sunita

    2015-01-01

    The purpose of this study was to evaluate the expression of cdk4 and p16, the proteins implicated in hyperproliferation and arrest in oral lichen planus and to compare their expression in erosive and non-erosive oral lichen planus and with normal mucosa and oral squamous cell carcinoma. Analysis of cdk4 and p16 expression was done in 43 erosive oral lichen planus (EOLP) and 17 non-erosive oral lichen planus (NOLP) cases, 10 normal mucosa and 10 oral squamous cell carcinoma (OSCC) cases with immunohistochemistry. This study demonstrated a significantly increased expression of cytoplasmic cdk4 (80% cases, cells stained - 19.6%), and cytoplasmic p16 (68.3% cases, cells stained - 16.4%) in oral lichen planus (OLP) compared to normal mucosa. cdk4 was much higher in OSCC in both cytoplasm and nuclei compared to normal mucosa. Also, while comparing OLP with positive control, significant difference was noted for cdk4 and p16, with expression being more in OSCC. While comparing EOLP with NOLP; significant differences were seen for cdk4 cytoplasmic staining only, for number of cases with positive staining as well as number of cells stained. Overexpression of cytoplasmic cdk4 and p16 was registered in oral lichen planus, however considerably lower than in squamous cell carcinoma. Erosive oral lichen planus demonstrated overexpression of cytoplasmic cdk4 and premalignant nature compared to non-erosive lesion. Therefore there is an obvious possibility for cytoplasmic expression of cdk4 and p16 to predict malignant potential of oral lichen planus lesions.

  17. p53 Protein interacts specifically with the meiosis-specific mammalian RecA-like protein DMC1 in meiosis.

    Science.gov (United States)

    Habu, Toshiyuki; Wakabayashi, Nobunao; Yoshida, Kayo; Yomogida, Kenntaro; Nishimune, Yoshitake; Morita, Takashi

    2004-06-01

    The tumor suppressor protein p53 is specifically expressed during meiosis in spermatocytes. Subsets of p53 knockout mice exhibit testicular giant cell degenerative syndrome, which suggests p53 may be associated with meiotic cell cycle and/or DNA metabolism. Here, we show that p53 binds to the mouse meiosis-specific RecA-like protein Mus musculus DMC1 (MmDMC1). The C-terminal domain (amino acid 234-340) of MmDMC1 binds to DNA-binding domain of p53 protein. p53 might be involved in homologous recombination and/or checkpoint function by directly binding to DMC1 protein to repress genomic instability in meiotic germ cells.

  18. Intracellular Distribution of Capsid-Associated pUL77 of Human Cytomegalovirus and Interactions with Packaging Proteins and pUL93.

    Science.gov (United States)

    Köppen-Rung, Pánja; Dittmer, Alexandra; Bogner, Elke

    2016-07-01

    DNA packaging into procapsids is a common multistep process during viral maturation in herpesviruses. In human cytomegalovirus (HCMV), the proteins involved in this process are terminase subunits pUL56 and pUL89, which are responsible for site-specific cleavage and insertion of the DNA into the procapsid via portal protein pUL104. However, additional viral proteins are required for the DNA packaging process. We have shown previously that the plasmid that encodes capsid-associated pUL77 encodes another potential player during capsid maturation. Pulse-chase experiments revealed that pUL77 is stably expressed during HCMV infection. Time course analysis demonstrated that pUL77 is expressed in the early late part of the infectious cycle. The sequence of pUL77 was analyzed to find nuclear localization sequences (NLSs), revealing monopartite NLSm at the N terminus and bipartite NLSb in the middle of pUL77. The potential NLSs were inserted into plasmid pHM829, which encodes a chimeric protein with β-galactosidase and green fluorescent protein. In contrast to pUL56, neither NLSm nor NLSb was sufficient for nuclear import. Furthermore, we investigated by coimmunoprecipitation whether packaging proteins, as well as pUL93, the homologue protein of herpes simplex virus 1 pUL17, are interaction partners of pUL77. The interactions between pUL77 and packaging proteins, as well as pUL93, were verified. We showed that the capsid-associated pUL77 is another potential player during capsid maturation of HCMV. Protein UL77 (pUL77) is a conserved core protein of HCMV. This study demonstrates for the first time that pUL77 has early-late expression kinetics during the infectious cycle and an intrinsic potential for nuclear translocation. According to its proposed functions in stabilization of the capsid and anchoring of the encapsidated DNA during packaging, interaction with further DNA packaging proteins is required. We identified physical interactions with terminase subunits pUL56 and p

  19. The subcellular distribution of the human ribosomal "stalk" components: P1, P2 and P0 proteins

    DEFF Research Database (Denmark)

    Tchórzewski, Marek; Krokowski, Dawid; Rzeski, Wojciech

    2003-01-01

    The ribosomal "stalk" structure is a distinct lateral protuberance located on the large ribosomal subunit in prokaryotic, as well as in eukaryotic cells. In eukaryotes, this ribosomal structure is composed of the acidic ribosomal P proteins, forming two hetero-dimers (P1/P2) attached...

  20. Quasirelativistic calculation of 4s24p5, 4s24p44d and 4s4p6 configuration spectroscopic parameters for the W39+ ion

    International Nuclear Information System (INIS)

    Bogdanovich, P; Karpuškienė, R; Kisielius, R

    2015-01-01

    The ab initio quasirelativistic Hartree–Fock method developed specifically for the calculation of spectral parameters of heavy atoms and highly charged ions is used to derive spectral data for the 4s 2 4p 5 , 4s 2 4p 4 4d and 4s4p 6 configurations of the multicharged tungsten ion W 39+ . The relativistic effects are taken into account in the Breit–Pauli approximation for the quasirelativistic Hartree–Fock radial orbitals. The configuration interaction method is applied to include the electron correlation effects. Produced data are compared with existing experimental measurements and theoretical calculations. (paper)

  1. Protein 4.1 and its interaction with other cytoskeletal proteins in Xenopus laevis oogenesis.

    Science.gov (United States)

    Carotenuto, Rosa; Petrucci, Tamara C; Correas, Isabel; Vaccaro, Maria C; De Marco, Nadia; Dale, Brian; Wilding, Martin

    2009-06-01

    In human red blood cells, protein 4.1 (4.1R) is an 80-kDa polypeptide that stabilizes the spectrin-actin network and anchors it to the plasma membrane. In non-erythroid cells there is a great variety of 4.1R isoforms, mainly generated by alternative pre-mRNA splicing, which localize at various intracellular sites, including the nucleus. We studied protein 4.1R distribution in relation to beta-spectrin, actin and cytokeratin during Xenopus oogenesis. Immunoprecipitation experiments indicate that at least two isoforms of protein 4.1R are present in Xenopus laevis oocytes: a 56-kDa form in the cytoplasm and a 37-kDa form in the germinal vesicle (GV). Antibodies to beta-spectrin reveal two bands of 239 and 100 kDa in the cytoplasm. Coimmunoprecipitation experiments indicate that both the 37- and 56-kDa isoforms of protein 4.1R associate with the 100-kDa isoform of beta-spectrin. Moreover, the 56-kDa form coimmunoprecipitates with a cytokeratin of the same molecular weight. Confocal immunolocalization shows that protein 4.1R distribution is in the peripheral cytoplasm, in the mitochondrial cloud (MC) and in the GV of previtellogenic oocytes. In the cytoplasm of vitellogenic oocytes, a loose network of fibers stained by the anti-protein 4.1R antibody spreads across the cytoplasm. beta-Spectrin has a similar distribution. Protein 4.1R was found to colocalize with actin in the cortex of oocytes in the form of fluorescent dots. Double immunolocalization of protein 4.1R and cytokeratin depicts two separate networks that overlap throughout the whole cytoplasm. Protein 4.1R filaments partially colocalize with cytokeratin in both the animal and vegetal hemispheres. We hypothesize that protein 4.1R could function as a linker protein between cytokeratin and the actin-based cytoskeleton.

  2. Distinct Rayleigh scattering from hot spot mutant p53 proteins reveals cancer cells.

    Science.gov (United States)

    Jun, Ho Joon; Nguyen, Anh H; Kim, Yeul Hong; Park, Kyong Hwa; Kim, Doyoun; Kim, Kyeong Kyu; Sim, Sang Jun

    2014-07-23

    The scattering of light redirects and resonances when an electromagnetic wave interacts with electrons orbits in the hot spot core protein and oscillated electron of the gold nanoparticles (AuNP). This report demonstrates convincingly that resonant Rayleigh scattering generated from hot spot mutant p53 proteins is correspondence to cancer cells. Hot spot mutants have unique local electron density changes that affect specificity of DNA binding affinity compared with wild types. Rayleigh scattering changes introduced by hot-spot mutations were monitored by localized surface plasmon resonance (LSPR) shift changes. The LSPR λmax shift for hot-spot mutants ranged from 1.7 to 4.2 nm for mouse samples and from 0.64 nm to 2.66 nm for human samples, compared to 9.6 nm and 15 nm for wild type and mouse and human proteins, respectively with a detection sensitivity of p53 concentration at 17.9 nM. It is interesting that hot-spot mutants, which affect only interaction with DNA, launches affinitive changes as considerable as wild types. These changes propose that hot-spot mutants p53 proteins can be easily detected by local electron density alterations that disturbs the specificity of DNA binding of p53 core domain on the surface of the DNA probed-nanoplasmonic sensor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Localization of Microfibrillar-Associated Protein 4 (MFAP4) in Human Tissues

    DEFF Research Database (Denmark)

    Wulf-Johansson, Helle; Lock Johansson, Sofie; Schlosser, Anders

    2013-01-01

    Microfibrillar-associated protein 4 (MFAP4) is located in the extracellular matrix (ECM). We sought to identify tissues with high levels of MFAP4 mRNA and MFAP4 protein expression. Moreover, we aimed to evaluate the significance of MFAP4 as a marker of cardiovascular disease (CVD) and to correlate...... of MFAP4 protein mainly at sites rich in elastic fibers and within blood vessels in all tissues investigated. The AlphaLISA technique was used to determine serum MFAP4 levels in a clinical cohort of 172 patients consisting of 5 matched groups with varying degrees of CVD: 1: patients with ST elevation...... MFAP4 with other known ECM markers, such as fibulin-1, osteoprotegerin (OPG), and osteopontin (OPN). Quantitative real-time PCR demonstrated that MFAP4 mRNA was more highly expressed in the heart, lung, and intestine than in other elastic tissues. Immunohistochemical studies demonstrated high levels...

  4. A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants.

    Science.gov (United States)

    Simon, Mathilde Laetitia Audrey; Platre, Matthieu Pierre; Marquès-Bueno, Maria Mar; Armengot, Laia; Stanislas, Thomas; Bayle, Vincent; Caillaud, Marie-Cécile; Jaillais, Yvon

    2016-06-20

    Many signalling proteins permanently or transiently localize to specific organelles. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PtdIns(4)P). Our results further reveal that, contrarily to other eukaryotes, PtdIns(4)P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATOR (MAKR) family, which are involved in brassinosteroid and receptor-like kinase signalling. We anticipate that this PtdIns(4)P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition.

  5. P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing.

    Science.gov (United States)

    Jekat, Stephan B; Ernst, Antonia M; von Bohl, Andreas; Zielonka, Sascia; Twyman, Richard M; Noll, Gundula A; Prüfer, Dirk

    2013-01-01

    Structural phloem proteins (P-proteins) are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently confirmed to be encoded by the widespread sieve element occlusion (SEO) gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb) indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing.

  6. P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing

    Directory of Open Access Journals (Sweden)

    Stephan B Jekat

    2013-07-01

    Full Text Available Structural phloem proteins (P-proteins are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently evidenced to be encoded by the widespread SEO gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing. 

  7. The Cytoprotective Effects of E-α-(4-Methoxyphenyl-2',3,4,4'-Tetramethoxychalcone (E-α-p-OMe-C6H4-TMC--A Novel and Non-Cytotoxic HO-1 Inducer.

    Directory of Open Access Journals (Sweden)

    Kai B Kaufmann

    Full Text Available Cell protection against different noxious stimuli like oxidative stress or chemical toxins plays a central role in the treatment of many diseases. The inducible heme oxygenase isoform, heme oxygenase-1 (HO-1, is known to protect cells against a variety of harmful conditions including apoptosis. Because a number of medium strong electrophiles from a series of α-X-substituted 2',3,4,4'-tetramethoxychalcones (α-X-TMCs, X = H, F, Cl, Br, I, CN, Me, p-NO2-C6H4, Ph, p-OMe-C6H4, NO2, CF3, COOEt, COOH had proven to activate Nrf2 resulting in HO-1 induction and inhibit NF-κB downstream target genes, their protective effect against staurosporine induced apoptosis and reactive oxygen species (ROS production was investigated. RAW264.7 macrophages treated with 19 different chalcones (15 α-X-TMCs, chalcone, 2'-hydroxychalcone, calythropsin and 2'-hydroxy-3,4,4'-trimethoxychalcone prior to staurosporine treatment were analyzed for apoptosis and ROS production, as well as HO-1 protein expression and enzyme activity. Additionally, Nrf2 and NF-κB activity was assessed. We found that amongst all tested chalcones only E-α-(4-methoxyphenyl-2',3,4,4'-tetramethoxychalcone (E-α-p-OMe-C6H4-TMC demonstrated a distinct, statistically significant antiapoptotic effect in a dose dependent manner, showing no toxic effects, while its double bond isomer Z-α-p-OMe-C6H4-TMC displayed no significant activity. Also, E-α-p-OMe-C6H4-TMC induced HO-1 protein expression and increased HO-1 activity, whilst inhibition of HO-1 by SnPP-IX abolished its antiapoptotic effect. The only weakly electrophilic chalcone E-α-p-OMe-C6H4-TMC reduced the staurosporine triggered formation of ROS, while inducing the translocation of Nrf2 into the nucleus. Furthermore, staurosporine induced NF-κB activity was attenuated following E-α-p-OMe-C6H4-TMC treatment. Overall, E-α-p-OMe-C6H4-TMC demonstrated its effective cytoprotective potential via a non-toxic induction of HO-1 in RAW264

  8. Upstream CREs participate in the basal activity of minute virus of mice promoter P4 and in its stimulation in ras-transformed cells.

    Science.gov (United States)

    Perros, M; Deleu, L; Vanacker, J M; Kherrouche, Z; Spruyt, N; Faisst, S; Rommelaere, J

    1995-01-01

    The activity of the P4 promoter of the parvovirus minute virus of mice (prototype strain MVMp) is stimulated in ras-transformed FREJ4 cells compared with the parental FR3T3 line. This activation may participate in the oncolytic effect of parvoviruses, given that P4 drives a transcriptional unit encoding cytotoxic nonstructural proteins. Our results suggest that the higher transcriptional activity of promoter P4 in FREJ4 cells is mediated at least in part by upstream CRE elements. Accordingly, mutations in the CRE motifs impair P4 function more strongly in the FREJ4 derivative than in its FR3T3 parent. Further evidence that these elements contribute to hyperactivity of the P4 promoter in the ras transformant is the fact that they form distinct complexes with proteins from FREJ4 and FR3T3 cell extracts. This difference can be abolished by treating the FREJ4 cell extracts with cyclic AMP-dependent protein kinase (PKA) or treating original cultures with a PKA activator. These findings can be linked with two previously reported features of ras-transformed cells: the activation of a PKA-inhibited protein kinase cascade and the reduction of PKA-induced protein phosphorylation. In keeping with these facts, P4-directed gene expression can be up- or downmodulated in vivo by exposing cells to known inhibitors or activators of PKA, respectively. PMID:7636996

  9. Outer membrane protein P4 is not required for virulence in the human challenge model of Haemophilus ducreyi infection.

    Science.gov (United States)

    Janowicz, Diane M; Zwickl, Beth W; Fortney, Kate R; Katz, Barry P; Bauer, Margaret E

    2014-06-24

    Bacterial lipoproteins often play important roles in pathogenesis and can stimulate protective immune responses. Such lipoproteins are viable vaccine candidates. Haemophilus ducreyi, which causes the sexually transmitted disease chancroid, expresses a number of lipoproteins during human infection. One such lipoprotein, OmpP4, is homologous to the outer membrane lipoprotein e (P4) of H. influenzae. In H. influenzae, e (P4) stimulates production of bactericidal and protective antibodies and contributes to pathogenesis by facilitating acquisition of the essential nutrients heme and nicotinamide adenine dinucleotide (NAD). Here, we tested the hypothesis that, like its homolog, H. ducreyi OmpP4 contributes to virulence and stimulates production of bactericidal antibodies. We determined that OmpP4 is broadly conserved among clinical isolates of H. ducreyi. We next constructed and characterized an isogenic ompP4 mutant, designated 35000HPompP4, in H. ducreyi strain 35000HP. To test whether OmpP4 was necessary for virulence in humans, eight healthy adults were experimentally infected. Each subject was inoculated with a fixed dose of 35000HP on one arm and three doses of 35000HPompP4 on the other arm. The overall parent and mutant pustule formation rates were 52.4% and 47.6%, respectively (P = 0.74). These results indicate that expression of OmpP4 in not necessary for H. ducreyi to initiate disease or progress to pustule formation in humans. Hyperimmune mouse serum raised against purified, recombinant OmpP4 did not promote bactericidal killing of 35000HP or phagocytosis by J774A.1 mouse macrophages in serum bactericidal and phagocytosis assays, respectively. Our data suggest that, unlike e (P4), H. ducreyi OmpP4 is not a suitable vaccine candidate. OmpP4 may be dispensable for virulence because of redundant mechanisms in H. ducreyi for heme acquisition and NAD utilization.

  10. The expression and significance of P-glycoprotein, lung resistance protein and multidrug resistance-associated protein in gastric cancer

    Directory of Open Access Journals (Sweden)

    Li Yan

    2009-11-01

    Full Text Available Abstract Background To detect the expression of multidrug resistance molecules P-glycoprotein (P-gp, Lung resistnce protein (LRP and Multidrug resistance-associated protein (MRP and analyze the relationship between them and the clinico-pathological features. Methods The expressions of P-gp, LRP and MRP in formalin-fixed paraffin-embedded tissue sections from 59 gastric cancer patients were determined by a labbelled Streptavidin-Peroxidase (SP immunohistochemical technique, and the results were analyzed in correlation with clinicopathological data. None of these patients received chemotherapy prior to surgery. Results The positive rates of P-gp, LRP, MRP were 86.4%, 84.7% and 27.1%, respectively. The difference between the positive rate of P-gp and MRP was significant statistically, as well as the difference between the expression of MRP and LRP. No significant difference was observed between P-gp and LRP, but the positively correlation between the expression of P-gp and LRP had been found. No significant correlation between the expression of P-gp, LRP, MRP and the grade of differentiation were observed. The expression of P-gp was correlated with clinical stages positively (r = 0.742, but the difference with the expression of P-gp in different stages was not significant. Conclusion The expressions of P-gp, LRP and MRP in patients with gastric cancer without prior chemotherapy are high, indicating that innate drug resistance may exist in gastric cancer.

  11. On the development of protein pKa calculation algorithms

    Science.gov (United States)

    Carstensen, Tommy; Farrell, Damien; Huang, Yong; Baker, Nathan A.; Nielsen, Jens Erik

    2011-01-01

    Protein pKa calculation methods are developed partly to provide fast non-experimental estimates of the ionization constants of protein side chains. However, the most significant reason for developing such methods is that a good pKa calculation method is presumed to provide an accurate physical model of protein electrostatics, which can be applied in methods for drug design, protein design and other structure-based energy calculation methods. We explore the validity of this presumption by simulating the development of a pKa calculation method using artificial experimental data derived from a human-defined physical reality. We examine the ability of an RMSD-guided development protocol to retrieve the correct (artificial) physical reality and find that a rugged optimization landscape and a huge parameter space prevent the identification of the correct physical reality. We examine the importance of the training set in developing pKa calculation methods and investigate the effect of experimental noise on our ability to identify the correct physical reality, and find that both effects have a significant and detrimental impact on the physical reality of the optimal model identified. Our findings are of relevance to all structure-based methods for protein energy calculations and simulation, and have large implications for all types of current pKa calculation methods. Our analysis furthermore suggests that careful and extensive validation on many types of experimental data can go some way in making current models more realistic. PMID:21744393

  12. Plasmodium cysteine repeat modular proteins 1-4: complex proteins with roles throughout the malaria parasite life cycle.

    Science.gov (United States)

    Thompson, Joanne; Fernandez-Reyes, Delmiro; Sharling, Lisa; Moore, Sally G; Eling, Wijnand M; Kyes, Sue A; Newbold, Christopher I; Kafatos, Fotis C; Janse, Chris J; Waters, Andrew P

    2007-06-01

    The Cysteine Repeat Modular Proteins (PCRMP1-4) of Plasmodium, are encoded by a small gene family that is conserved in malaria and other Apicomplexan parasites. They are very large, predicted surface proteins with multipass transmembrane domains containing motifs that are conserved within families of cysteine-rich, predicted surface proteins in a range of unicellular eukaryotes, and a unique combination of protein-binding motifs, including a >100 kDa cysteine-rich modular region, an epidermal growth factor-like domain and a Kringle domain. PCRMP1 and 2 are expressed in life cycle stages in both the mosquito and vertebrate. They colocalize with PfEMP1 (P. falciparum Erythrocyte Membrane Antigen-1) during its export from P. falciparum blood-stage parasites and are exposed on the surface of haemolymph- and salivary gland-sporozoites in the mosquito, consistent with a role in host tissue targeting and invasion. Gene disruption of pcrmp1 and 2 in the rodent malaria model, P. berghei, demonstrated that both are essential for transmission of the parasite from the mosquito to the mouse and has established their discrete and important roles in sporozoite targeting to the mosquito salivary gland. The unprecedented expression pattern and structural features of the PCRMPs thus suggest a variety of roles mediating host-parasite interactions throughout the parasite life cycle.

  13. Expression of p53-regulated proteins in human cultured lymphoblastoid TSCE5 and WTK1 cell lines during spaceflight

    International Nuclear Information System (INIS)

    Takahashi, Akihisa; Suzuki, Hiromi; Shimazu, Toru; Omori, Katsunori; Ishioka, Noriaki; Ohnishi, Takeo; Seki, Masaya; Hashizume, Toko

    2012-01-01

    The aim of this study was to determine the biological effects of space radiations, microgravity, and the interaction of them on the expression of p53-regulated proteins. Space experiments were performed with two human cultured lymphoblastoid cell lines: one line (TSCE5) bears a wild-type p53 gene status, and another line (WTK1) bears a mutated p53 gene status. Under 1 gravity or microgravity conditions, the cells were grown in the cell biology experimental facility (CBEF) of the International Space Station for 8 days without experiencing the stress during launching and landing because the cells were frozen during these periods. Ground control samples were simultaneously cultured for 8 days in the CBEF on the ground for 8 days. After spaceflight, protein expression was analyzed using a Panorama TM Ab MicroArray protein chips. It was found that p53-dependent up-regulated proteins in response to space radiations and space environment were MeCP2 (methyl CpG binding protein 2), and Notch1 (Notch homolog 1), respectively. On the other hand, p53-dependent down-regulated proteins were TGF-β, TWEAKR (tumor necrosis factor-like weak inducer of apoptosis receptor), phosho-Pyk2 (Proline-rich tyrosine kinase 2), and 14-3-3θ/τ which were affected by microgravity, and DR4 (death receptor 4), PRMT1 (protein arginine methyltransferase 1) and ROCK-2 (Rho-associated, coiled-coil containing protein kinase 2) in response to space radiations. ROCK-2 was also suppressed in response to the space environment. The data provides the p53-dependent regulated proteins by exposure to space radiations and/or microgravity during spaceflight. Our expression data revealed proteins that might help to advance the basic space radiation biology. (author)

  14. Radiative lifetimes and two-body collisional deactivation rate constants in argon for Kr(4p 55p) and Kr(4p 55p') states

    International Nuclear Information System (INIS)

    Chang, R.S.F.; Horiguchi, H.; Setser, D.W.

    1980-01-01

    The radiative lifetimes and collisional deactivation rate constants, in argon, of eight Kr(4p 5 [ 2 P/sub 1/2/]5p and [ 2 P/sub 3/2/]5p) levels have been measured by a time-resolved laser-induced fluorescence technique in a flowing afterglow apparatus. The measured radiative lifetimes are compared with other experimental values and with theoretical calculations. Radiative branching ratios of these excited states also were measured in order to assign the absolute transition probabilities of the Kr(5p,5p'--5s, 5s') transition array from the radiative lifetimes. In addition to the total deactivation rate constants, product states from two-body collisions between Kr(5p and 5p') atoms and ground state argon atoms were identified from the laser-induced emission spectra, and product formation rate constants were assigned. Two-body intermultiplet transfer from Kr(4p 5 [ 2 P/sub 1/2/]5p) to the Kr(4p 5 [ 2 P/sub 3/2/]4d) levels occurs with ease. Intermultiplet transfer from the lowest level in the (4p 5 5p) configuration to the Kr(4p 5 5s and 5s') manifold was fast despite the large energy defect. However, this was the only Kr(5p) level that gave appreciable transfer to the Kr(5s or 5s') manifold. Generally the favored product states are within a few kT of the entrance channel

  15. The 1p-encoded protein stathmin and resistance of malignant gliomas to nitrosoureas.

    Science.gov (United States)

    Ngo, Teri-T B; Peng, Tien; Liang, Xing-Jie; Akeju, Oluwaseun; Pastorino, Sandra; Zhang, Wei; Kotliarov, Yuri; Zenklusen, Jean C; Fine, Howard A; Maric, Dragan; Wen, Patrick Y; De Girolami, Umberto; Black, Peter McL; Wu, Wells W; Shen, Rong-Fong; Jeffries, Neal O; Kang, Dong-Won; Park, John K

    2007-04-18

    Malignant gliomas are generally resistant to all conventional therapies. Notable exceptions are anaplastic oligodendrogliomas with loss of heterozygosity on chromosome 1p (1p+/-). Patients with 1p+/- anaplastic oligodendroglioma frequently respond to procarbazine, 1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea, and vincristine. Because the underlying biologic basis for this clinical finding is unclear, we evaluated differentially expressed 1p-encoded proteins in 1p+/- and 1p+/+ malignant glioma cell lines and then examined whether their expression was associated with outcome of patients with anaplastic oligodendroglioma. We used a comparative proteomic screen of A172 (1p+/-) and U251 (1p+/+) malignant glioma cell lines to identify differentially expressed 1p-encoded proteins, including stathmin, a microtubule-associated protein. 1p+/- and 1p+/+ anaplastic oligodendroglioma specimens from 24 patients were assessed for stathmin expression by immunohistochemistry. The relationship between stathmin expression and clinical outcome was assessed with Kaplan-Meier analyses. RNA inhibition and cDNA transfection experiments tested effects of stathmin under- and overexpression, respectively, on the in vitro and in vivo resistance of malignant glioma cells to treatment with nitrosourea. For in vivo resistance studies, 36 mice with intracranial and 16 mice with subcutaneous xenograft tumor implants were used (one tumor per mouse). Flow cytometry was used for cell cycle analysis. Immunoblotting was used to assess protein expression. All statistical tests were two-sided. Decreased stathmin expression in tumors was statistically significantly associated with loss of heterozygosity in 1p (Pnitrosourea-treated mice carrying xenograft tumors. Median survival of mice with stathmin+/- tumors was 95 days (95% CI = 68.7 to 121.3 days) and that of mice with stathmin+/+ tumors was 64 days (95% CI = 58.2 to 69.8 days) (difference = 31 days, 95% CI = 4.1 to 57.9 days; PNitrosoureas induced

  16. Protein: MPB4 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB4 Sema3A signaling molecules DPYSL2 CRMP2, ULIP2 DPYSL2 Dihydropyrimidinase-related pr...otein 2 Collapsin response mediator protein 2, N2A3, Unc-33-like phosphoprotein 2 9606 Homo sapiens Q16555 1808 2VM8, 2GSE 1808 Q16555 ...

  17. p56Lck and p59Fyn Regulate CD28 Binding to Phosphatidylinositol 3-Kinase, Growth Factor Receptor-Bound Protein GRB-2, and T Cell-Specific Protein-Tyrosine Kinase ITK: Implications for T-Cell Costimulation

    Science.gov (United States)

    Raab, Monika; Cai, Yun-Cai; Bunnell, Stephen C.; Heyeck, Stephanie D.; Berg, Leslie J.; Rudd, Christopher E.

    1995-09-01

    T-cell activation requires cooperative signals generated by the T-cell antigen receptor ξ-chain complex (TCRξ-CD3) and the costimulatory antigen CD28. CD28 interacts with three intracellular proteins-phosphatidylinositol 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine kinase ITK (formerly TSK or EMT), and the complex between growth factor receptor-bound protein 2 and son of sevenless guanine nucleotide exchange protein (GRB-2-SOS). PI 3-kinase and GRB-2 bind to the CD28 phosphotyrosine-based Tyr-Met-Asn-Met motif by means of intrinsic Src-homology 2 (SH2) domains. The requirement for tyrosine phosphorylation of the Tyr-Met-Asn-Met motif for SH2 domain binding implicates an intervening protein-tyrosine kinase in the recruitment of PI 3-kinase and GRB-2 by CD28. Candidate kinases include p56Lck, p59Fyn, ξ-chain-associated 70-kDa protein (ZAP-70), and ITK. In this study, we demonstrate in coexpression studies that p56Lck and p59Fyn phosphorylate CD28 primarily at Tyr-191 of the Tyr-Met-Asn-Met motif, inducing a 3- to 8-fold increase in p85 (subunit of PI 3-kinase) and GRB-2 SH2 binding to CD28. Phosphatase digestion of CD28 eliminated binding. In contrast to Src kinases, ZAP-70 and ITK failed to induce these events. Further, ITK binding to CD28 was dependent on the presence of p56Lck and is thus likely to act downstream of p56Lck/p59Fyn in a signaling cascade. p56Lck is therefore likely to be a central switch in T-cell activation, with the dual function of regulating CD28-mediated costimulation as well as TCR-CD3-CD4 signaling.

  18. Glutamate alleviates muscle protein loss by modulating TLR4, NODs, Akt/FOXO and mTOR signaling pathways in LPS-challenged piglets.

    Directory of Open Access Journals (Sweden)

    Ping Kang

    Full Text Available The experiment was conducted to study the effect of the glutamate (Glu on muscle protein loss through toll-like receptor 4 (TLR4, nucleotide-binding oligomerization domain proteins (NODs, Akt/Forkhead Box O (Akt/FOXO and mammalian target of rapamycin (mTOR signaling pathways in LPS-challenged piglets. Twenty-four weaned piglets were assigned into four treatments: (1 Control; (2 LPS+0% Glu; (3 LPS + 1.0% Glu; (4 LPS + 2.0% Glu. The experiment was lasted for 28 days. On d 28, the piglets in the LPS challenged groups were injected with LPS on 100 μg/kg body weight (BW, and the piglets in the control group were injected with the same volume of 0.9% NaCl solution. After 4 h LPS or saline injection, the piglets were slaughtered and the muscle samples were collected. Glu supplementation increased the protein/DNA ratio in gastrocnemius muscle, and the protein content in longissimus dorsi (LD muscle after LPS challenge (P<0.05. In addition, Glu supplementation decreased TLR4, IL-1 receptor-associated kinase (IRAK 1, receptor-interacting serine/threonine-protein kinase (RIPK 2, and nuclear factor-κB (NF-κB mRNA expression in gastrocnemius muscle (P<0.05, MyD88 mRNA expression in LD muscle, and FOXO1 mRNA expression in LD muscle (P<0.05. Moreover, Glu supplementation increased p-Akt/t-Akt ratio (P<0.05 in gastrocnemius muscle, and p-4EBP1/t-4EBP1 ratio in both gastrocnemius and LD muscles (P<0.05. Glu supplementation in the piglets' diets might be an effective strategy to alleviate LPS-induced muscle protein loss, which might be due to suppressing the mRNA expression of TLR4 and NODs signaling-related genes, and modulating Akt/FOXO and mTOR signaling pathways.

  19. Crystallization and evaluation of hen egg-white lysozyme crystals for protein pH titration in the crystalline state

    International Nuclear Information System (INIS)

    Iwai, Wakari; Yagi, Daichi; Ishikawa, Takuya; Ohnishi, Yuki; Tanaka, Ichiro; Niimura, Nobuo

    2008-01-01

    Hen egg-white lysozyme was crystallized over a wide pH range (2.5–8.0) and the quality of the crystals was characterized. Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined To observe the ionized status of the amino acid residues in proteins at different pH (protein pH titration in the crystalline state) by neutron diffraction, hen egg-white lysozyme was crystallized over a wide pH range (2.5–8.0). Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined. At pH < 4.5 the border between the metastable region and the nucleation region shifted to the left (lower precipitant concentration) in the phase diagram, and at pH > 4.5 the border shifted to the right (higher precipitant concentration). The qualities of these crystals were characterized using the Wilson plot method. The qualities of all crystals at different pH were more or less equivalent (B-factor values within 25–40). It is expected that neutron diffraction analysis of these crystals of different pH provides equivalent data in quality for discussions of protein pH titration in the crystalline state of hen egg-white lysozyme

  20. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors.

    Science.gov (United States)

    Justus, Calvin R; Dong, Lixue; Yang, Li V

    2013-12-05

    The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis, and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs) in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8), GPR68 (OGR1), and GPR132 (G2A), regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention.

  1. Simultaneous Hypoxia and Low Extracellular pH Suppress Overall Metabolic Rate and Protein Synthesis In Vitro.

    Directory of Open Access Journals (Sweden)

    Brita Singers Sørensen

    Full Text Available The tumor microenvironment is characterized by regions of hypoxia and acidosis which are linked to poor prognosis. This occurs due to an aberrant vasculature as well as high rates of glycolysis and lactate production in tumor cells even in the presence of oxygen (the Warburg effect, which weakens the spatial linkage between hypoxia and acidosis.Five different human squamous cell carcinoma cell lines (SiHa, FaDuDD, UTSCC5, UTSCC14 and UTSCC15 were treated with hypoxia, acidosis (pH 6.3, or a combination, and gene expression analyzed using microarray. SiHa and FaDuDD were chosen for further characterization of cell energetics and protein synthesis. Total cellular ATP turnover and relative glycolytic dependency was determined by simultaneous measurements of oxygen consumption and lactate synthesis rates and total protein synthesis was determined by autoradiographic quantification of the incorporation of 35S-labelled methionine and cysteine into protein.Microarray analysis allowed differentiation between genes induced at low oxygen only at normal extracellular pH (pHe, genes induced at low oxygen at both normal and low pHe, and genes induced at low pHe independent of oxygen concentration. Several genes were found to be upregulated by acidosis independent of oxygenation. Acidosis resulted in a more wide-scale change in gene expression profiles than hypoxia including upregulation of genes involved in the translation process, for example Eukaryotic translation initiation factor 4A, isoform 2 (EIF4A2, and Ribosomal protein L37 (RPL37. Acidosis suppressed overall ATP turnover and protein synthesis by 50%. Protein synthesis, but not total ATP production, was also suppressed under hypoxic conditions. A dramatic decrease in ATP turnover (SiHa and protein synthesis (both cell lines was observed when hypoxia and low pHe were combined.We demonstrate here that the influence of hypoxia and acidosis causes different responses, both in gene expression and in de

  2. Disparate effects of p24alpha and p24delta on secretory protein transport and processing.

    Directory of Open Access Journals (Sweden)

    Jeroen R P M Strating

    Full Text Available BACKGROUND: The p24 family is thought to be somehow involved in endoplasmic reticulum (ER-to-Golgi protein transport. A subset of the p24 proteins (p24alpha(3, -beta(1, -gamma(3 and -delta(2 is upregulated when Xenopus laevis intermediate pituitary melanotrope cells are physiologically activated to produce vast amounts of their major secretory cargo, the prohormone proopiomelanocortin (POMC. METHODOLOGY/PRINCIPAL FINDINGS: Here we find that transgene expression of p24alpha(3 or p24delta(2 specifically in the Xenopus melanotrope cells in both cases causes an effective displacement of the endogenous p24 proteins, resulting in severely distorted p24 systems and disparate melanotrope cell phenotypes. Transgene expression of p24alpha(3 greatly reduces POMC transport and leads to accumulation of the prohormone in large, ER-localized electron-dense structures, whereas p24delta(2-transgenesis does not influence the overall ultrastructure of the cells nor POMC transport and cleavage, but affects the Golgi-based processes of POMC glycomaturation and sulfation. CONCLUSIONS/SIGNIFICANCE: Transgenic expression of two distinct p24 family members has disparate effects on secretory pathway functioning, illustrating the specificity and non-redundancy of our transgenic approach. We conclude that members of the p24 family furnish subcompartments of the secretory pathway with specific sets of machinery cargo to provide the proper microenvironments for efficient and correct secretory protein transport and processing.

  3. The 4p5rd10 and 4d86p configurations of Te VIII

    International Nuclear Information System (INIS)

    Churilov, S.S.; Rossijskaya Akademiya Nauk, Troitsk; Joshi, Y.N.; Kildiyarova, R.R.

    1998-01-01

    The spectrum of tellurium was photographed in the 100-500 A region on a variety of grazing incidence spectrographs using a triggered spark source. The analysis of the lines in the 117-216 A region has lead to establishing 42 out of 45 levels of the 4d 8 6p configuration of Te VIII. Four levels of the 4d 8 4f configuration were confirmed and their level values revised, and an additional 4d 8 4f level was established. The 4p 5 4d 10 levels reported earlier were found to be erroneous and new values have been found for them. Eighty seven (87) new lines have been classified in the (4d 9 + 4d 8 5s)-(4d 8 4f + 4p 5 4d 10 + 4d 8 6p) transition array. Hartree-Fock with relativistic corrections (HFR) and parametric least-squares-fitted (lSF) calculations were carried out to interpret the present analysis adequately. (orig.)

  4. Expression of yeast lipid phosphatase Sac1p is regulated by phosphatidylinositol-4-phosphate

    Directory of Open Access Journals (Sweden)

    Mayinger Peter

    2008-01-01

    Full Text Available Abstract Background Phosphoinositides play a central role in regulating processes at intracellular membranes. In yeast, a large number of phospholipid biosynthetic enzymes use a common mechanism for transcriptional regulation. Yet, how the expression of genes encoding lipid kinases and phosphatases is regulated remains unknown. Results Here we show that the expression of lipid phosphatase Sac1p in the yeast Saccharomyces cerevisiae is regulated in response to changes in phosphatidylinositol-4-phosphate (PI(4P concentrations. Unlike genes encoding enzymes involved in phospholipid biosynthesis, expression of the SAC1 gene is independent of inositol levels. We identified a novel 9-bp motif within the 5' untranslated region (5'-UTR of SAC1 that is responsible for PI(4P-mediated regulation. Upregulation of SAC1 promoter activity correlates with elevated levels of Sac1 protein levels. Conclusion Regulation of Sac1p expression via the concentration of its major substrate PI(4P ensures proper maintenance of compartment-specific pools of PI(4P.

  5. Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p

    Science.gov (United States)

    Madsen, Christian T.; Sylvestersen, Kathrine B.; Young, Clifford; Larsen, Sara C.; Poulsen, Jon W.; Andersen, Marianne A.; Palmqvist, Eva A.; Hey-Mogensen, Martin; Jensen, Per B.; Treebak, Jonas T.; Lisby, Michael; Nielsen, Michael L.

    2015-01-01

    The essential vitamin biotin is a covalent and tenaciously attached prosthetic group in several carboxylases that play important roles in the regulation of energy metabolism. Here we describe increased acetyl-CoA levels and mitochondrial hyperacetylation as downstream metabolic effects of biotin deficiency. Upregulated mitochondrial acetylation sites correlate with the cellular deficiency of the Hst4p deacetylase, and a biotin-starvation-induced accumulation of Hst4p in mitochondria supports a role for Hst4p in lowering mitochondrial acetylation. We show that biotin starvation and knockout of Hst4p cause alterations in cellular respiration and an increase in reactive oxygen species (ROS). These results suggest that Hst4p plays a pivotal role in biotin metabolism and cellular energy homeostasis, and supports that Hst4p is a functional yeast homologue of the sirtuin deacetylase SIRT3. With biotin deficiency being involved in various metabolic disorders, this study provides valuable insight into the metabolic effects biotin exerts on eukaryotic cells. PMID:26158509

  6. The novel fusion proteins, GnRH-p53 and GnRHIII-p53, expression and their anti-tumor effect.

    Directory of Open Access Journals (Sweden)

    Peiyuan Jia

    Full Text Available p53, one of the most well studied tumor suppressor factor, is responsible to a variety of damage owing to the induction of apoptosis and cell cycle arrest in the tumor cells. More than 50% of human tumors contain mutation or deletion of p53. Gonadotrophin-releasing hormone (GnRH, as the ligand of Gonadotrophin-releasing hormone receptor (GnRH-R, was used to deliver p53 into tumor cells. The p53 fusion proteins GnRH-p53 and GnRH iii-p53 were expressed and their targeted anti-tumor effects were determined. GnRH mediates its fusion proteins transformation into cancer cells. The intracellular delivery of p53 fusion proteins exerted the inhibition of the growth of H1299 cells in vitro and the reduction of tumor volume in vivo. Their anti-tumor effect was functioned by the apoptosis and cell cycle arrest induced by p53. Hence, the fusion protein could be a novel protein drug for anti-tumor therapy.

  7. Functional rescue of mutant ABCA1 proteins by sodium 4-phenylbutyrate.

    Science.gov (United States)

    Sorrenson, Brie; Suetani, Rachel J; Williams, Michael J A; Bickley, Vivienne M; George, Peter M; Jones, Gregory T; McCormick, Sally P A

    2013-01-01

    Mutations in the ATP-binding cassette transporter A1 (ABCA1) are a major cause of decreased HDL cholesterol (HDL-C), which infers an increased risk of cardiovascular disease (CVD). Many ABCA1 mutants show impaired localization to the plasma membrane. The aim of this study was to investigate whether the chemical chaperone, sodium 4-phenylbutyrate (4-PBA) could improve cellular localization and function of ABCA1 mutants. Nine different ABCA1 mutants (p.A594T, p.I659V, p.R1068H, p.T1512M, p.Y1767D, p.N1800H, p.R2004K, p.A2028V, p.Q2239N) expressed in HEK293 cells, displaying different degrees of mislocalization to the plasma membrane and discrete impacts on cholesterol efflux, were subject to treatment with 4-PBA. Treatment restored localization to the plasma membrane and increased cholesterol efflux function for the majority of mutants. Treatment with 4-PBA also increased ABCA1 protein expression in all transfected cell lines. In fibroblast cells obtained from low HDL-C subjects expressing two of the ABCA1 mutants (p.R1068H and p.N1800H), 4-PBA increased cholesterol efflux without any increase in ABCA1 expression. Our study is the first to investigate the effect of the chemical chaperone, 4-PBA on ABCA1 and shows that it is capable of restoring plasma membrane localization and enhancing the cholesterol efflux function of mutant ABCA1s both in vitro and ex vivo. These results suggest 4-PBA may warrant further investigation as a potential therapy for increasing cholesterol efflux and HDL-C levels.

  8. Arrestin-related proteins mediate pH signaling in fungi

    OpenAIRE

    Herranz, Silvia; Rodríguez, José M.; Bussink, Henk-Jan; Sánchez-Ferrero, Juan C.; Arst, Herbert N.; Peñalva, Miguel A.; Vincent, Olivier

    2005-01-01

    Metazoan arrestins bind to seven-transmembrane (7TM) receptors to regulate function. Aspergillus nidulans PalF, a protein involved in the fungal ambient pH signaling pathway, contains arrestin N-terminal and C-terminal domains and binds strongly to two different regions within the C-terminal cytoplasmic tail of the 7TM, putative pH sensor PalH. Upon exposure to alkaline ambient pH, PalF is phosphorylated and, like mammalian β-arrestins, ubiquitinated in a signal-dependent and 7TM protein-depe...

  9. Significant difference in p53 and p21 protein immunoreactivity in HPV 16 positive and HPV negative breast carcinomas

    International Nuclear Information System (INIS)

    Hennig, E.M.; Norwegian Radium Hospital, Oslo; Kvinnsland, S.; Holm, R.; Nesland, J.M.

    1999-01-01

    Human papillomavirus (HPV) 16 has previously been found in 19/41 breast carcinomas (46%) in women with a history of HPV 16 positive CIN III lesions. There was no significant difference in distribution of histological subtypes, mean or median tumour diameter or number of regional lymph node metastases in the HPV positive and HPV negative breast carcinoma groups. P53, p21 and c-erbB-2 proteins were analyzed by immunohistochemistry in the HPV 16 positive and HPV negative breast carcinomas. There was a significant difference in p53 and p21 protein immunoreactivity between HPV 16 positive and HPV negative breast carcinomas (p=0.0091 and p=0.0040), with a significant less detectable p53 and p21 protein immunoreactivity in the HPV 16 positive cases. There was also a significant difference in the coexpression of p53/p21 between the HPV 16 positive and HPV 16 negative breast carcinomas (p=0.002). No significant difference in immunostaining for c-erbB-2 protein in the two groups was found (p=0.15), or for the coexpression of p53/c-erbB-2 (p=0.19). The significantly lower expression of p53 and p21 proteins in HPV 16 positive than in HPV 16 negative breast carcinomas supports the hypothesis of inactivation and degradation of wild-type p53 proteins by HPV 16 E6 and that p53 mutation is not necessary for transformation in the HPV 16 positive cases. (orig.)

  10. A stable aspirin-triggered lipoxin A4 analog blocks phosphorylation of leukocyte-specific protein 1 in human neutrophils.

    Science.gov (United States)

    Ohira, Taisuke; Bannenberg, Gerard; Arita, Makoto; Takahashi, Minoru; Ge, Qingyuan; Van Dyke, Thomas E; Stahl, Gregory L; Serhan, Charles N; Badwey, John A

    2004-08-01

    Lipoxins and their aspirin-triggered 15-epimers are endogenous anti-inflammatory agents that block neutrophil chemotaxis in vitro and inhibit neutrophil influx in several models of acute inflammation. In this study, we examined the effects of 15-epi-16-(p-fluoro)-phenoxy-lipoxin A(4) methyl ester, an aspirin-triggered lipoxin A(4)-stable analog (ATLa), on the protein phosphorylation pattern of human neutrophils. Neutrophils stimulated with the chemoattractant fMLP were found to exhibit intense phosphorylation of a 55-kDa protein that was blocked by ATLa (10-50 nM). This 55-kDa protein was identified as leukocyte-specific protein 1, a downstream component of the p38-MAPK cascade in neutrophils, by mass spectrometry, Western blotting, and immunoprecipitation experiments. ATLa (50 nM) also reduced phosphorylation/activation of several components of the p38-MAPK pathway in these cells (MAPK kinase 3/MAPK kinase 6, p38-MAPK, MAPK-activated protein kinase-2). These results indicate that ATLa exerts its anti-inflammatory effects, at least in part, by blocking activation of the p38-MAPK cascade in neutrophils, which is known to promote chemotaxis and other proinflammatory responses by these cells.

  11. Immunohistochemistry expression of TCF4 protein on carcinoma, adenoma and non neoplastic colorectal mucosa

    Directory of Open Access Journals (Sweden)

    Leonardo Huber Tauil

    2014-01-01

    Full Text Available Purpose: To detect and quantify the immunoreactivity of TCF4 protein in colorectal carci- noma, colorectal adenoma and non-neoplasic colorectal epithelium. Methods: We studied 129 individuals: 40 with colorectal cancer, 52 with colorectal ad- enoma and 37 with non-neoplastic colorectal epithelium. The colorectal adenoma and carcinoma samples were obtained from patients who underwent surgical procedures, and colonoscopies and samples of non-neoplastic colorectal epithelium were taken from patients who died from cardiovascular diseases, without diseases of the large intestine. Samples of different tissues were included in paraffin blocks, and the immunohistochem- ical expression of protein TCF4 was analyzed using the technique of tissue microarray (TMA with polyclonal antibody TCF4. The immunoreactivity was analyzed and classified as positive and negative. Results: The immunohistochemical expression of TCF4 protein was significantly higher (p < 0.01 in colorectal carcinoma than in the non-neoplastic colorectal epithelium and adenoma. There was no difference (p = 0.76 between TCF4 protein immunohistochemical expression in colorectal adenoma and non-neoplastic colorectal tissue. Conclusions: TCF4 protein showed a more intense expression in colorectal carcinoma than in non-neoplastic colorectal epithelium and adenoma, indicating that this protein is in- volved in colorectal carcinogenesis. Resumo: Objetivos: Detectar e quantificar a imunoexpressão da proteína TCF4 no carcinoma e no adenoma colorretal e no epitélio colorretal não neoplásico. Método: Foram estudados 129 indivíduos: 40 com carcinoma colorretal, 52 com adenoma colorretal e 37 com epitélio colorretal não neoplásico. Os tecidos de adenoma e carcinoma colorretais foram representados por amostras da lesão retirada de doentes submetidos a procedimentos cirúrgicos e colonoscópicos, e as amostras de epitélio colorretal não neo- plásico foram retiradas de doentes falecidos por

  12. Association between microfibrillar-associated protein 4 (MFAP4) and micro- and macrovascular complications in long-term type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Blindbæk, S L; Schlosser, A; Green, A

    2017-01-01

    in the former Funen County, Denmark. Detection of plasma-MFAP4 (pMFAP4) was performed by the AlphaLISA Technique. Diabetic retinopathy (DR) was graded in accordance with the Early Treatment Diabetic Retinopathy Study adaptation of the modified Airlie House classification. A monofilament test was used to test...... diabetic retinopathy, nephropathy or macrovascular disease. CONCLUSIONS: No association between pMFAP4 and macrovascular vascular complications was found. However, high levels of pMFAP4 correlated independently with diabetic neuropathy. Further studies on the predictive value of increased circulating MFAP4......AIMS: To evaluate microfibrillar-associated protein 4 (MFAP4) as a marker of micro- and macrovascular complications in patients with type 1 diabetes. METHODS: This cross-sectional study included 203 persons with a long duration of type 1 diabetes from a population-based cohort ascertained...

  13. Characterization of Microfibrillar-associated Protein 4 in the Development of Pulmonary Emphysema-like Changes

    DEFF Research Database (Denmark)

    Holm, Anne Trommelholt

    Ph.D.-afhandlingen er baseret på tre karakteriseringsstudier. Disse studier omhandler den strukturalle organisering af mikrofibrillar-associeret protein 4 (MFAP4) og dets interaktion med komponenter af lungevævet. Derudover også den basale karakterisering af de pulmonale konsekvenser associeret m...

  14. Crystallization and evaluation of hen egg-white lysozyme crystals for protein pH titration in the crystalline state.

    Science.gov (United States)

    Iwai, Wakari; Yagi, Daichi; Ishikawa, Takuya; Ohnishi, Yuki; Tanaka, Ichiro; Niimura, Nobuo

    2008-05-01

    To observe the ionized status of the amino acid residues in proteins at different pH (protein pH titration in the crystalline state) by neutron diffraction, hen egg-white lysozyme was crystallized over a wide pH range (2.5-8.0). Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined. At pH diagram, and at pH > 4.5 the border shifted to the right (higher precipitant concentration). The qualities of these crystals were characterized using the Wilson plot method. The qualities of all crystals at different pH were more or less equivalent (B-factor values within 25-40). It is expected that neutron diffraction analysis of these crystals of different pH provides equivalent data in quality for discussions of protein pH titration in the crystalline state of hen egg-white lysozyme.

  15. p16 (INK4a) has clinicopathological and prognostic impact on oropharynx and larynx squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Silva, S.D. [Departamento de Cirurgia de Cabeça e Pescoço e Otorrinolaringologia, Hospital A.C. Camargo, São Paulo, SP (Brazil); Department of Oncology, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Department of Otolaryngology-Head and Neck Surgery, Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Nonogaki, S. [Departamento de Anatomia Patológica, Hospital A.C. Camargo, São Paulo, SP (Brazil); Soares, F.A. [Departamento de Anatomia Patológica, Hospital A.C. Camargo, São Paulo, SP (Brazil); Departamento de Estomatologia, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP (Brazil); Kowalski, L.P. [Departamento de Cirurgia de Cabeça e Pescoço e Otorrinolaringologia, Hospital A.C. Camargo, São Paulo, SP (Brazil)

    2012-09-07

    CDKN2A encodes proteins such as p16 (INK4a), which negatively regulate the cell-cycle. Molecular genetic studies have revealed that deletions in CDKN2A occur frequently in cancer. Although p16 (INK4a) may be involved in tumor progression, the clinical impact and prognostic implications in head and neck squamous cell carcinoma (HNSCC) are controversial. The objective of this study was to evaluate the frequency of the immunohistochemical expression of p16 (INK4a) in 40 oropharynx and 35 larynx from HNSCC patients treated in a single institution and followed-up at least for 10 years in order to explore potential associations with clinicopathological outcomes and prognostic implications. Forty cases (53.3%) were positive for p16 (INK4a) and this expression was more intense in non-smoking patients (P = 0.050), whose tumors showed negative vascular embolization (P = 0.018), negative lymphatic permeation (P = 0.002), and clear surgical margins (P = 0.050). Importantly, on the basis of negative p16 (INK4a) expression, it was possible to predict a probability of lower survival (P = 0.055) as well as tumors presenting lymph node metastasis (P = 0.050) and capsular rupture (P = 0.0010). Furthermore, increased risk of recurrence was observed in tumors presenting capsular rupture (P = 0.0083). Taken together, the alteration in p16 (INK4a) appears to be a common event in patients with oropharynx and larynx squamous cell carcinoma and the negative expression of this protein correlated with poor prognosis.

  16. p16 (INK4a) has clinicopathological and prognostic impact on oropharynx and larynx squamous cell carcinoma

    International Nuclear Information System (INIS)

    Silva, S.D.; Nonogaki, S.; Soares, F.A.; Kowalski, L.P.

    2012-01-01

    CDKN2A encodes proteins such as p16 (INK4a), which negatively regulate the cell-cycle. Molecular genetic studies have revealed that deletions in CDKN2A occur frequently in cancer. Although p16 (INK4a) may be involved in tumor progression, the clinical impact and prognostic implications in head and neck squamous cell carcinoma (HNSCC) are controversial. The objective of this study was to evaluate the frequency of the immunohistochemical expression of p16 (INK4a) in 40 oropharynx and 35 larynx from HNSCC patients treated in a single institution and followed-up at least for 10 years in order to explore potential associations with clinicopathological outcomes and prognostic implications. Forty cases (53.3%) were positive for p16 (INK4a) and this expression was more intense in non-smoking patients (P = 0.050), whose tumors showed negative vascular embolization (P = 0.018), negative lymphatic permeation (P = 0.002), and clear surgical margins (P = 0.050). Importantly, on the basis of negative p16 (INK4a) expression, it was possible to predict a probability of lower survival (P = 0.055) as well as tumors presenting lymph node metastasis (P = 0.050) and capsular rupture (P = 0.0010). Furthermore, increased risk of recurrence was observed in tumors presenting capsular rupture (P = 0.0083). Taken together, the alteration in p16 (INK4a) appears to be a common event in patients with oropharynx and larynx squamous cell carcinoma and the negative expression of this protein correlated with poor prognosis

  17. Role of p73 Dinucleotide Polymorphism in Prostate Cancer and p73 Protein Isoform Balance

    Directory of Open Access Journals (Sweden)

    L. Michael Carastro

    2014-01-01

    Full Text Available Background. Molecular markers for prostate cancer (PCa risks are currently lacking. Here we address the potential association of a dinucleotide polymorphism (DNP in exon 2 of the p73 gene with PCa risk/progression and discern any disruption of p73 protein isoforms levels in cells harboring a p73 DNP allele. Methods. We investigated the association between p73 DNP genotype and PCa risk/aggressiveness and survival by fitting logistic regression models in 1,292 incident cases and 682 controls. Results. Although we detected no association between p73 DNP and PCa risk, a significant inverse relationship between p73 DNP and PCa aggressiveness (AT/AT + GC/AT versus GC/GC, OR = 0.55, 95%Cl = 0.31–0.99 was detected. Also, p73 DNP is marginally associated with overall death (dominant model, HR = 0.76, 95%Cl = 0.57–1.00, P=0.053 as well as PCa specific death (HR = 0.69, 95%Cl = 0.45–1.06, P=0.09. Western blot analyses for p73 protein isoforms indicate that cells heterozygous for the p73 DNP have lower levels of ∆Np73 relative to TAp73 (P<0.001. Conclusions. Our findings are consistent with an association between p73 DNP and low risk for PCa aggressiveness by increasing the expressed TAp73/∆Np73 protein isoform ratio.

  18. Biochemical and functional analysis of two Plasmodium falciparum blood-stage 6-cys proteins: P12 and P41.

    Directory of Open Access Journals (Sweden)

    Tana Taechalertpaisarn

    Full Text Available The genomes of Plasmodium parasites that cause malaria in humans, other primates, birds, and rodents all encode multiple 6-cys proteins. Distinct 6-cys protein family members reside on the surface at each extracellular life cycle stage and those on the surface of liver infective and sexual stages have been shown to play important roles in hepatocyte growth and fertilization respectively. However, 6-cys proteins associated with the blood-stage forms of the parasite have no known function. Here we investigate the biochemical nature and function of two blood-stage 6-cys proteins in Plasmodium falciparum, the most pathogenic species to afflict humans. We show that native P12 and P41 form a stable heterodimer on the infective merozoite surface and are secreted following invasion, but could find no evidence that this complex mediates erythrocyte-receptor binding. That P12 and P41 do not appear to have a major role as adhesins to erythrocyte receptors was supported by the observation that antisera to these proteins did not substantially inhibit erythrocyte invasion. To investigate other functional roles for these proteins their genes were successfully disrupted in P. falciparum, however P12 and P41 knockout parasites grew at normal rates in vitro and displayed no other obvious phenotypic changes. It now appears likely that these blood-stage 6-cys proteins operate as a pair and play redundant roles either in erythrocyte invasion or in host-immune interactions.

  19. Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner.

    Science.gov (United States)

    Amorós, M; Estruch, F

    2001-03-01

    Saccharomyces cerevisiae possesses several transcription factors involved in the transcriptional activation of stress-induced genes. Among them, the heat shock factor (Hsf1p) and the zinc finger proteins of the general stress response (Msn2p and Msn4p) have been shown to play a major role in stress protection. Some heat shock protein (HSP) genes contain both heat shock elements (HSEs) and stress response elements (STREs), suggesting the involvement of both transcription factors in their regulation. Analysis of the stress-induced expression of two of these genes, HSP26 and HSP104, reveals that the contribution of Hsf1p and Msn2/4p is different depending on the gene and the stress condition.

  20. Tumor protein 53-induced nuclear protein 1 (TP53INP1 enhances p53 function and represses tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jeyran eShahbazi

    2013-05-01

    Full Text Available Tumor protein 53-induced nuclear protein 1 (TP53INP1 is a stress-induced p53 target gene whose expression is modulated by transcription factors such as p53, p73 and E2F1. TP53INP1 gene encodes two isoforms of TP53INP1 proteins, TP53INP1α and TP53INP1β, both of which appear to be key elements in p53 function. When associated with homeodomain-interacting protein kinase-2 (HIPK2, TP53INP1 phosphorylates p53 protein at Serine 46, enhances p53 protein stability and its transcriptional activity, leading to transcriptional activation of p53 target genes such as p21, PIG-3 and MDM2, cell growth arrest and apoptosis upon DNA damage stress. The anti-proliferative and pro-apoptotic activities of TP53INP1 indicate that TP53INP1 has an important role in cellular homeostasis and DNA damage response. Deficiency in TP53INP1 expression results in increased tumorigenesis; while TP53INP1 expression is repressed during early stages of cancer by factors such as miR-155. This review aims to summarize the roles of TP53INP1 in blocking tumor progression through p53-dependant and p53-independent pathways, as well as the elements which repress TP53INP1 expression, hence highlighting its potential as a therapeutic target in cancer treatment.

  1. Protein mobilities and P-selectin storage in Weibel–Palade bodies

    OpenAIRE

    Kiskin, Nikolai I.; Hellen, Nicola; Babich, Victor; Hewlett, Lindsay; Knipe, Laura; Hannah, Matthew J.; Carter, Tom

    2010-01-01

    Using fluorescence recovery after photobleaching (FRAP) we measured the mobilities of EGFP-tagged soluble secretory proteins in the endoplasmic reticulum (ER) and in individual Weibel–Palade bodies (WPBs) at early (immature) and late (mature) stages in their biogenesis. Membrane proteins (P-selectin, CD63, Rab27a) were also studied in individual WPBs. In the ER, soluble secretory proteins were mobile; however, following insertion into immature WPBs larger molecules (VWF, Proregion, tPA) and P...

  2. Modulation of P1798 lymphosarcoma proliferation by protein phosphorylation

    International Nuclear Information System (INIS)

    Michnoff, C.A.H.

    1983-01-01

    The role of protein kinases in modulating cell proliferation was examined. Studies characterized the regulation of cell proliferation by adenosine 3':5'-monophosphate-dependent protein kinase (cA-Pk). Calcium/calmodulin-dependent myosin light chain kinase (MLCK) was isolated and examined as a potential substrate regulated by cA-PK in the rapidly proliferating P1798 lymphosarcoma. Modulation of cell proliferation by cA-PK was characterized by quantitating cell division by [methyl- 3 H] thymidine ([ 3 H]-dT) incorporation into DNA, cAMP accumulations, and activation of cA-PK using P1798 lymphosarcoma cells. Epinephrine and prostaglandin E 1 (PGE 1 ) were demonstrated to suppress [ 3 H]-dT incorporation into DNA, to stimulate cAMP accumulation, and to activate cA-PK with dose-dependency. Calcium/calmodulin-dependent MLCK was partially purified from P1798 lymphosarcoma. P1798 MLCK phosphorylated myosin regulatory light chains (P-LC) from thymus, cardiac and skeletal muscles. One mol [ 32 Pi] was transferred into one mol cardiac or skeletal P-LC by P1798 MLCK. Apparent Km values of 65 μM and 51 μM were determined for ATP and cardiac P-LC, respectively. The apparent molecular weight of P1798 MLCK was 135,000. P1798 MLCK was phosphorylated by cA-PK. Phosphorylated MLCK showed a 41% decrease in calcium-dependent activity. Two additional protein kinases from P1798 lymphosarcoma phosphorylated cardiac and skeletal light chains

  3. High-throughput screening identifies Ceefourin 1 and Ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4).

    Science.gov (United States)

    Cheung, Leanna; Flemming, Claudia L; Watt, Fujiko; Masada, Nanako; Yu, Denise M T; Huynh, Tony; Conseil, Gwenaëlle; Tivnan, Amanda; Polinsky, Alexander; Gudkov, Andrei V; Munoz, Marcia A; Vishvanath, Anasuya; Cooper, Dermot M F; Henderson, Michelle J; Cole, Susan P C; Fletcher, Jamie I; Haber, Michelle; Norris, Murray D

    2014-09-01

    Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates. We therefore set out to identify more selective and well tolerated inhibitors of MRP4 that might be used to study the many proposed functions of this transporter. Using high-throughput screening, we identified two chemically distinct small molecules, Ceefourin 1 and Ceefourin 2, that inhibit transport of a broad range of MRP4 substrates, yet are highly selective for MRP4 over other ABC transporters, including P-glycoprotein (P-gp), ABCG2 (Breast Cancer Resistance Protein; BCRP) and MRP1 (multidrug resistance protein 1; ABCC1). Both compounds are more potent MRP4 inhibitors in cellular assays than the most widely used inhibitor, MK-571, requiring lower concentrations to effect a comparable level of inhibition. Furthermore, Ceefourin 1 and Ceefourin 2 have low cellular toxicity, and high microsomal and acid stability. These newly identified inhibitors should be of great value for efforts to better understand the biological roles of MRP4, and may represent classes of compounds with therapeutic application. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Preliminary crystallographic studies of yeast mitochondrial peripheral membrane protein Tim44p

    Energy Technology Data Exchange (ETDEWEB)

    Josyula, Ratnakar [Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham (United States); Jin, Zhongmin [SER-CAT, APS, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); McCombs, Deborah; DeLucas, Lawrence [Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham (United States); Sha, Bingdong, E-mail: bdsha@uab.edu [Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham (United States)

    2006-02-01

    Tim44p is an essential mitochondrial peripheral membrane protein. To investigate the mechanism by which Tim44p functions in the TIM23 translocon to deliver the mitochondrial protein precursors, the yeast Tim44p has been crystallized. Protein translocations across mitochondrial membranes play critical roles in mitochondrion biogenesis. Protein transport from the cell cytosol to the mitochondrial matrix is carried out by the translocase of the outer membrane (TOM) complex and the translocase of the inner membrane (TIM) complexes. Tim44p is an essential mitochondrial peripheral membrane protein and a major component of the TIM23 translocon. To investigate the mechanism by which Tim44p functions in the TIM23 translocon to deliver the mitochondrial protein precursors, the yeast Tim44p was crystallized. The crystals diffract to 3.2 Å using a synchrotron X-ray source and belong to space group P6{sub 3}22, with unit-cell parameters a = 124.25, c = 77.83 Å. There is one Tim44p molecule in one asymmetric unit, which corresponds to a solvent content of approximately 43%. Structure determination by MAD methods is under way.

  5. Predicting Secretory Proteins with SignalP

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2017-01-01

    SignalP is the currently most widely used program for prediction of signal peptides from amino acid sequences. Proteins with signal peptides are targeted to the secretory pathway, but are not necessarily secreted. After a brief introduction to the biology of signal peptides and the history...

  6. Lipoxin A4 regulates expression of the estrogen receptor and inhibits 17β-estradiol induced p38 mitogen-activated protein kinase phosphorylation in human endometriotic stromal cells.

    Science.gov (United States)

    Chen, Shuo; Wu, Rong-Feng; Su, Lin; Zhou, Wei-Dong; Zhu, Mao-Bi; Chen, Qiong-Hua

    2014-07-01

    To study the role of lipoxin A4 (LXA4) in endometriosis. Molecular analysis in human samples and primary human endometriotic stromal cells (ESCs). University hospital. Forty-nine premenopausal women (30 patients with endometriosis and 19 controls). Normal and ectopic endometrial biopsies obtained during surgery performed during the proliferative phase of the menstrual cycle; ESCs used for in vitro studies. Levels of LXA4 measured by enzyme-linked immunosorbent assay (ELISA); mRNA levels of the estrogen receptor (ER), progestogen receptor (PR), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) quantified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR); and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation evaluated by Western blotting. The LXA4 expression level decreased in ectopic tissue as well as ERα and PR, although the expression of ERβ increased in ectopic endometrium compared with the controls. Investigations with correlation analysis revealed the expression of LXA4 was positively correlated with ERα and negatively correlated with ERβ in vivo. Moreover, administering LXA4 could augment ERβ expression in ESCs and inhibit the 17β-estradiol-induced phosphorylation of p38 MAPK very likely through ERβ. Our findings indicate that LXA4 regulates ERβ expression and inhibits 17β-estradiol-induced phosphorylation of p38 MAPK, very likely through ERβ in ESCs. Copyright © 2014. Published by Elsevier Inc.

  7. Interactions involved in pH protection of the alphavirus fusion protein

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Whitney; Kielian, Margaret, E-mail: margaret.kielian@einstein.yu.edu

    2015-12-15

    The alphavirus membrane protein E1 mediates low pH-triggered fusion of the viral and endosome membranes during virus entry. During virus biogenesis E1 associates as a heterodimer with the transmembrane protein p62. Late in the secretory pathway, cellular furin cleaves p62 to the mature E2 protein and a peripheral protein E3. E3 remains bound to E2 at low pH, stabilizing the heterodimer and thus protecting E1 from the acidic pH of the secretory pathway. Release of E3 at neutral pH then primes the virus for fusion during entry. Here we used site-directed mutagenesis and revertant analysis to define residues important for the interactions at the E3–E2 interface. Our data identified a key residue, E2 W235, which was required for E1 pH protection and alphavirus production. Our data also suggest additional residues on E3 and E2 that affect their interacting surfaces and thus influence the pH protection of E1 during alphavirus exit.

  8. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    Science.gov (United States)

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Triage of oxidation-prone proteins by Sqstm1/p62 within the mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minjung [Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute, Suwon-Si, Kyonggi-Do (Korea, Republic of); Shin, Jaekyoon, E-mail: jkshin@med.skku.ac.kr [Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute, Suwon-Si, Kyonggi-Do (Korea, Republic of)

    2011-09-16

    Highlights: {yields} The mitochondrion contains its own protein quality control system. {yields} p62 localizes within the mitochondria and forms mega-dalton sized complexes. {yields} p62 interacts with oxidation-prone proteins and the proteins of quality control. {yields} In vitro delivery of p62 improves mitochondrial functions. {yields} p62 is implicated as a participant in mitochondrial protein quality control. -- Abstract: As the mitochondrion is vulnerable to oxidative stress, cells have evolved several strategies to maintain mitochondrial integrity, including mitochondrial protein quality control mechanisms and autophagic removal of damaged mitochondria. Involvement of an autophagy adaptor, Sqstm1/p62, in the latter process has been recently described. In the present study, we provide evidence that a portion of p62 directly localizes within the mitochondria and supports stable electron transport by forming heterogeneous protein complexes. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) of mitochondrial proteins co-purified with p62 revealed that p62 interacts with several oxidation-prone proteins, including a few components of the electron transport chain complexes, as well as multiple chaperone molecules and redox regulatory enzymes. Accordingly, p62-deficient mitochondria exhibited compromised electron transport, and the compromised function was partially restored by in vitro delivery of p62. These results suggest that p62 plays an additional role in maintaining mitochondrial integrity at the vicinity of target machineries through its function in relation to protein quality control.

  10. Interactions in heated milk model systems with different ratios of nanoparticulated whey protein at varying pH

    DEFF Research Database (Denmark)

    Liu, Guanchen; Jæger, Tanja C.; Nielsen, Søren B.

    2017-01-01

    To better understand the interactions between nanoparticulated whey protein (NWP) and other milk proteins during acidification, milk model systems were diluted to 0.5% protein concentration and adjusted to pH of 6.0-4.5 following homogenisation and heat treatment. The diluted systems with different...... concentrations of NWP (0-0.5%) were characterised in terms of particle size, viscosity, surface charge and hydrophobicity. When pH was adjusted to 5.5, aggregation was initiated at levels of NWP (0.25-0.5%) leading to significant increase in particle size and viscosity. Pure NWP (0.5%) showed largest initial...

  11. In vitro studies of immunoglobulin heavy-chain binding protein (BiP, GRP78). Interactions of BiP with newly synthesized proteins and adenine nucleotides

    International Nuclear Information System (INIS)

    Kassenbrock, C.K.

    1988-01-01

    Here we examine the interaction of BiP with newly synthesized polypeptides in an in vitro protein translations-translocation system. We find that BiP forms tight complexes with nonglycosylated yeast invertase and incorrectly disulfide-bonded prolactin but not with glycosylated invertase or correctly disulfide-bonded prolactin. Moreover, BiP associates detectably only with completed chains of prolactin, not with chains undergoing synthesis. We conclude that BiP recognizes and binds with high affinity to aberrantly folded or aberrantly glycosylated polypeptides in vitro, but not to all nascent chains as they are folding. BiP also binds APT and can be purified by APT affinity chromatography. We show that submicromolar levels of ATP or ADP decrease the rate of absorption of 125 I-BiP to nitrocellulose filters coated with protein or nonionic detergents. ATP and ADP also protect portions of BiP from proteolytic degradation. In contrast, micromolar levels of AMP increase the rate of adsorption and the rate of proteolytic degradation of BiP. We also show that an ATPase activity co-purifies with BiP, but its slow turnover number suggests a regulatory, rather than a functional role. The BiP-associated ATPase shares several properties with the related cytoplasmic protein, HSC70/clathrin uncoating ATPase

  12. Deregulated expression of p16INK4a and p53 pathway members in benign and malignant myoepithelial tumours of the salivary glands

    NARCIS (Netherlands)

    Vékony, H.; Röser, K.; Löning, T.; Raaphorst, F.M.; Leemans, C.R.; van der Waal, I.; Bloemena, E.

    2008-01-01

    Aims: Myoepithelial salivary gland tumours are uncommon and follow an unpredictable biological course. The aim was to examine their molecular background to acquire a better understanding of their clinical behaviour. Methods and results: Expression of protein (E2F1, p16INK4a, p53, cyclin D1, Ki67 and

  13. Localization of microfibrillar-associated protein 4 (MFAP4 in human tissues: clinical evaluation of serum MFAP4 and its association with various cardiovascular conditions.

    Directory of Open Access Journals (Sweden)

    Helle Wulf-Johansson

    Full Text Available Microfibrillar-associated protein 4 (MFAP4 is located in the extracellular matrix (ECM. We sought to identify tissues with high levels of MFAP4 mRNA and MFAP4 protein expression. Moreover, we aimed to evaluate the significance of MFAP4 as a marker of cardiovascular disease (CVD and to correlate MFAP4 with other known ECM markers, such as fibulin-1, osteoprotegerin (OPG, and osteopontin (OPN. Quantitative real-time PCR demonstrated that MFAP4 mRNA was more highly expressed in the heart, lung, and intestine than in other elastic tissues. Immunohistochemical studies demonstrated high levels of MFAP4 protein mainly at sites rich in elastic fibers and within blood vessels in all tissues investigated. The AlphaLISA technique was used to determine serum MFAP4 levels in a clinical cohort of 172 patients consisting of 5 matched groups with varying degrees of CVD: 1: patients with ST elevation myocardial infarction (STEMI, 2: patients with non-STEMI, 3: patients destined for vascular surgery because of various atherosclerotic diseases (stable atherosclerotic disease, 4: apparently healthy individuals with documented coronary artery calcification (CAC-positive, and 5: apparently healthy individuals without signs of coronary artery calcification (CAC-negative. Serum MFAP4 levels were significantly lower in patients with stable atherosclerotic disease than CAC-negative individuals (p<0.05. Furthermore, lower serum MFAP4 levels were present in patients with stable atherosclerotic disease compared with STEMI and non-STEMI patients (p<0.05. In patients with stable atherosclerotic disease, positive correlations between MFAP4 and both fibulin-1 (ρ = 0.50; p = 0.0244 and OPG (ρ = 0.62; p = 0.0014 were found. Together, these results indicate that MFAP4 is mainly located in elastic fibers and is highly expressed in blood vessels. The present study suggests that serum MFAP4 varies in groups of patients with different cardiovascular conditions

  14. Human T-lymphotropic virus type 1 Tax protein complexes with P-TEFb and competes for Brd4 and 7SK snRNP/HEXIM1 binding.

    Science.gov (United States)

    Cho, Won-Kyung; Jang, Moon Kyoo; Huang, Keven; Pise-Masison, Cynthia A; Brady, John N

    2010-12-01

    Positive transcription elongation factor b (P-TEFb) plays an important role in stimulating RNA polymerase II elongation for viral and cellular gene expression. P-TEFb is found in cells in either an active, low-molecular-weight (LMW) form or an inactive, high-molecular-weight (HMW) form. We report here that human T-lymphotropic virus type 1 (HTLV-1) Tax interacts with the cyclin T1 subunit of P-TEFb, forming a distinct Tax/P-TEFb LMW complex. We demonstrate that Tax can play a role in regulating the amount of HMW complex present in the cell by decreasing the binding of 7SK snRNP/HEXIM1 to P-TEFb. This is seen both in vitro using purified Tax protein and in vivo in cells transduced with Tax expression constructs. Further, we find that a peptide of cyclin T1 spanning the Tax binding domain inhibits the ability of Tax to disrupt HMW P-TEFb complexes. These results suggest that the direct interaction of Tax with cyclin T1 can dissociate P-TEFb from the P-TEFb/7SK snRNP/HEXIM1 complex for activation of the viral long terminal repeat (LTR). We also show that Tax competes with Brd4 for P-TEFb binding. Chromatin immunoprecipitation (ChIP) assays demonstrated that Brd4 and P-TEFb are associated with the basal HTLV-1 LTR, while Tax and P-TEFb are associated with the activated template. Furthermore, the knockdown of Brd4 by small interfering RNA (siRNA) activates the HTLV-1 LTR promoter, which results in an increase in viral expression and production. Our studies have identified Tax as a regulator of P-TEFb that is capable of affecting the balance between its association with the large inactive complex and the small active complex.

  15. Functional analyses of GB virus B p13 protein: development of a recombinant GB virus B hepatitis virus with a p7 protein

    DEFF Research Database (Denmark)

    Takikawa, Shingo; Engle, Ronald E; Emerson, Suzanne U

    2006-01-01

    GB virus B (GBV-B), which infects tamarins, is the virus most closely related to hepatitis C virus (HCV). HCV has a protein (p7) that is believed to form an ion channel. It is critical for viability. In vitro studies suggest that GBV-B has an analogous but larger protein (p13). We found...... plus part of p7) was nonviable. However, a mutant lacking amino acid 614-669 (p6) produced high titer viremia and acute resolving hepatitis; viruses recovered from both animals lacked the deleted sequence and had no other mutations. Thus, p6 was dispensable but p7 was essential for infectivity...... processing at both sites, suggesting that p13 is processed into two components (p6 and p7). Mutants with substitution at amino acid 669 or 681 were viable in vivo, but the recovered viruses had changes at amino acid 669 and 681, respectively, which restored cleavage. A mutant lacking amino acid 614-681 (p6...

  16. Functional analyses of GB virus B p13 protein: Development of a recombinant GB virus B hepatitis virus with a p7 protein

    DEFF Research Database (Denmark)

    Takikawa, Shingo; Engle, Ronald E; Emerson, Suzanne U

    2006-01-01

    GB virus B (GBV-B), which infects tamarins, is the virus most closely related to hepatitis C virus (HCV). HCV has a protein (p7) that is believed to form an ion channel. It is critical for viability. In vitro studies suggest that GBV-B has an analogous but larger protein (p13). We found...... plus part of p7) was nonviable. However, a mutant lacking amino acid 614-669 (p6) produced high titer viremia and acute resolving hepatitis; viruses recovered from both animals lacked the deleted sequence and had no other mutations. Thus, p6 was dispensable but p7 was essential for infectivity...... processing at both sites, suggesting that p13 is processed into two components (p6 and p7). Mutants with substitution at amino acid 669 or 681 were viable in vivo, but the recovered viruses had changes at amino acid 669 and 681, respectively, which restored cleavage. A mutant lacking amino acid 614-681 (p6...

  17. The Effect of a High-Protein Diet and Exercise on Cardiac AQP7 and GLUT4 Gene Expression.

    Science.gov (United States)

    Palabiyik, Orkide; Karaca, Aziz; Taştekin, Ebru; Yamasan, Bilge Eren; Tokuç, Burcu; Sipahi, Tammam; Vardar, Selma Arzu

    2016-10-01

    High-protein (HP) diets are commonly consumed by athletes despite their potential health hazard, which is postulated to enforce a negative effect on bone and renal health. However, its effects on heart have not been known yet. Aquaporin-7 (AQP7) is an aquaglyceroporin that facilitates glycerol and water transport. Glycerol is an important cardiac energy production substrate, especially during exercise, in conjunction with fatty acids and glucose. Glucose transporter 4 (GLUT4) is an insulin-sensitive glucose transporter in heart. We aimed to investigate the effect of HPD on AQP7 and GLUT4 levels in the rat heart subjected to exercise. Male Sprague-Dawley rats were divided into control (n = 12), exercise (E) training (n = 10), HPD (n = 12), and HPD-E training (n = 9) groups. The HPD groups were fed a 45 % protein-containing diet 5 weeks. The HPD-E and E groups were performed the treadmill exercise during the 5-week study period. Real-time polymerase chain reaction and immunohistochemistry techniques were used to determine the gene expression and localization of AQP7 and GLUT4 in heart tissue. Results of relative gene expression were calculated by the 'Pfaffl' mathematical method using the REST program. Differences in AQP7 and GLUT4 gene expression were expressed as fold change compared to the control group. Heart weight/tibia ratio and ventricular wall thickness were evaluated as markers of cardiac hypertrophy. Further, serum glucose, glycerol, and insulin levels were also measured. AQP7 gene expression was found to be increased in the E (3.47-fold, p protein expression was also increased in the HPD and HPD-E groups (p protein expression was significantly increased in the E, HPD, and HPD-E groups compared to the control group (p = 0.024, p protein diet groups (C and E). Serum insulin levels were higher for HPD groups compared with the normal-protein diet groups (p < 0.001), whereas no differences were observed between the exercise and sedentary

  18. Preliminary X-ray crystallographic studies of yeast mitochondrial protein Tom70p

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yunkun [Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham (United States); McCombs, Debbie; Nagy, Lisa; DeLucas, Lawrence [Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham (United States); Sha, Bingdong, E-mail: bdsha@uab.edu [Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham (United States)

    2006-03-01

    Tom70p is an important translocase of the outer membrane complex member and a major surface receptor of the protein-translocation machinery in the outer mitochondrial membrane. To investigate the mechanism by which Tom70p functions to deliver the mitochondrial protein precursors, the cytosolic fragment of yeast Tom70p (cTom70p) has been crystallized. Protein translocations across mitochondrial membranes play critical roles in mitochondrion biogenesis. Protein transport from the cell cytosol to the mitochondrial matrix is carried out by the translocase of the outer membrane (TOM) complex and the translocase of the inner membrane (TIM) complexes. Tom70p is an important TOM-complex member and a major surface receptor of the protein-translocation machinery in the outer mitochondrial membrane. To investigate the mechanism by which Tom70p functions to deliver the mitochondrial protein precursors, the cytosolic fragment of yeast Tom70p (cTom70p) was crystallized. The crystals diffract to 3.2 Å using a synchrotron X-ray source and belong to space group P2{sub 1}, with unit-cell parameters a = 44.89, b = 168.78, c = 83.41 Å, α = 90.00, β = 102.74, γ = 90.00°. There are two Tom70p molecules in one asymmetric unit, which corresponds to a solvent content of approximately 51%. Structure determination by MAD methods is under way.

  19. Catalytic diversity and homotropic allostery of two Cytochrome P450 monooxygenase like proteins from Trichoderma brevicompactum.

    Science.gov (United States)

    Hussain, Razak; Kumari, Indu; Sharma, Shikha; Ahmed, Mushtaq; Khan, Tabreiz Ahmad; Akhter, Yusuf

    2017-12-01

    Trichothecenes are the secondary metabolites produced by Trichoderma spp. Some of these molecules have been reported for their ability to stimulate plant growth by suppressing plant diseases and hence enabling Trichoderma spp. to be efficiently used as biocontrol agents in modern agriculture. Many of the proteins involved in the trichothecenes biosynthetic pathway in Trichoderma spp. are encoded by the genes present in the tri cluster. Tri4 protein catalyzes three consecutive oxygenation reaction steps during biosynthesis of isotrichodiol in the trichothecenes biosynthetic pathway, while tri11 protein catalyzes the C4 hydroxylation of 12, 13-epoxytrichothec-9-ene to produce trichodermol. In the present study, we have homology modelled the three-dimensional structures of tri4 and tri11 proteins. Furthermore, molecular dynamics simulations were carried out to elucidate the mechanism of their action. Both tri4 and tri11 encode for cytochrome P450 monooxygenase like proteins. These data also revealed effector-induced allosteric changes on substrate binding at an alternative binding site and showed potential homotropic negative cooperativity. These analyses also showed that their catalytic mechanism relies on protein-ligand and protein-heme interactions controlled by hydrophobic and hydrogen-bonding interactions which orient the complex in optimal conformation within the active sites.

  20. Collision broadening and shift of the potassium 4p-ns and 4p-nd lines by argon

    International Nuclear Information System (INIS)

    Hohimer, J.P.; Gee, J.

    1982-01-01

    A two-step laser excitation technique was used to investigate the collisional broadening and shift of excited-state potassium transitions. Measurements were also made to determine that the broadening and shift constants were unaffected by optical pumping and saturation effects. Values for the argon collisional-broadening and shift constants for the potassium 4p-ns (n = 8--11) and 4p-nd (n = 6--9) transitions were determined from line-shape measurements. The values of these constants (in units of 10 -9 rad s -1 atom -1 cm 3 at 110 0 C) and their one-sigma statistical uncertainties are (4P/sub 1/2/-8S/sub 1/2/): γ = 17.03 +- 0.15, β = -14.58 +- 0.29; (4P/sub 3/2/-8S/sub 1/2/): γ = 17.45 +- 0.24, β = -14.71 +- 0.30; (4P/sub 1/2/-9S/sub 1/2/): γ = 17.29 +- 0.15, β = -24.16 +- 0.15; (4P/sub 3/2/-9S/sub 1/2/): γ = 17.35 +- 0.12, β = -24.16 +- 0.09; (4P/sub 1/2/-10S/sub 1/2/): γ = 15.62 +- 0.07, β = -29.49 +- 0.22; (4P/sub 3/2/-10S/sub 1/2/): γ = 15.80 +- 0.11, β = -29.86 +- 0.27; (4P/sub 1/2/-11S/sub 1/2/): γ = 12.69 +- 0.09, β = -33.66 +- 0.11; (4P/sub 3/2/-11S/sub 1/2/): γ = 12.85 +- 0.17, β = -35.10 +- 0.23; (4P/sub 1/2/-6D/sub 3/2/): γ = 13.75 +- 0.27, β = -8.28 +- 0.16; (4P/sub 3/2/-6D/sub 5/2/): γ = 15.15 +- 0.41, β = -8.96 +- 0.10; (4P/sub 1/2/-7D/sub 3/2/): γ = 18.60 +- 0.21, β = -16.00 +- 0.18; (4P/sub 3/2/-7D/sub 5/2/): γ = 19.64 +- 0.25, β = -15.16 +- 0.21; (4P/sub 1/2/-8D/sub 3/2/): γ = 19.94 +- 0.09, β = -24.14 +- 0.22; (4P/sub 3/2/-8D/sub 5/2/): γ = 19.80 +- 0.06, β = -24.16 +- 0.18; (4P/sub 1/2/-9D/sub 3/2/): γ = 17.40 +- 0.13, β = -30.17 +- 0.28; (4P/sub 3/2/-9D/sub 5/2/): γ = 17.50 +- 0.27, β = -29.47 +- 0.12. The overall accuracy of these measurements is estimated to be about 5%

  1. The prognostic significance of accumulation of p53 protein in stage III non-small cell lung cancer treated by radiotherapy

    International Nuclear Information System (INIS)

    Langendijk, J.A.; Thunnissen, F.B.J.M.; Lamers, R.J.S.; Jong, J.M.A. de; Velde, G.P.M. ten; Wouters, E.F.M.

    1995-01-01

    In the present study the prognostic significance of accumulation of nuclear p53 protein on survival and freedom from local progression was investigated. Formalin-fixed, paraffin-embedded sections obtained by bronchoscopy or mediastinoscopy were used to examine the expression of nuclear p53 protein using immunohistochemistry. In 37 cases (57%), overexpression of the p53 protein was detected. No relation was found between p53 expression and other pretreatment variables. Response to radiotherapy was found in 11 p53-negative cases (65%) versus 10 p53-positive cases (42%). Freedom from local progression was significantly better in the p53-negative cases as compared with the p53-positive cases. The p53-negative cases who responded to radiotherapy showed an excellent freedom from local progression rate after 2 years of 100%, whereas all p53-positive cases without response to radiotherapy showed local progression within 24 months. Overall survival between p53-negative and -positive cases did not differ, however the disease-specific survival was found to be worse in the p53-positive cases as compared to the negative cases (median survival 8.4 vs. 14.4 months (P < 0.05)). No correlation was found between p53 expression and the frequency of distant metastases. In conclusion, the results of this study suggest that p53 protein expression may be of prognostic value on freedom from local progression in non-small cell lung carcinoma

  2. Characterization of the sterol and phosphatidylinositol 4-phosphate binding properties of Golgi-associated OSBP-related protein 9 (ORP9.

    Directory of Open Access Journals (Sweden)

    Xinwei Liu

    Full Text Available Oxysterol binding protein (OSBP and OSBP-related proteins (ORPS have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE were poor ligands for OSBP. In contrast, both long (ORP9L and short (ORP9S variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus.

  3. Characterization of the sterol and phosphatidylinositol 4-phosphate binding properties of Golgi-associated OSBP-related protein 9 (ORP9).

    Science.gov (United States)

    Liu, Xinwei; Ridgway, Neale D

    2014-01-01

    Oxysterol binding protein (OSBP) and OSBP-related proteins (ORPS) have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL) to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE) were poor ligands for OSBP. In contrast, both long (ORP9L) and short (ORP9S) variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P) from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA) at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus.

  4. Msn2p/Msn4p act as a key transcriptional activator of yeast cytoplasmic thiol peroxidase II.

    Science.gov (United States)

    Hong, Seung-Keun; Cha, Mee-Kyung; Choi, Yong-Soo; Kim, Won-Cheol; Kim, Il-Han

    2002-04-05

    We observed that the transcription of Saccharomyces cerevisiae cytoplasmic thiol peroxidase type II (cTPx II) (YDR453C) is regulated in response to various stresses (e.g. oxidative stress, carbon starvation, and heat-shock). It has been suggested that both transcription-activating proteins, Yap1p and Skn7p, regulate the transcription of cTPx II upon exposure to oxidative stress. However, a dramatic loss of transcriptional response to various stresses in yeast mutant strains lacking both Msn2p and Msn4p suggests that the transcription factors act as a principal transcriptional activator. In addition to two Yap1p response elements (YREs), TTACTAA and TTAGTAA, the presence of two stress response elements (STREs) (CCCCT) in the upstream sequence of cTPx II also suggests that Msn2p/Msn4p could control stress-induced expression of cTPx II. Analysis of the transcriptional activity of site-directed mutagenesis of the putative STREs (STRE1 and STRE2) and YREs (TRE1 and YRE2) in terms of the activity of a lacZ reporter gene under control of the cTPx II promoter indicates that STRE2 acts as a principal binding element essential for transactivation of the cTPx II promoter. The transcriptional activity of the cTPx II promoter was exponentially increased after postdiauxic growth. The transcriptional activity of the cTPx II promoter is greatly increased by rapamycin. Deletion of Tor1, Tor2, Ras1, and Ras2 resulted in a considerable induction when compared with their parent strains, suggesting that the transcription of cTPx II is under negative control of the Ras/cAMP and target of rapamycin signaling pathways. Taken together, these results suggest that cTPx II is a target of Msn2p/Msn4p transcription factors under negative control of the Ras-protein kinase A and target of rapamycin signaling pathways. Furthermore, the accumulation of cTPx II upon exposure to oxidative stress and during the postdiauxic shift suggests an important antioxidant role in stationary phase yeast cells.

  5. Decreased extracellular pH inhibits osteogenesis through proton-sensing GPR4-mediated suppression of yes-associated protein.

    Science.gov (United States)

    Tao, Shi-Cong; Gao, You-Shui; Zhu, Hong-Yi; Yin, Jun-Hui; Chen, Yi-Xuan; Zhang, Yue-Lei; Guo, Shang-Chun; Zhang, Chang-Qing

    2016-06-03

    The pH of extracellular fluids is a basic property of the tissue microenvironment and is normally maintained at 7.40 ± 0.05 in humans. Many pathological circumstances, such as ischemia, inflammation, and tumorigenesis, result in the reduction of extracellular pH in the affected tissues. In this study, we reported that the osteogenic differentiation of BMSCs was significantly inhibited by decreases in the extracellular pH. Moreover, we demonstrated that proton-sensing GPR4 signaling mediated the proton-induced inhibitory effects on the osteogenesis of BMSCs. Additionally, we found that YAP was the downstream effector of GPR4 signaling. Our findings revealed that the extracellular pH modulates the osteogenic responses of BMSCs by regulating the proton-sensing GPR4-YAP pathway.

  6. Deletion of the pH sensor GPR4 decreases renal acid excretion.

    Science.gov (United States)

    Sun, Xuming; Yang, Li V; Tiegs, Brian C; Arend, Lois J; McGraw, Dennis W; Penn, Raymond B; Petrovic, Snezana

    2010-10-01

    Proton receptors are G protein-coupled receptors that accept protons as ligands and function as pH sensors. One of the proton receptors, GPR4, is relatively abundant in the kidney, but its potential role in acid-base homeostasis is unknown. In this study, we examined the distribution of GPR4 in the kidney, its function in kidney epithelial cells, and the effects of its deletion on acid-base homeostasis. We observed GPR4 expression in the kidney cortex, in the outer and inner medulla, in isolated kidney collecting ducts, and in cultured outer and inner medullary collecting duct cells (mOMCD1 and mIMCD3). Cultured mOMCD1 cells exhibited pH-dependent accumulation of intracellular cAMP, characteristic of GPR4 activation; GPR4 knockdown attenuated this accumulation. In vivo, deletion of GPR4 decreased net acid secretion by the kidney and resulted in a nongap metabolic acidosis, indicating that GPR4 is required to maintain acid-base homeostasis. Collectively, these findings suggest that GPR4 is a pH sensor with an important role in regulating acid secretion in the kidney collecting duct.

  7. The 4p-5d, 6d and 4p-6s, 7s transitions of Mo IX

    International Nuclear Information System (INIS)

    Khatoon, S.; Chaghtai, M.S.Z.; Rahimullah, K.

    1979-01-01

    The transitions 4p-5d, 6d and 4p-6s, 7s have been studied for the first time in Mo IX. The authors have identified 42 4p-5d, 36 4p-6d, 22 4p-6s and 22 4p-7s transitions, establishing 16 4p 3 5d, 14 4p 3 6d and all the ten 4p 3 6s, 7s levels of the spectrum concerned. The ionization energy is estimated to be (1 323 700 +- 700)cm -1 or (164.11 +- 0.09)eV. The spectrum was recorded in sliding and open spark discharges with a 5 m grazing incidence spectrograph of Lund University (Sweden) from about 40 A to 440 A. (Auth.)

  8. NMR of proteins (4Fe-4S): structural properties and intramolecular electron transfer; RMN de proteines (4Fe-4S): proprietes structurales et transfert electronique intramoleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Huber, J G

    1996-10-17

    NMR started to be applied to Fe-S proteins in the seventies. Its use has recently been enlarged as the problems arising from the paramagnetic polymetallic clusters ware overcome. Applications to [4Fe-4S] are presented herein. The information derived thereof deepens the understanding of the redox properties of these proteins which play a central role in the metabolism of bacterial cells. The secondary structure elements and the overall folding of Chromatium vinosum ferredoxin (Cv Fd) in solution have been established by NMR. The unique features of this sequence have been shown to fold as an {alpha} helix at the C-terminus and as a loop between two cysteines ligand of one cluster: these two parts localize in close proximity from one another. The interaction between nuclear and electronic spins is a source of additional structural information for (4Fe-AS] proteins. The conformation of the cysteine-ligands, as revealed by the Fe-(S{sub {gamma}}-C{sub {beta}}-H{sub {beta}})Cys dihedral angles, is related to the chemical shifts of the signals associated with the protons of these residues. The longitudinal relaxation times of the protons depend on their distance to the cluster. A quantitative relationship has been established and used to show that the solution structure of the high-potential ferredoxin from Cv differs significantly from the crystal structure around Phe-48. Both parameters (chemical shifts and longitudinal relaxation times) give also insight into the electronic and magnetic properties of the [4Fe-4S] clusters. The rate of intramolecular electron transfer between the two [4FE-4S] clusters of ferredoxins has been measured by NMR. It is far slower in the case of Cv Fd than for shorter ferredoxins. The difference may be associated with changes in the magnetic and/or electronic properties of one cluster. The strong paramagnetism of the [4Fe-4S] clusters, which originally limited the applicability of NMR to proteins containing these cofactors, has been proven

  9. Crystallization and preliminary X-ray characterization of a PaaX-like protein from Sulfolobus solfataricus P2

    International Nuclear Information System (INIS)

    Cao, Yi; Lou, Zhiyong; Sun, Yuna; Xue, Fei; Feng, Changzeng; Gong, Xiaocui; Yang, Dongmei; Bartlam, Mark; Meng, Zhaohui; Zhang, Keqin

    2009-01-01

    In this study, the PaaX-like protein from the hyperthermophilic archaeon Sulfolobus solfataricus P2 was successfully crystallized by the hanging-drop vapour-diffusion method using ammonium sulfate as a precipitant. PaaX is a global regulator of the phenylacetyl-coenzyme A catabolon that adjusts the expression of different operons to that of the paa-encoded central pathway. In this study, the PaaX-like protein from the hyperthermophilic archaeon Sulfolobus solfataricus P2 was successfully crystallized by the hanging-drop vapour-diffusion method using ammonium sulfate as a precipitant. Diffraction data were obtained to a resolution of 3.0 Å using synchrotron radiation at the Photon Factory. The crystal belonged to space group P321, with unit-cell parameters a = 86.4, b = 86.4, c = 105.5 Å

  10. 3D structure prediction of histone acetyltransferase (HAC proteins of the p300/CBP family and their interactome in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Amar Cemanovic

    2014-09-01

    Full Text Available Histone acetylation is an important posttranslational modification correlated with gene activation. In Arabidopsis thaliana the histone acetyltransferase (HAC proteins of the CBP family are homologous to animal p300/CREB (cAMP-responsive element-binding proteins, which are important histone acetyltransferases participating in many physiological processes, including proliferation, differentiation, and apoptosis. In this study the 3-D structure of all HAC protein subunits in Arabidopsis thaliana: HAC1, HAC2, HAC4, HAC5 and HAC12 is predicted by homology modeling and confirmed by Ramachandran plot analysis. The amino acid sequences HAC family members are highly similar to the sequences of the homologous human p300/CREB protein. Conservation of p300/CBP domains among the HAC proteins was examined further by sequence alignment and pattern search. The domains of p300/CBP required for the HAC function, such as PHD, TAZ and ZZ domains, are conserved in all HAC proteins. Interactome analysis revealed that HAC1, HAC5 and HAC12 proteins interact with S-adenosylmethionine-dependent methyltransferase domaincontaining protein that shows methyltransferase activity, suggesting an additional function of the HAC proteins. Additionally, HAC5 has a strong interaction value for the putative c-myb-like transcription factor MYB3R-4, which suggests that it also may have a function in regulation of DNA replication.

  11. Cross sections for electron-impact excitation of krypton from the levels of 4p6, 4p55s, and 4p55p configurations

    International Nuclear Information System (INIS)

    Zeng Jiaolong; Yuan Jianmin; Wu Jianhua; Jin Fengtao; Zhao Gang

    2005-01-01

    The electron-impact excitation cross sections at low electron energies have been calculated using a fully relativistic R-matrix method for transitions between levels of 4p 6 , 4p 5 5s, and 4p 5 5p configurations. To ensure the convergence of results, we have paid special attention to the factors that may affect the convergence of cross sections. For examples, we have included extensive configuration interactions in the wave-function expansion of the target states. A large enough R-matrix boundary has been taken to ensure the convergence of atomic wave functions. Contributions to cross sections from a large number of partial waves (up to J=39.5) have been explicitly calculated. The final results are in good agreement with recent experimental data by Jung et al. [Phys. Rev. Lett. 94, 163202 (2005)] after shifting the position of electron energy. The relative difference is about 10% for four transitions out of the metastable levels. The results eliminated the significant discrepancies between theory and experimental work on excitation cross sections out of the metastable levels reported in the literature

  12. Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd).

    Science.gov (United States)

    Ruiz, Geraldine Avila; Xiao, Wukai; van Boekel, Martinus; Minor, Marcel; Stieger, Markus

    2016-10-15

    The aim of this study was to determine the influence of extraction pH on heat-induced aggregation, gelation and microstructure of suspensions of protein isolates extracted from quinoa (Chenopodium quinoa Willd). Quinoa seed protein was extracted by alkaline treatment at various pH values (pH 8 (E8), 9 (E9), 10 (E10) and 11 (E11)), followed by acid precipitation. The obtained protein isolates were freeze dried. The protein isolates E8 and E9 resulted in a lower protein yield as well as less protein denaturation. These isolates also had a higher protein purity, more protein bands at higher molecular weights, and a higher protein solubility in the pH range of 3-4.5, compared to the isolates E10 and E11. Heating the 10%w/w protein isolate suspensions E8 and E9 led to increased aggregation, and semi-solid gels with a dense microstructure were formed. The isolate suspensions E10 and E11, on the other hand, aggregated less, did not form self-supporting gels and had loose particle arrangements. We conclude that extraction pH plays an important role in determining the functionality of quinoa protein isolates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Modulation of the Brd4/P-TEFb interaction by the human T-lymphotropic virus type 1 tax protein.

    Science.gov (United States)

    Cho, Won-Kyung; Zhou, Meisheng; Jang, Moon Kyoo; Huang, Keven; Jeong, Soo-Jin; Ozato, Keiko; Brady, John N

    2007-10-01

    Positive transcription elongation factor (P-TEFb), which is composed of CDK9 and cyclin T1, plays an important role in cellular and viral gene expression. Our lab has recently demonstrated that P-TEFb is required for Tax transactivation of the viral long terminal repeat (LTR). P-TEFb is found in two major complexes: the inactive form, which is associated with inhibitory subunits 7SK snRNA and HEXIM1, and the active form, which is associated with, at least in part, Brd4. In this study, we analyzed the effect of Brd4 on human T-lymphotropic virus type 1 (HTLV-1) transcription. Overexpression of Brd4 repressed Tax transactivation of the HTLV-1 LTR in a dose-dependent manner. In vitro binding studies suggest that Tax and Brd4 compete for binding to P-TEFb through direct interaction with cyclin T1. Tax interacts with cyclin T1 amino acids 426 to 533, which overlaps the region responsible for Brd4 binding. In vivo, overexpression of Tax decreased the amount of 7SK snRNA associated with P-TEFb and stimulates serine 2 phosphorylation of the RNA polymerase II carboxyl-terminal domain, suggesting that Tax regulates the functionality of P-TEFb. Our results suggest the possibility that Tax may compete and functionally substitute for Brd4 in P-TEFb regulation.

  14. Valproic acid exposure decreases Cbp/p300 protein expression and histone acetyltransferase activity in P19 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Christina L. [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Winn, Louise M., E-mail: winnl@queensu.ca [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); School of Environmental Studies, Queen' s University, Kingston, Ontario K7L 3N6 (Canada)

    2016-09-01

    The teratogenicity of the antiepileptic drug valproic acid (VPA) is well established and its inhibition of histone deacetylases (HDAC) is proposed as an initiating factor. Recently, VPA-mediated HDAC inhibition was demonstrated to involve transcriptional downregulation of histone acetyltransferases (HATs), which was proposed to compensate for the increased acetylation resulting from HDAC inhibition. Cbp and p300 are HATs required for embryonic development and deficiencies in either are associated with congenital malformations and embryolethality. The objective of the present study was to characterize Cbp/p300 following VPA exposure in P19 cells. Consistent with previous studies, exposure to 5 mM VPA over 24 h induced a moderate decrease in Cbp/p300 mRNA, which preceded a strong decrease in total cellular protein mediated by ubiquitin-proteasome degradation. Nuclear Cbp/p300 protein was also decreased following VPA exposure, although to a lesser extent. Total cellular and nuclear p300 HAT activity was reduced proportionately to p300 protein levels, however while total cellular HAT activity also decreased, nuclear HAT activity was unaffected. Using the Cbp/p300 HAT inhibitor C646, we demonstrated that HAT inhibition similarly affected many of the same endpoints as VPA, including increased reactive oxygen species and caspase-3 cleavage, the latter of which could be attenuated by pre-treatment with the antioxidant catalase. C646 exposure also decreased NF-κB/p65 protein, which was not due to reduced mRNA and was not attenuated with catalase pre-treatment. This study provides support for an adaptive HAT response following VPA exposure and suggests that reduced Cbp/p300 HAT activity could contribute to VPA-mediated alterations. - Highlights: • VPA exposure in vitro downregulates Cbp/p300 mRNA and induces protein degradation. • Cbp/p300 histone acetyltransferase activity is similarly reduced with VPA exposure. • Inhibition of Cbp/p300 acetyltransferase activity

  15. La{sub 3}Cu{sub 4}P{sub 4}O{sub 2} and La{sub 5}Cu{sub 4}P{sub 4}O{sub 4}Cl{sub 2}. Synthesis, structure and {sup 31}P solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Timo; Eul, Matthias; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Benndorf, Christopher; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. of Physics

    2016-04-01

    The phosphide oxides La{sub 3}Cu{sub 4}P{sub 4}O{sub 2} and La{sub 5}Cu{sub 4}P{sub 4}O{sub 4}Cl{sub 2} were synthesized from lanthanum, copper(I) oxide, red phosphorus, and lanthanum(III) chloride through a ceramic technique. Single crystals can be grown in a NaCl/KCl flux. Both structures were refined from single crystal X-ray diffractometer data: I4/mmm, a = 403.89(4), c = 2681.7(3) pm, wR2 = 0.0660, 269 F{sup 2} values, 19 variables for La{sub 3}Cu{sub 4}P{sub 4}O{sub 2} and a = 407.52(5), c = 4056.8(7) pm, wR2 = 0.0905, 426 F{sup 2} values, 27 variables for La{sub 5}Cu{sub 4}P{sub 4}O{sub 4}Cl{sub 2}. Refinement of the occupancy parameters revealed full occupancy for the oxygen sites in both compounds. The structures are composed of cationic (La{sub 2}O{sub 2}){sup 2+} layers and covalently bonded (Cu{sub 4}P{sub 4}){sup 5-} polyanionic layers with metallic characteristics, and an additional La{sup 3+} between two adjacent (Cu{sub 4}P{sub 4}){sup 5-} layers. The structure of La{sub 5}Cu{sub 4}P{sub 4}O{sub 4}Cl{sub 2} comprises two additional LaOCl slabs per unit cell. Temperature-dependent magnetic susceptibility studies revealed Pauli paramagnetism. The phosphide substructure of La{sub 3}Cu{sub 4}P{sub 4}O{sub 2} was studied by {sup 31}P solid state NMR spectroscopy. By using a suitable dipolar re-coupling approach the two distinct resonances belonging to the P{sub 2}{sup 4-} and the P{sup 3-} units could be identified.

  16. Isolation of soy bean protein P34 from oil bodies using hydrophobic interaction chromatography

    OpenAIRE

    Sewekow, E.; Keßler, L.; Seidel-Morgenstern, A.; Rothkoetter, H.

    2008-01-01

    Abstract Background Soybeans play a prominent role in allergologic research due to the high incidence of allergic reactions. For detailed studies on specific proteins it is necessary to have access to a large amount of pure substance. Results In this contribution, a method for purifying soybean (Glycine max) protein P34 (also called Gly m Bd 30 K or Gly m 1) using hydrophobic interaction chromatography is presented. After screening experiments using 1 mL HiTrap columns, Butyl Sepharose 4 FF w...

  17. The DNA binding and activation domains of Gal4p are sufficient for conveying its regulatory signals.

    OpenAIRE

    Ding, W V; Johnston, S A

    1997-01-01

    The transcriptional activation function of the Saccharomyces cerevisiae activator Gal4p is known to rely on a DNA binding activity at its amino terminus and an activation domain at its carboxy terminus. Although both domains are required for activation, truncated forms of Gal4p containing only these domains activate poorly in vivo. Also, mutations in an internal conserved region of Gal4p inactivate the protein, suggesting that this internal region has some function critical to the activity of...

  18. Mutant p53 protein in serum could be used as a molecular marker in human breast cancer.

    Science.gov (United States)

    Balogh, G A; Mailo, D A; Corte, M M; Roncoroni, P; Nardi, H; Vincent, E; Martinez, D; Cafasso, M E; Frizza, A; Ponce, G; Vincent, E; Barutta, E; Lizarraga, P; Lizarraga, G; Monti, C; Paolillo, E; Vincent, R; Quatroquio, R; Grimi, C; Maturi, H; Aimale, M; Spinsanti, C; Montero, H; Santiago, J; Shulman, L; Rivadulla, M; Machiavelli, M; Salum, G; Cuevas, M A; Picolini, J; Gentili, A; Gentili, R; Mordoh, J

    2006-04-01

    p53 wild-type is a tumor suppressor gene involved in DNA gene transcription or DNA repair mechanisms. When damage to DNA is unrepairable, p53 induces programmed cell death (apoptosis). The mutant p53 gene is the most frequent molecular alteration in human cancer, including breast cancer. Here, we analyzed the genetic alterations in p53 oncogene expression in 55 patients with breast cancer at different stages and in 8 normal women. We measured by ELISA assay the serum levels of p53 mutant protein and p53 antibodies. Immunohistochemistry and RT-PCR using specific p53 primers as well as mutation detection by DNA sequencing were also evaluated in breast tumor tissue. Serological p53 antibody analysis detected 0/8 (0%), 0/4 (0%) and 9/55 (16.36%) positive cases in normal women, in patients with benign breast disease and in breast carcinoma, respectively. We found positive p53 mutant in the sera of 0/8 (0.0%) normal women, 0/4 (0%) with benign breast disease and 29/55 (52.72%) with breast carcinoma. Immunohistochemistry evaluation was positive in 29/55 (52.73%) with mammary carcinoma and 0/4 (0%) with benign breast disease. A very good correlation between p53 mutant protein detected in serum and p53 accumulation by immunohistochemistry (83.3% positive in both assays) was found in this study. These data suggest that detection of mutated p53 could be a useful serological marker for diagnostic purposes.

  19. Trisomy 12p and monosomy 4p: phenotype-genotype correlation.

    Science.gov (United States)

    Benussi, Daniela Gambel; Costa, Paola; Zollino, Marcella; Murdolo, Marina; Petix, Vincenzo; Carrozzi, Marco; Pecile, Vanna

    2009-04-01

    4p Monosomy and 12p trisomy have been discussed and redefined along with recently reviewed chromosomal syndromes. 12p Trisomy syndrome is characterized by normal or increased birth weight, developmental delay with early hypotonia, psychomotor delay, and typical facial appearance. Most likely, the observed phenotypic variability depends on the type and extent of the associated partial monosomy. Partial deletions of the short arm of one chromosome 4 cause the Wolf-Hirschhorn syndrome (WHS). Affected patients present Greek helmet face, growth and mental retardation, hypotonia, and seizures. The combination of these characteristics constitutes the phenotypic core of WHS. We present a clinical and molecular cytogenetic characterization of a 4-year old mentally retarded girl with macrosomy, facial dysmorphisms, and epilepsy, in whom an unbalanced t(4;12)(p16.3;p13.3) translocation was detected, giving rise to partial 4p monosomy and partial 12p trisomy. Because the patient shows most of the phenotypic characteristics of 12p trisomy, this case could contribute to a better definition of the duplicate critical region that determines the phenotype of the 12p trisomy syndrome.

  20. Kinetics of protein adsorption/desorption mediated by pH-responsive polymer layer

    International Nuclear Information System (INIS)

    Su Xiao-Hang; Lei Qun-Li; Ren Chun-Lai

    2015-01-01

    We propose a new way of regulating protein adsorption by using a pH-responsive polymer. According to the theoretical results obtained from the molecular theory and kinetic approaches, both thermodynamics and kinetics of protein adsorption are verified to be well controlled by the solution pH. The kinetics and the amount of adsorbed proteins at equilibrium are greatly increased when the solution environment changes from acid to neutral. The reason is that the increased pH promotes the dissociation of the weak polyelectrolyte, resulting in more charged monomers and more stretched chains. Thus the steric repulsion within the polymer layer is weakened, which effectively lowers the barrier felt by the protein during the process of adsorption. Interestingly, we also find that the kinetics of protein desorption is almost unchanged with the variation of pH. It is because although the barrier formed by the polymer layer changes along with the change of pH, the potential at contact with the surface varies equally. Our results may provide useful insights into controllable protein adsorption/desorption in practical applications. (paper)

  1. Protein Denaturation on p-T Axes--Thermodynamics and Analysis.

    Science.gov (United States)

    Smeller, László

    2015-01-01

    Proteins are essential players in the vast majority of molecular level life processes. Since their structure is in most cases substantial for their correct function, study of their structural changes attracted great interest in the past decades. The three dimensional structure of proteins is influenced by several factors including temperature, pH, presence of chaotropic and cosmotropic agents, or presence of denaturants. Although pressure is an equally important thermodynamic parameter as temperature, pressure studies are considerably less frequent in the literature, probably due to the technical difficulties associated to the pressure studies. Although the first steps in the high-pressure protein study have been done 100 years ago with Bridgman's ground breaking work, the field was silent until the modern spectroscopic techniques allowed the characterization of the protein structural changes, while the protein was under pressure. Recently a number of proteins were studied under pressure, and complete pressure-temperature phase diagrams were determined for several of them. This review summarizes the thermodynamic background of the typical elliptic p-T phase diagram, its limitations and the possible reasons for deviations of the experimental diagrams from the theoretical one. Finally we show some examples of experimentally determined pressure-temperature phase diagrams.

  2. The Effect of NaOH Concentration on pH, Egg White Protein Content and Yolk Colour Pidan Egg

    Directory of Open Access Journals (Sweden)

    Herly Evanuarini

    2017-11-01

    Full Text Available The purpose of this research was to determine the best treatment NaOH addition on pidan eggs. The materials used for this research was pidan made from duck egg, NaOH, salt, black tea and water. The method was used experiment laboratory and Completely Randomized Design (CRD using 4 treatments and 4 replications. The treatments were T0 (control, T1 (1.4%, T2 (2.8% and T3 (4.2%. The data were analyzed by Analysis of Variance (ANOVA if there was significantly continued by Duncan’s Multiple Range Test (DMRT. The result showed that NaOH concentration on pidan eggs gave significant effect (P<0.05 on albumen protein content, gave highly significant (P<0.01 on pH value and yolk colour. The conclusion of this research was 4.2% NaOH addition on pidan egg was the best treatment with gave result yolk and albumen pH: 10.69; 10.25, albumen protein content 26.89%, egg yolk colour L* (lightness, a* (redness, b* (yellowness:  26.89; 11.33, and 26.77. The suggestion of this research was ussed different immersion time on pidan egg production.

  3. Contextual Role of a Salt Bridge in the Phage P22 Coat Protein I-Domain*

    Science.gov (United States)

    Harprecht, Christina; Okifo, Oghenefejiro; Robbins, Kevin J.; Motwani, Tina; Alexandrescu, Andrei T.; Teschke, Carolyn M.

    2016-01-01

    The I-domain is a genetic insertion in the phage P22 coat protein that chaperones its folding and stability. Of 11 acidic residues in the I-domain, seven participate in stabilizing electrostatic interactions with basic residues across elements of secondary structure, fastening the β-barrel fold. A hydrogen-bonded salt bridge between Asp-302 and His-305 is particularly interesting as Asp-302 is the site of a temperature-sensitive-folding mutation. The pKa of His-305 is raised to 9.0, indicating the salt bridge stabilizes the I-domain by ∼4 kcal/mol. Consistently, urea denaturation experiments indicate the stability of the WT I-domain decreases by 4 kcal/mol between neutral and basic pH. The mutants D302A and H305A remove the pH dependence of stability. The D302A substitution destabilizes the I-domain by 4 kcal/mol, whereas H305A had smaller effects, on the order of 1–2 kcal/mol. The destabilizing effects of D302A are perpetuated in the full-length coat protein as shown by a higher sensitivity to protease digestion, decreased procapsid assembly rates, and impaired phage production in vivo. By contrast, the mutants have only minor effects on capsid expansion or stability in vitro. The effects of the Asp-302–His-305 salt bridge are thus complex and context-dependent. Substitutions that abolish the salt bridge destabilize coat protein monomers and impair capsid self-assembly, but once capsids are formed the effects of the substitutions are overcome by new quaternary interactions between subunits. PMID:27006399

  4. Prion protein (PrP) gene-knockout cell lines: insight into functions of the PrP

    Science.gov (United States)

    Sakudo, Akikazu; Onodera, Takashi

    2015-01-01

    Elucidation of prion protein (PrP) functions is crucial to fully understand prion diseases. A major approach to studying PrP functions is the use of PrP gene-knockout (Prnp−/−) mice. So far, six types of Prnp−/− mice have been generated, demonstrating the promiscuous functions of PrP. Recently, other PrP family members, such as Doppel and Shadoo, have been found. However, information obtained from comparative studies of structural and functional analyses of these PrP family proteins do not fully reveal PrP functions. Recently, varieties of Prnp−/− cell lines established from Prnp−/− mice have contributed to the analysis of PrP functions. In this mini-review, we focus on Prnp−/− cell lines and summarize currently available Prnp−/− cell lines and their characterizations. In addition, we introduce the recent advances in the methodology of cell line generation with knockout or knockdown of the PrP gene. We also discuss how these cell lines have provided valuable insights into PrP functions and show future perspectives. PMID:25642423

  5. Effect of pH and Recombinant Barley (Hordeum vulgare L.) Endoprotease B2 on Degradation of Proteins in Soaked Barley

    DEFF Research Database (Denmark)

    Christensen, Jesper Bjerg; Dionisio, Giuseppe; Poulsen, Hanne Damgaard

    2014-01-01

    .3. Solubilized and degraded proteins evaluated by biuret, SDS-PAGE, and differential proteomics revealed that pH 4.3 had the greatest impact on both solubilization and degradation. In order to boost proteolysis, the recombinant barley endoprotease B2 (rec-HvEP-B2) was included after 8 h using the pH 4.3 regime......Nonfermented soaking of barley feedstuff has been established as an in vitro procedure prior to the feeding of pigs as it can increase protein digestibility. In the current study, two feed cultivars of barley (Finlissa and Zephyr) were soaked in vitro either nonbuffered or buffered at pH 3.6 and 4....... Proteolysis evaluated by SDS-PAGE and differential proteomics confirmed a powerful effect of adding rec-HvEP-B2 to the soaked barley, regardless of the genotype. Our study addresses the use of rec-HvEP-B2 as an effective feed enzyme protease. HvEP-B2 has the potential to increase the digestibility of protein...

  6. Unfolded Protein Response-regulated Drosophila Fic (dFic) Protein Reversibly AMPylates BiP Chaperone during Endoplasmic Reticulum Homeostasis*

    Science.gov (United States)

    Ham, Hyeilin; Woolery, Andrew R.; Tracy, Charles; Stenesen, Drew; Krämer, Helmut; Orth, Kim

    2014-01-01

    Drosophila Fic (dFic) mediates AMPylation, a covalent attachment of adenosine monophosphate (AMP) from ATP to hydroxyl side chains of protein substrates. Here, we identified the endoplasmic reticulum (ER) chaperone BiP as a substrate for dFic and mapped the modification site to Thr-366 within the ATPase domain. The level of AMPylated BiP in Drosophila S2 cells is high during homeostasis, whereas the level of AMPylated BiP decreases upon the accumulation of misfolded proteins in the ER. Both dFic and BiP are transcriptionally activated upon ER stress, supporting the role of dFic in the unfolded protein response pathway. The inactive conformation of BiP is the preferred substrate for dFic, thus endorsing a model whereby AMPylation regulates the function of BiP as a chaperone, allowing acute activation of BiP by deAMPylation during an ER stress response. These findings not only present the first substrate of eukaryotic AMPylator but also provide a target for regulating the unfolded protein response, an emerging avenue for cancer therapy. PMID:25395623

  7. Association between microfibrillar-associated protein 4 (MFAP4) and micro- and macrovascular complications in long-term type 1 diabetes mellitus.

    Science.gov (United States)

    Blindbæk, S L; Schlosser, A; Green, A; Holmskov, U; Sorensen, G L; Grauslund, J

    2017-04-01

    To evaluate microfibrillar-associated protein 4 (MFAP4) as a marker of micro- and macrovascular complications in patients with type 1 diabetes. This cross-sectional study included 203 persons with a long duration of type 1 diabetes from a population-based cohort ascertained in the former Funen County, Denmark. Detection of plasma-MFAP4 (pMFAP4) was performed by the AlphaLISA Technique. Diabetic retinopathy (DR) was graded in accordance with the Early Treatment Diabetic Retinopathy Study adaptation of the modified Airlie House classification. A monofilament test was used to test for neuropathy, and nephropathy was evaluated in a single spot urine sample. Data describing macrovascular disease were obtained from the Danish National Patient Register. Median age and duration of diabetes were 58.7 and 43 years, respectively, and 61% were males. High levels of pMFAP4 were found in participants of old age, in women and in non-smokers (p diabetic neuropathy (OR 2.47 for quartile 4 versus quartile 1, 95% CI 1.01-6.03). No association was found between pMFAP4 and proliferative diabetic retinopathy, nephropathy or macrovascular disease. No association between pMFAP4 and macrovascular vascular complications was found. However, high levels of pMFAP4 correlated independently with diabetic neuropathy. Further studies on the predictive value of increased circulating MFAP4 in diabetic neuropathy are warranted.

  8. Evidence for the interaction of the regulatory protein Ki-1/57 with p53 and its interacting proteins

    International Nuclear Information System (INIS)

    Nery, Flavia C.; Rui, Edmilson; Kuniyoshi, Tais M.; Kobarg, Joerg

    2006-01-01

    Ki-1/57 is a cytoplasmic and nuclear phospho-protein of 57 kDa and interacts with the adaptor protein RACK1, the transcription factor MEF2C, and the chromatin remodeling factor CHD3, suggesting that it might be involved in the regulation of transcription. Here, we describe yeast two-hybrid studies that identified a total of 11 proteins interacting with Ki-1/57, all of which interact or are functionally associated with p53 or other members of the p53 family of proteins. We further found that Ki-1/57 is able to interact with p53 itself in the yeast two-hybrid system when the interaction was tested directly. This interaction could be confirmed by pull down assays with purified proteins in vitro and by reciprocal co-immunoprecipitation assays from the human Hodgkin analogous lymphoma cell line L540. Furthermore, we found that the phosphorylation of p53 by PKC abolishes its interaction with Ki-1/57 in vitro

  9. Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs

    OpenAIRE

    Rong, Liwei; Livingstone, Mark; Sukarieh, Rami; Petroulakis, Emmanuel; Gingras, Anne-Claude; Crosby, Katherine; Smith, Bradley; Polakiewicz, Roberto D.; Pelletier, Jerry; Ferraiuolo, Maria A.; Sonenberg, Nahum

    2008-01-01

    Eukaryotic initiation factor (eIF) 4E, the mRNA 5′-cap-binding protein, mediates the association of eIF4F with the mRNA 5′-cap structure to stimulate cap-dependent translation initiation in the cytoplasm. The assembly of eIF4E into the eIF4F complex is negatively regulated through a family of repressor proteins, called the eIF4E-binding proteins (4E-BPs). eIF4E is also present in the nucleus, where it is thought to stimulate nuclear-cytoplasmic transport of certain mRNAs. eIF4E is transported...

  10. The 4p3(2P) ns, nd configurations of Se I

    International Nuclear Information System (INIS)

    Mazzoni, M.

    1989-01-01

    The photoabsorption spectrum of Se I has been photographed in the 1100-900 A wavelength region, using a flash-pyrolisys system: About twenty lines were observed, most of them for the first time. With the support of Hartree-Fock calculations they have been identified and assigned to the 4p 44p 3 ns 3 P(n=7-14) and 4p 44p 3 nd 3 D (n=5-17) series, both converging on the limit 4p 3 ( 2 P 3/2 ). (orig.)

  11. Positive expression of p53, c-erbB2 and MRP proteins is correlated with survival rates of NSCLC patients.

    Science.gov (United States)

    Xu, Yujin; Wang, Liancong; Zheng, Xiao; Liu, Guan; Wang, Yuezhen; Lai, Xiaojing; Li, Jianqiang

    2013-05-01

    The incidence of lung cancer is one of the leading causes of mortality. This study aimed to investigate the prognostic and predictive importance of p53, c-erbB2 and multidrug resistance proteins (MRP) expression and its correlation with clinicopathological characteristics of patients with non-small cell lung cancer (NSCLC). Expression of p53, c-erbB2 and MRP proteins in 152 tumor samples from resected primary NSCLCs was detected by immunohistochemical staining. The correlation of proteins, survival and clinicopathological characteristics was investigated in 152 patients undergoing potentially curative surgery. The positive rates of p53, c-erbB2 and MRP expression were 53.9 (82/152), 44.1 (67/152) and 43.4% (66/152), respectively. Overall survival rates of patients were markedly correlated with the overexpression of p53, c-erbB2 and MRP proteins. One, 2- and 3-year survival rates of patients exhibiting a positive expression of these proteins were 72.6, 54.8 and 32.2%, respectively. These rates were lower compared with those of patients with a negative expression of these proteins (92.1, 78.5 and 63.4%) (P=0.02, 0.01 or 0.00, respectively). Results of Cox's regression analysis showed that c-erbB2 expression and cell differentiation were independent prognostic factors in patients with NSCLC. These findings suggest that the positive expression of p53, c-erbB2 and MRP proteins is correlated with the survival rates of NSCLC patients. Detection of positive p53, c-erbB2 and MRP expression may be a useful predictive indicator of prognosis. Positive c-erbB2 expression is an independent prognostic factor, with a potential to be used as a predictive indicator of chemotherapy efficacy in NSCLC patients.

  12. Electrochemical sensing of tumor suppressor protein p53-deoxyribonucleic acid complex stability at an electrified interface

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil; Černocká, Hana; Ostatná, Veronika; Navrátilová, Lucie; Brázdová, Marie

    2014-01-01

    Roč. 828, MAY2014 (2014), s. 1-8 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GAP301/11/2055; GA ČR(CZ) GA13-00956S; GA ČR(CZ) GA13-36108S Institutional support: RVO:68081707 Keywords : Deoxyribonucleic acid-protein binding * Tumor suppressor protein p53 * Electrochemical sensing Subject RIV: BO - Biophysics Impact factor: 4.513, year: 2014

  13. TRPM4 protein expression in prostate cancer

    DEFF Research Database (Denmark)

    Berg, Kasper Drimer; Soldini, Davide; Jung, Maria

    2016-01-01

    BACKGROUND: Transient receptor potential cation channel, subfamily M, member 4 (TRPM4) messenger RNA (mRNA) has been shown to be upregulated in prostate cancer (PCa) and might be a new promising tissue biomarker. We evaluated TRPM4 protein expression and correlated the expression level.......79-2.62; p = 0.01-0.03 for the two observers) when compared to patients with a lower staining intensity. CONCLUSIONS: TRPM4 protein expression is widely expressed in benign and cancerous prostate tissue, with highest staining intensities found in PCa. Overexpression of TRPM4 in PCa (combination of high...

  14. Flow cytometric analysis of p21 protein expression on irradiated human lymphocytes; Analise por citometria de fluxo da expressao da proteina p21 em linfocitos humanos irradiados

    Energy Technology Data Exchange (ETDEWEB)

    Santos, N.F.G.; Amaral, A., E-mail: neyliane@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear. Laboratorio de Modelagem e Biodosimetria Aplicada; Freitas-Silva, R. [Universidade Federal de Pernambuco (UFPE), Garanhuns, PE (Brazil). Departamento de Ciencias Naturais e Exatas; Pereira, V.R.A. [Fundacao Oswaldo Cruz (FIOCRUZ), Recife, PE (Brazil). Centro de Pesquisas Aggeu Magalhaes. Departamento de Imunologia. Lab. de Imunoparasitologia; Tasat, D.R. [Universidad Nacional de General San Martin, Buenos Aires (Argentina). Escuela de Ciencia y Tecnologia. Laboratorio de Biologia Celular del Pulmon

    2013-08-15

    Cell cycle blockage in G1 is a mechanism p21 protein-regulated and coupled to DNA damage response to permit genetic content analysis, damage repair and cell death. Analysis of proteins that participates of this response has progressed with new analytic tools, and data contributes to comprehension of radioinduced molecular events as well as to new approaches on practices that employ ionizing radiation. On this perspective, the aim of this research was to evaluate, by flow cytometry, p21 expression on irradiated human lymphocytes, maintained under different experimental conditions. Peripheral blood samples from 10 healthy subjects were irradiated with doses of 0 (non-irradiated), 1, 2 and 4 Gy. Lymphocytes were processed to analysis on ex vivo (no cultured) condition and after 24; 48 and 72 hours culture, with and without phytohemagglutinin stimulation. p21 protein expression levels were measured by flow cytometry, as percentage values. Results indicate that flow cytometric assay allows detection of changes on p21 expression, since it was detected significant increase on phytohemagglutinin-stimulated samples, for all times, against basal expression (ex vivo). However, it was not observed significant alterations on p21 protein radioinduced levels, for all doses, times and culture conditions analyzed. These results not indicate so p21 protein as bioindicator of ionizing radiation exposure. Nevertheless, data confirmation may to require analysis of a more numerous population. (author)

  15. The expressions of P53 protein and proliferating cell nuclear antigen in specimens by CT-guidance percutaneous lung biopsy

    International Nuclear Information System (INIS)

    Zhuang Yiping; Shen Zongli; Zhang Jin; Kang Zheng; Zhu Yueqing; Feng Yong; Shen Wenrong; Wang Yaping

    2004-01-01

    Objective: To evaluate relations between lung cancer and the expressions of P53 protein together with proliferating cell nuclear antigen (PCNA) in specimens of lung lesions by needle biopsy. Methods: CT-guidance percutaneous biopsy of lung lesions were performed in 66 patients with the determination of expressions of p53 protein and PCNA by flow cytometer (FCM). Results: 1. The sensitivity of CT-guidance percutaneous biopsy was 94.3% in 53 cases of lung cancer with the diagnostic accuracy of 90.9% totally. The complication rate of pneumothorax was 4.6%. 2. The expression of P53 protein was (29.9 ± 2.7)% in lung cancer (53 cases), while (17.9 ± 2.8)% in benign lesions (13 cases) (t=2.0, P 2 =6.10, P 2 =9.71, P 0.05). Conclusions: FCM plays and valuable role in determining the expression of P53 protein and PCNA in the specimen of lung cancer by CT-guided percutaneous biopsy. The expression of p53 and PCNA may be useful in the diagnosis of lung cancer by providing the relation between imaging of lung cancer and the molecular mechanism, and furthermore revealing the characteristics of molecular biology of lung cancer at protein level. (authors)

  16. Casp8p41: The Protean Mediator of Death in CD4 T-cells that Replicate HIV

    Directory of Open Access Journals (Sweden)

    Rahul Sampath

    2016-01-01

    Full Text Available HIV cure is now the focus of intense research after Timothy Ray Brown (the Berlin patient set the precedent of being the first and only person cured. A major barrier to achieving this goal on a meaningful scale is an elimination of the latent reservoir, which is thought to comprise CD4-positive cells that harbor integrated, replication-competent HIV provirus. These cells do not express viral proteins, are indistinguishable from uninfected CD4 cells, and are thought to be responsible for HIV viral rebound–-that occurs within weeks of combination anti retroviral therapy (cART interruption. Modalities to engineer transcriptional stimulation (reactivation of this dormant integrated HIV provirus, leading to expression of cytotoxic viral proteins, are thought to be a specific way to eradicate the latently infected CD4 pool and are becoming increasingly relevant in the era of HIV cure. HIV protease is one such protein produced after HIV reactivation that cleaves procaspase-8 to generate a novel protein Casp8p41. Casp8p41 then binds to the BH3 domain of BAK, leading to BAK oligomerization, mitochondrial depolarization, and apoptosis. In central memory T cells (TCMs from HIV-infected patients, an elevated Bcl-2/procaspase-8 ratio was observed, and Casp8p41 binding to Bcl-2 was associated with a lack of reactivation-induced cell death. This was reversed by priming cells with a specific Bcl-2 antagonist prior to reactivation, resulting in increased cell death and decreased HIV DNA in a Casp8p41-dependent pathway. This review describes the biology, clinical relevance, and implications of Casp8p41 for a potential cure.

  17. PtdIns(3,4,5)P3 is a regulator of myosin-X localization and filopodia formation

    DEFF Research Database (Denmark)

    Plantard, Laure; Arjonen, Antti; Lock, John G

    2010-01-01

    Phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] is a key regulator of cell signaling that acts by recruiting proteins to the cell membrane, such as at the leading edge during cell migration. Here, we show that PtdIns (3,4,5)P3 plays a central role in filopodia formation via the bindi...... endosomal vesicles. Given that the localization of Myo10 was dynamically restored to filopodia upon reinstatement of PtdIns(3,4,5)P3-binding, our results indicate that PtdIns(3,4,5)P3 binding to the Myo10-PH2 domain is involved in Myo10 trafficking and regulation of filopodia dynamics....

  18. The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation.

    Science.gov (United States)

    Baumberger, Nicolas; Tsai, Ching-Hsui; Lie, Miranda; Havecker, Ericka; Baulcombe, David C

    2007-09-18

    Plant and animal viruses encode suppressor proteins of an adaptive immunity mechanism in which viral double-stranded RNA is processed into 21-25 nt short interfering (si)RNAs. The siRNAs guide ARGONAUTE (AGO) proteins so that they target viral RNA. Most viral suppressors bind long dsRNA or siRNAs and thereby prevent production of siRNA or binding of siRNA to AGO. The one exception is the 2b suppressor of Cucumoviruses that binds to and inhibits AGO1. Here we describe a novel suppressor mechanism in which a Polerovirus-encoded F box protein (P0) targets the PAZ motif and its adjacent upstream sequence in AGO1 and mediates its degradation. F box proteins are components of E3 ubiquitin ligase complexes that add polyubiquitin tracts on selected lysine residues and thereby mark a protein for proteasome-mediated degradation. With P0, however, the targeted degradation of AGO is insensitive to inhibition of the proteasome, indicating that the proteasome is not involved. We also show that P0 does not block a mobile signal of silencing, indicating that the signal molecule does not have AGO protein components. The ability of P0 to block silencing without affecting signal movement may contribute to the phloem restriction of viruses in the Polerovirus group.

  19. In Silico Characterization and Structural Modeling of Dermacentor andersoni p36 Immunosuppressive Protein

    Directory of Open Access Journals (Sweden)

    Martin Omulindi Oyugi

    2018-01-01

    Full Text Available Ticks cause approximately $17–19 billion economic losses to the livestock industry globally. Development of recombinant antitick vaccine is greatly hindered by insufficient knowledge and understanding of proteins expressed by ticks. Ticks secrete immunosuppressant proteins that modulate the host’s immune system during blood feeding; these molecules could be a target for antivector vaccine development. Recombinant p36, a 36 kDa immunosuppressor from the saliva of female Dermacentor andersoni, suppresses T-lymphocytes proliferation in vitro. To identify potential unique structural and dynamic properties responsible for the immunosuppressive function of p36 proteins, this study utilized bioinformatic tool to characterize and model structure of D. andersoni p36 protein. Evaluation of p36 protein family as suitable vaccine antigens predicted a p36 homolog in Rhipicephalus appendiculatus, the tick vector of East Coast fever, with an antigenicity score of 0.7701 that compares well with that of Bm86 (0.7681, the protein antigen that constitute commercial tick vaccine Tickgard™. Ab initio modeling of the D. andersoni p36 protein yielded a 3D structure that predicted conserved antigenic region, which has potential of binding immunomodulating ligands including glycerol and lactose, found located within exposed loop, suggesting a likely role in immunosuppressive function of tick p36 proteins. Laboratory confirmation of these preliminary results is necessary in future studies.

  20. Solution structure of the Equine Infectious Anemia Virus p9 protein: a rationalization of its different ALIX binding requirements compared to the analogous HIV-p6 protein

    Directory of Open Access Journals (Sweden)

    Henklein Peter

    2009-12-01

    Full Text Available Abstract Background The equine infection anemia virus (EIAV p9 Gag protein contains the late (L- domain required for efficient virus release of nascent virions from the cell membrane of infected cell. Results In the present study the p9 protein and N- and C-terminal fragments (residues 1-21 and 22-51, respectively were chemically synthesized and used for structural analyses. Circular dichroism and 1H-NMR spectroscopy provide the first molecular insight into the secondary structure and folding of this 51-amino acid protein under different solution conditions. Qualitative 1H-chemical shift and NOE data indicate that in a pure aqueous environment p9 favors an unstructured state. In its most structured state under hydrophobic conditions, p9 adopts a stable helical structure within the C-terminus. Quantitative NOE data further revealed that this α-helix extends from Ser-27 to Ser-48, while the N-terminal residues remain unstructured. The structural elements identified for p9 differ substantially from that of the functional homologous HIV-1 p6 protein. Conclusions These structural differences are discussed in the context of the different types of L-domains regulating distinct cellular pathways in virus budding. EIAV p9 mediates virus release by recruiting the ALG2-interacting protein X (ALIX via the YPDL-motif to the site of virus budding, the counterpart of the YPXnL-motif found in p6. However, p6 contains an additional PTAP L-domain that promotes HIV-1 release by binding to the tumor susceptibility gene 101 (Tsg101. The notion that structures found in p9 differ form that of p6 further support the idea that different mechanisms regulate binding of ALIX to primary versus secondary L-domains types.

  1. Graphical analysis of pH-dependent properties of proteins predicted using PROPKA.

    Science.gov (United States)

    Rostkowski, Michał; Olsson, Mats H M; Søndergaard, Chresten R; Jensen, Jan H

    2011-01-26

    Charge states of ionizable residues in proteins determine their pH-dependent properties through their pKa values. Thus, various theoretical methods to determine ionization constants of residues in biological systems have been developed. One of the more widely used approaches for predicting pKa values in proteins is the PROPKA program, which provides convenient structural rationalization of the predicted pKa values without any additional calculations. The PROPKA Graphical User Interface (GUI) is a new tool for studying the pH-dependent properties of proteins such as charge and stabilization energy. It facilitates a quantitative analysis of pKa values of ionizable residues together with their structural determinants by providing a direct link between the pKa data, predicted by the PROPKA calculations, and the structure via the Visual Molecular Dynamics (VMD) program. The GUI also calculates contributions to the pH-dependent unfolding free energy at a given pH for each ionizable group in the protein. Moreover, the PROPKA-computed pKa values or energy contributions of the ionizable residues in question can be displayed interactively. The PROPKA GUI can also be used for comparing pH-dependent properties of more than one structure at the same time. The GUI considerably extends the analysis and validation possibilities of the PROPKA approach. The PROPKA GUI can conveniently be used to investigate ionizable groups, and their interactions, of residues with significantly perturbed pKa values or residues that contribute to the stabilization energy the most. Charge-dependent properties can be studied either for a single protein or simultaneously with other homologous structures, which makes it a helpful tool, for instance, in protein design studies or structure-based function predictions. The GUI is implemented as a Tcl/Tk plug-in for VMD, and can be obtained online at http://propka.ki.ku.dk/~luca/wiki/index.php/GUI_Web.

  2. Kinetics of protein adsorption/desorption mediated by pH-responsive polymer layer

    Science.gov (United States)

    Su, Xiao-Hang; Lei, Qun-Li; Ren, Chun-Lai

    2015-11-01

    We propose a new way of regulating protein adsorption by using a pH-responsive polymer. According to the theoretical results obtained from the molecular theory and kinetic approaches, both thermodynamics and kinetics of protein adsorption are verified to be well controlled by the solution pH. The kinetics and the amount of adsorbed proteins at equilibrium are greatly increased when the solution environment changes from acid to neutral. The reason is that the increased pH promotes the dissociation of the weak polyelectrolyte, resulting in more charged monomers and more stretched chains. Thus the steric repulsion within the polymer layer is weakened, which effectively lowers the barrier felt by the protein during the process of adsorption. Interestingly, we also find that the kinetics of protein desorption is almost unchanged with the variation of pH. It is because although the barrier formed by the polymer layer changes along with the change of pH, the potential at contact with the surface varies equally. Our results may provide useful insights into controllable protein adsorption/desorption in practical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 21274062, 11474155, and 91027040).

  3. Companied P16 genetic and protein status together providing useful information on the clinical outcome of urinary bladder cancer.

    Science.gov (United States)

    Pu, Xiaohong; Zhu, Liya; Fu, Yao; Fan, Zhiwen; Zheng, Jinyu; Zhang, Biao; Yang, Jun; Guan, Wenyan; Wu, Hongyan; Ye, Qing; Huang, Qing

    2018-04-01

    SPEC P16/CEN3/7/17 Probe fluorescence-in-situ-hybridization (FISH) has become the most sensitive method in indentifying the urothelial tumors and loss of P16 has often been identified in low-grade urothelial lesions; however, little is known about the significations of other P16 genetic status (normal and amplification) in bladder cancer.We detected P16 gene status by FISH in 259 urine samples and divided these samples into 3 groups: 1, normal P16; 2, loss of P16; and 3, amplified P16. Meanwhile, p16 protein expression was measured by immunocytochemistry and we characterized the clinicopathologic features of cases with P16 gene status.Loss of P16 occurred in 26.2%, P16 amplification occurred in 41.3% and P16 gene normal occurred in 32.4% of all cases. P16 genetic status was significantly associated with tumor grade and primary tumor status (P = .008 and .017), but not with pathological tumor stage, overall survival, and p16 protein expression. However, P16 gene amplification accompanied protein high-expression has shorter overall survival compared with the overall patients (P = .023), and P16 gene loss accompanied loss of protein also had the tendency to predict bad prognosis (P = .067).Studies show that the genetic status of P16 has a close relation with the stages of bladder cancer. Loss of P16 is associated with low-grade urothelial malignancy while amplified P16 donotes high-grade. Neither P16 gene status nor p16 protein expression alone is an independent predictor of urothelial bladder carcinoma, but combine gene and protein status together providing useful information on the clinical outcome of these patients.

  4. Narrowband image and the p53 protein immunoexpression in patients with ulcerative colitis and dysplasia

    International Nuclear Information System (INIS)

    Chao González, Lissette

    2012-01-01

    Patients with pancolitis and long-standing ulcerative colitis are at increased risk of developing colorectal cancer, so it is advisable to colonoscopic surveillance. The objective of this study was to identify the endoscopic visualization system of imaging with narrowband and overexpression of the p53 protein as procedures useful for the research of Dysplasia in patients with ulcerative colitis and pancolitis, of eight or more years of evolution. A prospective, descriptive study was performed on 50 patients. The Fisher exact probability test was used for the statistical study and of square Chi, with a level of significance α = 0.05. Shown with narrow-band image increases the likelihood of finding suggestive areas of Dysplasia, reduces the amount of biopsy and gets a higher proportion of diagnoses of Dysplasia in fewer samples (70.4%). The overexpression of the p53 protein was associated with the presence of dysplasia (80.0%) p < 0.001 and is immunoexpress in samples with a high degree of severity of dysplasia and the low grade. Concluded that imaging with narrowband system and overexpression of the p53 protein are procedures useful for the research of Dysplasia in these patients. (author)

  5. Structure and stability insights into tumour suppressor p53 evolutionary related proteins.

    Directory of Open Access Journals (Sweden)

    Bruno Pagano

    Full Text Available The p53 family of genes and their protein products, namely, p53, p63 and p73, have over one billion years of evolutionary history. Advances in computational biology and genomics are enabling studies of the complexities of the molecular evolution of p53 protein family to decipher the underpinnings of key biological conditions spanning from cancer through to various metabolic and developmental disorders and facilitate the design of personalised medicines. However, a complete understanding of the inherent nature of the thermodynamic and structural stability of the p53 protein family is still lacking. This is due, to a degree, to the lack of comprehensive structural information for a large number of homologous proteins and to an incomplete knowledge of the intrinsic factors responsible for their stability and how these might influence function. Here we investigate the thermal stability, secondary structure and folding properties of the DNA-binding domains (DBDs of a range of proteins from the p53 family using biophysical methods. While the N- and the C-terminal domains of the p53 family show sequence diversity and are normally targets for post-translational modifications and alternative splicing, the central DBD is highly conserved. Together with data obtained from Molecular Dynamics simulations in solution and with structure based homology modelling, our results provide further insights into the molecular properties of evolutionary related p53 proteins. We identify some marked structural differences within the p53 family, which could account for the divergence in biological functions as well as the subtleties manifested in the oligomerization properties of this family.

  6. Interspecies In Vitro Evaluation of Stereoselective Protein Binding for 3,4-Methylenedioxymethamphetamine

    Directory of Open Access Journals (Sweden)

    Wan Raihana Wan Aasim

    2017-01-01

    Full Text Available Abuse of 3,4-methylenedioxymethamphetamine (MDMA is becoming more common worldwide. To date, there is no information available on stereoselectivity of MDMA protein binding in humans, rats, and mice. Since stereoselectivity plays an important role in MDMA’s pharmacokinetics and pharmacodynamics, in this study we investigated its stereoselectivity in protein binding. The stereoselective protein binding of rac-MDMA was investigated using two different concentrations (20 and 200 ng/mL in human plasma and mouse and rat sera using an ultrafiltration technique. No significant stereoselectivity in protein binding was observed in both human plasma and rat serum; however, a significant stereoselective binding (p<0.05 was observed in mouse serum. Since the protein binding of MDMA in mouse serum is considerably lower than in humans and rats, caution should be exercised when using mice for in vitro studies involving MDMA.

  7. p15PAF is an intrinsically disordered protein with nonrandom structural preferences at sites of interaction with other proteins.

    Science.gov (United States)

    De Biasio, Alfredo; Ibáñez de Opakua, Alain; Cordeiro, Tiago N; Villate, Maider; Merino, Nekane; Sibille, Nathalie; Lelli, Moreno; Diercks, Tammo; Bernadó, Pau; Blanco, Francisco J

    2014-02-18

    We present to our knowledge the first structural characterization of the proliferating-cell-nuclear-antigen-associated factor p15(PAF), showing that it is monomeric and intrinsically disordered in solution but has nonrandom conformational preferences at sites of protein-protein interactions. p15(PAF) is a 12 kDa nuclear protein that acts as a regulator of DNA repair during DNA replication. The p15(PAF) gene is overexpressed in several types of human cancer. The nearly complete NMR backbone assignment of p15(PAF) allowed us to measure 86 N-H(N) residual dipolar couplings. Our residual dipolar coupling analysis reveals nonrandom conformational preferences in distinct regions, including the proliferating-cell-nuclear-antigen-interacting protein motif (PIP-box) and the KEN-box (recognized by the ubiquitin ligase that targets p15(PAF) for degradation). In accordance with these findings, analysis of the (15)N R2 relaxation rates shows a relatively reduced mobility for the residues in these regions. The agreement between the experimental small angle x-ray scattering curve of p15(PAF) and that computed from a statistical coil ensemble corrected for the presence of local secondary structural elements further validates our structural model for p15(PAF). The coincidence of these transiently structured regions with protein-protein interaction and posttranslational modification sites suggests a possible role for these structures as molecular recognition elements for p15(PAF). Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. The amino terminal end determines the stability and assembling capacity of eukaryotic ribosomal stalk proteins P1 and P2.

    Science.gov (United States)

    Camargo, Hendricka; Nusspaumer, Gretel; Abia, David; Briceño, Verónica; Remacha, Miguel; Ballesta, Juan P G

    2011-05-01

    The eukaryotic ribosomal proteins P1 and P2 bind to protein P0 through their N-terminal domain to form the essential ribosomal stalk. A mutational analysis points to amino acids at positions 2 and 3 as determinants for the drastic difference of Saccharomyces cerevisiae P1 and P2 half-life, and suggest different degradation mechanisms for each protein type. Moreover, the capacity to form P1/P2 heterodimers is drastically affected by mutations in the P2β four initial amino acids, while these mutations have no effect on P1β. Binding of P2β and, to a lesser extent, P1β to the ribosome is also seriously affected showing the high relevance of the amino acids in the first turn of the NTD α-helix 1 for the stalk assembly. The negative effect of some mutations on ribosome binding can be reversed by the presence of the second P1/P2 couple in the ribosome, indicating a stabilizing structural influence between the two heterodimers. Unexpectedly, some mutations totally abolish heterodimer formation but allow significant ribosome binding and, therefore, a previous P1 and P2 association seems not to be an absolute requirement for stalk assembly. Homology modeling of the protein complexes suggests that the mutated residues can affect the overall protein conformation. © The Author(s) 2011. Published by Oxford University Press.

  9. Aptamer-Conjugated Calcium Phosphate Nanoparticles for Reducing Diabetes Risk via Retinol Binding Protein 4 Inhibition.

    Science.gov (United States)

    Torabi, Raheleh; Ghourchian, Hedayatollah; Amanlou, Massoud; Pasalar, Parvin

    2017-06-01

    Inhibition of the binding of retinol to its carrier, retinol binding protein 4, is a new strategy for treating type 2 diabetes; for this purpose, we have provided an aptamer-functionalized multishell calcium phosphate nanoparticle. First, calcium phosphate nanoparticles were synthesized and conjugated to the aptamer. The cytotoxicity of nanoparticles releases the process of aptamer from nanoparticles and their inhibition function of binding retinol to retinol binding protein 4. After synthesizing and characterizing the multishell calcium phosphate nanoparticles and observing the noncytotoxicity of conjugate, the optimum time (48 hours) and the pH (7.4) for releasing the aptamer from the nanoparticles was determined. The half-maximum inhibitory concentration (IC 50 ) value for inhibition of retinol binding to retinol binding protein 4 was 210 femtomolar (fmol). The results revealed that the aptamer could prevent connection between retinol and retinol binding protein 4 at a very low IC 50 value (210 fmol) compared to other reported inhibitors. It seems that this aptamer could be used as an efficient candidate not only for decreasing the insulin resistance in type 2 diabetes, but also for inhibiting the other retinol binding protein 4-related diseases. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  10. Identification of host cell proteins which interact with herpes simplex virus type 1 tegument protein pUL37.

    Science.gov (United States)

    Kelly, Barbara J; Diefenbach, Eve; Fraefel, Cornel; Diefenbach, Russell J

    2012-01-20

    The herpes simplex virus type 1 (HSV-1) structural tegument protein pUL37, which is conserved across the Herpesviridae family, is known to be essential for secondary envelopment during the egress of viral particles. To shed light on additional roles of pUL37 during viral replication a yeast two-hybrid screen of a human brain cDNA library was undertaken. This screen identified ten host cell proteins as potential pUL37 interactors. One of the interactors, serine threonine kinase TAOK3, was subsequently confirmed to interact with pUL37 using an in vitro pulldown assay. Such host cell/pUL37 interactions provide further insights into the multifunctional role of this herpesviral tegument protein. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Characterization of the Expression of the RNA Binding Protein eIF4G1 and Its Clinicopathological Correlation with Serous Ovarian Cancer.

    Directory of Open Access Journals (Sweden)

    Lanfang Li

    Full Text Available Ovarian cancer is the most lethal type of malignant tumor in gynecological cancers and is associated with a high percentage of late diagnosis and chemotherapy resistance. Thus, it is urgent to identify a tumor marker or a molecular target that allows early detection and effective treatment. RNA-binding proteins (RBPs are crucial in various cellular processes at the post-transcriptional level. The eukaryotic translation initiation factor 4 gamma, 1(eIF4G1, an RNA-binding protein, facilitates the recruitment of mRNA to the ribosome, which is a rate-limiting step during the initiation phase of protein synthesis. However, little is known regarding the characteristics of eIF4G1 expression and its clinical significance in ovarian cancer. Therefore, we propose to investigate the expression and clinicopathological significance of eIF4G1 in ovarian cancer patients.We performed Real-time PCR in 40 fresh serous ovarian cancer tissues and 27 normal ovarian surface epithelial cell specimens to assess eIF4G1mRNA expression. Immunohistochemistry (IHC was used to examine the expression of eIF4G1 at the protein level in 134 patients with serous ovarian cancer and 18 normal ovarian tissues. Statistical analysis was conducted to determine the correlation of the eIF4G1 protein levels with the clinicopathological characteristics and prognosis in ovarian cancer.The expression of eIF4G1 was upregulated in serous ovarian cancer tissues at both the mRNA (P = 0.0375 and the protein (P = 0.0007 levels. The eIF4G1 expression was significantly correlated with the clinical tumor stage (P = 0.0004 and omentum metastasis (P = 0.024. Moreover, patients with low eIF4G1 protein expression had a longer overall survival time (P = 0.026.These data revealed that eIF4G1 is markedly expressed in serous ovarian cancer and that upregulation of the eIF4G1 protein expression is significantly associated with an advanced tumor stage. Besides, the patients with lower expression of eIF4G1 tend

  12. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression

    International Nuclear Information System (INIS)

    Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin; Hao, Hongjun; Zheng, Lemin; Zhou, Boda; Zhang, Wei; Lv, He; Yuan, Yun

    2014-01-01

    Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined the impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21

  13. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin; Hao, Hongjun [Department of Neurology, Peking University First Hospital, Beijing 100034 (China); Zheng, Lemin [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing 100191 (China); Zhou, Boda [The Department of Cardiology, Peking University Third Hospital, Beijing 100191 (China); Zhang, Wei; Lv, He [Department of Neurology, Peking University First Hospital, Beijing 100034 (China); Yuan, Yun, E-mail: yuanyun2002@sohu.com [Department of Neurology, Peking University First Hospital, Beijing 100034 (China)

    2014-03-28

    Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined the impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21.

  14. Turnover-dependent inactivation of the nitrogenase MoFe-protein at high pH.

    Science.gov (United States)

    Yang, Kun-Yun; Haynes, Chad A; Spatzal, Thomas; Rees, Douglas C; Howard, James B

    2014-01-21

    Proton uptake accompanies the reduction of all known substrates by nitrogenase. As a consequence, a higher pH should limit the availability of protons as a substrate essential for turnover, thereby increasing the proportion of more highly reduced forms of the enzyme for further study. The utility of the high-pH approach would appear to be problematic in view of the observation reported by Pham and Burgess [(1993) Biochemistry 32, 13725-13731] that the MoFe-protein undergoes irreversible protein denaturation above pH 8.65. In contrast, we found by both enzyme activity and crystallographic analyses that the MoFe-protein is stable when incubated at pH 9.5. We did observe, however, that at higher pHs and under turnover conditions, the MoFe-protein is slowly inactivated. While a normal, albeit low, level of substrate reduction occurs under these conditions, the MoFe-protein undergoes a complex transformation; initially, the enzyme is reversibly inhibited for substrate reduction at pH 9.5, yet in a second, slower process, the MoFe-protein becomes irreversibly inactivated as measured by substrate reduction activity at the optimal pH of 7.8. The final inactivated MoFe-protein has an increased hydrodynamic radius compared to that of the native MoFe-protein, yet it has a full complement of iron and molybdenum. Significantly, the modified MoFe-protein retains the ability to specifically interact with its nitrogenase partner, the Fe-protein, as judged by the support of ATP hydrolysis and by formation of a tight complex with the Fe-protein in the presence of ATP and aluminum fluoride. The turnover-dependent inactivation coupled to conformational change suggests a mechanism-based transformation that may provide a new probe of nitrogenase catalysis.

  15. P-MAPA immunotherapy potentiates the effect of cisplatin on serous ovarian carcinoma through targeting TLR4 signaling.

    Science.gov (United States)

    de Almeida Chuffa, Luiz Gustavo; de Moura Ferreira, Grazielle; Lupi, Luiz Antonio; da Silva Nunes, Iseu; Fávaro, Wagner José

    2018-01-17

    Toll-like receptors (TLRs) are transmembrane proteins expressed on the surface of ovarian cancer (OC) and immune cells. Identifying the specific roles of the TLR-mediated signaling pathways in OC cells is important to guide new treatments. Because immunotherapies have emerged as the adjuvant treatment for patients with OC, we investigated the effect of a promising immunotherapeutic strategy based on protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride (P-MAPA) combined with cisplatin (CIS) on the TLR2 and TLR4 signaling pathways via myeloid differentiation factor 88 (MyD88) and TLR-associated activator of interferon (TRIF) in an in vivo model of OC. Tumors were chemically induced by a single injection of 100 μg of 7,12-dimethylbenz(a)anthracene (DMBA) directly under the left ovarian bursa in Fischer 344 rats. After the rats developed serous papillary OC, they were given P-MAPA, CIS or the combination P-MAPA+CIS as therapies. To understand the effects of the treatments, we assessed the tumor size, histopathology, and the TLR2- and TLR4-mediated inflammatory responses. Although CIS therapy was more effective than P-MAPA in reducing the tumor size, P-MAPA immunotherapy significantly increased the expressions of TLR2 and TLR4. More importantly, the combination of P-MAPA with CIS showed a greater survival rate compared to CIS alone, and exhibited a significant reduction in tumor volume compared to P-MAPA alone. The combination therapy also promoted the increase in the levels of the following OC-related proteins: TLR4, MyD88, TRIF, inhibitor of phosphorylated NF-kB alpha (p-IkBα), and nuclear factor kappa B (NF-kB p65) in both cytoplasmic and nuclear sites. While P-MAPA had no apparent effect on tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6, it seems to increase interferon-γ (IFN-γ), which may induce the Thelper (Th1)-mediated immune response. Collectively, our results suggest that P-MAPA immunotherapy combined with cisplatin

  16. Determination of the membrane topology of Ost4p and its subunit interactions in the oligosaccharyltransferase complex in Saccharomyces cerevisiae

    OpenAIRE

    Kim, Hyun; Yan, Qi; von Heijne, Gunnar; Caputo, Gregory A.; Lennarz, William J.

    2003-01-01

    Ost4p is a minimembrane protein containing only 36 amino acids and is a subunit of oligosaccharyltransferase (OT) in Saccharomyces cerevisiae. It was found previously when amino acid residues 18–25 of Ost4p were mutated to ionizable amino acids and defects were observed in the interaction between Ost4p and either Stt3p or Ost3p, two other components of OT. The transmembrane segment of Ost4p is likely to extend from residues 10–25. This is consistent with the finding that α-helicity is ...

  17. [Pay for performance (P4P). Long-term effects and perspectives].

    Science.gov (United States)

    Schrappe, M; Gültekin, N

    2011-02-01

    After 10 years of experience and research, a wide array of results on evaluation and long-term effects of pay for performance (P4P) programs have been published. These data do not only give insight into most of the problems of implementation, but also into aspects which, in part, may attenuate the high expectations at the beginning of the discussion. P4P programs exhibit a ceiling effect, some improvements are reversed after incentives are cancelled, and improvements show opportunity costs as absent improvements for indicators, which are not object to financial incentives (in some cases for the same disease). These observations can be explained by the hypothesis that P4P programs have characteristics of fee-for-service reimbursement, if symmetric information is available for insurance and provider. P4P programs are local instruments. While integration of healthcare is considered as an important issue, they should be combined with programs and incentives which foster further vertical and horizontal integration. For Germany, further research in the implementation and effects of P4P programs is necessary.

  18. Role of ID Proteins in BMP4 Inhibition of Profibrotic Effects of TGF-β2 in Human TM Cells.

    Science.gov (United States)

    Mody, Avani A; Wordinger, Robert J; Clark, Abbot F

    2017-02-01

    Increased expression of TGF-β2 in primary open-angle glaucoma (POAG) aqueous humor (AH) and trabecular meshwork (TM) causes deposition of extracellular matrix (ECM) in the TM and elevated IOP. Bone morphogenetic proteins (BMPs) regulate TGF-β2-induced ECM production. The underlying mechanism for BMP4 inhibition of TGF-β2-induced fibrosis remains undetermined. Bone morphogenic protein 4 induces inhibitor of DNA binding proteins (ID1, ID3), which suppress transcription factor activities to regulate gene expression. Our study will determine whether ID1and ID3 proteins are downstream targets of BMP4, which attenuates TGF-β2 induction of ECM proteins in TM cells. Primary human TM cells were treated with BMP4, and ID1 and ID3 mRNA, and protein expression was determined by quantitative PCR (Q-PCR) and Western immunoblotting. Intracellular ID1 and ID3 protein localization was studied by immunocytochemistry. Transformed human TM cells (GTM3 cells) were transfected with ID1 or ID3 expression vectors to determine their potential inhibitory effects on TGF-β2-induced fibronectin and plasminogen activator inhibitor-I (PAI-1) protein expression. Basal expression of ID1-3 was detected in primary human TM cells. Bone morphogenic protein 4 significantly induced early expression of ID1 and ID3 mRNA (P protein in primary TM cells, and a BMP receptor inhibitor blocked this induction. Overexpression of ID1 and ID3 significantly inhibited TGF-β2-induced expression of fibronectin and PAI-1 in TM cells (P protein 4 induced ID1 and ID3 expression suppresses TGF-β2 profibrotic activity in human TM cells. In the future, targeting specific regulators may control the TGF-β2 profibrotic effects on the TM, leading to disease modifying IOP lowering therapies.

  19. Recombinant HT{sub m4} gene, protein and assays

    Science.gov (United States)

    Lim, B.; Adra, C.N.; Lelias, J.M.

    1996-09-03

    The invention relates to a recombinant DNA molecule which encodes a HT{sub m4} protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT{sub m4} protein and a recombinant HT{sub m4} protein. The invention also relates to a method for detecting the presence of a hereditary atopy. 2 figs.

  20. Degradation kinetics of fisetin and quercetin in solutions affected by medium pH, temperature and co-existed proteins

    Directory of Open Access Journals (Sweden)

    Wang Jing

    2016-01-01

    Full Text Available Impacts of medium pH, temperature and coexisted proteins on the degradation of two flavonoids fisetin and quercetin were assessed by spectroscopic method in the present study. Based on the measured degradation rate constants (k, fisetin was more stable than quercetin in all cases. Increasing medium pH from 6.0 to 7.5 at 37°C enhanced respective k values of fisetin and quercetin from 8.30x10−3 and 2.81x10−2 to 0.202 and 0.375 h-1 (P<0.05. In comparison with their degradation at 37°C, fisetin and quercetin showed larger k values at higher temperature (0.124 and 0.245 h−1 at 50°C, or 0.490 and 1.42 h−1 at 65°C. Four protein products in medium could stabilize the two flavonoids (P<0.05, as these proteins at 0.10 g L-1 decreased respective k values of fisetin and quercetin to 2.28x10−2-2.98x10−2 and 4.37´10−2-5.97x10−2 h−1. Hydrophobic interaction between the proteins and the two flavonoids was evidenced responsible for the stabilization, as sodium dodecyl sulfate could destroy the stabilization significantly (P<0.05. Casein and soybean protein provided greater stabilization than whey protein isolate. It is thus concluded that higher temperature and alkaline pH can enhance flavonoid loss, whereas coexisted proteins as flavonoid stabilizers can inhibit flavonoid degradation.

  1. Calculation of the total electron excitation cross section in the Born approximation using Slater wave functions for the Li (2s yields 2p), Li (2s yields 3p), Na (3s yields 4p), Mg (3p yields 4s), Ca (4s yields 4p) and K (4s yields 4p) excitations. M.S. Thesis

    Science.gov (United States)

    Simsic, P. L.

    1974-01-01

    Excitation of neutral atoms by inelastic scattering of incident electrons in gaseous nebulae were investigated using Slater Wave functions to describe the initial and final states of the atom. Total cross sections using the Born Approximation are calculated for: Li(2s yields 2p), Na(3s yields 4p), k(4s yields 4p). The intensity of emitted radiation from gaseous nebulae is also calculated, and Maxwell distribution is employed to average the kinetic energy of electrons.

  2. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Wei-Ru Huang

    Full Text Available Avian reovirus (ARV protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128 of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication.

  3. Growth rate analysis and protein identification of Kappaphycus alvarezii (Rhodophyta, Gigartinales under pH induced stress culture

    Directory of Open Access Journals (Sweden)

    Mian Zi Tee

    2015-11-01

    Full Text Available Environmental pH is one of the factors contributing to abiotic stress which in turn influences the growth and development of macroalgae. This study was conducted in order to assess the growth and physiological changes in Kappaphycus alvarezii under different pH conditions: pHs 6, ∼8.4 (control and 9. K. alvarezii explants exhibited a difference in the daily growth rate (DGR among the different pH treatments (p ≤ 0.05. The highest DGR was observed in control culture with pH ∼8.4 followed by alkaline (pH 9 and acidic (pH 6 induced stress cultures. Protein expression profile was generated from different pH induced K. alvarezii cultures using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE followed by protein identification and analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS and Mascot software. Ribulose bisphosphate carboxylase (Rubisco large chain was identified to be up-regulated under acidic (pH 6 condition during the second and fourth week of culture. The findings indicated that Rubisco can be employed as a biomarker for pH induced abiotic stress. Further study on the association between the expression levels of Rubisco large chain and their underlying mechanisms under pH stress conditions is recommended.

  4. Bromodomain-containing Protein 4 Activates Voltage-gated Sodium Channel 1.7 Transcription in Dorsal Root Ganglia Neurons to Mediate Thermal Hyperalgesia in Rats.

    Science.gov (United States)

    Hsieh, Ming-Chun; Ho, Yu-Cheng; Lai, Cheng-Yuan; Wang, Hsueh-Hsiao; Lee, An-Sheng; Cheng, Jen-Kun; Chau, Yat-Pang; Peng, Hsien-Yu

    2017-11-01

    Bromodomain-containing protein 4 binds acetylated promoter histones and promotes transcription; however, the role of bromodomain-containing protein 4 in inflammatory hyperalgesia remains unclear. Male Sprague-Dawley rats received hind paw injections of complete Freund's adjuvant to induce hyperalgesia. The dorsal root ganglia were examined to detect changes in bromodomain-containing protein 4 expression and the activation of genes involved in the expression of voltage-gated sodium channel 1.7, which is a key pain-related ion channel. The intraplantar complete Freund's adjuvant injections resulted in thermal hyperalgesia (4.0 ± 1.5 s; n = 7). The immunohistochemistry and immunoblotting results demonstrated an increase in the bromodomain-containing protein 4-expressing dorsal root ganglia neurons (3.78 ± 0.38 fold; n = 7) and bromodomain-containing protein 4 protein levels (2.62 ± 0.39 fold; n = 6). After the complete Freund's adjuvant injection, histone H3 protein acetylation was enhanced in the voltage-gated sodium channel 1.7 promoter, and cyclin-dependent kinase 9 and phosphorylation of RNA polymerase II were recruited to this area. Furthermore, the voltage-gated sodium channel 1.7-mediated currents were enhanced in neurons of the complete Freund's adjuvant rats (55 ± 11 vs. 19 ± 9 pA/pF; n = 4 to 6 neurons). Using bromodomain-containing protein 4-targeted antisense small interfering RNA to the complete Freund's adjuvant-treated rats, the authors demonstrated a reduction in the expression of bromodomain-containing protein 4 (0.68 ± 0.16 fold; n = 7), a reduction in thermal hyperalgesia (7.5 ± 1.5 s; n = 7), and a reduction in the increased voltage-gated sodium channel 1.7 currents (21 ± 4 pA/pF; n = 4 to 6 neurons). Complete Freund's adjuvant triggers enhanced bromodomain-containing protein 4 expression, ultimately leading to the enhanced excitability of nociceptive neurons and thermal hyperalgesia. This effect is

  5. Proteins of bacteriophage phi6

    International Nuclear Information System (INIS)

    Sinclair, J.F.; Tzagoloff, A.; Levine, D.; Mindich, L.

    1975-01-01

    We investigated the protein composition of the lipid-containing bacteriophage phi 6. We also studied the synthesis of phage-specific proteins in the host bacterium Pseudomonas phaseolicola HB10Y. The virion was found to contain 10 proteins of the following molecular weights: P1, 93,000; P2, 88,000; P3, 84,000; P4, 36,800; P5, 24,000; P6, 21,000; P7, 19,900; P8, 10,500; P9, 8,700; and P10, less than 6,000. Proteins P3, P9, and P10 were completely extracted from the virion with 1 percent Triton X-100. Protein P6 was partially extracted. Proteins P8 and P9 were purified by column chromatography. The amino acid composition of P9 was determined and was found to lack methionine. Labeling of viral proteins with [ 35 S]methionine in infected cells indicated that proteins P5, P9, P10, and P11 lacked methionine. Treatment of host cells with uv light before infection allowed the synthesis of P1, P2, P4, and P7; however, the extent of viral protein synthesis fell off exponentially with increasing delay time between irradiation and infection. Treatment of host cells with rifampin during infection allowed preferential synthesis of viral proteins, but the extent of synthesis also fell off exponentially with increasing delay time between the addition of rifampin and the addition of radioactive amino acids. All of the virion proteins were seen in gels prepared from rifampin-treated infected cells. In addition, two proteins, P11 and P12, were observed; their molecular weights were 25,200 and 20,100, respectively. Proteins P1, P2, P4, and P7 were synthesized early, whereas the rest began to increase at 45 min post-infection

  6. Cross-species prophylactic efficacy of Sm-p80-based vaccine and intracellular localization of Sm-p80/Sm-p80 ortholog proteins during development in Schistosoma mansoni, Schistosoma japonicum, and Schistosoma haematobium.

    Science.gov (United States)

    Molehin, Adebayo J; Sennoune, Souad R; Zhang, Weidong; Rojo, Juan U; Siddiqui, Arif J; Herrera, Karlie A; Johnson, Laura; Sudduth, Justin; May, Jordan; Siddiqui, Afzal A

    2017-11-01

    Schistosomiasis remains a major global health problem. Despite large-scale schistosomiasis control efforts, clear limitations such as possible emergence of drug resistance and reinfection rates highlight the need for an effective schistosomiasis vaccine. Schistosoma mansoni large subunit of calpain (Sm-p80)-based vaccine formulations have shown remarkable efficacy in protecting against S. mansoni challenge infections in mice and baboons. In this study, we evaluated the cross-species protective efficacy of Sm-p80 vaccine against S. japonicum and S. haematobium challenge infections in rodent models. We also elucidated the expression of Sm-p80 and Sm-p80 ortholog proteins in different developmental stages of S. mansoni, S. haematobium, and S. japonicum. Immunization with Sm-p80 vaccine reduced worm burden by 46.75% against S. japonicum challenge infection in mice. DNA prime/protein boost (1 + 1 dose administered on a single day) resulted in 26.95% reduction in worm burden in S. haematobium-hamster infection/challenge model. A balanced Th1 (IFN-γ, TNF-α, IL-2, and IL-12) and Th2 (IL-4, IgG1) type of responses were observed following vaccination in both S. japonicum and S. haematobium challenge trials and these are associated with the prophylactic efficacy of Sm-p80 vaccine. Immunohistochemistry demonstrated that Sm-p80/Sm-p80 ortholog proteins are expressed in different life cycle stages of the three major human species of schistosomes studied. The data presented in this study reinforce the potential of Sm-p80-based vaccine for both hepatic/intestinal and urogenital schistosomiasis occurring in different geographical areas of the world. Differential expression of Sm-p80/Sm-p80 protein orthologs in different life cycle makes this vaccine potentially useful in targeting different levels of infection, disease, and transmission.

  7. Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer.

    Science.gov (United States)

    Castellvi, Josep; Garcia, Angel; Rojo, Federico; Ruiz-Marcellan, Carmen; Gil, Antonio; Baselga, Jose; Ramon y Cajal, Santiago

    2006-10-15

    Growth factor receptors and cell signaling factors play a crucial role in human carcinomas and have been studied in ovarian tumors with varying results. Cell signaling involves multiple pathways and a myriad of factors that can be mutated or amplified. Cell signaling is driven through the mammalian target of rapamycin (mTOR) and extracellular regulated kinase (ERK) pathways and by some downstream molecules, such as 4E binding protein 1 (4EBP1), eukaryotic initiation factor 4E, and p70 ribosomal protein S6 kinase (p70S6K). The objectives of this study were to analyze the real role that these pathways play in ovarian cancer, to correlate them with clinicopathologic characteristics, and to identify the factors that transmit individual proliferation signals and are associated with pathologic grade and prognosis, regardless specific oncogenic alterations upstream. One hundred twenty-nine ovarian epithelial tumors were studied, including 20 serous cystadenomas, 7 mucinous cystadenomas, 11 serous borderline tumors, 16 mucinous borderline tumors, 29 serous carcinomas, 16 endometrioid carcinomas, 15 clear cell carcinomas, and 15 mucinous carcinomas. Tissue microarrays were constructed, and immunohistochemistry for the receptors epidermal growth factor receptor (EGFR) and c-erb-B2 was performed and with phosphorylated antibodies for protein kinase B (AKT), 4EBP1, p70S6K, S6, and ERK. Among 129 ovarian neoplasms, 17.8% were positive for c-erb-B2, 9.3% were positive for EGFR, 47.3% were positive for phosphorylated AKT (p-AKT), 58.9% were positive for p-ERK, 41.1% were positive for p-4EBP1, 26.4% were positive for p70S6K, and 15.5% were positive for p-S6. Although EGFR, p-AKT, and p-ERK expression did not differ between benign, borderline, or malignant tumors, c-erb-B2, p-4EBP1, p-p70S6K, and p-S6 were expressed significantly more often in malignant tumors. Only p-4EBP1 expression demonstrated prognostic significance (P = .005), and only surgical stage and p-4EBP1 expression

  8. Analysis of a Mycoplasma hominis membrane protein, P120

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Mathiesen, SL; Nyvold, Charlotte Guldborg

    1994-01-01

    The monoclonal antibody mAb 26.7D generated against a clinical isolate of Mycoplasma hominis 7488 was shown to react with a surface-exposed epitope on a 120-kDa protein (P120). The gene encoding the protein was cloned and sequenced, and the transcriptional start point was determined by primer...

  9. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hao, E-mail: hao.hu1@uqconnect.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Yu, Ting, E-mail: t.yu2@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Arpiainen, Satu, E-mail: Satu.Juhila@orion.fi [Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu (Finland); Lang, Matti A., E-mail: m.lang@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Hakkola, Jukka, E-mail: Jukka.hakkola@oulu.fi [Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu (Finland); Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia)

    2015-11-15

    Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3 kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5′-Luc constructs – down to − 160 bp from the TSS – showed p53 responsiveness in p53 overexpressed C3A cells. However, a further deletion from − 160 to − 74 bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene – a well-known p53 activator – increased the expression of the p53 responsive positive control and the CYP2A6-5′-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5′-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. - Highlights: • CYP2A6 is an immediate target gene of p53. • Six putative p53REs located on 3 kb proximate CYP2A6 promoter region. • The region − 160 bp from TSS is highly homologous with the p53 consensus sequence. • P53 specifically bind to the p53RE on the − 160 bp region. • HNF4

  10. Effects of Supplemental Energy on Protein Balance during 4-d Arctic Military Training.

    Science.gov (United States)

    Margolis, Lee M; Murphy, Nancy E; Martini, Svein; Gundersen, Yngvar; Castellani, John W; Karl, J Philip; Carrigan, Christopher T; Teien, Hilde-Kristin; Madslien, Elisabeth-Henie; Montain, Scott J; Pasiakos, Stefan M

    2016-08-01

    Soldiers often experience negative energy balance during military operations that diminish whole-body protein retention, even when dietary protein is consumed within recommended levels (1.5-2.0 g·kg·d). The objective of this study is to determine whether providing supplemental nutrition spares whole-body protein by attenuating the level of negative energy balance induced by military training and to assess whether protein balance is differentially influenced by the macronutrient source. Soldiers participating in 4-d arctic military training (AMT) (51-km ski march) were randomized to receive three combat rations (CON) (n = 18), three combat rations plus four 250-kcal protein-based bars (PRO, 20 g protein) (n = 28), or three combat rations plus four 250-kcal carbohydrate-based bars daily (CHO, 48 g carbohydrate) (n = 27). Energy expenditure (D2O) and energy intake were measured daily. Nitrogen balance (NBAL) and protein turnover were determined at baseline (BL) and day 3 of AMT using 24-h urine and [N]-glycine. Protein and carbohydrate intakes were highest (P balance (-3313 ± 776 kcal·d), net protein balance (NET) (-0.24 ± 0.60 g·d), and NBAL (-68.5 ± 94.6 mg·kg·d) during AMT were similar between groups. In the combined cohort, energy intake was associated (P balance and NBAL during AMT. These data reinforce the importance of consuming sufficient energy during periods of high energy expenditure to mitigate the consequences of negative energy balance and attenuate whole-body protein loss.

  11. Theoretical level energies and transition data for 4p64d4, 4p64d34f and 4p54d5 configurations of W34+ ion

    Science.gov (United States)

    Karpuškienė, R.; Bogdanovich, P.; Kisielius, R.

    2017-05-01

    The ab initio quasirelativistic approach developed specifically for the calculation of spectral parameters of highly charged ions was used to derive transition data for the tungsten ion W34+. The configuration interaction method was applied to include electron correlation effects. The relativistic effects were taken into account in the Breit-Pauli approximation. The level energies, radiative lifetimes τ, Landé g-factors are determined for the ground configuration 4p64d4 and two excited configurations 4p64d34f and 4p54d5. The radiative transition wavelengths λ and emission transition probabilities A for the electric dipole, electric quadrupole, electric octupole, magnetic dipole, and magnetic quadrupole transitions among the levels of these configurations are produced.

  12. Purification of a NAD(P) reductase-like protein from the thermogenic appendix of the Sauromatum guttatum inflorescence.

    Science.gov (United States)

    Skubatz, Hanna; Howald, William N

    2013-03-01

    A NAD(P) reductase-like protein with a molecular mass of 34.146 ± 34 Da was purified to homogeneity from the appendix of the inflorescence of the Sauromatum guttatum. On-line liquid chromatography/electrospray ionization-mass spectrometry was used to isolate and quantify the protein. For the identification of the protein, liquid chromatography/electrospray ionization-tandem mass spectrometry analysis of tryptic digests of the protein was carried out. The acquired mass spectra were used for database searching, which led to the identification of a single tryptic peptide. The 12 amino acid tryptic peptide (FLPSEFGNDVDR) was found to be identical to amino acid residues at the positions 108-120 of isoflavone reductase in the Arabidopsis genome. A BLAST search identified this sequence region as unique and specific to a class of NAD(P)-dependent reductases involved in phenylpropanoid biosynthesis. Edman degradation revealed that the protein was N-terminally blocked. The amount of the protein (termed RL, NAD(P) reductase-like protein) increased 60-fold from D-4 (4 days before inflorescence-opening, designated as D-day) to D-Day, and declined the following day, when heat-production ceased. When salicylic acid, the endogenous trigger of heat-production in the Sauromatum appendix, was applied to premature appendices, a fivefold decrease in the amount of RL was detected in the treated section relative to the non-treated section. About 40 % of RL was found in the cytoplasm. Another 30 % was detected in Percoll-purified mitochondria and the rest, about 30 % was associated with a low speed centrifugation pellet due to nuclei and amyloplast localization. RL was also found in other thermogenic plants and detected in Arabidopsis leaves. The function of RL in thermogenic and non-thermogenic plants requires further investigation.

  13. Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retinoblastoma.

    Directory of Open Access Journals (Sweden)

    Justina McEvoy

    Full Text Available Retinoblastoma is a childhood cancer of the developing retina that begins in utero and is diagnosed in the first years of life. Biallelic RB1 gene inactivation is the initiating genetic lesion in retinoblastoma. The p53 gene is intact in human retinoblastoma but the pathway is believed to be suppressed by increased expression of MDM4 (MDMX and MDM2. Here we quantify the expression of MDM4 and MDM2 mRNA and protein in human fetal retinae, primary retinoblastomas, retinoblastoma cell lines and several independent orthotopic retinoblastoma xenografts. We found that MDM4 is the major p53 antagonist expressed in retinoblastoma and in the developing human retina. We also discovered that MDM4 protein steady state levels are much higher in retinoblastoma than in human fetal retinae. This increase would not have been predicted based on the mRNA levels. We explored several possible post-transcriptional mechanisms that may contribute to the elevated levels of MDM4 protein. A proportion of MDM4 transcripts are alternatively spliced to produce protein products that are reported to be more stable and oncogenic. We also discovered that a microRNA predicted to target MDM4 (miR191 was downregulated in retinoblastoma relative to human fetal retinae and a subset of samples had somatic mutations that eliminated the miR-191 binding site in the MDM4 mRNA. Taken together, these data suggest that post-transcriptional mechanisms may contribute to stabilization of the MDM4 protein in retinoblastoma.

  14. Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines

    Science.gov (United States)

    Kubota, Eiji; Williamson, Christopher T; Ye, Ruiqiong; Elegbede, Anifat; Peterson, Lars; Lees-Miller, Susan P; Bebb, D Gwyn

    2014-01-01

    Small-molecule inhibitors of poly (ADP-ribose) polymerase (PARP) have shown considerable promise in the treatment of homologous recombination (HR)-defective tumors, such as BRCA1- and BRCA2-deficient breast and ovarian cancers. We previously reported that mantle cell lymphoma cells with deficiency in ataxia telangiectasia mutated (ATM) are sensitive to PARP-1 inhibitors in vitro and in vivo. Here, we report that PARP inhibitors can potentially target ATM deficiency arising in a solid malignancy. We show that ATM protein expression varies between gastric cancer cell lines, with NUGC4 having significantly reduced protein levels. Significant correlation was found between ATM protein expression and sensitivity to the PARP inhibitor olaparib, with NUGC4 being the most sensitive. Moreover, reducing ATM kinase activity using a small-molecule inhibitor (KU55933) or shRNA-mediated depletion of ATM protein enhanced olaparib sensitivity in gastric cancer cell lines with depletion or inactivation of p53. Our results demonstrate that ATM is a potential predictive biomarker for PARP-1 inhibitor activity in gastric cancer harboring disruption of p53, and that combined inhibition of ATM and PARP-1 is a rational strategy for expanding the utility of PARP-1 inhibitors to gastric cancer with p53 disruption. PMID:24841718

  15. Mussel-Inspired Protein Nanoparticles Containing Iron(III)-DOPA Complexes for pH-Responsive Drug Delivery.

    Science.gov (United States)

    Kim, Bum Jin; Cheong, Hogyun; Hwang, Byeong Hee; Cha, Hyung Joon

    2015-06-15

    A novel bioinspired strategy for protein nanoparticle (NP) synthesis to achieve pH-responsive drug release exploits the pH-dependent changes in the coordination stoichiometry of iron(III)-3,4-dihydroxyphenylalanine (DOPA) complexes, which play a major cross-linking role in mussel byssal threads. Doxorubicin-loaded polymeric NPs that are based on Fe(III)-DOPA complexation were thus synthesized with a DOPA-modified recombinant mussel adhesive protein through a co-electrospraying process. The release of doxorubicin was found to be predominantly governed by a change in the structure of the Fe(III)-DOPA complexes induced by an acidic pH value. It was also demonstrated that the fabricated NPs exhibited effective cytotoxicity towards cancer cells through efficient cellular uptake and cytosolic release. Therefore, it is anticipated that Fe(III)-DOPA complexation can be successfully utilized as a new design principle for pH-responsive NPs for diverse controlled drug-delivery applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Crystallization and preliminary X-ray diffraction analysis of the P3 RNA domain of yeast ribonuclease MRP in a complex with RNase P/MRP protein components Pop6 and Pop7

    International Nuclear Information System (INIS)

    Perederina, Anna; Esakova, Olga; Quan, Chao; Khanova, Elena; Krasilnikov, Andrey S.

    2009-01-01

    This article describes the first successful crystallization of components of eukaryotic ribonucleases P/MRP. Yeast RNase MRP RNA domain P3 was crystallized in a complex with the proteins Pop6 and Pop7; the crystals diffracted to 3.25 Å resolution. Eukaryotic ribonucleases P and MRP are closely related RNA-based enzymes which contain a catalytic RNA component and several protein subunits. The roles of the protein subunits in the structure and function of eukaryotic ribonucleases P and MRP are not clear. Crystals of a complex that included a circularly permuted 46-nucleotide-long P3 domain of the RNA component of Saccharomyces cerevisiae ribonuclease MRP and selenomethionine derivatives of the shared ribonuclease P/MRP protein components Pop6 (18.2 kDa) and Pop7 (15.8 kDa) were obtained using the sitting-drop vapour-diffusion method. The crystals belonged to space group P4 2 22 (unit-cell parameters a = b = 127.2, c = 76.8 Å, α = β = γ = 90°) and diffracted to 3.25 Å resolution

  17. The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding.

    Science.gov (United States)

    Prchal, Jan; Srb, Pavel; Hunter, Eric; Ruml, Tomáš; Hrabal, Richard

    2012-10-26

    We determined the solution structure of myristoylated Mason-Pfizer monkey virus matrix protein by NMR spectroscopy. The myristoyl group is buried inside the protein and causes a slight reorientation of the helices. This reorientation leads to the creation of a binding site for phosphatidylinositols. The interaction between the matrix protein and phosphatidylinositols carrying C(8) fatty acid chains was monitored by observation of concentration-dependent chemical shift changes of the affected amino acid residues, a saturation transfer difference experiment and changes in (31)P chemical shifts. No differences in the binding mode or affinity were observed with differently phosphorylated phosphatidylinositols. The structure of the matrix protein-phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] complex was then calculated with HADDOCK software based on the intermolecular nuclear Overhauser enhancement contacts between the ligand and the matrix protein obtained from a (13)C-filtered/(13)C-edited nuclear Overhauser enhancement spectroscopy experiment. PI(4,5)P(2) binding was not strong enough for triggering of the myristoyl-switch. The structural changes of the myristoylated matrix protein were also found to result in a drop in the oligomerization capacity of the protein. Copyright © 2012. Published by Elsevier Ltd.

  18. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for

  19. Crystallization and preliminary X-ray diffraction analysis of the P3 RNA domain of yeast ribonuclease MRP in a complex with RNase P/MRP protein components Pop6 and Pop7.

    Science.gov (United States)

    Perederina, Anna; Esakova, Olga; Quan, Chao; Khanova, Elena; Krasilnikov, Andrey S

    2010-01-01

    Eukaryotic ribonucleases P and MRP are closely related RNA-based enzymes which contain a catalytic RNA component and several protein subunits. The roles of the protein subunits in the structure and function of eukaryotic ribonucleases P and MRP are not clear. Crystals of a complex that included a circularly permuted 46-nucleotide-long P3 domain of the RNA component of Saccharomyces cerevisiae ribonuclease MRP and selenomethionine derivatives of the shared ribonuclease P/MRP protein components Pop6 (18.2 kDa) and Pop7 (15.8 kDa) were obtained using the sitting-drop vapour-diffusion method. The crystals belonged to space group P4(2)22 (unit-cell parameters a = b = 127.2, c = 76.8 A, alpha = beta = gamma = 90 degrees ) and diffracted to 3.25 A resolution.

  20. 2-Methoxy-4-vinylphenol can induce cell cycle arrest by blocking the hyper-phosphorylation of retinoblastoma protein in benzo[a]pyrene-treated NIH3T3 cells

    International Nuclear Information System (INIS)

    Jeong, Jin Boo; Jeong, Hyung Jin

    2010-01-01

    Research highlights: → 2M4VP activated the expression of p21 and p15 protein, and down-regulated the expression of cyclin D1 and cyclin E. → 2M4VP inhibited hyper-phosphorylation of Rb protein. → 2M4VP induced cell cycle arrest from G1 to S. → 2M4VP inhibited hyper-proliferation of the cells in BaP-treated cells. → 2M4VP induces growth arrest of BaP-treated cells by blocking hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins. -- Abstract: Benzo[a]pyrene (BaP) is an environment carcinogen that can enhance cell proliferation by disturbing the signal transduction pathways in cell cycle regulation. In this study, the effects of 2M4VP on cell proliferation, cell cycle and cell cycle regulatory proteins were studied in BaP-treated NIH 3T3 cells to establish the molecular mechanisms of 2M4VP as anti-proliferative agents. 2M4VP exerted a dose-dependent inhibitory effect on cell growth correlated with a G1 arrest. Analysis of G1 cell cycle regulators expression revealed 2M4VP increased expression of CDK inhibitor, p21Waf1/Cip1 and p15 INK4b, decreased expression of cyclin D1 and cyclin E, and inhibited kinase activities of CDK4 and CDK2. However, 2M4VP did not affect the expression of CDK4 and CDK2. Also, 2M4VP inhibited the hyper-phosphorylation of Rb induced by BaP. Our results suggest that 2M4VP induce growth arrest of BaP-treated NIH 3T3 cells by blocking the hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins.

  1. 2-Methoxy-4-vinylphenol can induce cell cycle arrest by blocking the hyper-phosphorylation of retinoblastoma protein in benzo[a]pyrene-treated NIH3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Boo [Bioresource Sciences, Andong National University, Andong 760749 (Korea, Republic of); Jeong, Hyung Jin, E-mail: jhj@andong.ac.kr [Bioresource Sciences, Andong National University, Andong 760749 (Korea, Republic of)

    2010-10-01

    Research highlights: {yields} 2M4VP activated the expression of p21 and p15 protein, and down-regulated the expression of cyclin D1 and cyclin E. {yields} 2M4VP inhibited hyper-phosphorylation of Rb protein. {yields} 2M4VP induced cell cycle arrest from G1 to S. {yields} 2M4VP inhibited hyper-proliferation of the cells in BaP-treated cells. {yields} 2M4VP induces growth arrest of BaP-treated cells by blocking hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins. -- Abstract: Benzo[a]pyrene (BaP) is an environment carcinogen that can enhance cell proliferation by disturbing the signal transduction pathways in cell cycle regulation. In this study, the effects of 2M4VP on cell proliferation, cell cycle and cell cycle regulatory proteins were studied in BaP-treated NIH 3T3 cells to establish the molecular mechanisms of 2M4VP as anti-proliferative agents. 2M4VP exerted a dose-dependent inhibitory effect on cell growth correlated with a G1 arrest. Analysis of G1 cell cycle regulators expression revealed 2M4VP increased expression of CDK inhibitor, p21Waf1/Cip1 and p15 INK4b, decreased expression of cyclin D1 and cyclin E, and inhibited kinase activities of CDK4 and CDK2. However, 2M4VP did not affect the expression of CDK4 and CDK2. Also, 2M4VP inhibited the hyper-phosphorylation of Rb induced by BaP. Our results suggest that 2M4VP induce growth arrest of BaP-treated NIH 3T3 cells by blocking the hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins.

  2. Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism.

    Science.gov (United States)

    Goh, Garrett B; Hulbert, Benjamin S; Zhou, Huiqing; Brooks, Charles L

    2014-07-01

    pH is a ubiquitous regulator of biological activity, including protein-folding, protein-protein interactions, and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH-dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi-site λ-dynamics (CPHMD(MSλD)). In the CPHMD(MSλD) framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi-site λ-dynamics, and designed novel biasing potentials to ensure that the physical end-states are predominantly sampled. We show that explicit solvent CPHMD(MSλD) simulations model realistic pH-dependent properties of proteins such as the Hen-Egg White Lysozyme (HEWL), binding domain of 2-oxoglutarate dehydrogenase (BBL) and N-terminal domain of ribosomal protein L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMD(MSλD) framework for nucleic acids, accurate modeling of pH-dependent properties of both major class of biomolecules-proteins and nucleic acids is now possible. © 2013 Wiley Periodicals, Inc.

  3. pH controlled gating of toxic protein pores by dendrimers

    Science.gov (United States)

    Mandal, Taraknath; Kanchi, Subbarao; Ayappa, K. G.; Maiti, Prabal K.

    2016-06-01

    Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent bacterial strains, on a target cell membrane is a challenging and active area of research. Here we demonstrate that PAMAM dendrimers can act as effective pH controlled gating devices once the pore has been formed. We have used fully atomistic molecular dynamics (MD) simulations to characterize the cytolysin A (ClyA) protein pores modified with fifth generation (G5) PAMAM dendrimers. Our results show that the PAMAM dendrimer, in either its protonated (P) or non-protonated (NP) states can spontaneously enter the protein lumen. Protonated dendrimers interact strongly with the negatively charged protein pore lumen. As a consequence, P dendrimers assume a more expanded configuration efficiently blocking the pore when compared with the more compact configuration adopted by the neutral NP dendrimers creating a greater void space for the passage of water and ions. To quantify the effective blockage of the protein pore, we have calculated the pore conductance as well as the residence times by applying a weak force on the ions/water. Ionic currents are reduced by 91% for the P dendrimers and 31% for the NP dendrimers. The preferential binding of Cl- counter ions to the P dendrimer creates a zone of high Cl- concentration in the vicinity of the internalized dendrimer and a high concentration of K+ ions in the transmembrane region of the pore lumen. In addition to steric effects, this induced charge segregation for the P dendrimer effectively blocks ionic transport through the pore. Our investigation shows that the bio-compatible PAMAM dendrimers can potentially be used to develop therapeutic protocols based on the pH sensitive gating of pores formed by pore forming toxins to mitigate bacterial infections.Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent

  4. The E4 protein; structure, function and patterns of expression

    Energy Technology Data Exchange (ETDEWEB)

    Doorbar, John, E-mail: jdoorba@nimr.mrc.ac.uk

    2013-10-15

    The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1{sup ∧}E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein′s flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1{sup ∧}E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1{sup ∧}E4 gene products generally become detectable at the onset of vegetative viral genome amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1{sup

  5. Molecular modelling of calcium dependent protein kinase 4 (CDPK4) from Plasmodium falciparum

    CSIR Research Space (South Africa)

    Tsekoa, Tsepo L

    2009-10-01

    Full Text Available eukaryotic protein kinases (ePKs) as defined in model organisms. A novel family of phylogenetically distinct ePK-related genes in P. falciparum has been identified. These kinases (up to 20 in number [2], designated the FIKK family due to a conserved amino...]. The protein kinase complement of Plasmodium falciparum, the main infectious agent of lethal malaria in humans, has been analysed in detail [2, 3]. These analyses revealed that the P. falciparum kinome comprises as many as 65 sequences related to typical...

  6. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: Fouling mechanism as a function of pH and ionic strength

    KAUST Repository

    Lee, Jieun; Jeong, Sanghyun; Ye, Yun; Chen, Vicki; Vigneswaran, Saravanamuthu; Leiknes, TorOve; Liu, Zongwen

    2016-01-01

    The protein fouling behavior was investigated in the filtration of the multiwall carbon nanotube (MWCNT) composite membrane and commercial polyethersulfone ultrafiltration (PES-UF) membrane. The effect of solution chemistry such as pH and ionic strength on the protein fouling mechanism was systematically examined using filtration model such as complete pore blocking, intermediate pore blocking and cake layer formation. The results showed that the initial permeate flux pattern and fouling behavior of the MWCNT composite membrane were significantly influenced by pH and ionic strength while the effect of PES-UF membrane on flux was minimal. In a lysozyme (Lys) filtration, the severe pore blocking in the MWCNT membrane was made by the combined effect of intra-foulant interaction (Lys-Lys) and electrostatic repulsion between the membrane surface and the foulant at pH 4.7 and 10.4, and increasing ionic strength where the foulant-foulant interaction and membrane-fouling interaction were weak. In a bovine serum albumin (BSA) filtration, severe pore blocking was reduced by less deposition via the electrostatic interaction between the membrane and foulant at pH 4.7 and 10.4 and increasing ionic strength, at which the interaction between the membrane and BSA became weak. For binary mixture filtration, the protein fouling mechanism was more dominantly affected by foulant-foulant interaction (Lys-BSA, Lys-Lys, and BSA-BSA) at pH 7.0 and increase in ionic strength. This research demonstrates that MWCNT membrane fouling can be alleviated by changing pH condition and ionic strength based on the foulant-foulant interaction and the electrostatic interaction between the membrane and foulant.

  7. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: Fouling mechanism as a function of pH and ionic strength

    KAUST Repository

    Lee, Jieun

    2016-11-04

    The protein fouling behavior was investigated in the filtration of the multiwall carbon nanotube (MWCNT) composite membrane and commercial polyethersulfone ultrafiltration (PES-UF) membrane. The effect of solution chemistry such as pH and ionic strength on the protein fouling mechanism was systematically examined using filtration model such as complete pore blocking, intermediate pore blocking and cake layer formation. The results showed that the initial permeate flux pattern and fouling behavior of the MWCNT composite membrane were significantly influenced by pH and ionic strength while the effect of PES-UF membrane on flux was minimal. In a lysozyme (Lys) filtration, the severe pore blocking in the MWCNT membrane was made by the combined effect of intra-foulant interaction (Lys-Lys) and electrostatic repulsion between the membrane surface and the foulant at pH 4.7 and 10.4, and increasing ionic strength where the foulant-foulant interaction and membrane-fouling interaction were weak. In a bovine serum albumin (BSA) filtration, severe pore blocking was reduced by less deposition via the electrostatic interaction between the membrane and foulant at pH 4.7 and 10.4 and increasing ionic strength, at which the interaction between the membrane and BSA became weak. For binary mixture filtration, the protein fouling mechanism was more dominantly affected by foulant-foulant interaction (Lys-BSA, Lys-Lys, and BSA-BSA) at pH 7.0 and increase in ionic strength. This research demonstrates that MWCNT membrane fouling can be alleviated by changing pH condition and ionic strength based on the foulant-foulant interaction and the electrostatic interaction between the membrane and foulant.

  8. Retinol binding protein 4, obesity, and insulin resistance in adolescents

    Directory of Open Access Journals (Sweden)

    Ronaldi Noor

    2017-02-01

    Full Text Available Background Obesity is a global problem. Even in poor and developing countries, obesity has reached alarming levels. In childhood, obesity may lead to insulin resistance. Retinol binding protein (RBP4, secreted primarily by liver and adipose tissues, was recently proposed as a link between obesity and insulin resistance. The role of RBP4 in pediatric obesity and its relationship with insulin resistance have not been well elucidated. Objective To compare RBP4 levels in obese and lean adolescents and to assess for a relationship between RBP4 levels and insulin resistance. Method This cross-sectional study was conducted in three senior high schools in Padang, West Sumatera, Indonesia. Subjects were adolescents aged 14-18 years, who were obese or normal weight (n=56. We measured subjects’ body mass index (BMI and serum RBP4 concentrations. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR index. Results Similar RBP4 levels were found in the obese and normoweight groups (P>0.05. Higher RBP4 levels were found in the insulin resistant compared to the non-insulin resistant group, but the difference was not significant (P > 0.05. Conclusion There is no significant difference in mean RBP4 levels in obese adolescents compared to normoweight adolescents. Nor are mean RBP4 levels significantly different between obese adolescents with and without insulin resistance.

  9. Alfalfa mosaic virus replicase proteins P1 and P2 interact and colocalize at the vacuolar membrane

    NARCIS (Netherlands)

    Heijden, van der M.W.; Carette, J.E.; Reinhoud, P.J.; Haegi, A.; Bol, J.F.

    2001-01-01

    Replication of Alfalfa mosaic virus (AMV) RNAs depends on the virus-encoded proteins P1 and P2. P1 contains methyltransferase- and helicase-like domains, and P2 contains a polymerase-like domain. Coimmunoprecipitation experiments revealed an interaction between in vitro translated-P1 and P2 and

  10. Identification of the interleukin 4 receptor alpha gene as a direct target for p73.

    Science.gov (United States)

    Sasaki, Yasushi; Mita, Hiroaki; Toyota, Minoru; Ishida, Setsuko; Morimoto, Ichiro; Yamashita, Toshiharu; Tanaka, Toshihiro; Imai, Kohzoh; Nakamura, Yusuke; Tokino, Takashi

    2003-12-01

    p73 has a high degree of structural homology to p53 and can activate transcription of p53-responsive genes. However, analysis of p73-deficient mice revealed a marked divergence in the physiological activities of p53 family genes and distinguishes p73 from p53. Mice deficient for p73 exhibit profound defects, including hippocampal dysgenesis, chronic infection, and inflammation, as well as abnormalities in pheromone sensory pathways. p73 plays important roles in neurogenesis, sensory pathways, and homeostatic regulation. Here, we found that the interleukin 4 receptor alpha (IL-4Ralpha) gene is up-regulated by p73 but not significantly by p53 in several human cancer cell lines. IL-4Ralphatranscription is also activated in response to cisplatin, a DNA-damaging agent known to induce p73. By using small interference RNA designed to target p73, we demonstrated that silencing endogenous p73 abrogates the induction of the IL-4Ralpha gene after cisplatin treatment. Furthermore, we identified a p73-binding site in the first intron of the IL-4Ralpha gene that can directly interact with the p73 protein in vivo. This p73-binding site consists of eight copies of a 10-bp consensus p53-binding motif and is a functional response element that is relatively specific for p73 among the p53 family. p73beta promoted localized nucleosomal acetylation through recruitment of coactivator p300, indicating that p73 regulates transcription of IL-4Ralpha through the unique p73-binding site. We also found that p73beta-transfected tumor cells are sensitive to IL-4-mediated apoptosis. Our data suggest that IL-4Ralpha could mediate, in part, certain immune responses and p73-dependent cell death.

  11. Adsorption of Hydrophobin-Protein Mixtures at the Air-Water Interface: The Impact of pH and Electrolyte.

    Science.gov (United States)

    Tucker, Ian M; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K; Cox, Andrew R; Hedges, Nick

    2015-09-15

    The adsorption of the proteins β-casein, β-lactoglobulin, and hydrophobin, and the protein mixtures of β-casein/hydrophobin and β-lactoglobulin/hydrophobin have been studied at the air-water interface by neutron reflectivity, NR. Changing the solution pH from 7 to 2.6 has relatively little impact on the adsorption of hydrophobin or β-lactoglobulin, but results in a substantial change in the structure of the adsorbed layer of β-casein. In β-lactoglobulin/hydrophobin mixtures, the adsorption is dominated by the hydrophobin adsorption, and is independent of the hydrophobin or β-lactoglobulin concentration and solution pH. At pH 2.6, the adsorption of the β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption over the range of β-casein concentrations studied. At pH 4 and 7, the adsorption of β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption at low β-casein concentrations. At higher β-casein concentrations, β-casein is adsorbed onto the surface monolayer of hydrophobin, and some interpenetration between the two proteins occurs. These results illustrate the importance of pH on the intermolecular interactions between the two proteins at the interface. This is further confirmed by the impact of PBS, phosphate buffered saline, buffer and CaCl2 on the coadsorption and surface structure. The results provide an important insight into the adsorption properties of protein mixtures and their application in foam and emulsion stabilization.

  12. Structure of the C-terminal heme-binding domain of THAP domain containing protein 4 from Homo sapiens

    Energy Technology Data Exchange (ETDEWEB)

    Bianchetti, Christopher M.; Bingman, Craig A.; Phillips, Jr., George N. (UW)

    2012-03-15

    The thanatos (the Greek god of death)-associated protein (THAP) domain is a sequence-specific DNA-binding domain that contains a C2-CH (Cys-Xaa{sub 2-4}-Cys-Xaa{sub 35-50}-Cys-Xaa{sub 2}-His) zinc finger that is similar to the DNA domain of the P element transposase from Drosophila. THAP-containing proteins have been observed in the proteome of humans, pigs, cows, chickens, zebrafish, Drosophila, C. elegans, and Xenopus. To date, there are no known THAP domain proteins in plants, yeast, or bacteria. There are 12 identified human THAP domain-containing proteins (THAP0-11). In all human THAP protein, the THAP domain is located at the N-terminus and is {approx}90 residues in length. Although all of the human THAP-containing proteins have a homologous N-terminus, there is extensive variation in both the predicted structure and length of the remaining protein. Even though the exact function of these THAP proteins is not well defined, there is evidence that they play a role in cell proliferation, apoptosis, cell cycle modulation, chromatin modification, and transcriptional regulation. THAP-containing proteins have also been implicated in a number of human disease states including heart disease, neurological defects, and several types of cancers. Human THAP4 is a 577-residue protein of unknown function that is proposed to bind DNA in a sequence-specific manner similar to THAP1 and has been found to be upregulated in response to heat shock. THAP4 is expressed in a relatively uniform manner in a broad range of tissues and appears to be upregulated in lymphoma cells and highly expressed in heart cells. The C-terminal domain of THAP4 (residues 415-577), designated here as cTHAP4, is evolutionarily conserved and is observed in all known THAP4 orthologs. Several single-domain proteins lacking a THAP domain are found in plants and bacteria and show significant levels of homology to cTHAP4. It appears that cTHAP4 belongs to a large class of proteins that have yet to be fully

  13. Laser spectroscopy of the 4s4p(3) P-2-4s3d(1) D-2 transition on magnetically trapped calcium atoms

    NARCIS (Netherlands)

    Dammalapati, U.; Norris, I.; Burrows, C.; Riis, E.

    2011-01-01

    Laser excitation of the 4s4p(3) P-2-4s3d(1) D-2 transition in atomic calcium has been observed and the wavelength determined to 1530.5298(6) nm. The metastable 4s4p(3) P-2 atoms were magnetically trapped in the quadrupole magnetic field of a magneto-optical trap. This state represents the only

  14. Protein Stable Isotope Fingerprinting (P-SIF): Multidimensional Protein Chromatography Coupled to Stable Isotope-Ratio Mass Spectrometry

    Science.gov (United States)

    Pearson, A.; Bovee, R. J.; Mohr, W.; Tang, T.

    2012-12-01

    As metagenomics increases our insight into microbial community diversity and metabolic potential, new approaches are required to determine the biogeochemical expression of this potential within ecosystems. Because stable isotopic analysis of the major bioactive elements (C, N) has been used historically to map flows of substrates and energy among macroscopic food webs, similar principles may apply to microbes. To address this challenge, we have developed a new analytical approach called Protein Stable Isotope Fingerprinting (P-SIF). P-SIF generates natural stable isotopic fingerprints of microbial individual or community proteomes. The main advantage of P-SIF is the potential to bridge the gap between diversity and function, thereby providing a window into the "black box" of environmental microbiology and helping to decipher the roles of uncultivated species. Our method implements a three-way, orthogonal scheme to separate mixtures of whole proteins into subfractions dominated by single or closely-related proteins. Protein extracts first are isoelectrically focused in a gel-free technique that yields 12 fractions separated over a gradient of pH 3-10. Each fraction then is separated by size-exclusion chromatography into 20 pools, ranging from >100kD to ~10kD. Finally, each of these pools is subjected to HPLC and collected in 40 time-slices based on protein hydrophobicity. Theoretical calculation reveals that the true chromatographic resolution of the total scheme is 5000, somewhat less than the 9600 resulting fractions. High-yielding fractions are subjected to δ13C analysis by spooling-wire microcombustion irMS (SWiM-irMS) optimized for samples containing 1-5 nmol carbon. Here we will present the method, results for a variety of pure cultures, and preliminary data for a sample of mixed environmental proteins. The data show the promise of this method for unraveling the metabolic complexity hidden within microbial communities.

  15. Implications of Genetic and Epigenetic Alterations of CDKN2A (p16INK4a in Cancer

    Directory of Open Access Journals (Sweden)

    Ran Zhao

    2016-06-01

    Full Text Available Aberrant gene silencing is highly associated with altered cell cycle regulation during carcinogenesis. In particular, silencing of the CDKN2A tumor suppressor gene, which encodes the p16INK4a protein, has a causal link with several different types of cancers. The p16INK4a protein plays an executional role in cell cycle and senescence through the regulation of the cyclin-dependent kinase (CDK 4/6 and cyclin D complexes. Several genetic and epigenetic aberrations of CDKN2A lead to enhanced tumorigenesis and metastasis with recurrence of cancer and poor prognosis. In these cases, the restoration of genetic and epigenetic reactivation of CDKN2A is a practical approach for the prevention and therapy of cancer. This review highlights the genetic status of CDKN2A as a prognostic and predictive biomarker in various cancers.

  16. Human Adenovirus Infection Causes Cellular E3 Ubiquitin Ligase MKRN1 Degradation Involving the Viral Core Protein pVII.

    Science.gov (United States)

    Inturi, Raviteja; Mun, Kwangchol; Singethan, Katrin; Schreiner, Sabrina; Punga, Tanel

    2018-02-01

    Human adenoviruses (HAdVs) are common human pathogens encoding a highly abundant histone-like core protein, VII, which is involved in nuclear delivery and protection of viral DNA as well as in sequestering immune danger signals in infected cells. The molecular details of how protein VII acts as a multifunctional protein have remained to a large extent enigmatic. Here we report the identification of several cellular proteins interacting with the precursor pVII protein. We show that the cellular E3 ubiquitin ligase MKRN1 is a novel precursor pVII-interacting protein in HAdV-C5-infected cells. Surprisingly, the endogenous MKRN1 protein underwent proteasomal degradation during the late phase of HAdV-C5 infection in various human cell lines. MKRN1 protein degradation occurred independently of the HAdV E1B55K and E4orf6 proteins. We provide experimental evidence that the precursor pVII protein binding enhances MKRN1 self-ubiquitination, whereas the processed mature VII protein is deficient in this function. Based on these data, we propose that the pVII protein binding promotes MKRN1 self-ubiquitination, followed by proteasomal degradation of the MKRN1 protein, in HAdV-C5-infected cells. In addition, we show that measles virus and vesicular stomatitis virus infections reduce the MKRN1 protein accumulation in the recipient cells. Taken together, our results expand the functional repertoire of the HAdV-C5 precursor pVII protein in lytic virus infection and highlight MKRN1 as a potential common target during different virus infections. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing a wide range of diseases. To achieve pathogenicity, HAdVs have to counteract a variety of host cell antiviral defense systems, which would otherwise hamper virus replication. In this study, we show that the HAdV-C5 histone-like core protein pVII binds to and promotes self-ubiquitination of a cellular E3 ubiquitin ligase named MKRN1. This mutual interaction between the pVII and

  17. Extracting Tenebrio molitor protein while preventing browning: effect of pH and NaCl on protein yield

    NARCIS (Netherlands)

    Yi, L.; Boekel, van T.; Lakemond, C.M.M.

    2017-01-01

    The potential of insects as an alternative protein source for food applications was investigated by studying the effect of pH and NaCl on extraction yield of water-soluble proteins from Tenebrio molitor, while preventing browning due to polyphenol oxidation. Minimum protein solubility (29.6%) was at

  18. Schistosoma mansoni venom allergen-like protein 4 (SmVAL4) is a novel lipid-binding SCP/TAPS protein that lacks the prototypical CAP motifs

    Energy Technology Data Exchange (ETDEWEB)

    Kelleher, Alan [Baylor College of Medicine, Houston, TX 77030 (United States); Darwiche, Rabih [University of Fribourg, Chemin du Musée 10, CH 1700 Fribourg (Switzerland); Rezende, Wanderson C. [Baylor College of Medicine, Houston, TX 77030 (United States); Farias, Leonardo P.; Leite, Luciana C. C. [Instituto Butantan, São Paulo, SP (Brazil); Schneiter, Roger [University of Fribourg, Chemin du Musée 10, CH 1700 Fribourg (Switzerland); Asojo, Oluwatoyin A., E-mail: asojo@bcm.edu [Baylor College of Medicine, Houston, TX 77030 (United States)

    2014-08-01

    The first structure of an S. mansoni venom allergen-like protein is presented. Schistosomiasis is a parasitic disease that affects over 200 million people. Vaccine candidates have been identified, including Schistosoma mansoni venom allergen-like proteins (SmVALs) from the SCP/TAPS (sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7) superfamily. The first SmVAL structure, SmVAL4, was refined to a resolution limit of 2.16 Å. SmVAL4 has a unique structure that could not be predicted from homologous structures, with longer loops and an unusual C-terminal extension. SmVAL4 has the characteristic α/β-sandwich and central SCP/TAPS cavity. Furthermore, SmVAL4 has only one of the signature CAP cavity tetrad amino-acid residues and is missing the histidines that coordinate divalent cations such as Zn{sup 2+} in other SCP/TAPS proteins. SmVAL4 has a cavity between α-helices 1 and 4 that was observed to bind lipids in tablysin-15, suggesting the ability to bind lipids. Subsequently, SmVAL4 was shown to bind cholesterol in vitro. Additionally, SmVAL4 was shown to complement the in vivo sterol-export phenotype of yeast mutants lacking their endogenous CAP proteins. Expression of SmVAL4 in yeast cells lacking endogenous CAP function restores the block in sterol export. These studies suggest an evolutionarily conserved lipid-binding function shared by CAP proteins such as SmVAL4 and yeast CAP proteins such as Pry1.

  19. Significance of the S100A4 protein in psoriasis

    DEFF Research Database (Denmark)

    Zibert, John R; Skov, Lone; Thyssen, Jacob P

    2010-01-01

    the expression and significance of S100A4 in psoriasis. We found significant upregulation of S100A4 in the dermis of psoriatic skin compared with normal skin. This pattern of S100A4 expression differs considerably from that of other S100 proteins, S100A7 and S100A8/9, with predominant expression in the epidermis...... of psoriasis. Furthermore, we revealed a massive release of the biologically active forms of S100A4 from psoriatic skin. Interestingly, we found stabilization (increase) of p53 in the basal layer of epidermis in close proximity to cells expressing S100A4. To examine the possible implication of S100A4...... in the pathogenesis of psoriasis, we analyzed the effect of S100A4 blocking antibodies in a human psoriasis xenograft SCID mouse model and observed a significant reduction of the epidermal thickness and impairment in cell proliferation and dermal vascularization. In conclusion, we showed strong upregulation...

  20. Vorinostat enhances protein stability of p27 and p21 through negative regulation of Skp2 and Cks1 in human breast cancer cells.

    Science.gov (United States)

    Uehara, Norihisa; Yoshizawa, Katsuhiko; Tsubura, Airo

    2012-07-01

    Vorinostat is a histone deacetylase inhibitor that blocks cancer cell proliferation through the regulation of cyclin-dependent kinase inhibitors. We, herein, examined the involvement of S-phase kinase-associated protein 2 (Skp2) and cyclin-dependent kinase subunit 1 (Cks1), the components of the SCFSkp2-Cks1 (Skp1/Cul1/F-box protein) ubiquitin ligase complex, in the regulation of p27 and p21 during vorinostat-induced growth arrest of MDA-MB-231 and MCF-7 human breast cancer cells. Vorinostat significantly reduced BrdU incorporation in MDA-MB-231 and MCF-7 cells, which was associated with increased p27 and p21 protein levels without concomitant induction of p27 mRNA. Vorinostat-induced accumulation of p27 and p21 proteins was inversely correlated with the mRNA and protein levels of Skp2 and Cks1. Cycloheximide chase analysis revealed that vorinostat increased the half-life of p27 and p21 proteins. The accumulation of p27 and p21 proteins was attenuated by forced expression of Skp2 and Cks1, which conferred resistance to the vorinostat-induced S-phase reduction. These results suggest that vorinostat-induced growth arrest may be in part due to the enhanced protein stability of p27 and p21 through the downregulation of Skp2 and Cks1.

  1. Interaction between doubly-excited 4p4nln'l' resonances in KrI

    International Nuclear Information System (INIS)

    Sukhorukov, V L; Petrov, I D; Demekhin, Ph V; Schmoranzer, H; Mickat, S; Kammer, S; Schartner, K-H; Klumpp, S; Werner, L; Ehresmann, A

    2007-01-01

    Photoionization cross sections for the 4p 4 ( 3 P)5s 4 P 5/2,3/2,1/2 satellites and 4s → εl, 4p → εl main lines of Kr II were measured using the photon-induced fluorescence spectroscopy in the exciting-photon energy range between 27.80 eV and 29.44 eV with extremely narrow bandwidth (1.7 meV at 28.55 eV) of the monochromatized synchrotron radiation. The observed resonances were assigned to the 4p 4 5s( 4 P 1/2 )np and 4p 4 5s( 2 P 3/2 )np Rydberg series on the basis of the calculations including core relaxation and interaction between many resonances and many continua. The calculation shows that the resonance structure in the photoionization channels exists due to the 4p 4 ( 1 D)5s 2 D 5/2 6p 3/2 and 4p 4 ( 1 D)5s 2 D 3/2 6p 3/2,1/2 promoter states which strongly perturb the above Rydberg series

  2. Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast

    International Nuclear Information System (INIS)

    Barajas, Daniel; Xu, Kai; Sharma, Monika; Wu, Cheng-Yu; Nagy, Peter D.

    2014-01-01

    Positive-stranded RNA viruses induce new membranous structures and promote membrane proliferation in infected cells to facilitate viral replication. In this paper, the authors show that a plant-infecting tombusvirus upregulates transcription of phospholipid biosynthesis genes, such as INO1, OPI3 and CHO1, and increases phospholipid levels in yeast model host. This is accomplished by the viral p33 replication protein, which interacts with Opi1p FFAT domain protein and Scs2p VAP protein. Opi1p and Scs2p are phospholipid sensor proteins and they repress the expression of phospholipid genes. Accordingly, deletion of OPI1 transcription repressor in yeast has a stimulatory effect on TBSV RNA accumulation and enhanced tombusvirus replicase activity in an in vitro assay. Altogether, the presented data convincingly demonstrate that de novo lipid biosynthesis is required for optimal TBSV replication. Overall, this work reveals that a (+)RNA virus reprograms the phospholipid biosynthesis pathway in a unique way to facilitate its replication in yeast cells. - Highlights: • Tombusvirus p33 replication protein interacts with FFAT-domain host protein. • Tombusvirus replication leads to upregulation of phospholipids. • Tombusvirus replication depends on de novo lipid synthesis. • Deletion of FFAT-domain host protein enhances TBSV replication. • TBSV rewires host phospholipid synthesis

  3. The T4 Phage DNA Mimic Protein Arn Inhibits the DNA Binding Activity of the Bacterial Histone-like Protein H-NS*

    Science.gov (United States)

    Ho, Chun-Han; Wang, Hao-Ching; Ko, Tzu-Ping; Chang, Yuan-Chih; Wang, Andrew H.-J.

    2014-01-01

    The T4 phage protein Arn (Anti restriction nuclease) was identified as an inhibitor of the restriction enzyme McrBC. However, until now its molecular mechanism remained unclear. In the present study we used structural approaches to investigate biological properties of Arn. A structural analysis of Arn revealed that its shape and negative charge distribution are similar to dsDNA, suggesting that this protein could act as a DNA mimic. In a subsequent proteomic analysis, we found that the bacterial histone-like protein H-NS interacts with Arn, implying a new function. An electrophoretic mobility shift assay showed that Arn prevents H-NS from binding to the Escherichia coli hns and T4 p8.1 promoters. In vitro gene expression and electron microscopy analyses also indicated that Arn counteracts the gene-silencing effect of H-NS on a reporter gene. Because McrBC and H-NS both participate in the host defense system, our findings suggest that T4 Arn might knock down these mechanisms using its DNA mimicking properties. PMID:25118281

  4. Quantitative proteomics identifies Gemin5, a scaffolding protein involved in ribonucleoprotein assembly, as a novel partner for eukaryotic initiation factor 4E

    DEFF Research Database (Denmark)

    Fierro-Monti, Ivo; Mohammed, Shabaz; Matthiesen, Rune

    2006-01-01

    Protein complexes are dynamic entities; identification and quantitation of their components is critical in elucidating functional roles under specific cellular conditions. We report the first quantitative proteomic analysis of the human cap-binding protein complex. Components and proteins......-starved tumorigenic human mesenchymal stromal cells, attested to their activated translational states. The WD-repeat, scaffolding-protein Gemin5 was identified as a novel eIF4E binding partner, which interacted directly with eIF4E through a motif (YXXXXLPhi) present in a number of eIF4E-interacting partners. Elevated...... levels of Gemin5:eIF4E complexes were found in phorbol ester treated HEK293 cells. Gemin5 and eIF4E co-localized to cytoplasmic P-bodies in human osteosarcoma U2OS cells. Interaction between eIF4E and Gemin5 and their co-localization to the P-bodies, may serve to recruit capped mRNAs to these RNP...

  5. CD147 (Basigin/Emmprin) identifies FoxP3+CD45RO+CTLA4+-activated human regulatory T cells.

    Science.gov (United States)

    Solstad, Therese; Bains, Simer Jit; Landskron, Johannes; Aandahl, Einar Martin; Thiede, Bernd; Taskén, Kjetil; Torgersen, Knut Martin

    2011-11-10

    Human CD4(+)FoxP3(+) T cells are functionally and phenotypically heterogeneous providing plasticity to immune activation and regulation. To better understand the functional dynamics within this subset, we first used a combined strategy of subcellular fractionation and proteomics to describe differences at the protein level between highly purified human CD4(+)CD25(+) and CD4(+)CD25(-) T-cell populations. This identified a set of membrane proteins highly expressed on the cell surface of human regulatory T cells (Tregs), including CD71, CD95, CD147, and CD148. CD147 (Basigin or Emmprin) divided CD4(+)CD25(+) cells into distinct subsets. Furthermore, CD147, CD25, FoxP3, and in particular CTLA-4 expression correlated. Phenotypical and functional analyses suggested that CD147 marks the switch between resting (CD45RA(+)) and activated (CD45RO(+)) subsets within the FoxP3(+) T-cell population. Sorting of regulatory T cells into CD147(-) and CD147(+) populations demonstrated that CD147 identifies an activated and highly suppressive CD45RO(+) Treg subset. When analyzing CD4(+) T cells for their cytokine producing potential, CD147 levels grouped the FoxP3(+) subset into 3 categories with different ability to produce IL-2, TNF-α, IFN-γ, and IL-17. Together, this suggests that CD147 is a direct marker for activated Tregs within the CD4(+)FoxP3(+) subset and may provide means to manipulate cells important for immune homeostasis.

  6. Protein leverage effects of beef protein on energy intake in humans.

    Science.gov (United States)

    Martens, Eveline A; Tan, Sze-Yen; Dunlop, Mandy V; Mattes, Richard D; Westerterp-Plantenga, Margriet S

    2014-06-01

    The protein leverage hypothesis requires specific evidence that protein intake is regulated more strongly than energy intake. The objective was to determine ad libitum energy intake, body weight changes, appetite profile, and nitrogen balance in response to 3 diets with different protein-to-carbohydrate + fat ratios over 12 consecutive days, with beef as a source of protein. A 3-arm, 12-d randomized crossover study was performed in 30 men and 28 women [mean ± SD age: 33 ± 16 y; body mass index (in kg/m²): 24.4 ± 4.0] with the use of diets containing 5%, 15%, and 30% of energy (En%) from protein, predominantly from beef. Energy intake was significantly lower in the 30En%-protein condition (8.73 ± 1.93 MJ/d) than in the 5En%-protein (9.48 ± 1.67 MJ/d) and 15En%-protein (9.30 ± 1.62 MJ/d) conditions (P = 0.001), stemming largely from lower energy intake during meals (P = 0.001). Hunger (P = 0.001) and desire to eat (P = 0.001) ratings were higher and fullness ratings were lower (P = 0.001) in the 5En%-protein condition than in the 15En%-protein and 30En%-protein conditions. Nitrogen excretion was lower in the 5En%-protein condition (4.7 ± 1.5 g/24 h; P = 0.001) and was higher in the 30En%-protein condition (15.3 ± 8.7 g/24 h; P = 0.001) compared with the 15En%-protein condition (10.0 ± 5.2 g/24 h). Nitrogen balance was maintained in the 5En%-protein condition and was positive in the 15En%- and 30En%-protein conditions (P = 0.001). Complete protein leverage did not occur because subjects did not consume to a common protein amount at the expense of energy balance. Individuals did underconsume relative to energy requirements from high-protein diets. The lack of support for protein leverage effects on a low-protein diet may stem from the fact that protein intake was sufficient to maintain nitrogen balance over the 12-d trial. © 2014 American Society for Nutrition.

  7. Cross reaction between P-61 sunflower seedlings oleosomal protein ...

    African Journals Online (AJOL)

    A true triacylglycerol lipase was detected in germinating sunflower (Helianthus annuus L.) seedlings associated to oleosomes. This enzyme that has not yet been identified was partially purified as shown by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS PAGE) (10%); two protein bands, P-61 and P-66 ...

  8. Evaluation of Ki-67 Antigen and Protein P53 Expression in Orthokratinized and Parakratinized Odontogenic Keratocyst

    Directory of Open Access Journals (Sweden)

    F. Baghaei

    2004-06-01

    Full Text Available Statement of Problem: Odontogenic Keratocysts (OKC make up 10-12% of all developmental cysts with dental origin. OKCs are classified into parakeratotic and orthokeratotic types, with completely different clinical features. In order to investigate biological behavior of OKCs, an immunohistochemical study was designed, using Ki-67 antigen as proliferation marker and P53 protein as tumor suppressor gene.Purposes: The aim of the present study was to investigate the expression of P53 and Ki-67 markers in two types of OKCs and to determine their relationship with the biological behaviour of OKC.Materials and Methods: A total of 20 OKCs (parakeratotic n=10, orthokeratotic n=10were stained immunohistochemically for Ki-67 and P53 protein by Biotin – Streptavidine method. Then, slides were studied quantitatively through optical lense (magnification=X10and the number of positively stained cells was counted/mm BM.Results: The average number of Positively stained cells for Ki-67 were 62.30±11.96 cells/mm BM in parakeratotic, and 29.90±4.90 cells/mmBM in orthokeratotic OKCs (P<0.05. Positive cells for Ki-67 were dominantly located in parabasal layer. Mean stainedcells for P53 were 4.30± 2.21cells/mmBM in parakeratinized and 4.80±1.75 cells/mmBM in orthokeratotic types that was not statistically significant. (P<0.58Parakeratotic OKCs mostly occur in the lower jaw (90%, whereas just 50% of orthokeratotic OKCs occur in mandible (P=0.05Conclusion: Regarding other clinical features and the existence of daughter cysts, no significant statistical difference was found between two types of OKCs.

  9. Phospho-specific binding of 14-3-3 proteins to phosphatidylinositol 4-kinase III beta protects from dephosphorylation and stabilizes lipid kinase activity.

    Science.gov (United States)

    Hausser, Angelika; Link, Gisela; Hoene, Miriam; Russo, Chiara; Selchow, Olaf; Pfizenmaier, Klaus

    2006-09-01

    Phosphatidylinositol-4-kinase-IIIbeta (PI4KIIIbeta) is activated at the Golgi compartment by PKD-mediated phosphorylation. Subsequent mechanisms responsible for continuous PtdIns(4)P production at Golgi membranes and potential interaction partners of activated PI4KIIIbeta are unknown. Here we identify phosphoserine/-threonine binding 14-3-3 proteins as novel regulators of PI4KIIIbeta activity downstream of this phosphorylation. The PI4KIIIbeta-14-3-3 interaction, evident from GST pulldowns, co-immunoprecipitations and bimolecular fluorescence complementation, was augmented by phosphatase inhibition with okadaic acid. Binding of 14-3-3 proteins to PI4KIIIbeta involved the PKD phosphorylation site Ser294, evident from reduced 14-3-3 binding to a S294A PI4KIIIbeta mutant. Expression of dominant negative 14-3-3 proteins resulted in decreased PI4KIIIbeta Ser294 phosphorylation, whereas wildtype 14-3-3 proteins increased phospho-PI4KIIIbeta levels. This was because of protection of PI4KIIIbeta Ser294 phosphorylation from phosphatase-mediated dephosphorylation. The functional significance of the PI4KIIIbeta-14-3-3 interaction was evident from a reduction of PI4KIIIbeta activity upon dominant negative 14-3-3 protein expression. We propose that 14-3-3 proteins function as positive regulators of PI4KIIIbeta activity by protecting the lipid kinase from active site dephosphorylation, thereby ensuring a continuous supply of PtdIns(4)P at the Golgi compartment.

  10. Electron excitation cross sections for the 2s(2)2p(3)4S(O) -- 2s(2)2p(3)2D(O) (forbidden) and 4S(O) -- 2s2p(4) 4P (resonance) transitions in O II

    Science.gov (United States)

    Zuo, M.; Smith, Steven J.; Chutjian, A.; Williams, I. D.; Tayal, S. S.; Mclaughlin, Brendan M.

    1995-01-01

    Experimental and theoretical excitation cross sections are reported for the first forbidden transition 4S(O) -- 2S(2)2p(3) 2D(O) (lambda-lambda 3726, 3729) and the first allowed (resonance) transition 4S(O) -- 2s2p(4) 4P(lambda-833) in O II. Use is made of electron energy loss and merged-beams methods. The electron energy range covered is 3.33 (threshold) to 15 eV for the S -- D transition, and 14.9 (threshold) to 40 eV for the S -- P transition. Care was taken to assess and minimize the metastable fraction of the O II beam. An electron mirror was designed and tested to reflect inelastically backscattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-matrix calculations. Calculations are also presented for the 4S(O) -- 2s(2)2p(3)2P(O) (lambda-2470) transition.

  11. p38 mitogen-activated protein kinase mediates IL-8 induction by the ribotoxin deoxynivalenol in human monocytes

    International Nuclear Information System (INIS)

    Islam, Zahidul; Gray, Jennifer S.; Pestka, James J.

    2006-01-01

    The effects of the ribotoxic trichothecene deoxynivalenol (DON) on mitogen-activated protein kinase (MAPK)-mediated IL-8 expression were investigated in cloned human monocytes and peripheral blood mononuclear cells (PBMC). DON (250 to 1000 ng/ml) induced both IL-8 mRNA and IL-8 heteronuclear RNA (hnRNA), an indicator of IL-8 transcription, in the human U937 monocytic cell line in a concentration-dependent manner. Expression of IL-8 hnRNA, mRNA and protein correlated with p38 phosphorylation and was completely abrogated by the p38 MAPK inhibitor SB203580. DON at 500 ng/ml similarly induced p38-dependent IL-8 protein and mRNA expression in PBMC cultures from healthy volunteers. Significantly increased IL-6 and IL-1β intracellular protein and mRNA expression was also observed in PBMC treated with DON (500 ng/ml) which were also partially p38-dependent. Flow cytometry of PBMC revealed that DON-induced p38 phosphorylation varied among individuals relative to both threshold toxin concentrations (25-100 ng/ml) and relative increases in percentages of phospho-p38 + cells. DON-induced p38 activation occurred exclusively in the CD14 + monocyte population. DON was devoid of agonist activity for human Toll-like receptors 2, 3, 4, 5, 7, 8 and 9. However, two other ribotoxins, emetine and anisomycin, induced p38 phosphorylation in PBMC similarly to DON. Taken together, these data suggest that (1) p38 activation was required for induction of IL-8 and proinflammatory gene expression in the monocyte and (2) DON induced p38 activation in human monocytes via the ribotoxic stress response

  12. Expression of MDM2 mRNA, MDM2, P53 and P16 Proteins in Urothelial Lesions in the View of the WHO 4th Edition Guidelines as A Molecular Insight towards Personalized Medicine

    Directory of Open Access Journals (Sweden)

    Olfat Hammam

    2017-08-01

    Full Text Available AIM: Here we imposed a multimarker molecular panel composed of P53, MDM2 protein & mRNA & P16 with the identification of sensitive and specific cut offs among the Egyptian urothelial carcinomas bilharzial or not emphasize the pathological and molecular classifications, pathways and prognosis as a privilege for adjuvant therapy. METHODS: Three hundred and ten urothelial lesions were pathologically evaluated and grouped as follows: 50 chronic cystitis as benign, 240 urothelial carcinomas and 20 normal bladder tissue as a control. Immunohistochemistry for MDM Protein, P16 & p53 and In Situ Hybridization for MDM2mRNA were done. RESULTS: MDM2mRNA overexpression correlated with low grade low stage non invasive tumors, while P53 > 40% & p16 40% & P16 10% from high grade, high stage invasive urothelial carcinomas (with p53 > 40, p16 40 & p16 < 10%, together with the histopathological features can distinguish in situ urothelial lesions from dysplastic and atypical lesions.

  13. [The mechanisms of p21WAF1/Cip-1 expression in MOLT-4 cell line induced by TSA].

    Science.gov (United States)

    Song, Yi; Liu, Mei-Ju; Zhao, Guo-Wei; Qian, Jun-Jie; Dong, Yan; Liu, Hua; Sun, Guo-Jing; Mei, Zhu-Zhong; Liu, Bin; Tian, Bao-Lei; Sun, Zhi-Xian

    2005-04-01

    To investigate the function and molecular mechanism of p21(WAF1/Cip-1) expression in MOLT-4 cells induced by HDAC inhibitor TSA, the expression pattern of p21(WAF1/Cip-1) and the distribution of cell cycle in TSA treated cells were analyzed. The results showed that TSA could effectively induce G(2)/M arrest and apoptosis of MOLT-4 cells. Kinetic experiments demonstrated that p21(WAF1/Cip-1) were upregulated quickly before cell arrested in G(2)/M and began decreasing at the early stage of apoptosis. Meanwhile, the proteasome inhibitor MG-132 could inhibit the decrease of p21(WAF1/Cip-1) at the early stage of apoptosis, which showed that proteasome pathway involved in p21(WAF1/Cip-1) degradation during the TSA induced G(2)/M arrest and apoptosis responses. This study also identified that the protein level of p21(WAF1/Cip-1) was highly associated with the cell cycle change induced by TSA. Compared to cells treated by TSA only, exposure MOLT-4 cells to TSA meanwhile treatment with MG-132 increased the protein level of p21(WAF1/Cip-1) and increased the numbers of cell in G(2)/M-phase, whereas the cell apoptosis were delayed. It is concluded that p21(WAF1/Cip-1) plays a significant role in G(2)/M arrest and apoptosis signaling induced by TSA in MOLT-4 cells.

  14. Crossed molecular beam-tunable laser determination of velocity dependence of intramultiplet mixing: K(4p2P1/2)+He →K(4p2P3/2)+He

    International Nuclear Information System (INIS)

    Anderson, R.W.; Goddard, T.P.; Parravano, C.; Warner, J.

    1976-01-01

    The velocity dependence of intramultiplet mixing, K(4p 2 P 1 / 2 ) +He→K(4p 2 P 3 / 2 )+He, has been measured over the relative velocity range v=1.3--3.4 km/sec. The cross section appears to fit a linear function Q (v) =A (v-v 0 ), where a=6.3 x 10 -4 A 2 and v 0 = 7.9 x 10 4 cm/sec. The value of A is obtained by normalization to the literature thermal average cross section. The intramultiplet mixing theory of Nikitin is modified to yield Q (v) for the process. The modified theory correctly exhibits detailed balancing, and it is normalized to provide a very good fit to the observed Q (v). The magnitude of the normalization factor, however, is larger than that predicted from recent pseudopotential calculations of the excited state potentials. The temperature dependence of intramultiplet mixing is predicted. The use of laser polarization to determine the m/subj/ dependence of the process K(4p 2 P 3 / 2 +He→K(4p 2 P 1 / 2 )+He and other collision processes of excited 2 P 3 / 2 states is examined

  15. Theoretical energy level spectra and transition data for 4p64d, 4p64f and 4p54d2 configurations of W37+ ion

    International Nuclear Information System (INIS)

    Bogdanovich, P.; Kisielius, R.

    2012-01-01

    The ab initio quasirelativistic Hartree–Fock method developed specifically for the calculation of spectral parameters of heavy atoms and highly charged ions was applied to determine atomic data for tungsten ions. The correlation effects were included by adopting the configuration interaction method. The Breit–Pauli approximation for quasirelativistic Hartree–Fock radial orbitals was employed to take into account relativistic effects. The energy level spectra, radiative lifetimes, Lande factors g were calculated for the 4p 6 4d, 4p 6 4f and 4p 5 4d 2 configurations of W 37+ ion. The atomic data, namely, the transition wavelengths, spontaneous emission rates and oscillator strengths for the electric dipole, electric quadrupole and magnetic dipole transitions among and within the levels of these configurations are tabulated.

  16. MCT4 surpasses the prognostic relevance of the ancillary protein CD147 in clear cell renal cell carcinoma.

    Science.gov (United States)

    Fisel, Pascale; Stühler, Viktoria; Bedke, Jens; Winter, Stefan; Rausch, Steffen; Hennenlotter, Jörg; Nies, Anne T; Stenzl, Arnulf; Scharpf, Marcus; Fend, Falko; Kruck, Stephan; Schwab, Matthias; Schaeffeler, Elke

    2015-10-13

    Cluster of differentiation 147 (CD147/BSG) is a transmembrane glycoprotein mediating oncogenic processes partly through its role as binding partner for monocarboxylate transporter MCT4/SLC16A3. As demonstrated for MCT4, CD147 is proposed to be associated with progression in clear cell renal cell carcinoma (ccRCC). In this study, we evaluated the prognostic relevance of CD147 in comparison to MCT4/SLC16A3 expression and DNA methylation. CD147 protein expression was assessed in two independent ccRCC-cohorts (n = 186, n = 59) by immunohistochemical staining of tissue microarrays and subsequent manual as well as automated software-supported scoring (Tissue Studio, Definien sAG). Epigenetic regulation of CD147 was investigated using RNAseq and DNA methylation data of The Cancer Genome Atlas. These results were validated in our cohort. Relevance of prognostic models for cancer-specific survival, comprising CD147 and MCT4 expression or SLC16A3 DNA methylation, was compared using chi-square statistics. CD147 protein expression generated with Tissue Studio correlated significantly with those from manual scoring (P CD147 in ccRCC. Association of CD147 expression with patient outcome differed between cohorts. DNA methylation in the CD147/BSG promoter was not associated with expression. Comparison of prognostic relevance of CD147/BSG and MCT4/SLC16A3, showed higher significance for MCT4 expression and superior prognostic power for DNA methylation at specific CpG-sites in the SLC16A3 promoter (e.g. CD147 protein: P = 0.7780,Harrell's c-index = 53.7% vs. DNA methylation: P = 0.0076, Harrell's c-index = 80.0%). Prognostic significance of CD147 protein expression could not surpass that of MCT4, especially of SLC16A3 DNA methylation, corroborating the role of MCT4 as prognostic biomarker for ccRCC.

  17. The HTLV-1 Tax protein binding domain of cyclin-dependent kinase 4 (CDK4 includes the regulatory PSTAIRE helix

    Directory of Open Access Journals (Sweden)

    Grassmann Ralph

    2005-09-01

    Full Text Available Abstract Background The Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV-1 is leukemogenic in transgenic mice and induces permanent T-cell growth in vitro. It is found in active CDK holoenzyme complexes from adult T-cell leukemia-derived cultures and stimulates the G1- to-S phase transition by activating the cyclin-dependent kinase (CDK CDK4. The Tax protein directly and specifically interacts with CDK4 and cyclin D2 and binding is required for enhanced CDK4 kinase activity. The protein-protein contact between Tax and the components of the cyclin D/CDK complexes increases the association of CDK4 and its positive regulatory subunit cyclin D and renders the complex resistant to p21CIP inhibition. Tax mutants affecting the N-terminus cannot bind cyclin D and CDK4. Results To analyze, whether the N-terminus of Tax is capable of CDK4-binding, in vitro binding -, pull down -, and mammalian two-hybrid analyses were performed. These experiments revealed that a segment of 40 amino acids is sufficient to interact with CDK4 and cyclin D2. To define a Tax-binding domain and analyze how Tax influences the kinase activity, a series of CDK4 deletion mutants was tested. Different assays revealed two regions which upon deletion consistently result in reduced binding activity. These were isolated and subjected to mammalian two-hybrid analysis to test their potential to interact with the Tax N-terminus. These experiments concurrently revealed binding at the N- and C-terminus of CDK4. The N-terminal segment contains the PSTAIRE helix, which is known to control the access of substrate to the active cleft of CDK4 and thus the kinase activity. Conclusion Since the N- and C-terminus of CDK4 are neighboring in the predicted three-dimensional protein structure, it is conceivable that they comprise a single binding domain, which interacts with the Tax N-terminus.

  18. Differential protein expression, DNA binding and interaction with SV40 large tumour antigen implicate the p63-family of proteins in replicative senescence.

    Science.gov (United States)

    Djelloul, Siham; Tarunina, Marina; Barnouin, Karin; Mackay, Alan; Jat, Parmjit S

    2002-02-07

    P53 activity plays a key role in mammalian cells when they undergo replicative senescence at their Hayflick limit. To determine whether p63 proteins, members of the family of p53-related genes, are also involved in this process, we examined their expression in serially passaged rat embryo fibroblasts. Upon senescence, two truncated DeltaNp63 proteins decreased in abundance whereas two TAp63 isoforms accumulated. 2-D gel analysis showed that the DeltaNp63 proteins underwent post-translational modifications in both proliferating and senescent cells. Direct binding of DeltaNp63 proteins to a p53 consensus motif was greater in proliferating cells than senescent cells. In contrast p63alpha isoforms bound to DNA in a p53 dependent manner and this was higher in senescent cells than proliferating cells. An interaction of p63alpha proteins with SV40 large tumour antigen was also detected and ectopic expression of DeltaNp63alpha can extend the lifespan of rat embryo fibroblasts. Taken together the results indicate that p63 proteins may play a role in replicative senescence either by competition for p53 DNA binding sites or by direct interaction with p53 protein bound to DNA.

  19. Homologous Transcription Factors DUX4 and DUX4c Associate with Cytoplasmic Proteins during Muscle Differentiation.

    Directory of Open Access Journals (Sweden)

    Eugénie Ansseau

    Full Text Available Hundreds of double homeobox (DUX genes map within 3.3-kb repeated elements dispersed in the human genome and encode DNA-binding proteins. Among these, we identified DUX4, a potent transcription factor that causes facioscapulohumeral muscular dystrophy (FSHD. In the present study, we performed yeast two-hybrid screens and protein co-purifications with HaloTag-DUX fusions or GST-DUX4 pull-down to identify protein partners of DUX4, DUX4c (which is identical to DUX4 except for the end of the carboxyl terminal domain and DUX1 (which is limited to the double homeodomain. Unexpectedly, we identified and validated (by co-immunoprecipitation, GST pull-down, co-immunofluorescence and in situ Proximal Ligation Assay the interaction of DUX4, DUX4c and DUX1 with type III intermediate filament protein desmin in the cytoplasm and at the nuclear periphery. Desmin filaments link adjacent sarcomere at the Z-discs, connect them to sarcolemma proteins and interact with mitochondria. These intermediate filament also contact the nuclear lamina and contribute to positioning of the nuclei. Another Z-disc protein, LMCD1 that contains a LIM domain was also validated as a DUX4 partner. The functionality of DUX4 or DUX4c interactions with cytoplasmic proteins is underscored by the cytoplasmic detection of DUX4/DUX4c upon myoblast fusion. In addition, we identified and validated (by co-immunoprecipitation, co-immunofluorescence and in situ Proximal Ligation Assay as DUX4/4c partners several RNA-binding proteins such as C1QBP, SRSF9, RBM3, FUS/TLS and SFPQ that are involved in mRNA splicing and translation. FUS and SFPQ are nuclear proteins, however their cytoplasmic translocation was reported in neuronal cells where they associated with ribonucleoparticles (RNPs. Several other validated or identified DUX4/DUX4c partners are also contained in mRNP granules, and the co-localizations with cytoplasmic DAPI-positive spots is in keeping with such an association. Large muscle RNPs

  20. AMPylation matches BiP activity to client protein load in the endoplasmic reticulum.

    Science.gov (United States)

    Preissler, Steffen; Rato, Cláudia; Chen, Ruming; Antrobus, Robin; Ding, Shujing; Fearnley, Ian M; Ron, David

    2015-12-17

    The endoplasmic reticulum (ER)-localized Hsp70 chaperone BiP affects protein folding homeostasis and the response to ER stress. Reversible inactivating covalent modification of BiP is believed to contribute to the balance between chaperones and unfolded ER proteins, but the nature of this modification has so far been hinted at indirectly. We report that deletion of FICD, a gene encoding an ER-localized AMPylating enzyme, abolished detectable modification of endogenous BiP enhancing ER buffering of unfolded protein stress in mammalian cells, whilst deregulated FICD activity had the opposite effect. In vitro, FICD AMPylated BiP to completion on a single residue, Thr(518). AMPylation increased, in a strictly FICD-dependent manner, as the flux of proteins entering the ER was attenuated in vivo. In vitro, Thr(518) AMPylation enhanced peptide dissociation from BiP 6-fold and abolished stimulation of ATP hydrolysis by J-domain cofactor. These findings expose the molecular basis for covalent inactivation of BiP.

  1. The frequency of p53, Ki67, CD99 and Fli-1 protein expression in paraffin-embedded tissue blocks in Ewing’s sarcoma

    Directory of Open Access Journals (Sweden)

    Bagheri Hossein-Abadi Z

    2011-06-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Ewing sarcoma family tumors (ESFTs are among the most malignant tumors in children and young adults. ESFTs include Ewing sarcoma (ES and peripheral primitive neuroectodermal tumors (pPNETs. As there seemed to be few studies on the molecular biology of ESFTs, we investigated the frequency of CD99, Ki67, p53 and Fli-1 protein expression in 15 Iranian patients with ESFTs. In addition, the correlation between expression rate of these proteins and various clinical factors, including age, sex and survival was computed."n"nMethods: The expression of the aforesaid proteins was studied by immunohisto-chemistry in formalin-fixed and paraffin-embedded blocks of 15 ESFTs specimens. Stained sections were classified according to the percentage of stained tumor cells."n"nResults: The results showed the membrane expression of CD99 protein in all of the specimens. The nuclear expression of Fli-1 protein was observed in 86.7% and the over-expression of p53 nuclear protein was seen in 53.3% of the specimens. The expression rate of Ki67 protein was 60%. Although a significant correlation was not shown between the expression levels of Ki67, p53 or Fli-1 proteins with age, sex or survival of the patients, there was a significant

  2. Tungsten phosphanylarylthiolato complexes [W{PhP(2-SC6H4)2-kappa3S,S',P} 2] and [W{P(2-SC6H4)3-kappa4S,S',S",P}2]: synthesis, structures and redox chemistry.

    Science.gov (United States)

    Hildebrand, Alexandra; Lönnecke, Peter; Silaghi-Dumitrescu, Luminita; Hey-Hawkins, Evamarie

    2008-09-14

    PhP(2-SHC6H4)2 (PS2H2) reacts with WCl6 with reduction of tungsten to give the air-sensitive tungsten(IV) complex [W{PhP(2-SC6H4)2-kappa(3)S,S',P}2] (1). 1 is oxidised in air to [WO{PhPO(2-SC6H4)2-kappa(3)S,S',O}{PhP(2-SC6H4)2-kappa(3)S,S',P}] (2). The attempted synthesis of 2 by reaction of 1 with iodosobenzene as oxidising agent was unsuccessful. [W{P(2-SC6H4)3-kappa(4)S,S',S",P}2] (3) was formed in the reaction of P(2-SHC6H4)3 (PS3H3) with WCl6. The W(VI) complex 3 contains two PS3(3-) ligands, each coordinated in a tetradentate fashion resulting in a tungsten coordination number of eight. The reaction of 3 with AgBF4 yields the dinuclear tungsten complex [W2{P(2-SC6H4)3-kappa(4)S,S',S",P}3]BF4 (4). Complexes 1-4 were characterised by spectral methods and X-ray structure determination.

  3. Protein misfolding cyclic amplification induces the conversion of recombinant prion protein to PrP oligomers causing neuronal apoptosis.

    Science.gov (United States)

    Yuan, Zhen; Yang, Lifeng; Chen, Baian; Zhu, Ting; Hassan, Mohammad Farooque; Yin, Xiaomin; Zhou, Xiangmei; Zhao, Deming

    2015-06-01

    The formation of neurotoxic prion protein (PrP) oligomers is thought to be a key step in the development of prion diseases. Recently, it was determined that the sonication and shaking of recombinant PrP can convert PrP monomers into β-state oligomers. Herein, we demonstrate that β-state oligomeric PrP can be generated through protein misfolding cyclic amplification from recombinant full-length hamster, human, rabbit, and mutated rabbit PrP, and that these oligomers can be used for subsequent research into the mechanisms of PrP-induced neurotoxicity. We have characterized protein misfolding cyclic amplification-induced monomer-to-oligomer conversion of PrP from three species using western blotting, circular dichroism, size-exclusion chromatography, and resistance to proteinase K (PK) digestion. We have further shown that all of the resulting β-oligomers are toxic to primary mouse cortical neurons independent of the presence of PrP(C) in the neurons, whereas the corresponding monomeric PrP were not toxic. In addition, we found that this toxicity is the result of oligomer-induced apoptosis via regulation of Bcl-2, Bax, and caspase-3 in both wild-type and PrP(-/-) cortical neurons. It is our hope that these results may contribute to our understanding of prion transformation within the brain. We found that β-state oligomeric PrPs can be generated through protein misfolding cyclic amplification (PMCA) from recombinant full-length hamster, human, rabbit, and mutated rabbit PrP. β-oligomers are toxic to primary mouse cortical neurons independent of the presence of PrP(C) in the neurons, while the corresponding monomeric PrPs were not toxic. This toxicity is the result of oligomers-induced apoptosis via regulation of Bcl-2, Bax, and caspase-3. These results may contribute to our understanding of prion transformation within the brain. © 2015 International Society for Neurochemistry.

  4. TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins.

    Science.gov (United States)

    Zamiri, Bita; Reddy, Kaalak; Macgregor, Robert B; Pearson, Christopher E

    2014-02-21

    Certain DNA and RNA sequences can form G-quadruplexes, which can affect genetic instability, promoter activity, RNA splicing, RNA stability, and neurite mRNA localization. Amyotrophic lateral sclerosis and frontotemporal dementia can be caused by expansion of a (GGGGCC)n repeat in the C9orf72 gene. Mutant r(GGGGCC)n- and r(GGCCCC)n-containing transcripts aggregate in nuclear foci, possibly sequestering repeat-binding proteins such as ASF/SF2 and hnRNPA1, suggesting a toxic RNA pathogenesis, as occurs in myotonic dystrophy. Furthermore, the C9orf72 repeat RNA was recently demonstrated to undergo the noncanonical repeat-associated non-AUG translation (RAN translation) into pathologic dipeptide repeats in patient brains, a process that is thought to depend upon RNA structure. We previously demonstrated that the r(GGGGCC)n RNA forms repeat tract length-dependent G-quadruplex structures that bind the ASF/SF2 protein. Here we show that the cationic porphyrin (5,10,15,20-tetra(N-methyl-4-pyridyl) porphyrin (TMPyP4)), which can bind some G-quadruplex-forming sequences, can bind and distort the G-quadruplex formed by r(GGGGCC)8, and this ablates the interaction of either hnRNPA1 or ASF/SF2 with the repeat. These findings provide proof of concept that nucleic acid binding small molecules, such as TMPyP4, can distort the secondary structure of the C9orf72 repeat, which may beneficially disrupt protein interactions, which may ablate either protein sequestration and/or RAN translation into potentially toxic dipeptides. Disruption of secondary structure formation of the C9orf72 RNA repeats may be a viable therapeutic avenue, as well as a means to test the role of RNA structure upon RAN translation.

  5. [Antitumor effects of matrix protein of vesicular stomatic virus on EL4 lymphoma mice].

    Science.gov (United States)

    Lin, Shi-jia; Yu, Qin-mei; Meng, Wen-tong; Wen, Yan-jun; Chen, Li-juan; Niu, Ting

    2011-03-01

    To explore antitumor effects of plasmid pcDNA3. 1-MP encoding matrix protein of vesicular stomatitis virus (VSV) complexed with cationic liposome (DOTAP:CHOL) in mice with EL4 lymphoma. C57BL/6 mouse model with EL4 lymphoma was established. Sixty mice bearing EL4 lymphoma were divided randomly into five groups including Lip-MP, Lip-pVAX, Lip, ADM and NS groups, which were intravenously injected with liposome-pcDNA 3. 1-MP complex, liposome-pVAX complex, empty liposome, Adriamycin and normal saline respectively every three days. Tumor volumes and survival time were monitored. Microvessel density and tumor proliferative index in tumor tissues were determined by CD31, Ki-67 immunohistochemistry staining, meanwhile the tumor apoptosis index was measured by TUNEL method. From 6 days after treatments on, the tumor volume in Lip-MP group was much smaller than that in Lip-pVAX, Lip and NS group (P EL4 tumor cells in vivo (P EL4 lymphoma, which may be related to the induction of tumor cell apoptosis, inhibition of tumor angiogenesis, and suppression of tumor cell proliferation.

  6. Collision broadening and shift of the potassium 4P-7S and 4P-5D lines by argon

    International Nuclear Information System (INIS)

    Hohimer, J.P.

    1981-01-01

    A two-step laser excitation technique has been used to investigate the collisional broadening and shift of excited-state potassium transitions. Values for the argon collisional broadening and shift constants for the potassium 4p-7s and 4p-5d transitions were determined from line shapes for argon pressures up to 100 Torr. The values of these constants (in units of 10 -9 rad s -1 atom -1 cm 3 ) are (4P/sub 1/2/-7S/sub 1/2/): γ=11.60 +- 0.07, β=-6.68 +- 0.11; (4P/sub 3/2/-7S/sub 1/2/): γ=11.49 +- 0.15, β=-6.82 +- 0.14; (4P/sub 1/2/-5D/sub 3/2/): γ=8.64 +- 0.07, β=-4.62 +- 0.04; (4P/sub 3/2/-5D/sub 3/2/): γ=8.58 +- 0.10, β=-3.49 +- 0.32; (4P/sub 3/2/-5D/sub 5/2/): γ=9.13 +- 0.10, β=-4.73 +- 0.09. These broadening and shift constants are interpreted in terms of a Lennard-Jones interaction potential

  7. Identification of Bombyx mori bidensovirus VD1-ORF4 reveals a novel protein associated with viral structural component.

    Science.gov (United States)

    Li, Guohui; Hu, Zhaoyang; Guo, Xuli; Li, Guangtian; Tang, Qi; Wang, Peng; Chen, Keping; Yao, Qin

    2013-06-01

    Bombyx mori bidensovirus (BmBDV) VD1-ORF4 (open reading frame 4, ORF4) consists of 3,318 nucleotides, which codes for a predicted 1,105-amino acid protein containing a conserved DNA polymerase motif. However, its functions in viral propagation remain unknown. In the current study, the transcription of VD1-ORF4 was examined from 6 to 96 h postinfection (p.i.) by RT-PCR, 5'-RACE revealed the transcription initiation site of BmBDV ORF4 to be -16 nucleotides upstream from the start codon, and 3'-RACE revealed the transcription termination site of VD1-ORF4 to be +7 nucleotides downstream from termination codon. Three different proteins were examined in the extracts of BmBDV-infected silkworms midguts by Western blot using raised antibodies against VD1-ORF4 deduced amino acid, and a specific protein band about 53 kDa was further detected in purified virions using the same antibodies. Taken together, BmBDV VD1-ORF4 codes for three or more proteins during the viral life cycle, one of which is a 53 kDa protein and confirmed to be a component of BmBDV virion.

  8. Local Backbone Flexibility as a Determinant of the Apparent pKa Values of Buried Ionizable Groups in Proteins.

    Science.gov (United States)

    Peck, Meredith T; Ortega, Gabriel; De Luca-Johnson, Javier N; Schlessman, Jamie L; Robinson, Aaron C; García-Moreno E, Bertrand

    2017-10-10

    Ionizable groups buried in the hydrophobic interior of proteins are essential for energy transduction. These groups can have highly anomalous pK a values that reflect the incompatibility between charges and dehydrated environments. A systematic study of pK a values of buried ionizable groups in staphylococcal nuclease (SNase) suggests that these pK a values are determined in part by conformational reorganization of the protein. Lys-66 is one of the most deeply buried residues in SNase. We show that its apparent pK a of 5.7 reflects the average of the pK a values of Lys-66 in different conformational states of the protein. In the fully folded state, Lys-66 is deeply buried in the hydrophobic core of SNase and must titrate with a pK a of ≪5.7. In other states, the side chain of Lys-66 is fully solvent-exposed and has a normal pK a of ≈10.4. We show that the pK a of Lys-66 can be shifted from 5.7 toward a more normal value of 7.1 via the insertion of flanking Gly residues at positions 64 and 67 to promote an "open" conformation of SNase. Crystal structures and nuclear magnetic resonance spectroscopy show that in these Gly-containing variants Lys-66 can access bulk water as a consequence of overwinding of the C-terminal end of helix 1. These data illustrate that the apparent pK a values of buried groups in proteins are governed in part by the difference in free energy between different conformational states of the protein and by differences in the pK a values of the buried groups in the different conformations.

  9. Generation of a selectively cytotoxic fusion protein against p53 mutated cancers

    International Nuclear Information System (INIS)

    Kousparou, Christina A; Yiacoumi, Efthymia; Deonarain, Mahendra P; Epenetos, Agamemnon A

    2012-01-01

    A significant number of cancers are caused by defects in p21 causing functional defects in p21 or p53 tumour-suppressor proteins. This has led to many therapeutic approaches including restoration by gene therapy with wild-type p53 or p21 using viral or liposomal vectors, which have toxicity or side-effect limitations. We set out to develop a safer, novel fusion protein which has the ability to reconstitute cancer cell lines with active p21 by protein transduction. The fusion protein was produced from the cell-translocating peptide Antennapedia (Antp) and wild-type, full-length p21 (Antp-p21). This was expressed and refolded from E. coli and tested on a variety of cell lines and tumours (in a BALB/c nude xenograft model) with differing p21 or p53 status. Antp-p21 penetrated and killed cancer cells that do not express wild type p53 or p21. This included cells that were matched to cogenic parental cell lines. Antp-p21 killed cancer cells selectively that were malignant as a result of mutations or nuclear exclusion of the p53 and p21 genes and over-expression of MDM2. Non-specific toxicity was excluded by showing that Antp-p21 penetrated but did not kill p53- or p21- wild-type cells. Antp-p21 was not immunogenic in normal New Zealand White rabbits. Recombinant Antp peptide alone was not cytotoxic, showing that killing was due to the transduction of the p21 component of Antp-p21. Antp-p21 was shown to penetrate cancer cells engrafted in vivo and resulted in tumour eradication when administered with conventionally-used chemotherapeutic agents, which alone were unable to produce such an effect. Antp-p21 may represent a new and promising targeted therapy for patients with p53-associated cancers supporting the concept that rational design of therapies directed against specific cancer mutations will play a part in the future of medical oncology

  10. Generation of a selectively cytotoxic fusion protein against p53 mutated cancers

    Directory of Open Access Journals (Sweden)

    Kousparou Christina A

    2012-08-01

    Full Text Available Abstract Background A significant number of cancers are caused by defects in p21 causing functional defects in p21 or p53 tumour-suppressor proteins. This has led to many therapeutic approaches including restoration by gene therapy with wild-type p53 or p21 using viral or liposomal vectors, which have toxicity or side-effect limitations. We set out to develop a safer, novel fusion protein which has the ability to reconstitute cancer cell lines with active p21 by protein transduction. Methods The fusion protein was produced from the cell-translocating peptide Antennapedia (Antp and wild-type, full-length p21 (Antp-p21. This was expressed and refolded from E. coli and tested on a variety of cell lines and tumours (in a BALB/c nude xenograft model with differing p21 or p53 status. Results Antp-p21 penetrated and killed cancer cells that do not express wild type p53 or p21. This included cells that were matched to cogenic parental cell lines. Antp-p21 killed cancer cells selectively that were malignant as a result of mutations or nuclear exclusion of the p53 and p21 genes and over-expression of MDM2. Non-specific toxicity was excluded by showing that Antp-p21 penetrated but did not kill p53- or p21- wild-type cells. Antp-p21 was not immunogenic in normal New Zealand White rabbits. Recombinant Antp peptide alone was not cytotoxic, showing that killing was due to the transduction of the p21 component of Antp-p21. Antp-p21 was shown to penetrate cancer cells engrafted in vivo and resulted in tumour eradication when administered with conventionally-used chemotherapeutic agents, which alone were unable to produce such an effect. Conclusions Antp-p21 may represent a new and promising targeted therapy for patients with p53-associated cancers supporting the concept that rational design of therapies directed against specific cancer mutations will play a part in the future of medical oncology.

  11. Differentiation and injury-repair signals modulate the interaction of E2F and pRB proteins with novel target genes in keratinocytes.

    Science.gov (United States)

    Chang, Wing Y; Andrews, Joseph; Carter, David E; Dagnino, Lina

    2006-08-01

    E2F transcription factors are central to epidermal morphogenesis and regeneration after injury. The precise nature of E2F target genes involved in epidermal formation and repair has yet to be determined. Identification of these genes is essential to understand how E2F proteins regulate fundamental aspects of epidermal homeostasis and transformation. We have conducted a genome-wide screen using CpG island microarray analysis to identify novel promoters bound by E2F3 and E2F5 in human keratinocytes. We further characterized several of these genes, and determined that multiple E2F and retinoblastoma (pRb) family proteins associate with them in exponentially proliferating cells. We also assessed the effect on E2F and pRb binding to those genes in response to differentiation induced by bone morphogenetic protein-6 (BMP-6), or to activation of repair mechanisms induced by transforming growth factor-beta (TGF-beta). These studies demonstrate promoter- and cytokine-specific changes in binding profiles of E2F and/or pRb family proteins. For example, E2F1, 3, 4 and p107 were recruited to the N-myc promoter in cells treated with BMP-6, whereas E2F1, 3, 4, 5, p107 and p130 were bound to this promoter in the presence of TGF-beta. Functionally, these different interactions resulted in transcriptional repression by BMP-6 and TGF-beta of the N-myc gene, via mechanisms that involved E2F binding to the promoter and association with pRb-family proteins. Thus, multiple combinations of E2F and pRb family proteins may associate with and transcriptionally regulate a given target promoter in response to differentiation and injury-repair stimuli in epidermal keratinocytes.

  12. Noncovalent binding of 4-nitroquinoline-N-oxide to proteins

    International Nuclear Information System (INIS)

    Yamamoto, Osamu

    1979-01-01

    Binding of 4NQO to various kinds of enzymes or proteins was studied. Each one of proteins was mixed with 4NQO in 0.4 mM NaHCO 3 solution and eluted through Ultrogel AcA 22 column. Radioactivity of 14 C-labeled 4NQO found in protein fraction was measured. 4NQO bound hardly to polyglutamic acid and polyaspertic acid, somewhat to serum albumin, insulin, trypsin, RNA polymerase and DNA polymerase, and markedly to ureas which is an SH enzyme. Lactate dehydrogenase, one of SH enzymes, aggregated with 4NQO. The binding of SH enzyme with the N-oxide would be attributable to a noncovalent binding such as >N-O---H-S-, because 4NQO-urease binding yield markedly decreased in the presence of sodium dodecyl sulfate or cysteine, and also 4NQO-bound urease released 4NQO by the addition of sodium dodecyl sulfate. (author)

  13. Noncovalent binding of 4-nitroquinoline-N-oxide to proteins

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, O [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1979-12-01

    Binding of 4NQO to various kinds of enzymes or proteins was studied. Each one of proteins was mixed with 4NQO in 0.4 mM NaHCO/sub 3/ solution and eluted through Ultrogel AcA 22 column. Radioactivity of /sup 14/C-labeled 4NQO found in protein fraction was measured. 4NQO bound hardly to polyglutamic acid and polyaspertic acid, somewhat to serum albumin, insulin, trypsin, RNA polymerase and DNA polymerase, and markedly to ureas which is an SH enzyme. Lactate dehydrogenase, one of SH enzymes, aggregated with 4NQO. The binding of SH enzyme with the N-oxide would be attributable to a noncovalent binding such as >N-O---H-S-, because 4NQO-urease binding yield markedly decreased in the presence of sodium dodecyl sulfate or cysteine, and also 4NQO-bound urease released 4NQO by the addition of sodium dodecyl sulfate.

  14. Duplication 4p and deletion 4p (Wolf-Hirschhorn syndrome) due to complementary gametes from a 3:1 segregation of a maternal balanced t(4;13)(p16;q11) translocation.

    Science.gov (United States)

    Takeno, S S; Corbani, M; Andrade, J A D; Smith, M de A C; Brunoni, D; Melaragno, M I

    2004-08-30

    We present clinical and cytogenetic data on a family with a t(4;13)(p16;q11) translocation present in four generations. The balanced translocation resulted in one individual with monosomy 4p and one individual with trisomy 4p, due to 3:1 segregation. The male patient with trisomy 4p was fertile and transmitted the extra chromosome to his daughter. Copyright 2004 Wiley-Liss, Inc.

  15. p38gamma and p38delta mitogen activated protein kinases (MAPKs, new stars in the MAPK galaxy

    Directory of Open Access Journals (Sweden)

    Alejandra eEscós

    2016-04-01

    Full Text Available The protein kinases p38γ and p38δ belong to the p38 mitogen-activated protein kinase (MAPK family. p38MAPK signalling controls many cellular processes and is one of the most conserved mechanisms in eukaryotes for the cellular response to environmental stress and inflammation. Although p38γ and p38δ are widely expressed, it is likely that they perform specific functions in different tissues. Their involvement in human pathologies such as inflammation-related diseases or cancer is starting to be uncovered. In this article we give a general overview and highlight recent advances made in defining the functions of p38γ and p38δ, focusing in innate immunity and inflammation. We consider the potential of the pharmacological targeting of MAPK pathways to treat autoimmune and inflammatory diseases and cancer

  16. An early function of the adenoviral E1B 55 kDa protein is required for the nuclear relocalization of the cellular p53 protein in adenovirus-infected normal human cells

    International Nuclear Information System (INIS)

    Cardoso, F.M.; Kato, Sayuri E.M.; Huang Wenying; Flint, S. Jane; Gonzalez, Ramon A.

    2008-01-01

    It is well established that the human subgroup C adenovirus type 5 (Ad5) E1B 55 kDa protein can regulate the activity and concentration of the cellular tumor suppressor, p53. However, the contribution(s) of these functions of the E1B protein to viral reproduction remains unclear. To investigate this issue, we examined properties of p53 in normal human cells infected by E1B mutant viruses that display defective entry into the late phase or viral late mRNA export. The steady-state concentrations of p53 were significantly higher in cells infected by the E1B 55 kDa null mutant Hr6 or three mutants carrying small insertions in the E1B 55 kDa protein coding sequence than in Ad5-infected cells. Nevertheless, none of the mutants induced apoptosis in infected cells. Rather, the localization of p53 to E1B containing nuclear sites observed during infection by Ad5 was prevented by mutations that impair interaction of the E1B protein with p53 and/or with the E4 Orf6 protein. These results indicate that the E1B protein fulfills an early function that correlates efficient entry into the late phase with the localization of E1B and p53 in the nucleus of Ad5-infected normal human cells

  17. Isolation of soybean protein P34 from oil bodies using hydrophobic interaction chromatography

    Directory of Open Access Journals (Sweden)

    Seidel-Morgenstern Andreas

    2008-03-01

    Full Text Available Abstract Background Soybeans play a prominent role in allergologic research due to the high incidence of allergic reactions. For detailed studies on specific proteins it is necessary to have access to a large amount of pure substance. Results In this contribution, a method for purifying soybean (Glycine max protein P34 (also called Gly m Bd 30 K or Gly m 1 using hydrophobic interaction chromatography is presented. After screening experiments using 1 mL HiTrap columns, Butyl Sepharose 4 FF was selected for further systematic investigations. With this stationary phase, suitable operation conditions for two-step gradient elution using ammonium sulphate were determined experimentally. The separation conditions obtained in a small column could be scaled up successfully to column volumes of 7.5 and 75 mL, allowing for high product purities of almost 100% with a yield of 27% for the chromatographic separation step. Conditions could be simplified further using a onestep gradient, which gave comparable purification in a shorter process time. The identity of the purified protein was verified using in-gel digestion and mass spectrometry as well as immunological techniques. Conclusion With the technique presented it is possible to produce, within a short timeframe, pure P34, suitable for further studies where an example antigen is needed.

  18. African Heath Sciences Vol 7 No 4.p65

    African Journals Online (AJOL)

    FOMCS2

    no evidence of significant associative interactions between Hib-CRM197 and MenC-CRM197 in saline-based buffers, pH 7.2. African ... aggregation of vaccine saccharide or protein components. 17, 18 ... chromatography and for analysis of the generated data. .... protein would be expected to elute after the main MenC-.

  19. Comparative in vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and selected polynuclear aromatic hydrocarbons on cyp1a1 gene transcription in cells which contain or are deficient in the 4S binding protein

    International Nuclear Information System (INIS)

    Kamps, C.; Safe, S.

    1990-01-01

    Using [ 3 H]-benzo[a]pyrene as the radioligand, several cell culture lines have been screened for the presence (or absence) of the 4S binding protein. Murine Hepa 1c1c7 cells contained both the 4S binding protein and the 9S (Ah) receptor whereas only the 9S receptor was detected in rat hepatoma H-4-II E cells in culture. The effects of a series of polynuclear aromatic hydrocarbons (PAHs) which included benzo[e]pyrene, benzo[ghi]perylene and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and their interactive effects on CYP1A1 gene transcription was determined by Northern analysis in both cell lines. The results showed that the PAHs which exhibited high affinity for the 4S binding protein were inactive as inducers in both cell lines; TCDD was active in both cell lines and the interactive effects between the PAHs and TCDD did not significantly modulate TCDD-mediated CYP1A1 gene transcription. The results suggest that the 4S binding protein does not regulate CYP1A1 gene transcription

  20. Stark broadening of potassium ns-4p and nd-4p lines in a wall-stabilized arc

    International Nuclear Information System (INIS)

    Hohimer, J.P.

    1984-01-01

    Stark-width measurements are reported for lines in the ns-4p (n = 7--10) and nd-4p (n = 5--8) series in neutral potassium (K I). These measurements were made by observing the end-on emission from a low pressure (20 Torr) potassium-argon wall-stabilized arc source. The on-axis electron density and temperature in the 20-A arc were (2.0 +- 0.2) x 10 15 cm -3 and 2955 +- 100 K, respectively. The experimentally determined Stark widths were compared with the theoretical values calculated by Griem. The measured Stark widths agreed with theory to within 30% for lines in the ns-4p series; while the measured Stark widths of the nd-4p series lines were only one-third of the theoretical values

  1. microProtein Prediction Program (miP3) : A Software for Predicting microProteins and Their Target Transcription Factors

    NARCIS (Netherlands)

    de Klein, Niek; Magnani, Enrico; Banf, Michael; Rhee, Seung Yon

    2015-01-01

    An emerging concept in transcriptional regulation is that a class of truncated transcription factors (TFs), called microProteins (miPs), engages in protein-protein interactions with TF complexes and provides feedback controls. A handful of miP examples have been described in the literature but the

  2. Fluorescent protein Dendra2 as a ratiometric genetically encoded pH-sensor.

    Science.gov (United States)

    Pakhomov, Alexey A; Martynov, Vladimir I; Orsa, Alexander N; Bondarenko, Alena A; Chertkova, Rita V; Lukyanov, Konstantin A; Petrenko, Alexander G; Deyev, Igor E

    2017-12-02

    Fluorescent protein Dendra2 is a monomeric GFP-like protein that belongs to the group of Kaede-like photoconvertible fluorescent proteins with irreversible photoconversion from a green- to red-emitting state when exposed to violet-blue light. In an acidic environment, photoconverted Dendra2 turns green due to protonation of the phenolic group of the chromophore with pKa of about 7.5. Thus, photoconverted form of Dendra2 can be potentially used as a ratiometric pH-sensor in the physiological pH range. However, incomplete photoconversion makes ratiometric measurements irreproducible when using standard filter sets. Here, we describe the method to detect fluorescence of only photoconverted Dendra2 form, but not nonconverted green Dendra2. We show that the 350 nm excitation light induces solely the fluorescence of photoconverted protein. By measuring the red to green fluorescence ratio, we determined intracellular pH in live CHO and HEK 293 cells. Thus, Dendra2 can be used as a novel ratiometric genetically encoded pH sensor with emission maxima in the green-red spectral region, which is suitable for application in live cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The enhanced cyan fluorescent protein: a sensitive pH sensor for fluorescence lifetime imaging.

    Science.gov (United States)

    Poëa-Guyon, Sandrine; Pasquier, Hélène; Mérola, Fabienne; Morel, Nicolas; Erard, Marie

    2013-05-01

    pH is an important parameter that affects many functions of live cells, from protein structure or function to several crucial steps of their metabolism. Genetically encoded pH sensors based on pH-sensitive fluorescent proteins have been developed and used to monitor the pH of intracellular compartments. The quantitative analysis of pH variations can be performed either by ratiometric or fluorescence lifetime detection. However, most available genetically encoded pH sensors are based on green and yellow fluorescent proteins and are not compatible with multicolor approaches. Taking advantage of the strong pH sensitivity of enhanced cyan fluorescent protein (ECFP), we demonstrate here its suitability as a sensitive pH sensor using fluorescence lifetime imaging. The intracellular ECFP lifetime undergoes large changes (32 %) in the pH 5 to pH 7 range, which allows accurate pH measurements to better than 0.2 pH units. By fusion of ECFP with the granular chromogranin A, we successfully measured the pH in secretory granules of PC12 cells, and we performed a kinetic analysis of intragranular pH variations in living cells exposed to ammonium chloride.

  4. Computational Studies of pH Sensing Design Principles in Proteins

    Science.gov (United States)

    Garrido Ruiz, Diego

    Changes in pH are important regulatory signals for biological function, under physiological and pathological conditions. Recent advances in computer simulations strategies have made the exploration of the effects of charge titrations on protein function possible. In this work, I make use of these strategies to investigate the thermodynamic coupling between conformation and protonation states that give rise to pH-dependent function. As motivation for the rest of the work, I start by presenting a collaborative investigation on a pH-sensing mutant of the EGFR tyrosine kinase common to a set of distinct cancers. From then, I reduce the complexity of the systems under study to build models where exact enumeration of states is possible to inquire about the nature of the couplings between protonation states and conformation. Finally, I discuss detailed simulations of pH-sensing proteins for which I use the expectations and insights generated with simple models to identify and interpret couplings of interest for pH-dependent behavior.

  5. Heterologous protein secretion in Lactobacilli with modified pSIP vectors.

    Directory of Open Access Journals (Sweden)

    Ingrid Lea Karlskås

    Full Text Available We describe new variants of the modular pSIP-vectors for inducible gene expression and protein secretion in lactobacilli. The basic functionality of the pSIP system was tested in Lactobacillus strains representing 14 species using pSIP411, which harbors the broad-host-range Lactococcus lactis SH71rep replicon and a β-glucuronidase encoding reporter gene. In 10 species, the inducible gene expression system was functional. Based on these results, three pSIP vectors with different signal peptides were modified by replacing their narrow-host-range L. plantarum 256rep replicon with SH71rep and transformed into strains of five different species of Lactobacillus. All recombinant strains secreted the target protein NucA, albeit with varying production levels and secretion efficiencies. The Lp_3050 derived signal peptide generally resulted in the highest levels of secreted NucA. These modified pSIP vectors are useful tools for engineering a wide variety of Lactobacillus species.

  6. NMR of proteins (4Fe-4S): structural properties and intramolecular electron transfer

    International Nuclear Information System (INIS)

    Huber, J.G.

    1996-01-01

    NMR started to be applied to Fe-S proteins in the seventies. Its use has recently been enlarged as the problems arising from the paramagnetic polymetallic clusters ware overcome. Applications to [4Fe-4S] are presented herein. The information derived thereof deepens the understanding of the redox properties of these proteins which play a central role in the metabolism of bacterial cells. The secondary structure elements and the overall folding of Chromatium vinosum ferredoxin (Cv Fd) in solution have been established by NMR. The unique features of this sequence have been shown to fold as an α helix at the C-terminus and as a loop between two cysteines ligand of one cluster: these two parts localize in close proximity from one another. The interaction between nuclear and electronic spins is a source of additional structural information for (4Fe-AS] proteins. The conformation of the cysteine-ligands, as revealed by the Fe-(S γ -C β -H β )Cys dihedral angles, is related to the chemical shifts of the signals associated with the protons of these residues. The longitudinal relaxation times of the protons depend on their distance to the cluster. A quantitative relationship has been established and used to show that the solution structure of the high-potential ferredoxin from Cv differs significantly from the crystal structure around Phe-48. Both parameters (chemical shifts and longitudinal relaxation times) give also insight into the electronic and magnetic properties of the [4Fe-4S] clusters. The rate of intramolecular electron transfer between the two [4FE-4S] clusters of ferredoxins has been measured by NMR. It is far slower in the case of Cv Fd than for shorter ferredoxins. The difference may be associated with changes in the magnetic and/or electronic properties of one cluster. The strong paramagnetism of the [4Fe-4S] clusters, which originally limited the applicability of NMR to proteins containing these cofactors, has been proven instrumental in affording new

  7. Influence of pH value on microstructure of oil-in-water emulsions stabilized by chickpea protein flour.

    Science.gov (United States)

    Felix, Manuel; Isurralde, Nadia; Romero, Alberto; Guerrero, Antonio

    2018-01-01

    Food industry is highly interested in the development of healthier formulations of oil-in-water emulsions, stabilized by plant proteins instead of egg or milk proteins. These emulsions would avoid allergic issues or animal fat. Among other plant proteins, legumes are a cost-competitive product. This work evaluates the influence of pH value (2.5, 5.0 and 7.5) on emulsions stabilized by chickpea-based emulsions at two different protein concentration (2.0 and 4.0 wt%). Microstructure of chickpea-based emulsions is assessed by means of backscattering, droplet size distributions and small amplitude oscillatory shear measurements. Visual appearances as well as confocal laser scanning microscopy images are obtained to provide useful information on the emulsions structure. Interestingly, results indicate that the pH value and protein concentration have a strong influence on emulsion microstructure and stability. Thus, the system which contains protein surfaces positively charged shows the highest viscoelastic properties, a good droplet size distribution profile and non-apparent destabilization phenomena. Interestingly, results also reveal the importance of rheological measurements in the prediction of protein interactions and emulsion stability since this technique is able to predict destabilization mechanisms sooner than other techniques such as backscattering or droplet size distribution measurements.

  8. Long Non-coding RNA, PANDA, Contributes to the Stabilization of p53 Tumor Suppressor Protein.

    Science.gov (United States)

    Kotake, Yojiro; Kitagawa, Kyoko; Ohhata, Tatsuya; Sakai, Satoshi; Uchida, Chiharu; Niida, Hiroyuki; Naemura, Madoka; Kitagawa, Masatoshi

    2016-04-01

    P21-associated noncoding RNA DNA damage-activated (PANDA) is induced in response to DNA damage and represses apoptosis by inhibiting the function of nuclear transcription factor Y subunit alpha (NF-YA) transcription factor. Herein, we report that PANDA affects regulation of p53 tumor-suppressor protein. U2OS cells were transfected with PANDA siRNAs. At 72 h post-transfection, cells were subjected to immunoblotting and quantitative reverse transcription-polymerase chain reaction. Depletion of PANDA was associated with decreased levels of p53 protein, but not p53 mRNA. The stability of p53 protein was markedly reduced by PANDA silencing. Degradation of p53 protein by silencing PANDA was prevented by treatment of MG132, a proteasome inhibitor. Moreover, depletion of PANDA prevented accumulation of p53 protein, as a result of DNA damage, induced by the genotoxic agent etoposide. These results suggest that PANDA stabilizes p53 protein in response to DNA damage, and provide new insight into the regulatory mechanisms of p53. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Non-structural proteins P17 and P33 are involved in the assembly of the internal membrane-containing virus PRD1

    Energy Technology Data Exchange (ETDEWEB)

    Karttunen, Jenni; Mäntynen, Sari [Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä (Finland); Ihalainen, Teemu O. [Stem Cells in Neurological Applications Group, BioMediTech, University of Tampere, Tampere (Finland); Bamford, Jaana K.H. [Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä (Finland); Oksanen, Hanna M., E-mail: hanna.oksanen@helsinki.fi [Institute of Biotechnology and Department of Biosciences, University of Helsinki, Biocenter 2, P.O. Box 56 (Viikinkaari 5), FIN-00014 Helsinki (Finland)

    2015-08-15

    Bacteriophage PRD1, which has been studied intensively at the structural and functional levels, still has some gene products with unknown functions and certain aspects of the PRD1 assembly process have remained unsolved. In this study, we demonstrate that the phage-encoded non-structural proteins P17 and P33, either individually or together, complement the defect in a temperature-sensitive GroES mutant of Escherichia coli for host growth and PRD1 propagation. Confocal microscopy of fluorescent fusion proteins revealed co-localisation between P33 and P17 as well as between P33 and the host chaperonin GroEL. A fluorescence recovery after photobleaching assay demonstrated that the diffusion of the P33 fluorescent fusion protein was substantially slower in E. coli than theoretically calculated, presumably resulting from intermolecular interactions. Our results indicate that P33 and P17 function in procapsid assembly, possibly in association with the host chaperonin complex GroEL/GroES. - Highlights: • Two non-structural proteins of PRD1 are involved in the virus assembly. • P17 and P33 complement the defect in GroES of Escherichia coli. • P33 co-localises with GroEL and P17 in the bacterium. • Slow motion of P33 in the bacterium suggests association with cellular components.

  10. Modulation of sodium-bicarbonate co-transporter (SLC4A4/NBCe1) protein and mRNA expression in rat's uteri by sex-steroids and at different phases of the oestrous cycle.

    Science.gov (United States)

    Gholami, Khadijeh; Muniandy, Sekaran; Salleh, Naguib

    2014-02-01

    Oestrogen-induced uterine fluid sodium (Na(+)) and bicarbonate (HCO3(-)) secretion may involve SLC4A4. We hypothesized that uterine SLC4A4 expression changes under different sex-steroid influence, therefore may account for the fluctuation in uterine fluid Na(+) and HCO3(-) content throughout the oestrous cycle. The aim of this study is to investigate the differential effects of sex-steroids and oestrous cycle phases on uterine SLC4A4 expression. Adult female WKY rats were ovariectomised and treated with different doses of 17β-oestradiol (E2) (0.2, 2, 20 and 50 μg/ml/day) or progesterone (P4) (4 mg/ml/day) for three consecutive days and 3 days treatment with 0.2 μg/ml/day E2 followed by another 3 days with P4 to mimic the hormonal changes in early pregnancy. Oestrous cycle phases in intact, non-ovariectomised rats were determined by vaginal smear. The animals were then sacrificed and uteri were removed for protein and mRNA expression analyses by Western blotting and Real Time PCR, respectively. SLC4A4 distribution was observed by immunohistochemistry. Treatment with increasing E2 doses resulted in a dose-dependent increase in SLC4A4 protein expression. High SLC4A4 protein and mRNA expression can be seen at estrus. SLC4A4 is distributed mainly at the apical as well as basolateral membranes of the luminal and glandular epithelia following E2 treatment and at Es. Meanwhile, SLC4A4 expression was reduced following P4 treatment and was low at diestrus. High SLC4A4 expression under estrogen dominance may contribute to the increase in uterine fluid Na(+) and HCO3(-) content, while its low expression under P4 dominance may result in vice versa. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Molecular evolution of the Paramyxoviridae and Rhabdoviridae multiple-protein-encoding P gene.

    Science.gov (United States)

    Jordan, I K; Sutter, B A; McClure, M A

    2000-01-01

    Presented here is an analysis of the molecular evolutionary dynamics of the P gene among 76 representative sequences of the Paramyxoviridae and Rhabdoviridae RNA virus families. In a number of Paramyxoviridae taxa, as well as in vesicular stomatitis viruses of the Rhabdoviridae, the P gene encodes multiple proteins from a single genomic RNA sequence. These products include the phosphoprotein (P), as well as the C and V proteins. The complexity of the P gene makes it an intriguing locus to study from an evolutionary perspective. Amino acid sequence alignments of the proteins encoded at the P and N loci were used in independent phylogenetic reconstructions of the Paramyxoviridae and Rhabdoviridae families. P-gene-coding capacities were mapped onto the Paramyxoviridae phylogeny, and the most parsimonious path of multiple-coding-capacity evolution was determined. Levels of amino acid variation for Paramyxoviridae and Rhabdoviridae P-gene-encoded products were also analyzed. Proteins encoded in overlapping reading frames from the same nucleotides have different levels of amino acid variation. The nucleotide architecture that underlies the amino acid variation was determined in order to evaluate the role of selection in the evolution of the P gene overlapping reading frames. In every case, the evolution of one of the proteins encoded in the overlapping reading frames has been constrained by negative selection while the other has evolved more rapidly. The integrity of the overlapping reading frame that represents a derived state is generally maintained at the expense of the ancestral reading frame encoded by the same nucleotides. The evolution of such multicoding sequences is likely a response by RNA viruses to selective pressure to maximize genomic information content while maintaining small genome size. The ability to evolve such a complex genomic strategy is intimately related to the dynamics of the viral quasispecies, which allow enhanced exploration of the adaptive

  12. BRD4 regulates cellular senescence in gastric cancer cells via E2F/miR-106b/p21 axis.

    Science.gov (United States)

    Dong, Xingchen; Hu, Xiangming; Chen, Jinjing; Hu, Dan; Chen, Lin-Feng

    2018-02-12

    Small molecules targeting bromodomains of BET proteins possess strong anti-tumor activities and have emerged as potential therapeutics for cancer. However, the underlying mechanisms for the anti-proliferative activity of these inhibitors are still not fully characterized. In this study, we demonstrated that BET inhibitor JQ1 suppressed the proliferation and invasiveness of gastric cancer cells by inducing cellular senescence. Depletion of BRD4, which was overexpressed in gastric cancer tissues, but not other BET proteins recapitulated JQ1-induced cellular senescence with increased cellular SA-β-Gal activity and elevated p21 levels. In addition, we showed that the levels of p21 were regulated at the post-transcriptional level by BRD4-dependent expression of miR-106b-5p, which targets the 3'-UTR of p21 mRNA. Overexpression of miR-106b-5p prevented JQ1-induced p21 expression and BRD4 inhibition-associated cellular senescence, whereas miR-106b-5p inhibitor up-regulated p21 and induced cellular senescence. Finally, we demonstrated that inhibition of E2F suppressed the binding of BRD4 to the promoter of miR-106b-5p and inhibited its transcription, leading to the increased p21 levels and cellular senescence in gastric cancer cells. Our results reveal a novel mechanism by which BRD4 regulates cancer cell proliferation by modulating the cellular senescence through E2F/miR-106b-5p/p21 axis and provide new insights into using BET inhibitors as potential anticancer drugs.

  13. Comparison of plasma pigment epithelium-derived factor (PEDF), retinol binding protein 4 (RBP-4), chitinase-3-like protein 1 (YKL-40) and brain-derived neurotrophic factor (BDNF) for the identification of insulin resistance.

    Science.gov (United States)

    Toloza, F J K; Pérez-Matos, M C; Ricardo-Silgado, M L; Morales-Álvarez, M C; Mantilla-Rivas, J O; Pinzón-Cortés, J A; Pérez-Mayorga, M; Arévalo-García, M L; Tolosa-González, G; Mendivil, C O

    2017-09-01

    To evaluate and compare the association of four potential insulin resistance (IR) biomarkers (pigment-epithelium-derived factor [PEDF], retinol-binding-protein-4 [RBP-4], chitinase-3-like protein 1 [YKL-40] and brain-derived neurotrophic factor [BDNF]) with objective measures of IR. We studied 81 subjects with different metabolic profiles. All participants underwent a 5-point OGTT with calculation of multiple IR indexes. A subgroup of 21 participants additionally underwent a hyperinsulinemic-euglycemic clamp. IR was defined as belonging to the highest quartile of incremental area under the insulin curve (iAUCins), or to the lowest quartile of the insulin sensitivity index (ISI). PEDF was associated with adiposity variables. PEDF and RBP4 increased linearly across quartiles of iAUCins (for PEDF p-trend=0.029; for RBP-4 p-trend=0.053). YKL-40 and BDNF were not associated with any adiposity or IR variable. PEDF and RBP-4 levels identified individuals with IR by the iAUCins definition: A PEDF cutoff of 11.9ng/mL had 60% sensitivity and 68% specificity, while a RBP-4 cutoff of 71.6ng/mL had 70% sensitivity and 57% specificity. In multiple regression analyses simultaneously including clinical variables and the studied biomarkers, only BMI, PEDF and RBP-4 remained significant predictors of IR. Plasma PEDF and RBP4 identified IR in subjects with no prior diagnosis of diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Prenatal diagnosis and molecular cytogenetic characterization of a de novo proximal interstitial deletion of chromosome 4p (4p15.2→p14).

    Science.gov (United States)

    Chen, Chih-Ping; Lee, Meng-Ju; Chern, Schu-Rern; Wu, Peih-Shan; Su, Jun-Wei; Chen, Yu-Ting; Lee, Meng-Shan; Wang, Wayseen

    2013-10-25

    We present prenatal diagnosis of de novo proximal interstitial deletion of chromosome 4p (4p15.2→p14) and molecular cytogenetic characterization of the deletion using uncultured amniocytes. We review the phenotypic abnormalities of previously reported patients with similar proximal interstitial 4p deletions, and we discuss the functions of the genes of RBPJ, CCKAR, STIM2, PCDH7 and ARAP2 that are deleted within this region. © 2013.

  15. Expression and significance of HMGB1, TLR4 and NF-κB p65 in human epidermal tumors

    International Nuclear Information System (INIS)

    Weng, Hui; Deng, Yunhua; Xie, Yuyan; Liu, Hongbo; Gong, Feili

    2013-01-01

    High mobility group protein box 1 (HMGB1) is a DNA binding protein located in nucleus. It is released into extracellular fluid where it acts as a novel proinflammatory cytokine which interacts with Toll like receptor 4 (TLR4) to activate nuclear factor-κB (NF-κB). This sequence of events is involved in tumor growth and progression. However, the effects of HMGB1, TLR4 and NF-κB on epidermal tumors remain unclear. Human epidermal tumor specimens were obtained from 96 patients. Immunohistochemistry was used to detect expression of HMGB1, TLR4 and NF-κB p65 in human epidermal tumor and normal skin specimens. Western blot analysis was used to detect the expression of NF-κB p65 in epithelial cell nuclei in human epidermal tumor and normal tissues. Immunohistochemistry and western blot analysis indicated a progressive but statistically significant increase in p65 expression in epithelial nuclei in benign seborrheic keratosis (SK), precancerous lesions (PCL), low malignancy basal cell carcinoma (BCC) and high malignancy squamous cell carcinoma (SCC) (P <0.01). The level of extracellular HMGB1 in SK was significantly higher than in normal skin (NS) (P <0.01), and was higher than in SCC but without statistical significance. The level of TLR4 on epithelial membranes of SCC cells was significantly higher than in SK, PCL, BCC and NS (P <0.01). There was a significant positive correlation between p65 expression in the epithelial nuclei and TLR4 expression on the epithelial cell membranes (r = 0.3212, P <0.01). These findings indicate that inflammation is intensified in parallel with increasing malignancy. They also indicate that the TLR4 signaling pathway, rather than HMGB1, may be the principal mediator of inflammation in high-grade malignant epidermal tumors. Combined detection of p65 in the epithelial nuclei and TLR4 on the epithelial membranes may assist the accurate diagnosis of malignant epidermal tumors

  16. High CpG island methylation of p16 gene and loss of p16 protein ...

    Indian Academy of Sciences (India)

    SI-JU GAO

    The study subjects consisted of 75 healthy controls and 63 ToF ... Additionally, our analysis suggested that CpG island methylation in p16 promoters in ToF ..... reduced p16 protein expression in lung cancer (Kondo et al. 2006). In this context ..... promoter methylation in gastric carcinogenesis: a meta-analysis. Mol. Biol. Rep.

  17. Association analysis of the chromosome 4p-located G protein-coupled receptor 78 (GPR78) gene in bipolar affective disorder and schizophrenia.

    Science.gov (United States)

    Underwood, S L; Christoforou, A; Thomson, P A; Wray, N R; Tenesa, A; Whittaker, J; Adams, R A; Le Hellard, S; Morris, S W; Blackwood, D H R; Muir, W J; Porteous, D J; Evans, K L

    2006-04-01

    The orphan G protein-coupled receptor 78 (GPR78) gene lies within a region of chromosome 4p where we have previously shown linkage to bipolar affective disorder (BPAD) in a large Scottish family. GPR78 was screened for single-nucleotide polymorphisms (SNPs) and a linkage disequilibrium map was constructed. Six tagging SNPs were selected and tested for association on a sample of 377 BPAD, 392 schizophrenia (SCZ) and 470 control individuals. Using standard chi(2) statistics and a backwards logistic regression approach to adjust for the effect of sex, SNP rs1282, located approximately 3 kb upstream of the coding region, was identified as a potentially important variant in SCZ (chi(2) P=0.044; LRT P=0.065). When the analysis was restricted to females, the strength of association increased to an uncorrected allele P-value of 0.015 (odds ratios (OR)=1.688, 95% confidence intervals (CI): 1.104-2.581) and uncorrected genotype P-value of 0.015 (OR=5.991, 95% CI: 1.545-23.232). Under the recessive model, the genotype P-value improved further to 0.005 (OR=5.618, 95% CI: 1.460-21.617) and remained significant after correcting for multiple testing (P=0.017). No single-marker association was detected in the SCZ males, in the BPAD individuals or with any other SNP. Haplotype analysis of the case-control samples revealed several global and individual haplotypes, with P-values <0.05, all but one of which contained SNP rs1282. After correcting for multiple testing, two haplotypes remained significant in both the female BPAD individuals (P=0.038 and 0.032) and in the full sample of affected female individuals (P=0.044 and 0.033). Our results provide preliminary evidence for the involvement of GPR78 in susceptibility to BPAD and SCZ in the Scottish population. Molecular Psychiatry (2006) 11, 384-394. doi:10.1038/sj.mp.4001786; published online 3 January 2006.

  18. Apoptosis Signaling Is Altered in CD4+CD25+FoxP3+ T Regulatory Lymphocytes in Pre-Eclampsia

    Directory of Open Access Journals (Sweden)

    Jan Oleszczuk

    2012-05-01

    Full Text Available The aim of our study was to estimate the surface expressions of CD95 (APO-1/Fas antigen and the intracellular expressions of anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bax in CD4+CD25+FoxP3+ T regulatory lymphocytes (Tregs as well as the percentage of CD8+CD28+ T cytotoxic cells in peripheral blood of patients with pre-eclampsia in comparison with healthy pregnant women in the third trimester of physiological pregnancy. Twenty-four women with pre-eclampsia and 20 normal third trimester pregnant women were included in the study. The lymphocytes were isolated from peripheral blood samples and labeled with monoclonal antibodies. The expressions of surface antigens and intracellular proteins were estimated using flow cytometry. The population of CD4+CD25+FoxP3+ Treg cells was significantly lower in peripheral blood of patients with pre-eclampsia when compared to normal third trimester pregnant women. The percentages of CD4+CD25+FoxP3+ Treg cells that express Bcl-2 protein were significantly lower in peripheral blood of patients with pre-eclampsia when compared to healthy pregnant women, whereas the percentages of CD4+CD25+FoxP3+ Treg cells with the expressions of Bax protein did not differ in both groups. Moreover, the mean fluorescence intensity (MFI of Bcl-2 protein in CD4+CD25+FoxP3+ Treg cells was significantly lower and MFI of Bax protein significantly higher in pre-eclampsia when compared to the control group. The percentage of CD8+CD28+ T cells did not differ in both studied groups but MFI of CD28 antigen on T CD8+ cells was significantly higher in pre-eclampsia when compared to the control group. The obtained results suggest that the deficit of CD4+CD25+FoxP3+ Treg

  19. Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana

    Science.gov (United States)

    Moseyko, N.; Feldman, L. J.

    2001-01-01

    This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non-invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH-sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH-sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole-root tissues of A. thaliana is reported. The utility of pH-sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated.

  20. [Interaction of FABP4 with plasma membrane proteins of endothelial cells].

    Science.gov (United States)

    Saavedra, Paula; Girona, Josefa; Aragonès, Gemma; Cabré, Anna; Guaita, Sandra; Heras, Mercedes; Masana, Lluís

    2015-01-01

    Fatty acid binding protein (FABP4) is an adipose tissue-secreted adipokine implicated in the regulation of the energetic metabolism and inflammation. High levels of circulating FABP4 have been described in people with obesity, atherogenic dyslipidemia, diabetes and metabolic syndrome. Recent studies have demonstrated that FABP4 could have a direct effect on peripheral tissues and, specifically, on vascular function. It is still unknown how the interaction between FABP4 and the endothelial cells is produced to prompt these effects on vascular function. The objective of this work is studying the interaction between FABP4 and the plasma membrane proteins of endothelial cells. HUVEC cells were incubated with and without FABP4 (100 ng/ml) for 5 minutes. Immunolocalization of FABP4 was studied by confocal microscopy. The results showed that FABP4 colocalizates with CD31, a membrane protein marker. A strategy which combines 6XHistidine-tag FABP4 (FABP4-His), incubations with or without FABP4-His (100 ng/ml), formaldehyde cross-linking, cellular membrane protein extraction and western blot, was designed to study the FABP4 interactions with membrane proteins of HUVECs. The results showed different western blot profiles depending of the incubation with or without FABP4-His. The immunoblot revelead three covalent protein complexes of about 108, 77 and 33 kDa containing FAPB4 and its putative receptor. The existence of a specific binding protein complex able to bind FABP4 to endothelial cells is supported by these results. The obtained results will permit us advance in the molecular knowledge of FABP4 effects as well as use this protein and its receptor as therapeutic target to prevent cardiovascular. Copyright © 2014 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  1. Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ginkel, Paul R. van; Yan, Michael B. [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Bhattacharya, Saswati [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Department of Pediatrics, University of Wisconsin, Madison, WI 53792 (United States); Polans, Arthur S., E-mail: aspolans@wisc.edu [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Kenealey, Jason D. [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602 (United States)

    2015-11-01

    Paclitaxel, etoposide, vincristine and doxorubicin are examples of natural products being used as chemotherapeutics but with adverse side effects that limit their therapeutic window. Natural products derived from plants and having low toxicity, such as quercetin, resveratrol, epigallocatechin gallate and piceatannol, have been shown to inhibit tumor cell growth both in vitro and in pre-clinical models of cancer, but their mechanisms of action have not been fully elucidated, thus restricting their use as prototypes for developing synthetic analogs with improved anti-cancer properties. We and others have demonstrated that one of the earliest and consistent events upon exposure of tumor cells to these less toxic natural products is a rise in cytoplasmic calcium, activating several pro-apoptotic pathways. We describe here a G protein/inositol 1,4,5-trisphosphate pathway (InsP3) in MDA-MB-231 human breast cancer cells that mediates between these less toxic natural products and the release of calcium from the endoplasmic reticulum. Further, we demonstrate that this elevation of intracellular calcium modulates p53 activity and the subsequent transcription of several pro-apoptotic genes encoding PIG8, CD95, PIDD, TP53INP, RRM2B, Noxa, p21 and PUMA. We conclude from our findings that less toxic natural products likely bind to a G protein coupled receptor that activates a G protein-mediated and calcium-dependent pathway resulting selectively in tumor cell death. - Highlights: • Natural products having low toxicity increase cytoplasmic calcium in cancer cells. • A G-protein/IP{sub 3} pathway mediates the release of calcium from the ER. • The elevation of intracellular calcium modulates p53 activity. • p53 and other Ca{sup 2+}-dependent pro-apoptotic pathways inhibit cancer cell growth.

  2. Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells

    International Nuclear Information System (INIS)

    Ginkel, Paul R. van; Yan, Michael B.; Bhattacharya, Saswati; Polans, Arthur S.; Kenealey, Jason D.

    2015-01-01

    Paclitaxel, etoposide, vincristine and doxorubicin are examples of natural products being used as chemotherapeutics but with adverse side effects that limit their therapeutic window. Natural products derived from plants and having low toxicity, such as quercetin, resveratrol, epigallocatechin gallate and piceatannol, have been shown to inhibit tumor cell growth both in vitro and in pre-clinical models of cancer, but their mechanisms of action have not been fully elucidated, thus restricting their use as prototypes for developing synthetic analogs with improved anti-cancer properties. We and others have demonstrated that one of the earliest and consistent events upon exposure of tumor cells to these less toxic natural products is a rise in cytoplasmic calcium, activating several pro-apoptotic pathways. We describe here a G protein/inositol 1,4,5-trisphosphate pathway (InsP3) in MDA-MB-231 human breast cancer cells that mediates between these less toxic natural products and the release of calcium from the endoplasmic reticulum. Further, we demonstrate that this elevation of intracellular calcium modulates p53 activity and the subsequent transcription of several pro-apoptotic genes encoding PIG8, CD95, PIDD, TP53INP, RRM2B, Noxa, p21 and PUMA. We conclude from our findings that less toxic natural products likely bind to a G protein coupled receptor that activates a G protein-mediated and calcium-dependent pathway resulting selectively in tumor cell death. - Highlights: • Natural products having low toxicity increase cytoplasmic calcium in cancer cells. • A G-protein/IP 3 pathway mediates the release of calcium from the ER. • The elevation of intracellular calcium modulates p53 activity. • p53 and other Ca 2+ -dependent pro-apoptotic pathways inhibit cancer cell growth.

  3. Loss of the retinoblastoma protein-related p130 protein in small cell lung carcinoma

    DEFF Research Database (Denmark)

    Helin, K; Holm, K; Niebuhr, A

    1997-01-01

    107, or p130 leads to growth arrest in the G1 phase of the cell cycle, and this arrest is abolished by complex formation with the adenovirus E1A, human papilloma virus E7, or simian virus 40 T oncoproteins. Inactivation of pRB by gross structural alterations or point mutations in the RB-1 gene has...... been described in a variety of human tumors, including retinoblastomas, osteosarcomas, and small cell lung carcinomas. Despite the structural and functional similarity between pRB, p107, and p130, alterations in the latter two proteins have not been identified in human tumors. We have screened a panel...

  4. P-protein distribution in mature sieve elements of Cucurbita maxima.

    Science.gov (United States)

    Evert, R F; Eschrich, W; Eichhorn, S E

    1972-09-01

    Portions of the hypocotyls of 16-day-old Cucurbita maxima plants, from which the cotyledons and first foliage leaves had been removed 2 days earlier, were fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. In well over 90% of the mature sieve elements examined the P-protein was entirely parietal in distribution in both the lumina and sieve-plate pores. In addition to the parietal P-protein, the unoccluded sieve-plate pores were lined by narrow callose cylinders and the plasmalemma. Segments of endoplasmic reticulum also occurred along the margins of the pores.

  5. Imaging Intracellular pH in Live Cells with a Genetically-Encoded Red Fluorescent Protein Sensor

    OpenAIRE

    Tantama, Mathew; Hung, Yin Pun; Yellen, Gary

    2011-01-01

    Intracellular pH affects protein structure and function, and proton gradients underlie the function of organelles such as lysosomes and mitochondria. We engineered a genetically-encoded pH sensor by mutagenesis of the red fluorescent protein mKeima, providing a new tool to image intracellular pH in live cells. This sensor, named pHRed, is the first ratiometric, single-protein red fluorescent sensor of pH. Fluorescence emission of pHRed peaks at 610 nm while exhibiting dual excitation peaks at...

  6. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2012-02-01

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  7. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2009-02-27

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  8. Modulation of the interaction between human P450 3A4 and B. megaterium reductase via engineered loops.

    Science.gov (United States)

    Castrignanò, Silvia; D'Avino, Serena; Di Nardo, Giovanna; Catucci, Gianluca; Sadeghi, Sheila J; Gilardi, Gianfranco

    2018-01-01

    Chimerogenesis involving cytochromes P450 is a successful approach to generate catalytically self-sufficient enzymes. However, the connection between the different functional modules should allow a certain degree of flexibility in order to obtain functional and catalytically efficient proteins. We previously applied the molecular Lego approach to develop a chimeric P450 3A4 enzyme linked to the reductase domain of P450 BM3 (BMR). Three constructs were designed with the connecting loop containing no glycine, 3 glycine or 5 glycine residues and showed a different catalytic activity and coupling efficiency. Here we investigate how the linker affects the ability of P450 3A4 to bind substrates and inhibitors. We measure the electron transfer rates and the catalytic properties of the enzyme also in the presence of ketoconazole as inhibitor. The data show that the construct 3A4-5GLY-BMR with the longest loop better retains the binding ability and cooperativity for testosterone, compared to P450 3A4. In both 3A4-3GLY-BMR and 3A4-5GLY-BMR, the substrate induces an increase in the first electron transfer rate and a shorter lag phase related to a domain rearrangements, when compared to the construct without Gly. These data are consistent with docking results and secondary structure predictions showing a propensity to form helical structures in the loop of the 3A4-BMR and 3A4-3GLY-BMR. All three chimeras retain the ability to bind the inhibitor ketoconazole and show an IC 50 comparable with those reported for the wild type protein. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. p38 mitogen-activated protein kinase (p38MAPK) upregulates catalase levels in response to low dose H2O2 treatment through enhancement of mRNA stability.

    Science.gov (United States)

    Sen, Prosenjit; Chakraborty, Prabir Kumar; Raha, Sanghamitra

    2005-08-15

    V79 fibroblasts were repetitively stressed through multiple exposures to a low dose (30 microM) H2O2 in culture for 4 weeks. Catalase activity, protein levels and mRNA levels increased markedly (5-6-fold) during this time and these augmentations were inhibited by the simultaneous presence of SB203580, an inhibitor of p38 mitogen-activated protein kinase (p38MAPK). p38MAPK became dually phosphorylated and ATF-2, a p38MAPK substrate also became increasingly phosphorylated over the repetitive stress period. Short interfering RNA that induced effective silencing of p38MAPK, was used to silence p38MAPK in V79 fibroblasts. Silencing of p38MAPK drastically hindered the elevation in catalase (protein and mRNA) levels observed after a single low dose (50 microM) of H2O. The rise in catalase mRNA levels induced by low concentration (single and multiple dose) H2O2 treatment was established to be unconnected with transcriptional upregulation but was brought forth primarily by an enhancement in catalase mRNA stability through the action of p38MAPK. Therefore, our data strongly indicate that activation of p38MAPK is a key controlling step in the upregulation of catalase levels by low dose H2O2 treatment.

  10. Endoplasmic reticulum proteins SDF2 and SDF2L1 act as components of the BiP chaperone cycle to prevent protein aggregation.

    Science.gov (United States)

    Fujimori, Tsutomu; Suno, Ryoji; Iemura, Shun-Ichiro; Natsume, Tohru; Wada, Ikuo; Hosokawa, Nobuko

    2017-08-01

    The folding of newly synthesized proteins in the endoplasmic reticulum (ER) is assisted by ER-resident chaperone proteins. BiP (immunoglobulin heavy-chain-binding protein), a member of the HSP70 family, plays a central role in protein quality control. The chaperone function of BiP is regulated by its intrinsic ATPase activity, which is stimulated by ER-resident proteins of the HSP40/DnaJ family, including ERdj3. Here, we report that two closely related proteins, SDF2 and SDF2L1, regulate the BiP chaperone cycle. Both are ER-resident, but SDF2 is constitutively expressed, whereas SDF2L1 expression is induced by ER stress. Both luminal proteins formed a stable complex with ERdj3 and potently inhibited the aggregation of different types of misfolded ER cargo. These proteins associated with non-native proteins, thus promoting the BiP-substrate interaction cycle. A dominant-negative ERdj3 mutant that inhibits the interaction between ERdj3 and BiP prevented the dissociation of misfolded cargo from the ERdj3-SDF2L1 complex. Our findings indicate that SDF2 and SDF2L1 associate with ERdj3 and act as components in the BiP chaperone cycle to prevent the aggregation of misfolded proteins, partly explaining the broad folding capabilities of the ER under various physiological conditions. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  11. SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins.

    Science.gov (United States)

    Park, Mi-Jeong; Sheng, Ren; Silkov, Antonina; Jung, Da-Jung; Wang, Zhi-Gang; Xin, Yao; Kim, Hyunjin; Thiagarajan-Rosenkranz, Pallavi; Song, Seohyeon; Yoon, Youngdae; Nam, Wonhee; Kim, Ilshin; Kim, Eui; Lee, Dong-Gyu; Chen, Yong; Singaram, Indira; Wang, Li; Jang, Myoung Ho; Hwang, Cheol-Sang; Honig, Barry; Ryu, Sungho; Lorieau, Justin; Kim, You-Me; Cho, Wonhwa

    2016-04-07

    The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that ∼90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. [A case of mosaic ring chromosome 4 with subtelomeric 4p deletion].

    Science.gov (United States)

    Kim, Jeong Hyun; Oh, Phil Soo; Na, Hye Yeon; Kim, Sun-Hee; Cho, Hyoun Chan

    2009-02-01

    Ring chromosome is a structural abnormality that is thought to be the result of fusion and breakage in the short and long arms of chromosome. Wolf-Hirschhorn syndrome (WHS) is a well-known congenital anomaly in the ring chromosome 4 with a partial deletion of the distal short arm. Here we report a 10-month-old male of mosaic ring chromosome 4 with the chief complaint of severe short stature. He showed the height of -4 standard deviation, subtle hypothyroidism and mild atrial septal defect/ventricular septal defect, and also a mild language developmental delay was suspected. Brain magnetic resonance imaging showed multifocal leukomalacia. Chromosomal analysis of the peripheral blood showed the mosaic karyotype with [46,XY,r(4)(p16q35)[84]/45,XY,-4[9]/91,XXYY, dic r(4;4)(p16q35;p16q35)[5]/46,XY,dic r(4;4)(p16q35;p16q35)[2

  13. Mechanistic and Structural Studies of Protein-Only RNase P Compared to Ribonucleoproteins Reveal the Two Faces of the Same Enzymatic Activity

    Directory of Open Access Journals (Sweden)

    Cédric Schelcher

    2016-06-01

    Full Text Available RNase P, the essential activity that performs the 5′ maturation of tRNA precursors, can be achieved either by ribonucleoproteins containing a ribozyme present in the three domains of life or by protein-only enzymes called protein-only RNase P (PRORP that occur in eukaryote nuclei and organelles. A fast growing list of studies has investigated three-dimensional structures and mode of action of PRORP proteins. Results suggest that similar to ribozymes, PRORP proteins have two main domains. A clear functional analogy can be drawn between the specificity domain of the RNase P ribozyme and PRORP pentatricopeptide repeat domain, and between the ribozyme catalytic domain and PRORP N4BP1, YacP-like Nuclease domain. Moreover, both types of enzymes appear to dock with the acceptor arm of tRNA precursors and make specific contacts with the corner of pre-tRNAs. While some clear differences can still be delineated between PRORP and ribonucleoprotein (RNP RNase P, the two types of enzymes seem to use, fundamentally, the same catalytic mechanism involving two metal ions. The occurrence of PRORP and RNP RNase P represents a remarkable example of convergent evolution. It might be the unique witness of an ongoing replacement of catalytic RNAs by proteins for enzymatic activities.

  14. The need to accessorize: Molecular roles of HTLV-1 p30 and HTLV-2 p28 accessory proteins in the viral life cycle

    Directory of Open Access Journals (Sweden)

    Rajaneesh eAnupam

    2013-09-01

    Full Text Available Extensive studies of HTLV-1 and HTLV-2 over the last three decades have provided detailed knowledge on viral transformation, host-viral interactions and pathogenesis. HTLV-1 is the etiological agent of adult T cell leukemia (ATL and multiple neurodegenerative and inflammatory diseases while HTLV-2 disease association remains elusive, with few infected individuals displaying neurodegenerative diseases similar to HTLV-1. The HTLV group of oncoretroviruses has a genome that encodes structural and enzymatic proteins Gag, Pro and Env, regulatory proteins Tax and Rex, and several accessory proteins from the pX region. Of these proteins, HTLV-1 p30 and HTLV-2 p28 are encoded by the open reading frame (ORF II of the pX region. Like most other accessory proteins, p30 and p28 are dispensable for in vitro viral replication and transformation but are required for efficient viral replication and persistence in vivo. Both p30 and p28 regulate viral gene expression at the post-transcriptional level whereas p30 can also function at the transcriptional level. Recently, several reports have implicated p30 and p28 in multiple cellular processes, which provide novel insight into HTLV spread and survival and ultimately pathogenesis. In this review we summarize and compare what is known about p30 and p28, highlighting their roles in viral replication and viral pathogenesis.

  15. Dimerization of nitrophorin 4 at low pH and comparison to the K1A mutant of nitrophorin 1.

    Science.gov (United States)

    Berry, Robert E; Yang, Fei; Shokhireva, Tatiana K; Amoia, Angela M; Garrett, Sarah A; Goren, Allena M; Korte, Stephanie R; Zhang, Hongjun; Weichsel, Andrzej; Montfort, William R; Walker, F Ann

    2015-01-20

    Nitrophorin 4, one of the four NO-carrying heme proteins from the salivary glands of Rhodnius prolixus, forms a homodimer at pH 5.0 with a Kd of ∼8 μM. This dimer begins to dissociate at pH 5.5 and is completely dissociated to monomer at pH 7.3, even at 3.7 mM. The dimer is significantly stabilized by binding NO to the heme and at pH 7.3 would require dilution to well below 0.2 mM to completely dissociate the NP4-NO homodimer. The primary techniques used for investigating the homodimer and the monomer-dimer equilibrium were size-exclusion fast protein liquid chromatography at pH 5.0 and (1)H{(15)N} heteronuclear single-quantum coherence spectroscopy as a function of pH and concentration. Preparation of site-directed mutants of NP4 (A1K, D30A, D30N, V36A/D129A/L130A, K38A, R39A, K125A, K125E, D132A, L133V, and K38Q/R39Q/K125Q) showed that the N-terminus, D30, D129, D132, at least one heme propionate, and, by association, likely also E32 and D35 are involved in the dimerization. The "closed loop" form of the A-B and G-H flexible loops of monomeric NP4, which predominates in crystal structures of the monomeric protein reported at pH 5.6 but not at pH 7.5 and which involves all of the residues listed above except D132, is required for dimer formation. Wild-type NP1 does not form a homodimer, but NP1(K1A) and native N-terminal NP1 form dimers in the presence of NO. The homodimer of NP1, however, is considerably less stable than that of NP4 in the absence of NO. This suggests that additional aspartate or glutamate residues present in the C-terminal region of NP4, but not NP1, are also involved in stabilizing the dimer.

  16. Lipotoxicity induces hepatic protein inclusions through TBK1-mediated p62/SQSTM1 phosphorylation.

    Science.gov (United States)

    Cho, Chun-Seok; Park, Hwan-Woo; Ho, Allison; Semple, Ian A; Kim, Boyoung; Jang, Insook; Park, Haeli; Reilly, Shannon; Saltiel, Alan R; Lee, Jun Hee

    2017-12-18

    Obesity commonly leads to hepatic steatosis, which often provokes lipotoxic injuries to hepatocytes that cause non-alcoholic steatohepatitis (NASH). NASH in turn is associated with the accumulation of insoluble protein aggregates that are composed of ubiquitinated proteins and ubiquitin adaptor p62/sequestosome 1 (SQSTM1). The formation of p62 inclusions in hepatocytes is the critical marker that distinguishes simple fatty liver from NASH and predicts a poor prognostic outcome for subsequent liver carcinogenesis. However, the molecular mechanism by which lipotoxicity induces protein aggregation is currently unknown. Here we show that upon saturated fatty acid-induced lipotoxicity, Tank-binding protein kinase 1 (TBK1) is activated and phosphorylates p62. The TBK1-mediated p62 phosphorylation is important for lipotoxicity-induced aggregation of ubiquitinated proteins and the formation of large protein inclusions in hepatocytes. In addition, cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), upstream regulators of TBK1, are involved in the lipotoxic activation of TBK1 and subsequent p62 phosphorylation in hepatocytes. Furthermore, TBK1 inhibition prevented formation of the ubiquitin-p62 aggregates, not only in cultured hepatocytes, but also in mouse models of obesity and NASH. These results suggest that lipotoxic activation of TBK1 and subsequent p62 phosphorylation are critical steps in the NASH pathology of protein inclusion accumulation in hepatocytes. This mechanism can provide an explanation for how hypernutrition and obesity promote the development of severe liver pathologies, such as steatohepatitis and liver cancer, by facilitating the formation of p62 inclusions. This article is protected by copyright. All rights reserved. © 2017 by the American Association for the Study of Liver Diseases.

  17. Gravity-driven pH adjustment for site-specific protein pKa measurement by solution-state NMR

    Science.gov (United States)

    Li, Wei

    2017-12-01

    To automate pH adjustment in site-specific protein pKa measurement by solution-state NMR, I present a funnel with two caps for the standard 5 mm NMR tube. The novelty of this simple-to-build and inexpensive apparatus is that it allows automatic gravity-driven pH adjustment within the magnet, and consequently results in a fully automated NMR-monitored pH titration without any hardware modification on the NMR spectrometer.

  18. Involvement of CUL4A in Regulation of Multidrug Resistance to P-gp Substrate Drugs in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yunshan Wang

    2013-12-01

    Full Text Available CUL4A encodes a core component of a cullin-based E3 ubiquitin ligase complex that regulates many critical processes such as cell cycle progression, DNA replication, DNA repair and chromatin remodeling by targeting a variety of proteins for ubiquitination and degradation. In the research described in this report we aimed to clarify whether CUL4A participates in multiple drug resistance (MDR in breast cancer cells. We first transfected vectors carrying CUL4A and specific shCUL4A into breast cancer cells and corresponding Adr cells respectively. Using reverse transcription polymerase chain reactions and western blots, we found that overexpression of CUL4A in MCF7 and MDA-MB-468 cells up-regulated MDR1/P-gp expression on both the transcription and protein levels, which conferred multidrug resistance to P-gp substrate drugs, as determined by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. On the other hand, silencing CUL4A in MCF7/Adr and MDA-MB-468/Adr cells led to the opposite effect. Moreover, ERK1/2 in CUL4A-overexpressing cells was highly activated and after treatment with PD98059, an ERK1/2-specific inhibitor, CUL4A-induced expression of MDR1/P-gp was decreased significantly. Lastly, immunohistochemistry in breast cancer tissues showed that P-gp expression had a positive correlation with the expression of CUL4A and ERK1/2. Thus, these results implied that CUL4A and ERK1/2 participated in multi-drug resistance in breast cancer through regulation of MDR1/P-gp expression.

  19. Repeated stimulation by LPS promotes the senescence of DPSCs via TLR4/MyD88-NF-κB-p53/p21 signaling.

    Science.gov (United States)

    Feng, Guijuan; Zheng, Ke; Cao, Tong; Zhang, Jinlong; Lian, Min; Huang, Dan; Wei, Changbo; Gu, Zhifeng; Feng, Xingmei

    2018-02-26

    Dental pulp stem cells (DPSCs), one type of mesenchymal stem cells, are considered to be a type of tool cells for regenerative medicine and tissue engineering. Our previous studies found that the stimulation with lipopolysaccharide (LPS) might introduce senescence of DPSCs, and this senescence would have a positive correlation with the concentration of LPS. The β-galactosidase (SA-β-gal) staining was used to evaluate the senescence of DPSCs and immunofluorescence to show the morphology of DPSCs. Our findings suggested that the activity of SA-β-gal has increased after repeated stimulation with LPS and the morphology of DPSCs has changed with the stimulation with LPS. We also found that LPS bound to the Toll-like receptor 4 (TLR4)/myeloid differentiation factor (MyD) 88 signaling pathway. Protein and mRNA expression of TLR4, MyD88 were enhanced in DPSCs with LPS stimulation, resulting in the activation of nuclear factor-κB (NF-κB) signaling, which exhibited the expression of p65 improved in the nucleus while the decreasing of IκB-α. Simultaneously, the expression of p53 and p21, the downstream proteins of the NF-κB signaling, has increased. In summary, DPSCs tend to undergo senescence after repeated stimulation in an inflammatory microenvironment. Ultimately, these findings may lead to a new direction for cell-based therapy in oral diseases and other regenerative medicines.

  20. Rice black-streaked dwarf virus P6 self-interacts to form punctate, viroplasm-like structures in the cytoplasm and recruits viroplasm-associated protein P9-1

    Directory of Open Access Journals (Sweden)

    Yu Jialin

    2011-01-01

    Full Text Available Abstract Background Rice black-streaked dwarf virus (RBSDV, a member of the genus Fijivirus within the family Reoviridae, can infect several graminaceous plant species including rice, maize and wheat, and is transmitted by planthoppers. Although several RBSDV proteins have been studied in detail, functions of the nonstructural protein P6 are still largely unknown. Results In the current study, we employed yeast two-hybrid assays, bimolecular fluorescence complementation and subcellular localization experiments to show that P6 can self-interact to form punctate, cytoplasmic viroplasm-like structures (VLS when expressed alone in plant cells. The region from residues 395 to 659 is necessary for P6 self-interaction, whereas two polypeptides (residues 580-620 and 615-655 are involved in the subcellular localization of P6. Furthermore, P6 strongly interacts with the viroplasm-associated protein P9-1 and recruits P9-1 to localize in VLS. The P6 395-659 region is also important for the P6-P9-1 interaction, and deleting any region of P9-1 abolishes this heterologous interaction. Conclusions RBSDV P6 protein has an intrinsic ability to self-interact and forms VLS without other RBSDV proteins or RNAs. P6 recruits P9-1 to VLS by direct protein-protein interaction. This is the first report on the functionality of RBSDV P6 protein. P6 may be involved in the process of viroplasm nucleation and virus morphogenesis.

  1. Embryonal Fyn-associated substrate (EFS) and CASS4: The lesser-known CAS protein family members.

    Science.gov (United States)

    Deneka, Alexander; Korobeynikov, Vladislav; Golemis, Erica A

    2015-10-01

    The CAS (Crk-associated substrate) adaptor protein family consists of four members: CASS1/BCAR1/p130Cas, CASS2/NEDD9/HEF1/Cas-L, CASS3/EFS/Sin and CASS4/HEPL. While CAS proteins lack enzymatic activity, they contain specific recognition and binding sites for assembly of larger signaling complexes that are essential for cell proliferation, survival, migration, and other processes. All family members are intermediates in integrin-dependent signaling pathways mediated at focal adhesions, and associate with FAK and SRC family kinases to activate downstream effectors regulating the actin cytoskeleton. Most studies of CAS proteins to date have been focused on the first two members, BCAR1 and NEDD9, with altered expression of these proteins now appreciated as influencing disease development and prognosis for cancer and other serious pathological conditions. For these family members, additional mechanisms of action have been defined in receptor tyrosine kinase (RTK) signaling, estrogen receptor signaling or cell cycle progression, involving discrete partner proteins such as SHC, NSP proteins, or AURKA. By contrast, EFS and CASS4 have been less studied, although structure-function analyses indicate they conserve many elements with the better-known family members. Intriguingly, a number of recent studies have implicated these proteins in immune system function, and the pathogenesis of developmental disorders, autoimmune disorders including Crohn's disease, Alzheimer's disease, cancer and other diseases. In this review, we summarize the current understanding of EFS and CASS4 protein function in the context of the larger CAS family group. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Efficient nuclear export of p65-IkappaBalpha complexes requires 14-3-3 proteins.

    Science.gov (United States)

    Aguilera, Cristina; Fernández-Majada, Vanessa; Inglés-Esteve, Julia; Rodilla, Verónica; Bigas, Anna; Espinosa, Lluís

    2006-09-01

    IkappaB are responsible for maintaining p65 in the cytoplasm under non-stimulating conditions and promoting the active export of p65 from the nucleus following NFkappaB activation to terminate the signal. We now show that 14-3-3 proteins regulate the NFkappaB signaling pathway by physically interacting with p65 and IkappaBalpha proteins. We identify two functional 14-3-3 binding domains in the p65 protein involving residues 38-44 and 278-283, and map the interaction region of IkappaBalpha in residues 60-65. Mutation of these 14-3-3 binding domains in p65 or IkappaBalpha results in a predominantly nuclear distribution of both proteins. TNFalpha treatment promotes recruitment of 14-3-3 and IkappaBalpha to NFkappaB-dependent promoters and enhances the binding of 14-3-3 to p65. Disrupting 14-3-3 activity by transfection with a dominant-negative 14-3-3 leads to the accumulation of nuclear p65-IkappaBalpha complexes and the constitutive association of p65 with the chromatin. In this situation, NFkappaB-dependent genes become unresponsive to TNFalpha stimulation. Together our results indicate that 14-3-3 proteins facilitate the nuclear export of IkappaBalpha-p65 complexes and are required for the appropriate regulation of NFkappaB signaling.

  3. p16(INK4A) inhibits the pro-metastatic potentials of osteosarcoma cells through targeting the ERK pathway and TGF-β1.

    Science.gov (United States)

    Silva, Gabriela; Aboussekhra, Abdelilah

    2016-05-01

    Extracellular signal-regulated kinase (ERK) is a downstream component of the evolutionarily conserved mitogen-activated protein kinase-signaling pathway, which controls the expression of a plethora of genes implicated in various physiological processes. This pathway is often hyper-activated by mutations or abnormal extracellular signaling in different types of human cancer, including the most common primary malignant bone tumor osteosarcomas. p16(INK4A) is an important tumor suppressor gene frequently lost in osteosarcomas, and is associated with the progression of these malignancies. We have shown, here, that the ERK1/2 protein kinase is also activated by p16(INK4A) down-regulation in osteosarcoma cells and normal human as well as mouse cells. This inhibitory effect is associated with the suppression of the upstream kinase MEK1/2, and is mediated via the repression of miR-21-5p and the consequent up-regulation of the MEK/ERK antagonist SPRY2 in osteosarcoma cells. Furthermore, we have shown that p16(INK4) inhibits the migration/invasion abilities of these cells through miR-21-5p-dependent inhibition of ERK1/2. In addition, we present clear evidence that p16(INK4) represses the paracrine pro-migratory effect of osteosarcoma cells on stromal fibroblasts through the inhibition of the TGF-β1 expression/secretion. This effect is also ERK1/2-dependent, indicating that in addition to their cell-autonomous actions, p16(INK4) and ERK1/2 have also non-cell-autonomous cancer-related functions. Together, these results indicate that the tumor suppressor p16(INK4) protein represses the carcinogenic process of osteosarcoma cells not only as a cell cycle regulator, but also as a negative regulator of pro-carcinogenic/-metastatic pathways. This indicates that targeting the ERK pathway is of utmost therapeutic value. © 2015 Wiley Periodicals, Inc.

  4. [Establishment and identification of mouse lymphoma cell line EL4 expressing red fluorescent protein].

    Science.gov (United States)

    Li, Yan-Jie; Cao, Jiang; Chen, Chong; Wang, Dong-Yang; Zeng, Ling-Yu; Pan, Xiu-Ying; Xu, Kai-Lin

    2010-02-01

    This study was purposed to construct a lentiviral vector encoding red fluorescent protein (DsRed) and transfect DsRed into EL4 cells for establishing mouse leukemia/lymphoma model expressing DsRed. The bicistronic SIN lentiviral transfer plasmid containing the genes encoding neo and internal ribosomal entry site-red fluorescent protein (IRES-DsRed) was constructed. Human embryonic kidney 293FT cells were co-transfected with the three plasmids by liposome method. The viral particles were collected and used to transfect EL4 cells, then the cells were selected by G418. The results showed that the plasmid pXZ208-neo-IRES-DsRed was constructed successfully, and the viral titer reached to 10(6) U/ml. EL4 cells were transfected by the viral solution efficiently. The transfected EL4 cells expressing DsRed survived in the final concentration 600 microg/ml of G418. The expression of DsRed in the transfected EL4 cells was demonstrated by fluorescence microscopy and flow cytometry. In conclusion, the EL4/DsRed cell line was established successfully.

  5. The roles of phosphorylation and SHAGGY-like protein kinases in geminivirus C4 protein induced hyperplasia.

    Directory of Open Access Journals (Sweden)

    Katherine Mills-Lujan

    Full Text Available Even though plant cells are highly plastic, plants only develop hyperplasia under very specific abiotic and biotic stresses, such as when exposed to pathogens like Beet curly top virus (BCTV. The C4 protein of BCTV is sufficient to induce hyperplasia and alter Arabidopsis development. It was previously shown that C4 interacts with two Arabidopsis Shaggy-like protein kinases, AtSK21 and 23, which are negative regulators of brassinosteroid (BR hormone signaling. Here we show that the C4 protein interacts with five additional AtSK family members. Bikinin, a competitive inhibitor of the seven AtSK family members that interact with C4, induced hyperplasia similar to that induced by the C4 protein. The Ser49 residue of C4 was found to be critical for C4 function, since: 1 mutagenesis of Ser49 to Ala abolished the C4-induced phenotype, abolished C4/AtSK interactions, and resulted in a mutant protein that failed to induce changes in the BR signaling pathway; 2 Ser49 is phosphorylated in planta; and 3 plant-encoded AtSKs must be catalytically active to interact with C4. A C4 N-myristoylation site mutant that does not localize to the plasma membrane and does not induce a phenotype, retained the ability to bind AtSKs. Taken together, these results suggest that plasma membrane associated C4 interacts with and co-opts multiple AtSKs to promote its own phosphorylation and activation to subsequently compromise cell cycle control.

  6. Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs.

    Science.gov (United States)

    Rong, Liwei; Livingstone, Mark; Sukarieh, Rami; Petroulakis, Emmanuel; Gingras, Anne-Claude; Crosby, Katherine; Smith, Bradley; Polakiewicz, Roberto D; Pelletier, Jerry; Ferraiuolo, Maria A; Sonenberg, Nahum

    2008-07-01

    Eukaryotic initiation factor (eIF) 4E, the mRNA 5'-cap-binding protein, mediates the association of eIF4F with the mRNA 5'-cap structure to stimulate cap-dependent translation initiation in the cytoplasm. The assembly of eIF4E into the eIF4F complex is negatively regulated through a family of repressor proteins, called the eIF4E-binding proteins (4E-BPs). eIF4E is also present in the nucleus, where it is thought to stimulate nuclear-cytoplasmic transport of certain mRNAs. eIF4E is transported to the nucleus via its interaction with 4E-T (4E-transporter), but it is unclear how it is retained in the nucleus. Here we show that a sizable fraction (approximately 30%) of 4E-BP1 is localized to the nucleus, where it binds eIF4E. In mouse embryo fibroblasts (MEFs) subjected to serum starvation and/or rapamycin treatment, nuclear 4E-BPs sequester eIF4E in the nucleus. A dramatic loss of nuclear 4E-BP1 occurs in c-Ha-Ras-expressing MEFs, which fail to show starvation-induced nuclear accumulation of eIF4E. Therefore, 4E-BP1 is a regulator of eIF4E cellular localization.

  7. Functional and genetic epidemiological characterisation of the FFAR4 (GPR120) p.R270H variant in the Danish population

    DEFF Research Database (Denmark)

    Vestmar, Marie Aare; Andersson, Ehm A; Christensen, Charlotte Riis

    2016-01-01

    . Association with quantitative metabolic traits comprised 8720 non-diabetic individuals. RESULTS: p.R270H showed reduced surface expression of FFAR4. Ligand-independent activity was eliminated and strongly impaired through the Gq and Gi signalling pathways, respectively. The ligand-induced maximal signalling...... reactive protein; hs-CRP) and liver function (alanine aminotransferase) in the Danish population (p>0.05). CONCLUSIONS: We demonstrate that p.R270H of FFAR4 impairs Gq and Gi signalling of FFAR4 in vitro; however, this impaired signalling for p.R270H does not translate into associations with human...

  8. Pmr, a histone-like protein H1 (H-NS) family protein encoded by the IncP-7 plasmid pCAR1, is a key global regulator that alters host function.

    Science.gov (United States)

    Yun, Choong-Soo; Suzuki, Chiho; Naito, Kunihiko; Takeda, Toshiharu; Takahashi, Yurika; Sai, Fumiya; Terabayashi, Tsuguno; Miyakoshi, Masatoshi; Shintani, Masaki; Nishida, Hiromi; Yamane, Hisakazu; Nojiri, Hideaki

    2010-09-01

    Histone-like protein H1 (H-NS) family proteins are nucleoid-associated proteins (NAPs) conserved among many bacterial species. The IncP-7 plasmid pCAR1 is transmissible among various Pseudomonas strains and carries a gene encoding the H-NS family protein, Pmr. Pseudomonas putida KT2440 is a host of pCAR1, which harbors five genes encoding the H-NS family proteins PP_1366 (TurA), PP_3765 (TurB), PP_0017 (TurC), PP_3693 (TurD), and PP_2947 (TurE). Quantitative reverse transcription-PCR (qRT-PCR) demonstrated that the presence of pCAR1 does not affect the transcription of these five genes and that only pmr, turA, and turB were primarily transcribed in KT2440(pCAR1). In vitro pull-down assays revealed that Pmr strongly interacted with itself and with TurA, TurB, and TurE. Transcriptome comparisons of the pmr disruptant, KT2440, and KT2440(pCAR1) strains indicated that pmr disruption had greater effects on the host transcriptome than did pCAR1 carriage. The transcriptional levels of some genes that increased with pCAR1 carriage, such as the mexEF-oprN efflux pump genes and parI, reverted with pmr disruption to levels in pCAR1-free KT2440. Transcriptional levels of putative horizontally acquired host genes were not altered by pCAR1 carriage but were altered by pmr disruption. Identification of genome-wide Pmr binding sites by ChAP-chip (chromatin affinity purification coupled with high-density tiling chip) analysis demonstrated that Pmr preferentially binds to horizontally acquired DNA regions. The Pmr binding sites overlapped well with the location of the genes differentially transcribed following pmr disruption on both the plasmid and the chromosome. Our findings indicate that Pmr is a key factor in optimizing gene transcription on pCAR1 and the host chromosome.

  9. Some epitopes conservation in non structural 3 protein dengue virus serotype 4

    Directory of Open Access Journals (Sweden)

    Tegar A. P. Siregar

    2016-03-01

    Full Text Available AbstrakLatar belakang: Protein Non Struktural 3 (NS3 virus dengue menginduksi respon antibodi netralisasidan respon sel T CD4+ dan CD8+, serta berperan dalam replikasi virus. Protein NS3 memiliki epitopepitopsel T dan B yang terdapat perbedaan kelestarian pada berbagai strain virus dengue serotipe 4(DENV-4. Penelitian ini bertujuan untuk mengetahui kelestarian epitop sel T dan B pada protein NS3DENV-4 strain-strain dunia dan keempat serotipe virus dengue strain Indonesia.Metode: Penelitian ini dilakukan di Departemen Mikrobiologi Fakultas Kedokteran UI sejak Juni 2013 - April2014. Sekuens asam amino NS3 DENV-4 strain 081 didapatkan setelah produk PCR gen NS3 DENV-4 081disekuensing. Epitop-epitop sel T dan sel B protein NS3 DENV-4 081 dianalisis dan dibandingkan dengansekuens asam amino protein NS3 dari 124 strain DENV-4 di dunia dan keempat serotipe DENV strain Indonesia.Strain-strain dunia merupakan strain yang ada di benua Amerika (Venezuela, Colombia, dll dan Asia (Cina,Singapura, dll. Referensi posisi epitop sel T dan B protein NS3 diperoleh dari laporan penelitian terdahulu.Hasil: Delapan epitop sel T dan 2 epitop sel B dari protein NS3 DENV-4 081 ternyata identik dan lestaripada protein NS3 dari 124 strain DENV-4 dunia. Epitop sel B di posisi asam amino 537-544 pada proteinNS3 DENV-4 081 ternyata identik dan lestari dengan epitop sel B protein NS3 dari keempat serotipeDENV strain Indonesia.Kesimpulan: Kelestarian yang luas dari epitop sel T dan B pada hampir seluruh strain DENV-4 dunia danserotipe-serotipe DENV strain Indonesia. (Health Science Journal of Indonesia 2015;6:126-31Kata kunci: virus dengue, protein NS3, epitop sel T, epitop sel B AbstractBackground: Non Structural 3 (NS3 protein of dengue virus (DENV is known to induce antibody, CD4+and CD8+ T cell responses, and playing role in viral replication. NS3 protein has T and B cell epitopes,which has conservation difference between DENV-4 strains. This study aimed to identify

  10. Potential role of voltage-sensing phosphatases in regulation of cell structure through the production of PI(3,4)P2.

    Science.gov (United States)

    Yamaguchi, Shinji; Kurokawa, Tatsuki; Taira, Ikuko; Aoki, Naoya; Sakata, Souhei; Okamura, Yasushi; Homma, Koichi J

    2014-04-01

    Voltage-sensing phosphatase, VSP, consists of the transmembrane domain, operating as the voltage sensor, and the cytoplasmic domain with phosphoinositide-phosphatase activities. The voltage sensor tightly couples with the cytoplasmic phosphatase and membrane depolarization induces dephosphorylation of several species of phosphoinositides. VSP gene is conserved from urochordate to human. There are some diversities among VSP ortholog proteins; range of voltage of voltage sensor motions as well as substrate selectivity. In contrast with recent understandings of biophysical mechanisms of VSPs, little is known about its physiological roles. Here we report that chick ortholog of VSP (designated as Gg-VSP) induces morphological feature of cell process outgrowths with round cell body in DF-1 fibroblasts upon its forced expression. Expression of the voltage sensor mutant, Gg-VSPR153Q with shifted voltage dependence to a lower voltage led to more frequent changes of cell morphology than the wild-type protein. Coexpression of PTEN that dephosphorylates PI(3,4)P2 suppressed this effect by Gg-VSP, indicating that the increase of PI(3,4)P2 leads to changes of cell shape. In addition, visualization of PI(3,4)P2 with the fluorescent protein fused with the TAPP1-derived pleckstrin homology (PH) domain suggested that Gg-VSP influenced the distribution of PI(3,4)P2 . These findings raise a possibility that one of the VSP's functions could be to regulate cell morphology through voltage-sensitive tuning of phosphoinositide profile. © 2013 Wiley Periodicals, Inc.

  11. Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p.

    Science.gov (United States)

    Brewer, Laurence R; Friddle, Raymond; Noy, Aleksandr; Baldwin, Enoch; Martin, Shelley S; Corzett, Michele; Balhorn, Rod; Baskin, Ronald J

    2003-10-01

    Mitochondrial and nuclear DNA are packaged by proteins in a very different manner. Although protein-DNA complexes called "nucleoids" have been identified as the genetic units of mitochondrial inheritance in yeast and man, little is known about their physical structure. The yeast mitochondrial protein Abf2p was shown to be sufficient to compact linear dsDNA, without the benefit of supercoiling, using optical and atomic force microscopy single molecule techniques. The packaging of DNA by Abf2p was observed to be very weak as evidenced by a fast Abf2p off-rate (k(off) = 0.014 +/- 0.001 s(-1)) and the extremely small forces (<0.6 pN) stabilizing the condensed protein-DNA complex. Atomic force microscopy images of individual complexes showed the 190-nm structures are loosely packaged relative to nuclear chromatin. This organization may leave mtDNA accessible for transcription and replication, while making it more vulnerable to damage.

  12. Dynamics of the Peripheral Membrane Protein P2 from Human Myelin Measured by Neutron Scattering--A Comparison between Wild-Type Protein and a Hinge Mutant.

    Directory of Open Access Journals (Sweden)

    Saara Laulumaa

    Full Text Available Myelin protein P2 is a fatty acid-binding structural component of the myelin sheath in the peripheral nervous system, and its function is related to its membrane binding capacity. Here, the link between P2 protein dynamics and structure and function was studied using elastic incoherent neutron scattering (EINS. The P38G mutation, at the hinge between the β barrel and the α-helical lid, increased the lipid stacking capacity of human P2 in vitro, and the mutated protein was also functional in cultured cells. The P38G mutation did not change the overall structure of the protein. For a deeper insight into P2 structure-function relationships, information on protein dynamics in the 10 ps to 1 ns time scale was obtained using EINS. Values of mean square displacements mainly from protein H atoms were extracted for wild-type P2 and the P38G mutant and compared. Our results show that at physiological temperatures, the P38G mutant is more dynamic than the wild-type P2 protein, especially on a slow 1-ns time scale. Molecular dynamics simulations confirmed the enhanced dynamics of the mutant variant, especially within the portal region in the presence of bound fatty acid. The increased softness of the hinge mutant of human myelin P2 protein is likely related to an enhanced flexibility of the portal region of this fatty acid-binding protein, as well as to its interactions with the lipid bilayer surface requiring conformational adaptations.

  13. Several adaptor proteins promote intracellular localisation of the transporter MRP4/ABCC4 in platelets and haematopoietic cells.

    Science.gov (United States)

    Schaletzki, Yvonne; Kromrey, Marie-Luise; Bröderdorf, Susanne; Hammer, Elke; Grube, Markus; Hagen, Paul; Sucic, Sonja; Freissmuth, Michael; Völker, Uwe; Greinacher, Andreas; Rauch, Bernhard H; Kroemer, Heyo K; Jedlitschky, Gabriele

    2017-01-05

    The multidrug resistance protein 4 (MRP4/ABCC4) has been identified as an important transporter for signalling molecules including cyclic nucleotides and several lipid mediators in platelets and may thus represent a novel target to interfere with platelet function. Besides its localisation in the plasma membrane, MRP4 has been also detected in the membrane of dense granules in resting platelets. In polarised cells it is localised at the basolateral or apical plasma membrane. To date, the mechanism of MRP4 trafficking has not been elucidated; protein interactions may regulate both the localisation and function of this transporter. We approached this issue by searching for interacting proteins by in vitro binding assays, followed by immunoblotting and mass spectrometry, and by visualising their co-localisation in platelets and haematopoietic cells. We identified the PDZ domain containing scaffold proteins ezrin-binding protein 50 (EBP50/NHERF1), postsynaptic density protein 95 (PSD95), and sorting nexin 27 (SNX27), but also the adaptor protein complex 3 subunit β3A (AP3B1) and the heat shock protein HSP90 as putative interaction partners of MRP4. The knock-down of SNX27, PSD95, and AP3B1 by siRNA in megakaryoblastic leukaemia cells led to a redistribution of MRP4 from intracellular structures to the plasma membrane. Inhibition of HSP90 led to a diminished expression and retention of MRP4 in the endoplasmic reticulum. These results indicate that MRP4 localisation and function are regulated by multiple protein interactions. Changes in the adaptor proteins can hence lead to altered localisation and function of the transporter.

  14. Hepatitis B virus induces cell proliferation via HBx-induced microRNA-21 in hepatocellular carcinoma by targeting programmed cell death protein4 (PDCD4 and phosphatase and tensin homologue (PTEN.

    Directory of Open Access Journals (Sweden)

    Preeti Damania

    Full Text Available Hepatitis B viral infection-induced hepatocellular carcinoma is one of the major problems in the developing countries. One of the HBV proteins, HBx, modulates the host cell machinery via several mechanisms. In this study we hypothesized that HBV enhances cell proliferation via HBx-induced microRNA-21 in hepatocellular carcinoma. HBx gene was over-expressed, and miRNA-21 expression and cell proliferation were measured in Huh 7 and Hep G2 cells. miRNA-21 was over-expressed in these cells, cell proliferation and the target proteins were analyzed. To confirm the role of miRNA-21 in HBx-induced proliferation, Hep G 2.2.1.5 cells (a cell line that expresses HBV stably were used for miRNA-21 inhibition studies. HBx over-expression enhanced proliferation (3.7- and 4.5-fold increase; n = 3; p<0.01 and miRNA-21 expression (24- and 36-fold increase, normalized with 5S rRNA; p<0.001 in Huh 7 and Hep G2 cells respectively. HBx also resulted in the inhibition of miRNA-21 target proteins, PDCD4 and PTEN. miRNA-21 resulted in a significant increase in proliferation (2- and 2.3-fold increase over control cells; p<0.05 in Huh 7 and Hep G2 cells respectively and decreased target proteins, PDCD4 and PTEN expression. Anti-miR-21 resulted in a significant decrease in proliferation (p<0.05 and increased miRNA-21 target protein expression. We conclude that HBV infection enhances cell proliferation, at least in part, via HBx-induced miRNA-21 expression during hepatocellular carcinoma progression.

  15. The Importance of G Protein-Coupled Receptor Kinase 4 (GRK4 in Pathogenesis of Salt Sensitivity, Salt Sensitive Hypertension and Response to Antihypertensive Treatment

    Directory of Open Access Journals (Sweden)

    Brian Rayner

    2015-03-01

    Full Text Available Salt sensitivity is probably caused by either a hereditary or acquired defect of salt excretion by the kidney, and it is reasonable to consider that this is the basis for differences in hypertension between black and white people. Dopamine acts in an autocrine/paracrine fashion to promote natriuresis in the proximal tubule and thick ascending loop of Henle. G-protein receptor kinases (or GRKs are serine and threonine kinases that phosphorylate G protein-coupled receptors in response to agonist stimulation and uncouple the dopamine receptor from its G protein. This results in a desensitisation process that protects the cell from repeated agonist exposure. GRK4 activity is increased in spontaneously hypertensive rats, and infusion of GRK4 antisense oligonucleotides attenuates the increase in blood pressure (BP. This functional defect is replicated in the proximal tubule by expression of GRK4 variants namely p.Arg65Leu, p.Ala142Val and p.Val486Ala, in cell lines, with the p.Ala142Val showing the most activity. In humans, GRK4 polymorphisms were shown to be associated with essential hypertension in Australia, BP regulation in young adults, low renin hypertension in Japan and impaired stress-induced Na excretion in normotensive black men. In South Africa, GRK4 polymorphisms are more common in people of African descent, associated with impaired Na excretion in normotensive African people, and predict blood pressure response to Na restriction in African patients with mild to moderate essential hypertension. The therapeutic importance of the GRK4 single nucleotide polymorphisms (SNPs was emphasised in the African American Study of Kidney Disease (AASK where African-Americans with hypertensive nephrosclerosis were randomised to receive amlodipine, ramipril or metoprolol. Men with the p.Ala142Val genotype were less likely to respond to metoprolol, especially if they also had the p.Arg65Leu variant. Furthermore, in the analysis of response to treatment in

  16. Measurement of the hyperfine structure of the 4d2D3/2,5/2 levels and isotope shifts of the 4p2P3/2->4d2D3/2 and 4p2P3/2->4d2D5/2 transitions in gallium 69 and 71

    International Nuclear Information System (INIS)

    Rehse, Steven J.; Fairbank, William M.; Lee, Siu Au

    2001-01-01

    The hyperfine structure of the 4d 2 D 3/2,5/2 levels of 69,71 Ga is determined. The 4p 2 P 3/2 ->4d 2 D 3/2 (294.50-nm) and 4p 2 P 3/2 ->4d 2 D 5/2 (294.45-nm) transitions are studied by laser-induced fluorescence in an atomic Ga beam. The hyperfine A constant measured for the 4d 2 D 5/2 level is 77.3±0.9 MHz for 69 Ga and 97.9± 0.7 MHz for 71 Ga (3σ errors). The A constant measured for the 4d 2 D 3/2 level is -36.3±2.2 MHz for 69 Ga and -46.2±3.8 MHz for 71 Ga. These measurements correct sign errors in the previous determination of these constants. For 69 Ga the hyperfine B constants measured for the 4d 2 D 5/2 and the 4d 2 D 3/2 levels are 5.3±4.1 MHz and 4.6±4.2 MHz, respectively. The isotope shift is determined to be 114±8 MHz for the 4p 2 P 3/2 ->4d 2 D 3/2 transition and 115±7 MHz for the 4p 2 P 3/2 ->4d 2 D 5/2 transition. The lines of 71 Ga are shifted to the blue. This is in agreement with previous measurement. [copyright] 2001 Optical Society of America

  17. Potential proteins targeted by let-7f-5p in HeLa cells.

    Science.gov (United States)

    Wang, Yu; Chen, Xiujuan; Zhang, Yi; Song, Jiandong

    2017-07-24

    MicroRNAs are a class of small, endogenous, non-coding RNAs mediating posttranscriptional gene silencing. The current authors hypothesized that let-7f-5p is likely involved in cell invasion and proliferation by regulating the expression of target genes. The current study combined let-7f-5p with iTRAQ to assess its effect on gene expression in HeLa cells. Results indicated that 164 proteins were expressed at different levels in HeLa cells overexpressing let-7f-5p and negative controls and that 172 proteins were expressed at different levels in let-7f-5p-silenced HeLa cells and negative controls. Results indicated that let-7f-5p may suppress insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) in HeLa cells.

  18. Oral Vaccination with the Porcine Rotavirus VP4 Outer Capsid Protein Expressed by Lactococcus lactis Induces Specific Antibody Production

    Directory of Open Access Journals (Sweden)

    Yi-jing Li

    2010-01-01

    Full Text Available The objective of this study to design a delivery system resistant to the gastrointestinal environment for oral vaccine against porcine rotavirus. Lactococcus lactis NZ9000 was transformed with segments of vP4 of the porcine rotavirus inserted into the pNZ8112 surface-expression vector, and a recombinant L. lactis expressing VP4 protein was constructed. An approximately 27 kDa VP4 protein was confirmed by SDS-PAGE , Western blot and immunostaining analysis. BALB/c mice were immunized orally with VP4-expression recombinant L. lactis and cellular, mucosal and systemic humoral immune responses were examined. Specific anti-VP4 secretory IgA and IgG were found in feces, ophthalmic and vaginal washes and in serum. The induced antibodies demonstrated neutralizing effects on porcine rotavirus infection on MA104 cells. Our findings suggest that oral immunization with VP4-expressing L. lactis induced both specific local and systemic humoral and cellular immune responses in mice.

  19. C/EBPα regulates CRL4Cdt2-mediated degradation of p21 in response to UVB-induced DNA damage to control the G1/S checkpoint

    Science.gov (United States)

    Hall, Jonathan R; Bereman, Michael S; Nepomuceno, Angelito I; Thompson, Elizabeth A; Muddiman, David C; Smart, Robert C

    2014-01-01

    The bZIP transcription factor, C/EBPα is highly inducible by UVB and other DNA damaging agents in keratinocytes. C/EBPα-deficient keratinocytes fail to undergo cell cycle arrest in G1 in response to UVB-induced DNA damage and mice lacking epidermal C/EBPα are highly susceptible to UVB-induced skin cancer. The mechanism through which C/EBPα regulates the cell cycle checkpoint in response to DNA damage is unknown. Here we report untreated C/EBPα-deficient keratinocytes have normal levels of the cyclin-dependent kinase inhibitor, p21, however, UVB-treated C/EBPα-deficient keratinocytes fail to up-regulate nuclear p21 protein levels despite normal up-regulation of Cdkn1a mRNA levels. UVB-treated C/EBPα-deficient keratinocytes displayed a 4-fold decrease in nuclear p21 protein half-life due to the increased proteasomal degradation of p21 via the E3 ubiquitin ligase CRL4Cdt2. Cdt2 is the substrate recognition subunit of CRL4Cdt2 and Cdt2 mRNA and protein levels were up-regulated in UVB-treated C/EBPα-deficient keratinocytes. Knockdown of Cdt2 restored p21 protein levels in UVB-treated C/EBPα-deficient keratinocytes. Lastly, the failure to accumulate p21 in response to UVB in C/EBPα-deficient keratinocytes resulted in decreased p21 interactions with critical cell cycle regulatory proteins, increased CDK2 activity, and inappropriate entry into S-phase. These findings reveal C/EBPα regulates G1/S cell cycle arrest in response to DNA damage via the control of CRL4Cdt2 mediated degradation of p21. PMID:25483090

  20. P-Finder: Reconstruction of Signaling Networks from Protein-Protein Interactions and GO Annotations.

    Science.gov (United States)

    Young-Rae Cho; Yanan Xin; Speegle, Greg

    2015-01-01

    Because most complex genetic diseases are caused by defects of cell signaling, illuminating a signaling cascade is essential for understanding their mechanisms. We present three novel computational algorithms to reconstruct signaling networks between a starting protein and an ending protein using genome-wide protein-protein interaction (PPI) networks and gene ontology (GO) annotation data. A signaling network is represented as a directed acyclic graph in a merged form of multiple linear pathways. An advanced semantic similarity metric is applied for weighting PPIs as the preprocessing of all three methods. The first algorithm repeatedly extends the list of nodes based on path frequency towards an ending protein. The second algorithm repeatedly appends edges based on the occurrence of network motifs which indicate the link patterns more frequently appearing in a PPI network than in a random graph. The last algorithm uses the information propagation technique which iteratively updates edge orientations based on the path strength and merges the selected directed edges. Our experimental results demonstrate that the proposed algorithms achieve higher accuracy than previous methods when they are tested on well-studied pathways of S. cerevisiae. Furthermore, we introduce an interactive web application tool, called P-Finder, to visualize reconstructed signaling networks.

  1. Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin

    Indian Academy of Sciences (India)

    Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin. Qizhuang Lv Kangkang Guo Tao Wang ... Keywords. Cellular protein; FHC; ORF4 protein; porcine circovirus type 2 (PCV2); yeast two-hybrid ... Journal of Biosciences | News ...

  2. Inactivation of Cytochrome P450 (P450) 3A4 but not P450 3A5 by OSI-930, a Thiophene-Containing Anticancer DrugS⃞

    Science.gov (United States)

    Lin, Hsia-lien; Zhang, Haoming; Medower, Christine; Johnson, William W.

    2011-01-01

    An investigational anticancer agent that contains a thiophene moiety, 3-[(quinolin-4-ylmethyl)-amino]-N-[4-trifluoromethox)phenyl] thiophene-2-carboxamide (OSI-930), was tested to investigate its ability to modulate the activities of several cytochrome P450 enzymes. Results showed that OSI-930 inactivated purified, recombinant cytochrome P450 (P450) 3A4 in the reconstituted system in a mechanism-based manner. The inactivation was dependent on cytochrome b5 and required NADPH. Catalase did not protect against the inactivation. No inactivation was observed in studies with human 2B6, 2D6, or 3A5 either in the presence or in the absence of b5. The inactivation of 3A4 by OSI-930 was time- and concentration-dependent. The inactivation of the 7-benzyloxy-4-(trifluoromethyl)coumarin catalytic activity of 3A4 was characterized by a KI of 24 μM and a kinact of 0.04 min−1. This KI is significantly greater than the clinical OSI-930 Cmax of 1.7 μM at the maximum tolerated dose, indicating that clinical drug interactions of OSI-930 via this pathway are not likely. Spectral analysis of the inactivated protein indicated that the decrease in the reduced CO spectrum at 450 nm was comparable to the amount of inactivation, thereby suggesting that the inactivation was primarily due to modification of the heme. High-pressure liquid chromatography (HPLC) analysis with detection at 400 nm showed a loss of heme comparable to the activity loss, but a modified heme was not detected. This result suggests either that the heme must have been modified enough so as not to be observed in a HPLC chromatograph or, possibly, that it was destroyed. The partition ratio for the inactivation of P450 3A4 was approximately 23, suggesting that this P450 3A4-mediated pathway occurs with approximately 4% frequency during the metabolism of OSI-930. Modeling studies on the binding of OSI-930 to the active site of the P450 3A4 indicated that OSI-930 would be oriented properly in the active site for oxidation

  3. pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery.

    Science.gov (United States)

    Koetting, Michael Clinton; Guido, Joseph Frank; Gupta, Malvika; Zhang, Annie; Peppas, Nicholas A

    2016-01-10

    Two potential platform technologies for the oral delivery of protein therapeutics were synthesized and tested. pH-responsive poly(itaconic acid-co-N-vinyl-2-pyrrolidone) (P(IA-co-NVP)) hydrogel microparticles were tested in vitro with model proteins salmon calcitonin, urokinase, and rituximab to determine the effects of particle size, protein size, and crosslinking density on oral delivery capability. Particle size showed no significant effect on overall delivery potential but did improve percent release of encapsulated protein over the micro-scale particle size range studied. Protein size was shown to have a significant impact on the delivery capability of the P(IA-co-NVP) hydrogel. We show that when using P(IA-co-NVP) hydrogel microparticles with 3 mol% tetra(ethylene glycol) dimethacrylate crosslinker, a small polypeptide (salmon calcitonin) loads and releases up to 45 μg/mg hydrogel while the mid-sized protein urokinase and large monoclonal antibody rituximab load and release only 19 and 24 μg/mg hydrogel, respectively. We further demonstrate that crosslinking density offers a simple method for tuning hydrogel properties to variously sized proteins. Using 5 mol% TEGDMA crosslinker offers optimal performance for the small peptide, salmon calcitonin, whereas lower crosslinking density of 1 mol% offers optimal performance for the much larger protein rituximab. Finally, an enzymatically-degradable hydrogels of P(MAA-co-NVP) crosslinked with the peptide sequence MMRRRKK were synthesized and tested in simulated gastric and intestinal conditions. These hydrogels offer ideal loading and release behavior, showing no degradative release of encapsulated salmon calcitonin in gastric conditions while yielding rapid and complete release of encapsulated protein within 1h in intestinal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Characterization and enzymatic properties of protein kinase ACR4 from Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Yu; Liu, Xuehe; Xu, Ziyan; Yang, Hui; Li, Jixi

    2017-07-22

    Serine/threonine-protein kinase-like protein ARABIDOPSIS CRINKLY4 (ACR4), a transmembrane protein of Arabidopsis thaliana, plays important roles in cell division and differentiation. Although accumulating studies shed light on the function of ACR4, the structure and catalytic mechanism of ACR4 remain to be elucidated. Here, we report the purification and enzymatic properties of the intracellular kinase domain (residues 464-799) of ACR4 (ACR4 IKD ). Through Ni-affinity chromatography and gel filter chromatography methods, we successfully obtain high-purity ACR4 IKD protein from Escherichia coli. Dynamic light scattering and gel-filtration methods reveal that ACR4 IKD distributes with high homogeneity and exists as a monomer in solution. In addition, the ACR4 IKD protein has typical kinase activity with myelin basic protein (MBP) as the substrate. Our study may lay the foundation for structure determination of ACR4 IKD and further functional research, for example, screening significant substrates of ACR4 in Arabidopsis thaliana. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex.

    Science.gov (United States)

    Tuttle, Lisa M; Pacheco, Derek; Warfield, Linda; Luo, Jie; Ranish, Jeff; Hahn, Steven; Klevit, Rachel E

    2018-03-20

    Transcription activation domains (ADs) are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs) on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Molecular characterization of the pL40 protein in Leptospira interrogans.

    Science.gov (United States)

    Zhao, Wei; Chen, Chun-Yan; Zhang, Xiang-Yan; Lai, Wei-Qiang; Hu, Bao-Yu; Zhao, Guo-Ping; Qin, Jin-Hong; Guo, Xiao-Kui

    2009-06-01

    Leptospirosis is a widespread zoonotic disease caused by pathogenic leptospires. The identification of outer membrane proteins (OMPs) conserved among pathogenic leptospires, which are exposed on the leptospiral surface and expressed during mammalian infection, has become a major focus of leptospirosis research. pL40, a 40 kDa protein coded by the LA3744 gene in Leptospira interrogans, was found to be unique to Leptospira. Triton X-114 fractionation and flow cytometry analyses indicate that pL40 is a component of the leptospiral outer membrane. The conservation of pL40 among Leptospira strains prevalent in China was confirmed by both Western blotting and PCR screening. Furthermore, the pL40 antigen could be recognized by sera from guinea pigs and mice infected with low-passage L. interrogans. These findings indicate that pL40 may serve as a useful serodiagnostic antigen and vaccine candidate for L. interrogans.

  7. The Prenylated Rab GTPase Receptor PRA1.F4 Contributes to Protein Exit from the Golgi Apparatus.

    Science.gov (United States)

    Lee, Myoung Hui; Yoo, Yun-Joo; Kim, Dae Heon; Hanh, Nguyen Hong; Kwon, Yun; Hwang, Inhwan

    2017-07-01

    Prenylated Rab acceptor1 (PRA1) functions in the recruitment of prenylated Rab proteins to their cognate organelles. Arabidopsis ( Arabidopsis thaliana ) contains a large number of proteins belonging to the AtPRA1 family. However, their physiological roles remain largely unknown. Here, we investigated the physiological role of AtPRA1.F4, a member of the AtPRA1 family. A T-DNA insertion knockdown mutant of AtPRA1.F4 , atpra1.f4 , was smaller in stature than parent plants and possessed shorter roots, whereas transgenic plants overexpressing HA:AtPRA1.F4 showed enhanced development of secondary roots and root hairs. However, both overexpression and knockdown plants exhibited increased sensitivity to high-salt stress, lower vacuolar Na + /K + -ATPase and plasma membrane ATPase activities, lower and higher pH in the vacuole and apoplast, respectively, and highly vesiculated Golgi apparatus. HA:AtPRA1.F4 localized to the Golgi apparatus and assembled into high-molecular-weight complexes. atpra1.f4 plants displayed a defect in vacuolar trafficking, which was complemented by low but not high levels of HA : AtPRA1.F4 Overexpression of HA:AtPRA1.F4 also inhibited protein trafficking at the Golgi apparatus, albeit differentially depending on the final destination or type of protein: trafficking of vacuolar proteins, plasma membrane proteins, and trans-Golgi network (TGN)-localized SYP61 was strongly inhibited; trafficking of TGN-localized SYP51 was slightly inhibited; and trafficking of secretory proteins and TGN-localized SYP41 was negligibly or not significantly inhibited. Based on these results, we propose that Golgi-localized AtPRA1.F4 is involved in the exit of many but not all types of post-Golgi proteins from the Golgi apparatus. Additionally, an appropriate level of AtPRA1.F4 is crucial for its function at the Golgi apparatus. © 2017 American Society of Plant Biologists. All Rights Reserved.

  8. APC/C-mediated degradation of dsRNA-binding protein 4 (DRB4 involved in RNA silencing.

    Directory of Open Access Journals (Sweden)

    Katia Marrocco

    Full Text Available Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all Eukaryotes. In particular, the APC/C (Anaphase Promoting Complex or Cyclosome is a master ubiquitin protein ligase (E3 that targets regulatory proteins for degradation allowing sister chromatid separation and exit from mitosis. Interestingly, recent work also indicates that the APC/C remains active in differentiated animal and plant cells. However, its role in post-mitotic cells remains elusive and only a few substrates have been characterized.In order to identify novel APC/C substrates, we performed a yeast two-hybrid screen using as the bait Arabidopsis APC10/DOC1, one core subunit of the APC/C, which is required for substrate recruitment. This screen identified DRB4, a double-stranded RNA binding protein involved in the biogenesis of different classes of small RNA (sRNA. This protein interaction was further confirmed in vitro and in plant cells. Moreover, APC10 interacts with DRB4 through the second dsRNA binding motif (dsRBD2 of DRB4, which is also required for its homodimerization and binding to its Dicer partner DCL4. We further showed that DRB4 protein accumulates when the proteasome is inactivated and, most importantly, we found that DRB4 stability depends on APC/C activity. Hence, depletion of Arabidopsis APC/C activity by RNAi leads to a strong accumulation of endogenous DRB4, far beyond its normal level of accumulation. However, we could not detect any defects in sRNA production in lines where DRB4 was overexpressed.Our work identified a first plant substrate of the APC/C, which is not a regulator of the cell cycle. Though we cannot exclude that APC/C-dependent degradation of DRB4 has some regulatory roles under specific growth conditions, our work rather points to a housekeeping function of APC/C in maintaining precise cellular-protein concentrations and homeostasis of DRB4.

  9. Model of OSBP-Mediated Cholesterol Supply to Aichi Virus RNA Replication Sites Involving Protein-Protein Interactions among Viral Proteins, ACBD3, OSBP, VAP-A/B, and SAC1.

    Science.gov (United States)

    Ishikawa-Sasaki, Kumiko; Nagashima, Shigeo; Taniguchi, Koki; Sasaki, Jun

    2018-04-15

    Positive-strand RNA viruses, including picornaviruses, utilize cellular machinery for genome replication. Previously, we reported that each of the 2B, 2BC, 2C, 3A, and 3AB proteins of Aichi virus (AiV), a picornavirus, forms a complex with the Golgi apparatus protein ACBD3 and phosphatidylinositol 4-kinase IIIβ (PI4KB) at viral RNA replication sites (replication organelles [ROs]), enhancing PI4KB-dependent phosphatidylinositol 4-phosphate (PI4P) production. Here, we demonstrate AiV hijacking of the cellular cholesterol transport system involving oxysterol-binding protein (OSBP), a PI4P-binding cholesterol transfer protein. AiV RNA replication was inhibited by silencing cellular proteins known to be components of this pathway, OSBP, the ER membrane proteins VAPA and VAPB (VAP-A/B), the PI4P-phosphatase SAC1, and PI-transfer protein β. OSBP, VAP-A/B, and SAC1 were present at RNA replication sites. We also found various previously unknown interactions among the AiV proteins (2B, 2BC, 2C, 3A, and 3AB), ACBD3, OSBP, VAP-A/B, and SAC1, and the interactions were suggested to be involved in recruiting the component proteins to AiV ROs. Importantly, the OSBP-2B interaction enabled PI4P-independent recruitment of OSBP to AiV ROs, indicating preferential recruitment of OSBP among PI4P-binding proteins. Protein-protein interaction-based OSBP recruitment has not been reported for other picornaviruses. Cholesterol was accumulated at AiV ROs, and inhibition of OSBP-mediated cholesterol transfer impaired cholesterol accumulation and AiV RNA replication. Electron microscopy showed that AiV-induced vesicle-like structures were close to ER membranes. Altogether, we conclude that AiV directly recruits the cholesterol transport machinery through protein-protein interactions, resulting in formation of membrane contact sites between the ER and AiV ROs and cholesterol supply to the ROs. IMPORTANCE Positive-strand RNA viruses utilize host pathways to modulate the lipid composition of

  10. Immunoexpression of P16INK4a, Rb and TP53 proteins in bronchiolar columnar cell dysplasia (BCCD in lungs resected due to primary non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Lech Chyczewski

    2008-02-01

    Full Text Available Lung cancer is the leading cause of death worldwide. High mortality comes out mainly of the fact that majority of the cases are diagnosed in advanced stadium. An expanded diagnostics of precancerous conditions would certainly contribute to lowering the mortality rate. Many of the molecular changes accompanying the multistep cancer development could be observed using the immunohistochemistry method. In this paper we describe the morphology and cell cycle proteins immunoexpression of the novel probable preinvasive lesion - bronchiolar columnar cell dysplasia (BCCD. Thirty cases of BCCD selected out of 193 patients population, treated for primary non-small cell lung cancer were investigated. Loss of P16INK4a protein was observed in 70% of all cases and was statistically significant in patients with adenocarcinoma. Two cases show abnormal cytoplasmic localization of this protein. TP53 protein accumulates in 26.7% of all BCCD. Rb protein was active in 48.3% of the BCCD cases. In two cases we observed differentiation of the cells composing BCCD into multilayer epithelium of the squamous type, which occurs with formation of desmosomes. We suppose that BCCD may be preneoplastic lesion leading to adenocarcinoma as well as to peripheral squamous cell lung cancer.

  11. Bifunctional Derivative of p,p'-Dichlorochalcone. Part II. Synthesis of a Novel Compound 2-[2-Carboxymethylthio-2-(4-chlorophenylethyl]-2-(4-chlorophenyl-4-thiazolidinone

    Directory of Open Access Journals (Sweden)

    Roger Dommisse

    1999-07-01

    Full Text Available The synthesis of 2-[2-carboxymethylthio-2-(4-chlorophenyl ethyl]-2-(4-chlorophenyl - 4-thiazolidinone (1 from p, p'- dichlorochalcone using thioglycollic acid in the presence of ammonium carbonate is described. Structural assignment and stereochemistry are discussed.

  12. Footprinting analysis of interactions between the largest eukaryotic RNase P/MRP protein Pop1 and RNase P/MRP RNA components.

    Science.gov (United States)

    Fagerlund, Robert D; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S

    2015-09-01

    Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA-RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P. © 2015 Fagerlund et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Skeletal muscle protein synthesis and the abundance of the mRNA translation initiation repressor PDCD4 are inversely regulated by fasting and refeeding in rats.

    Science.gov (United States)

    Zargar, Sana; Moreira, Tracy S; Samimi-Seisan, Helena; Jeganathan, Senthure; Kakade, Dhanshri; Islam, Nushaba; Campbell, Jonathan; Adegoke, Olasunkanmi A J

    2011-06-01

    Optimal skeletal muscle mass is vital to human health, because defects in muscle protein metabolism underlie or exacerbate human diseases. The mammalian target of rapamycin complex 1 is critical in the regulation of mRNA translation and protein synthesis. These functions are mediated in part by the ribosomal protein S6 kinase 1 (S6K1) through mechanisms that are poorly understood. The tumor suppressor programmed cell death 4 (PDCD4) has been identified as a novel substrate of S6K1. Here, we examined 1) the expression of PDCD4 in skeletal muscle and 2) its regulation by feed deprivation (FD) and refeeding. Male rats (~100 g; n = 6) were subjected to FD for 48 h; some rats were refed for 2 h. FD suppressed muscle fractional rates of protein synthesis and Ser(67) phosphorylation of PDCD4 (-50%) but increased PDCD4 abundance (P muscle fractional rates of protein synthesis and reduced PDCD4 abundance relative to FD. Finally, when myoblasts were grown in amino acid- and serum-free medium, phenylalanine incorporation into proteins in cells depleted of PDCD4 more than doubled the values in cells with a normal level of PDCD4 (P skeletal muscle in parallel with the reduction of the abundance of this mRNA translation inhibitor.

  14. Structure of the P{sub II} signal transduction protein of Neisseria meningitidis at 1.85 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Charles E. [Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Sainsbury, Sarah; Berrow, Nick S.; Alderton, David [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Saunders, Nigel J. [The Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Stammers, David K. [Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Owens, Raymond J., E-mail: ray@strubi.ox.ac.uk [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2006-06-01

    The structure of the P{sub II} signal transduction protein of N. meningitidis at 1.85 Å resolution is described. The P{sub II} signal transduction proteins GlnB and GlnK are implicated in the regulation of nitrogen assimilation in Escherichia coli and other enteric bacteria. P{sub II}-like proteins are widely distributed in bacteria, archaea and plants. In contrast to other bacteria, Neisseria are limited to a single P{sub II} protein (NMB 1995), which shows a high level of sequence identity to GlnB and GlnK from Escherichia coli (73 and 62%, respectively). The structure of the P{sub II} protein from N. meningitidis (serotype B) has been solved by molecular replacement to a resolution of 1.85 Å. Comparison of the structure with those of other P{sub II} proteins shows that the overall fold is tightly conserved across the whole population of related proteins, in particular the positions of the residues implicated in ATP binding. It is proposed that the Neisseria P{sub II} protein shares functions with GlnB/GlnK of enteric bacteria.

  15. A high-yield co-expression system for the purification of an intact drs2p-cdc50p lipid flippase complex, critically dependent on and stabilized by phosphatidylinositol-4-phosphate

    DEFF Research Database (Denmark)

    Azouaoui, Hassina; Montigny, Cédric; Ash, Miriam-Rose

    2014-01-01

    , the Drs2p-Cdc50p complex. After recovery of yeast membranes expressing both proteins, efficient purification was achieved in a single step by affinity chromatography on streptavidin beads, yielding ∼1-2 mg purified Drs2p-Cdc50p complex per liter of culture. Importantly, the procedure enabled us to recover...... was critically dependent on the simultaneous presence of PI4P and PS. We also identified a prominent role for PI4P in stabilization of the Drs2p-Cdc50p complex towards temperature- or C12E8-induced irreversible inactivation. These results indicate that the Drs2p-Cdc50p complex remains functional after affinity...... purification and that PI4P as a cofactor tightly controls its stability and catalytic activity. This work offers appealing perspectives for detailed structural and functional characterization of the Drs2p-Cdc50p lipid transport mechanism....

  16. Phage Lambda P Protein: Trans-Activation, Inhibition Phenotypes and their Suppression

    Science.gov (United States)

    Hayes, Sidney; Erker, Craig; Horbay, Monique A.; Marciniuk, Kristen; Wang, Wen; Hayes, Connie

    2013-01-01

    The initiation of bacteriophage λ replication depends upon interactions between the oriλ DNA site, phage proteins O and P, and E. coli host replication proteins. P exhibits a high affinity for DnaB, the major replicative helicase for unwinding double stranded DNA. The concept of P-lethality relates to the hypothesis that P can sequester DnaB and in turn prevent cellular replication initiation from oriC. Alternatively, it was suggested that P-lethality does not involve an interaction between P and DnaB, but is targeted to DnaA. P-lethality is assessed by examining host cells for transformation by ColE1-type plasmids that can express P, and the absence of transformants is attributed to a lethal effect of P expression. The plasmid we employed enabled conditional expression of P, where under permissive conditions, cells were efficiently transformed. We observed that ColE1 replication and plasmid establishment upon transformation is extremely sensitive to P, and distinguish this effect from P-lethality directed to cells. We show that alleles of dnaB protect the variant cells from P expression. P-dependent cellular filamentation arose in ΔrecA or lexA[Ind-] cells, defective for SOS induction. Replication propagation and restart could represent additional targets for P interference of E. coli replication, beyond the oriC-dependent initiation step. PMID:23389467

  17. Polycomb Group Protein PHF1 Regulates p53-dependent Cell Growth Arrest and Apoptosis*

    Science.gov (United States)

    Yang, Yang; Wang, Chenji; Zhang, Pingzhao; Gao, Kun; Wang, Dejie; Yu, Hongxiu; Zhang, Ting; Jiang, Sirui; Hexige, Saiyin; Hong, Zehui; Yasui, Akira; Liu, Jun O.; Huang, Haojie; Yu, Long

    2013-01-01

    Polycomb group protein PHF1 is well known as a component of a novel EED-EZH2·Polycomb repressive complex 2 complex and plays important roles in H3K27 methylation and Hox gene silencing. PHF1 is also involved in the response to DNA double-strand breaks in human cells, promotes nonhomologous end-joining processes through interaction with Ku70/Ku80. Here, we identified another function of PHF1 as a potential p53 pathway activator in a pathway screen using luminescence reporter assay. Subsequent studies showed PHF1 directly interacts with p53 proteins both in vivo and in vitro and co-localized in nucleus. PHF1 binds to the C-terminal regulatory domain of p53. Overexpression of PHF1 elevated p53 protein level and prolonged its turnover. Knockdown of PHF1 reduced p53 protein level and its target gene expression both in normal state and DNA damage response. Mechanically, PHF1 protects p53 proteins from MDM2-mediated ubiquitination and degradation. Furthermore, we showed that PHF1 regulates cell growth arrest and etoposide-induced apoptosis in a p53-dependent manner. Finally, PHF1 expression was significantly down-regulated in human breast cancer samples. Taken together, we establish PHF1 as a novel positive regulator of the p53 pathway. These data shed light on the potential roles of PHF1 in tumorigenesis and/or tumor progression. PMID:23150668

  18. Deficient tyrosine phosphorylation of c-Cbl and associated proteins in phorbol ester-resistant EL4 mouse thymoma cells.

    Science.gov (United States)

    Luo, X; Sando, J J

    1997-05-02

    Two tyrosine phosphoproteins in phorbol ester-sensitive EL4 (S-EL4) mouse thymoma cells have been identified as the p120 c-Cbl protooncogene product and the p85 subunit of phosphatidylinositol 3-kinase. Tyrosine phosphorylation of p120 and p85 increased rapidly after phorbol ester stimulation. Phorbol ester-resistant EL4 (R-EL4) cells expressed comparable amounts of c-Cbl and phosphatidylinositol 3-kinase protein but greatly diminished tyrosine phosphorylation. Co-immunoprecipitation experiments revealed complexes of c-Cbl with p85, and of p85 with the tyrosine kinase Lck in phorbol ester-stimulated S-EL4 but not in unstimulated S-EL4 or in R-EL4 cells. In vitro binding of c-Cbl with Lck SH2 or SH3 domains was detected in both S-EL4 and R-EL4 cells, suggesting that c-Cbl, p85, and Lck may form a ternary complex. In vitro kinase assays revealed phosphorylation of p85 by Lck only in phorbol ester-stimulated S-EL4 cells. Collectively, these results suggest that Cbl-p85 and Lck-p85 complexes may form in unstimulated S-EL4 and R-EL4 cells but were not detected due to absence of tyrosine phosphorylation of p85. Greatly decreased tyrosine phosphorylation of c-Cbl and p85 in the complexes may contribute to the failure of R-EL4 cells to respond to phorbol ester.

  19. p300-mediated acetylation of the Rothmund-Thomson-syndrome gene product RECQL4 regulates its subcellular localization

    Czech Academy of Sciences Publication Activity Database

    Dietschy, T.; Shevelev, Igor; Pena-Diaz, J.; Hühn, D.; Kuenzle, S.; Mak, R.; Miah, M.F.; Hess, D.; Fey, M.; Hottiger, M.O.; Janščák, Pavel; Stagljar, I.

    2009-01-01

    Roč. 122, Pt 8 (2009), s. 1258-1267 ISSN 0021-9533 Institutional research plan: CEZ:AV0Z50520514 Keywords : RECQL4 * RecQ helicases * Genome stability * p300 * Protein acetylation Subject RIV: EB - Genetic s ; Molecular Biology Impact factor: 6.144, year: 2009

  20. Stimulation of Eryptosis by Combretastatin A4 Phosphate Disodium (CA4P

    Directory of Open Access Journals (Sweden)

    Elena Signoretto

    2016-03-01

    Full Text Available Background/Aims: Combretastatin A4 phosphate disodium (CA4P is utilized for the treatment of malignancy. The substance has previously been shown to trigger suicidal cell death or apoptosis. Similar to apoptosis of nucleated cells, erythrocytes may enter suicidal death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i, ceramide, oxidative stress and ATP depletion. The present study explored, whether CA4P induces eryptosis and, if so, to gain insight into mechanisms involved. Methods: Flow cytometry has been employed to estimate phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS abundance from DCF fluorescence, glutathione (GSH abundance from CMF fluorescence and ceramide abundance from fluorescent antibodies. In addition cytosolic ATP levels were quantified utilizing a luciferin-luciferase-based assay and hemolysis was estimated from hemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to CA4P (≥ 50 µM significantly increased the percentage of annexin-V-binding cells and significantly decreased forward scatter. CA4P did not appreciably increase hemolysis. Hundred µM CA4P significantly increased Fluo3-fluorescence. The effect of CA4P (100 µM on annexin-V-binding was significantly blunted, but not abolished, by removal of extracellular Ca2+. CA4P (≥ 50 µM significantly decreased GSH abundance and ATP levels but did not significantly increase ROS or ceramide. Conclusions: CA4P triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to entry of extracellular Ca2+ and energy depletion.

  1. Study of p53 protein expression levels from irradiated peripheral blood lymphocytes for biodosimetry

    International Nuclear Information System (INIS)

    Cavalcanti, M.B.; Fernandes, T.S.; Melo, J.A.; Neves, M.A.B.; Machado, C.G.F

    2005-01-01

    Biodosimetry can be defined as the investigation of radioinduced biological effects in order to correlate them with the absorbed dose. Scoring of unstable chromosomal aberrations and micronuclei, from in vitro irradiated peripheral blood lymphocytes, is commonly used for biodosimetry based on cytogenetic analysis. However, this method of analysis is time-consuming, which may represent a pitfall when fast investigation of a possible exposure to ionizing radiation (IR) is needed. The interaction of IR with the living cell can cause injuries in the DNA molecules. However, normal cells possess mechanisms of repair that are capable to correct those damages. During the repair process of the DNA various proteins are expressed. Among these proteins, p53 plays an important role. This protein is a transcription factor that helps in the maintenance of the genomic integrity. p53 protein is found into the cytoplasm in reduced concentrations and has a short average life. However, expression of p53 protein can be induced by DNA harmful radioinduced, which increases the concentration and the average life of this protein, making possible its detection. Thus, the correlation between the increasing of p53 expression and the irradiation may constitute a fast and reliable method of individual monitoring in cases of accidental or suspected exposures to IR. In this context, the objective of this research was to evaluate the p53 protein expression levels from lymphocytes of the human peripheral blood after in vitro irradiation. For this, samples of peripheral blood from healthy individuals were irradiated with known doses. Lymphocytes were separated on ficoll gradient by centrifugation and re-suspended at 1x 10 6 /mL in RPMI medium enriched with fetal calf serum. Hence, lymphocytes were incubated in 5% CO 2 at 37 deg C prior to the methodology of flow cytometry, using intranuclear antigens for the quantification of p53. In this report, the methodology performed and the results obtained

  2. Study of p53 protein expression levels from irradiated peripheral blood lymphocytes for biodosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, M.B.; Fernandes, T.S. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Amaral, A. [Universite Paris XII (UPXII) (France); Melo, J.A. [Centro de Radioterapia de Pernambuco (CERAPE), PE (Brazil); Neves, M.A.B.; Machado, C.G.F, E-mail: maribrayner@yahoo.com.br [Fundacao de Hematologia e Hemoterapia de Pernambuco, PE (Brazil)

    2005-07-01

    Biodosimetry can be defined as the investigation of radioinduced biological effects in order to correlate them with the absorbed dose. Scoring of unstable chromosomal aberrations and micronuclei, from in vitro irradiated peripheral blood lymphocytes, is commonly used for biodosimetry based on cytogenetic analysis. However, this method of analysis is time-consuming, which may represent a pitfall when fast investigation of a possible exposure to ionizing radiation (IR) is needed. The interaction of IR with the living cell can cause injuries in the DNA molecules. However, normal cells possess mechanisms of repair that are capable to correct those damages. During the repair process of the DNA various proteins are expressed. Among these proteins, p53 plays an important role. This protein is a transcription factor that helps in the maintenance of the genomic integrity. p53 protein is found into the cytoplasm in reduced concentrations and has a short average life. However, expression of p53 protein can be induced by DNA harmful radioinduced, which increases the concentration and the average life of this protein, making possible its detection. Thus, the correlation between the increasing of p53 expression and the irradiation may constitute a fast and reliable method of individual monitoring in cases of accidental or suspected exposures to IR. In this context, the objective of this research was to evaluate the p53 protein expression levels from lymphocytes of the human peripheral blood after in vitro irradiation. For this, samples of peripheral blood from healthy individuals were irradiated with known doses. Lymphocytes were separated on ficoll gradient by centrifugation and re-suspended at 1x 10{sub 6}/mL in RPMI medium enriched with fetal calf serum. Hence, lymphocytes were incubated in 5% CO{sub 2} at 37 deg C prior to the methodology of flow cytometry, using intranuclear antigens for the quantification of p53. In this report, the methodology performed and the results

  3. HitPredict version 4: comprehensive reliability scoring of physical protein?protein interactions from more than 100 species

    OpenAIRE

    L?pez, Yosvany; Nakai, Kenta; Patil, Ashwini

    2015-01-01

    HitPredict is a consolidated resource of experimentally identified, physical protein?protein interactions with confidence scores to indicate their reliability. The study of genes and their inter-relationships using methods such as network and pathway analysis requires high quality protein?protein interaction information. Extracting reliable interactions from most of the existing databases is challenging because they either contain only a subset of the available interactions, or a mixture of p...

  4. Interaction of Ne(2p54p), Ar(3p54p) and Kr(4p55p) excited atoms with He and Ne atoms. Processes of collisional depolarization

    International Nuclear Information System (INIS)

    Zagrebin, A.L.; Lednev, M.G.

    1990-01-01

    Quasimolecular terms Ne(2p 5 4p)+He, Ar(3p 5 4p)+He,Ne and Kr(4p 5 5p)+He,Ne are calculated within the framework of one-configuration method of effective Hamiltonian. The results of calculations agree with the experimental data

  5. Karakteristik Protein dan Nitrogen Non Protein Daging Ikan Cucut Lanyam (Charcharhinus limbatus (Characteristics of Protein and Non Protein Nitrogen in Lanyam Shark Muscle

    Directory of Open Access Journals (Sweden)

    Yuspihana Fitrial

    2017-02-01

    Based on protein solubility of Lanyam muscle at pH 1.5 to 12 obtained two points which is minimum solubility at pH 4.5 and pH 9. Based on the classification Osborn, Lanyam muscle contained albumin (28.64%, globulin (13:44%, prolamin (03.29%, glutelin (33.70%. Observation of non-protein nitrogen levels indicated that the washing process was very effective to reduce non-protein nitrogen levels up to 62.34% and urea levels up to 58% . Differential Scanning Calorimetry Study of Lanyam mince showed two types of protein that has a different stability to heat and after added 2.5% NaCl formed a peak which is a fusion of both these proteins

  6. C-terminus of the P4-ATPase ATP8A2 functions in protein folding and regulation of phospholipid flippase activity.

    Science.gov (United States)

    Chalat, Madhavan; Moleschi, Kody; Molday, Robert S

    2017-02-01

    ATP8A2 is a P4-ATPase that flips phosphatidylserine and phosphatidylethanolamine across cell membranes. This generates membrane phospholipid asymmetry, a property important in many cellular processes, including vesicle trafficking. ATP8A2 deficiency causes severe neurodegenerative diseases. We investigated the role of the C-terminus of ATP8A2 in its expression, subcellular localization, interaction with its subunit CDC50A, and function as a phosphatidylserine flippase. C-terminal deletion mutants exhibited a reduced tendency to solubilize in mild detergent and exit the endoplasmic reticulum. The solubilized protein, however, assembled with CDC50A and displayed phosphatidylserine flippase activity. Deletion of the C-terminal 33 residues resulted in reduced phosphatidylserine-dependent ATPase activity, phosphatidylserine flippase activity, and neurite extension in PC12 cells. These reduced activities were reversed with 60- and 80-residue C-terminal deletions. Unlike the yeast P4-ATPase Drs2, ATP8A2 is not regulated by phosphoinositides but undergoes phosphorylation on the serine residue within a CaMKII target motif. We propose a model in which the C-terminus of ATP8A2 consists of an autoinhibitor domain upstream of the C-terminal 33 residues and an anti-autoinhibitor domain at the extreme C-terminus. The latter blocks the inhibitory activity of the autoinhibitor domain. We conclude that the C-terminus plays an important role in the efficient folding and regulation of ATP8A2. © 2017 Chalat et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. p53 protein expression in corneal squamous cell carcinomas of dogs

    Directory of Open Access Journals (Sweden)

    Lucas Bahdour Cossi

    2015-06-01

    Full Text Available Ocular tumors play an increasing concern in veterinary ophthalmology. Corneal squamous cell carcinoma is unfrequent in dogs, and by this way it has little studies. Studies that investigated the carcinogenesis mechanisms wich could help to the development of ocular squamous cell carcinoma (SCC in dog are rare. The aim of this work was to identify by immunohistochemical techniques, the p53 protein expression in the spontaneous dog corneal SCC. For this work, were used five cases of corneal SCC and one case of actinic keratitis. The sections were obtained from paraffin-wax blocks and submitted to histopathological and immunohistochemical analysis. All the six samples showed immunolabeling to cytokeratin and p53 protein. These results support the conclusions that the immunoreactivity of p53 protein by immunohistochemistry is present in canine corneal SCC suppporting its role in carcinogenesis of this tumor, but not provides prognostic indicators in cases of SCC corneal in dog; and can be a association of exposure to solar radiation with the possible mutation of the TP53 gene.

  8. The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan.

    Science.gov (United States)

    Mittal, Nitish; Guimaraes, Joao C; Gross, Thomas; Schmidt, Alexander; Vina-Vilaseca, Arnau; Nedialkova, Danny D; Aeschimann, Florian; Leidel, Sebastian A; Spang, Anne; Zavolan, Mihaela

    2017-09-06

    In Saccharomyces cerevisiae, deletion of large ribosomal subunit protein-encoding genes increases the replicative lifespan in a Gcn4-dependent manner. However, how Gcn4, a key transcriptional activator of amino acid biosynthesis genes, increases lifespan, is unknown. Here we show that Gcn4 acts as a repressor of protein synthesis. By analyzing the messenger RNA and protein abundance, ribosome occupancy and protein synthesis rate in various yeast strains, we demonstrate that Gcn4 is sufficient to reduce protein synthesis and increase yeast lifespan. Chromatin immunoprecipitation reveals Gcn4 binding not only at genes that are activated, but also at genes, some encoding ribosomal proteins, that are repressed upon Gcn4 overexpression. The promoters of repressed genes contain Rap1 binding motifs. Our data suggest that Gcn4 is a central regulator of protein synthesis under multiple perturbations, including ribosomal protein gene deletions, calorie restriction, and rapamycin treatment, and provide an explanation for its role in longevity and stress response.The transcription factor Gcn4 is known to regulate yeast amino acid synthesis. Here, the authors show that Gcn4 also acts as a repressor of protein biosynthesis in a range of conditions that enhance yeast lifespan, such as ribosomal protein knockout, calorie restriction or mTOR inhibition.

  9. Effects of prostratin on Cyclin T1/P-TEFb function and the gene expression profile in primary resting CD4+ T cells

    Directory of Open Access Journals (Sweden)

    Rice Andrew P

    2006-10-01

    Full Text Available Abstract Background The latent reservoir of human immunodeficiency virus type 1 (HIV-1 in resting CD4+ T cells is a major obstacle to the clearance of infection by highly active antiretroviral therapy (HAART. Recent studies have focused on searches for adjuvant therapies to activate this reservoir under conditions of HAART. Prostratin, a non tumor-promoting phorbol ester, is a candidate for such a strategy. Prostratin has been shown to reactivate latent HIV-1 and Tat-mediated transactivation may play an important role in this process. We examined resting CD4+ T cells from healthy donors to determine if prostratin induces Cyclin T1/P-TEFb, a cellular kinase composed of Cyclin T1 and Cyclin-dependent kinase-9 (CDK9 that mediates Tat function. We also examined effects of prostratin on Cyclin T2a, an alternative regulatory subunit for CDK9, and 7SK snRNA and the HEXIM1 protein, two factors that associate with P-TEFb and repress its kinase activity. Results Prostratin up-regulated Cyclin T1 protein expression, modestly induced CDK9 protein expression, and did not affect Cyclin T2a protein expression. Although the kinase activity of CDK9 in vitro was up-regulated by prostratin, we observed a large increase in the association of 7SK snRNA and the HEXIM1 protein with CDK9. Using HIV-1 reporter viruses with and without a functional Tat protein, we found that prostratin stimulation of HIV-1 gene expression appears to require a functional Tat protein. Microarray analyses were performed and several genes related to HIV biology, including APOBEC3B, DEFA1, and S100 calcium-binding protein genes, were found to be regulated by prostratin. Conclusion Prostratin induces Cyclin T1 expression and P-TEFb function and this is likely to be involved in prostratin reactivation of latent HIV-1 proviruses. The large increase in association of 7SK and HEXIM1 with P-TEFb following prostratin treatment may reflect a requirement in CD4+ T cells for a precise balance between

  10. Similarity of salt influences on the pH of buffers, polyelectrolytes, and proteins.

    Science.gov (United States)

    Voinescu, Alina E; Bauduin, Pierre; Pinna, M Cristina; Touraud, Didier; Ninham, Barry W; Kunz, Werner

    2006-05-04

    Changes in pH induced by the addition of electrolytes to buffers, polyelectrolytes (a polycarboxy polymethylene and a polyethyleneimine), and proteins (casein, whey, and lysozyme) solutions are explored systematically. The two buffer systems are triethanolamine/triethanolammonium chloride and citric acid/sodium citrate. These are chosen because of the similarity of their acid-base equilibria with those of amino acids predominant in most proteins, that is, amino acids that include carboxylate or ammonium groups in their structures. The pH of triethanolamine and of citrate buffers respectively increases and decreases when salt is added. At low electrolyte concentrations (buffer solutions. It is even possible to qualitatively predict these changes in protein solutions simply from the primary protein structure. At least in the systems considered here, the specific ion effects on pH seem to correlate with the bulk activity coefficients of the added electrolytes, at least at moderate salt concentrations.

  11. Mitochondrial localization of the low level p53 protein in proliferative cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferecatu, Ioana; Bergeaud, Marie; Rodriguez-Enfedaque, Aida; Le Floch, Nathalie [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Oliver, Lisa [INSERM U601, Universite de Nantes, Faculte de Medecine, Nantes Cedex (France); Rincheval, Vincent; Renaud, Flore [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Vallette, Francois M. [INSERM U601, Universite de Nantes, Faculte de Medecine, Nantes Cedex (France); Mignotte, Bernard [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Vayssiere, Jean-Luc, E-mail: jean-luc.vayssiere@uvsq.fr [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France)

    2009-10-02

    p53 protein plays a central role in suppressing tumorigenesis by inducing cell cycle arrest or apoptosis through transcription-dependent and -independent mechanisms. Emerging publications suggest that following stress, a fraction of p53 translocates to mitochondria to induce cytochrome c release and apoptosis. However, the localization of p53 under unstressed conditions remains largely unexplored. Here we show that p53 is localized at mitochondria in absence of apoptotic stimuli, when cells are proliferating, localization observed in various cell types (rodent and human). This is also supported by acellular assays in which p53 bind strongly to mitochondria isolated from rat liver. Furthermore, the mitochondria subfractionation study and the alkaline treatment of the mitochondrial p53 revealed that the majority of mitochondrial p53 is present in the membranous compartments. Finally, we identified VDAC, a protein of the mitochondrial outer-membrane, as a putative partner of p53 in unstressed/proliferative cells.

  12. Mitochondrial localization of the low level p53 protein in proliferative cells

    International Nuclear Information System (INIS)

    Ferecatu, Ioana; Bergeaud, Marie; Rodriguez-Enfedaque, Aida; Le Floch, Nathalie; Oliver, Lisa; Rincheval, Vincent; Renaud, Flore; Vallette, Francois M.; Mignotte, Bernard; Vayssiere, Jean-Luc

    2009-01-01

    p53 protein plays a central role in suppressing tumorigenesis by inducing cell cycle arrest or apoptosis through transcription-dependent and -independent mechanisms. Emerging publications suggest that following stress, a fraction of p53 translocates to mitochondria to induce cytochrome c release and apoptosis. However, the localization of p53 under unstressed conditions remains largely unexplored. Here we show that p53 is localized at mitochondria in absence of apoptotic stimuli, when cells are proliferating, localization observed in various cell types (rodent and human). This is also supported by acellular assays in which p53 bind strongly to mitochondria isolated from rat liver. Furthermore, the mitochondria subfractionation study and the alkaline treatment of the mitochondrial p53 revealed that the majority of mitochondrial p53 is present in the membranous compartments. Finally, we identified VDAC, a protein of the mitochondrial outer-membrane, as a putative partner of p53 in unstressed/proliferative cells.

  13. The neuronal PAS domain protein 4 (Npas4 is required for new and reactivated fear memories.

    Directory of Open Access Journals (Sweden)

    Jonathan E Ploski

    Full Text Available The Neuronal PAS domain protein 4 (Npas4 is a neuronal activity-dependent immediate early gene that has recently been identified as a transcription factor which regulates the transcription of genes that control inhibitory synapse development and synaptic plasticity. The role Npas4 in learning and memory, however, is currently unknown. Here, we systematically examine the role of Npas4 in auditory Pavlovian fear conditioning, an amygdala-dependent form of emotional learning. In our first series of experiments, we show that Npas4 mRNA and protein are regulated in the rat lateral nucleus of the amygdala (LA in a learning-dependent manner. Further, knockdown of Npas4 protein in the LA via adeno-associated viral (AAV mediated gene delivery of RNAi was observed to impair fear memory formation, while innate fear and the expression of fear memory were not affected. In our second series of experiments, we show that Npas4 protein is regulated in the LA by retrieval of an auditory fear memory and that knockdown of Npas4 in the LA impairs retention of a reactivated, but not a non-reactivated, fear memory. Collectively, our findings provide the first comprehensive look at the functional role of Npas4 in learning and memory.

  14. Developmental regulation of silk protein P25 in the silkworm ...

    Indian Academy of Sciences (India)

    tribpo

    anti-P25 sera were raised in rabbit and mice. The relative ... of B. mori. Couble et al (1983) identified a new mRNA species in the posterior ... quantitative changes in P25 protein level during development in B. mori. 2 . ..... physiology biochemistry and pharmacology (eds) G A Kerkut and L I Gilbert (New York: Pergamon.

  15. Human rotavirus strains bearing VP4 gene P[6] allele recovered from asymptomatic or symptomatic infections share similar, if not identical, VP4 neutralization specificities

    International Nuclear Information System (INIS)

    Hoshino, Yasutaka; Jones, Ronald W.; Ross, Jerri; Santos, Norma; Kapikian, Albert Z.

    2003-01-01

    A rotavirus VP4 gene P[6] allele has been documented in a number of countries to be characteristically associated with an endemic predominantly asymptomatic infection in neonates in maternity hospital nurseries. The mechanisms underlying the endemicity and asymptomatic nature of such neonatal infections remain unknown. Rotavirus strains sharing this same P genotype, however, have more recently been recovered from an increasing number of symptomatic diarrheal episodes in infants and young children in various parts of the world. Previously, we have shown that an asymptomatic P[6] rotavirus neonatal infection is not associated with a unique VP7 (G) serotype but may occur in conjunction with various G types. Although amino acid sequence comparisons of the VP4 gene between selected 'asymptomatic' and 'symptomatic' P[6] rotavirus strains have been reported and yielded information concerning their VP4 genotypes, serotypic comparisons of the outer capsid spike protein VP4 of such viruses have not been studied systematically by two-way cross-neutralizations. We determined the VP4 neutralization specificities of four asymptomatic and four symptomatic P[6] strains: two each of asymptomatic and symptomatic strains by two-way tests, and two each of additional asymptomatic and symptomatic strains by one-way tests. Both asymptomatic and symptomatic P[6] strains were shown to bear similar, if not identical, VP4 neutralization specificities. Thus, P[6] rotavirus strains causing asymptomatic or symptomatic infections did not appear to belong to unique P (VP4) serotypes. In addition, a close VP4 serotypic relationship between human P[6] rotavirus strains and the porcine P[6] rotavirus Gottfried strain was confirmed

  16. Synthesis of an allergy inducing tetrasaccharide "4P-X".

    Science.gov (United States)

    Moriya, Takashi; Nagahata, Naoki; Odaka, Rei; Nakamura, Hirohide; Yoshikawa, Jun; Kurashima, Katsumi; Saito, Tadao

    2017-02-01

    4P-X (β-D-galactopyranosyl-(1 → 4)-β-D-galactopyranosyl-(1 → 6)-[β-D-galactopyranosyl-(1 → 4)]-β-D-glucopyranose) is included in galacto-oligosaccharides (GOSs) produced by β-galactosidase derived from Bacillus circulans. 4P-X has been known to induce particularly strong allergies. High purity 4P-X is essential for use as a standard to quantify the amount of 4P-X in GOSs; however, the isolation of high purity 4P-X has never been reported. In this study, we achieved the synthesis of 4P-X by a combination of organic and enzymatic chemical syntheses in a short time. This is the first report of isolated, high purity 4P-X. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. p66Shc Aging Protein in Control of Fibroblasts Cell Fate

    Directory of Open Access Journals (Sweden)

    Mariusz R. Wieckowski

    2011-08-01

    Full Text Available Reactive oxygen species (ROS are wieldy accepted as one of the main factors of the aging process. These highly reactive compounds modify nucleic acids, proteins and lipids and affect the functionality of mitochondria in the first case and ultimately of the cell. Any agent or genetic modification that affects ROS production and detoxification can be expected to influence longevity. On the other hand, genetic manipulations leading to increased longevity can be expected to involve cellular changes that affect ROS metabolism. The 66-kDa isoform of the growth factor adaptor Shc (p66Shc has been recognized as a relevant factor to the oxygen radical theory of aging. The most recent data indicate that p66Shc protein regulates life span in mammals and its phosphorylation on serine 36 is important for the initiation of cell death upon oxidative stress. Moreover, there is strong evidence that apart from aging, p66Shc may be implicated in many oxidative stress-associated pathologies, such as diabetes, mitochondrial and neurodegenerative disorders and tumorigenesis. This article summarizes recent knowledge about the role of p66Shc in aging and senescence and how this protein can influence ROS production and detoxification, focusing on studies performed on skin and skin fibroblasts.

  18. Ankyrin repeat and SOCS box containing protein 4 (Asb-4 colocalizes with insulin receptor substrate 4 (IRS4 in the hypothalamic neurons and mediates IRS4 degradation

    Directory of Open Access Journals (Sweden)

    Xia Zefeng

    2011-09-01

    Full Text Available Abstract Background The arcuate nucleus of the hypothalamus regulates food intake. Ankyrin repeat and SOCS box containing protein 4 (Asb-4 is expressed in neuropeptide Y and proopiomelanocortin (POMC neurons in the arcuate nucleus, target neurons in the regulation of food intake and metabolism by insulin and leptin. However, the target protein(s of Asb-4 in these neurons remains unknown. Insulin receptor substrate 4 (IRS4 is an adaptor molecule involved in the signal transduction by both insulin and leptin. In the present study we examined the colocalization and interaction of Asb-4 with IRS4 and the involvement of Asb-4 in insulin signaling. Results In situ hybridization showed that the expression pattern of Asb-4 was consistent with that of IRS4 in the rat brain. Double in situ hybridization showed that IRS4 colocalized with Asb-4, and both Asb-4 and IRS4 mRNA were expressed in proopiomelanocortin (POMC and neuropeptide Y (NPY neurons within the arcuate nucleus of the hypothalamus. In HEK293 cells co-transfected with Myc-tagged Asb-4 and Flag-tagged IRS4, Asb-4 co-immunoprecipitated with IRS4; In these cells endogenous IRS4 also co-immunoprecipitated with transfected Myc-Asb-4; Furthermore, Asb-4 co-immunoprecipitated with IRS4 in rat hypothalamic extracts. In HEK293 cells over expression of Asb-4 decreased IRS4 protein levels and deletion of the SOCS box abolished this effect. Asb-4 increased the ubiquitination of IRS4; Deletion of SOCS box abolished this effect. Expression of Asb-4 decreased both basal and insulin-stimulated phosphorylation of AKT at Thr308. Conclusions These data demonstrated that Asb-4 co-localizes and interacts with IRS4 in hypothalamic neurons. The interaction of Asb-4 with IRS4 in cell lines mediates the degradation of IRS4 and decreases insulin signaling.

  19. A high-yield co-expression system for the purification of an intact drs2p-cdc50p lipid flippase complex, critically dependent on and stabilized by phosphatidylinositol-4-phosphate

    DEFF Research Database (Denmark)

    Azouaoui, Hassina; Montigny, Cédric; Ash, Miriam-Rose

    2014-01-01

    P-type ATPases from the P4 subfamily (P4-ATPases) are energy-dependent transporters, which are thought to establish lipid asymmetry in eukaryotic cell membranes. Together with their Cdc50 accessory subunits, P4-ATPases couple ATP hydrolysis to lipid transport from the exoplasmic to the cytoplasmic...... leaflet of plasma membranes, late Golgi membranes, and endosomes. To gain insights into the structure and function of these important membrane pumps, robust protocols for expression and purification are required. In this report, we present a procedure for high-yield co-expression of a yeast flippase......, the Drs2p-Cdc50p complex. After recovery of yeast membranes expressing both proteins, efficient purification was achieved in a single step by affinity chromatography on streptavidin beads, yielding ∼1-2 mg purified Drs2p-Cdc50p complex per liter of culture. Importantly, the procedure enabled us to recover...

  20. Experimental and first-principles calculation study of the pressure-induced transitions to a metastable phase in GaP O4 and in the solid solution AlP O4-GaP O4

    Science.gov (United States)

    Angot, E.; Huang, B.; Levelut, C.; Le Parc, R.; Hermet, P.; Pereira, A. S.; Aquilanti, G.; Frapper, G.; Cambon, O.; Haines, J.

    2017-08-01

    α -Quartz-type gallium phosphate and representative compositions in the AlP O4-GaP O4 solid solution were studied by x-ray powder diffraction and absorption spectroscopy, Raman scattering, and by first-principles calculations up to pressures of close to 30 GPa. A phase transition to a metastable orthorhombic high-pressure phase along with some of the stable orthorhombic C m c m CrV O4 -type material is found to occur beginning at 9 GPa at 320 ∘C in GaP O4 . In the case of the AlP O4-GaP O4 solid solution at room temperature, only the metastable orthorhombic phase was obtained above 10 GPa. The possible crystal structures of the high-pressure forms of GaP O4 were predicted from first-principles calculations and the evolutionary algorithm USPEX. A predicted orthorhombic structure with a P m n 21 space group with the gallium in sixfold and phosphorus in fourfold coordination was found to be in the best agreement with the combined experimental data from x-ray diffraction and absorption and Raman spectroscopy. This method is found to very powerful to better understand competition between different phase transition pathways at high pressure.

  1. Expression, purification, crystallization and structure of human adipocyte lipid-binding protein (aP2)

    International Nuclear Information System (INIS)

    Marr, Eric; Tardie, Mark; Carty, Maynard; Brown Phillips, Tracy; Wang, Ing-Kae; Soeller, Walt; Qiu, Xiayang; Karam, George

    2006-01-01

    The crystal structure of human adipocyte lipid-binding protein (aP2) with a bound palmitate is reported at 1.5 Å resolution. Human adipocyte lipid-binding protein (aP2) belongs to a family of intracellular lipid-binding proteins involved in the transport and storage of lipids. Here, the crystal structure of human aP2 with a bound palmitate is described at 1.5 Å resolution. Unlike the known crystal structure of murine aP2 in complex with palmitate, this structure shows that the fatty acid is in a folded conformation and that the loop containing Phe57 acts as a lid to regulate ligand binding by excluding solvent exposure to the central binding cavity

  2. Analysis of Primary Structural Determinants That Distinguish the Centromere-Specific Function of Histone Variant Cse4p from Histone H3

    OpenAIRE

    Keith, Kevin C.; Baker, Richard E.; Chen, Yinhuai; Harris, Kendra; Stoler, Sam; Fitzgerald-Hayes, Molly

    1999-01-01

    Cse4p is a variant of histone H3 that has an essential role in chromosome segregation and centromere chromatin structure in budding yeast. Cse4p has a unique 135-amino-acid N terminus and a C-terminal histone-fold domain that is more than 60% identical to histone H3 and the mammalian centromere protein CENP-A. Cse4p and CENP-A have biochemical properties similar to H3 and probably replace H3 in centromere-specific nucleosomes in yeasts and mammals, respectively. In order to identify regions o...

  3. 17β-estradiol-induced ACSL4 protein expression promotes an invasive phenotype in estrogen receptor positive mammary carcinoma cells.

    Science.gov (United States)

    Belkaid, Anissa; Ouellette, Rodney J; Surette, Marc E

    2017-04-01

    Long chain acyl-CoA synthase-4 (ACSL4) expression has been associated with an aggressive phenotype in breast carcinoma cells, whereas its role in ERα-positive breast cancer has not been studied. ACSL4 prefers 20-carbon polyunsaturated fatty acid (PUFA) substrates, and along with other ACSLs has been associated with cellular uptake of exogenous fatty acids. 17β-estradiol induces proliferation and invasive capacities in ERα+ve breast carcinoma that is associated with modifications of cellular lipid metabolism. In this study, treatment of steroid-starved ERα-positive MCF-7 and T47D mammary carcinoma cells with 17β-estradiol resulted in increased cellular uptake of the PUFA arachidonic acid (AA) and eicosapentaenoic acid (EPA), important building blocks for cellular membranes, and increased ACSL4 protein levels. There was no change in the expression of the ACSL1, ACSL3 and ACSL6 protein isotypes. Increased ACSL4 protein expression was not accompanied by changes in ACSL4 mRNA expression, but was associated with a significant increase in the protein half-life compared to untreated cells. ERα silencing reversed the impact of 17β-estradiol on ACSL4 protein levels and half-life. Silencing of ACSL4 eliminated the 17β-estradiol-induced increase in AA and EPA uptake, as well as the 17β-estradiol-induced cell migration, proliferation and invasion capacities. ASCL4 silencing also prevented the 17β-estradiol induced increases in p-Akt and p-GSK3β, and decrease in E-cadherin expression, important events in epithelial to mesenchymal transition. Taken together, these results demonstrate that ACSL4 is a target of 17β-estradiol-stimulated ERα and is required for the cellular uptake of exogenous PUFA and the manifestation of a more malignant phenotype in ERα+ve breast carcinoma cells. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Heat Shock Proteins 60 and 70 Specific Proinflammatory and Cytotoxic Response of CD4+CD28null Cells in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Ashok K. Yadav

    2013-01-01

    Full Text Available Background. CD4+CD28null T cells are expanded in peripheral blood of patients with chronic kidney disease and associated with subclinical atherosclerosis. However, triggers for the oligoclonal expansion and activation of these cells are not clear. Methods. We investigated twenty-five stage V-IV chronic kidney disease (CKD patients and eight healthy subjects (HC. Peripheral mononuclear cells were isolated and incubated with heat shock protein- (HSP 60 and 70. CD4+CD28null and CD4+CD28+ cells were sorted by flowcytometry and antigen specific response was assessed by the mRNA and protein expression of interferon (IFN-γ, perforin, and granzyme B using qRT-PCR and Elispot. Results. The basal mRNA expression of IFN-γ, perforin, and granzyme B in CD4+CD28null cells was higher in subjects with CKD compared to that in HC (P<0.0001. Subjects with CKD also showed expression of IFN-γ, perforin, and granzyme B in the CD4+CD28+ subset, but this was much weaker than that seen in the CD4+CD28null population (P<0.0001. We did not note the expression of these molecules at mRNA or protein level in either subset of CD4 cells in HC. After incubation with HSP60 and HSP70, CD4+CD28null cells showed increased expression at mRNA (P<0.001 and protein level (P<0.001. CD4+CD28+ cells also showed a weak increase in expression. No antigen-specific response was noted in HC. Conclusion. These data show that CD4+CD28null cells in subjects with CKD react with HSP60 and HSP70 by upregulating the expression of IFN-γ, perforin and granzyme B. Increased circulating level of HSP60 and HSP70 might play a role in initiation and/or progression of atherosclerosis in CKD subjects through perturbation of CD4+CD28null cells.

  5. Expression of the p16{sup INK4a} tumor suppressor gene in rodent lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Swafford, D.S.; Tesfaigzi, J.; Belinsky, S.A.

    1995-12-01

    Aberrations on the short arm of chromosome 9 are among the earliest genetic changes in human cancer. p16{sup INK4a} is a candidate tumor suppressor gene that lies within human 9p21, a chromosome region associated with frequent loss of heterozygosity in human lung tumors. The p16{sup INK4a} protein functions as an inhibitor of cyclin D{sub 1}-dependent kinases that phosphorylate the retinoblastoma (Rb) tumor suppressor gene product enabling cell-cycle progression. Thus, overexpression of cyclin D{sub 1}, mutation of cyclin-dependent kinase genes, or loss of p16{sup INK4a} function, can all result in functional inactivation of Rb. Inactivation of Rb by mutation or deletion can result in an increase in p16{sup INK4a} transcription, suggesting that an increased p16{sup INK4a} expression in a tumor cell signals dysfunction of the pathway. The p16{sup (INK4a)} gene, unlike some tumor suppressor genes, is rarely inactivated by mutation. Instead, the expression of this gene is suppressed in some human cancers by hypermethylation of the CpG island within the first exon or by homozygous deletion: 686. Chromosome losses have been observed at 9p21 syntenic loci in tumors of the mouse and rat, two species often used as animal models for pulmonary carcinogenesis. Expression of p16{sup INK4a} is lost in some mouse tumor cell lines, often due to homozygous deletion. These observations indicate that p16{sup INK4a} dysfunction may play a role in the development of neoplasia in rodents as well as humans. The purpose of the current investigation was to define the extent to which p16{sup INK4a} dysfunction contributes to the development of rodent lung tumors and to determine the mechanism of inactivation of the gene. There is no evidence to suggest a loss of function of the p16{sup INK4a} tumor suppressor gene in these primary murine lung tumors by mutation, deletion, or methylation.

  6. Quiescent Oct4+ Neural Stem Cells (NSCs) Repopulate Ablated Glial Fibrillary Acidic Protein+ NSCs in the Adult Mouse Brain.

    Science.gov (United States)

    Reeve, Rachel L; Yammine, Samantha Z; Morshead, Cindi M; van der Kooy, Derek

    2017-09-01

    Adult primitive neural stem cells (pNSCs) are a rare population of glial fibrillary acidic protein (GFAP) - Oct4 + cells in the mouse forebrain subependymal zone bordering the lateral ventricles that give rise to clonal neurospheres in leukemia inhibitory factor in vitro. pNSC neurospheres can be passaged to self-renew or give rise to GFAP + NSCs that form neurospheres in epidermal growth factor and fibroblast growth factor 2, which we collectively refer to as definitive NSCs (dNSCs). Label retention experiments using doxycycline-inducible histone-2B (H2B)-green fluorescent protein (GFP) mice and several chase periods of up to 1 year quantified the adult pNSC cell cycle time as 3-5 months. We hypothesized that while pNSCs are not very proliferative at baseline, they may exist as a reserve pool of NSCs in case of injury. To test this function of pNSCs, we obtained conditional Oct4 knockout mice, Oct4 fl/fl ;Sox1 Cre (Oct4 CKO ), which do not yield adult pNSC-derived neurospheres. When we ablated the progeny of pNSCs, namely all GFAP + dNSCs, in these Oct4 CKO mice, we found that dNSCs did not recover as they do in wild-type mice, suggesting that pNSCs are necessary for dNSC repopulation. Returning to the H2B-GFP mice, we observed that the cytosine β-d-arabinofuranoside ablation of proliferating cells including dNSCs-induced quiescent pNSCs to proliferate and significantly dilute their H2B-GFP label. In conclusion, we demonstrate that pNSCs are the most quiescent stem cells in the adult brain reported to date and that their lineage position upstream of GFAP + dNSCs allows them to repopulate a depleted neural lineage. Stem Cells 2017;35:2071-2082. © 2017 AlphaMed Press.

  7. The Plasmodium falciparum exported protein PF3D7_0402000 binds to erythrocyte ankyrin and band 4.1

    Energy Technology Data Exchange (ETDEWEB)

    Shakya, Bikash; Penn, Wesley D.; Nakayasu, Ernesto S.; Lacount, Douglas J.

    2017-09-01

    Plasmodium falciparum extensively modifies the infected red blood cell (RBC), resulting in changes in deformability, shape and surface properties. These alterations suggest that the RBC cytoskeleton is a major target for modification during infection. However, the molecular mechanisms leading to these changes are largely unknown. To begin to address this question, we screened for exported P. falciparum proteins that bound to the erythrocyte cytoskeleton proteins ankyrin 1 (ANK1) and band 4.1 (4.1R), which form critical interactions with other cytoskeletal proteins that contribute to the deformability and stability of RBCs. Yeast two-hybrid screens with ANK1 and 4.1R identified eight interactions with P. falciparum exported proteins, including an interaction between 4.1R and PF3D7_0402000 (PFD0090c). This interaction was first identified in a large-scale screen (Vignali et al., Malaria J, 7:211, 2008), which also reported an interaction between PF3D7_0402000 and ANK1. We confirmed the interactions of PF3D7_0402000 with 4.1R and ANK1 in pair-wise yeast two-hybrid and co-precipitation assays. In both cases, an intact PHIST domain in PF3D7_0402000 was required for binding. Complex purification followed by mass spectrometry analysis provided additional support for the interaction of PF3D7_0402000 with ANK1 and 4.1R. RBC ghost cells loaded with maltose-binding protein (MBP)-PF3D7_0402000 passed through a metal microsphere column less efficiently than mock- or MBP-loaded controls, consistent with an effect of PF3D7_0402000 on RBC rigidity or membrane stability. This study confirmed the interaction of PF3D7_0402000 with 4.1R in multiple independent assays, provided the first evidence that PF3D7_0402000 also binds to ANK1, and suggested that PF3D7_0402000 affects deformability or membrane stability of uninfected RBC ghosts.

  8. Interaction between the P1 protein of Mycoplasma pneumoniae and receptors on HEp-2 cells

    DEFF Research Database (Denmark)

    Drasbek, Mette; Christiansen, Gunna; Drasbek, Kim Ryun

    2007-01-01

    The human pathogen Mycoplasma pneumoniae can cause atypical pneumonia through adherence to epithelial cells in the respiratory tract. The major immunogenic protein, P1, participates in the attachment of the bacteria to the host cells. To investigate the adhesion properties of P1, a recombinant...... protein (rP1-II) covering amino acids 1107-1518 of the P1 protein was produced. This protein inhibited the adhesion of M. pneumoniae to human HEp-2 cells, as visualized in a competitive-binding assay using immunofluorescence microscopy. Previous studies have shown that mAbs that recognize two epitopes...... overlapping synthetic peptides covering the whole of rP1-II were evaluated in the competitive-binding assay using immunofluorescence microscopy. A reduction in the number of M. pneumoniae microcolonies was seen, which was confirmed for five peptides using a POLARstar OPTIMA reader to measure fluorescence...

  9. The interrelationship between ligand binding and thermal unfolding of the folate binding protein. The role of self-association and pH

    DEFF Research Database (Denmark)

    Holm, Jan; Babol, Linnea N.; Markova, Natalia

    2014-01-01

    The present study utilized a combination of DLS (dynamic light scattering) and DSC (differential scanning calorimetry) to address thermostability of high-affinity folate binding protein (FBP), a transport protein and cellular receptor for the vitamin folate. At pH7.4 (pI=7-8) ligand binding......, intermolecular forces involved in concentration-dependent multimerization thus contribute to the thermostability of holo-FBP. Hence, thermal unfolding and dissociation of holo-FBP multimers occur simultaneously consistent with a gradual decrease from octameric to monomeric holo-FBP (10μM) in DLS after a step-wise...

  10. Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex

    Directory of Open Access Journals (Sweden)

    Lisa M. Tuttle

    2018-03-01

    Full Text Available Summary: Transcription activation domains (ADs are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements. : Tuttle et al. report a “fuzzy free-for-all” interaction mechanism that explains how seemingly unrelated transcription activators converge on a limited number of coactivator targets. The mechanism provides a rationale for the observation that individually weak and low-specificity interactions can combine to produce biologically critical function without requiring highly ordered structure. Keywords: transcription activation, intrinsically disordered proteins, fuzzy binding

  11. Rigid-rod polyamides and polyimides derived from 4,3 ''-diamino-2 ',6 '-diphenyl- or di(4-biphenylyl)-p-terphenyl and 4-amino-4 ''-carboxy-2 ',6 '-diphenyl-p-terphenyl

    NARCIS (Netherlands)

    Spiliopoulos, IK; Mikroyannidis, JA; Tsivgoulis, GM

    1998-01-01

    4,3 "-Diamino-2',6'-diphenyl- or di(4-biphenylyl)p-terphenyl (3a or 3b) and 4-amino-4 "-carboxy-2',6'-diphenyl-p-terphenyl (6) were synthesized through pyrylium salts and used for the preparation of rigid-rod polyamides and polyimides. The polymers were characterized by inherent viscosity, elemental

  12. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2

    Science.gov (United States)

    Breitkopf, Susanne B.; Yang, Xuemei; Begley, Michael J.; Kulkarni, Meghana; Chiu, Yu-Hsin; Turke, Alexa B.; Lauriol, Jessica; Yuan, Min; Qi, Jie; Engelman, Jeffrey A.; Hong, Pengyu; Kontaridis, Maria I.; Cantley, Lewis C.; Perrimon, Norbert; Asara, John M.

    2016-02-01

    Using a series of immunoprecipitation (IP) - tandem mass spectrometry (LC-MS/MS) experiments and reciprocal BLAST, we conducted a fly-human cross-species comparison of the phosphoinositide-3-kinase (PI3K) interactome in a drosophila S2R+ cell line and several NSCLC and human multiple myeloma cell lines to identify conserved interacting proteins to PI3K, a critical signaling regulator of the AKT pathway. Using H929 human cancer cells and drosophila S2R+ cells, our data revealed an unexpected direct binding of Corkscrew, the drosophila ortholog of the non-receptor protein tyrosine phosphatase type II (SHP2) to the Pi3k21B (p60) regulatory subunit of PI3K (p50/p85 human ortholog) but no association with Pi3k92e, the human ortholog of the p110 catalytic subunit. The p85-SHP2 association was validated in human cell lines, and formed a ternary regulatory complex with GRB2-associated-binding protein 2 (GAB2). Validation experiments with knockdown of GAB2 and Far-Western blots proved the direct interaction of SHP2 with p85, independent of adaptor proteins and transfected FLAG-p85 provided evidence that SHP2 binding on p85 occurred on the SH2 domains. A disruption of the SHP2-p85 complex took place after insulin/IGF1 stimulation or imatinib treatment, suggesting that the direct SHP2-p85 interaction was both independent of AKT activation and positively regulates the ERK signaling pathway.

  13. Decreased expression of cytochrome P450 protein in non-malignant colonic tissue of patients with colonic adenoma

    DEFF Research Database (Denmark)

    Bergheim, I.; Bode, C.; Parlesak, Alexandr

    2005-01-01

    BACKGROUND: Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in both the elimination and activation of (pro-)carcinogens. To estimate the role of cytochrome P450 in carcinogenesis of the colon, expression patterns and protein levels of four...... representative CYPs (CYP2C, CYP2E1, CYP3A4 and CYP3A5) were determined in colon mucosa of normal and adenomatous colonic tissue of patients with adenomas and disease-free controls. METHODS: Expression of CYP2C, CYP2E1, CYP3A4, and CYP3A5 in colon mucosa of normal and adenomatous colonic tissue of patients...... with adenoma and disease-free controls was determined by RT-PCR. Protein concentration of CYPs was determined using Western blot. RESULTS: With the exception of CYP3A5, expression of CYP mRNA was similar among groups and tissues (e.g. normal colon mucosa and adenoma). CYP3A5 mRNA expression was significantly...

  14. Effect of X-irradiation on the protein expression of P57kip2 and TGF-β1 in lung cancer cell stain A549

    International Nuclear Information System (INIS)

    Zou Huawei; Tan Yonggang; Zhang Heying

    2008-01-01

    Objective: To analyze the effect of X-irradiation on the proteins expression of p57 kip2 and TGF-β1 in lung cancer cell stain A549 and its clinical significance. Methods: Lung cancer cell stain A549 was cultivated and cell, protein was extracted at 6,12,24,36 and 48 hours after X-irradiation by different doses(2,4, 8 and 12 Gy). The expression of p57 kip2 and TGF-β1 proteins were examined by Western blot. Results: The expression of p57 kip2 in lung cancer cell stain A549 was very low before X-irradiation, and increased significantly after irradiation with different doses and reached the peak level at 12 hours after irradiation (P kip2 and TGF-β1 proteins which increased with certain doses, p57 kip2 and TGF-β1 could be used to predict the damage degree of cancer cells by X-ray. (authors)

  15. Challenges in pKa Predictions for Proteins: The case of Asp213 in Human Proteinase 3

    Science.gov (United States)

    Hajjar, Eric; Dejaegere, Annick; Reuter, Nathalie

    2009-09-01

    Knowledge of the protonation states of the ionizable residues in an enzyme is a prerequisite to an accurate description of its structure and mechanism. In practice, the use of the inappropriate protonation state for an amino acid in a molecular modeling computation (e.g., molecular dynamics simulation) is likely to lead to unrealistic results. Although methods using solvers of the linearized Poisson-Boltzmann equation have proven to yield accurate pKa predictions, they bear a number of limitations. They are quite demanding in terms of computational power and are sensitive to representation of the charges and their position (force field and protein conformation). Moreover they depend on the choice of a dielectric constant for the protein interior. In this manuscript, we describe the difficulties met when trying to predict the protonation state of a buried amino acid, located in a protein for which very little biochemical data is available. Such a case is highly representative of the challenges faced in theoretical biology studies. Proteinase 3 (PR3) is an enzyme involved in proteolytic events associated with inflammation. It is a potential target in the development of new anti-inflammatory therapeutic strategies. We report the results of pKa predictions of the aspartic acid 213 of PR3 with a FDPB solver. We probed the influence of the choice of the dielectric constant for the protein interior ɛp and the benefits of conformational sampling by molecular dynamics (MD) on the pKa prediction of this carboxylate group. Using only the FDPB calculations, we could not conclude on the protonation state of Asp213. MD simulations confronted to knowledge of the ligand-binding and reaction mechanism led us to decide on a protonated form of this aspartic acid. We also demonstrate that the use of the wrong protonation state leads to an unreliable structural model for PR3. pKa prediction with a fast empirical method yielded a pKa of 8.4 for Asp213, which is in agreement with our

  16. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Schuetz, Erin G. [Department of Pharmaceutical Sciences, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Chen, Taosheng, E-mail: taosheng.chen@stjude.org [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States)

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.

  17. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    International Nuclear Information System (INIS)

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-01-01

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence

  18. Fluorescent S-layer fusion proteins

    International Nuclear Information System (INIS)

    Kainz, B.

    2010-01-01

    This work describes the construction and characterisation of fluorescent S-layer fusion proteins used as building blocks for the fabrication of nanostructured monomolecular biocoatings on silica particles with defined fluorescence properties. The S-layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a was fused with the pH-dependant cyan, green and yellow variant of the green fluorescent protein (GFP) and the red fluorescent protein mRFP1. These fluorescent S-layer fusion proteins, acting as scaffold and optical sensing element simultaneously, were able to reassemble in solution and on silica particles forming 2D nanostructures with p2 lattice symmetry (a=11 ±0.5 nm, b=14 ±0.4 nm, g=80 ±1 o ). The pH-dependant fluorescence behaviour was studied with fluorimetry, confocal microscopy and flow cytometry. These fluorescent S-layer fusion proteins can be used as pH-sensor. 50% of the fluorescence intensity decreases at their calculated pKa values (pH6 - pH5). The fluorescence intensity of the GFP variants vanished completely between pH4 and pH3 whereas the chromophore of the red protein mRFP1 was only slightly affected in acidic conditions. At the isoelectric point of the S-layer coated silica particles (pH4.6 ±0.2) an increase in particle aggregation was detected by flow cytometry. The cyan and yellow fluorescent proteins were chosen to create a bi-fluorescent S-layer tandem fusion protein with the possibility for resonance energy transfer (FRET). A transfer efficiency of 20% and a molecular distance between the donor (ECFP) and acceptor (YFP) chromophores of around 6.2 nm could be shown. This bi-fluorescent ECFP-SgsE-YFP tandem fusion protein was able to reassemble on solid surfaces. The remarkable combination of fluorescence and self-assembly and the design of bi-functional S-layer tandem fusion protein matrices makes them to a promising tool in nanobiotechnology. (author) [de

  19. Acidic pH stimulates the production of the angiogenic CXC chemokine, CXCL8 (interleukin-8), in human adult mesenchymal stem cells via the extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and NF-kappaB pathways.

    Science.gov (United States)

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2008-07-01

    Blood vessel injury results in limited oxygen tension and diffusion leading to hypoxia, increased anaerobic metabolism, and elevated production of acidic metabolites that cannot be easily removed due to the reduced blood flow. Therefore, an acidic extracellular pH occurs in the local microenvironment of disrupted bone. The potential role of acidic pH and glu-leu-arg (ELR(+)) CXC chemokines in early events in bone repair was studied in human mesenchymal stem cells (hMSCs) treated with medium of decreasing pH (7.4, 7.0, 6.7, and 6.4). The cells showed a reciprocal increase in CXCL8 (interleukin-8, IL-8) mRNA levels as extracellular pH decreased. At pH 6.4, CXCL8 mRNA was induced >60x in comparison to levels at pH 7.4. hMSCs treated with osteogenic medium (OGM) also showed an increase in CXCL8 mRNA with decreasing pH; although, at a lower level than that seen in cells grown in non-OGM. CXCL8 protein was secreted into the medium at all pHs with maximal induction at pH 6.7. Inhibition of the G-protein-coupled receptor alpha, G(alphai), suppressed CXCL8 levels in response to acidic pH; whereas phospholipase C inhibition had no effect on CXCL8. The use of specific mitogen-activated protein kinase (MAPK) signal transduction inhibitors indicated that the pH-dependent increase in CXCL8 mRNA is due to activation of ERK and p38 pathways. The JNK pathway was not involved. NF-kappaB inhibition resulted in a decrease in CXCL8 levels in hMSCs grown in non-OGM. However, OGM-differentiated hMSCs showed an increase in CXCL8 levels when treated with the NF-kappaB inhibitor PDTC, a pyrrolidine derivative of dithiocarbamate. 2008 Wiley-Liss, Inc.

  20. Myocardin-related transcription factor regulates Nox4 protein expression

    DEFF Research Database (Denmark)

    Rozycki, Matthew; Bialik, Janne Folke; Speight, Pam

    2016-01-01

    translocation of MRTF. Because the Nox4 promoter harbors a serum response factor/MRTF cis-element (CC(A/T)6GG box), we asked if MRTF (and thus cytoskeleton organization) could regulate Nox4 expression. We show that Nox4 protein is robustly induced in kidney tubular cells exclusively by combined application...... TGFβ/contact disruption-provoked Nox4 protein and mRNA expression, Nox4 promoter activation, and reactive oxygen species production. Mutation of the CC(A/T)6GG box eliminates the synergistic activation of the Nox4 promoter. Jasplakinolide-induced actin polymerization synergizes with TGFβ to facilitate...... MRTF-dependent Nox4 mRNA expression/promoter activation. Moreover, MRTF inhibition prevents Nox4 expression during TGFβ-induced fibroblast-myofibroblast transition as well. Although necessary, MRTF is insufficient; Nox4 expression also requires TGFβ-activated Smad3 and TAZ/YAP, two contact...